
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Dynamic Buffer Sizing and Pacing as Enablers of 5G
Low-Latency Services

Mikel Irazabal, Elena Lopez-Aguilera, Ilker Demirkol, Senior Member, IEEE and Navid Nikaein

F

Abstract—3GPP standards organization is performing an impressive effort trying to reach
sub-millisecond latencies for 5G. However, such efforts may become fruitless if exogenously
generated delays at transport layer are not considered. Nowadays, Radio Access Networks
(RANs) are deployed with large buffers to achieve full utilization and avoid squandering
wireless resources. Unfortunately, and since the data path’s bottleneck resides on the radio
link, RAN’s buffers are bloated by TCP’s congestion control algorithm. Thus, a flow with
low-latency requirements that encounters a bloated buffer, suffers from inevitable large
sojourn times associated with the buffer depletion time, severely downgrading its Quality
of Service (QoS). This paper presents different solutions for efficiently multiplexing distinct
traffic patterns that share buffers on the 5G stack. Bufferbloat is extensively studied within
the actual 5G QoS scenario, which presents multiple challenges inherited from the dynamic
radio link nature and the presence of multiple queues at different entities. We propose and
extensively emulate different algorithms in order to avoid the exogenous delay caused by the
bufferbloat phenomena. We use real cellular network traces with realistic delay-sensitive and
background traffic patterns in different scenarios. The outcome presents valuable insights in
the algorithms that will enable low-latency services to be delivered through the 5G network
stack satisfying restrictive envisioned constraints.

Index Terms—5G, SDAP, QFI, QoS, low-latency, BDP, Bufferbloat, BBR, AQM.

1 Introduction

LOW-latency communications present a key use case
in the 5th Generation (5G) cellular network stan-

dard. It is envisioned that many low latency services
will successfully run on the 5G stack (e.g., tactile Inter-
net, Vehicle-to-Everything (V2X) communications, online
gaming, Voice over Internet Protocol (VoIP), etc.), meet-
ing the different delay constraints these services require.

In order to achieve these goals, 3GPP is putting a
remarkable effort trying to mitigate the endogenous
causes that prevent sub-millisecond data delivery by en-
gineering the channel access and designing new physical
layer methods (e.g., mini-slots through new numerology,
uplink grant free transmission instead of Scheduling
Request procedure, pre-emptive scheduling for Ultra
Reliable Low-Latency Communication (URLLC)). Ad-
ditionally, Quality of Service Flow Indicator (QFI) has
been introduced as 5G’s finest grain QoS indicator [1],
along with the new Service Data Adaptation Protocol
(SDAP) sublayer [2] by 3GPP. However, no substantial
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effort has been invested in tackling exogenous causes
(e.g., TCP’s greedy congestion control algorithm), which
are the governing factors of the end-to-end delay. In
fact, 5G networks lack a solution to tackle the currently
biggest challenge for ensuring a deterministic network
latency: the bufferbloat [3]. The term was coined as
the increased latency originated by the presence of ex-
cessive large (bloated) buffers in systems [4], and it is
also a concern in other technologies that rely on QoS
prioritization mechanisms (e.g., IEEE 802.1Q VLAN) [5].
In the presence of large buffers in the bottleneck data
link, TCP’s congestion control algorithm capability of
estimating the available bandwidth gets distorted, and
therefore, increases its sending rate until a packet is
dropped, leading to a plethora of packets at the slowest
link’s buffer (i.e., the bottleneck) during the process. In
order to overcome it, different approaches have been
developed on the wired and IEEE 802.11 domains at
various levels (e.g., Active Queue Management (AQM)
algorithms, TCP Small Queues (TSQ) [6], TCP Segmen-
tation Offload (TSO), Byte Queue Limit (BQL) [7], or
new congestion control algorithms such as BBR [8]).
However, not significant effort has been yet invested in
carefully studying the 5G bufferbloat specifities. Thus,
in this paper, we merge the most advanced principles
applied nowadays for fighting the bufferbloat with the
current state of the art in 5G low-latency solutions, and
provide a thorough study of their effects on the 5G stack.

The bufferbloat in 5G networks is expected to specif-
ically occur at the RAN since (i) RANs are nowadays
deployed with large buffer capacities in order to com-
pensate the data bandwidth variance caused by the
physical radio channel; and, (ii) the packet forwarding
speed capacities of the contemporary wired data trans-
port technologies surpass that of the wireless technolo-
gies, effectively forming the data traffic bottleneck at
the RAN. In fact, bulky services will try to monopolize
the access to the wireless resources due to its inherited
greedy TCP’s congestion control nature, bloating the
buffers on their way and impeding a rapid low-latency
packet delivery of any other flow that traverses the same
data path. On one hand, bloated buffers guarantee a
full radio channel utilization. On the other hand, if in
order to avoid the buffer bloating, the buffer capacity
is restricted, a resource under-utilization scenario might
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happen due to the dynamic nature of the radio data
link in cellular networks, which alters the radio channel
capacity. Therefore, the objectives to fulfill are (i) to fully
utilize the radio channel in order to avoid squandering
wireless resources; and, (ii) to reduce the delay to the
service time in order to avoid the queuing sojourn time.

In this paper, we devise 5G-compliant queue manage-
ment solutions that achieve high throughput, while suc-
cessfully delivering low-latency traffic1. This is achieved
through the following contributions:

• We propose queue management solutions that
avoid large queue sojourn times inherited from the
bufferbloat problem considering (i) an extension of
the SDAP sublayer; (ii) pacing capabilities; and (iii)
TCP’s transport layer congestion control algorithms
(i.e., BBR and CUBIC).

• We extensively emulate and compare the proposed
solutions using real cellular network traces with
realistic delay-sensitive and background traffic pat-
terns in distinct scenarios. The total radio link chan-
nel utilization and the low-latency flow delay are
measured and analyzed.

The rest of the paper is structured as follows: Sections
2 and 3 describe the bufferbloat problem inherited from
the actual 5G QoS scenario foreseen by 3GPP. The pro-
posed solutions to tackle the bufferbloat are presented
in Section 4. Section 5 describes the evaluation frame-
work, while in Section 6 the emulated results are shown
and analyzed. This paper ends with the conclusions in
Section 7.

2 Background on 5G QoS model
The ambitious objective of 3GPP of a standard capable of
successfully covering many use cases, inherently creates
a complex QoS scenario that is meticulously described
in [1]. In the following, we present the key aspects of
such 5G QoS scenario for the downlink, while a similar
approach applies to the uplink. Packets arrive from
the Data Networks (DN) through the N6 interface to
the User Plane Function (UPF), where the first buffer
that a data packet will encounter in its path to the
User Equipment (UE) is located. The UPF identifies and
segregates these data flows based on the configuration
received from the Session Management Function (SMF).
SMF is responsible for, among other functions, the UE IP
address management, the control part of policy enforce-
ment and QoS, and managing the Packet Forwarding
Control Protocol (PFCP) session. PFCP session describes
how packets should be identified and marked with its
QFI through the Packet Detection Rule (PDR), policed
through the Multi-Access Rule (MAR), forwarded based
on the Fowarding Action Rules (FARs), tagged based on
the QoS Enforcement Rules (QERs) and lastly reported
using the Usage Reporting Rules (URRs) [1] [10]. This is

1. We study the bufferbloat phenomenon as the main 5G exogenous
delay cause. The equally important 5G endogenous delays (e.g., non-
scheduled access [9]), are out of the scope of this paper.

Fig. 1. Simplified 5G QoS downlink block diagram with the entities with
buffers and PDU session, QoS flow and Data Radio Bearer abstractions.

the first entity in the 5G downlink scenario where traffic
engineering techniques and packet buffering take place
as depicted in Fig. 1.

