

Augmented Reality: Live Chess

DEGREE THESIS

University degree in Audiovisual Systems

Student: Víctor Vila Bonnin

Director: Jorge Martin Gimenez

Delivery date: 28/09/2020

 INDEX:

1. INTRODUCTION …… 1
 1.1. Acknowledgement ………………………………………………………………………………………………. 1
 1.2. Abstract ……. 2
 1.3. Declaration of honour …………………………………………………………………………………………. 3
 1.4. Object of the work ………………………………………………………………………………………………. 4
 1.5. Scope of the work ………………………………………………………………………………………………… 4
 1.6. Requirements of the work …………………………………………………………………………………… 5
 1.7. Usefulness of the work ………………………………………………………………………………………… 5
 1.8. Project approach …………………………………………………………………………………………………. 5
2. DEVELOPMENT …… 7
 2.1. Review of the state of the art ………………………………………………………………………………. 7
 2.1.1. Computer ……………………………………………………………………………………………….. 7
 2.1.2. VR headset ……………………………………………………………………………………………… 7
 2.1.2.1. Degrees of freedom ………………………………………………………………… 7
 2.1.2.2. Autonomy ……………………………………………………………………………….. 8
 2.1.3. Game engine …………………………………………………………………………………………… 9
 2.1.4. Software development kit ………………………………………………………………………. 9
 2.2. Decision ……. 10
 2.3. Development ………………………………………………………………………………………………………. 11
 2.3.1. Modeling the pieces and the board ………………………………………………………… 11
 2.3.2. Texturization of the chess pieces and the chessboard ………………………….… 13
 2.3.3. First version of the game ………………………………………………………………………… 15
 2.3.3.1. Project creation ………………………………………………………………………. 16
 2.3.3.2. Import models …………………………………………………………………………. 16
 2.3.3.3. Global variables ………………………………………………………………………. 17
 2.3.3.4. Classes …………………………………………………………………………………….. 18
 2.3.3.4.1. The Chessman class ……………………………………………. 18
 2.3.3.4.2. The Pawn class ……………………………………………………. 18
 2.3.3.4.3. The Castle class …………………………………………………… 22
 2.3.3.4.4. The Knight class ………………………………………………….. 23
 2.3.3.4.5. The Bishop class ………………………………………………….. 24
 2.3.3.4.6. The Queen class .…………………………………………………. 25
 2.3.3.4.7. The King class ……………………………………………………... 25
 2.3.3.5. BoardManager script ………………………………………………………………. 27
 2.3.3.5.1. The Start function ……………………………………………….. 27
 2.3.3.5.2. The Update function …………………………………………… 28
 2.3.3.5.3. The BoardCursorPosition function ……………….…….. 29
 2.3.3.5.4. The UpdateChessmanDrag function ……………………. 30
 2.3.3.5.5. The LightCursorPosition function ………………….……. 31
 2.3.3.5.6. The SpawnChessmans function …………………….……. 32
 2.3.3.5.7. The SpawnChessman function ……………………………. 34
 2.3.3.5.8. The MoveToTheCenter function ………………………… 35
 2.3.3.5.9. The SelectPiece function ……………………………….……. 36
 2.3.3.5.10. The MovePiece function ………………………..…………. 37
 2.3.3.5.11. The SpawnLight function …………………………………… 40
 2.3.3.5.12. The AtLeastOne function …..……………………………… 40
 2.3.3.5.13. The EndGame function ……………………………………… 41
 2.3.4. Second version of the game …………………………………………………………………… 41
 2.3.4.1. New global variables ……………………………………………………………….. 42

 2.3.4.2. Upgrade of the Update function ……………………………………………… 42
 2.3.4.3. The WhereIsTheKing function …………………………………………………. 43
 2.3.4.4. The InCheck function ………………………………………………………………. 44
 2.3.4.5. The BlackMoves function ………………………………………………………… 44
 2.3.4.6. The BestPossibleScore function ………………………………………………. 45
 2.3.4.7. The AllPieces function …………………………………………………………….. 47
 2.3.4.8. The AllPossibleMoves function ……………………………………………….. 47
 2.3.4.9. The ValueChessmansPosition function ……………………………………. 48
 2.3.4.10. The Minimax function …………………………………………………………… 49
 2.3.5. Final version of the game ……………………………………………………………………….. 53
 2.3.5.1. Project imports ……………………………………………………………………….. 54
 2.3.5.2. VR Camera ………………………………………………………………………………. 54
 2.3.5.3. New global variables ……………………………………………………………….. 55
 2.3.5.4. Upgrade of the Update function ……………………………………………… 55
 2.3.5.5. Upgrade of the BoardCursorPosition function ……………………….. 56
 2.3.5.6. Upgrade of the UpdateChessmanDrag function ………………………. 57
 2.3.5.7. Lights that we find in the project …………………………………………….. 57
 2.3.6. Final view of the game ……………………………………………………………………………. 60
3. SUMMARY OF RESULTS …………………………………………………………………………………………………. 62
 3.1. Budget ………. 62
 3.2. Gantt …… 62
 3.3. Problems found …………………………………………………………………………………………………… 63
 3.4. Conclusions ……. 64
 3.5. Possible future work ……………………………………………………………………………………………. 64
4. List of bibliographical references …………………………………………………………………………………… 66

FIGURE LIST:

Figure 1. Degrees of freedom (DoF)... 8

Figure 2. Reference image for the 3D model parts... 11

Figure 3. Distribution of the panels with the reference images .. 11

Figure 4. Base used to model the king, queen, bishop, rook and pawn 12

Figure 5. Differences between applying the Soft Edge tool (orange objects) and not applying it

(blue objects) .. 12

Figure 6. Final model of the pieces .. 13

Figure 7. Final model of the board... 13

Figure 8. Left: Manual Unwrap. Right: Automatic Unwrap. .. 14

Figure 9. Left: Mark Seams for a manual Unwrap. Right: Mark Seams for automatic Unwrap. . 14

Figure 10. Final result of the white pieces ... 15

Figure 11. Final result of the black pieces .. 15

Figure 12. Final result of the board.. 15

Figure 13. Exemple of a new Unity project .. 16

Figure 14. Prefabs assets of the project ... 17

Figure 15. Left: Game view of the Debug.DrawLine. Right: Devekioer's view of th

Debug.DrawLine. .. 32

Figure 16. Indexes of the ChessmanPrefabs .. 34

Figure 17. Skybox example .. 54

Figure 18. VR Rig structure .. 54

Figure 19. XR Rig and OVR Manager scripts ... 55

Figure 20. Light of possible movements .. 58

Figure 21. Ligth of be in check ... 59

Figure 22. Mouse / VR Controller pointer light .. 59

Figure 23. Light of the AI movement ... 60

Figure 24. Final view 1... 60

Figure 25. Final view 2... 61

Figure 26. Final view 3... 61

Figure 27. Final view 4... 61

Figure 28. Gantt diagram .. 63

TABLE LIST:

Table 1. Global variables of the first version of the game .. 18

Table 2. Global variables added for the second version of the game.. 42

Table 3. Global variables added for the final version of the game .. 55

Table 4. Budget Table.. 62

Table 5. Gantt description table .. 62

ACRONYMS LIST:

INT -> Integer

FLOAT -> Numeric values with floating decimal points

BOOL -> Boolean

AI -> Artificial intelligence

C# -> C Sharp

VR -> Virtual Reality

AR -> Augmented Reality

RM -> Mixed Reality

XR -> Combination of all realities: VR plus AR plus RM

DOF -> Degrees of freedom

SDK -> Software development kit

APK -> Android application package

GPU -> Graphics processing unit

1

1. INTRODUCTION

1.1. Acknowledgement

First of all, I would like to thank Professor Jorge Martin for helping me choose this project and

offering me his help and support throughout the development. I would also like to thank him

for his patience in the stressful moments I have experienced throughout the development of

the project.

I would also like to thank my family for the help and support throughout the career, without

them I would not have reached this point.

Finally, I would like to thank Gerard Busquets, Jose Maria Vila and Jhessenia Adomeit for their

unconditional support, for motivating me to keep going in the moments when things were

getting difficult and for the patience they have had with me during these last years.

2

1.2. Abstract

In this research project, a chess video game has been designed, coded and implemented into a

virtual reality environment. The design of the pieces has been modelled with Autodesk Maya,

while the textures of them all have been done with Substance Painter. The game engine used

has been Unity, and the chosen virtual reality test device was Oculus Go.

Virtual Reality is quite a recent, but already well-known and extended concept in the

technology sector. Nonetheless, an important legacy is already being forged after it, since it is

such a promising medium, all that remains is to seek the limits that are possible to achieve,

and how much can we participate in its development.

The aim of this work will be to execute all the phases from the system development life cycle.

The results of each phase throughout the development of this project will be shown; as well as

the changes from stage to stage. These results will be displayed both in a graphical format, and

in code snippets.

3

1.3. Declaration of honour

I declare that,

the work in this Degree Thesis is completely my own work,

no part of this Degree Thesis is taken from other people’s work without giving them credit,

all references have been clearly cited,

I understand that an infringement of this declaration leaves me subject to the foreseen

disciplinary actions by The Universitat Politècnica de Catalunya - BarcelonaTECH.

Víctor Vila Bonnin ______________ 29/06/2020

Student Name Signature Date

Title of the Thesis : Augmented Reality: live chess._______________________

__

__

__

4

1.4. Object of the work

The objective of this end-of-degree project is the development of a chess video game in a

virtual reality environment, executing all the phases from the system development life cycle:

scope definition, requirement analysis, design, implementation, testing and integration, and

delivery.

1.5. Scope of the work

The extension of this project covers the following areas:

1) Design and modelling of all the objects we will need in a 3D format. This includes the 6

chess pieces and the game board.

2) Texturing of the figures.

3) Programming of the video game in a 3D environment.

4) Code debugging and testing.

5) Creation of an artificial intelligence for single-player gameplay.

6) Code correction and optimization.

7) Creation of a virtual reality environment and insertion of the video game in this

environment.

The scope areas from the project are subdivided in the following milestone:

• State of the art research. Before starting with the project, research must be done

to know the technologies currently used for making virtual reality video games.

The research includes equipment and software.

• Installation of necessary resources. After the initial investigation, the next step to

be complete is the installation of the necessary resources for the development of

the project. At the same time, is also evaluated which device is the most suitable

for this project and that it will be bought later.

• Modeling of the pieces and the board. Once all the necessary programs for this

project have been installed, the next step during the development will consist of

creating a 3D model of each of the 6 pieces found in the chessboard (king, queen,

rook, knight, bishop and pawn) and the board.

• Texturing of the pieces and the board. Once the pieces and board are designed,

next step is adding textures to them.

• Programming the first version. Scope from the first iteration is to develop a

finished game that can only be played by one player against the other.

• Testing and correction from the first iteration. After the first iteration, game will be

tested to fine tune and avoid bigger bugs during further iterations.

• Programming the second version. The scope from the second iteration ad Artificial

intelligence to the game.

• Testing and correction from the second version. After the second iteration, game

will be tested to fine tune the Artificial Intelligence.

• Creation of the virtual reality environment. At this point, 3D environment will be

move to a virtual reality environment by changing the type of camera and inputs

expected by the program.

5

• Gathering information. Review all the information that I have been recollecting

during the project, as well the management of this information for possible future

consultation. This activity will also allow me to finalize the writing of the report.

• Drafting of the final report of the Degree Thesis. This activity will start in parallel

with the gathering information activity, and will be extended during the entire

project until the finalization from the last version.

1.6. Requirements of the work

The requirements to develop this project are the following:

• Knowledge of programming in C#.

• Software dedicated to 3D graphics development.

• Texturing program for 3D models.

• Multiplatform game engine.

• Computer.

• Virtual reality viewer.

1.7. Usefulness of the work

Today, simulation technology is used as a tool in many areas and is an increasingly used

resource in business environments. We can see how this technology finds its market potential

as a tool for education, as well as a tourist attraction for advertising events or for guided tours

of properties. However, their use is not as common among individuals as in companies. With

this project I pretend to encourage the creation and use of immersive virtual reality for

domestic use with a recreational purpose.

I want to use my project as a gateway to a new environment by creating the feeling of entering

an unknown world and getting a totally different experience from playing video games.

Another important point in the project is the creation of an Artificial Intelligence. Artificial

Intelligence makes our daily life easier in many areas such as customer service or predictive

writing. In this project I hope to give a solution to the problem of playing chess alone, the

objective of this Artificial Intelligence is to have the ability to make decisions against a board

layout and choosing the optimal move to reach victory.

The final motivation of this final degree work is to apply different fields studied during the

career in a single project, seeing how each of the parts affects the final set.

1.8. Project approach

In a professional environment, we find that the development of a video game goes through a

team of people and not just one person. Depending on the size of the project we find entire

departments dedicated to a single task such as the lighting or the coding.

Because of the impossibility of working in a team for the development of this project, I have

chosen to focus on having a playable version of the game in each stage trying to not advance

to the next one until I am convinced that there are no errors.

6

The minimum standards that I have tried to achieve at each phase are based directly on my

knowledge on that particular point, my experience and my skill. I have tried to get as close as I

could to a professional level to be able to consider the final result as marketable product.

7

2. DEVELOPMENT

2.1. Review of the state of the art

Virtual reality video game development is based on four mainly things:

1) Computer.

2) VR headset.

3) Game engine.

4) Software development kit or SDK.

2.1.1. Computer

First step was to check if the computer I had was powerful enough to be able to carry out my

work without problems or if I had to do some kind of update.

The minimum requirements for the computer depended a little bit on each game engine and

each VR headset you were going to use, but to develop this project the minimum system

requirements are the following:

• Operating system version: Windows 7 (SP1+) and Windows 10, 64-bit versions only

• CPU: X64 architecture with SSE2 instruction set support

• Graphics API: DX10, DX11, and DX12-capable GPUs

• Additional requirements: Hardware vendor officially supported drivers

2.1.2. VR headset

For the selection of the VR headset is mandatory to take into consideration essentially two

elements that will have a direct impact on the development of our videogame:

• Degrees of freedom.

• Autonomy.

2.1.2.1. Degrees of freedom

The degrees of freedom, or DoF, refer to the number of ways a rigid object can move through

three-dimensional space. There are six total degrees of freedom that describe every possible

movement of an object:

• 3 degrees of freedom for the rotary movement around the x, y, z axes.

• 3 degrees of freedom for transitional movement along these axes.

When we refer to 3-Dof we find that we can only perform the rotational movements of the

camera but we do not control the transitional movement; when we talk about 6-DoF we refer

to the possibility of moving the camera in rotation and in transition.

8

Figure 1. Degrees of freedom (DoF)

Some of the VR displays that allow 3 degrees of freedom are:

• Google Cardboard

• Oculus Go

• Merge VR

• Samsung Gear VR

• Google Daydrem

Some of the VR displays that allow 6 degrees of freedom are:

• Oculus Rift

• Oculus Quest

• HTC Vive

• Windows Mixed Reality

2.1.2.2. Autonomy

Autonomy is another factor that we have to consider. Most devices need a connection to a

computer in order to be used, even though there are several models that do not need it.

This connection to the computer also affects the development of a project, because devices

that require direct power with a computer can be used as testing devices without the need to

install the application on the display. In case you have a standalone viewer you need to install

it losing time between tests.

We also find some hybrid models that allow both connections, with the computer and in a self-

sufficient way, but most of them are displays that need a mobile phone to work making them

not very useful if you don't have a latest generation mobile phone.

