
Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Facultat d’Informàtica de Barcelona (FIB)

Master in Innovation and Research in Informatics

High-Performance Computing

Methods and measurements for evaluating HPC systems

Author: Advisor:
Fabio Banchelli Filippo Mantovani

Tutor: Co-advisor:
Jesus Labarta Marta Garcia-Gasulla

Department: Company:
Computer Architecture Barcelona Supercomputing Center

June 2020

Abstract

In this thesis, I present a methodology to evaluate High-Performance Computing
systems. The method relies on measurements at three levels: architectural features
through micro-benchmarks; system software and tools through benchmarks and anal-
ysis of the code generated by the compiler; and sustained performance though sci-
entific applications. I apply the method to three state-of-the-art High-Performance
Computing clusters deployed at the Barcelona Supercomputing Center.

In dedication to:

Claudio, who taught me to be persistent
Isabel, who taught me to be methodical

Toya and Paco, who taught me to be curious

Contents

1 Introduction 3

2 Context 5
2.1 Technological challenges . 5
2.2 State of the art . 6
2.3 Research questions and contributions 8

3 Technical Background 9
3.1 The architecture of a cluster . 9
3.2 Software stack . 13
3.3 Machines under evaluation . 14
3.4 Roofline model . 16
3.5 Efficiency model . 18
3.6 Performance analysis tools . 20

4 Micro-benchmarks 23
4.1 FPU and SIMD performance . 23
4.2 STREAM . 25
4.3 lmbench . 26
4.4 Roofline model . 28
4.5 Memory hierarchy latency . 30
4.6 Infiniband read bandwidth . 32

5 System software 35
5.1 Multiply Kernel . 35
5.2 FMA Kernel . 41
5.3 Stencil . 41
5.4 OSU Benchmarks . 43

6 Scientific applications - Alya 45
6.1 Application characterization . 45
6.2 Compiler comparison . 46
6.3 Scalability . 50
6.4 Efficiency model . 53

7 Conclusions 59

Acronyms 61

Appendix A Reproducibility 63

Appendix B Efficiency model tables 65

2

Chapter 1

Introduction

This thesis is the result of the work I contributed to in the “Mobile and embedded-based HPC” group
within the Barcelona Supercomputing Center (BSC). In the context of this Master’s thesis, I contributed to the
following peer reviewed publications:

• Corresponding author and speaker of the research poster [1].

• Contributor in the deliverable [2].

• Contributor in the journal article [3] (in press).

• Contributor in the paper [4].

• Corresponding author and speaker of the paper [5] (I was not able to present the work due to the outbreak).

I construct an evaluation methodology which can be applied to High-Performance Computing (HPC) systems
based on different Central Processing Unit (CPU) arhcitectures. This work originates from the Mont-Blanc
European project, which needed to evaluate multiple HPC systems based on different architecture under a
certain time constraint.

In this thesis I apply my method for the evaluation of three different HPC clusters powered by different
CPU architectures: Dibona, an Arm-based cluster, Power9, an cluster housing IBM-Power9 CPUs and MareNos-
trum4, the Intel-based flagship supercomputer of BSC. I structured my evaluation with a bottom-up approach,
executing programs with an increasing level of complexity. While I use simple kernels/benchmarks for measur-
ing architectural features of each cluster, I use a complex Computational Fulid Dynamics (CFD) application to
validate my method with a real scientific code. The methodology I present in this thesis is based on theoretical
performance models that can be built from empirical experiments. For each one of the experiments, I try to
not only present the results, but also discuss their causes and repercussions. I found out that it is possible
to generalize a methodology so that it works across multiple machines. Even when only evaluating the CPU
of a system, there are micro-architectural features and software differences that make it difficult to keep the
methodology consistent for all CPU architectures.

The rest of the document is structured as follows. Chapter 2 gives a broad overview of the HPC landscape,
covering some of the technological challenges that the industry is currently facing and discussing methods to
evaluate HPC clusters that are available in the literature. Chapter 3 details the technical knowledge on which
this thesis is built upon. I start by briefly explaining computer architecture concepts to understand how HPC
clusters work and presenting three HPC clusters which I evaluate in this thesis. I follow up introducing the
two performance evaluation models, the Roofline model and the Performance Optimization and Productivity
(POP) Efficiency model, I use to characterize the three machines. In Chapter 4, I evaluate the system as close
to a bare-metal environment as possible. The experiments I present in this chapter are simple codes that aim to
stress a particular component of the HPC system. With the experiments I perform in this chapter, I construct
the Roofline model, which characterizes a machine in terms of its attainable performance. Chapter 5 evaluates
the compilers and communication libraries available on the three machines. Chapter 6 presents a performance
study of a production scientific application leveraging an Efficiency model developed at BSC. Chapter 7 wraps
up the thesis by discussing the conclusions and lessons learned.