QFI is a 6 bit field (i.e., 26 = 64 indicators with
different priorities can be defined). Every QFI is asso-
ciated with a different characteristic according to [1]
among which, the maximum data burst, the resource
type, the priority level, the Packet Delay Budget (PDB)
or the Packet Error Rate (PER) can be highlighted. Three
different resource types are described: Guaranteed Bit
Rate (GBR), Non-Guaranteed Bit Rate (Non-GBR) and
Delay-Critical GBR [1]. The priority level indicates the
weight of the packet for scheduling purposes. The PDB
is the upper bound delay permitted, measured from
the N6 interface until the UE [1]. It is also taken into
account to determine the scheduling weight and HARQ
retransmissions [1]. Although such measurement covers
the 5G network, it does not consider the end-to-end
delay of the user application. The PER is defined as the
number of packets processed by the RLC sublayer of
the sender, divided by the number of packets delivered
to the PDCP sublayer at the receiver. According to [1],
a single UPF or multiple UPFs can be provided for a
given PDU session. The UPF selection is decided by the
SMF. If deterministic low-latency is required, the UPF
will be created as close as possible to the 5G Access
Network (5G-AN). Software Defined Networks (SDN)
will provide the possibility of instantiating and scaling
entities “on the fly", therefore enabling the relocation of
UPFs, and thus reducing the latency, as demonstrated in
[11] and described by ETSI in [12].

Packets will then arrive to the SDAP sublayer at 5G-
AN [2] (c.f. Fig. 1), where the second buffer that a
data packet will encounter in its path to the UE is
placed. A SDAP per PDU Session is described in [2],
even though it is mentioned that other implementations
are possible. RRC configures this sublayer to map the
QFIs assigned by UPF into Data Radio Bearers (DRBs)
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[13]. A maximum of 64 QFIs and 8 DRBs are allowed
per UE [13]. Therefore, a many to one mapping will
inevitably occur at the SDAP sublayer and data packets
marked with different QFIs will inevitably share queues.
3GPP defines the SDAP raison d’être as a simple mapper.
This implies that a First In First Out (FIFO) structure
is foreseen since no scheduling requirement is enabled.
However, if heterogeneous traffic delay and priority
constraints must be met, mobile network operators will
deliver a packet scheduling solution that can selectively
forward packets with different requirements, since once
a packet is assigned to a queue, segregating it according
to their QFI can be costly and complex. Moreover, if a
scheduler is not implemented at the SDAP sublayer, the
only possibilities for traffic engineering where buffering
occurs is the UPF [10] and the RLC [14] as seen in Fig. 1.
Since the UPF network function and the RLC sublayer
are not contiguous, the delay for communicating both
entities may be fatal if 5G low-latency requirements must
be met. Therefore, we enhance the standard SDAP with
different queues according to the tagged QFI, and add
scheduling capabilities in order to achieve a more fine-
grained packet forwarding mechanism.

Once the packets are mapped into a DRB, they are
forwarded to the RLC sublayer, where data is buffered,
segmented and the RLC header is added in the trans-
mission side. It has to be noted that there will be a RLC
entity per UE and DRB. This is the last queue foreseen
by 3GPP since MAC is not provided with one, and we
can neglect the HARQ queue since it does not consume
data but rather retransmits it.

3 Related Work
In 5G, despite of the low-latency requirements [1], un-
fortunately no substantial effort has been invested in
understanding and reducing the bufferbloat problem.
This will be of outstanding importance for next gen-
eration services that require low-latency in order to
function correctly (e.g., tactile internet, VoIP, online gam-
ing, etc). New initiatives (i.e., the Open RAN (O-RAN)
[15] alliance) are enabling the possibility of embedding
intelligence into the RAN, aiming to improve the latency
requirements of different services. Data traffic patterns
are predicted and actions are taken accordingly (e.g.,
through dual connectivity). However, such approach
does not scale once the traffic exceeds certain threshold.
Additionally, slicing has emerged as a possible solution
to serve low-latency traffic, where the flows are segre-
gated according to their requirements [16]. Nonetheless,
due to the finite number of DRBs (i.e., 8 per UE),
flows will start sharing buffers along the data path once
their number exceeds the maximum amount of available
DRBs, following the pigeon hole principle. Moreover, the
flow to DRB assignment is not a trivial task. Hence, the
default assignment of non-classified flows is to the Best
Effort DRB. Additionally, in order to maximise revenue,
operators will need to maintain the queues uncongested

to accept as many services as possible, fulfilling their
latency requirements.

3.1 Tackling the bufferbloat phenomena from the queues perspective

In order to fight against the bufferbloat problem in
the Internet routers, AQM was developed. A natural
deployment point for AQM in 5G is the RLC sublayer, as
it is the last buffer before the data link bottleneck (i.e., the
wireless data link is considerably slower than the wired
data link). In [17], applying the RED algorithm [18] at
RLC is proposed. RED discards packets probabilistically
according to the actual average number of packets in the
buffer. When the buffer is empty, RED accepts all the
incoming packets. As the buffer occupancy increases, so
does the probability of rejecting the following incoming
packets. If the buffer reaches the full state, the following
packets are rejected. Since most of the TCP’s congestion
control algorithms’ implementation deliver their packets
in bursts, RED believes that the queue is approaching
to a congestion state, its packet discard probability in-
creases and, consequently, it starts discarding packets
misinterpreting the congestion state. In addition, RED
needs some tuning parameters, which made it effectively
useless if the traffic patterns were not carefully studied
beforehand, avoiding its wider adoption.

CoDel [19] is a newer AQM algorithm that aims to
improve RED’s shortcomings. CoDel is a packet sojourn
time based algorithm that discards packets in order to
inform the sender’s TCP congestion control algorithm
that excessive buffering is taking place. It is one of the
best known AQM, and a widely implemented solution
to tackle the bufferbloat problem [20]. It is governed
by two variables, the interval time and the target time.
CoDel inserts a timestamp in every packet that is en-
queued. During the interval time, the sojourn time of
every egressed packet is measured, and the minimum
value is saved. If after the interval time, the minimum
saved value is above the target time, the next packet
is dropped as a mechanism to inform the sender TCP
flow that excessive queuing is happening. The interval
time is then decreased by 1/sqrt(x), where x starts at 2
and increases every interval where the desired sojourn
time is not reached. The interval time is recommended to
be configured at 100 ms, while the target time is recom-
mended to be a 5% of the interval time. More details can
be found in [19]. In conjunction with a modified Round
Robin scheduler known as Deficit Round Robin [21],
the FlowQueue-CoDel Packet Scheduler (FQ-CoDel) [22]
is formed. FQ-CoDel is nowadays the AQM algorithm
activated by default at some embedded router projects
[20]. In the 5G context, FQ-CoDel has been mentioned
in [23]. There, a FQ-CoDel entity is proposed at the UPF
network function. In order to generate the bottleneck
at the UPF, so that FQ-CoDel can effectively work, the
Round-Trip Time (RTT) of the packets is measured, and
the optimal egress rate per flow is calculated. Packets
are then delivered at a slightly smaller transmission
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rate than the calculated rate, effectively moving the
bottleneck from the 5G-AN to the UPF. Unfortunately,
no results are provided for such an approach. Moreover,
this method presents some weak points. Firstly, 5G data
rate changes abruptly due to the radio channel condi-
tions. If the amount of resources for one UE fluctuates,
the UPF will notice such change with a considerable
delay, during which the channel will be underutilized or
queues will start forming. Additionally, the information
will be influenced by the downlink and uplink delay,
which are asymmetric and non-negligible. Moreover,
some newer protocols (e.g., QUIC, SCTP) that do not
rely on feedback from the transport layer protocol, but
from the application level, cannot be correctly managed
with such an approach. Hence, such an scenario has been
discarded in our work.

Traffic with different constraints needs to be segre-
gated and scheduled accordingly in order to meet their
requirements correctly. Higher priority traffic should
avoid the large sojourn times that are endogenous to
the phenomenon of sharing queues with bursty flows.
Fairness also plays a major role since flows transporting
big data quantity should not monopolize the access to
transmission resources. In order to address this problem,
one of the first algorithms developed was the Stochastic
Fair Queuing (SFQ) [24]. The SFQ segregates the arriving
flows with a hashing function and forwards them to
a statically allocated array of queues. A Round Robin
scheduler egresses later the packets fairly among each
active queue. Since hashing collisions may occur, SFQ
periodically alters a perturbing value that is used in
the hashing process in order to avoid a possible hash
collision. SFQ at the PDCP sublayer together with a
self developed algorithm has been explored in [25] with
promising results. There [25], a dynamic RLC queue is
implemented according to the delay that packets expe-
rience at the RLC queue. If the delay is above the target
delay, the queue capacity is shrunk; however, if the delay
is below the target delay, the queue capacity is increased.
In order to operate correctly, a cross communication
between the PDCP and the RLC sublayers is needed.
The algorithm is presented under the name of DynRLC
and it is successfully tested on the open source LTE
OpenAirInterface [26] project.