On the other hand, displays that depend on a mobile phone are gradually losing market

against the self-sufficient devices. Last year, Oculus and Google announced that they were

ending their support for devices that required a smartphone to work, giving priority to the

development on the rest of their displays.

9

The displays that need a direct connection to a computer in order to be used are usually high-

end devices. These, as we have previously mentioned, are very useful when testing the

different tests, saving time between them.

2.1.3. Game engine

The game engine is the platform that we will use to handle all the necessary aspects for the

development of our project, from the physical to the graphic section. They are the set of

programming routines that allow us to design, create and standardize the performance of a

videogame.

We found multiple game engines of free use in the market:

• Unity (free only in the development of non-profit projects)

• Unreal Engine 4

• Godot

• Source2

• CryEngine

• UbiArt Framework

• Urho3D

• ApertusVR

• CopperCube

• Torque3D

And others of payment like for example:

• Unity (for the development of applications with purpose of profit)

• AppGameKit VR

• Skyline

Many of them have an integrated graphic editor within the platform itself, but we find that for

the correct development of the project we usually use one different from the integrated one.

Some of the graphic editors we find in the market are:

• Autodesk Maya

• Autodesk 3ds Max

• Blender

• 3D Slash

• Meshmixer

• DesignSpark

In this case, some of them are totally free (like for example Blender) and others have a

premium version and a free student version (like for example Autodesk Maya).

2.1.4. Software development kit (or SDK)

The Software development kit (or SDK) is a set of software development tools that allows a

developer to create a computer application for a specific operating system. The SDKs usually

10

depend on the virtual reality device to which a project is oriented, although there are some

that are multiplatform.

The most known are SteamVR, GearVR and Oculus Integration, but we find some like Open-

Source Virtual Reality (OSVR) or VIRO that are opening the market little by little trying to

include all the possible virtual reality devices.

2.2. Decision

Knowing the minimum requirements needed for my computer to develop the project, I did not

have to upgrade any aspect of the machine, although it conditioned some possible choices if I

did not update it. For example, to be able to use the Oculus Rift or Oculus Rift S you need at

least an NVIDIA GTX 1050Ti/AMD Radeon RX 470 or greater in the GPU; in my case I had a

GeForce GTX 760 removing from my future possibilities these devices.

In this project I will use Unity as a game engine. This choice is based on the flexibility of Unity,

as well as the huge community behind it and the large amount of documentation available

about virtual reality on its official website. On the other hand, Unity has developed a tool that

facilitates the management of the SDKs and allows the connection between them so you don't

have to make multiple versions of the same application depending on the device in which it

will be used.

I will also use Autodesk Maya as a 3D graphics developer even though Unity has their own

integrated platform. This choice is motivated by the familiarity I have with the program, the

amount of tools it offers and the easy interconnection it has with Unity as well as with other

programs.

On the other hand, for the texturing of the figures I will not use the tool offered by Autodesk

Maya. Instead, I will use the Substance Painter program because the final result is more

realistic, it allows you to make light tests in the same program without the need to import it to

Maya and it allows you to paint directly over the figures as if you had a brush in your mouse.

On the other hand, importing and exporting figures from Autodesk Maya to the Substance

Painter and back again is almost straightforward with no intermediate steps, making it easy to

move the files.

Finally, the visor I've decided to buy is the Oculus Go. These are the low-end virtual reality

glasses from Oculus and only allow you to have one control connected at the same time; they

also do not offer the possibility to connect the device to the computer for testing so every time

you have to do some checking you have to connect the device to the computer, install an APK,

disconnect it and test it. On the other hand, it doesn't have minimum requirements in terms of

GPU so when using this device I didn't find the need to improve my computer.

I chose this device over others because of the large developer community that exists around

this device. On the other hand, even being the simplest glasses, they have everything I need to

develop this project even though they don't have the computer connection that would

facilitate the testing work. Another point to take into account is the price, being the most

affordable among the entire Oculus brand.

11

2.3. Development

As I said before, the main challenge I faced was that I had to develop this project in a totally

individual way when this is usually done by a team of several people.

2.3.1. Modeling the pieces and the board

As I mention in section 2.2. Decision, the program chosen to model the chess pieces and the

chessboard is Autodesk Maya.

The first step to start modelling is to find a reference image to use as a guide during the

creation of the 3D model parts. The image finally chosen was the one that can be seen in figure

2. The size chosen for the width of the pieces was 3/4 of a metre in order to be able to adjust

the result more easily to the Unity environment.

Figure 2. Reference image for the 3D model parts

To model accurately, it is necessary to find two images as we need one for the front and one

for the side. In my case, having to model chess pieces, it was not strictly necessary because the

pieces are usually identical frontally and laterally except for the knight. The distribution of the

panels with the reference images can be found in figure 3.

Figure 3. Distribution of the panels with the reference images

12

Initially I created a base (figure 4) which I later adjusted by scaling it for each figure. This base

was used to model the king, queen, bishop, rook and pawn due to the similarity between the

pieces. Once the most similar pieces are finished, I started working with the knight.

Figure 4. Base used to model the king, queen, bishop, rook and pawn

The objective in the development of the pieces was to try to minimize the number of polygons

of each figure maintaining a smooth line in order to overload the game as little as possible

later, if the game has less amount of polygons, system will need less processing capacity to

load them.

Autodesk Maya offers the Soften Edge tool that softens the edges making the object rounder

trying not to add too many polygons; this tool is very useful to achieve smoother lines once

you have completed the figure. An example is found in figure 5 where you can see that the

orange figures have the Soften Edge tool applied while the blue ones don't, the result is that

the orange objects are much smoother but you don't perceive an increase of polygons in the

figures.

Figure 5. Differences between applying the Soft Edge tool (orange objects) and not applying it (blue objects)

To finish the modelling of the pieces, the object point was placed in the center of the base of

the figure. The object point is the reference point that the other programs will take to place

the figure, this point will be the one they will refer to when we place a piece in a 3D

environment. The final result is the one we find in the figure 6.

13

Figure 6. Final model of the pieces

Once the figures were finished, the board was modelled without a reference image due the

simplicity. When creating the board, the size of the pieces was taken into consideration,

creating cells of 1 meter long by 1 meter wide. The cells are not totally regular; they have a

small cut-out in the upper edges that will cause a more visual separation. The final result of

the board is shown in the figure 7.

Figure 7. Final model of the board

2.3.2. Texturization of the chess pieces and the chessboard

For the texture of the pieces and the chessboard, I used the Substance Painter program, but

previously I had to map the UV of each of the figures in Autodesk Maya. To do this I used the

Unwrap technique, used in any 3D design program to texture a model, it consists in unfolding

the whole surface of the model in a two-dimensional plane where a flat texture can be added,

and in this way we can make a flat image wrap the figure.

14

Autodesk Maya has anautomatic tool to make this task easier, but the results are not very

optimal in most cases causing that you have to do it manually for each figure. An example

between the use of the automatic tool and a manual Unwrap can be seen in the figure 8.

Figure 8. Left: Manual Unwrap. Right: Automatic Unwrap.

If we make a bad Unwrap of the model, there will be some Mark Seams left that will directly

affect the texture of the objects. The Mark Seams (figure 9) are the marks that remain visible

by dividing the sections of the surface of the model; these marks will result in the creation of

shadows and imperfections that we can only solve inverting a large amount of time in the

correction of the textures.

Figure 9. Left: Mark Seams for a manual Unwrap. Right: Mark Seams for automatic Unwrap.

After the Unwrap of the figures, we can already use the Substance Painter giving a texture to

the figure. For this occasion I have used a smart material, specifically Wood Beech Veined for

the white pieces and Wood Walnut for the black pieces, the same material is used for the

board adding Wood Ship Hull Nordic for the edge of the board.

The final result of the white pieces is found in figure 10, the black pieces in figure 11 and the

board in figure 12.

15

Figure 10. Final result of the white pieces

Figure 11. Final result of the black pieces

Figure 12. Final result of the board

2.3.3. First version of the game

Due to my lack of knowledge in programming with the C# language and using the Unity

software, this first version is based on the Chess Game Tutorial made by Michael Doyon [N3K

EN as nickname] that can be found on YouTube. It is a very complete tutorial that helped me to

learn the language as well as the operation of Unity. At the end of the tutorial, I was able to

16

transform the code provided it in the tutorial to adapt it to the needs of this project but the

base is very similar to his proposed solution.

I will add a note at the beginning of each sub-chapter whether that script is based on the code

Michael Doyon [N3K EN] offers as a solution. As you can see, both in this version and in the

following ones, many scripts created from scratch reuse some sentences that he teaches but in

another way to create new functionalities.

For this first version, the game was created like a multiplayer computer game: the camera was

fixed, the inputs that received the code came from the mouse and you could only play one

player against another player.

2.3.3.1. Project creation

When you create a new project in Unity, the scene appears completely empty with a camera

located at the origin (figure 13). Also a simple tree of folders is created and you can increase

and order it as you want, all the files that are inside these folders can be used by the Unity

project.

Figure 13. Exemple of a new Unity project

2.3.3.2. Import models

The first step to start a project in Unity is to import the models created in Autodesk Maya. To

make this step easier, Autodesk Maya has the option to extract each of the figures and save

them as a "3D object"; this type of file preserves the original shape and saves the texture

associated with it.

In order to make use of these files within the project, the object has to be dragged from the

folder that is saved to the scene. When the object is placed inside the scene, the figure

changes the file type to Prefab Asset. After the file type is changed, you can return to drag that

17

figure to the final folder of the project (figure 14). This change of format is necessary to be able

to call the object from the code; otherwise it would be an inert object.

Figure 14. Prefabs assets of the project

In this same step it is also necessary to place the Layer Mask "ChessPlane" which will be used

to interact with the Raycast Point. This Layer Mask is a square of 8 meters by 8 meters totally

invisible located exactly where the board will go; to facilitate its location in the code; one of

the corners is at the origin while the sides are parallel to the z axis and the x axis.

2.3.3.3. Global variables

These variables are declared as global because they are widely used throughout the program

and have to be accessible from any part of the project. Many of them are declared and

updated from different functions.

The global variables that we will use in this first version are the ones we find in the table 1.

Name and type of the variable Definition of the variable

bool[,] possibleMovements { set; get; } It is a boolean matrix that keeps all the
possible movements of the selected piece. It
is updated every turn when you access to the
SelectPiece function.

Chessman[,] Chessmans { set; get; } It is a Chessman type matrix that keeps all the
pieces and their positions. It is initialized in
the SpawnChessmans function and updated
in MovePiece.

Chessman selectedChessman; It is a Chessman variable that keeps the
selected chessman. This variable is updated
every turn when you access the SelectPiece
function

const float SQUARE_SIZE = 1.0f;
const float SQUARE_OFFSET = 0.5f;

These are the constants that mark, on the
one hand, the width of a box (SQUARE_SIZE)
and, on the other hand, the difference until
reaching the centre of it (SQUARE_OFFSET).

int xSelection = -1;
int zSelection = -1;

These are the variables that will store the
position of the mouse on the X axis as well as
on the Z axis. Both are initialized to -1 when
the game starts.

List<GameObject> chessPiecesPrefabs; This GameObject type list links the graphic
section with the code, positioning each piece
in an index.

List<GameObject> livingPieces; This GameObject type list keeps all the pieces
that are still active in the game. It is initialized
in the SpawnChessmans function and
updated in MovePiece.

18

int[] enPassantMove { set; get; } This int type matrix stores the last move
made by a pawn in the case that it advances
two squares, exactly memorize the position
that is skipped after advancing these two
squares. It is initialized and updated in the
MovePiece function.

bool isWhiteTurn = true; It's a Boolean that indicates if it is black's turn
or white's. It is updated in the MovePiece
function. It initializes as true because it
always starts with white moving.

List<GameObject> selectionLightsPrefabs; This GameObject type list links the graphic
section with the code, positioning the lights
in an index.

List<GameObject> selectionLights = new
List<GameObject>();

This GameObject type list will serve to update
the light position in order to graphically
indicate where the mouse is located. It is
initialized in the SpawnLight function and
updated inside the function
LightCursorPosition.

private int startDragx, startDragz; These variables will be used to save the start
of the animation when we select a piece.
They will be initialized and updated inside the
SelectPiece function.

Table 1. Global variables of the first version of the game

2.3.3.4. Classes

Inheritance is an essential property of Object-Oriented Programming, which consists of

creating new classes from existing ones. The classes that inherit from base classes are called as

derived, and these can be a base class for other derived classes. In this case the base class is

Chessman and all the other classes that refer to chess pieces are the classes derived from this

one.

2.3.3.4.1. The Chessman class

Note: The Chessman class is based on the solution developed by Michael Doyon [N3K EN] on

the YouTube video Chess Game Tutorial • 3/5 • [Tutorial][C#]. In this version the variable

firstMove and the function FirsrMoveDone() has been added to my custom code.

The Chessman class is the basic class of the game, from this class we will derive to each one of

the pieces. As we can see in the in the code below, the variables declared within this class are:

‐ CurrentX, CurrentZ: int variables that they save the current position in X and Z.

‐ isWhite: bool variable that indicates the chessman team.

‐ firstMove: bool variable that indicates if the piece has made the first move or not.

 public abstract class Chessman : MonoBehaviour
 {
 public int CurrentX { set; get; }
 public int CurrentZ { set; get; }
 public bool isWhite;

19

 public bool firstMove { set; get; } = true;

 public void FirstMoveDone()
 {
 firstMove = false;
 }

 public void SetPosition(int x, int z)
 {
 CurrentX = x;
 CurrentZ =z;
 }

 public virtual bool[,] PossibleMove()
 {
 return new bool[8,8];
 }

 }

On the other hand, we also find these functions:

‐ FirstMoveDone: updates the state of the variable firstMove to false.

‐ SetPosition: updates the position of the piece.

‐ PossibleMove: returns an 8x8 Boolean matrix that will indicate all the possible

movements of that particular piece.

One of the options that derived classes have is to overwrite one of the functions of the base

class, for that reason the function PossiblesMoves is only expressed with a return of an empty

8x8 Boolean matrix since this function will be overwritten by each one of its derived classes.

All derived classes inherit the variables from the base class and at least declare the

PossibleMoves function which will return an 8x8 Boolean matrix with the boxes where the

piece can access marked as true.

From now on, when we describe the classes of the different chess pieces we will only refer to

the PossibleMoves function as it is the only function they will contain apart from the auxiliary

functions that will allow evaluate positions without unnecessarily repeating code.

2.3.3.4.2. The Pawn class

Note: The Pawn class is based on the solution developed by Michael Doyon [N3K EN] on the

YouTube video Chess Game Tutorial • 5/5 • [Tutorial][C#]. In this version the Pawn attack and

the Pawn Movement have been modified from the tutorial version.

The variables used in this class are:

‐ Chessmans: global variable consisting of 8x8 matrix of Chessman type that contains

the position of all pieces

20

‐ e: contains the global variable inPassantMove. This global variable registers the last

pawn moved, allowing the passant capture if the piece is in the right option.

‐ r: an 8x8 Boolean matrix that will be the return of the PossibleMove function.

‐ c, c2: Chessman type auxiliary variables that will be used to evaluate the placement of

a piece on a square.

