
LiveSNN: a new ecosystem

for HEENS architecture

A Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya

by

Josep Àngel Oltra Oltra

In partial fulfilment

of the requirements for the degree of

MASTER IN ELECTRONIC ENGINEERING

Advisor: Jordi Madrenas

Barcelona, September 2020

Title of the thesis: LiveSNN: a new ecosystem for HEENS architecture

Author: Josep Àngel Oltra

Advisor: Jordi Madrenas

Abstract

This project proposal and development of a several tools, a communication protocol and
an embedded program for giving a neural network called HEENS that it is currently
developed by the group ISSET from UPC the capability of being controlled remotely, and
to extract the neural . This will provide a faster development, user friendly tools for the
development and analysis of spiking neural networks for emulation and verification of
biological neural networks and neural models.

As such, three new pieces of software are developed called: LiveSNN protocol, which
communicates the HEENS architecture to a remote PC for Supervisory Control And Data
Acquisition (SCADA) operations, LiveSNN program, which manages the conections and
supervises the activity of the HEENS, and HEENS Toolchain Suite (HTS), which is an
upgrade of the previous synthesis and assembler tools in order to allow the
implementation of more sophisticated neural networks being easy and be capable of
optimise the assembler model of the neuron for the architecture.

With those developments, the time to generate spiking neural networks, to debug them,
and emulate them is increased in addition to the reduction of possible human errors due
to the increased automation workflow that those programs give to the end user.

1

Thanks to all the people who helped me and make my day.

「亀の甲より年の功」

(Kame no kou yori toshi no kou)

(Years know more than books)

Japanese proverb

2

Acknowledgements

Thanks to the help from Jordi Madrenas, who has supervised, give feedback and tested
the work that has been done, Diana Mata and Josep Maria Sanchez, who give feedback
on the aesthetics and the user interface of the tools, Mireya Zapata and Bernardo Vallejo
who have given feedback on the new netlist and the assembler formats.

3

Revision history and approval record

Revision Date Purpose

0 04/05/2020 Document creation

1 18/06/2020 General format

2 27/07/2020 Content review

3 23/08/2020 Compression test

Written by: Reviewed and approved by:

Date 04/05/2020 Date 02/09/2020

Name Josep Àngel Oltra Oltra Name Jordi Madrenas

Position Project Author Position Project Supervisor

4

Table of contents

1. Introduction...15

1.1. Preliminary concepts..15

1.1.1. Neural Networks..15

1.1.2. Artificial Neural Networks...17

1.1.3. Spiking Neural Networks..21

1.2. Requirements...22

1.3. Objectives..22

1.4. Organization...23

2. State of the art of SNN hardware implementations...24

2.1. TrueNorth...24

2.2. SpiNNaker..25

2.3. Loihi...26

2.4. HEENS...27

2.4.1. Bus AER..27

2.4.2. Sequencer...28

2.4.3. Processing Elements (PE)...28

2.4.3.1. Synapse and Neuron RAM (SN RAM memory).......................................29

2.4.3.2. Spike decoder (LCL RAM memory)...29

2.4.3.3. Arithmetic Logic Unit (ALU)...31

2.4.3.4. Auxiliary peripherals..31

3. Methodology / project development..32

3.1. LiveSNN protocol...32

5

3.1.1. Protocol structure selection..32

3.1.1.1. Register based protocol..32

3.1.1.2. Command based protocol...33

3.1.1.3. Summary...33

3.1.2. Protocol structure...34

3.1.3. Description of the fields..34

3.1.3.1. Transfer ID..34

3.1.3.2. DataLength field..35

3.1.3.3. Command field..35

3.1.3.4. Payload field..35

3.1.4. Table of commands...36

3.2. LiveSNN program...37

3.2.1. Selection of the program architecture..37

3.2.1.1. Bare metal...37

3.2.1.2. Real Time Operating System (RTOS)...38

3.2.1.3. Linux Operating System (Petalinux)..38

3.2.1.4. Summary...38

3.2.2. Program architecture...40

3.2.2.1. FreeRTOS...41

3.2.2.2. Context handler...41

3.2.2.3. Tasks..42

3.2.2.4. Shell..45

3.3. HEENS Toolchain Suite...46

3.3.1. Netlist V1...46

3.3.2. Assembler V1..47

3.3.3. Problems...47

6

3.4. Proposed solution: HTS...48

3.4.1. HEENS Toolchain Suite (HTS)..48

3.4.2. HEENS Neural Synthesis (HNS)..49

3.4.2.1. Configuration section...49

3.4.2.2. Netlist section..51

 It is smaller and easier to specify the value of the synapse..................................51

3.4.2.3. Parameters section...52

3.4.3. HEENS Code Assembler (HCA)..53

3.4.4. HEENS High Level Neural Synthesis (HLNS)..55

3.4.4.1. Configuration section...55

3.4.4.2. Netlist section..55

3.4.4.3. Parameters section...56

3.5. HTS design flow...57

3.5.1. HLNS design flow..57

3.5.1.1. Reading the netlist file...57

3.5.1.2. Seeking and load the chips...57

3.5.1.3. Place-out: map the synapses to chips...57

3.5.1.4. Generation of the specific netlists..57

3.5.2. HNS design flow..58

3.5.2.1. Reading the netlist file...58

3.5.2.2. Generation of the memory files and network summary............................58

3.5.3. HCA design flow..59

3.5.3.1. Reading the code..59

3.5.3.2. Load the network summary...59

3.5.3.3. Optimization process...59

3.5.3.4. Generation of the memory files and network summary............................60

7

4. Results..61

4.1. LiveSNN protocol...61

4.2. LiveSNN program...68

4.3. HEENS Toolchain Suite...70

5. Budget..72

6. Environment Impact..73

7. Conclusions and future development..74

7.1. Conclusions..74

7.2. Future work..74

8. Appendices...78

8.1. Protocol format structure..78

8.1.1. NULL...78

8.1.2. STATUS..79

8.1.3. CONFIGURATION...81

8.1.4. DESCRIPTOR...82

8.1.5. START...83

8.1.6. STOP...84

8.1.7. STEP...85

8.1.8. RESET...86

8.1.9. UPLOAD FIRMWARE..87

8.1.10. DOWNLOAD FIRMWARE...88

8.1.11. SPIKE REPORT..89

8.1.12. RASTER REPORT..90

8.1.13. OTHER PROTOCOL...91

8.1.14. ERROR..93

8.1.15. HEARTBEAT...94

8

8.1.16. GET SPIKE..96

8.2. SEND SPIKE data format...97

8.3. Example of the old netlist...98

8.4. Example of the old code...100

8.5. Example of the new high level netlist..104

8.6. Example of the new netlist..105

8.7. Example of the new code...106

9

List of Figures

Figure 1: Neuron cell diagram form [1]...15

 Figure 2: Synapse diagram between an axon and a dendrite from [14]..........................16

 Figure 3: Structure of a simple Artificial Neural Network from [12]..................................17

Figure 4: Model of a neuron from [9]..19

 Figure 5: Spiking neuron model drawn in inkscape...21

 Figure 6: TrueNorth board from [13]...24

 Figure 7: SpiNNaker IC from [4]..25

 Figure 8: Loihi silicon floorplan from [10]...26

Figure 9: Block diagram of the HEENS architecture..27

 Figure 10: Simple diagram of the Processing Element...28

 Figure 11: Neural virtualization in the processing element..30

 Figure 12: ZYNQ 7 family architecture from [11]...40

Figure 13: Task creation order, where main is the entry point of the ARMs program.......42

Figure 14: HEENS Toolchain Suite (HTS) diagram..48

 Figure 15: Communication between PC and ARMs via ethernet....................................61

 Figure 16: Frame of the “Get Descriptor” command..62

 Figure 17: Error response result...63

 Figure 18: Frame of the “Heartbeat” command...64

 Figure 19: Response of the “Heartbeat” command...65

 Figure 20: Frame of the “Get Spikes” command...66

 Figure 21: Response of the “Get Spikes” command...67

Figure 22: Setup of the test of the code deployed on the ARMs in the ZC706 with the
console and the TELNET connections open..69

10

List of Tables

Table 1: Example of activation functions..19

Table 2: Comparison between protocol schemes..33

Table 3: Frame structure of the proposed protocol..34

Table 4: List of commands that will support the first revision of the protocol....................36

Table 5: Comparison between the different approaches to program the ARM processor 38

Table 6: Fields of the context handler structure...41

Table 7: List of supported commands in the terminal...44

Table 8: Fields of a entry in the old netlist..46

Table 9: Entry format of the low level configuration..49

Table 10: Fields of the configuration section..50

Table 11: Field description of the synapse connection in the low level netlist..................51

Table 12: Field description of the parameter declaration in the low level netlist...............52

Table 13: Keywords reserved to the HCA..53

Table 14: Field description of the mnemonic instruction set for the HCA.........................54

Table 15: Field description of the synapse declaration for the high level netlist...............55

Table 16: Field description for the parameters of the neurons in high level netlist...........56

Table 17: Comparison between the code generated by the old and the new toolchain....70

Table 18: Relative difference of the code generated by the different toolchains..............70

Table 19: Budget of the project..72

Table 20: LiveSNN NULL command request frame...78

Table 21: LiveSNN STATUS command request frame..79

Table 22: LiveSNN STATUS command response frame...79

Table 23: LiveSNN status bit format..80

11

Table 24: LiveSNN CONFIGURATION command request frame....................................81

Table 25: LiveSNN CONFIGURATION command response frame..................................81

Table 26: LiveSNN DESCRIPTOR command request frame...82

Table 27: LiveSNN DESCRIPTOR command response frame..82

Table 28: LiveSNN START command request frame...83

Table 29: LiveSNN START command response frame..83

Table 30: LiveSNN STOP command request frame...84

Table 31: LiveSNN STOP command response frame..84

Table 32: LiveSNN STEP command request frame...85

Table 33: LiveSNN STEP command response frame..85

Table 34: LiveSNN RESET command request frame..86

Table 35: LiveSNN RESET command response frame..86

Table 36: LiveSNN UPLOAD FIRMWARE command request frame...............................87

Table 37: LiveSNN UPLOAD FIRMWARE command response frame.............................87

Table 38: LiveSNN DOWNLOAD FIRMWARE command request frame.........................88

Table 39: LiveSNN DOWNLOAD FIRMWARE command response frame......................88

Table 40: LiveSNN SPIKE REPORT command request frame..89

Table 41: LiveSNN SPIKE REPORT command response frame.....................................89

Table 42: LiveSNN RASTER REPORT command request frame....................................90

Table 43: LiveSNN RASTER REPORT command response frame.................................90

Table 44: LiveSNN OTHER PROTOCOL command request frame.................................91

Table 45: LiveSNN OTHER PROTOCOL command response frame..............................91

Table 46: Peripheral ID definitions...92

Table 47: LiveSNN ERROR command response frame...93

Table 48: LiveSNN HEARTBEAT command request frame...94

Table 49: LiveSNN HEARTBEAT command response frame..94

12

Table 50: LiveSNN GET SPIKE command request frame...96

Table 51: LiveSNN GET SPIKE command response frame...96

Table 52: Serialization format of the spike data for LiveSNN...97

13

Glossary

 ALU: Arithmetic Logic Unit

 CAN: Controller Area Network

 JSON: JavaScript Object Notation

 HCA: HEENS Code Assembler

 HLNS: HEENS high Level Netlist Synthesiser

 HNS: HEENS Netlist Synthesiser

 HTC: HEENS Toolchain Compiler

 HTS: HEENS Toolchain Suite

 I2C: Inter-Integrated Circuit

 LiveSNN: Live Spiking Neural Network

 LFSR: Linear Feedback Shift Register

 LSB: Least Significant Bit

 MSB: Most Significant Bit

 NN: Neural Network

 PC: Personal Computer

 PE: Processing Element

 OS: Operating System

 OSI: Open Systems Interconnection

 RLE: Run Length Encoding

 RTOS: Real Time Operating System

 SCADA: Supervisory Control And Data Acquisition

 SNN: Spiking Neural Network

 SoC: System on Chip

 TGF: Trivial Graph Format

 WIP: Work In Progress

14

1. Introduction

In this chapter, a preliminary knowledge will be given as well as the current situation
about the interface between neural networks and machines

1.1. Preliminary concepts

In recent years, the idea of emulating a neural system like our brains has been increasing
steadily due to the growth of the processing power of the machines and the birth of the
big data. In order to process this information where there are governed by complex
relationships, neural networks are a good alternative.

These networks rely on the fact that can behave as systems of neurons, and could
potentially behave as a brain. This, with techniques of machine learning, neural networks
can 'learn' patterns and make decisions even if the case presented is new for the
network.

The other important property of neural networks is that could be used as a way of brains
and network of biological neurons without the need of having an actual functional brain.

1.1.1. Neural Networks

A neural network is a collection of elements called 'neurons' as it is shown in fig [1].

15

Figure 1: Neuron cell diagram form [1]

A neuron is a cell found in animals. This type of cells in charge of sending and process
information in a fast and very controlled way. They use sodium and potassium ions in

order to convert the chemical signals into ion currents and electro-chemical potentials,
and vice-versa.

The neurons can be divided into three main parts:

 Dendrites: transforms the chemical signals into ion currents.

 Cell body: process the incoming ion currents and generates an output.