Another important mechanism to manage the low-
latency requirements explored in the literature is the
limitation of the queues. Since packets that are aggre-
gated into one queue are treated equally, maintaining
the queues as empty as possible enables the possibility
to avoid big latencies associated with big queue sojourn
times. In recent years, this principle has been consis-
tently applied at different levels in the Linux kernel’s
TCP/IP stack with great success [6] [7], as well as in
the radio framework as presented in [27] [28], and in
our preliminary work [29]. In [27], the traffic control
mechanisms provided by the Linux kernel stack applied
to the cellular context are analyzed. Such an approach
exploits the fact that the worldwide popular Android

OS is based on the Linux kernel in order to propose
a realistic solution. Network traffic will flow through
the Linux kernel’s IP stack where the traffic control (tc)
mechanisms can be applied, among which the BQL [7]
algorithm is tested. The BQL algorithm resizes the queue
to its optimal byte size according to the last egress rate.
Such a dynamical mechanism has proved to be adequate
since a static small queue may reject packets before
achieving the full transmission rate capability [30]. Even
though good simulation results were obtained, the study
considers the cellular access network as a queue, while
in reality, the QoS queuing is composed of multiple
hierarchical queues [1] (c.f. Fig. 1). All the traffic inside
the access network is treated equally, which deprives
the possibility of a finer grained segregation and more
refined QoS guarantee. In [28] a Q-learning algorithm for
limiting the MAC queues of the IEEE 802.11 protocol
is presented under the name of LearnQueue. While very
interesting results are obtained through a backpressure
mechanism, such design is not possible at 5G since its
MAC sublayer is devoid of any queue. Additionally,
a reinforcement learning method, even though it can
theoretically maximize the total reward needs significant
exploration time. If a new actor with not foreseen char-
acteristics joins in, the algorithm needs some time until it
can correctly assign the resources. In an heterogeneous
scenario as 5G, this can lead to a fatal transition time
until the service can correctly be served. In any case,
such an approach definitely deserves more research on
the 5G field. The benefits of AQM algorithms inside the
5G stack are also analyzed in our preliminary work [29].
However, even though the problem is well identified, it
lacks from a dynamic solution that can fit in nowadays
cellular networks. Therefore, in this paper we propose,
implement and analyze different novel solutions, as well
as the ones proposed in the literature [7] [19] [25], and
tackle the inherent dinamicity problem of 5G networks
with different queueing levels and real traffic patterns.

3.2 Tackling the bufferbloat phenomena from the congestion control
algorithm perspective

Some UE vendors rely on limiting the congestion win-
dow in order to inform TCP’s congestion control al-
gorithm that congestion is happening, and therefore,
to avoid excessive bufferbloat in their network [31]. A
more refined way is the new TCP BBR algorithm [8].
BBR is based on the Bandwidth Delay Product (BDP),
as opposed to loss-based congestion control algorithms.
The data in-flight is calculated as the result of multi-
plying the Round Time Propagation (RTprop) and the
Bottleneck Bandwidth (BtlBw) available for each flow.
The BtlBw assures that the full link is utilized, while
the RTprop guarantees enough in-flight data to prevent
queue starvation on the bottleneck link. BBR [8] firstly
measures the available bandwidth through the increase
of RTT while pumping packets. After saturating the data
link, it starts a depletion process in order to decongest
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the buffers that were congested during the first BDP es-
timation. Once in steady state, it periodically sends more
packets to verify that it is working at the maximum BDP.
If the RTT increases, it can be translated as the result of
the self created congestion, and a depletion process is
followed. BBR updates its RTprop and its BtlBw every
received ACK. On one hand, RTT is composed of RTprop
+ η. RTprop is a physical network property that just
changes with the path, while η is mostly affected by
the sojourn time experienced at the queues. Therefore,
the lowest RTT is the value that more closely resembles
to RTprop. This value is taken as the RTprop used for
calculation over a window time which can typically vary
from tens of seconds to minutes. On the other hand,
the delivery rate can be calculated as delivery_rate =
∆data_delivered/∆t. In any case, the delivery_rate can
never surpass the BtlBw, therefore, BBR updates BtlBw
to the maximum value observed during a window time
which is typically six to ten RTTs. In this way the values
of the RTprop and BtlBw are dynamically adapted to
possible data link alterations. In order to assure that such
values are correct, every 10 seconds a 200 ms timeframe2

is utilized for recalculation. Lastly, BBR transmits the
packets through a pacer instead of in bursts in compar-
ison to other TCP congestion control algorithms (e.g.,
CUBIC), since it tries to match its egress rate to the actual
bottleneck bandwidth [8] without creating queues.

4 Proposed low-latency queue management algorithms
As previously mentioned, any proposed solution should
fully utilize the radio link channel, while reducing the
delay to the service time. Due to the dynamicity in
5G’s data link bandwidth and the data traffic patterns,
the following challenges stem from the aforementioned
objectives:

• Estimating the time-variant optimal buffer occu-
pancy for SDAP and RLC sublayers.

• Delivering the packets from the UPF/SDAP entities
to the SDAP/RLC sublayers at the optimal pace.

5G cellular networks consist of at least three levels of
queuing: RLC sublayer, SDAP sublayer and UPF net-
work function buffers. Every buffer must always contain
enough bytes to serve the next entity request, but any
additional byte will just cause delay and would better
be kept at upper layers. SDAP and RLC buffers need to
dynamically adjust its capacity according to the data link
bandwidth (i.e., the radio link capacity and the number
of Resource Blocks (RBs) assigned). Additionally, in an
optimal scenario, packets should flow through a pacing
algorithm as such a behaviour maximises the possibili-
ties of avoiding a congested buffer. In the next subsec-
tions we propose and analyze different solutions that
alleviate the actual bufferbloat phenomena at RLC and
SDAP sublayers, enabling low-latency time constraint

2. These values are taken from the Linux kernel version 4.15.0-60-
generic.

services to successfully share the 5G stack with other
services.

4.1 Proposed RLC queue management algorithms

As the wireless domain is significantly slower than
the wired domain, the bottleneck, and therefore the
bufferbloat, in actual cellular network systems resides
at the entity that holds the last buffer in the wired do-
main (i.e., RLC buffer). Thus, a solution for tackling the
bufferbloat problem in 5G must inevitably start reducing
the buffers’ occupancy at RLC. A naive solution at RLC
sublayer would assign a slightly superior buffer size per
DRB than the maximum possible delivery rate to every
UE under the best radio conditions, and if it is surpassed,
packets will be dropped. Such a solution is implemented
in OpenAirInterface [26]. However, such an approach
creates big sojourn times at the RLC buffers if the MAC
scheduler assigns a partial amount of available RB to
the UE (since multiple UEs compete for the available
bandwidth), or if suboptimal radio channel conditions
occur. Additionally, the foreseen 5G softwarization capa-
bility will be other factor to consider as it may also alter
the resources assigned to a UE abruptly (e.g., through
slicing). Such a problem is also present at the Linux
kernel IP stack. Before the Network Interface Controller
(NIC), there is the so-called driver queue, where packets
are accumulated and from which the NIC is fed. On
one hand, if the NIC wakes up and tries to pull data
off the driver queue but there are no packets in it, a
transmission opportunity will be squandered and the
throughput will decrease. On the other hand, if too
many packets are present in the driver queue, a large
sojourn time will occur. In this scenario, Dynamic Queue
Limit (DQL) [32], which is an implementation of BQL,
appeared with the aim of limiting the number of bytes
in the driver queue without starving it and avoiding
excessive packet accumulation. After an interval of time,
DQL assesses whether the hardware was starved and the
queue limit was reached, in which case, the queue limit is
increased. If there are still bytes to transmit in the queue,
the queue limit is decreased by the number of bytes not
transmitted yet [32]. Taking this into account, and since
the RLC buffer, together with the driver queue, is the
last buffer in the data path, we propose the Dynamic RLC
Queue Limit (DRQL).