Because of the peculiarity of the pawn's move, which can only be moved frontward and

captured diagonally, the PossibleMoves function of this class differentiates whether you are

evaluating the possible moves of a black piece or a white piece. The difference is that if the

piece you are evaluating is white you increase the counters, while if the piece is black you

decrease the counters; an example is shown in the code piece below. Due to the similarity of

the whole code I will only comment on white team's move and highlight the difference with

black team’s move.

 //For white team
 r[CurrentX, CurrentZ + 1] = true;
 //For black team
 r[CurrentX, CurrentZ - 1] = true;

The first condition that checks the function is whether the pawn can make an en passant

capture. En Passant capture is a special move in which a pawn captures another pawn

immediately after the pawn has moved two positions forward from its starting position. The

capturing pawn will move to the square where the opponent's pawn would have been if it had

only advanced one square.

Once it has been checked the en Passant move, the PawnAttack function is called twice with

the coordinates of the boxes located diagonally in the upper row (for black pieces, the

coordinates are those of the lower row). Right after that, it checks if a square can be moved

forward by sending the coordinates of the upper row (or lower row for the black piece) to the

PawnMove fuction.

 if (CurrentX != 0 && e[0] == CurrentX - 1 && e [1] == CurrentZ + 1)
 {
 r[CurrentX - 1, CurrentZ + 1] = true;
 }

 if (CurrentX != 7 && e[0] == CurrentX + 1 && e[1] == CurrentZ + 1)
 {
 r[CurrentX + 1, CurrentZ + 1] = true;
 }

 PawnAttack(CurrentX - 1, CurrentZ + 1, ref r);
 PawnAttack(CurrentX + 1, CurrentZ + 1, ref r);
 PawnMove(CurrentX, CurrentZ + 1, ref r);

21

The PawnAttack function checks that the coordinates received are inside the board and, if they

are, it updates c with the position on the board. It then checks to see if that square is occupied

by an opponent's piece and if it is marks the position of r[x, z] as true.

The PawnMove function checks again if the coordinates are inside the board and if the marked

square is occupied by a piece or not, if not it marks the square as true.

 public void PawnAttack(int x, int z, ref bool[,] r)
 {
 Chessman c;
 if (x >= 0 && x <= 7 && z >= 0 && z <= 7)
 {
 c = BoardManager.Instance.Chessmans[x, z];
 if (isWhite != c.isWhite)
 {
 r[x, z] = true;
 }
 }
 }

 public void PawnMove(int x, int z, ref bool[,] r)
 {
 Chessman c;
 if (x >= 0 && x <= 7 && z >= 0 && z <= 7)
 {
 c = BoardManager.Instance.Chessmans[x, z];
 if (c == null)
 {
 r[x, z] = true;
 }
 }
 }

The last condition to evaluates is the initial movement: in the case that your current position

on Z is 1 (or 6 in the case of black pieces), check that there are no pieces placed on the square

in front (c) or two beyond (c2). If both answers are null it means that you do not have any

pieces in front of you and marks the option as true on the matrix which will later return.

 if (CurrentZ == 1)
 {
 c = BoardManager.Instance.Chessmans[CurrentX, CurrentZ + 1];
 c2 = BoardManager.Instance.Chessmans[CurrentX, CurrentZ + 2];
 if (c == null && c2 == null)
 {
 r[CurrentX, CurrentZ + 2] = true;
 }
 }

22

2.3.3.4.3. The Castle class

Note: The Castle class is based on the solution developed by Michael Doyon [N3K EN] on the

YouTube video Chess Game Tutorial • 4/5 • [Tutorial][C#]. In this version part of the code has

been rewritten from the tutorial version to be more effective.

This class does not use any other global variable apart of Chessmans. The local variables that it

uses are:

‐ r: an 8x8 Boolean matrix that will be the return of the PossibleMove function.

‐ c: a Chessman type auxiliary variable that will be used to evaluate if a piece is located

on a square or not.

‐ i: an int type counter that will allow us to check the column or the row of the rook.

The movement of the rook consists in that it can advance vertically or horizontally until it finds

a piece, it can be captured if the chessman is from the opposing team. This movement has a

very simple evaluation that consists of the same code repeated four times with these

differences:

1- The counter is located in the CurrentX position and adds one unit in each iteration

evaluating the r[i, CurrentZ] position. It values the positions located in the same

column above the chessman.

2- The counter is located at the CurrentX position and subtracts one unit at each iteration

by valuing the r[i, CurrentZ] position. It values the positions in the same column below

the chessman.

3- The counter is located at the CurrentZ position and adds one unit in each iteration

evaluating the r[CurrentX, i] position. It values the positions located in the same row

on the left of the chessman.

4- The counter is located at the CurrentZ position and subtracts one unit at each iteration

evaluating the r[CurrentX, i] position. It values the positions located in the same row

on the right of the chessman.

Each of the iterations is repeated until it finds a piece or the end of the board, in the case that

the piece belongs to the opponent it marks that square also as a possible move.

 i = CurrentX;
 while (true)
 {
 i++;
 if (i >= 0 && i <= 7)
 {
 c = BoardManager.Instance.Chessmans[i, CurrentZ];
 if (c == null)
 {
 r[i, CurrentZ] = true;
 }
 else if (isWhite != c.isWhite)
 {
 r[i, CurrentZ] = true;

23

 break;
 }
 else
 {
 break;
 }
 }
 else
 {
 break;
 }
 }

2.3.3.4.4. The Knight class

Note: The Knight class is based on the solution developed by Michael Doyon [N3K EN] on the

YouTube video Chess Game Tutorial • 4/5 • [Tutorial][C#]. In this version part of the code of the

KnightMove function has been rewritten from the tutorial version to be more effective.

This class uses the global variable Chessmans and, as local variables, uses c as the auxiliary

variable and r as the response matrix already named in other classes.

This class has the particularity that it only has 8 possible movements so, as you can see in the

code below, it evaluates them one by one. It uses the KnightMove function where it evaluates

if the sent position if it is inside the board; if it is, it checks if there is any piece; if it is, checks if

there is another chessman; and if it is, if it is or not from the same team. If it is inside the board

and it is an empty position or occupied by an enemy piece it marks the position r[x, z] as true.

public class Knight : Chessman
{
 public override bool [,] PossibleMove()
 {
 bool[,] r = new bool[8, 8];

 KnightMove(CurrentX - 1, CurrentZ + 2, ref r);
 KnightMove(CurrentX + 1, CurrentZ + 2, ref r);
 KnightMove(CurrentX - 1, CurrentZ - 2, ref r);
 KnightMove(CurrentX + 1, CurrentZ - 2, ref r);
 KnightMove(CurrentX - 2, CurrentZ - 1, ref r);
 KnightMove(CurrentX + 2, CurrentZ - 1, ref r);
 KnightMove(CurrentX - 2, CurrentZ + 1, ref r);
 KnightMove(CurrentX + 2, CurrentZ + 1, ref r);

 return r;
 }

 public void KnightMove(int x, int z, ref bool[,] r)
 {
 Chessman c;
 if (x >= 0 && x <= 7 && z >= 0 && z <= 7)

24

 {
 c = BoardManager.Instance.Chessmans[x, z];
 if(c == null || isWhite != c.isWhite)
 {
 r[x, z] = true;
 }
 }
 }
}

2.3.3.4.5. The Bishop class

Note: The Bishop class is based on the solution developed by Michael Doyon [N3K EN] on the

YouTube video Chess Game Tutorial • 4/5 • [Tutorial][C#]. In this version part of the code has

been rewritten from the tutorial version to be more effective.

This class evaluates possible movements in a very similar way to the Tower class using two

counters instead of one because of the particularity that it moves diagonally. Apart from the

global variable Chessmans also uses the following local variables:

‐ r: an 8x8 Boolean matrix that will be the return of the PossibleMove function.

‐ c: a Chessman type auxiliary variable that will be used to evaluate if a piece is located

on a square or not.

‐ i, j: an int type counter that will allow us to check the diagonals.

The movement of the bishop consists that it can advance diagonally until it finds a piece and, if

the piece is contrary, can capture it. To evaluate this movement we find the same code

repeated four times with these differences:

1- i counter subtracts one unit in each iteration while j adds one unit. Values the

positions located in the top left diagonal.

2- Both i and j counters subtract one unit in each iteration. Values the positions located in

the bottom left diagonal.

3- i counter adds one unit in each iteration while j subtracts one unit. Values the

positions located in the bottom right diagonal.

4- Both i and j counters add up to one unit in each iteration. Values the positions located

in the top right diagonal.

In all versions both of the counters are located in CurrentX and CurrentZ respectively and the

evaluated position in each iteration is r[i, j]. Each of the iterations is repeated until a piece or

the end of the board is found, in the case that the piece belongs to the opponent it marks that

square also as a possible move.

 i = CurrentX;
 j = CurrentZ;
 while (true)
 {
 i--;

25

 j++;
 if (i >= 0 && i <= 7 && j >= 0 && j <= 7)
 {
 c = BoardManager.Instance.Chessmans[i, j];
 if (c == null)
 {
 r[i, j] = true;
 }
 else if (isWhite != c.isWhite)
 {
 r[i, j] = true;
 break;
 }
 else
 {
 break;
 }
 }
 else
 {
 break;
 }
 }

2.3.3.4.6. The Queen class

Note: The Queen class is based on the solution developed by Michael Doyon [N3K EN] on the

YouTube video Chess Game Tutorial • 4/5 • [Tutorial][C#]. In this version part of the code has

been rewritten from the tutorial version to be more effective.

The particularity of the queen is that it moves like a rook and a bishop at the same time, so the

resulting matrix to the evaluation of the board consists of the addition of the conditions of

these two classes without any additions.

2.3.3.4.7. The King class

Note: The King class is based on the solution developed by Michael Doyon [N3K EN] on the

YouTube video Chess Game Tutorial • 4/5 • [Tutorial][C#] . In this version the move of the King

has been modified from the tutorial version and the castling movement has been added to my

custom code.

The King's move is exactly the same as the Queen's but taking into account that only moves

one square in each direction. For this reason the King has only 8 possible movements so, as

you can see in the code below, it evaluates them one by one as in the Knight class.

On the other hand we also find a special movement for the King: castling. Castling consists of

moving the King two squares along the first rank toward a Rook and then placing the Rook on

the last square that the king just crossed. Castling can be done if the King and the Rook

involved have never been moved, the squares between the King and the Rook involved are

26

unoccupied, the King is not in check, and none of the squares the King will pass through are

under attack.

The code snippet below reviews these conditions by reusing the counter i and the auxiliary

variable c used in the basic movement of the King.

 public override bool[,] PossibleMove()
 {
 bool[,] r = new bool[8, 8];

 Chessman c;
 int i;

 KingMove(CurrentX - 1, CurrentZ + 1, ref r);
 KingMove(CurrentX, CurrentZ + 1, ref r);
 KingMove(CurrentX +1, CurrentZ + 1, ref r);
 KingMove(CurrentX - 1, CurrentZ, ref r);
 KingMove(CurrentX + 1, CurrentZ, ref r);
 KingMove(CurrentX - 1, CurrentZ - 1, ref r);
 KingMove(CurrentX, CurrentZ - 1, ref r);
 KingMove(CurrentX + 1, CurrentZ - 1, ref r);

 c = BoardManager.Instance.Chessmans[CurrentX, CurrentZ];
 if (c.firstMove == true)
 {
 i = 1;
 while (i < 4)
 {
 c = BoardManager.Instance.Chessmans[CurrentX - i, CurrentZ];
 if (c != null)
 {
 break;
 }
 i++;
 }
 c = BoardManager.Instance.Chessmans[CurrentX - 4, CurrentZ];
 if (c != null)
 {
 if (i == 4 && c.firstMove == true)
 {
 r[2, CurrentZ] = true;
 }
 }
 i = 1;
 while (i < 3)
 {
 c = BoardManager.Instance.Chessmans[CurrentX + i, CurrentZ];
 if (c != null)
 {
 break;
 }

27

 i++;
 }
 c = BoardManager.Instance.Chessmans[CurrentX + 3, CurrentZ];
 if (c != null)
 {
 if (i == 3 && c.firstMove == true)
 {
 r[6, CurrentZ] = true;
 }
 }
 }
 return r;
 }

 public void KingMove(int x, int z, ref bool[,] r)
 {
 Chessman c;
 if (x >= 0 && x <= 7 && z >= 0 && z <= 7)
 {
 c = BoardManager.Instance.Chessmans[x, z];
 if (c == null || isWhite != c.isWhite)
 {
 r[x, z] = true;
 }
 }
 }

2.3.3.5. BoardManager script

Note: The BoardManager script is based on the solution developed by Michael Doyon [N3K EN]

on the YouTube video Chess Game Tutorial • 5/5 • [Tutorial][C#] . In this version a lot of code

has been modified from the tutorial version and some more has been added to my custom

script, you will find a note indicating if it is extracted from the tutorial or not.

The main part of this project goes through the BoardManager script that contains mostly all

the code that the game needs to be played except of the pieces classes and the type of lights.

The creation of any new script is done with two functions that will be important throughout

the writing of the code: Start and Update. The Start function will only be called once when the

project is started, but the Update function will be updated in each frame allowing the recursive

use of the functions inside. For that reason, the Start function will contain all the code needed

to start the game while the Update function will contain all the other functions needed to play.

2.3.3.5.1. The Start function

Note: The Start function is based on the solution developed by Michael Doyon [N3K EN] on the

YouTube video Chess Game Tutorial • 1/5 • [Tutorial][C#]. SpawnLight function has been added

to my custom code.

28

The Start function starts by making an instance of the Start function itself allowing any method

from any part of a program to gain unrestricted and unchecked access to the internal

mechanisms of an object; in this way the different functions can interact with each other

without needing to request permission.

Furthermore, it calls the SpawnChessmans function that places all the pieces on the

chessboard in the initial position and, finally, it also calls the SpawnLight function that places a

light that will be used as a pointer to see where our mouse is located on the chessboard.

 private void Start()
 {
 Instance = this;
 SpawnChessmans();
 SpawnLight();
 }

2.3.3.5.2. The Update function

Note: The Update function is based on the solution developed by Michael Doyon [N3K EN] on

the YouTube video Chess Game Tutorial • 1/5 • [Tutorial][C#]. LightCursorPosition function has

been added to my custom code.

The Update function is the main function of the code and is updated every frame. The

functions it calls without any conditions are BoardCursorPosition and LightCursorPosition,

these functions keep the mouse position updated in coordinates as well as graphically.

If a piece is selected (selectedChessman != null) we call the function UpdateChessmanDrag

with the selected piece as input parameter. This function makes the selected piece chase the

mouse wherever it moves while it is inside the chessboard.

In the case that the left mouse button is pressed (Input.GetMouseButtonDown(0)), the

function checks if it is located on the chessboard. If it does not have any selected piece, it calls

the function SelectPiece sending as input the location parameters of the mouse saved into the

xSelection and zSelection variables.

When the left mouse button is released (Input.GetMouseButtonUp(0)), the functions confirms

if the mouse is located on the board and if is selected any chessmans (selectedChessman !=

null). If it does, it calls the function MovePiece passing as an input xSelection and zSelection

parameters that indicate again the actual position of the mouse on the chessboard.

 private void Update()
 {
 BoardCursorPosition();
 LightCursorPosition();

 if (selectedChessman != null)
 {
 UpdateChessmanDrag(selectedChessman);
 }

29

 if (Input.GetMouseButtonDown(0))
 {
 if (xSelection >= 0 && zSelection >= 0 && xSelection < 8 && zSelection < 8)
 {
 if (selectedChessman == null)
 {
 SelectPiece(xSelection, zSelection);
 }
 }
 }

 if (Input.GetMouseButtonUp(0))
 {
 if (xSelection >= 0 && zSelection >= 0 && xSelection < 8 && zSelection < 8)
 {
 if (selectedChessman != null)
 {
 MovePiece(xSelection, zSelection);
 }
 }
 }
 }

2.3.3.5.3. The BoardCursorPosition function

Note: The BoardCursorPosition function is the same of the tutorial developed by Michael

Doyon [N3K EN] on the YouTube video Chess Game Tutorial • 1/5 • [Tutorial][C#], in future

versions it will be modified to suit the needs of this project.