 Axon: transports this output to the input of the other neurons and transforms the
ion current into chemical signals.

In the interface between neurons and other cells where the information is passed by the
chemical signals is called synapse. The operation of one neuron is as follows:

The signals are transform in ion currents. Depending on the type of the chemical used
(also called neurotransmitter), the current is increased or decreased. This process is
shown in fig. [2].

Then, all the ion currents converge in the cell body and accumulate, resulting a voltage
called neuron potential. This voltage can rise until a threshold is reached, where the ion

16

Figure 2: Synapse diagram between an axon and a dendrite from [14]

channels start to generate a strong output signal and is propagated via to the axon. At the
end of the axon, there are the synapses to the other cells.

There are several types of neural networks, but in this document the most common ones
will be discussed.

The proposed system tries to copy the structure of the biological neural networks in a non
biological implementation. The benefits are in computation speed and simulations of
models related to neurons. As it is an artificial, it can be configured as the application
needs with a high response. There are several implementations of neural networks, due
to the range of applications that they try to solve. In the following points some examples
are explained.

1.1.2. Artificial Neural Networks

In this type of networks, the neuron is a mathematical function that has as many inputs as
a synapses, and an output that is transmitted to other neurons.

Figure [3] shows an example of artificial neural network. It consists on an Input layer,
whose neurons contain the input information. Then the information is passed to the
hidden layers 1 and 2 for further processing. Those layers are called hidden because the
neurons are internal, i.e., not connected to the input or the output, so they are connected

17

Figure 3: Structure of a simple Artificial Neural Network from
[12]

to other neurons. Finally the data is sent to the output neurons in order to produce the
result from the neural network.

18

The neuron is modelled as shown in Fig. [4]:

It consists on input connections that are multiplied by some weights, and sum all the
values and passed into an activation function.

Typically, the synapses are represented as a matrix. This matrix contains all the weights
for all the synapses of each neuron on a given layer. This representation is suitable to run
neural networks with processors that work with matrices, like GPUs.

The activation functions that are used on the neural network are well behaved and has a
very easy to compute derivative. This is important to be able to teach the network to do a
task. The commonly used functions are:

This type of neural networks is used in all situations, and in conjunction with other types
of neural networks. One example is the use on convolutional neural networks (CNN) as
the last processing step on the data, as it is used as a classifier layer to sort the different
features, like faces, traffic signals, that the CNN have extracted from the image.

19

Function Expression Derivative

Logistic f (x)=
1

1+ex f' (x)=f (x) (1−f (x))

Hyperbolic tangent f (x)=tanh (x) f' (x)=1− f 2 (x)

Rectified Linear Unit (ReLU) f (x)=max (0,ax) f' (x)={a, if x>0
0, otherwise }

Table 1: Example of activation functions

Figure 4: Model of a neuron from [9]

In addition, each layer can be viewed as a vector space, and the all the weights from one
layer to the next layer as a linear map. Then, the idea of neural networks is to transform
the input vector space and group the vectors following a criteria, and then the output layer
needs to classify the grouped values. So, for each hidden layer it is added, the neural
network is more capable to sort the data and facilitates the training process.

20

1.1.3. Spiking Neural Networks

This type of neural network is the most similar network that emulates a biological network.
It works via spikes, like the real neurons. Each neuron contains a model to transform
these spikes into analog information that is used to generate the next spike.

The spike represents a neuron transmitting a signal like the biological counterpart. The
neuron input spikes are accumulated increasing the membrane potential until it surpasses
a threshold. Then an output spike is generated and propagated. An example is as shown
in figure [5]:

The behaviour of the neuron depends on the model that it is loaded into each neuron. For
example, a simple model is the “Integrate and Fire” model, where the spikes add or
subtract a given amount of potential until it reaches the threshold potential. Then a spike
is generated and transmitted to the neural network.

This type of neural network is the most similar to a biological one, where the information
is encoded in a impulse-frequency basis, mimicking the biological counterpart. The utility
of those types of neural networks are for research and emulation of biological systems,
due to their similarities, but recently, there have been several attempts to use them in
real-world applications.

One example of implementation of this type of neural network is the HEENS architecture,
which it is being developed at the Universitat Politècnica de Catalunya.

21

Integrate+
fire

Spike

Refractory
period

Figure 5: Spiking neuron model drawn in
inkscape

1.2. Requirements

The HEENS architecture is divided into several subprojects and tools to generate the
required files to do a simulation. So the requirements to mitigate time consuming efforts
are:

 A protocol that needs to be able to exchange information from and to the HEENS

 A software that can run in embedded processors to control the HEENS

 Back compatibility as much as possible with the older tools.

1.3. Objectives

This project tries to accelerate and develop the infrastructure required to operate the
HEENS in a more user friendly, yet with a high performance. So the objectives are:

 Develop a communication protocol that will transmit information between the
HEENS and the PC via remote access, with a modular structure for quick
upgrades that will be appearing.

 Generate a program that take advantage of the ZYNQ Z706 embedded ARM
processor units to be able to communicate with the protocol and the HEENS, with
analytic capabilities and remote control of the architecture, that in the future will be
able to upgrade the system.

 Enhance existing tools to be modular, efficient and easy to use, without reducing
the existing capabilities. In addition, automate and optimise (when enabled) the
code to be executed. Those tools will be able to be cross -platform.

22

1.4. Organization

This project is divided in three main sections:

1. Define the protocol scheme, which will be set some requirements on the
implementation of the code in the ARMs, and specifically the way of handling the
messages.

2. Implement the code on the ARMs, where most of the time will be consumed by
the debugging and validating the code.

3. Generate the second generation of the toolchain, that will have the same
procedure as the point 2.

23

2. State of the art of SNN hardware implementations

Nowadays, there are different implementations done by different entities like IBM, the
university of Manchester,etc. Those implementations are have it’s own characteristics in
order to test different approaches to how to create a SNN in silicon. So, among all the
different implementations, four of them will be explored:

• TrueNorth from DARPA and IBM

• SpiNNaker from University of Manchester

• Loihi from Intel

• HEENS from Universitat Politècnica de Catalunya

2.1. TrueNorth

This neural network is designed by DARPA[2] and IBM[3]. It is a chip with a 4096 cores
with a total neuron emulation of 1 million neurons and 256 million synapses. It claims to
be more efficient and faster due to they use a custom architecture whereas the traditional
Von Neumann architecture. A picture of the TrueNorth is shown in the Fig. [6].

24

Figure 6: TrueNorth board from [13]

2.2. SpiNNaker

This neural network is designed by School of Computer Science at the University of
Manchester in UK[4]. It is build in a chip and it has 16 cores to preform the execution on
the neural network, 1 for task management, and 1 for fault or backup processor, giving a
total of 18 cores. This type of processing emulates in software the neurons in the spiking
neural network. It has been scaled up a large SNN unit with 518.400 SpiNNaker
processors. The layout of the SpiNNaker is shown in the Fig. [7].

25

Figure 7: SpiNNaker IC from [4]

2.3. Loihi

This neural network is designed by Intel. It is a custom neuromorphic core with the
learning process included in the core itself[5]. It is a 128 neuromorphic cores with three
x86 processors in order to monitor and configure the neural network. It is divided into
bundles of spikes, that then are passed through a tree of neurons. This makes this neural
network to have a reduce interconnect between neurons, and a careful planning is
needed in order to take advantage of this architecture. A layout of the Loihi is shown in
the Fig. [8].

26

Figure 8: Loihi silicon floorplan from [10]

2.4. HEENS

As the world of neural networks advances, there are necessities in the development on
more sophisticated architectures. In the niche of the spiking neural networks, the main
developments are on software and hardware implementations for quick verification and
analysis of the biological neural networks and neurons. The HEENS architecture is a
hardware implementation of a spiking neural network. It is deployed on System on Chip of
by the Xilinx manufacturer.

HEENS is a spiking neural network implemented by the ISSET research group of the
UPC. It is implemented in VHDL and can be deployed in FPGAs and simulators like
QuestaSim. This neural network has to work properly a binary file that contains the
neuron model to be executed and the binary files containing the synapses. It is divided
into 2 main blocks called “sequencer” and “Processing Element array” (PE array). A block
diagram is shown in Fig. [9].

2.4.1. Bus AER

This bus is used to interconnect different boards that implement the HEENS architecture.
As such, it moves the spike information between boards. These spikes are called global
spikes, and uses the ID number of the HEENS to sort these spikes.

27

Figure 9: Block diagram of the HEENS architecture

PE matrix

S
e
q
u
e
n
ce

r PE

PEPE

BUS AER

PE

2.4.2. Sequencer

The sequencer is the part that executes the neuron model and controls in the PEs. It
consists on a control unit, with a memory that contains the instructions of the model and
several register and memory cells to implement several functions, such as:

This bus is used to interconnect different boards that implement the HEENS architecture.
As such, it moves the spike information between boards. These spikes are called global
spikes, and uses the ID number of the board to sort these spikes.

• Counter to have value about the current iteration of a loop

• Stack LIFO memory for storing the stack pointers

• Instruction memory witch contains the model and common data values that are
shared among all the PEs.

Also, it contains a bus that connects the sequencer to the PE array, which it enables to
share the same information with all the PEs. In addition to that, the sequencer contains a
pipeline which increases the performance of the neural network.

2.4.3. Processing Elements (PE)

The Processing Element (PE) is the distributed part of the HEENS. It consist on a
dedicated Arithmetic Logic Unit (ALU) to execute the spiking model, and a routing logic in
order to decode the spikes form the network. A block diagram of the PEis shown in Fig.
[10]:

28

Figure 10: Simple diagram of the Processing
Element

2.4.3.1. Synapse and Neuron RAM (SN RAM memory)

This memory is used to store the synaptic and neuronal parameters. It is used as a
distributed memory for the PE, which can read specific data related to the instructions in
the sequencer. It contains information like synaptical weight, initial seeds for the pseudo
random generators, etc.

2.4.3.2. Spike decoder (LCL RAM memory)

The spike decoder is a circuit that decodes the incoming spike into an address that the
model can access. This is implemented via memories.

The PEs are arranged into a matrix like format, where it contains r rows and c columns.
As the memories are normally bigger than the PEs, virtualization layers are added in
order to increase the effective number of neurons. So, the neurons with a given row and
column are processed in the same PE, in order of the virtual layer number assigned to
them. With this, the effective number of neurons are:

N=R·C·V (1)

Where:

• R is the number of rows of the PE array.

• C is the number of columns of the PE array.

• V is the number of virtual layers that a PE can execute.

29

This can be viewed graphically as shown in Fig. [11]:

So, with this, if the SNN is desired to be increased, more area can be dedicated to the
PEs to increase the number of PEs, and more time can be spent in order to execute more
neurons per PE.

The incoming spike is a number that codifies the spike into 3 parts:

• The virtual layer of the destination neuron.

• The column on the PE array of the destination neuron.

• The row on the PE array of the destination neuron.

This codification as a number and as a an array gives the connexion to the address to
store the spike into the memory. If an spike has been produced, it will be stored in the
destination PE array memory, in the following address A:

A=c+R·(r+V·v) (2)

For spikes that come from external sources, like other chips with the HEENS, there is a
dedicated memory to translate the id from the current board alongside the spike
information in order to route the spike in the correct destination neuron.

30

Figure 11: Neural virtualization in the
processing element

This information is stored in the LCL-RAM memory, where the synapse number is stored
in the address corresponding to the position of the source neuron.

2.4.3.3. Arithmetic Logic Unit (ALU)

The ALU is a circuit that can the arithmetic and logic operations. It calculates 16-bit
operations as it has good trade-off between area and precision.

2.4.3.4. Auxiliary peripherals

The PE also contains two register banks of 8 registers each one for intermediate variable
storage and modules that help to accelerate certain operations as well as generating
useful patterns.

The pattern generator is a Linear Feedback Shift Register (LFSR). This is a series of flip-
flops that are connected in a daisy chain configuration with some linear operation with
the previous state. Moreover, it has 16 registers divided into 2 banks. This is useful in
situations like storing the state when a function is called.

31

3. Methodology / project development

This project is called Live Spiking Neural Network (LiveSNN). It is called that way
because it will give the HEENS SNN the capability of remote access for SCADA, the way
it will communicate with the embedded ARM processors and the code that will be hable to
understand this new protocol. It will has three phases:

 Develop of the LiveSNN protocol

 Develop the programs running on the ARM’s processors (LiveSNN program)

 Develop advanced toolchain suites for the HEENS architecture

3.1. LiveSNN protocol

The neural network needs to communicate with a remote computer to supervise and
control the activity of the HEENS processor. As it is a neural network processor, the
protocol needs to be designed into the needs of the HEENS, as well as allowing bridge
communication between the ARM processor and another electronic devices like sensors,
memories, etc, for quick diagnosis and full supervision of the system.

3.1.1. Protocol structure selection

There are different ways to implement the LiveSNN protocol.

3.1.1.1. Register based protocol

This type of protocol scheme uses write and read memory in order to transmit
information. It consist on the following sections:

• Address to be read from or written to.

• Read/Write identifier (control bit).

• Data stream

It is very easy to implement in hardware and software, and usually the control bit is
combined with another field, like an identification number, in order to have more devices
sharing the same bus. This also requires almost no logic at all and it is pretty fast due to
it’s simplicity.