The DRQL algorithm (c.f. Algorithm 1) consists of
the following variables: limit that represents the queue
limit in bytes, dequeued_bytes that provides the bytes that
were forwarded, last_time that is a timestamp since last
interval, T that represents an interval during which the
sojourn time of the packets is measured, and min_val
that saves the minimum sojourn time during an interval.
During initialization, T is set to the system Transmission
Time Interval (TTI), min_val to the maximum value
supported by the type of the system, dequeued_bytes
to 0, limit to the maximum RLC queue capacity and
last_time to the actual time. The algorithm works in
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Algorithm 1 DRQL: Dynamic RLC Queue Limit pseudo-
code

1: T ← TTI,min_val← INF, dequeued_bytes← 0
2: limit←MAX_V AL_LIMIT, last_time← now
3: procedure DEQUEUED(bytes)
4: dequeued_bytes← dequeued_bytes+ bytes
5: update limit_reached
6: update remaining
7: buffer_starved← no remaining AND limit_reached
8: if buffer_starved then
9: increase buffer’s limit

10: else if remaining then
11: if min_val greater than remaining then
12: min_val← remaining
13: if last_time + T greater than now then
14: last_time← now
15: limit← limit−min_val
16: min_val← INF
17: else if last_time + T greater than now then
18: last_time← now
19: min_val← INF

the following way: on one hand, the SDAP sublayer is
responsible for continuously querying the limit value
to the RLC, as well as the actual size, and deciding
whether to send more bytes or keep them. On the other
hand, the MAC sublayer is responsible for calling the
DEQUEUED procedure whenever it dequeues data from
the RLC buffer, which will happen under hard real-time
constraints as MAC will call the procedure every TTI.
The DEQUEUED procedure first checks if the limit was
reached during that interval of time (line 5), and whether
there are remaining packets at the queue (line 6). Next,
it checks whether a queue starvation happened (line 8).
If this is the case, the buffer limit is increased as starva-
tion happened and some transmission possibilities were
squandered. If the buffer limit was reached, and no more
data remains at the queue (definition of buffer_starved,
line 7), the queue could had been provided with more
data, and some bandwidth has been squandered. There-
fore, the buffer limit is immediately increased. If, on the
contrary, some data still remains in the buffer (line 10),
and it is smaller than the min_val, this value is assigned
to min_val. If after an interval time (line 13), there has
always been remaining data, the limit value is reduced
by the lowest value observed during that interval, and
kept at min_val. If the limit is not reached and there
is no remaining data (i.e., when the number of bytes
that arrived at the RLC buffer were not enough to start
accumulating), the internal timer is simply reset and the
min_val is set to INF as all the data that was forwarded
into the buffer on that interval was successfully delivered
to the PHY layer.

RLC’s optimal queue size can also be modeled using
queuing theory as depicted in Fig. 2, where the SDAP
and the RLC sublayer queues are involved. Based on
queuing theory from [33] and [34], and using 5G’s
specificities, we can model λ as the arrival rate, µ as
the service rate of each server and K as the number
of servers in the system. Additionally we define ρ =

λ/(Kµ) as the utilization factor. The Little’s Theorem [34]
(for deterministic as well as stochastic flows) determines
that the average number of customers in the queue (i.e.,
N ) results from the equation

N = λT (ρ) (4.1)

where T (ρ) is the mean system response time (the sum
of the sojourn time at the queue and server time). Since
server time cannot be reduced, the minimum mean
response time occurs when the sojourn time is 0, which
happens when there are no customers in the queue and,
therefore, ρ = 0, which implies that T (0) = 1/µ. If we
consider a deterministic arrival and a deterministic ser-
vice, we can model our system as a D/D/K system. This
is a simplification in a 5G system, but the deterministic
approach is very useful due to the fact that according
to the Law of Large Numbers [34], some conclusions
may be extended to stochastic systems. As there are
K servers, the total system service capacity is equal to
Kµ and, therefore, λmax = Kµ if the sojourn time is
to be minimized. The behaviour of the system can be
graphically understood looking at Fig. 3, where there
exists two inaccessible regions. On one hand, no matter
how many customers get in the system, the utiliza-
tion factor ρ cannot surpass full normalized utilization
(i.e., the region on the right of ρ(1.0)). If the arriving
customers rate (λ) is superior to the service time (µ)
times K (i.e., the serving rate), the mean response time
(T (ρ)), tends to infinity as customers start accumulating
at the queue. On the other hand, the mean response
time of the system (T (ρ)) cannot be reduced beyond
the serving time (i.e., the region below T (0)). With this
constraints, the optimal point is the β knee (with ρ = 1,
T (ρ) = T (0) = T (1.0)), where the response time is the
minimum while the utilization is maximum. From (4.1),
for the optimal operating point with λmax = Kµ, we get
the intuitive result of N∗ = K (i.e., no more customers
than servers). Conversely, the BDP (the BDP is in fact the
optimal theoretical point where no queue is generated
while enjoying full bandwidth as demonstrated by [35])
is defined as the Bottleneck Bandwidth (BBandwidth) times
the No-Load Delay (NLDelay) (i.e., the time needed to
physically traverse the path). In this case, the NLDelay
is 1/µ and the BBandwidth is Kµ, and therefore, the
BDP = K, which results in BDP = N∗. This is a very
valuable result that can be intuitively well understood.
We want to maintain our server fully utilized, while the
customers should suffer zero queue sojourn time. We are
applying the principle of keeping the pipe full, but not fuller
meticulously described by Kleinrock at [33].

In 5G systems, on one hand the radio channel quality
is delivered through the Channel Quality Indicator (CQI)
in uplink to the 5G-AN by the UE. The CQI index is a
scalar, the value of which is translated into a modulation
(i.e., QPSK, 16QAM, 64QAM or 256QAM) and from it,
to a Modulation and Coding Scheme (MCS) index [36].
The MCS index is then converted to the total number
of transport bytes, depending on the RBs assigned by
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Fig. 2. Simplified data path model for SDAP and RLC sublayers queues with
multiple QFIs that converge to one Data Radio Bearer.

Fig. 3. A D/D/K Deterministic Queuing System.

the MAC, to assure an error rate lower than 10% [36].
With this metric, the total radio data link bandwidth can
be computed. On the other hand, the radio slot length
is known, and since the serving time of the packets
is clearly governed by the slot duration (the physical
propagation delay and the processing time of the packets
can be neglected) the delay metric can be obtained. In
5G, the slot duration can vary from 1 ms to 62.5 µs
at the cost of utilizing more frequency spectrum (i.e.,
from 15 kHz to 240 kHz) [37]. Since the lowest common
denominator is 1 ms for all the slot durations, we can
calculate the optimal BDP every 1 ms by multiplying
the maximum slot duration (i.e., 1 ms) with the data
link bandwidth. In essence, every 1 ms a new D/D/K
queuing system is calculated, where every server µ,
can process the minimum number of information (i.e.,
one bit) per millisecond, and the number of servers K
varies with the time according to the aforementioned
conditions, with a serving time equal to the maximum
radio slot duration (i.e., 1 ms). Modeling the arrival and
the service time as deterministic is a simplification. The
various retransmission mechanisms (i.e., HARQ/NACK
and RLC AM) or an abrupt change in the number of
RBs available per RLC buffer can impact the sending
rate. However, the conclusions obtained from deter-
ministic model assumptions have already shown their
benefits in real network (i.e., stochastic) deployments.
For example, BBR [8] uses a deterministic queue to
model the network’s behaviour even though the network
bandwidth and RTT are non-deterministic (e.g., a path
may be shared with other flows, altering the available
bandwidth and RTT). The continuously newly estimated
BDP, eventually determines its packets forwarding pace.