This function places the mouse inside the scene; it creates a Raycast Hit on the Layer Mask

that will indicate the exact box where the mouse is. The Raycast is an invisible vector that

connects two points, in this case the mouse and the center of the camera and that extends

until it hits an object, in this case the ChessPlane layer mask that refers to the chessboard.

The variables used by the function are:

‐ hit: this Raycast variable will create a Vector3 hit point above the Layer Mask.

‐ xSelection, zSelection: these global variables will place the mouse over the board in

the X axis and the Z axis, and will be updated frame by frame.

 private void BoardCursorPosition()
 {
 if (!Camera.main) return;
 RaycastHit hit;

 If(Physics.Rayast(Camera.main.ScreenPointToRay(Input.mousePosition), out hit, 50.0f,
layerMask.GetMask(“ChessPlane”)))
 {
 xSelection = (int)hit.point.x;

30

 zSelection = (int)hit.point.z;
 }
 else
 {
 xSelection = -1;
 zSelection = -1;
 }
 }

As we can see in the in the above code, if it does not find the main camera it returns the

function without allowing any selection; this control step is because the reference camera is

needed to create the Raycast.

After the first check, it calculates the possible Raycast hit above the ChessPlane layer mask. If

the mouse is placed over ChessPlane it updates the global variables xSelection and zSelection,

otherwise it leaves the values as -1 in both variables to avoid conflicts with the rest of the

code.

The function converts the Raycast Hit Point into an int variable. This is because the

ScreenPointToRay function returns decimals and for the movement of the pieces it is more

convenient to use integers, in this way the pieces can only be found between the 0 and 7

position for both the X and Z axis.

2.3.3.5.4. The UpdateChessmanDrag function

Note: The UpdateChessmanDrag function is made from scratch by applying knowledge

acquired through the tutorial developed by Michael Doyon [N3K EN], in future versions it will be

modified to suit the needs of this project.

This function has a very similar structure to the BoardCursorPosition function, but in this case it

receives as an input parameter the c variable of the Chessman type that refers to the selected

piece.

This selected piece transforms its position to the current one of the mouse but moving it up

one unit in relation to the X-Z plane to avoid collisions with the other figures. In case that the

mouse leaves the chessboard, the piece will remain suspended on the edge of the chessboard

waiting for the mouse to enter the chessboard again.

 private void UpdateChessmanDrag(Chessman c)
 {
 if (!Camera.main) return;
 RaycastHit hit;

 if (Physics.Raycast(Camera.main.ScreenPointToRay(Input.mousePosition), out hit, 50.0f,
LayerMask.GetMask("ChessPlane")))
 {
 c.transform.position = hit.point + Vector3.up;
 }
 }

31

2.3.3.5.5. The LightCursorPosition function

Note: At the beginning the LightCursorPosition function is the same solution developed by

Michael Doyon [N3K EN], but later it is updated to provide visual value to the player and added

to my custom code.

This function acts as a visual guide to locate objects on top of the ChessPlane layer mask, it has

not use in the implementation of the project although later it will be recycled for another

purpose. It is a function that can be found in the Update function and uses these variables:

‐ xSelection, zSelection: as mention before, these global variables will place the mouse

over the board in the X axis and the Z axis.

‐ widthLine, heightLine: these Vector3 variables have the size and direction of the

horizontal and vertical lines that separate the cells of the chessboard.

As we can see in the code below, it places some dividing lines drawing each of the boxes. On

the other hand, in the case that the cursor is over the board it draws an X in the square where

it indicates.

 private void LightCursorPosition()
 {
 Vector3 widthLine = Vector3.right * 8;
 Vector3 heightLine = Vector3.forward * 8;

 for (int i = 0; i <= 8; i++)
 {
 Vector3 start = Vector3.forward * i;
 Debug.DrawLine(start, start + widthLine);

 for (int j = 0; j <= 8; j++)
 {
 start = Vector3.right * j;
 Debug.DrawLine(start, start + heightLine);
 }
 }

 if(xSelection >= 0 && zSelection >= 0 && xSelection < 8 && zSelection < 8)
 {
 Debug.DrawLine(
 Vector3.forward * zSelection + Vector3.right * xSelection,
 Vector3.forward * (zSelection + 1) + Vector3.right * (xSelection + 1));
 Debug.DrawLine(
 Vector3.forward * (zSelection + 1) + Vector3.right * xSelection,
 Vector3.forward * zSelection + Vector3.right * (xSelection + 1));
 }

 }

32

After using the Debug.DrawLine functions the lines of the board and the X will not be seen in

the final result but they will be seen inside the developer's viewer "Scene", this can be seen in

the figure 15.

Figure 15. Left: Game view of the Debug.DrawLine. Right: Devekioer's view of th Debug.DrawLine.

At the end of the development of this first version, the function is replaced for something

tangible for the player by graphically updating the position of the mouse on the board through

the light selectionLights[0].

 private void LightCursorPosition()
 {
 if (xSelection >= 0 && zSelection >= 0 && xSelection < 8 && zSelection < 8)
 {
 selectionLights[0].transform.position = MoveToTheCenter(xSelection, zSelection, -2);
 }
 }

2.3.3.5.6. The SpawnChessmans function

Note: The SpawnChessmans function is the same one that can be found on the tutorial

developed by Michael Doyon [N3K EN] on the YouTube video Chess Game Tutorial • 1/5 •

[Tutorial][C#].

The SpawnChessmans function places the pieces at the start of the game; therefore it will only

be called at the start of the game from the Start function or at the end of the game to play

again in the EndGame function. It initializes three global variables:

‐ livingPieces: list of GameObjects that contains all the pieces that keep playing, for

Black and for White.

33

‐ Chessmans: matrix of the class "Chessman" of 8x8, this matrix will store the position of

all the pieces.

‐ enPassantMove: contains the last move of pawns that we have made to know if we

can or not make the En Passant move.

 private void SpawnChessmans()
 {
 livingPieces = new List<GameObject>();
 Chessmans = new Chessman[8, 8];

 enPassantMove = new int[2] { -1, -1};

 SpawnChessman(0, 4, 0);
 SpawnChessman(1, 3, 0);
 SpawnChessman(2, 0, 0);
 SpawnChessman(2, 7, 0);
 SpawnChessman(3, 2, 0);
 SpawnChessman(3, 5, 0);
 SpawnChessman(4, 1, 0);
 SpawnChessman(4, 6, 0);
 for (int i= 0; i < 8; i++)
 {
 SpawnChessman(5, i, 1);
 }

 SpawnChessman(6, 4, 7);
 SpawnChessman(7, 3, 7);
 SpawnChessman(8, 0, 7);
 SpawnChessman(8, 7, 7);
 SpawnChessman(9, 2,7);
 SpawnChessman(9, 5, 7);
 SpawnChessman(10, 1, 7);
 SpawnChessman(10, 6, 7);
 for (int i= 0; i < 8; i++)
 {
 SpawnChessman(11, i, 6);
 }
 }

To place the piece on the board call the SpawnChessman function giving as reference an index,

a X position and a Z position. The indexes that we found refer to the global variable

ChessmanPrefabs where all the pieces are placed as shown in figure 16.

34

Figure 16. Indexes of the ChessmanPrefabs

2.3.3.5.7. The SpawnChessman function

Note: The SpawnChessman function is based on the solution developed by Michael Doyon [N3K

EN] on the YouTube video Chess Game Tutorial • 1/5 • [Tutorial][C#], some adjustments have

been made to adapt it to the needs of the project due to the original positions of the different

pieces.

The SpawnChessman function initializes the GameObject go:

‐ Assigns it a piece referenced through the index.

‐ Calls the MoveToTheCenter function by sending the previously received positions (x

and z) that will place the piece in the center of the square.

‐ Orients the figure.

As we can see in the code below, for all the pieces it uses the orientation of its own except for

the pieces with the index 4 and 10; these indexes refer to the knights, turning them to face the

enemy depending on if they are black (turn the piece 90 degrees) or white (turn the piece 270

degrees).

 private void SpawnChessman(int index, int x, int z)
 {
 if (index == 4 || index == 10)
 {
 if (index == 4)
 {
 GameObject go = Instantiate(chessmanPrefabs[index], MoveToTheCenter(x, z),
Quaternion.Euler(0, 270, 0)) as GameObject;
 go.transform.SetParent(transform);
 Chessmans[x, z] = go.GetComponent<Chessman> ();
 Chessmans[x, z].SetPosition(x, z);
 livingPieces.Add(go);
 }

35

 else
 {
 GameObject go = Instantiate(chessmanPrefabs[index], MoveToTheCenter(x, z),
Quaternion.Euler(0, 90, 0)) as GameObject;
 go.transform.SetParent(transform);
 Chessmans[x, z] = go.GetComponent<Chessman>();
 Chessmans[x, z].SetPosition(x, z);
 livingPieces.Add(go);
 }
 }
 else
 {
 GameObject go = Instantiate(chessmanPrefabs[index], MoveToTheCenter(x, z),
Quaternion.identity) as GameObject;
 go.transform.SetParent(transform);
 Chessmans[x, z] = go.GetComponent<Chessman>();
 Chessmans[x, z].SetPosition(x, z);
 livingPieces.Add(go);
 }
 }

Once the part is initialized, it establishes its parent tree, places the piece inside the Chessmans

matrix, updates the position for that piece inside the matrix, and finally adds it to the

livingPieces list.

2.3.3.5.8. The MoveToTheCenter function

Note: The MoveToTheCenter function is based on the solution developed by Michael Doyon

[N3K EN] on the YouTube video Chess Game Tutorial • 1/5 • [Tutorial][C#], some adjustments

have been made to adapt it to the needs of the project due to the original positions of the

different pieces and lights.

The MoveToTheCenter function receives the x and z position, places a vector in the center of

the square and returns this vector indicating the position of the piece. To achieve this it uses

the constants SQUARE_SIZE (with a value equal to 1) and SQUARE_OFFSET (with a value equal

to 0.5); these constants only indicate the width of the square (SQUARE_SIZE) and the distance

to the center of the square (SQUARE_OFFSET), in this way the rest of the program uses

integers but actually places the piece 0.5m further away from the reference used by the rest of

the code.

 private Vector3 MoveToTheCenter(int x, int z, int y)
 {
 Vector3 origin = Vector3.zero;
 origin.x += (SQUARE_SIZE * x) + SQUARE_OFFSET;
 origin.y += (SQUARE_SIZE * y);
 origin.z += (SQUARE_SIZE * z) + SQUARE_OFFSET;
 return origin;
 }

36

Because of this function it was important to place the object point of the chessman in the

center of the base.

2.3.3.5.9. The SelectPiece function

Note: The SelectPiece function is based on the solution developed by Michael Doyon [N3K EN]

on the YouTube video Chess Game Tutorial • 5/5 • [Tutorial][C#], some adjustments have been

made to adapt it to the needs of the project and AtLeastOne function is outsourced to be used

by the AI in the following version.

The SelectPiece function is the function that marks a piece as the one chosen to be moved. The

global variables it uses are Chessmans, possibleMovements and selectedChessman; it also uses

the local variable hasAtleastOneMove that will be used as an indicator of some possible

movement by the selected piece.

As we can see the code below, the function receives a position: x and y. The first step it takes is

to check if there is a piece on that square and if that piece belongs to the moving team.

 private void SelectPiece(int x, int z)
 {
 if (Chessmans[x, z] == null || Chessmans[x, z].isWhite != isWhiteTurn)
 {
 return;
 }

 possibleMovements = Chessmans[x, z].PossibleMove();

 if (!AtLeastOne(possibleMovements))
 {
 return;
 }

 selectedChessman = Chessmans[x, z];

 startDragx = x;
 startDragz = z;

 BoardHighlights.Instance.HighlightAllowedMoves(possibleMovements);
 }

Once confirmed that a part exists and is from the correct equipment, it calls the PossibleMove

function to update the global variable possibleMovements which will then serve to check if

there is any movement available. To do this, calls AtLeastOne function to check the

possibleMovements matrix.

If it does not find any possible movement, it returns and doesn’t allow to continue with the

function. On the other hand, if it finds a possible movement it updates the global variable

selectedChessman with the piece stored in Chessmans[x, y]; it updates the variables startDragx

37

and startDragz indicating where the piece's movement starts; and, finally, it marks with a light

all the possible movements that the piece has.

2.3.3.5.10. The MovePiece function

Note: The MovePiece function is based on the solution developed by Michael Doyon [N3K EN]

on the YouTube video Chess Game Tutorial • 5/5 • [Tutorial][C#], some adjustments have been

made to adapt it to the needs of the project and castling movement has been added to my

custom code.

The MovePiece function is the function that moves the piece selected in the SelectPiece

function to the position that the inputs (x and z) marks.

The globale variables it uses and updates are: Chessmans, selectedChessman, enPassantMove,

isWhiteTurn, livingPieces and onePerTurn. The global variables it only uses without updating

are: possibleMovements, startDragx and startDragz. It also uses the local variable c that is a

Chessman type variable that will be initialized with the value of the chess box that the inputs

mark.

As you can see on the code piece below, the first step of this function is to check if the position

where it wants to move is a valid option between those that have been previously stored in

possibleMovements. Otherwise, it returns the selected piece to its original position stored in

startDragx and startDragz. Whether it's a permitted move or not, it eliminates, all the lights of

the possible movements of the selected card and updates the variable selectedChessman

leaving it as null.

 if (possibleMovements[x,z]) * … +
 else
 {
 selectedChessman.transform.position = MoveToTheCenter(startDragx, startDragz);
 }
 BoardHighlights.Instance.Hidehighlights();
 selectedChessman = null;

If it is a valid position, it checks if there is a piece in that position and if that piece is from the

same colour. In the case a piece is found and is of the opposite team, it checks if it is the king

and, if so, call the EndGame function; in case it finds a piece that is not the king , remove the

piece from the list of active pieces and destroys the object c.

 if(c != null && c.isWhite != isWhiteTurn)
 {
 if(c.GetType () == typeof(King))
 {
 EndGame();
 return;
 }
 livingPieces.Remove(c.gameObject);
 Destroy(c.gameObject);
 }

38

Then the function checks if the piece to be moved is a Pawn. If it is, check if the move stored

inPassantMove matches with the move that the Pawn wants to make; if it does, the function

locates the piece in the extra square (in the case of black team) or in the lower square (for

white team) and remove it. After that, it checks if the pawn has reached the final square (for

white team) or the first square (for black team), and if it does, exchanges it for a Queen of its

own colour.

 if (selectedChessman.GetType() == typeof(Pawn))
 {
 if (x == enPassantMove[0] && z == enPassantMove[1])
 {
 if (isWhiteTurn)
 {
 c = Chessmans[x, z - 1];
 }
 else
 {
 c = Chessmans[x, z + 1];
 }
 livingPieces.Remove(c.gameObject);
 Destroy(c.gameObject);
 }

 if (z == 7)
 {
 livingPieces.Remove(selectedChessman.gameObject);
 Destroy(selectedChessman.gameObject);
 SpawnChessman(1, x, z);
 selectedChessman = Chessmans[x, z];
 }

 if (z == 0)
 {
 livingPieces.Remove(selectedChessman.gameObject);
 Destroy(selectedChessman.gameObject);
 SpawnChessman(7, x, z);
 selectedChessman = Chessmans[x, z];
 }
 }

Then, the function updates the variable inPassantMove to -1 to prevent errors and checks

again if it is a Pawn that is moving. If it is, it checks that the selected Pawn is currently on the

1st row (for white pieces) or the 6th row (for black pieces) and that you want to move it to the

3rd row (for white Pawns) or the 4th row (for black Pawns); if both conditions are correct, the

function updates the variable inPassantMove with the square skipped.