A few examples of buses using this type of commands are Controller Area Network
(CAN), Inter-Integrated Circuit (I2C), etc.

32

3.1.1.2. Command based protocol

This type of protocols has the flexibility to convey actions in a part of the frame. These
actions are usually called commands. Each command executes the action coded in the
command bytes will the help of the optional arguments. This achieves a good
development time thanks to executing different things in separate messages with the
penalty of having extra logic to decode the frames.

This type of protocol is a superset of the Register based one, due to the fact that it is
possible to implement the commands that the Register based protocol have.

3.1.1.3. Summary

The protocol will have an identifier field in order to be able to distinguish among the
different neural networks. If c is the number of bytes that the command field has, the
following table is build:

So, the format chosen is the command based, which will encode different actions in a
small, compact form.

33

Register based Command based

Frame overhead 2 2

Number of commands 2 256c

Programming effort Simple Complex

Table 2: Comparison between protocol schemes

3.1.2. Protocol structure

This protocol needs to interact with the SNN in different ways, in a command-based
protocol. It has different commands to manage the several functions in an efficient way.
All the fields are stored in big endian (the most significant byte is the first, whereas the
least significant byte is last). The message contains metadata in order to send the
information. The messages have the following format:

An error detection algorithm is not included because this protocol will be in the session
layer in the Open System Interconnection (OSI) model. So, all the problems relating with
data routing, and the data integrity are handled by the other layers. In case of the
implementation on the ZYNQ SoC, the LiveSNN protocol will use TCI/IP ethernet
communication.

The commands are explained in Annex 8.1.

3.1.3. Description of the fields

In this section, the different fields that the protocol implements are explained.

3.1.3.1. Transfer ID

It is a message identifier in order to know the arrival of the messages. It is also used as a
error checking due to the fact that this number always increments by one (until it
overflows). As such, if the transferID does not coincide with the next one, an error is
raised. In case that the number is bigger than 255, it simply wraps around and continues
from 0. In case of using TCP/IP it is redundant.

34

Byte Name Description

0 TransferID Identification of the frame

1 - 4 DataLength Length of the frame

5 Command Action to be executed

6 - (n-1) Payload Data related to the command

Table 3: Frame structure of the proposed protocol

3.1.3.2. DataLength field

This field holds the length of the whole frame, which it is used to pre-allocate a buffer for
storing the frame. It is counted in bytes, and the possible valid range is between 6 and 232

– 1 bytes. If this value is less than 6, an error is raised as a bad frame has been read.
The maximum value is the theoretical upper limit, and depending on the physical layers
the real upper limit will be much lower.

3.1.3.3. Command field

This byte encodes the action to be executed to the neural network. Depending of the
value, the ARM processor needs to perform an action on the HEENS processor, or
perform an action on itself, like rebooting, or just forward the payload into another
physical media in order to interact with the environment and get information related to the
system. Those actions are classified in 128 values. The MSB is reserved for the protocol,
and it shows if the message has been processed. This makes the message self contain,
where within itself the protocol knows in every moment if a message is a request (MSB =
0) or a response (MSB = 1).

3.1.3.4. Payload field

Those bytes contain the information carried by the protocol specified by the command. It
could be 0 or the entire firmware of the system running on the HEENS

35

3.1.4. Table of commands

The commands are encoded in one byte, so as mention before, the range is 256 different
commands. As the MSB is for detecting if the frame is a request or a response, the
effective number of commands are 128. So, the following commands are proposed in
order to have control, with room for implementing extra functionalities.

36

Value Command Description

0x00 NULL Empty message

0x01 STATUS Sends the current status

0x02 CONFIGURATION Sends the current configuration

0x03 DESCRIPTOR Sends the descriptor

0x04 START Starts the Neural Network (NN)

0x05 STOP Stops the NN

0x06 STEP Executes n steps of the NN

0x07 RESET Resets the NN

0x08 UPLOAD FIRMWARE Uploads a new firmware to the NN

0x09 DOWNLOAD FIRMWARE Downloads the current firmware of the NN

0x0A SPIKE REPORT Downloads the spike report of the NN

0x0B RASTER REPORT Downloads the raster report of the NN

0x0C OTHER PROTOCOL Send a communication frame to the ports

0x0D ERROR An error has occurred

0x0E HEARTBEAT Sends a heart beat signal to test the com.

0x0F GET SPIKE Gets the new spike that has been generated

0x10 - 0x7F Reserved Reserved for future revisions

Table 4: List of commands that will support the first revision of the protocol

3.2. LiveSNN program

The ZYNQ is a family of System On Chip (SoC) where it contains 2 ARM processor units
with a high preformance FPGA, where is capable of designing hardware accelerators to
help the ARMS and hardware designs where the ARMS can be used as a monitor and
control for the hardware.

As explained before, the HEENS in the ZYNQ has several ARM Cortex processors. With
those cores, a diagnostic and SCADA control could be implemented in order to assist the
neural network. This logic needs to solve several challenges due to the necessities of the
architecture. Those needs are:

 Monitor the HEENS processors

 Update memory banks of the HEENS architecture for updates, debugging, etc

 Supervise and control the architecture

 Bring connectivity from/to the HEENS to a remote computer

As such, and to maintain compatibility between the ZYNQ and the ZYNQ ultrascale+, two
cores are used to implement the software.

3.2.1. Selection of the program architecture

The ZYNQ can be programmed in different modes: Linux OS, Real Time OS and bare
metal. Each framework have its own characteristics

3.2.1.1. Bare metal

This framework is the most simple one. It is programmed on C, C++ and assembler. In
this framework, the code is deterministic because the program follows a sequential flow. It
also may contain interrupts, where the sequential execution is broken in order to generate
a response from a external signal, that is usually is high priority. For example, in Real
Time Operating Systems uses a internal timer called SysTick where it triggers an
interruption when certain time has passed in order to execute the scheluder, a piece of
code that manages the current active tasks.

37

3.2.1.2. Real Time Operating System (RTOS)

This type of operating system is focused on having two main characteristics:

• Give processor the capability to execute multiple threads with an scheluder.

• The threads need to be deterministic in time, in order to ensure that the critical
tasks are being executed in the required time slots.

One example of this type of RTOS is FreeRTOS[6]. This RTOS is very small, optimized
for embedded projects. Some key aspects of this is that it is free and open source, giving
this RTOS an advantage among the rest with the huge forum and documentation pages.

3.2.1.3. Linux Operating System (Petalinux)

This type of OS is focused on having the same user experience as a normal Linux distro
as much as possible taking into account the limitations of the ZYNQ SoC. Petalinux[7] is
the OS that the company Xilinx have adapted to their products.

3.2.1.4. Summary

By examining the characteristics of each solution for the code in the ARM, the following
table is implemented:

38

Parameter Petalinux FreeRTOS Baremetal

Memory overhead Biggest Medium None

Time overhead Biggest Small None

Developing time Shortest Normal Longest

Code already imp. (libs) Most Some Little

Memory and Execution time determinism None Controlled Yes

Speed execution Slowest Normal Fastest

Programming languages All C++/C/ASM C++/C/ASM

Table 5: Comparison between the different approaches to program the ARM
processor

For the characteristics of this project, the FreeRTOS is chosen. It is true that Petalinux
has a lot of things readily available, but it uses both cores. Also, it has the biggest penalty
on the memory and time overhead, due to all the code that it is being executed. The
ZYNQ SoC has two ARM cores, so the second one will be dedicated to the HEENS SNN
in order to monitor and transfer information between the core 0 and core 1. As the code
needs to be fast and it needs to be fully deterministic, the baremetal framework is chosen.

39

3.2.2. Program architecture

As the ZYNQ has two cores, the tasks will be split by role. The different tasks between
the control of the HEENS and the communications, giving an extra layer of security.

The Fig. [12] shows the diagram of the ZYNQ 7 family with the two ARM cortex A9.

The master core is in charge of the communications. As mentioned before, this core will
be implementing the FreeRTOS as working framework. Also, as mentioned before, the
slave core is in charge to supervise and control the neural network. As such, it will be
programmed in baremetal framework, where there is no operating system nor any
compatibility layer between the code and the core itself. This splits the control of the
neural network by using specific methods and registers, giving the extra security
mentioned before.

With this, the software architecture to be developed follows an asymmetric architecture.

40

Figure 12: ZYNQ 7 family architecture from [11]

3.2.2.1. FreeRTOS

As indicated before, the RTOS used is FreeRTOS[6] due to characteristics. It is a small,
fully featured, low level and free RTOS. The communication program doesn't need a lot of
features due to the low level processing that needs to be done. As such, the only RTOS
elements that will be used are mutex, semaphores and tasks to be able to give service to
the different communication protocols that will be handled.

3.2.2.2. Context handler

The context handler is a data structure with pointers to send and receive methods that is
commonly used for the different tasks of the main core. The important thing of this
structure is that it generalizes the communication ports for STD_IN and STD_OUT for
code reuse, as the context handler has the information of where the information is coming
from and where is leaving to. This produces a layer of isolation between two tasks that
communicates to the external world.

A clear example is the shell class. It contains the methods to use a basic shell in some
communication port. The TELNET and the serial port uses this class. So, without the
context handler, the information is shared among all the instances, and the information of
the TELNET session leaks into the serial. That means that the things that are written in
the TELNET is also shown in the serial. The problem is also valid in the other way
around. The serial can leak information to the TELNET shell.

With context handler, the output and input functions for the data are defined in the
context, so the input and output comes with the context, so there is no data leak from
telnet to the serial port, because to do that the data must go from one context handler to
the other, and this is very difficult, due to the fact that the context handlers are used and
instantiated independently in different classes.

41

Name Type Describe

word string Stores a word from the command stored in str

str string Stores the command that has been received

lastStr string Stores the previous command that has been executed

ix uint16_t Current position of the word in str

handler int32_t ID for the send and receive methods

Sendfnc sendfn_t Send function in order to send the responses.

Table 6: Fields of the context handler structure

3.2.2.3. Tasks

The program needs to handle several scenarios. It is divided in several tasks with the
mission to handle each scenario. In addition, a logging system is developed in order to
monitor the state of the tasks form the main core and shared to the slave core. With this
approach, the programmer will have full state information with only listening one core.

In order to have uniformity between the different tasks, a set of interfaces has been
developed in order to keep at minimum code duplication and generalize and add layers of
abstraction.

The ITask interface has the following methods to be implemented:

• InitTask(void *p): This function will be called when the task is started

• Task(void *p): This function will be called periodically. If the function returns a
number different to 0, the task will be finished.

• EndTask(void *p): This function will be called when the task is finished

As shown in the Fig. [13], the main block is the entry point of the program, and it creates
three different tasks:

• The KeepAlive task, where checks the integrity of the ARM processors

• The Console task: which manages the serial console for debugging

• The Server task: where manages the ethernet connections and spawns the tasks
Telnet and LiveSNN tasks to manage the connections from the different ports.

42

Figure 13: Task creation order, where main is the entry point of the ARMs program

Main

Keep
Alive Console Server

TELNET LiveSNN

3.2.2.3.1. KeepAlive

This task is in charge of monitoring the SoC and make sure that the cores and the
HEENS architecture do not stall or have any problem that will lead to the stall of the
system. In order to address this problem, the ARMs watchdog is enabled and giving the
running signal for the cores and checks the HEENS state if the sequencer has stopped.
In addition, for visual inspection, a blinking led is programmed.

In case of partial stall of a core, the watchdog resets the stalled core and notifies the
system into recovery mode, where the other core helps to configure the stalled core. In
case of the sequencer is stalled, the slave core starts to get the sequencer info and
executes a sequencer reset. Then it loads the contents of the sequencer to resume
normal operation.

If any error occurs, it is logged into the terminal and in a file in a non volatile storage
system like an SD card or USB for further diagnostics.

43

3.2.2.3.2. Console

The mission of this task is to have a low level interaction level between the ZYNQ with a
PC via a serial connection. It manages the commands described in the shell section. It
also outputs the log data in the command to be able to follow the program execution and
have basic diagnostic tools in real time.

The implemented commands are:

The only commands that require arguments are the read and write operations.

• For the read, the address and then the length (only for the rm) is required.

• For the write is the same as the read, with the last argument being the data to be
written.

44

Command Name Description

deviceInfo Device Information Gets the device descriptor

gsd Generate Spike Data Gets the spike data buffer and decodes it

help Help Prints all the available commands

ipconf IP Configuration Gets the IP configuration

rb Read Byte Read 1 byte in the RAM memory of the ARMs

reboot Reboot Performs a full system reset

rm Read Memory Read memory with the specified length

tasks Tasks Print the Task status

tasksInfo Tasks Information Show current task info

ver Version Print software version

wm Write Memory Write memory

ww Write Word Write 1 word in the memory

Table 7: List of supported commands in the terminal

3.2.2.3.3. Server

This task is the most complex of all. It is in charge of setting up the Ethernet stack,
manage the connections and sort them between the different ports. In addition, it spawns
the TELNET and LiveSNN tasks when a successful connection is detected. As the
current configuration, only one connection per port is allowed.

The Ethernet stack is provided by the Lightweight Internet Protocol (LwIP) library
provided by Xilinx, but minor bugs have been detected that do not compromise the
execution of the task.