Algorithm 2 5G-BDP: 5G Bandwidth Delay Product
pseudo-code

1: offset← NORMALIZED_OFFSET
2: bytes_tx← 0, bytes_to_send← 0, last_time← now
3: procedure SET_VALUES (remaining, channel_capacity)
4: if channel_capacity greater than remaining then
5: bytes_to_send← channel_capacity − remaining
6: else
7: reset bytes_to_send
8: reset bytes_tx
9: last_time← now

10: function GET_OPTIMAL_VALUE
11: update elapsed_time
12: update normal_tti
13: normal_tti← normal_tti+ offset
14: update soll_tx
15: if soll_tx greater than bytes_tx then
16: return soll_tx - bytes_tx
17: else
18: return 0

Aiming to work on the optimal BDP operation point,
we present a cellular BDP algorithm denoted as 5G-
BDP (c.f. Algorithm 2). During the initialization, the
variable offset is set to a value in the range of [0,1.0).
This value is aggregated to the normalized TTI value in
order to reduce the starvation possibility (line 13). The
normalized TTI represents the normalized time elapsed
since last TTI. The variables bytes_to_send and bytes_tx
are set to 0 and the last_time to now.

MAC sublayer calls the SET_VALUES procedure every
TTI to calculate the optimal number of bytes to forward
(i.e., bytes_to_send), to reset the number of packets trans-
mitted in the last interval (i.e., bytes_tx) and to save the
actual time. For this, the CQI index received from the UE
together with the last number of used RBs are converted
into bytes, which is passed to the function through
the channel_capacity variable together with the remaining
number of bytes at the RLC buffer (i.e., remaining). The
number of remaining bytes in the queue informs the
algorithm how many bytes are accumulated at the RLC
buffer in order to predict the optimal quantity of bytes
to forward.

In order to forward the packets at a correct pace from
the SDAP buffer to the RLC buffer, the SDAP sublayer
calls the GET_OPTIMAL_VALUE function periodically
with a period smaller than a TTI. It calculates the nor-
malized value of the time elapsed since the last time that
new values arrived (i.e., elapsed_time) at the SET_VALUES
procedure, and determines how many bytes could had
been forwarded from the SDAP towards the RLC within
this duration (i.e., soll_tx). If the amount of already
transmitted bytes exceeds this latter value, no packets are
forwarded to the RLC buffer. Otherwise, the difference
between the number of bytes that could have been
transmitted and the actual amount of transmitted bytes
is returned (line 16). With this information, the SDAP
determines how many packets can be dequeued. There
might exist a difference between the estimated BDP and
the real BDP due to divers factors as previously men-
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tioned. 5G-BDP minimizes the impact of this difference,
by using the remaining number of bytes at the RLC
buffer to calculate the bytes_to_send every TTI. In this
way, the queue formed when the BDP is overestimated
(i.e., the real BDP is smaller than the calculated BDP
and more data than the data pulled by the MAC has
been forwarded), is reduced in the next TTIs, as no
more data will be forwarded until the buffer is depleted
below the channel_capacity as described at Algorithm 2
in procedure SET_V ALUES.

5G-BDP differs in various ways from DRQL. DRQL
defines a limit, which controls the amount of data to pass
to the RLC. However, unlike 5G-BDP, this limit is not
updated based on the BDP. Instead, it uses a heuristic to
update that limit value based on the buffer state. 5G-BDP
on the contrary uses the channel capacity value and the
RLC buffer state to control the SDAP-RLC data transfers.
In addition, 5G-BDP uniformly distributes the sending
of packets to the RLC within a TTI, which defines a
pacing mechanism at SDAP allowing prioritization of
low-latency traffic arriving during that TTI. To do this,
5G-BDP forwards packets according to the number of
bytes that could had been used for the elapsed time since
last TTI (e.g., if 0.5 ms elapsed since last TTI and the BDP
is 2200 bytes/ms, 1100 bytes can be forwarded).

4.2 Proposed SDAP queue management algorithm

If a containment mechanism is implemented at the RLC
buffer, the bufferbloat will be transferred to the next
queuing level as demonstrated at [29]. If, on the contrary
no containment mechanism is implemented at the RLC
sublayer, any attend to tackle the problem at the SDAP
will be superfluous. Therefore, any queue management
algorithm proposed at the SDAP sublayer must be com-
bined with a containment mechanism at the RLC in
order to be effective.

For scenarios where a quick communication in com-
parison with the TTI between the UPF and the 5G-
AN can be established, we present the UPF-SDAP Pacer
(USP) algorithm. USP forwards the packets from the UPF
to the SDAP at a rate that avoids building large queues at
the SDAP sublayer, while maintaining its buffer always
occupied. Algorithm 3 illustrates our proposal. T repre-
sents a time interval, and num_ticks is the number of
times that the UPF queried the SDAP sublayer during
the last T interval. The number of dequeued bytes so
far is saved at dequeued_bytes, while the amount of
dequeued bytes at the last T interval are saved in the
dequeued_bytes_last variable. The saturation_detected
represents a flag to inform if the RLC buffer stopped
accepting data, and the optimal_occ represents the num-
ber of optimal number of bytes that the SDAP buffer
should have in every moment. The UPF network func-
tion asks to the USP regarding SDAP’s actual size, as
well as the optimal SDAP occupancy (line 17). In case
that the actual occupancy is below the optimal occu-
pancy, enough packets to reach the optimal occupancy

Algorithm 3 USP: UPF-SDAP Pacer
1: T ← TTI, num_ticks← 0, dequeued_bytes← 0
2: dequeued_bytes_last← 0
3: saturation_detected← False
4: optimal_occ←MAX_OCC
5: procedure DEQUEUED(bytes)
6: if saturation_detected then
7: saturation_detected← False
8: calculate optimal_occ
9: last_time← now

10: dequeued_bytes_last← dequeued_bytes
11: reset num_ticks
12: else if now greater than last_time+ T then
13: last_time← now
14: dequeued_bytes_last← dequeued_bytes
15: reset num_ticks
16: dequeued_bytes← dequeued_bytes+ bytes

17: function GET_OPT_OCCUPANCY
18: increment num_ticks
19: if now greater than last_time+ T/2 then
20: if once per T then
21: optimal_occ← clamp(2 ∗ optimal_occ)
22: return optimal_occ

are sent. Every time that the UPF executes a query
to get the optimal occupancy (line 17), the num_ticks
value at USP is increased (line 18). It has to be noted
that this value may suffer deviations in soft real-time
environments, since the deadlines are non-deterministic
in such environments. On the other hand, the SDAP
sublayer will set the saturation_detected flag to True once
the RLC buffer reaches a congested state. Once the RLC
buffer accepts more data again, SDAP will dequeue data
from its queue and the DEQUEUED procedure (line 5)
of the USP algorithm will be called. The DEQUEUED
procedure will compare whether a saturation state was
reached in the previous interval (line 6). If this is the case,
the flag will be reset and a new optimal occupancy value
for the SDAP queue will be calculated (line 8) according
to the bytes accepted by the RLC buffer in the previous
interval and the number of times that UPF asked to the
SDAP for the opt_occupancy of the queue (lines 17 - 22).
The optimal occupancy of the queue is doubled after half
of the TTI is consumed (i.e., 0.5 ms for 4G systems where
the TTI last 1 ms) (line 19), adopting a more aggressive
pacing strategy than 5G-BDP. Note that it will just be
doubled once every T . This mechanism is an heuristic
that assures feeding the SDAP sublayer with enough
bytes, even in the case where, due to the soft real-time
environment, the query time from the UPF may suffer
deviations. It also assures that in case that no saturation
was detected in the DEQUEUED procedure, a saturation
state will be found in the near future if enough packets
are forwarded. The optimal_occ value is clamped not to
grow indefinitely in case where no saturation is reached
or to fall to zero in case that no packets were dequeued.

This algorithms differs from the 5G-BDP in various
ways, even though the idea of maintaining the queue
size full but not fuller [33] remains. In the first place, it
is of vital importance not to starve the SDAP queues,



IEEE TRANSACTIONS ON MOBILE COMPUTING 9

since that may also starve the RLC queues and ultimately
reduce the bandwidth. Therefore, in a soft real-time
communication system (i.e., UPF may not always have
the same amount of possibilities to transmit packets
to the SDAP), as the one between the UPF and the
SDAP, USP carries a more aggressive packet forwarding
pacer than 5G-BDP, with the objective of maintaining the
SDAP queue at an optimal value, but never to eradicate
it completely. Secondly, no beforehand information about
the bandwidth is shared (e.g., CQI index). USP is not
provided with more information rather than the actual
status of the SDAP queues, and the number of times
that UPF queried the SDAP sublayer during the last
interval time. With this data it calculates the optimal
queue occupancy at the SDAP sublayer.