39

 enPassantMove[0] = -1;
 enPassantMove[1] = -1;
 if (selectedChessman.GetType() == typeof(Pawn))
 {
 if (selectedChessman.CurrentZ == 1 && z == 3)
 {
 enPassantMove[0] = x;
 enPassantMove[1] = z - 1;
 }
 else if (selectedChessman.CurrentZ == 6 && z == 4)
 {
 enPassantMove[0] = x;
 enPassantMove[1] = z + 1;
 }
 }

After the initial checks, the function removes the variable stored in Chessmans in the position

where the selected chessmans is currently located; it places the piece with the new

coordinates; it updates the value of the CurrentX and CurrentZ variables of the selected piece

through the SetPosition function; and it stores the piece inside Chessmans in the new position.

In addition, as can be seen in the following code, it checks if the movement to be done is

castling and, if it is, it also moves the Rook to its final position updating Chessmans in the

process.

 if (selectedChessman.GetType() == typeof(King) && selectedChessman.firstMove ==
true)
 {
 if (x == 2)
 {
 Chessmans[0, selectedChessman.CurrentZ].transform.position =
MoveToTheCenter(3, selectedChessman.CurrentZ, 0);
 Chessmans[0, selectedChessman.CurrentZ].SetPosition(3,
selectedChessman.CurrentZ);
 Chessmans[3, selectedChessman.CurrentZ] = Chessmans[0,
selectedChessman.CurrentZ];
 Chessmans[0, selectedChessman.CurrentZ] = null;
 }
 if (x == 6)
 {
 Chessmans[7, selectedChessman.CurrentZ].transform.position =
MoveToTheCenter(5, selectedChessman.CurrentZ, 0);
 Chessmans[7, selectedChessman.CurrentZ].SetPosition(5,
selectedChessman.CurrentZ);
 Chessmans[5, selectedChessman.CurrentZ] = Chessmans[7,
selectedChessman.CurrentZ];
 Chessmans[7, selectedChessman.CurrentZ] = null;
 }
 }

40

Finally, it updates the internal Chessman variable firstMove through its own function

FirstMoveDone; changes the colour turn; changes the value of onePerTurn to true; and

eliminates the possible light that indicates the check to the king.

 if (selectedChessman.firstMove == true)
 {
 selectedChessman.FirstMoveDone();
 }

 isWhiteTurn = !isWhiteTurn;

 onePerTurn = true;
 KingLights.Instance.HideKingLights();

2.3.3.5.11. The SpawnLight function

Note: The SpawnLight function is made from scratch by applying knowledge acquired through

the tutorial developed by Michael Doyon [N3K EN].

This function is called only once from the Start function and places the light that symbolizes

the mouse in the game (selectionLightsPrefabs[0]) in the chess box [4,4]. It also turns the light -

90º to orient it correctly in relation to the board because the light is originally parallel to the X-

Z plane. Finally, it creates the matching relations and adds it to the GameObject

selectionLights.

 private void SpawnLight()
 {
 GameObject go = Instantiate(selectionLightsPrefabs[0], MoveToTheCenter(4, 4, -2),
Quaternion.Euler(-90, 0, 0)) as GameObject;
 go.transform.SetParent(transform);
 selectionLights.Add(go);
 }

2.3.3.5.12. The AtLeastOne function

Note: The AtLeastOnen function is made from scratch by applying knowledge acquired through

the tutorial developed by Michael Doyon [N3K EN].

This function is called from SelectPiece function and from the AI, it confirms if there is any

possible movement within a whole matrix of bools. It initializes the local variable OneMove to

false and then reviews the whole movements’ matrix looking for a true; in the case of finding

it, it changes the local variable to true. Finally returns OneMove.

 private bool AtLeastOne (bool[,] movements)
 {
 bool OneMove = false;

 for (int i = 0; i < 8; i++)
 {

41

 for (int j = 0; j < 8; j++)
 {
 if (movements[i, j])
 {
 OneMove = true;
 }
 }
 }

 return OneMove;
 }

2.3.3.5.13. The EndGame function

Note: The EndGame function is the same as the solution developed by Michael Doyon [N3K EN]

on the YouTube video Chess Game Tutorial • 2/5 • [Tutorial][C#].

It also removes all the pieces that still active on the chessboard, removes the lights from the

possible movements of the piece, that it is still selected, and restarts the game.

To restart the game it returns the value of the global variable isWhiteTurn to true and calls the

SpawnChessmans function to place the pieces in the original position.

 private void EndGame()
 {
 foreach(GameObject go in livingPieces)
 {
 Destroy(go);
 }
 BoardHighlights.Instance.Hidehighlights();
 isWhiteTurn = true;
 SpawnChessmans();
 }

2.3.4. Second version of the game

In this part of the project we found an update of the code that includes the implementation of

an Artificial Intelligence (AI). This artificial intelligence is based on the MiniMax decision

method.

The Minimax algorithm consists of choosing the best movement for the computer, assuming

that the user will choose the one that is most damaging to the machine. To choose the best

option this algorithm makes a search tree with all the possible moves, looking for that in the

turn of the machine its best move is the best scored while if it is the turn of the user its best

move is the worst scored. Because of the limitation of the Oculus Go processor, only two levels

of depth will be considered.

This development also implements the InCheck, WhereIsTheKing, InCheck, BlackMoves,

BestPossibleScore, AllPieces, AllPossibleMoves, ValueChessmansPosition and Minimax

42

functions as well as the upgrade of the Update function. All the new functions are made from

scratch by applying knowledge acquired through the tutorial developed by Michael Doyon

[N3K EN].

2.3.4.1. New global variables

To expand the number of game features new global variables have been added, these can be

found in table 2.

Name and type of the variable Definition of the variable

bool onePerTurn = true;

This is a boolean that is used to send the
InCheck function and the BlackMoves
function once per round. Its value is updated
in the Update function and in MovePiece.

int kingX, kingZ; These variables save the position of the King
from the colour being played. The values are
updated once per round inside the
WhereIsTheKing function.

int[] bestOption { set; get; } This variable stores the best play of the
Artificial Intelligence (AI). It contains the
origin chess box, the final chess box and the
score of this move. This variable is updated in
the BlackMoves function.

int[] auxBestOption { set; get; } This variable will be used as a support for
choosing the best play in the artificial
intelligence. This variable is updated in the
MiniMax function.

Table 2. Global variables added for the second version of the game

2.3.4.2. Upgrade of the Update function

This new version of the Update function maintains the format of the first one but adds two

new conditions: onePerTurn and isWhiteTurn.

The onePerTurn condition is used to call the InCheck function and the BlackMoves function

only once in the whole turn, preventing that the machine needs to perform the recursive

calculations for each frame. In the case of the BlackMoves function, it will only be called in the

case that it is the turn to move black pieces. On the other hand, if the InCheck function returns

true it places a light in the position saved in the global variables kingX and kingZ.

Ones the function enters one time in the onePerTurn condition, it becomes false to avoid

entering again.

In case it is white team's turn (if (isWhiteTurn)) the same functions will be performed as in the

previous version, but this time allowing only the movement of the white pieces. With these

new conditions, the user can only move the white pieces and the artificial intelligence can only

move the black ones.

43

 private void Update()
 {
 BoardCursorPosition();
 LightCursorPosition();

 if (onePerTurn)
 {
 if (InCheck())
 {
 KingLights.Instance.KingCheckLight(kingX, kingZ);
 }

 onePerTurn = false;

 if (!isWhiteTurn)
 {
 BlackMoves();
 }
 }
 if (isWhiteTurn) * … +
 }

2.3.4.3. The WhereIsTheKing function

The function WhereIsTheKing checks box by box the global variable Chessmans looking for the

location of the King of the team of the turn. Once it found it, updates the global variables kingX

and kingZ keeping the location of the King.

 private void WhereIsTheKing()
 {
 Chessman c;
 for (int i = 0; i < 8; i++)
 {
 for (int j = 0; j < 8; j++)
 {
 c = Chessmans[i, j];
 if(c != null)
 {
 if (c.GetType() == typeof(King) && c.isWhite == isWhiteTurn)
 {
 kingX = i;
 KingZ = j;
 return;
 }
 }
 }
 }
 return;
 }

44

2.3.4.4. The InCheck function

This function is used to find out if the King is being threatened by an enemy piece and,

therefore, if he has to protect himself in order to not lose the game. This function is called only

once per turn from the Update function to avoid occupying the machine's processor with a

calculation that only needs to be done once.

It starts by calling the function WhereIsTheKing to update the global variables kingX and kingZ,

once it gets the current position of the king it checks each of the squares inside Chessmans

looking if any of the enemy pieces has the king's square as an allowed move. In the case that a

single enemy piece has that option it returns true, otherwise it returns false.

 private bool InCheck()
 {

 WhereIsTheKing();

 for(int i = 0; i < 8; i++)
 {
 for (int j = 0; j < 8; j++)
 {
 if (Chessmans[i,j] != null)
 {
 if (Chessmans[i, j].isWhite != isWhiteTurn)
 {
 possibleMovements = Chessmans[i, j].PossibleMove();
 if (possibleMovements[kingX, KingZ])
 {
 return true;
 }
 }
 }
 }
 }
 return false;
 }

2.3.4.5. The BlackMoves function

This function is the one that coordinates the movement of the AI, which in this case will be the

movement of the black pieces.

It starts by hiding the lights that have been used to indicate the movement of the machine in

the previous turn; then it initializes the bestOption variable as an array of five integers that

updates with the value received by the MiniMax function.

Having updated the best movement that is able to calculate the AI, it places the lights marking

the origin position and the final position of the machine to then send these parameters to

SelectPiece and MovePiece and perform the movement.

45

It is necessary to place the lights first and then perform the movement because C# uses a

sequential programming structure. This is because the AI lights are only removed within the

BlackMoves and the EndGame functions, so if they were upside down and the AI won after

removing them within the EndGame it would put them back at the end of the function leaving

them visible for the next game.

 private void BlackMoves()
 {
 IALights.Instance.HideIALights();
 bestOption = new int[5] { -1, -1, -1, -1, 0 };
 bestOption = MiniMax(Chessmans, false, 1);
 IALights.Instance.IACheckLight(bestOption[0], bestOption[1]);
 IALights.Instance.IACheckLight(bestOption[2], bestOption[3]);
 SelectPiece(bestOption[0], bestOption[1]);
 MovePiece(bestOption[2], bestOption[3]);
 }

2.3.4.6. The BestPossibleScore function

The function BestPossibleScore is used to calculate the value of the chessboard for each team.

To get the calculation of the chessboard, it adds up the existence and the position of each

piece for each team and then it makes a difference between them and sends the result as an

answer.

This function receives as input parameters:

- board: 8x8 Chessman type matrix that will serve as a reference board.

- ForWhiteTeam: a Boolean indicating whether it is to be calculated for white or black

pieces.

The local variables used are:

- c: Chessman type auxiliary variable used to check box by box the entire board.

- scorewhite, scoreblack: int type variable that keeps the scores of each team.

- positionList: int type list that keeps the response of the ValueChessmansPosition

function although we will only be interested on the first value.

The operation of this function is based on the code that can be seen bellow. We can observe

two loops that go through all the squares individually in the whole board checking if in that

square (c = board[i, j]) a piece is positioned. If there is one, check the type of piece and the

team that it belongs to, so that it can be stored in the corresponding score. The scores that

have been given to each piece have been:

- King = 9000

- Queen = 90

- Castle = 50

- Knight = Bishop = 30

- Pawn = 10

46

These values are the ones supported by the grandmasters, multiplying them by 10 to avoid

conflict with the score obtained when evaluating the position. There are other possible values

depending on the school the master belongs to, but this version is the most common.

 for (int i = 0; i < 8; i++)
 {
 for (int j = 0; j < 8; j++)
 {
 c = board[i, j];
 if (c != null)
 {
 if (c.GetType() == typeof(King))
 {
 if (c.isWhite)
 {
 scorewhite = scorewhite + 90000;
 }
 else
 {
 scoreblack = scoreblack + 90000;
 }
 }
 if (c.GetType() == typeof(Queen)) * … +
 if (c.GetType() == typeof(Castle)) * … +
 if (c.GetType() == typeof(Knight)) * … +
 if (c.GetType() == typeof(Bishop)) * … +
 if (c.GetType() == typeof(Pawn)) * … +

 positionList = ValueChessmansPosition(board, i, j, i, j, c.isWhite);

 if (c.isWhite)
 {
 scorewhite = scorewhite + positionList[0];
 }
 else
 {
 scoreblack = scoreblack + positionList[0];
 }
 }
 }
 }

Once the score has been added according to its existence, it is valued according to its

positioning through the ValueChessmansPosition function sending as data the board, the

position of the piece doubled and the colour of the piece. We send twice the position of the

piece because this function is implemented to calculate two positions even if we only need

one. When we get the position value, we add the score to the corresponding team.

When the whole board has been checked, a difference is made depending if it is to evaluate

the score for white or for black and the result is sent.

47

 if (ForWhiteTeam)
 {
 return (scorewhite - scoreblack);
 }
 else
 {
 return (scoreblack - scorewhite);
 }

2.3.4.7. The AllPieces function

This function checks the board it receives as an input parameter for all pieces of one colour,

when it finds a piece of that colour it saves its position on a list indicating first the column and

then the row. When it finishes, it returns the list iaPieces with all the values.

 private List<int> AllPieces(Chessman[,] board, bool ForWhiteTeam)
 {
 List<int> iaPieces = new List<int>();

 for (int i = 0; i < 8; i++)
 {
 for (int j = 0; j < 8; j++)
 {
 if (board[i, j] != null)
 {
 if (board[i, j].isWhite == ForWhiteTeam)
 {
 iaPieces.Add(i);
 iaPieces.Add(j);
 }
 }
 }
 }

 return iaPieces;

 }

2.3.4.8. The AllPossibleMoves function

It creates an integer list that stores all possible movements of a colour. The input parameters it

receives are:

- Board: Chessman type matrix that contains a board.

- iaPieces: int list that contains the positioning of all the pieces of one colour.

To do this, it has a first loop that goes through the entire iaPieces list and in each iteration

looks if that piece has any movement available. In the case of having a movement available, it

keeps 4 values in a very specific order:

48

1- The initial X position of the piece, which is obtained from the iaPieces list.

2- The initial Z position of the piece, which is obtained from the iaPieces list.

3- The final X position of the piece, which is obtained from i.

4- The final Z position of the piece, which is obtained from j.