3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Context

Cuando créıamos que teńıamos todas las respuestas,
de pronto, cambiaron todas las preguntas.

“Just when we thought we had all the answers,
suddenly, all the questions changed.”

— Mario Benedetti

2.1 Technological challenges

The decade of the 2020 will be the finish line of the race towards exascale. The new generation of top
HPC systems will be able to compute 1018 Floating-point operations per second (Flop/s). China expects to
have the Tianhe-3 supercomputer up and running by the end of 2020 [6]. Argonne National Laboratory (ANL)
announced in 2019 that their exascale system, named Aurora, will be operational in 2021 [7]. Oak Ridge
National Laboratory (ORNL) will also have an exascale system by 2021 named Frontier [8]. The European
Union targets 2022/2023 for its own exascale system with joint undertakings as the EuroHPC [9].

The road to exascale has brought a great diversity of CPU architectures to HPC. The current fastest
supercomputer, Summit, is based on IBM’s Power9 architecture. ANL’s Aurora will use Intel’s x86 architecture
while ORNL’s Frontier will feature the newest CPUs from AMD. On the other hand, is expected that the
Tianhe-3 will feature some kind of Arm CPU. The European Union has also hinted at using Arm while also
developing its own technology based on the RISC-V architecture during the European Processor Initiative
(EPI) [10]. Given the sudden diversity in CPU architectures, some call this period the Cambrian explosion of
High-Performance Computing.

Going beyond raw performance

But what does an exascale system entail? Up until recently, we mainly focused on raw performance: Flop/s.
The Top500 list [11] updates biannually with the newest and most powerful systems. The rankings are deter-
mined by the sustained performance using a single benchmark: High-Performance Linpack (HPL) [12, 13]. In
recent years, people have come to realize that HPL is a benchmark that mirrors a very specific computing task
(i.e., solving dense linear algebra systems). This benchmark has been designed to stress the floating-point units
of the system. In a sense, HPL represents a best-case-scenario where the system is computing at almost its full
capacity.

Some argue that ranking HPC systems using HPL is not fair. To this end, a sibling benchmark has become
a sibling to HPL: High-Performance Conjugate Gradient (HPCG) [14]. This benchmark represents almost the
polar opposite to HPL, being a worst-case-scenario where the system is struggling to feed the floating-point
units because is continuously fetching data. Even if HPCG is not considered for ranking in the Top500 list,
there is a list of Top-HPCG scores. As an example, in the November 2019 list, Summit scores 148.60 PFlop/s
with HPL and 2.93 PFlop/s with HPCG.

Historically, the HPC industry has developed CPUs that could rank higher in the Top500 rank. To achieve
this goal, we crammed more and more floating-point resources into the CPU (e.g., more floating-point units,
longer Single-Instruction Multiple-Data (SIMD) vectors, etc.). Results from the HPCG benchmark show that
we may need to focus on other aspects in the design to achieve better performance. Domke et al. show in [15]
how having more floating-point resources might not lead to higher performance.

5

6 CHAPTER 2. CONTEXT

Other challenges in the road to exascale

If performance is the driving force in computing, power dissipation is one of its most limiting factors. Summit,
consumes 10 MW. On average, it can perform 14.72 GFlop per Watt. We call this ratio the power efficiency.
If we were to project Summit’s performance up to an exascale system maintaining its current power efficiency,
we would need ∼ 70 MW to power the machine. Clearly, HPC systems have to improve its power efficiency
alongside raw performance to reach sustainable EFlop/s.

In addition to the Top500, which measures performance, there is also the Green500 list [16], which ranks
systems by its power efficiency. Looking at the November 2019 rank, we find that Summit, number one in the
Top500, is number five in the Green500. The number one in the Green500, the A64FX prototype by Fujitsu [17],
ranks 159 in the Top500. This system has a power efficiency of 16.88 GFlop/W. With the same efficiency, the
system would need ∼ 59 MW to reach one EFlop/s. US DARPA published a report in 2008 which stated that
20 MW would be a reasonable power dissipation for an exascale system[18]. This means a minimum power
efficiency of 50 GFlop/W. Looking at the November 2019 Green500 list, HPC systems have still a long way to
go.

There are other roadblocks in the journey towards exascale computing. Heldens et al. in [19] give a broad
overview of the landscape in HPC research up until 2020. Issues such as data management, resiliency and
programmability are hot topics in the field of HPC.

Industry, academia and education

In the midst of the exascale race, vendors release new CPU models continuously. Intel’s Skylake will
eventually lead into Icelake, even though Intel has been struggling to keep up the pace. AMD recently released
its Rome Epyc 7002 series [20]. Arm has been gaining traction in the HPC market[21, 22]. Arm does not produce
chips itself, but sends its Intellectual Property (IP) instead. This business model allows other companies to
develop their own chips based on the Arm architecture. Examples of this are Marvell with its ThunderX2 (TX2)
and ThunderX3 server line; Fujitsu’s A64FX; Huawei’s Kunpeng 916; and Ampere’s Quicksilver.