5 Evaluation Framework
In order to validate and evaluate the proposed algo-
rithms, we developed a hierarchical queuing system3

that emulates the queueing scenario described by 3GPP
[1]. A comparison of the 5 algorithms (i.e., 5G-BDP,
DRQL, DynRLC, CoDel and USP) used in this work is
provided in Table 1, where the main characteristics of
the algorithms can be observed. In order to optimize
the number of packets at the RLC queue, the cross-layer
communication plays a major role as the information can
rapidly flow between close entities. This characteristic
makes 5G-BDP, DRQL and DynRLC significantly faster
in comparison with BBR. As previously mentioned, a
pacing algorithm augments the possibilities of delivering
a high priority packet within the actual TTI, giving an
advantage to 5G-BDP over their competitors. CoDel is
announced as a knob-less solution. In the CoDel RFC
[19], it is recommended to set the interval time value
to 5 ms, although no theoretical background for such
number is given but rather a heuristic. Even though
such value has been proved to work correctly on the
wired domain and in some open source IEEE 802.11
implementations has been adopted as the default AQM
algorithm [20], it does not address 5G specificities (e.g.,
the interval time or the sojourn time). In the same way,
there are some variables that need to be preconfigured
at DynRLC for a correct functioning. Assigning correctly
its values in a highly dynamic scenario such as 5G, is a
non trivial task that still remains open. We also present
USP, which is an algorithm to be placed between the
UPF and the SDAP entities. USP was designed with the
same principle as 5G-BDP (keep the pipe full, but not fuller),
and, therefore, it shares its main characteristics with 5G-
BDP. Lastly, CoDel is the only algorithm that discards
packets to inform the congestion control algorithm that
excessive packet accumulation is happening, forcing to
resend packets from the transport layer.

In our experiments, we define two scenarios (c.f. Fig.
4). In the first scenario, two IP flows belonging to two

3. The code used for these experiments can be found at
https://github.com/mirazabal/Dynamic-buffer-TMC

5G-BDP DRQL DynRLC[25] CoDel[19] USP

X-layer comm. Yes Yes Yes No Yes

Pacing algoritm Yes No No No Yes

Knob-less Yes Yes No No Yes

Discard packets No No No Yes (or ECN) No

TABLE 1
Different algorithms used to reduce the flows’ latency.

QoS classes (i.e., two different QFIs) are mapped into 2
different SDAP queues that are lastly mapped into one
RLC buffer. This is the case for services with different
QFIs but sharing a RLC buffer. As mentioned in Section
2, services with different QFIs will inevitably share RLC
buffers, and it is of capital importance to avoid the
bufferbloat problem if different constraints of diverse
services want to be fulfilled. In the second scenario, we
mapped two different flows into one SDAP queue that
is mapped into one RLC queue. Due to the very high
number of flows that are nowadays generated and its
dynamic nature, segregating all flows to distinct QFIs is
unrealistic, due to the limited QFI range. Therefore, some
non-critical low-latency traffic will end up in a scenario,
where the created delays of shared queues may down-
grade the user experience due to the bufferbloat. If the
communication between adjacent sublayers/entities in
the data path (e.g., UPF-SDAP) can be performed within
a TTI, a pacing algorithm that gradually forwards the
packets between these sublayers/entities can be imple-
mented. This increases the chances of delivering a newly
arrived delay constrained packet through the different
queues without suffering big sojourn times. In contrast,
a bulky algorithm forwards all the packets at once (i.e.,
an algorithm that lacks any pacing mechanism), and
therefore, a newly arrived low-latency packet will suffer
a considerable sojourn time, caused by the filled buffer
with the previously forwarded packets from the lesser
priority flows. Therefore, we implement the USP algo-
rithm at the SDAP queues and combine it with the three
methods aforementioned: DynRLC, DRQL and 5G-BDP
at the RLC queues. We also study the BBR case, along
with the vanilla case that represents the basic scenario
described by 3GPP. Furthermore, in case where such a
communication is not possible (e.g., splitted 5G scenarios
or any standard setup where UPF and 5G-AN are sepa-
rated), we place the well known AQM algorithm CoDel
at the SDAP buffers and combine it with DynRLC, DRQL
and 5G-BDP at the RLC buffer, in order to indicate to
the transport layer’s congestion control algorithm of the
sender that excessive buffer accumulation is happening.
A CoDel-CoDel combination is not presented as CoDel is
not a backpressure mechanism and, thus, all the packets
would flow to the RLC, leading to the same results as
in the first scenario. The competing traffic flows (i.e.,
one with low-latency requirements and one with bursty
traffic) emulate a scenario where different flows try to
access the scarce resources in a saturated scenario. The
low-latency traffic is modeled by UDP datagrams that
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Fig. 4. Evaluation framework with 1st and 2nd scenarios.

emulate the traffic of online gaming applications [38].
Based on the traffic characteristics of such applications

derived from real traces [39], we generated packets with
a range of average interval times following a normal
distribution and a standard deviation of 5 ms. The
average interval times evaluated are [20,40,60,70] ms.
The competing greedy flow is modeled using a TCP flow
generated by the iperf3 software with a MTU of 1500
bytes. The choice of TCP as the competing flow resides
in the fact that most Internet traffic is forwarded through
HTTP/2, which relies on TCP [40] as its transport layer
protocol. In order to achieve the steady state and avoid
the TCP slow start, the bursty traffic is generated 5
seconds before the UDP datagrams.

A PC and a Raspberry Pi are used to emulate the 5G
QoS operations and the Data Network, respectively. The
5G QoS emulation PC contains an Intel(R) Core(TM) i7-
7500U CPU @2.70GHz running Ubuntu 16.04, while the
DN is implemented on a Raspberry Pi Model 3 B+ with
a Broadcom BCM2837B0, Cortex-A53 64-bit SoC @1.4
GHz. The DN generates both traffic flows, while the QoS
multiqueueing emulation software runs on the 5G QoS
emulation PC. A TP-LINK TL-WR841N router connects
the DN with the 5G QoS emulating PC through an
Ethernet connection. In order to redirect the packets from
the kernel space to the user space for QoS operations, we
use the NFQUEUE traffic control netfilter queue binding.
All the input packets are forwarded to the user space
through an iptables rule, where the QoS solutions pre-
sented are applied, including the packet forward/drop
decisions (e.g., AQM algorithms may decide to drop a
packet in order to inform the congestion control TCP
algorithm that excessive packet accumulation is taking
place). Every sublayer/entity (i.e., UPF, SDAP and MAC)
runs in a separate thread that executes in an infinite loop.
All the code has been developed in C with efficiency and
portability in mind. For realistic evaluations, we use LTE
traces provided by [39], where the reported CQIs are
converted to data link rates (i.e., they represent the K

value from Fig. 4), that is a function of time and CQI
as explained in Section 4. At [39], statistics from the
base stations are reported in a granularity of 1 second
for 15 minutes and five different cases (i.e., bus, car,
train, pedestrian and static). From these 5 cases, we select
the pedestrian and the train cases as they represent two
completely different circumstances to which the network
will be exposed. Since the conversion from the CQI
index to the MCS index is manufacturer specific, we em-
ployed the well tested values from the OpenAirInterface
project4. For the evaluations, the first 200 seconds of the
traces are used, which correspond to 200 CQI updates
and 20000 MAC scheduling opportunities per run (MAC
scheduler egresses packets every 10 ms in our emulator).
A large continuous simulation was chosen rather than
many short ones in order to take into consideration large
CQI variations, as well as to observe long term effects for
some algorithms (e.g., BBR recalculates each state every
10 seconds).

When the flows arrive from DN to the 5G net-
work emulation PC, they are hashed using the 5-tuple
(source/destination IP address, source/destination port
and type of traffic) as the key for the Jenkins hash
function and classified as an IP tuple flow. We employ a
SFQ [24], which minimizes a possible collision between
different flows while providing an efficient solution.