3.2.2.3.4. TELNET

This task allows the remote access of the console via TELNET protocol. So, the access
of the console does not need to be in physical proximity, the only thing is to have Ethernet
connection to the SoC. The only drawback of this method is the startup sequence of the
processors is not shown due to the Ethernet initialization procedure. The used port is 23.

3.2.2.3.5. LiveSNN

This task manages all the LiveSNN protocol. It has the protocol built in and generalized
for any physical media. As such, with the proper context instance, the protocol could be
used. The used port is the 8080.

3.2.2.4. Shell

For an easy debug of the cores and the neural network, a lightweight shell is programmed
in the software. This shell gives low level control for the ARMs and the neural network.

This shell is context-free, so multiple users can access the shells and work without any
information being leaked. The tasks automatically use a mutex in order to protect the
different commands that the different users could send.

45

3.3. HEENS Toolchain Suite

In this chapter, the toolchain developed the HEENS architecture is explained. In the
previous version, a common python file contains the properties of the HEENS spiking
processor, a assembly code which contains the neuron model, a netlist file containing the
synapses in a grid based identification and a CSV with the neural parameters.

3.3.1. Netlist V1

The previous version of the netlist synthesis reads two input files, a netlist file and a
memory CSV data descriptor.

The netlist contains every synapse of the network. Each row in the netlist is a synapse
entry. It specifies everything that is related to that synapse. It is grouped into 4 groups,
arranged in a continuous line separated by commas, like an CSV file:

0, 1, 1, 1, 1, 0, 1, 1, 1, 4131127296

1, 0, 1, 1, 0, 2, 0, 1, 2, 4131127296

Each entry has the following format:

The output of the netlisting process takes the synapses and generates the data for the
LCL-RAM memories, which preform the input spike decoding.

The other file used in the netlist is a CSV file, where is a memory dump to be loaded in
the SN-RAM memories, that contain the local synaptic and neural parameters.

A file example is shown in Annex 8.3.

46

Type Position Format Example

Source neuron 0 - 3 i, v, r, c 1, 0, 1, 1

Dest. neuron 4 - 7 i, v, r, c 0, 2, 0, 1

Synapse number 8 s 2

R0 and R1 data 9 data 4131127296

Table 8: Fields of a entry in the old netlist

3.3.2. Assembler V1

The assembler used only compiles the code with a given instruction set and generates
the compiled version. This process is done in a two step process, where the first step
detects the labels, and the second step translates the instruction. In addition, it uses the
parameter file to configure the assembler to work properly with the current configuration.
The instruction set is described in a CSV file, which it allows to add, modify and remove
the instructions in a fast way.

NOP,0b000000,0

LDALL,0b000001,1

A file example is shown in Annex 8.4.

3.3.3. Problems

The problem arises on the description of the neural network, that as in this process has
as an input 3 different files. Those files contain information that depends on the others. In
addition, the assembler code also needs the information of the network in order to
operate correctly. So, depending on the application, if a modification is desired, it is
probable that a parameter in one of the files has not been updated.

In addition, the debug of the code and/or the network is obfuscated by the fragmented
information of the several files used.

47

3.4. Proposed solution: HTS

The problem is the definition of the assembly code and the netlist. The proposal is a
redefinition of both files in order to synthesize the same information in a less, more
general format. With this, tree toolchains have been develop: the HEENS Code
Assembler (HCA), HEENS Neural Synthesis (HNS) and the HEENS high Level Neural
Synthesis (HLNS). All the files support comments via the token '\#' and numbering is
supported for negative and positive integers, with base 10 and base 16, with the prefix
'0x'.

3.4.1. HEENS Toolchain Suite (HTS)

This tool is the basic compiler for the HEENS architecture. As input, a netlist descriptor
and an assembly code of the model is used. Then, it generates all the memory
information for the system. Keywords are used in the assembly to determine all the data
related to the network. The toolset organization is shown in Fig. [14].

The HTS process starts with the HEENS Neural Synthesis (HNS), which takes the netlist
of the neural network to be synthetized and generates the memory dumps in order to be
able to simulate. Then generates tcl scripts to load this information into the vivado project
and finally generates a summary for the HEENS Code Assembler (HCA) specifying the
necessary info to compile the assembly code into a binary file.

The HEENS High Level Netlist Synthesis (HLNS) is an add-on feature for high-level
synthesis that will be explained later.

48

Figure 14: HEENS Toolchain Suite (HTS) diagram

HLNS

HNS HCA

Netlist Code Mnemonic

Board
Configs

Synaptic
binary files

Model
binary

HTS

3.4.2. HEENS Neural Synthesis (HNS)

The new proposed format for the netlisting has the same information as the three files. As
such, a marker is introduced to differentiate the parts. It is divided into 3 main sections:

 @Config: several rows with the characteristics of the board that is being
synthesized with.

 @Netlist: the netlist of the network, with similar structure as the previous version.

 @Params: the parameters that will be inserted into the SN-RAM, with meta
information for the HCA tool.

Each section contains the related data in each row. Those rows are called entries.

3.4.2.1. Configuration section

This section of the netlist defines the parameters of the architecture version for the neural
network to be deployed. It specifies all memories and registers. Each entry has the
following format:

49

Type Example

Variable name ID

Separator =

Variable data 2

Table 9: Entry format of the low level configuration

With this format, it is easy to check and edit the configuration of the architecture to be
deployed. All the parameters needed to be specified are:

50

Field Example Description

Id Id = 0 Id of the chip to be synthesized

Rows Rows = 4 Number of rows of the PE

Cols Cols = 4 Number of columns of the PE

VLay VLay = 8 Number of virtual layers

RegS RegS = 16 Register size of the PE in bits

RegN RegN = 8 Number of registers in the PE

SneS SneS = 32 Size of the SN-RAM in bits

SneA SneA = 1024 Address depth of the SN-RAM

LclS LclS = 7 Size of the LCL-RAM in bits

LclA LclA = 128 Address depth of the LCL-RAM

InsS InsS = 16 Size of the INS-RAM in bits

InsA InsA = 1024 Address depth of the INS-RAM

DlyS DlyS = 5 Size of the DLY-RAM in bits

DlyA DlyA = 256 Address depth of the DLY-RAM

CnvS CnvS = 7 Size of the CNV-RAM in bits

CnvA CnvA = 2048 Address depth of the CNV-RAM

CodS CodS = 5 Size of the COD-RAM in bits

CodA CodA = 512 Address depth of the COD-RAM

Table 10: Fields of the configuration section

3.4.2.2. Netlist section

The new netlist shares the same definition as the old one, but with two modifications. The
first one is that every chip will have it's own netlist file, so the chip ID of the destination
neuron is irrelevant due to the fact that the chip id is defined in the @Config section.

The other one is the data part, which holds the synapse. In the old format, the data is
merged into a 32bit numeric, containing in the upper half word the R1 value and the lower
part the R0 value. In the current models, the synaptic weight is stored in the R1 register,
giving a difficult number to deal with. In the proposed format, the register values are kept
separated into two fields. The first one contains the R0 register value, where the second
one contains the R1 register value. With this, both values are stored in a friendly format,
with the capability to use positive and negative numbers, without the fear to override any
value in the other register.

As an example, a entry will be:

1, 0, 1, 1, 2, 0, 1, 2, 0, -2500

It is smaller and easier to specify the value of the synapse.

51

Type Position Format Example

Source neuron 0 - 3 i, v, r, c 1, 0, 1, 1

Dest. neuron 4 - 6 v, r, c 2, 0, 1

Synapse number 7 s 2

R0 and R1 data 8 - 9 data 0, -2500

Table 11: Field description of the synapse connection in the low level netlist

3.4.2.3. Parameters section

In the last section of the netlist, it appears the parameter definition. The format is simple,
it only contains several instances of parameters. Each instance contains a header and a
data dump.

The header always starts with a '.' marker, giving a easy way of detecting the start of
each instance, followed by the metadata separated by '/'.

With this, a possible example of a header will be:

.0x3E3/16/NEUR

Then, the data to be loaded will be represented in a CSV format, where:

 The number of columns shall match with the number of PEs in the codification of
the SneS parameter, with the PEs in ascending order (if size is 32bit, codification
of 16bit in a 4x4 array, a list of 32 16-bit numbers is mandatory)

 Each row specifies the address offset, starting with the specified address in the
header.

In this way, the user has control on the data on the registers and the address allocation,
with the columns giving the PE number and the row giving the offset of the base address.

There are some exceptions for the name of the variables, which are data that generates
according common parameters. The excluded words are:

• The mnemonics of the instructions

• NVL: stores the Number of Virtual Layers used

• S_X: stores the number of Synapses of the layer X

A file example is shown in Annex 8.6.

52

Field Example Description

Address 0x3E3 Address to store the data

Encoding 16 Expected data size

Varname NEUR Associated variable name

Table 12: Field description of the parameter declaration in the low level netlist

3.4.3. HEENS Code Assembler (HCA)

The HEENS Code Assembler is specifically design from scratch with the same
specifications that the previous one has, with some extra functionalities:

 Dynamic instruction set, which it is specified in a CSV file.

 Macro instructions to be defined also in the CSV to be as flexible as possible.

 Control on the memory placement of the code and variables.

 Optimization levels for efficiency enhancement.

 Virtual variables specified in the netlist.

 Keywords that contain specific data about the neural network.

In order to accomplish those goals, keywords and directives are added to help some
functionalities. The directives are the text that starts with a '.'.

53

Keyword Example Description

Vx LOOPV V0 Gives the size of the virtual layer x

NVL LOOP NVL Gives the effective virtual layers

.org .org 0x10 Sets the origin to start placing the data or code

.data .data 0x04 Sets the current address for data

.code .code Sets the current address for code

Table 13: Keywords reserved to the HCA

The instruction set is defined in an external CSV file, with 4 elements per row. The
codification is as follows:

As an example, a entry will be:

LOOPV, 0b011101, 0, "LDALL \$0; LOOPV"

For the macros, the parameters given with the prefix $ and the position of the argument to
be used, starting with 0. The code of the macro is the assembly code. This code is
separated by “;”, that denotes a new line. So, if in the assmebler the following line
appears:

LOOPV 5

the tool replaces the code with:

LDALL 5

LOOPV

In this way, the compiler has the ability to adapt to the instruction set, and adapt to the
newer architectures. The code contains the directives for allocating all the data and
instructions for the sequencer RAM. Then, the program can use labels to generate
subroutines and jumps to create loops. With those 2 files, and the summary from the HNS
the HCA generates the bin file for the sequencer.

A file example is shown in Annex 8.7.

54

Function Example Description

Mnemonic LOOPV Instruction name

Encoding 0b011101 Instruction code

Instruction class 0 Argument class for encoding

Macro expansion "LDALL \$0; LOOPV" Alternate use of the mnemonic

Table 14: Field description of the mnemonic instruction set for the HCA

3.4.4. HEENS High Level Neural Synthesis (HLNS)

The HEENS High Level Neural Synthesis is a intermediate tool to generate netlist for the
HNS in a user friendly format. The drawbacks of the netlist required for the HNS to work
is to edit a given neural network. If it is big enough, the file is hard to work with. So, this
tool transforms a easier, more general netlist to the format for the HNS. It also contains
the same sections as the HNS, but the idea is to have a unique netlist that is easy to
generate and work with.

3.4.4.1. Configuration section

In this section, the only thing to have is the names of the chips that will be used, ordered
by chip id. This name is the same as a set of JavaScript Obejct Notation (JSON) files with
the description of the architectures.

3.4.4.2. Netlist section

The netlist is greatly simplified in terms of parameters required. As the neural network
only needs to know the synapse to synthesize into the chips, the entry only needs to
know the id of the source neuron, the id of the destination neuron and the synaptic weight
in the following format:

As an example, a entry will be:

1, 4, -2500

In this format, it is easier to implement a neural network. The only parameters are the
origin and the destination neurons, with its synapse weight.

55

Type Position Format Example

Source neuron id 0 id 1

Dest. neuron id 1 id 4

Synap. weight 2 data -2500

Table 15: Field description of the synapse declaration for the high level netlist

3.4.4.3. Parameters section

The biggest drawback of the netlist required in the HNS is the description of the
parameters in each PE and row, so a new approach of defining the parameters is
designed. It is also based in a header, but the only thing that it is necessary to indicate is
the exception values for a given neuron. The structure of the header is as follows:

With this, a possible example of a header will be:

.0x3E3/16/NEUR/$NVL/0, -6000

As for the special cases, the codification is the neuron id and the value, as shown in the
example:

0, 0, -4000

In this case, the neuron with ID 0 will have the value 0 and -4000 for registers R0 and R1
in the SN-RAM memory in a concatenated form.

In addition, recently the HLNS supports also the Trivial Graph Format (.TGF) file format
for developing neural networks with existing graph tools like yEd.

A file example is shown in Annex 8.5.

56

Field Example Description

Address 0x3E3 Address to store the data

Encoding 16 Expected data size

Varname NEUR Associated variable name

Number of params. $NVL Number of parameters

Default value 0, -6000 Default value for the entry

Table 16: Field description for the parameters of the neurons in high level netlist

3.5. HTS design flow

In this section, the operations of the HEENS Tool Suite are explained in a high level
format. Those tools can be executed on any platform, as it is programmed in python3.