It creates a list with all the possible movements of the pieces for a colour, saving its original

position and its possible final position.

 private List<int> AllPossibleMoves(Chessman[,] board, List<int> iaPieces)
 {
 List<int> iaOptions = new List<int>();

 for (int m = 0; m < iaPieces.Count; m = m + 2)
 {
 possibleMovements = board[iaPieces[m], iaPieces[m + 1]].PossibleMove();
 if(AtLeastOne(possibleMovements)){
 for (int i = 0; i < 8; i++)
 {
 for (int j = 0; j < 8; j++)
 {
 if (possibleMovements[i, j])
 {
 iaOptions.Add(iaPieces[m]);
 iaOptions.Add(iaPieces[m + 1]);
 iaOptions.Add(i);
 iaOptions.Add(j);
 }
 }
 }
 }
 }
 return iaOptions;
 }

2.3.4.9. The ValueChessmansPosition function

This function is used to evaluate two positions for the same piece. The parameters it receives

as input are:

- board: board where we will take the position of the piece.

- x0 and z0: indicate the original position of the piece.

- x1 and z1: indicate which position it wants to move.

- ForWhiteTeam: a bool that indicates if it has to be evaluated for white or for black

pieces.

The local variables used are:

- kingMatrix, queenMatrix, castleMatrix, bishopMatrix, knightMatrix, pawnMatrix:

8x8 int matrixes that contains the positioning value for each piece evaluated as if it

were for black team.

49

- c: auxiliary variable of Chessman type.

- valuePosition: int list that collects and returns the value of the first position and

the second position.

The values that have been taken to rate the positioning of each piece are the ones supported

by the grandmasters in the case of fixed values being used. Apart from these, there are other

possible fixed values according to the school that the master belongs to, but this version is the

most common. On the other hand, there are some matrixes that change their values as the

game progresses.

As you can see in the next code, the first step is to register the piece to be evaluated from the

board it receives. Then, the function checks if it is evaluating for White and, if it is, exchange

the value of both x0 and x1 so that it fits the matrixes from where we will get the information.

Finally, it checks the type of piece to be evaluated, searches for its value in the corresponding

matrix and add it to the valuePosition variable that it will later return.

 c = board[x0, z0];

 if (ForWhiteTeam)
 {
 if (x0 == 0)
 {
 x0 = 7;
 } * … +
 if (x1 == 0)
 {
 x1 = 7;
 } * … +
 }

 if (c.GetType() == typeof(King))
 {
 valuePosition.Add(kingMatrix[x0, z0]);
 valuePosition.Add(kingMatrix[x1, z1]);
 }
 if (c.GetType() == typeof(Queen)) * … +
 if (c.GetType() == typeof(Castle)) * … +
 if (c.GetType() == typeof(Knight)) * … +
 if (c.GetType() == typeof(Bishop)) * … +
 if (c.GetType() == typeof(Pawn)) * … +

 return valuePosition;

2.3.4.10. The Minimax function

This function calculates the best possible move for the machine trying to give to the player the

worst for the next move. The parameters we receive as input are:

- board: initial board from where the best move will be calculated.

50

- ForWhiteTeam: indicates if it has to value for black or for white.

- iteration: number of iterations it takes.

Note: due the lack of time for the development of the project, this function only contemplates

one iteration although it is planned to allow it doing multiple ones. For this reason the variable

iteration has not been eliminated although it is not used in the function.

The local variables used are:

- auxBestOption: auxiliary list of int type that stores 5 values (x0, z0, x1, z1 and

score).

- AuxChessmans and AuxChessmans2: 8x8 Chessman type auxiliary matrixes.

- iaAuxList, iaAuxList2, iaAuxList3, iaAuxList4: int type auxiliary lists.

- score1, score2: int variables.

As we can see in the code below, this function starts initiating the AuxChessmans variable and

AuxChessmans2 copying the exact board values. Once we have the copy done, it looks for all

the possible plays that a team has and stores them in iaAuxList2. To be able to use later the

iaAuxList, where all the pieces of a team had been previously stored, it is cleaned so that no

residual value remains. Then the iaAuxList4 is initialized to store the possible scores.

 for (int i = 0; i < 8; i++)
 {
 for (int j = 0; j < 8; j++)
 {
 if (board[i, j] != null)
 {
 AuxChessmans[i, j] = board[i, j];
 AuxChessmans2[i, j] = board[i, j];
 }
 }
 }

 iaAuxList = AllPieces(AuxChessmans, ForWhiteTeam);

 iaAuxList2 = AllPossibleMoves(AuxChessmans, iaAuxList);

 iaAuxList.Clear();

 if (!ForWhiteTeam)
 {
 iaAuxList4.Add(-1);
 iaAuxList4.Add(-1);
 iaAuxList4.Add(-1);
 iaAuxList4.Add(-1);
 iaAuxList4.Add(90000);
 }
 else
 {
 iaAuxList4.Add(-1);

51

 iaAuxList4.Add(-1);
 iaAuxList4.Add(-1);
 iaAuxList4.Add(-1);
 iaAuxList4.Add(-90000);
 }

Then the function goes through all the possible moves stored in iaAuxList2 by updating

Auxchessmans and Auxchessmans2 according to the possible move stored in that list.

Afterwards, it stores all the possible moves of the opponent team in iaAuxList3 for that

particular move in iaAuxList2, and finally it initializes the score1 value considering that the

opponent will always choose the best option of that possible move.

 AuxChessmans[iaAuxList2[a + 2], iaAuxList2[a + 3]] = AuxChessmans[iaAuxList2[a + 0],
iaAuxList2[a + 1]];
 AuxChessmans[iaAuxList2[a + 0], iaAuxList2[a + 1]] = null;
 AuxChessmans2[iaAuxList2[a + 2], iaAuxList2[a + 3]] = AuxChessmans2[iaAuxList2[a +
0], iaAuxList2[a + 1]];
 AuxChessmans2[iaAuxList2[a + 0], iaAuxList2[a + 1]] = null;
 iaAuxList = AllPieces(AuxChessmans, !ForWhiteTeam);
 iaAuxList3 = AllPossibleMoves(AuxChessmans, iaAuxList);
 score1 = -900000;

For each move stored in iaAuxList3, it checks the score of each possible move for the opponent

and stores the best one. As you can see in the code bellow, at the beginning AuxChessmans2 is

modified as it will be the board that we will send to evaluate and at the end it takes back the

original values for the next iteration.

 for (int b = 0; b < iaAuxList3.Count; b = b + 4)
 {
 AuxChessmans2[iaAuxList3[b + 2], iaAuxList3[b + 3]] = AuxChessmans2[iaAuxList3[b +
0], iaAuxList3[b + 1]];
 AuxChessmans2[iaAuxList3[b + 0], iaAuxList3[b + 1]] = null;

 score2 = (BestPosibleScore(AuxChessmans2, !ForWhiteTeam));
 if (score2 > score1)
 {
 score1 = score2;
 }
 AuxChessmans2[iaAuxList3[b + 0], iaAuxList3[b + 1]] = AuxChessmans[iaAuxList3[b +
0], iaAuxList3[b + 1]];
 AuxChessmans2[iaAuxList3[b + 2], iaAuxList3[b + 3]] = AuxChessmans[iaAuxList3[b +
2], iaAuxList3[b + 3]];
 }

Once finished the iaAuxList3 loop, the function checks if the score registered in score1 is higher

than the previous ones saved in iaAuxList4. If score1 is lower, the function cleans the

iaAuxList4 and adds the play where it is in the loop of iaAuxList2 with the score of score1; if it

52

is the same, then the function adds that play with the score of score1 to the iaAuxList4 list. This

way we can store all the worst possible user’s moves in iaAuxList4.

 if (iaAuxList4[4] > score1)
 {
 iaAuxList4.Clear();
 iaAuxList4.Add(iaAuxList2[a + 0]);
 iaAuxList4.Add(iaAuxList2[a + 1]);
 iaAuxList4.Add(iaAuxList2[a + 2]);
 iaAuxList4.Add(iaAuxList2[a + 3]);
 iaAuxList4.Add(score1);
 }
 else if (iaAuxList4[4] == score1)
 {
 iaAuxList4.Add(iaAuxList2[a + 0]);
 iaAuxList4.Add(iaAuxList2[a + 1]);
 iaAuxList4.Add(iaAuxList2[a + 2]);
 iaAuxList4.Add(iaAuxList2[a + 3]);
 iaAuxList4.Add(score1);
 }

To finish the iteration of the iaAuxList2 loop, the function returns AuxChessmans and

AuxChessmans2 to the original board values and clean iaAuxList and iaAuxList3 in order to be

used at the next iteration.

 AuxChessmans[iaAuxList2[a + 0], iaAuxList2[a + 1]] = board[iaAuxList2[a + 0],
iaAuxList2[a + 1]];
 AuxChessmans[iaAuxList2[a + 2], iaAuxList2[a + 3]] = board[iaAuxList2[a + 2],
iaAuxList2[a + 3]];
 AuxChessmans2[iaAuxList2[a + 0], iaAuxList2[a + 1]] = board[iaAuxList2[a + 0],
iaAuxList2[a + 1]];
 AuxChessmans2[iaAuxList2[a + 2], iaAuxList2[a + 3]] = board[iaAuxList2[a + 2],
iaAuxList2[a + 3]];

 iaAuxList.Clear();
 iaAuxList3.Clear();

In order to finish with the selection of the best possible move, giving to the worst possible

move for the opponent, all possible moves stored in iaAuxList4 are evaluated and the best one

is saved. In the case that there are two possible best moves, the IA chooses the one with the

higher final position or, in the case that the final position is also the same, choose the move

with the lower initial position.

 score1 = -900000;
 for (int c = 0; c < iaAuxList4.Count; c = c + 5)
 {
 AuxChessmans[iaAuxList4[c + 2], iaAuxList4[c + 3]] = AuxChessmans[iaAuxList4[c + 0],
iaAuxList4[c + 1]];
 AuxChessmans[iaAuxList4[c + 0], iaAuxList4[c + 1]] = null;

53

 score2 = BestPosibleScore(AuxChessmans, ForWhiteTeam);

 if (score2 > score1)
 {
 auxBestOption[0] = iaAuxList4[c];
 auxBestOption[1] = iaAuxList4[c + 1];
 auxBestOption[2] = iaAuxList4[c + 2];
 auxBestOption[3] = iaAuxList4[c + 3];
 score1 = score2;
 }

 if (score2 == score1)
 {
 iaAuxList = ValueChessmansPosition(board, auxBestOption[0], auxBestOption[1],
auxBestOption[2], auxBestOption[3], ForWhiteTeam);
 iaAuxList2 = ValueChessmansPosition(board, iaAuxList4[c], iaAuxList4[c + 1],
iaAuxList4[c + 2], iaAuxList4[c + 3], ForWhiteTeam);

 if (iaAuxList2[1] > iaAuxList[1])
 {
 auxBestOption[0] = iaAuxList4[c];
 auxBestOption[1] = iaAuxList4[c + 1];
 auxBestOption[2] = iaAuxList4[c + 2];
 auxBestOption[3] = iaAuxList4[c + 3];
 score1 = score2;
 }
 if (iaAuxList2[1] == iaAuxList[1] && iaAuxList2[0] < iaAuxList[0])
 {
 auxBestOption[0] = iaAuxList4[c];
 auxBestOption[1] = iaAuxList4[c + 1];
 auxBestOption[2] = iaAuxList4[c + 2];
 auxBestOption[3] = iaAuxList4[c + 3];
 score1 = score2;
 }
 }

 AuxChessmans[iaAuxList4[c + 0], iaAuxList4[c + 1]] = board[iaAuxList4[c + 0],
iaAuxList4[c + 1]];
 AuxChessmans[iaAuxList4[c + 2], iaAuxList4[c + 3]] = board[iaAuxList4[c + 2],
iaAuxList4[c + 3]];
 }

2.3.5. Final version of the game

In this third version of the project we find the integration of Virtual Reality (VR) in the game, to

achieve this objective the camera and the inputs that the code receives must change.

On the other hand, to facilitate a more immersive experience a 3D decoration called Skybox is

added. A Skybox is a wrapper around the scene that connects the 6 in-side walls of a cube

between them leaving the connections almost invisible. An example is found in figure 17.

54

Figure 17. Skybox example

2.3.5.1. Project imports

In order to get the code for the VR viewer and the new inputs, it is necessary to download and

import the OCULUS Integrates package, which is available for free in the Unity's Asset Store.

This package includes all the necessary codes in order to connect any Oculus viewer to the

project.

On the other hand, it has also been downloaded the G.E. TEAM Fantasy Skybox FREE package

which is also available for free in the Asset Store. This package contains the textures of two

possible Skyboxs.

2.3.5.2. VR Camera

One of the most significant changes in this final phase of the project is the change of camera.

To obtain a 3 DoF freedom, the existing camera has to be removed and replaced by a structure

called VR Rig (figure 18).

Figure 18. VR Rig structure

Inside the VR Rig we find a GameObject called CameraOffset that joins the VR Camera with the

VR Controller. As you can see in this project only one controller is added because it doesn't

require the second one to play.

There are also two codes added from the oculus package: XR Rig and OVR Manager (figure 19).

The OVR Manager script is used to index the entire Oculus package and make possible the use

of its functions within the code; in the XR Rig, we find:

- The Rig Base Game Object is used to indicate which game object acts as the transform

from tracking space into world space. In the recommended hierarchy this is the "XR

Rig" game object.

55

- The Camera Floor Offset Object is used to set which object will have a vertical offset

applied if the device tracking origin does not contain the users height.

- The Camera Game Object field is used to indicate which game object holds the player's

camera. This is important as the user's camera may not be at the origin of the tracking

volume. In the suggested hierarchy this is the "Camera" game object.

- The Tracking Space field is used to set the desired tracking space used by the

application

- The Camera Y Offset is the number of world space units that the Game Object

specified by the Camera Floor Offset Object will be moved up vertically if the device

tracking origin does not contain the user’s height.

Figure 19. XR Rig and OVR Manager scripts

2.3.5.3. New global variables

In order to use the new command it is necessary to implement the following global variables:

Name and type of the variable Definition of the variable

float HandRight; This variable is used to obtain the input from
the control Trigger. It is updated in each
frame.

Vector2 touchpad; This variable will receive input from the
Touchpad of the controller. It is updated in
each frame.

Table 3. Global variables added for the final version of the game

2.3.5.4. Upgrade of the Update function

The change in this function has been minor. We found that the global variable HandRight is

updated in each frame waiting for an input from the Trigger; when the Trigger is pressed the

function enters to the selection phase of the piece and when the Trigger is released tries to

move it.

 private void Update()
 {
 BoardCursorPosition();
 LightCursorPosition();

 HandRight = OVRInput.Get(OVRInput.Axis1D.PrimaryHandTrigger);

56

 if (onePerTurn) * … +
 if (isWhiteTurn)
 {
 if (selectedChessman != null) * … +

 if (OVRInput.GetDown(OVRInput.Button.PrimaryIndexTrigger))
 {
 if (xSelection >= 0 && zSelection >= 0)
 {
 if (selectedChessman == null)
 {
 SelectPiece(xSelection, zSelection);
 }
 }

 }

 if (OVRInput.GetUp(OVRInput.Button.PrimaryIndexTrigger))
 {
 if (xSelection >= 0 && zSelection >= 0)
 {
 if (selectedChessman != null)
 {
 MovePiece(xSelection, zSelection);
 }
 }
 }
 }
 }

2.3.5.5. Upgrade of the BoardCursorPosition function

As we can see, the global variable touchpad is updated in each frame waiting for an input.