The UPF network entity gets a transmission opportu-
nity every 1 ms, where a maximum of 10 packets can
be forwarded to the SDAP. As mentioned in Section 2,
the SDAP sublayer maps UPF marked packets into RLC
buffers based on their QFI. Since the egressing scheduler
is not specified by 3GPP, we implement a Priority sched-
uler where low-latency packets are firstly dequeued,
with a capability of egressing 10 packets among active
SDAP queues and its priority every millisecond. The
packets are finally forwarded into the RLC buffer, where
they wait until the MAC sublayer pulls every 10 ms
the amount of bytes requested by the PHY layer. We
implement the MAC scheduler as a Round Robin sched-
uler, where the number of bytes that can be egressed is
determined by the radio channel conditions according to
[39]. Since the bottleneck resides at the MAC rather than
at SDAP or UPF, it was decided to create a ten to one
relationship between the forwarding capabilities of the
UPF and SDAP in comparison with the MAC sublayer.
The fact that the emulation was run on a soft real-
time system, prevent the adoption of forwarding packets
every 1 ms at MAC sublayer, which is the TTI for 4G
cellular systems, and 0.1 ms at SDAP and UPF. Anyway,
the results generated are expected to follow the same
trend if the MAC sublayer forwards packets every 1 ms
or 10 ms. With these parameter values, we successfully
emulate the realistic scenarios where the packets tend
to accumulate at the lower entities since the radio data
link is the principal bottleneck of cellular systems. In our

4. Conversion function cqi_to_mcs can be found at
openair1/PHY/phy_vars.h [26]
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emulation scenario, and since the MAC egresses packets
every 10 ms in discrete time, the target time of 5 ms
recommended for CoDel [19] would never be reached
when CoDel is implemented directly at the RLC buffer.
Therefore, we increased the target time to 15 ms and the
interval time to 300 ms, fulfilling the recommendation of
maintaining the target time to 5% of the interval time. On
the other hand, we have maintained its default values
when the CoDel algorithm is used at the SDAP queues.
The CoDel implementation has been implemented from
scratch following the pseudo-code provided by [19].

For simulating the DynRLC [25] algorithm, we set
the interval value to 100 ms and the desired sojourn
time to 11 ms. A lower desired value would imply that
the RLC buffer resides in a perpetual congestion state
as the MAC scheduler egresses the packets every 10
ms. DynRLC adjusts its queue size through steps every
interval time. The step size is determined by a α value
that we set to 0.1. The MAX_V AL_LIMIT was set
to 1024 packets for the DRQL and MAX_OCC was
set to 1024 packets for the USP algorithm in order to
discard an overflowing buffer effect from the study. The
NORMALIZED_OFFSET was set to 0.33 in the 5G-
BDP to avoid a starving fatal condition at RLC in a soft
real-time environment as our emulation scenario. These
values have been heuristically proved to be efficient.

6 Evaluation results
This section is divided into two parts. In the first part, we
present the results of the first scenario, where two SDAP
buffers are mapped into one RLC buffer. We name this
first scenario Individual SDAP buffer, shared RLC buffer.
In the second part, we present the results of the second
scenario, and we name it Shared SDAP buffer, shared RLC
buffer, where both flows share the SDAP as well as the
RLC queue.

6.1 Individual SDAP buffer, shared RLC buffer

Fig. 5. Average queue size and average delay.

To quantitatively compare different QoS solutions, we
assess the average delay of a low-latency packet from the
moment that enters the UPF entity until it is forwarded
by the MAC sublayer, and the average queue size of

RLC when the low-latency packet is about to enter RLC.
The results of the first scenario on the Pedestrian dataset
are presented in Fig. 5 for the next algorithms: Vanilla
(i.e., the basic scenario described by 3GPP with a priority
scheduler at the SDAP sublayer), BBR, DynRLC, DRQL
and 5G-BDP. Fig. 5 probes the correlation between the
queue size and the delay a low-latency packet suffers.
The algorithms that accumulate fewer packets at the RLC
queue, suffer lower delays, while the algorithms that
tend to accumulate more packets, suffer larger delays.
This is a natural outcome from the discussion in Section
4.

In Fig. 6, the radio link channel capacity profile from
the pedestrian dataset can be observed in red color
(i.e., the previously represented K number of servers
in Fig. 4). This profile represents the maximum number
of packets that the PHY layer can pull. In green color,
the size of the RLC buffer during the emulated 200
seconds can be observed with all the algorithms tested.
If no countermeasures are applied (i.e., Vanilla case),
excessive packet accumulation happens due to TCP’s
greedy congestion control nature, but no resources are
squandered. The RLC buffer always possesses enough
packets to forward to the MAC sublayer. A better result
can be observed if CoDel is applied. In this case, the
bandwidth is also nearly fully utilized, and the amount
of packets accumulated at the RLC buffer is reduced. On
the other hand, DRQL, DynRLC and 5G-BDP present
a very similar RLC buffer occupancy graph. The three
of them try to dynamically adjust RLC buffer size to
the radio link channel capacity (i.e., graph in red).
This ability enables them to come closer to the optimal
queue size value where just enough packets to serve
the PHY layer wait at the RLC buffer, but not more.
Conversely, measuring the channel bandwidth at the
senders congestion control algorithm is not as efficient
as directly controlling the RLC queue size, as the BBR
graph demonstrates.

In Section 4 at Fig. 3, we showed that there exist two
inaccessible regions (i.e., minimum system response time
and maximum utilization). The normalized utilization
cannot surpass 1.0 and the minimum delay cannot go
below 5 ms in average in our emulation scenario. The
MAC scheduler pulls packets every 10 ms and, therefore,
the optimal theoretical average time for an empty queue
is 5 ms. These results come from the fact that the newly
arrived packet may have to wait between [0-10] ms
before it is forwarded to the next sublayer. Therefore,
in the best case, would wait 0 ms, while in the worst
case it would have to suffer a sojourn time of 10 ms in
an empty queue. These theoretical results from Section 4
can be clearly observed in practice in Fig. 7 and Fig.
8. Both figures represent the empirical result of what
we theoretically studied earlier in Section 4, where we
deterministically came to the conclusion that no more
data than the data accepted by the MAC should be
kept at the RLC in any moment in order to work at
the optimal β knee from the Fig. 3. From Fig. 7, 5G-
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Fig. 6. Radio Link Channel Capacity and RLC queue occupancy.

Fig. 7. First scenario, pedestrian dataset: Utilization rate and delay

Fig. 8. First scenario, train dataset: Utilization rate and delay

BDP presents the best results as it maintains nearly
full utilization (0.99947-0.99949) and presents the lowest
delay (9.12-9.43) ms. The average delay is even below the
10 ms value used as the TTI for this emulation scenario.
This value shows that packets have a nearly free path
until the last queue (i.e., RLC buffers) and do not have
to wait for a TTI on average. 5G-BDP achieves to work
near the theoretical low limit (i.e., 5 ms in this scenario)
while maintaining near full utilization thanks to the RLC
queue size dynamicity and the pacing algorithm. On the
other hand, BBR does not work within the granularity
requested by 5G’s cellular network stack and, therefore,
fails as a candidate for delay-sensitive communications.
BBR, recalculates the available bandwidth every 10 sec-
onds as it can be seen from the BBR peaks at Fig. 6, and