3.5.1. HLNS design flow

The HLNS process is straightforward, as the "only" work to do is to distribute the neural
network and place the neurons in the chips. In this TFM, a simple place algorithm is
implemented. It is done in four steps:

 Reading of the top netlist

 Seek and load the instantiated chips in the config section

 Place-out: map the synapses to chips

 Generate the required sub netlists specific for each chip

3.5.1.1. Reading the netlist file

The first part is to read the netlist and check if any error is present in the file. Depending
on the section, the reading process starts to decode the data accordingly. As such, when
the file has been read, all the necessary data has been checked and pre-processed.

3.5.1.2. Seeking and load the chips

With all the data in memory, the HLNS starts to search the JSON files containing the
board descriptor of the chips, in order to prepare to the place-out of the neurons in the
selected chips.

3.5.1.3. Place-out: map the synapses to chips

Then the tool places the neurons into the chips, with a specified algorithm. For now, a 1
to 1 until fill strategy (one neuron in one PE until it's filled completely) is implemented.
Then when all PEs are filled, the tool starts to fill the next chip and so on. Capacity
checks are tested in order to check that the network could be deployed in virtualization,
but not for the maximum number of synapses. The synapses are more tricky to check
because the memory area is also shared with the synaptic parameters. For this reason, it
is a working in progress (WIP).

3.5.1.4. Generation of the specific netlists

With the neurons all placed, the final step is to write down the netlist for each chip. It is
done with the format specified in the HNS tool.

57

3.5.2. HNS design flow

The HNS process is designed to analyse and synthesize the neural network, and
producing the values related to the neural processors with a network report for adapting
the model to the network to be executed. It is done in two steps:

 Reading of the netlist

 Generate the required memory files and report for HCA

3.5.2.1. Reading the netlist file

As the netlist is a self contained, fully defined description, the tool only needs to read this
file. Using the same process used on HLNS tool, the file is digested and the data is
processed depending on the current section. If an error is detected, the execution is
notified and the tool aborts the process.

The data is in memory, the tool starts to process the neurons and classify the synapses
as local or as global. Then the information of the neural network is computed. In the end,
the memory template is generated and prepared for generating the memory files and the
network summary.

3.5.2.2. Generation of the memory files and network summary

The final step is to generate the output files. It is formatted in the specification of questa
simulator and also in a TCL script for Vivado, in order to be able to load the memory
contents into the chip. In addition, a summary of the netlist containing the number of
virtual layers used for the synthesis process and a description of the variables in the SN-
RAM is generated. This last summary is required to compile the code in the HCA tool.

58

3.5.3. HCA design flow

The HCA tool is an assembler with a dynamic instruction set. The instruction set is
provided in a CSV file (currently with the name mnemonic.csv) with support on custom
macro expansion on every instruction. Together with the code, the instruction set file and
the network summary generated by the HNS tool, it generates the binary data for the
sequencer. It also has selectable optimization levels for giving the user the choice of
performance or one to one output binary to the code. It is done in four steps:

 Reading the code

 Load the network summary

 Optimize the code

 Assemble the binary and generate the output binary

3.5.3.1. Reading the code

It uses a similar process in the HLNS and the HNS tools. It reads the code and starts to
pre-process the data in order to detect any syntax error. When this process is finished,
the code is separated into main code, subroutine table, data table and a label table.

3.5.3.2. Load the network summary

The next step is to load the summary in order to verify that the variables used on the code
are defined in the summary and update the data table with the information stored in the
netlist.

3.5.3.3. Optimization process

As the code and data is fully loaded, then the HCA tool starts to optimize the code with
the level specified by the user. Those optimizations are only for size and speed
optimization at the same time, whereas the speed vs size optimization is not
implemented. There are three optimization levels:

 O0: No optimization is performed

 O1: Remove unused data and subroutines

 O2: O1 level + inlining functions that gain performance and reduce memory space

59

O0 optimization level

It doesn't preform any modification into the code nor data.

O1 optimization level

It searches the code and counts the number of references of the subroutines and data
labels. If it is 0, then the data or subroutine is removed.

O2 optimization level

It applies the O1 optimization and checks if the subroutine gains speed and reduces
program size if it is inlined.

An inlined subroutine is the code of the subroutine that is written where the call instruction
references that subroutine. If we define:

 c as the code size of the subroutine without the return call

 n as the number of calls of the subroutine

Then the code is inlined if the following condition is met:

nc c+⩽ 1+n (3)

0 c+⩽ 1+n−nc=c+1+n (1−c) =c−1+1+1−n (c−1)=2+(1−n) (c−1) (4)

−(1−n) (c−1)=(n−1) (c−1)⩽2 (5)

(n−1) (c−1)⩽2 (6)

So, the tool checks this inequality. If it is true, then the subroutine is inlined into the code.
In the end, a small report is displayed in order to see the effects of the optimization.

3.5.3.4. Generation of the memory files and network summary

In this final step, the code is assembled and written into the areas defined by the
directives .org, .data and .code. If there is no call to main, the code auto-detects main and
generates the jump call.

A debug file is also generated to help debug the assemble process, where the address,
the assembled data and the instruction are written in the same file. This is done if the tool
have introduced an error.

60

4. Results

In this section, the results of this project will presented divided in the same sections as
section 3. The order is as same as section 3.

4.1. LiveSNN protocol

The protocol is checked using wireshark. A test is done in order to verify the
communication is working properly. The test is done by sending 3 commands:

• Get descriptor command configured to send an error in order to check the error
message

• The heartbeat command to see if the connection is still open (although in TCP is
redundant)

• Send spikes command to see a considerable data packet.

The results shown in the Fig. [15] show 5 regions:

1. Connection handshake of the TCP protocol

2. Get descriptor communication

3. Heartbeat communication

4. Send spikes communication

5. Disconnection of the TCP protocol

61

Figure 15: Communication between PC and ARMs via ethernet

1

2

3

4

5

First, the request packet of the get descriptor is shown:

As it is shown in Fig. [16], the frame is correctly formatted. The selected bytes are
formatted correctly as the protocol says, where the TransferID is 5, message length is 6
bytes and the command is the number 3, so it is a Get Descriptor command.

62

Figure 16: Frame of the “Get Descriptor” command

Then, the programmed error response is received:

As it is shown in Fig. [17], then the error response is received as expected. The
TransferID is also 5, the message length is 7 bytes, that is the header frame length plus
one byte of data. The command is 0x8D, so it is a response frame thanks to the MSB that
it is set, and the command is 0x0D, which it is an error command. The data is 0xFF. The
error codes are programmed in the ZYNQ as negative numbers, so that means -1. In this
case -1 shows a generic error.

63

Figure 17: Error response result

Following the test, the heartbeat command is sent:

As it is shown in Fig. [18], the format of the data is still correct. The TransferID has been
incremented by one, and the command send is the Heartbeat (0x0E). It requires two
parameters, a and b, which are of 8-bit unsigned integers. Those are for checking that the
ARMs are still connected and they are running. As such, in this case the pair is (0, 0) the
expected response is he pair (b, a+1), so (0, 1).

64

Figure 18: Frame of the “Heartbeat” command

Then, the heartbeat response is received:

As it is shown in Fig. [19], the response arrives, and the data still has the correct frame.
The TransferID is still 6, and the command is 0x8E, showing that it is a response and the
command still is the Heartbeat. The received data is (0, 1), so the ARMs are still running.

For Ethernet with TCP/IP it does not make sense, but if this protocol is deployed, for
example, in a SPI bus, then this command is useful to have in order to check the status of
the processors.

65

Figure 19: Response of the “Heartbeat” command

Finally, the send spikes command is sent:

As it is shown in Fig. [20], the format of the data is still correct. The TransferID has been
incremented by one, giving a result of 7, and the command send is the Get Spikes
(0x0F). So the response should have the information of the spikes generated from the
last Get Spikes command.

66

Figure 20: Frame of the “Get Spikes” command

At last, the send spike response is received:

As it is shown in Fig. [21], the response to the “get spikes” has the correct size and data.
The transmission of the spikes is a very simple one, but has a lot of wasted space. So the
next version is to incorporate a compression algorithm. It is currently being studied, but
the Run Length Encoding scheme for now is the optimal one. It will be implemented
similar to the one implemented in the video game “Pokemon Red/Blue” in the sprite
compression for the pokemon’s battle sprites.

As the preliminary tests, the compression ratio achieved in python in order to simulate the
algorithm was 662/290 = 2.2875.

67

Figure 21: Response of the “Get Spikes” command

4.2. LiveSNN program

In this section, the program is deployed into the board. The compiler only shows two
warnings, where those are referring in the auto-code of Vivado. Omitting those warnings,
the rest of the code written is free of errors and warnings.

The following compiler configuration is used:

• g++: for compiling C++ code.

• -wextra: add extra warnings in order to check the robustness of the code.

• -wall: enables all the warnings for getting the last possible misunderstanding of
the compiler from the source code.

• -pedantic: enables strict rules of programming in order to ensure that the
programmer is not leaving things that may cause a misbehaviour on the code. For
example a integer that does not fit inside the size of the variable that it is writing
to.

• -werror: treats every warning as an error.

By this rules, the code is compiled and when the phase of correcting any possible errors,
the debugging process is started.

On the Fig. [22] the setup is shown. The screen contains 3 windows.

The background is the Vivado Software Development Kit (SDK), where the code is typed
and then programmed on the ZYNQ.

Then the black screen on the left shows the serial port of the ZYNQ, where the log is
printed out.

Finally to the right there is another terminal. In this case it is the TELNET connection,
where for testing purposes, the command help is executed. This prints all the commands
implemented in the console class.

On the bottom, there is the ZC706 board containign the ZYNQ 7045 SoC, where the code
is running. It is not seen clearly, but there are green LEDs that are blinking in order to
check if the ARMs are hang up in a way that it is easy to see.

68

So By programming in the board ZC706 the Telnet port can be accessed, the serial port it
is also operative:

69

Figure 22: Setup of the test of the code deployed on the ARMs in the ZC706 with
the console and the TELNET connections open

4.3. HEENS Toolchain Suite

In this section, the HTS is tested with the comparison with the code generated by the old
toolchain. For the netlist synthesis there is no change between files, due to the fact that
the neural network is the same.

For the code generator the different cases are tested, depending on the optimization
level. Both of them uses the model included in the appendices 8.4 and 8.7. It is a Leaky
Integrate and Fire model, and both versions have the exact same configuration and
instruction count in order to study the performance of the assemblers. The results are:

In order to show in a easier form the performance of the tools, the relative differences are
computed in order to know the advantages of the toolchains. The reference of the
differences are the old toolchain for the first column group, and the O0 level from the
proposed toolchain.

70

OPT

LEVEL

Previous version [bytes] HTS [bytes]

code data total Code data total

0

103 16 119

82 18 100

1 82 10 92

2 68 10 78

Table 17: Comparison between the code generated by the old and the new
toolchain

OPT

LEVEL

DIFF BETWEEN TOOLS [%] DIFF BETWEEN OP LEVELS [%]

code data total Code data total

0 -20.39 12.50 -15.97 - - -

1 -20.39 -37.50 -22.69 00.00 -44.44 -08.00

2 -33.98 -37.50 -56.43 -17.07 -44.44 -22.00

Table 18: Relative difference of the code generated by the different toolchains

The results show an improvement on the size of the binary generated, and, in
consequence, it could support bigger models, except the O0 level, which the data section
has increased 12.5%. This is due to the fact that all the keywords are declared on the
code even if some of them are not used.

71

5. Budget

72

Element Quantity[u] Price [€/u] Cost [€]

Hardware

ZYNQ ZCU706 1 2667.00 2667.00

Computer 1 1000.00 1000.00

USB communication cables 3 3.01 9.03

Subtotal 3676.03

Software

OS from the computer (Linux MINT) 1 0.00 0.00

RTOS for the ZYNQ SoC (FreeRTOS) 1 0.00 0.00

Vivado (WebPACK) 1 0.00 0.00

Code editor (EMACS) 1 0.00 0.00

Subtotal 0.00

Development

Development cost 384h 12.50 4800.00

Subtotal 4800.00

Total 8476.03

Table 19: Budget of the project

6. Environment Impact

This project is not focused on solving environmental impacts, as it consists in several
tools to develop and test different models and neural networks on a simulator and on chip
via a SoC as commented in previously chapters.

Nonetheless as this tools tries to extract more performance out of the HEENS
architecture, the cost of running this tools increases a little bit, but the whole deployment
of new neural networks has been accelerated.

So in overall, those changes try to minimize the time required, an this translates into less
energy consumption. The kg of CO2 per kWh from Spain is 0,2654[8]. As such, the tools
automatize and prevents some human errors, leading a reduction between a 20% to a
80% , from 0.21232 kgCO2/kWh to 0.05308 kgCO2/kWh respectively, depending on the
required task and neural network to implement. This numbers are a loosely estimation in
order to study the CO2 reduction.

This approximation shows that it reduces the CO2 footprint but depending on the task it
will be a marginal reduction.

73

7. Conclusions and future development

In this final chapter, the conclusions of this project will be discussed and give some
future directions in order to continue the work done on this project.

7.1. Conclusions

This is a big project that several people work on it. As the HEENS is a prototype, there
are things that are in the scope of the project but cannot be implemented yet to the
software.