After obtaining the data and transforming it to the values we need, we confirm that these

values are inside the board and then the code updates the global variables xSelection and

zSelection.

It transforms the values received by the controller because they go from -1 to 1 in the X and Y

axis, while the code expects values between 0 and 7. Initially it would seem to be enough if it is

added one and multiplied by 4, but the touchpad is a rounded area and has problems with the

corners of the board. So the solution pass through apply a small offset multiplying the input by

1.25 which makes it easier to reach all the area of the board.

 private void BoardCursorPosition()
 {
 int auxx, auxz;

 touchpad = OVRInput.Get(OVRInput.RawAxis2D.RTouchpad);

 auxx = (int)(((touchpad[0] * 1.25) + 1) * 4);

57

 auxz = (int)(((touchpad[1] * 1.25) + 1) * 4);

 if (auxx >= 0 && auxx < 8 && auxz >=0 && auxz < 8)
 {
 xSelection = auxx;
 zSelection = auxz;
 }
 }

2.3.5.6. Upgrade the UpdateChessmanDrag function

The UpdateChessmanDrag function has similar changes to the BoardCursorPosition function

taking into account that it has to change the position of a piece when it is selected. To achieve

this objective the function uses these local variables:

- origindrag: this Vector3 type variable will be the position where the code will send the

piece if it is selected.

- auxdragx, auxdragy: are two float type variables that allow an assignment to

origindrag.

Even if the variables auxdragx and auxdragy seem to be an intermediate step that can be

removed, the assignment of Vector3 does not allow a direct assignment through a type

transformation, so it becomes totally necessary.

 private void UpdateChessmanDrag(Chessman c)
 {
 Vector3 origindrag = Vector3.zero;

 float auxdragx, auxdragz;

 touchpad = OVRInput.Get(OVRInput.RawAxis2D.RTouchpad);

 auxdragx = (float)(((touchpad[0] * 1.25) + 1) * 4);
 auxdragy = (float)(((touchpad[1] * 1.25) + 1) * 4);

 origindrag.x += auxdragx;
 origindrag.y += 1;
 origindrag.z += auxdragz;

 c.transform.position = origindrag;
 }

2.3.5.7. Lights that we find in the project

We found 4 lights that come out repeatedly throughout the project with the intention of

improving the player's experience:

‐ The light that indicates all the possible movements of the selected piece (figure 20)

‐ The light that indicates that a king is being threatened (figure 21)

58

‐ Mouse / VR Controller pointer light (figure 22)

‐ The light that indicates the AI movement (figure 23)

All these lights are created through an effect integrated into Unity itself: Particle System. This

effect allows having a loop animation of a particle jet, this animation is alterable through a

series of modules that contains groups of properties. By modifying these properties you can

achieve a big variety of effects, also it can be added a texture to give more body to the

animation.

The codes that allow and change the position of the lights on the board are BoardHighlights

class, IALights class, KingLights class and the LightCursorPosition function. The

LightCursorPosition fuction has already been shown in the first version and the other three are

based on the solution developed by Michael Doyon [N3K EN] and can be found in the Annex.

Figure 20. Light of possible movements

59

Figure 21. Ligth of be in check

Figure 22. Mouse / VR Controller pointer light

60

Figure 23. Light of the AI movement

2.3.6. Final view of the game

Once all the development has been completed, all that remains is to install the APK in the

Oculus Go and enjoy the experience. Below you can see some pictures taken directly from the

device.

Figure 24. Final view 1

61

Figure 25. Final view 2

Figure 26. Final view 3

Figure 27. Final view 4

62

3. SUMMARY OF RESULTS

3.1. Budget

The budget for the creation of this project is presented in table 4 below. It includes both the

price of the software and the device used for the tests; we also find the amount of hours

invested in the modelling and texturing of the pieces, as well as in the programming of the

code.

Budget table

Software Price

Autodesk Maya (annual license) 2.136 €

Substance Painter 0 €

Unity (annual license) 150 €

Hardware Price

Oculus Go 275 €

Computer 1.100 €

Hours invested

Worker Total hours Price per hour Total price

Graphic designer 40 h 18 €/h 720 €

Engineer 650 h 30 €/h 19.500 €

Total cost of the project 23.881 €
Table 4. Budget Table

3.2. Gantt

GANTT DIAGRAM

Activity
Start
date

Duration
(days)

Finish
date

Research of the state of art 24-feb. 7 2-mar.
Search and installation of the necessary
resources 2-mar. 4 6-mar.

Modeling the pieces and the board 6-mar. 7 13-mar.

Texturization of the chess pieces and the
chessboard 13-mar. 7 20-mar.

First version of the game 13-mar. 35 17-abr.

Tests of the first version 17-abr. 2 19-abr.

Second version of the game 19-abr. 20 9-may.

Tests of the second version 9-may. 2 11-may.

Final version of the game 11-may. 30 10-jun.

Tests of the final version 10-jun. 5 15-jun.

Collection and review of all information 15-jun. 2 17-jun.

Memo writing 19-abr. 65 23-jun.

 Start date 24-feb.
 End date 23-jun.
 Table 5. Gantt description table

63

Figure 28. Gantt diagram

3.3. Problems found

At the beginning of the project I didn't have any experience with Unity or any other game

engine, this caused a series of errors that I couldn't correct until I really learned how Unity

works. Once I learned the basics, I was able to develop my own code without any problems.

On the other hand, during the development of this project we found ourselves in a situation

that nobody could expect: the virus COVID-19. This unexpected situation has directly affected

the development of this project.

The first problem I encountered from this situation was that at the beginning of the pandemic

my computer broke down. As the repair shops were closed, I had to find the problem myself

without having too much technical knowledge about it. Once I could fix it, I had already lost a

lot of time and this affected the deadlines that I originally defined.

Another problem was that the COVID-19 affected my family financially, making it impossible

for me to buy a VR Viewer until almost the end of the project itself.

When I had a device to do the tests, I discovered that the integration of the VR into a project

designed for another platform was not as immediate as it might seem at first. Then I

discovered the huge community of developers that both Unity and Oculus had who helped me

achieve the initial goal of my project.

19-feb. 10-mar. 30-mar. 19-abr. 9-may. 29-may. 18-jun.

Research of the state of art

Search and installation of the necessary…

Modeling the pieces and the board

Texturization of the chess pieces and the…

First version of the game

Tests of the first version

Second version of the game

Tests of the second version

Final version of the game

Tests of the final version

Collection and review of all information

Memo writing

64

3.4. Conclusions

Initially I had the impression that virtual reality was not used by small developers and that it

was used much more by companies than by individuals, I couldn't be more wrong.

Although big companies are bringing big projects to market, the community of small

developers that exists under both Unity and Oculus is not only large but also very active. We

find all sorts of forums, video tutorials, news and project displays that help you to solve the

problems you encounter in your own development and in case you don't find a direct solution,

they offer you tips that can help you to find your own solution.

Thanks to these two great communities, I have managed to achieve the main objective of this

project: to complete the development of a chess video game in a virtual reality environment

by carrying out each of the phases during the creation of the game.

I am aware that the final result is not entirely commercial, but it offers a very solid base to

which can be added possible improvements. If there were the option to dedicate more time to

the development of this application, I would achieve a fully marketable version without any

doubt.

3.5. Possible future work

There are mainly seven upgradeable points to enrich the user experience when playing this

game:

1- Difficulty of the artificial intelligence

The artificial intelligence implemented in this project only takes into account 2 iterations of the

Minimax function: a white movement and a black movement. If the AI looks more turns

forward, it would be much harder to beat.

On the other hand, this project uses fixed positioning matrices that do not offer all the

information that could be useful to the AI. If the AI used matrices with variable values

according to the number of turns played, the AI would be able to respond better as the game

progresses.

If the difficulty of the AI was improved, levels of difficulty could also be included within the

game itself, offering more difficulty to more experienced people and opening the market to

more possible users.

2- Artificial intelligence animation

In this project the movement of the artificial intelligence is not seen, it makes an instantaneous

transfer of pieces and positions some lights in the origin and in the end to clarify to the user

what play has been made. If, in addition to these lights, some kind of animation were

implemented for the movement of these pieces, it would give a much more real sensation to

the player.

65

3- Improving the input of the controller

During the development of this project, I have encountered many problems when

implementing virtual reality in the game, one of the most difficult to solve was the insertion of

inputs by the controller. The solution chosen was to introduce the selection/movement of the

piece by the touchpad, but a possibility that would have to be considered would be to perform

this action through a Raycast pointer from the same controller.

4- Ambient music and sounds

Unity offers the possibility of introducing both ambient music and sounds to the objects when

they perform some action. Ambient music and sounds were not in the initial scope, and the

difficulties faced along the project did not allow me to develop it. Creating the sounds for both

the ambient and the pieces would give more quality to the final result.

5- Victory or defeat screen

At the end of the game, it does not indicate who has won or offers any kind of message to the

user; a possible improvement would be to include a screen for both defeat and victory.

6- Online multiplayer connection

Due to the difficulties of connecting the virtual reality devices, a single-player design was

chosen, but it is not impossible to create multiplayer games by connecting two VR headset. If

more time were available, the implementation of a multiplayer version would greatly enrich

the game.

7- Main menu

To finalize and merge all the different improvement possibilities, develop and implement a

menu will improve the user experience.

66

4. List of bibliographical references

Las 7 fases más importantes en el desarrollo de juegos | Escuela de Videojuegos | Hektor

Profe. (n.d.). Retrieved June 28, 2020, from

https://docs.hektorprofe.net/escueladevideojuegos/articulos/fases-del-desarrollo-de-

videojuegos/

Oculus Quest & Go // Sideloading Made EASY with SideQuest (Windows, Mac and Linux) -

YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=HspVa4i9rPg

Unity o Unreal ¿Como elegir? | Avante Digital Institute. (n.d.). Retrieved June 28, 2020, from

https://www.avantedigitalinstitute.es/2019/05/13/unity-o-unreal-por-donde-empiezo/

Cómo se hace un juego de realidad virtual. (n.d.). Retrieved June 28, 2020, from

https://www.xataka.com/realidad-virtual-aumentada/como-se-hace-un-juego-de-realidad-

virtual

Los motores gráficos más usados. (n.d.). Retrieved June 28, 2020, from

https://www.elobservador.com.uy/nota/los-motores-graficos-mas-usados-2017819500

Top VR Game Engines -2019 Update. (n.d.). Retrieved June 28, 2020, from

https://filmora.wondershare.com/virtual-reality/state-of-vr-games-the-game-engines-and-

present-convention.html

Si quieres hacer tus propios juegos, estos son los mejores motores que vas a encontrar. (n.d.).

Retrieved June 28, 2020, from https://www.vidaextra.com/listas/si-quieres-hacer-tus-propios-

juegos-estos-son-los-mejores-motores-que-vas-a-encontrar

Los mejores programas de diseño 3D/modelado 3D | All3DP. (n.d.). Retrieved June 28, 2020,

from https://all3dp.com/es/1/mejores-programas-diseno-3d-software-modelado-3d-gratis/

10 engines y motores para crear tus videojuegos | Escuela de Videojuegos | Hektor Profe.

(n.d.). Retrieved June 28, 2020, from

https://docs.hektorprofe.net/escueladevideojuegos/articulos/engines-motores-recopilacion-

programas/

Unity - Manual: System requirements for Unity 2019.4. (n.d.). Retrieved June 28, 2020, from

https://docs.unity3d.com/Manual/system-requirements.html

Degrees of Freedom (DoF): 3-DoF vs 6-DoF for VR Headset Selection. (n.d.). Retrieved June 28,

2020, from https://virtualspeech.com/blog/degrees-of-freedom-vr

Como exportar animaciones de Maya a Unity - YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=pOsKIwMpr10

Exportar modelo de maya a unity - YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=WzTi78q4bsM

https://docs.hektorprofe.net/escueladevideojuegos/articulos/fases-del-desarrollo-de-videojuegos/
https://docs.hektorprofe.net/escueladevideojuegos/articulos/fases-del-desarrollo-de-videojuegos/
https://www.youtube.com/watch?v=HspVa4i9rPg
https://www.avantedigitalinstitute.es/2019/05/13/unity-o-unreal-por-donde-empiezo/
https://www.xataka.com/realidad-virtual-aumentada/como-se-hace-un-juego-de-realidad-virtual
https://www.xataka.com/realidad-virtual-aumentada/como-se-hace-un-juego-de-realidad-virtual
https://www.elobservador.com.uy/nota/los-motores-graficos-mas-usados-2017819500
https://filmora.wondershare.com/virtual-reality/state-of-vr-games-the-game-engines-and-present-convention.html
https://filmora.wondershare.com/virtual-reality/state-of-vr-games-the-game-engines-and-present-convention.html
https://www.vidaextra.com/listas/si-quieres-hacer-tus-propios-juegos-estos-son-los-mejores-motores-que-vas-a-encontrar
https://www.vidaextra.com/listas/si-quieres-hacer-tus-propios-juegos-estos-son-los-mejores-motores-que-vas-a-encontrar
https://all3dp.com/es/1/mejores-programas-diseno-3d-software-modelado-3d-gratis/
https://docs.hektorprofe.net/escueladevideojuegos/articulos/engines-motores-recopilacion-programas/
https://docs.hektorprofe.net/escueladevideojuegos/articulos/engines-motores-recopilacion-programas/
https://docs.unity3d.com/Manual/system-requirements.html
https://virtualspeech.com/blog/degrees-of-freedom-vr
https://www.youtube.com/watch?v=pOsKIwMpr10
https://www.youtube.com/watch?v=WzTi78q4bsM

67

COMO EXPORTAR de MAYA a UNITY/ How to export Maya to Unity - YouTube. (n.d.). Retrieved

June 28, 2020, from https://www.youtube.com/watch?v=7kAm9ar9O6M

UV mapping pokemon en autodesk maya 2019 - YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=4iUslz1Ygjk&t=80s

TEXTURIZAR UN POKEMÓN EN SUBSTANCE PAINTER y MAYA 2019 - YouTube. (n.d.). Retrieved

June 28, 2020, from https://www.youtube.com/watch?v=c4dn6jdpXFg

Curso basico programacion C# - 2.Variables,errores y breakpoints - Visual Studio 2017 -

YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=MlrUFwHwrUA&list=PLLJJqiFt6VPoUO_mM5y6VSw

GX-B7v__tu&index=2

How to get started with Unity3D - For Beginners - YouTube. (n.d.). Retrieved June 28, 2020,

from https://www.youtube.com/watch?v=XDAYS-qYe6Y

How to Make a Chess Game with Unity | raywenderlich.com. (n.d.). Retrieved June 28, 2020,

from https://www.raywenderlich.com/5441-how-to-make-a-chess-game-with-unity

Introduction to Unity Scripting | raywenderlich.com. (n.d.). Retrieved June 28, 2020, from

https://www.raywenderlich.com/980-introduction-to-unity-scripting

Chess Game Tutorial • 1/5 • *Tutorial+*C#+ - YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=CzImJk7ZesI

Chess Game Tutorial • 2/5 • *Tutorial+*C#+ - YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=on_J2IFoPME&t=847s

Chess Game Tutorial • 3/5 • *Tutorial+*C#+ - YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=sN_3fMo-dZg&t=590s

Chess Game Tutorial • 4/5 • *Tutorial+*C#+ - YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=DP6I1owXI64&t=1s

Chess Game Tutorial • 5/5 • *Tutorial+*C#+ - YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=q0v53MNLPcM&t=792s

Constructores de instancias: Guía de programación de C# | Microsoft Docs. (n.d.). Retrieved

June 28, 2020, from https://docs.microsoft.com/es-es/dotnet/csharp/programming-

guide/classes-and-structs/instance-constructors

Curso programación C# - 72. Inteligencia artificial (1)- Visual Studio 2017 - YouTube. (n.d.).

Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=fa0K8HcaDCk&list=PLLJJqiFt6VPruMw8E-

O37V9bL7STOvC9D&index=1

Coding Challenge 154: Tic Tac Toe AI with Minimax Algorithm - YouTube. (n.d.). Retrieved June

28, 2020, from https://www.youtube.com/watch?v=trKjYdBASyQ

https://www.youtube.com/watch?v=7kAm9ar9O6M
https://www.youtube.com/watch?v=4iUslz1Ygjk&t=80s
https://www.youtube.com/watch?v=c4dn6jdpXFg
https://www.youtube.com/watch?v=MlrUFwHwrUA&list=PLLJJqiFt6VPoUO_mM5y6VSwGX-B7v__tu&index=2
https://www.youtube.com/watch?v=MlrUFwHwrUA&list=PLLJJqiFt6VPoUO_mM5y6VSwGX-B7v__tu&index=2
https://www.youtube.com/watch?v=XDAYS-qYe6Y
https://www.raywenderlich.com/5441-how-to-make-a-chess-game-with-unity
https://www.raywenderlich.com/980-introduction-to-unity-scripting
https://www.youtube.com/watch?v=CzImJk7ZesI
https://www.youtube.com/watch?v=on_J2IFoPME&t=847s
https://www.youtube.com/watch?v=sN_3fMo-dZg&t=590s
https://www.youtube.com/watch?v=DP6I1owXI64&t=1s
https://www.youtube.com/watch?v=q0v53MNLPcM&t=792s
https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/instance-constructors
https://docs.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/instance-constructors
https://www.youtube.com/watch?v=fa0K8HcaDCk&list=PLLJJqiFt6VPruMw8E-O37V9bL7STOvC9D&index=1
https://www.youtube.com/watch?v=fa0K8HcaDCk&list=PLLJJqiFt6VPruMw8E-O37V9bL7STOvC9D&index=1
https://www.youtube.com/watch?v=trKjYdBASyQ

68

Let’s Create a Chess AI That Can Beat You (probably): Part 1 - YouTube. (n.d.). Retrieved June

28, 2020, from https://www.youtube.com/watch?v=RbV3R6JrQWo

AI Chess Project. (n.d.). Retrieved June 28, 2020, from

https://www.cs.cornell.edu/boom/2004sp/ProjectArch/Chess/chessmain.html

Building a Simple Chess AI – Brandon Yanofsky. (n.d.). Retrieved June 28, 2020, from

https://byanofsky.com/2017/07/06/building-a-simple-chess-ai/

Test Driven Chess Artificial Intelligence - CodeProject. (n.d.). Retrieved June 28, 2020, from

https://www.codeproject.com/Articles/1168892/Test-Driven-Chess-Artificial-Intelligence

A step-by-step guide to building a simple chess AI. (n.d.). Retrieved June 28, 2020, from

https://www.freecodecamp.org/news/simple-chess-ai-step-by-step-1d55a9266977/

GitHub - lhartikk/simple-chess-ai: A simple chess AI. (n.d.). Retrieved June 28, 2020, from

https://github.com/lhartikk/simple-chess-ai

Unity - Manual: Skybox. (n.d.). Retrieved June 28, 2020, from

https://docs.unity3d.com/es/530/Manual/class-Skybox.html

Multiplayer Checkers Tutorial #8 - Lobby / Menu - Unity 3D[Tutorial][C#] - YouTube. (n.d.).

Retrieved June 28, 2020, from https://www.youtube.com/watch?v=YyEHu3CpSTM

Multiplayer Checkers Tutorial #11 - Rail, Alert - Unity 3D[Tutorial][C#] - YouTube. (n.d.).

Retrieved June 28, 2020, from https://www.youtube.com/watch?v=yuBB0222ZoY

How To Install Unity Game Engine (Getting Started) - YouTube. (n.d.). Retrieved June 28, 2020,

from https://www.youtube.com/watch?v=KMuMhA6Lk0I

How To Create Your First Simple VR Project In Unity! - YouTube. (n.d.). Retrieved June 28,

2020, from https://www.youtube.com/watch?v=YpY3cLtOyBk

How to make a VR game in Unity - Part 1 - Setup, Hand presence, Grabbing object - YouTube.

(n.d.). Retrieved June 28, 2020, from https://www.youtube.com/watch?v=sKQOlqNe_WY

Unity VR Tutorial: How to Build a Robin Hood VR Game From Scratch - YouTube. (n.d.).

Retrieved June 28, 2020, from https://www.youtube.com/watch?v=Dh7Wwqs-s2c

Cómo crear e instalar aplicaciones de Unity en Oculus Go - YouTube. (n.d.). Retrieved June 28,

2020, from https://www.youtube.com/watch?v=8XhAEzBC-3o

Oculus - Unity. (n.d.). Retrieved June 28, 2020, from https://unity3d.com/es/partners/oculus

Oculus - Unity Manual. (n.d.). Retrieved June 28, 2020, from

https://docs.unity3d.com/es/2018.4/Manual/VRDevices-Oculus.html

Object Reference Not Set to an Instance of an Object: How To Solve It. (n.d.). Retrieved June

28, 2020, from https://stackify.com/nullreferenceexception-object-reference-not-set/

https://www.youtube.com/watch?v=RbV3R6JrQWo
https://www.cs.cornell.edu/boom/2004sp/ProjectArch/Chess/chessmain.html
https://byanofsky.com/2017/07/06/building-a-simple-chess-ai/
https://www.codeproject.com/Articles/1168892/Test-Driven-Chess-Artificial-Intelligence
https://www.freecodecamp.org/news/simple-chess-ai-step-by-step-1d55a9266977/
https://github.com/lhartikk/simple-chess-ai
https://docs.unity3d.com/es/530/Manual/class-Skybox.html
https://www.youtube.com/watch?v=YyEHu3CpSTM
https://www.youtube.com/watch?v=yuBB0222ZoY
https://www.youtube.com/watch?v=KMuMhA6Lk0I
https://www.youtube.com/watch?v=YpY3cLtOyBk
https://www.youtube.com/watch?v=sKQOlqNe_WY
https://www.youtube.com/watch?v=Dh7Wwqs-s2c
https://www.youtube.com/watch?v=8XhAEzBC-3o
https://unity3d.com/es/partners/oculus
https://docs.unity3d.com/es/2018.4/Manual/VRDevices-Oculus.html
https://stackify.com/nullreferenceexception-object-reference-not-set/

69

How to fix adb devices shows unauthorized device. (n.d.). Retrieved June 28, 2020, from

https://support.honeywellaidc.com/s/article/How-to-fix-adb-devices-shows-unauthorized-

device

GUIDE: ADB Devices not displaying- FIXED : OculusGo. (n.d.). Retrieved June 28, 2020, from

https://www.reddit.com/r/OculusGo/comments/8ucrr9/guide_adb_devices_not_displaying_fi

xed/

I’m on PC and there is no “allow usb debugging” option thing showing up. : OculusQuest.

(n.d.). Retrieved June 28, 2020, from

https://www.reddit.com/r/OculusQuest/comments/bu4946/im_on_pc_and_there_is_no_allo

w_usb_debugging/

Quest won’t connect to PC on developer mode since last update — Oculus. (n.d.). Retrieved

June 28, 2020, from https://forums.oculusvr.com/community/discussion/81191/quest-wont-

connect-to-pc-on-developer-mode-since-last-update

Update: Found the Fix and possible reasons Oculus Go’s will not connect to PCs for file transfer

— Oculus. (n.d.). Retrieved June 28, 2020, from

https://forums.oculusvr.com/community/discussion/64628/update-found-the-fix-and-

possible-reasons-oculus-gos-will-not-connect-to-pcs-for-file-transfer

Anyone have trouble with Oculus Go disappearing from “adb devices”? — Oculus. (n.d.).

Retrieved June 28, 2020, from

https://forums.oculusvr.com/developer/discussion/64603/anyone-have-trouble-with-oculus-

go-disappearing-from-adb-devices

Oculus Go not showing up in adb :(- Unity Forum. (n.d.). Retrieved June 28, 2020, from

https://forum.unity.com/threads/oculus-go-not-showing-up-in-adb.530466/

OculusGo Kiosk Mode. (n.d.). Retrieved June 28, 2020, from

https://oculusgokioskmode.tweaklab.org/

Oculus Go Unity Setup (Quick Start) — Scriptable. (n.d.). Retrieved June 28, 2020, from

https://scriptable.com/blog/oculus-go-unity-setup-quick-start

Installation Instructions for Oculus Go (Windows 10). (n.d.). Retrieved from

https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-device-

Oculus ADB Drivers | Developer Center | Oculus. (n.d.). Retrieved June 28, 2020, from

https://developer.oculus.com/downloads/package/oculus-adb-drivers/

Locomotion | XR Interaction Toolkit | 0.0.6-preview. (n.d.). Retrieved June 28, 2020, from

https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@0.0/manual/locomotion.

html

Easy Controller Selection | Oculus. (n.d.). Retrieved June 28, 2020, from

https://developer.oculus.com/blog/easy-controller-selection/

https://support.honeywellaidc.com/s/article/How-to-fix-adb-devices-shows-unauthorized-device
https://support.honeywellaidc.com/s/article/How-to-fix-adb-devices-shows-unauthorized-device
https://www.reddit.com/r/OculusGo/comments/8ucrr9/guide_adb_devices_not_displaying_fixed/
https://www.reddit.com/r/OculusGo/comments/8ucrr9/guide_adb_devices_not_displaying_fixed/
https://www.reddit.com/r/OculusQuest/comments/bu4946/im_on_pc_and_there_is_no_allow_usb_debugging/
https://www.reddit.com/r/OculusQuest/comments/bu4946/im_on_pc_and_there_is_no_allow_usb_debugging/
https://forums.oculusvr.com/community/discussion/81191/quest-wont-connect-to-pc-on-developer-mode-since-last-update
https://forums.oculusvr.com/community/discussion/81191/quest-wont-connect-to-pc-on-developer-mode-since-last-update
https://forums.oculusvr.com/community/discussion/64628/update-found-the-fix-and-possible-reasons-oculus-gos-will-not-connect-to-pcs-for-file-transfer
https://forums.oculusvr.com/community/discussion/64628/update-found-the-fix-and-possible-reasons-oculus-gos-will-not-connect-to-pcs-for-file-transfer
https://forums.oculusvr.com/developer/discussion/64603/anyone-have-trouble-with-oculus-go-disappearing-from-adb-devices
https://forums.oculusvr.com/developer/discussion/64603/anyone-have-trouble-with-oculus-go-disappearing-from-adb-devices
https://forum.unity.com/threads/oculus-go-not-showing-up-in-adb.530466/
https://oculusgokioskmode.tweaklab.org/
https://scriptable.com/blog/oculus-go-unity-setup-quick-start
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-device-
https://developer.oculus.com/downloads/package/oculus-adb-drivers/
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@0.0/manual/locomotion.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@0.0/manual/locomotion.html
https://developer.oculus.com/blog/easy-controller-selection/

70

Add ray cast from the hand in Unity — Oculus. (n.d.). Retrieved June 28, 2020, from

https://forums.oculusvr.com/developer/discussion/63970/add-ray-cast-from-the-hand-in-

unity

Unity’s UI System in VR | Oculus. (n.d.). Retrieved June 28, 2020, from

https://developer.oculus.com/blog/unitys-ui-system-in-vr/

Unity - Manual: Rays from the Camera. (n.d.). Retrieved June 28, 2020, from

https://docs.unity3d.com/Manual/CameraRays.html

Unity - Scripting API: Physics.Raycast. (n.d.). Retrieved June 28, 2020, from

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Unity 5.2 VR Raycast? - solved - Unity Forum. (n.d.). Retrieved June 28, 2020, from

https://forum.unity.com/threads/unity-5-2-vr-raycast-solved.361211/

Unity - Scripting API: Physics.Raycast. (n.d.). Retrieved June 28, 2020, from

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

[TIP] Detecting where the player looks at — Oculus. (n.d.). Retrieved June 28, 2020, from

https://forums.oculusvr.com/developer/discussion/4198/tip-detecting-where-the-player-

looks-at

Introduction to VR in Unity - PART 3 : TELEPORTATION - YouTube. (n.d.). Retrieved June 28,

2020, from https://www.youtube.com/watch?v=fZXKGJYri1Y&t=358s

Unity VR Tutorial - Basics of Oculus OVR Tracking - WITHOUT PREFABS - - YouTube. (n.d.).

Retrieved June 28, 2020, from https://www.youtube.com/watch?v=sNgAX0hws7Y

Oculus Quest Unity Tutorial - using raycasts to create hand pointers - YouTube. (n.d.).

Retrieved June 28, 2020, from https://www.youtube.com/watch?v=F60UIo7Y1YY

Unity VR: Oculus Touch Input Sample - YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=ozTDt0SPKjg&t=226s

How to Pass Variables Between Scripts in C# - YouTube. (n.d.). Retrieved June 28, 2020, from

https://www.youtube.com/watch?v=ck6OyNBC95c

VR Headsets Are Dying A Lonely Death. (n.d.). Retrieved June 28, 2020, from

https://www.forbes.com/sites/barrycollins/2020/05/04/vr-headsets-are-dying-a-lonely-

death/#643660ea4d95

Stop Saying Virtual Reality Is Dying. (n.d.). Retrieved June 28, 2020, from

https://www.forbes.com/sites/joeparlock/2020/05/05/stop-saying-virtual-reality-is-

dying/#817989e646e1

https://forums.oculusvr.com/developer/discussion/63970/add-ray-cast-from-the-hand-in-unity
https://forums.oculusvr.com/developer/discussion/63970/add-ray-cast-from-the-hand-in-unity
https://developer.oculus.com/blog/unitys-ui-system-in-vr/
https://docs.unity3d.com/Manual/CameraRays.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://forum.unity.com/threads/unity-5-2-vr-raycast-solved.361211/
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://forums.oculusvr.com/developer/discussion/4198/tip-detecting-where-the-player-looks-at
https://forums.oculusvr.com/developer/discussion/4198/tip-detecting-where-the-player-looks-at
https://www.youtube.com/watch?v=fZXKGJYri1Y&t=358s
https://www.youtube.com/watch?v=sNgAX0hws7Y
https://www.youtube.com/watch?v=F60UIo7Y1YY
https://www.youtube.com/watch?v=ozTDt0SPKjg&t=226s
https://www.youtube.com/watch?v=ck6OyNBC95c
https://www.forbes.com/sites/barrycollins/2020/05/04/vr-headsets-are-dying-a-lonely-death/#643660ea4d95
https://www.forbes.com/sites/barrycollins/2020/05/04/vr-headsets-are-dying-a-lonely-death/#643660ea4d95
https://www.forbes.com/sites/joeparlock/2020/05/05/stop-saying-virtual-reality-is-dying/#817989e646e1
https://www.forbes.com/sites/joeparlock/2020/05/05/stop-saying-virtual-reality-is-dying/#817989e646e1