Fig. 9. Low-latency traffic boxplot for pedestrian and train datasets for
interval times of 20 and 70 ms

adjusts the calculated bandwidth for the next 10 seconds.
Such an approach lacks the ability to correctly adapt
to the dynamic nature of 5G and, therefore, presents
worse metrics than the other algorithms tested. BBR
provides an utilization in the range of (0.98007-0.98619)
and a delay in the range of (33.40-42.50) ms as it can
be observed from Fig. 7. CoDel algorithm also exploits
the communication between the sender and the receiver
through TCP’s congestion control algorithm discarding
packets if congestion is detected. It needs some time until
the congestion status information from the buffer can be
transmitted to the sender through TCP’s fast recovery
mechanism. As seen in Fig. 7, it presents a normalized
utilization that is in the range of (0.99967-0.99999) at
a cost of a delay in the range of (25.66-26.69) ms. As
demonstrated in the literature [29], CoDel works best if
a little buffer is maintained after it, instead of collocating
it directly at the edge. Since CoDel does not differentiate
the packet type, 2.2% of the total low-latency packets
were also discarded. Lastly, DRQL shrinks RLC’s queue
size in one step obtaining a normalized utilization range
of (0.99994-0.99999) (c.f. Fig. 7) thus, slightly surpassing
DynRLC that adapts its capacity through steps with a
normalized utilization of (0.98774-0.98876). DRQL and
DynRLC act directly on the queue without having to
wait for additional information on transport delays,
restraining the growth of the queue and ultimately
reducing the delay. The delay ranges for DRQL and
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DynRLC in Fig.7 are (15.92-16.11) ms and (16.23-16.40)
ms, respectively. Thus using the pedestrian dataset, 5G-
BDP reduces the delay in average by approximately
7.9 times with respect to Vanilla, 3.5 times compared
to BBR, 2.7 times compared to CoDel and 1.7 times
compared to DRQL and DynRLC. For the train dataset,
the assessments from the pedestrian case hold as it can
be observed in Fig. 8. Even though both datasets provide
a different radio channel link profiles, both represent real
models, and, as shown in Fig. 8, the algorithms proposed
also adapt to different circumstances efficiently. In Fig.
9, the resulting delay values for the low-latency packets
are presented with the lower and upper quartile values
(i.e., 25th and 75th values). The horizontal line within the
boxplots represents the median value and the whiskers
represent the range of the data. From this figure, it can be
extracted that the solutions that maintain the delay low,
also present low jitter, which makes them appropriate for
environments where not only the latency is considered,
but also the variance of the latency is important.

In this subsection, Vanilla, CoDel, 5G-BDP, DRQL and
DynRLC have been tested. It can be clearly seen that
the Vanilla solution accumulates excessive number of
packets in the bottleneck link in both scenarios, which
leads to large average sojourn delays in the [75,85] ms
range according to Fig. 7 and Fig. 8. CoDel, partially alle-
viates the bufferbloat through its ability to communicate
with the sender’s congestion control algorithm discard-
ing packets. However, CoDel’s approach still results in
considerable average sojourn times (i.e., approx. 25 ms
as shown in Fig. 7 and Fig. 8), and squanders some trans-
mission opportunities. The approaches that segregate
the traffic offer better results, as the low-latency traffic
packets avoid the sojourn time at queues generated by
greedy flows. Additionally, 5G-BDP’s pacing capability
allows it to avoid some sojourn time that, on the other
hand, DRQL and DynRLC suffer from (i.e., low-latency
packets with 5G-BDP experience delays of around 9
ms in average, against the around 16 ms in average of
DynRLC and DRQL). DynRLC and DRQL lack of any
pacing mechanism, and they forward packets at the be-
ginning of the TTI, while 5G-BDP uniformly distributes
the forwarding packets’ process from the SDAP to the
RLC in a TTI, thus, reducing the sojourn time for packets
that arrive in the middle of a TTI. Moreover, DRQL
and 5G-BDP, achieve the lowest standard deviation as
shown in the results, being more stable in terms of jitter.
All the methods tested present good resource utilization
percentages (i.e., in the [0.97,1.0] range in accordance
with Fig. 7 and Fig. 8). Both scenarios confirm the
validity of the algorithms.

6.2 Shared SDAP buffer, shared RLC buffer

For the second scenario, as described in Section 5 and
shown in Fig. 4, the congestion avoidance is more com-
plex as the state of two levels of queues must be con-
sidered, and queues at upper entities have side effects

on queues at lower entities. The RLC buffer must have
enough bytes to forward once the MAC scheduler re-
quests for transmission, but keeping additional bytes just
adds delay. Moreover, the SDAP queues should have just
enough bytes to feed the RLC buffer, but not more, while
keeping the other packets at higher layers. The principle
exposed by Kleinrock [33], which describes how data
should be delivered at bottleneck’s bandwidth speed
in order to avoid starving the buffer and preventing
forming queues, equally applies for the SDAP queues.
From Fig. 10 and Fig. 11, it can be observed that the
availability of a synchronous communication between
the UPF and the SDAP is critical. The three methods
tied with CoDel at SDAP queues present significantly
worse results in delay, for both, train and pedestrian
traces. It also shows that USP successfully feeds the
SDAP queue with enough data to avoid a possible
starvation at the RLC queue. From the moment where
CoDel discards a packet due to excessive sojourn time
until TCP’s congestion control algorithm realizes that a
packet was lost, the sender will send packets in a bursty
manner. Even though such a solution may appear slow, it
surpasses the BBR algorithm, where once again it clearly
shows the limitations of tackling the bufferbloat problem
in low-latency systems relying on the congestion control
algorithm.

Fig. 10. Second scenario, pedestrian dataset: Utilization rate and delay

Again, the combination of USP with 5G-BDP
outperforms all other alternatives due to its pacing
nature in comparison with the bursty nature of USP
with DynRLC or USP with DRQL. In particular, it
approximately surpasses the other alternatives by
7.3, 3.1, 1.9, 1.5, 2.1, 1.4, 1.3 times in comparison
with Vanilla, BBR, Codel@DynRLC, Codel@5G-BDP,
CoDel@DRQL, USP@DynRLC and USP@DRQL,
respectively. CoDel@DynRLC, Codel@5G-BDP and
CoDel@DRQL dropped 2.4%, 3.8% and 2.5% of the total
low-latency packets, respectively. A pacing algorithm
such as 5G-BDP, maintains the packets during larger
time in the queue in comparison with burst algorithms
such as DynRLC or DRQL and, thus, the dropping
percentage is slightly superior as CoDel interprets the
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Fig. 11. Second scenario train dataset: Utilization rate and delay

sojourn time as a congestion symptom.
The results from this scenario show worse perfor-

mance metrics than the results shown from the previous
scenario. This is an expected result as, in this case, two
queues need to be managed while in the earlier sce-
nario, a single queue was managed. We also conducted
experiments where two low-latency flows coexist with
a background TCP flow for both scenarios. In these
experiments both low latency flows were generated with
a normal distribution and a 5 ms standard deviation.
One was created with an average interval time of 50 ms,
while the average interval for the second one was tested
for [20,30,40,50,60,70] ms. The results obtained are very
similar to the ones presented in this section quantita-
tively. Therefore, for the sake of brevity and due to the
lack of novel outcome, these results are omitted. Such
similarity in performance is expected for the evaluated
solutions, since the amount of arrivals of two low-latency
flows does not significantly impact the bulky flow’s
bandwidth utilization. Moreover, since the bufferbloat is
created by TCP, the delay of the low-latency packets is
predominantly governed by how the methods segregate
the TCP and low-latency flows. Hence, no significant
changes were observed regarding the delay with the
addition of a second low-latency flow.

7 Conclusion
In this paper we have extensively emulated the actual
5G QoS system, through which we shed light into the
bufferbloat problem with 5G specificities. We proved
that the described vanilla case from 3GPP does not
address the large sojourn times generated at 5G-AN
buffers caused by excessive packet accumulation. We
have proposed different solutions depending on the 5G
scenario at hand. The most remarkable results are:

• Dynamic queue sizing and pacing: Based on queu-
ing theory results [33] and 5G specificities, 5G-
BDP has been designed and presented with very
promising results. The utilization rate is maintained
close to its maximum, while reducing the delay to
nearly its minimum possible value. 5G-BDP suc-
cessfully fulfils the challenges of maintaining the

buffers at the optimum size, enabling a rapid packet
delivery (at least a 70% latency reduction for the
cases studied) and maintaining high utilization rate.

• SDAP queues: 3GPP should explicitly define a queu-
ing system at the SDAP sublayer. Meticulously
managing the queuing system at UPF will not
successfully achieve envisioned requirements if the
bufferbloat happens at lower stack entities. We also
presented the USP algorithm that surpasses BBR
and CoDel, and that can be combined with any RLC
queue size limiting algorithm.

As the future work, wired (e.g., Time Sensitive Net-
works) and wireless low-latency hard real-time con-
straint systems should be studied jointly, as services rely
on end-to-end delay rather than in partial solutions.
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