The LiveSNN protocol has been implemented in a basic way that could be extensible
enough to be able to communicate the ARMs to the PC. The basic needs for the HEENS
to operate are covered, as well as extra functionality that gives this protocol the capability
to update and read information while the network is operating. As such, the debugging
could be done remotely. This has it’s advantages and disadvantages. The advantage is
the remote access to the HEENS, but the problem is that there is a lack of cybersecurity.

The LiveSNN program has developed the core functionalities. Although the
communications are tested and the code is written, part of the code that manages the
HEENS part is missing due to the waiting on the update on the interface between the
ARMs and the HEENS. So it preformed well, but it misses this part, and the design on
secondary parts of the code, like firmware updates.

The HTS preforms very well with the new netlist design, although minor design decisions
need to be discussed. These details are the variable instantiation on each neural
processor and the equivalent name on the model file. Despite of this, the ability to work at
high and low level gives the user the fast deployment without sacrificing the opportunity to
work in a low level environment.

7.2. Future work

As mentioned in the conclusions, there are things that are in the scope of the project but
cannot be implemented yet to the software, so the following points will describe the next
steps to do that may provide new TFG and TFM thesis in the future.

For the LiveSNN protocol, some commands, like the START, STOP, STEP, are not
implemented yet due to the current status of the HEENS architecture which does not
support the functionality or is being implemented. So, when it is finished the
modifications, the rest of the protocol needs to be implemented.

For the LiveSNN program, it is only implemented the code related to the communications
between the computer and the ARMS, so the only parts missing is security on the
communications via Ethernet and the firmware management unit, that it is on second

74

plane. In addition, the protocol may use a compression algorithm as said in the result
section (4.1) in order to have better transmission efficiency.

Finally, for the HEENS Toolchain Suite, it has been checked and tested to preform some
easy neural networks in order to validate. The HEENS high Level Neural Synthesis uses
a one to one neural mapping in the processors for a quick test and deployment of neural
networks in only one board. As such, one possible project could be to implement different
placing routines for the tool, to allow smart placing and a better resource management.

75

Bibliography

[1] “Neurons and synapses - Ms. Frost A world of biology.....”
https://aworldofbiology.weebly.com/neurons-and-synapses.html (accessed Sep.
02, 2020).

[2] DARPA, “SyNAPSE Program Develops Advanced Brain-Inspired Chip.”
https://www.darpa.mil/news-events/2014-08-07 (accessed Jul. 13, 2020).

[3] Dharmendra S. Modha, “IBM Research: Brain-inspired Chip.”
https://www.research.ibm.com/articles/brain-chip.shtml (accessed Jul. 13, 2020).

[4] APT Research Group, “Research Groups: APT - Advanced Processor
Technologies (School of Computer Science - The University of Manchester).”
https://apt.cs.manchester.ac.uk/projects/SpiNNaker/architecture/ (accessed Jul.
13, 2020).

[5] M. Davies et al., “Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018, doi:
10.1109/MM.2018.112130359.

[6] FreeRTOS team, “RTOS - Free professionally developed and robust real time
operating system for small embedded systems development.”
https://freertos.org/RTOS.html (accessed Jul. 13, 2020).

[7] Xilinx, “PetaLinux Tools Documentation Reference Guide,” 2020. [Online].
Available: www.xilinx.com.

[8] EEA, “CO2 emission intensity — European Environment Agency.”
https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5#tab-
chart_2 (accessed Jul. 13, 2020).

[9] “ArtificialNeuronModel_english.png (PNG Image, 1682 × 799 pixels).”
https://upload.wikimedia.org/wikipedia/commons/6/60/ArtificialNeuronModel_englis
h.png (accessed Sep. 02, 2020).

[10] “File:loihi floorplan.png - WikiChip.”
https://en.wikichip.org/wiki/File:loihi_floorplan.png (accessed Sep. 02, 2020).

[11] “zynq-mp-core-dual.png (PNG Image, 800 × 900 pixels).”
https://www.xilinx.com/content/dam/xilinx/imgs/block-diagrams/zynq-mp-core-
dual.png (accessed Sep. 02, 2020).

[12] “ANNDiagram.png (PNG Image, 1250 × 1057 pixels) - Scaled (86%).”
https://st4.ning.com/topology/rest/1.0/file/get/2808361999?profile=original
(accessed Aug. 24, 2020).

76

[13] “DARPA_SyNAPSE_16_Chip_Board.jpg (JPEG Image, 1169 × 648 pixels).”
https://upload.wikimedia.org/wikipedia/commons/9/9c/DARPA_SyNAPSE_16_Chip
_Board.jpg (accessed Sep. 02, 2020).

[14] “Synapse-QBI-brain-neuroscience.jpg (JPEG Image, 1937 × 1066 pixels) - Scaled
(85%).” https://qbi.uq.edu.au/files/7758/Synapse-QBI-brain-neuroscience.jpg
(accessed Aug. 24, 2020).

77

8. Appendices

This section contains the different examples and extra information relating to the project.

8.1. Protocol format structure

In this subsection, the different command frames will be explained with a transmission
example:

8.1.1. NULL

This message is an empty message. If send, or detected, the message has been
corrupted. This message has a empty payload.

Request arguments: None

Response arguments: None

Example:

- Request:

- Response: None

In this case, a NULL message is sent. As it is a empty frame, there is no payload and the
receiver should ignore this message. If this frame is ever transmitted, is a clear sign of a
bug in the implementation of the protocol.

78

Byte Value Description

0x00 0x03 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x00 NULL command

Table 20: LiveSNN NULL command request frame

8.1.2. STATUS

This message requests the current status of the neural network. The request has no
arguments whereas the response returns a uint32_t status register.

Request arguments: None

Response arguments: uint32_t status

Example:

- Request:

- Response:

79

Byte Value Description

0x00 0x07 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x01 STATUS command

Table 21: LiveSNN STATUS command request frame

Byte Value Description

0x00 0x07 Transfer ID

0x01 - 0x04 0x00 00 00 0A Message length

0x05 0x81 STATUS command

0x06 0xXX XX XX XX Current status

Table 22: LiveSNN STATUS command response frame

The computer wants to know the current state of the device. As such, it sends a STATUS
message to the ARM processor. It replies with it’s configuration word. This configuration is
a uint32_t word.

80

Bit Name Description

31 - 1 Reserved Not used

0 IsSnnRunning NN execution status (STOP, RUNNING)

Table 23: LiveSNN status bit format

8.1.3. CONFIGURATION

NOT IMPLEMENTED YET

This message requests the current configuration of the neural network.

Request arguments: None

Response arguments: uint32_t configuration

Example:

- Request:

- Response:

The computer wants to know the current configuration of the device. As such, the
computer sends a CONFIGURATION message, which the device responses with it’s
configuration.

81

Byte Value Description

0x00 0x12 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x02 CONFIGURATION command

Table 24: LiveSNN CONFIGURATION command request frame

Byte Value Description

0x00 0x12 Transfer ID

0x01 - 0x04 0x00 00 00 0A Message length

0x05 0x82 CONFIGURATION command

0x06 0xXX XX XX XX Current status

Table 25: LiveSNN CONFIGURATION command response frame

8.1.4. DESCRIPTOR

NOT IMPLEMENTED YET

This message requests the current descriptor of the chip.

Request arguments: None

Response arguments: string descriptor

Example:

- Request:

- Response:

The computer wants to know the what are the properties of the device. As such, the
computer sends a DESCRIPTOR message, which the device responses with it’s
descriptor.

82

Byte Value Description

0x00 0x21 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x03 DESCRIPTOR command

Table 26: LiveSNN DESCRIPTOR command request frame

Byte Value Description

0x00 0x21 Transfer ID

0x01 - 0x04 0x00 00 00 0A Message length

0x05 0x83 DESCRIPTOR command

0x06 0xXX XX XX XX Descriptor data

Table 27: LiveSNN DESCRIPTOR command response frame

8.1.5. START

This message requests the NN to start. There is no arguments used.

Request arguments: None

Response arguments: None

Example:

- Request:

- Response:

The computer wants to start the NN, so sends the START message. With this, the NN
starts it’s operation. If not, an ERROR message will be sent.

83

Byte Value Description

0x00 0x02 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x04 START command

Table 28: LiveSNN START command request frame

Byte Value Description

0x00 0x02 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x84 START command

Table 29: LiveSNN START command response frame

8.1.6. STOP

This message requests the NN to stop. There is no arguments used.

Request arguments: None

Response arguments: None

Example:

- Request:

- Response:

The computer wants to stop the NN, so sends the STOP message. With this, the NN
starts it’s operation.

84

Byte Value Description

0x00 0x50 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x05 STOP command

Table 30: LiveSNN STOP command request frame

Byte Value Description

0x00 0x50 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x85 STOP command

Table 31: LiveSNN STOP command response frame

8.1.7. STEP

This message requests the NN to execute n cycles.

Request arguments: uint32_t steps

Response arguments: None

Example:

- Request:

- Response:

The computer wants to do 256 execution steps on the NN, so sends the STEP message
with an argument of 256. With this, the NN tries to execute that number of steps. If not, an
ERROR message will be sent.

85

Byte Value Description

0x00 0x0A Transfer ID

0x01 - 0x04 0x00 00 00 0A Message length

0x05 0x06 STEP command

0x06 0x00 00 01 00 Number of steps

Table 32: LiveSNN STEP command request frame

Byte Value Description

0x00 0x0A Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x86 STEP command

Table 33: LiveSNN STEP command response frame

8.1.8. RESET

This message requests the SoC to reset. There is no arguments used.

Request arguments: None

Response arguments: None

Example:

- Request:

- Response:

The computer wants to restart the hole SoC due to a glich, so the REBOOT message is
sent. Then the SoC reboots itself.

NOTE: This command will kill the communication between the computer and the SoC
with the TELNET or LiveSNN protocols (Ethernet), but not the serial port.

86

Byte Value Description

0x00 0x0F Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x07 RESET command

Table 34: LiveSNN RESET command request frame

Byte Value Description

0x00 0x0F Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x87 RESET command

Table 35: LiveSNN RESET command response frame

8.1.9. UPLOAD FIRMWARE

This message uploads a new firmware for the NN.

Request arguments: uint8_t* newFirmware

Response arguments: None

Example:

- Request:

- Response:

The computer wants to update the NN to a newer version, so it sends the UPLOAD
FIRMWARE to the device. Then the SoC installs the new firmware to the NN and reboots
itself.

NOTE: This command will kill the communication between the computer and the SoC
with the TELNET or LiveSNN protocols (Ethernet), but not the serial port.

87

Byte Value Description

0x00 0x1F Transfer ID

0x01 - 0x04 0x00 00 00 0A Message length

0x05 0x08 UPLOAD FIRMWARE command

0x06 0xXX XX XX XX New firmware

Table 36: LiveSNN UPLOAD FIRMWARE command request frame

Byte Value Description

0x00 0x1F Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x88 UPLOAD FIRMWARE command

Table 37: LiveSNN UPLOAD FIRMWARE command response frame

8.1.10. DOWNLOAD FIRMWARE

This message downloads the current firmware that has the NN.

Request arguments: None

Response arguments: uint8_t* currentFirmware

Example:

- Request:

- Response:

The computer wants to keep a copy of the current firmware, so it sends the DOWNLOAD
FIRMWARE to the SoC. Then the SoC will send the NN firmware stored in the static
memory.

88

Byte Value Description

0x00 0x20 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x09 DOWNLOAD FIRMWARE command

Table 38: LiveSNN DOWNLOAD FIRMWARE command request frame

Byte Value Description

0x00 0x20 Transfer ID

0x01 - 0x04 0x00 00 00 0A Message length

0x05 0x89 DOWNLOAD FIRMWARE command

0x06 0xXX XX XX XX Current firmware

Table 39: LiveSNN DOWNLOAD FIRMWARE command response frame

8.1.11. SPIKE REPORT

This message requests the spike report of the NN.

Request arguments: None

Response arguments: uint8_t* spikeReport

Example:

- Request:

- Response:

The computer wants to know how many spikes per second is generating the NN, so it
sends the SPIKE REPORT message. The SoC will send back the activity of the neurons
on average.

89

Byte Value Description

0x00 0xF1 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x0A SPIKE REPORT command

Table 40: LiveSNN SPIKE REPORT command request frame

Byte Value Description

0x00 0x03 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x00 SPIKE REPORT command

0x06 0xXX XX XX XX Spike report

Table 41: LiveSNN SPIKE REPORT command response frame

8.1.12. RASTER REPORT

This message requests the raster report of the NN.

Request arguments: None

Response arguments: uint8_t* rasterReport

Example:

- Request:

- Response:

The computer wants to know the neurons that have fired, so it sends the RASTER
REPORT message. The SoC will send back an array of neurons IDs and time stamps,
where the neurons that appeared have fired at that timestamp.

90

Byte Value Description

0x00 0x2C Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x0B RASTER REPORT command

Table 42: LiveSNN RASTER REPORT command request frame

Byte Value Description

0x00 0x2C Transfer ID

0x01 - 0x04 0x00 00 00 0A Message length

0x05 0x8B RASTER REPORT command

0x06 0xXX XX XX XX Raster report

Table 43: LiveSNN RASTER REPORT command response frame

8.1.13. OTHER PROTOCOL

This message uses the LiveSNN protocol as a gateway for other protocols, like SPI, I2C,
CAN, etc.

Request arguments: uint8_t peripheral, uint8_t* frame

Response arguments: uint8_t peripheral, uint8_t* frameResponse

Example:

- Request:

- Response:

91

Byte Value Description

0x00 0x5A Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x01 op command

0x06 0x01 Peripheral for forwarding

0x07 0x11 03 006B 0003 7687 Modbus RTU frame

Table 44: LiveSNN OTHER PROTOCOL command request frame

Byte Value Description

0x00 0x5A Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x00 NULL command

0x06 0x01 Peripheral for forwarding

0x07 0x11 03 06 AE41 5652 4340 49AD Modbus RTU frame

Table 45: LiveSNN OTHER PROTOCOL command response frame

In this example, the computer sends a Modbus RTU frame over the LiveSNN protocol in
order to ask a sensor (ID of 11) some data (Registers 40108, 40109 and 40110), and the
ARM replies with the data that the sensor has sent (0xAE41, 0x5652 and 0x4340,
respectively).

The peripheral ID table is the following:

As it is seen in the table, the Least Significant Bit (LSB) of the code determines the which
port (A or B) is forwarded the message.

92

ID Peripheral

0x00 UART A

0x01 UART B

0x02 CAN A

0x03 CAN B

0x04 SPI A

0x05 SPI B

0x06 I2C A

0x07 I2C B

0x08 USB A

0x09 USB B

0x0A Ethernet A

0x0B Ethernet B

0x0C SD A

0x0D SD B

Table 46: Peripheral ID definitions

8.1.14. ERROR

This message alerts that an error has occurred

Request arguments: uint8_t error

Response arguments: uint8_t error

Example:

- Request: None

- Response:

This message will send as a request when there is a problem or as a response if a
problem has occurred while the it was executing a LiveSNN request.

93

Byte Value Description

0x00 0xC4 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x8D ERROR command

Table 47: LiveSNN ERROR command response frame

8.1.15. HEARTBEAT

This message sends a heart beat message for checking the quality of the communication.

Request arguments: uint8_t a, uint8_t b

Response arguments: uint8_t na, uint8_t nb

Example:

- Request:

- Response:

94

Byte Value Description

0x00 0xD1 Transfer ID

0x01 - 0x04 0x00 00 00 08 Message length

0x05 0x01 STATUS command

0x06 0x01 a parameter

0x07 0x01 b parameter

Table 48: LiveSNN HEARTBEAT command request frame

Byte Value Description

0x00 0xD1 Transfer ID

0x01 - 0x04 0x00 00 00 08 Message length

0x05 0x00 NULL command

0x06 0x01 na parameter

0x07 0x02 nb parameter

Table 49: LiveSNN HEARTBEAT command response frame

For checking the connection, the HEARTBEAT message is sent. It sends 2 parameters: a
and b. For example, the sender sends a and b being equal to 1.

Then, the receiver reads the 2 parameters and increment b by 1, and sends back the
response.

Finally, the sender will check that a is not modified and b is incremented by 1.

If not, there is a problem in the communication and/or the receiver.

95

8.1.16. GET SPIKE

This message sends the new spike generated by the NN.

Request arguments: SpikeData data

Response arguments: None

Example:

- Request:

- Response:

The NN has generated new spikes. In order to generate a real time raster plot of the
neurons, the SEND SPIKE command is sent with the current spikes that have just fired.
The computer then acknowledges the message with the response message.

96

Byte Value Description

0x00 0xB2 Transfer ID

0x01 - 0x04 0x00 00 00 0A Message length

0x05 0x0F GET SPIKE command

0x06 0xXX XX XX XX Spike data

Table 50: LiveSNN GET SPIKE command request frame

Byte Value Description

0x00 0xB2 Transfer ID

0x01 - 0x04 0x00 00 00 06 Message length

0x05 0x8F GET SPIKE command

Table 51: LiveSNN GET SPIKE command response frame

8.2. SEND SPIKE data format

The communication between the computer and the SoC will be using the LiveSNN
protocol. As for the spike data for the commands ”SEND SPIKE” and ”RASTER
REPORT”, the payload is serialized as follows:

97

Byte Name Description

0x00 - 0x03 TimeStamp 1 First timestamp

0x04 - 0x07 nSpikes Number of spikes

0x08 - 0x0B Spike 1 Spike 1

0x0C - 0x0F Spike 2 Spike 2

...

n - n+3 TimeStamp N Nth timestamp

n+4 - n+7 nSpikes Number of spikes

n+8 - n+11 Spike 1 Spike 1

n+12 - n+15 Spike 2 Spike 2

...

Table 52: Serialization format of the spike data for LiveSNN

8.3. Example of the old netlist

This example is a ring oscillator that forms a 4x4 square.

netlist.lst:

presyn postsyn
#i v r c i v r c s ph pl
 0 0 0 0 0 0 1 0 1 2500 0
 0 0 1 0 0 0 2 0 1 2500 0
 0 0 2 0 0 0 3 0 1 2500 0

 0 0 3 0 0 0 3 1 1 2500 0
 0 0 3 1 0 0 3 2 1 2500 0
 0 0 3 2 0 0 3 3 1 2500 0

 0 0 3 3 0 0 2 3 1 2500 0
 0 0 2 3 0 0 1 3 1 2500 0
 0 0 1 3 0 0 0 3 1 2500 0

 0 0 0 3 0 0 0 2 1 2500 0
 0 0 0 2 0 0 0 1 1 2500 0
 0 0 0 1 0 0 0 0 1 2500 0

98

In the following example, the memory layout of the neurons are configured. Each column
is a PE, and each line is a different address of the memory

neuron.csv:

@0x3E3
-4000 -6000 -6000 -6000 -6000 -6000 -6000 -6000 -6000 -6000 -6000 -6000 -6000 -6000 -6000 -
6000
-7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -
7000
-7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -
7000
-7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -
7000
-7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -
7000
-7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -
7000
-7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -
7000
-7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -7000 -
7000
@0x3FD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
790397107 281151190 3309506875 1263568161 2343084726 1445520166 3956335112
346198339 3024860000 3146000210 6789335 139614675 560173392 829721 2009585225
1008007293
1522134871 2478058071 4125695476 2020487816 3716890928 1203286407 537884939
1705442851 1158594759 225757523 1855561354 3838380997 411379302 137305429
1315299481 49213318
@1023 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#

99

8.4. Example of the old code

This code is a functional Leaky Integrate and Fire model for the HEENS architecture in
the old format.

LIF.asm:

; GOTO CODE
;
; Integrate and fire. Both non-virtual and virtual
; DEFAULT operation without virtual layers
; REMOVE: 'semicolon%VIRT ' for operation with virtual layers

; Network definitions

define virtual_layers 0 ; Up to 7
define gsynapses 0 ; Up to 32 global synapses
define lsynapses 15 ;99 Due to the local RAM encoding, synapse 0 cannot be used (corresponds
to no synapse code)
define tot_synapses 15 ;131

.DATA

; Virtual layers

V0 = "0000000F" ; Number of assigned synapses to the main layer
;%VIRT V1 = "00000004" ; Number of assigned synapses to virtual layer 1
;%VIRT V2 = "00000006" ; Number of assigned synapses to virtual layer 2
;%VIRT V3 = "00000008" ; Number of assigned synapses to virtual layer 3
;%VIRT V4 = "00000010" ; Number of assigned synapses to virtual layer 4
;%VIRT V5 = "00000005" ; Number of assigned synapses to virtual layer 5
;%VIRT V6 = "00000004" ; Number of assigned synapses to virtual layer 6
;%VIRT V7 = "00000003" ; Number of assigned synapses to virtual layer 7
;%VIRT VLAYERS="00000007" ; Number of virtual layers.

; Membrane potential parameters common to all neurons
VREST="FFFFE4A8" ; Resting potential -70 mV = -7000 in tens of of uV
VTHRES="FFFFEA84" ; Threshold voltage -55 mV = -5500
VDEPOL="FFFFE0C0" ; Depolarization voltage -80 mV = -8000
VACT = "00001771" ; Action potential +10 mV = +1000
;
; Synapse parameters common to all neurons come here
; TBD
;
; Neural and Synaptic RAM addresses
SEEDH_ADDR = "00000200" ; Address of noise seed in NSBRAM
SEEDL_ADDR = "00000201" ;
NEU_ADDR="00000100" ; First address of Neural parameters in NSBRAM
SYN_ADDR="00000000" ; First address of Synaptic parameters in NSBRAM.
;
; General constants
;THAU_MEM="00007F00" ; Membrane time constant decay (inverse value). To be tuned
;THAU_MEM="00007EE0" ; Membrane time constant decay (inverse value). To be tuned. Thau =
113.78

100

; THAU_MEM = 32768/(1-1/tau)
THAU_MEM="0000799A" ; Membrane time constant decay (inverse value). To be tuned. Thau =
20
NOISE_MSK="0000001F" ; Noise mask. To be tuned

; Constants for debug
JUMP_MV = "00000100" ; Jump 2.56 mV on spike
LFSR_VAL= "0000AAAA"
LFSR_VAL2= "00005555"

INIT_VAL ="FFFFE890" ; Vmem initiated at -60 mV, 10 mV above rest potential

.CODE
;
GOTO MAIN ; Jump to main program
;
; **************************** PROCEDURES BEGIN ****************************
;
.RANDOM_INIT ; Uses R0 and R1
LOADBP SEEDH_ADDR
LOADSN
SEED ; High seed
LOADBP SEEDL_ADDR
LOADSN
SEED ; Low seed
RET
;
.LOAD_NEURON ; Uses R0, R1, R2 and R3
READMPV NEU_ADDR ; Address of real neuron + virt (valid also for non-virtual)
LOADBP ; NSBRAM pointer to currently processed neuron
LOADSN ; Load Neural parameters from NSBRAM to R1 & ACC
MOVR R2 ; Move Vmem from ACC to R2
RET
;
.MEMBRANE_DECAY ; Uses R0, R4
MOVA R2 ; TEMPORARY WHILE MULS has problems. REWRITE when
it works
LDALL R4 VREST
SUB R4
LDALL R1, THAU_MEM
MULS R1 ; Calculate decay
SHLAN 1 ; Shift one bit left because we multiply by n-1 bits (positive value in 2's
complement)
ADD R4
MOVR R2 ; Back to R2 where membrane potential is stored
RET
;
.ADD_NOISE ; Uses R0, R2 and R5
RANDON ; LFSR ON
LLFSR ; Noise to ACC
MOVR R5
LDALL ACC, NOISE_MSK
AND R5
SHRN 1
RANDOFF ; LFSR OFF. Arbitrarily here
FREEZENC

101

 MOVR R5
 RST ACC
 SUB R5 ; Generate signed noise without the negative bias of two's complement
UNFREEZE
 MOVSR ACC ; TO MONITOR THE NOISE
ADD R2 ; Add to Vmem
MOVR R2 ; Back to R2
RET
;
.DETECT_SPIKE ; Uses R0 and R2
LDALL ACC, VTHRES
SUB R2 ; Compare Vth - Vmem
SHLN 1 ;subtraction sign to C flag
RST ACC
FREEZENC ; If positive, spike
SET ACC
LDALL R2 VREST ; Vmem to resting potential
UNFREEZE
STOREPS ; Push spikes
RET

.STORE_NEURON ; uses R0 and R1
MOVA R2 ; Move Vmem from R2 to ACC
READMPV NEU_ADDR ; Address of real neuron + virt (valid also for non-virtual)
LOADBP ; NSBRAM pointer to currently processed neuron
STORESP ; Store Vmem to NSBRAM
RET

; **************************** PROCEDURES END ******************************

; **************************** MAIN PROGRAMME BEGIN ************************
.MAIN

; Initial instructions
GOSUB RANDOM_INIT; For noise initialization

.EXEC_LOOP ; Execution loop

;LOOP V0 ; Neuron loop for virtual operation
GOSUB LOAD_NEURON
GOSUB MEMBRANE_DECAY ; Calculate membrane potential decay
GOSUB ADD_NOISE
LOADBP SYN_ADDR ; Initial position for addresses
 LOOP tot_synapses ; synaptic loop
;%VIRT LOOPV V0 ; synaptic loop. Reads number of current-layer synapses
 LOADSP ; Load Synaptic parameters and spike to R1 & ACC
 SHRN 1 ; Move spike to flag C
 FREEZENC
MOVA R1 ; Synaptic parameter to ACC
; LDALL ACC, JUMP_MV ; Replaces previous instruction. Jumps a constant
voltage on Sj=1
 ADD R2
 MOVR R2 ; Save Neural parameter in R2
 UNFREEZE
 RST ACC

102

 STORESP ; Stores synaptic parameter and increases BP for next synapse
processing
 ENDL
; Compare and eventually spike
GOSUB DETECT_SPIKE
GOSUB STORE_NEURON
INCV
ENDL
NOP ; Empty pipeline wait NOPs
NOP
NOP
SPKDIS ; Distribute spikes
GOTO EXEC_LOOP ; Execution loop

103

8.5. Example of the new high level netlist

This example is a ring oscillator that forms a 4x4 square in a high level view.

netlist_top.lst:

#---
#| High level netlist for HEENS processors
#| Neural circuit name: 4x4 ring oscillator
#| Description:
#---

@Config
ZC706_4x4

@Netlist
#neurons from/to chips
From|To|Synaptical weight
Distributing neurons

0, 1, 2500
1, 2, 2500
2, 3, 2500

3, 4, 2500
4, 5, 2500
5, 6, 2500

6, 7, 2500
7, 8, 2500
8, 9, 2500

9, 10, 2500
10, 11, 2500
11, 0, 2500

@Params
Addr/Size/Name/Entries/default (empty for random)
.0x3E3/16/NEUR/$NVL/0, -6000
#Neuron, params
0, 0, -4000

.0x3FD/32/SEED/2/
5, 10

104

8.6. Example of the new netlist

This example is a ring oscillator that forms a 4x4 square specific for one board. Also, it is
the output of the tool HLNS. netlist_top_b0.lst:

@Config
#This section configures the HTC for the synth of the network
Id = 0 # Identification number of the chip
Rows = 4 # Number of rows of the processing elements
Cols = 4 # Number of columns of the processing elements
VLay = 8 # Number of virtualization layers
RegS = 16 # Register bit size of the processing element
RegN = 8 # Number of active registers on the processing element
SneS = 32 # Word size of the SN memory
SneA = 1024 # SN memory addresses length
LclS = 7 # Bit size of the LCL memory
LclA = 128 # LCL word size
InsS = 16 # Instruction size
InsA = 1024 # Instruction memory size
DlyS = 5 # Delay word size
DlyA = 256 # Delay address length
CnvS = 7 # Conversion word size
CnvA = 2048 # Conversion address length
CodS = 5 # Codification word size
CodA = 512 # Codification address length

@Netlist
Source | dest | | Registers R0, R1
#i,v, r, c, v, r, c, s, R0, R1
0, 0, 0, 0, 0, 0, 1, 1, 0, 2500
0, 0, 0, 1, 0, 0, 2, 1, 0, 2500
0, 0, 0, 2, 0, 0, 3, 1, 0, 2500
0, 0, 0, 3, 0, 0, 4, 1, 0, 2500
0, 0, 0, 4, 0, 0, 5, 2, 0, 2500
0, 0, 0, 5, 0, 0, 6, 1, 0, 2500
0, 0, 0, 6, 0, 0, 7, 2, 0, 2500
0, 0, 0, 7, 0, 0, 8, 1, 0, 2500
0, 0, 0, 8, 0, 0, 9, 1, 0, 2500
0, 0, 0, 9, 0, 0, 10, 1, 0, 2500
0, 0, 0, 10, 0, 0, 11, 1, 0, 2500
0, 0, 0, 11, 0, 0, 0, 1, 0, 2500

@Params
#Addr/Cod/Varname
.0x3E3/16/NEUR
0, -4000, 0, -6000, 0, -6000, 0, -6000, 0, -6000, 0, -6000, 0, -6000, 0, -6000, 0, -6000, 0, -6000, 0,
-6000, 0, -6000, 0, -6000, 0, -6000, 0, -6000, 0, -6000

.0x3FD/32/SEED
640053022, 3233463630, 3184370176, 2752528616, 1457963001, 10, 4075445273, 63789517,
2770718219, 3256546841, 1511408732, 256106765, 2961578236, 3545250858, 3565134408,
1491381318
2181241349, 3583072137, 1111602253, 891597181, 3554535619, 3185413299, 818177162,
520518205, 2798381813, 1234887563, 139415931, 3980153862, 2854953035, 2936803993,
164569107, 2454684651

105

8.7. Example of the new code

This code is a functional Leaky Integrate and Fire model for the HEENS architecture in
the new format.

LIF_V2.asm:

;;; ---
;;; Integrate and fire. Both non-virtual and virtual
;;; DEFAULT operation without virtual layers

;;; keywords:
 ;; NVL = Number of Virtual Layers
 ;; TGS = Total number of Global Synapses
 ;; TLS = Total number of Local Synapses
 ;; Vx = Virtual layer number "x"
 ;; data map in netlist.lst
 .org 0x010
 .data

;;; Membrane potential parameters common to all neurons
VREST = -7000 ; Resting potential -70 mV = -7000 in tens of of uV
VTHRES = -5500 ; Threshold voltage -55 mV = -5500
VDEPOL = -8000 ; Depolarization voltage -80 mV = -8000
VACT = 1000 ; Action potential +10 mV = +1000

;;; Synapse parameters common to all neurons come here
;;; TBD
;;;
;;; Neural and Synaptic RAM addresses
 ; THAU_MEM = 32768/(1-1/tau)
THAU_MEM = 0x799A ; Membrane time constant decay (inverse value). Thau = 20
NOISE_MSK = 0x001F ; Noise mask. To be tuned

;;; Constants for debug
JUMP_MV = 0x0100 ; Jump 2.56 mV on spike
LFSR_VAL = 0xAAAA
LFSR_VAL2 = 0x5555

INIT_VAL ="FFFFE890" ; Vmem initiated at -60 mV, 10 mV above rest potential

 .code

GOTO MAIN ; Jump to main program
;;;
;;; **************************** PROCEDURES BEGIN ****************************
;;;
RANDOM_INIT: ; Uses R0 and R1
LOADBP SEED_0
LOADSN
SEED ; High seed
LOADBP SEED_1
LOADSN
SEED ; Low seed

106

 RET

LOAD_NEURON: ; Uses R0, R1, R2 and R3
READMPV NEUR_0 ; Address of real neuron + virt
 ; (valid also for non-virtual)
LOADBP ; NSBRAM pointer to currently processed neuron
LOADSN ; Load Neural parameters from NSBRAM to R1 & ACC
MOVR R2 ; Move Vmem from ACC to R2
 RET

MEMBRANE_DECAY: ; Uses R0, R4
MOVA R2 ; TEMPORARY WHILE MULS has problems.
 ; REWRITE when it works
LDALL R4, VREST
SUB R4
LDALL R1, THAU_MEM
MULS R1 ; Calculate decay
SHLAN 1 ; Shift one bit left because we multiply by n-1 bits
 ; (positive value in 2's complement)
ADD R4
MOVR R2 ; Back to R2 where membrane potential is stored
 RET

ADD_NOISE: ; Uses R0, R2 and R5
RANDON ; LFSR ON
LLFSR ; Noise to ACC
MOVR R5
LDALL ACC, NOISE_MSK
AND R5
SHRN 1
RANDOFF ; LFSR OFF. Arbitrarily here
FREEZENC
 MOVR R5
 RST ACC
 SUB R5 ; Generate signed noise without the negative bias of two's complement
UNFREEZE
 MOVSR ACC ; TO MONITOR THE NOISE
ADD R2 ; Add to Vmem
MOVR R2 ; Back to R2
 RET

DETECT_SPIKE: ; Uses R0 and R2
LDALL ACC, VTHRES
SUB R2 ; Compare Vth - Vmem
SHLN 1 ;subtraction sign to C flag
RST ACC
FREEZENC ; If positive, spike
SET ACC
LDALL R2, VREST ; Vmem to resting potential
UNFREEZE
STOREPS ; Push spikes
 RET

STORE_NEURON: ; uses R0 and R1
MOVA R2 ; Move Vmem from R2 to ACC

107

READMPV NEU_ADDR ; Address of real neuron + virt
 ; (valid also for non-virtual)
LOADBP ; NSBRAM pointer to currently processed neuron
STORESP ; Store Vmem to NSBRAM
 RET

;;; **************************** PROCEDURES END ******************************

;;; **************************** MAIN PROGRAMME BEGIN ************************
MAIN:

;;; Initial instructions
 GOSUB RANDOM_INIT ; For noise initialization

EXEC_LOOP: ; Execution loop

 LOOP NVL ; Neuron loop for virtual operation
 GOSUB LOAD_NEURON
 GOSUB MEMBRANE_DECAY ; Calculate membrane potential decay
 GOSUB ADD_NOISE
 LOADBP SYN_ADDR ; Initial position for addresses
 LOOP V0 ; synaptic loop
 LOADSP ; Load Synaptic parameters and spike to R1 & ACC
 SHRN 1 ; Move spike to flag C
 FREEZENC
 MOVA R1 ; Synaptic parameter to ACC
 LDALL ACC, JUMP_MV ; Replaces previous instruction. Jumps a constant voltage on
Sj=1
 ADD R2
 MOVR R2 ; Save Neural parameter in R2
 UNFREEZE
 RST ACC
 STORESP ; Stores synaptic parameter and increases BP for next synapse
processing
 ENDL

;;; Compare and eventually spike
 GOSUB DETECT_SPIKE
 GOSUB STORE_NEURON
 INCV
 ENDL
 NOP ; Empty pipeline wait NOPs
 NOP
 NOP
 SPKDIS ; Distribute spikes
 GOTO EXEC_LOOP ; Execution loop

108

	1. Introduction
	1.1. Preliminary concepts
	1.1.1. Neural Networks
	1.1.2. Artificial Neural Networks
	1.1.3. Spiking Neural Networks

	1.2. Requirements
	1.3. Objectives
	1.4. Organization

	2. State of the art of SNN hardware implementations
	2.1. TrueNorth
	2.2. SpiNNaker
	2.3. Loihi
	2.4. HEENS
	2.4.1. Bus AER
	2.4.2. Sequencer
	2.4.3. Processing Elements (PE)
	2.4.3.1. Synapse and Neuron RAM (SN RAM memory)
	2.4.3.2. Spike decoder (LCL RAM memory)
	2.4.3.3. Arithmetic Logic Unit (ALU)
	2.4.3.4. Auxiliary peripherals

	3. Methodology / project development
	3.1. LiveSNN protocol
	3.1.1. Protocol structure selection
	3.1.1.1. Register based protocol
	3.1.1.2. Command based protocol
	3.1.1.3. Summary

	3.1.2. Protocol structure
	3.1.3. Description of the fields
	3.1.3.1. Transfer ID
	3.1.3.2. DataLength field
	3.1.3.3. Command field
	3.1.3.4. Payload field

	3.1.4. Table of commands

	3.2. LiveSNN program
	3.2.1. Selection of the program architecture
	3.2.1.1. Bare metal
	3.2.1.2. Real Time Operating System (RTOS)
	3.2.1.3. Linux Operating System (Petalinux)
	3.2.1.4. Summary

	3.2.2. Program architecture
	3.2.2.1. FreeRTOS
	3.2.2.2. Context handler
	3.2.2.3. Tasks
	As shown in the Fig. [13], the main block is the entry point of the program, and it creates three different tasks:
	The KeepAlive task, where checks the integrity of the ARM processors
	The Console task: which manages the serial console for debugging
	The Server task: where manages the ethernet connections and spawns the tasks Telnet and LiveSNN tasks to manage the connections from the different ports.
	3.2.2.3.1. KeepAlive
	3.2.2.3.2. Console
	3.2.2.3.3. Server
	3.2.2.3.4. TELNET
	3.2.2.3.5. LiveSNN

	3.2.2.4. Shell

	3.3. HEENS Toolchain Suite
	3.3.1. Netlist V1
	3.3.2. Assembler V1
	3.3.3. Problems

	3.4. Proposed solution: HTS
	3.4.1. HEENS Toolchain Suite (HTS)
	3.4.2. HEENS Neural Synthesis (HNS)
	3.4.2.1. Configuration section
	3.4.2.2. Netlist section
	It is smaller and easier to specify the value of the synapse.
	3.4.2.3. Parameters section

	3.4.3. HEENS Code Assembler (HCA)
	3.4.4. HEENS High Level Neural Synthesis (HLNS)
	3.4.4.1. Configuration section
	3.4.4.2. Netlist section
	3.4.4.3. Parameters section

	3.5. HTS design flow
	3.5.1. HLNS design flow
	3.5.1.1. Reading the netlist file
	3.5.1.2. Seeking and load the chips
	3.5.1.3. Place-out: map the synapses to chips
	3.5.1.4. Generation of the specific netlists

	3.5.2. HNS design flow
	3.5.2.1. Reading the netlist file
	3.5.2.2. Generation of the memory files and network summary

	3.5.3. HCA design flow
	3.5.3.1. Reading the code
	3.5.3.2. Load the network summary
	3.5.3.3. Optimization process
	O0 optimization level
	O1 optimization level
	O2 optimization level

	3.5.3.4. Generation of the memory files and network summary

	4. Results
	4.1. LiveSNN protocol
	4.2. LiveSNN program
	4.3. HEENS Toolchain Suite

	5. Budget
	6. Environment Impact
	7. Conclusions and future development
	7.1. Conclusions
	7.2. Future work

	8. Appendices
	8.1. Protocol format structure
	8.1.1. NULL
	8.1.2. STATUS
	8.1.3. CONFIGURATION
	8.1.4. DESCRIPTOR
	8.1.5. START
	8.1.6. STOP
	8.1.7. STEP
	8.1.8. RESET
	8.1.9. UPLOAD FIRMWARE
	8.1.10. DOWNLOAD FIRMWARE
	8.1.11. SPIKE REPORT
	8.1.12. RASTER REPORT
	8.1.13. OTHER PROTOCOL
	8.1.14. ERROR
	8.1.15. HEARTBEAT
	8.1.16. GET SPIKE

	8.2. SEND SPIKE data format
	8.3. Example of the old netlist
	8.4. Example of the old code
	8.5. Example of the new high level netlist
	8.6. Example of the new netlist
	8.7. Example of the new code