There is a broad selection of CPUs with different architectures reaching the HPC market at once. From the
point of view of a company that uses HPC resources, it would be sensible to ask the question: What are the
differences between all these CPUs? Which one performs better for the company’s goals?

The same questions can be formulated in the context of academia. The Mont-Blanc European project [23]
started in 2011 trying to leverage mobile technology for HPC [24]. By the end of 2018, the Mont-Blanc3
European project had a production cluster based on the Arm architecture [25]. From start to finish, the project
developed multiple prototype systems which had to be evaluated in order to better understand how mobile
technology benefited HPC.

The need for system evaluation also extends to the education environment in HPC. The Student Cluster
Competition is an event where undergraduate students setup a mini-cluster and run HPC applications on a
small time frame. Most students do not even know what High-Performance Computing is at the start of the
competition, but they need to be able to leverage and evaluate a system within six months of preparation.
Banchelli et al. explain in [26] the teaching method refined throughout multiple editions of the Student Cluster
Competition.

In conclusion, industry, academia and education in HPC need a method to evaluate new CPU models under
certain time constraints. This thesis studies how are HPC systems currently evaluated and tries to build a
methodology which is applicable to different CPU architectures.

2.2 State of the art

There are multiple works in the literature where the authors evaluate HPC systems. In general, the evaluation
of a machine is done at multiple levels, going from simple test up to complex applications. It is also common to
have a baseline system to compare against. In [27], the authors evaluate a very recent Arm CPU. They focus
first on measuring the floating-point performance and memory bandwidth. The authors chose HPL to measure
raw performance. As I mentioned in Section 2.1, HPL is a benchmark that has gained some criticism because
it does not represent a realistic HPC workload. To evaluate the systems’ memory hierarchy, the authors use
STREAM and lmbench. These are benchmarks commonly used in HPC to measure memory bandwidth and
cache access latency. It is important to note that STREAM is composed of four distinct kernels, each one
with a distinct memory access pattern. Most evaluations found in the literature report the Triad kernel, which
implements a multiply-and-add operation over an array.

2.2. STATE OF THE ART 7

In [28], the authors evaluate a system based on a vector architecture. In recent years, vector architectures are
having a resurgence in HPC (e.g., RISC-V ”V” extension). Although the overall CPU design is very different
to a general purpose core, the authors of [28] follow a similar approach to evaluating their system. They
use STREAM to measure the memory bandwidth and some computational kernels to measure floating-point
performance. The study ends with the performance evaluation of two scientific applications. I find interesting
to note that, even for a pretty different CPU architecture, there is a similar evaluation to the one presented
in [27].

There are multiple benchmarks and tools to evaluate different components of an HPC system. Some of them
are presented as being portable to multiple CPU architectures. For benchmarks that aim to stress a single
aspect of the CPU, it is difficult to take into account all the quirks and specifics of a given architecture (and/or
micro-architecture) and keep the code portable. I personally find very interesting the work presented in [29],
where the authors use a third-party tool to build and empirical performance model of a system. After doing
some tests, the authors realized that the high level code of the computational part of the tool was written in
such a way that made it so the benchmark could not fully leverage the computational resources of the CPU.
To solve this issues, the authors had to manually modify the code, specializing it to fit the quirks of the system
they were evaluating.

Contrary to popular opinion, the success or failure of a given architecture, micro-architecture or HPC system
in general is not determined by its performance. The software ecosystem and tools user are much more critical
to the final user. In 2019, Arm’s senior director of the HPC business division, Brent Gorda, explained that
the adoption of Arm in HPC was more than powerful chips and friendly IPs. Specifically, Gorda stated that
there is the need to provide software tools necessary for server-side application development. The full interview
is available at [21].

Following the idea of a strong software ecosystem, our group at BSC presented in [1] a preliminary evaluation
of the Arm software ecosystem at the time. The study uses simple benchmarks to compare the GNU compiler
toolchain and runtime libraries with the software packages provided by Arm.

In 2019, the authors in [30] presented an in-depth analysis of the Arm software ecosystem. Their work
studies multiple compilers, compiler versions and optimization flags in a state-of-the-art Arm system. The key
takeaway from this publication is that different compilers behave very differently; each one having their own
options and flags. Moreover, flags with the same name across two compilers may have completely different
meaning. Beyond the compiler, it is also important to consider the scientific libraries that complex applications
need to use. The work of Jackson et al. shows that the implementation and configuration of these libraries also
impact in the overall performance of a scientific application.

In [31], the authors evaluate the first Arm system to enter the Top500, Astra. Similarly, in [32] evaluate
another Arm system, also based on the same CPU of Astra. In both publications, the evaluation methodology
includes so called mini-apps (i.e., benchmarks) and scientific applications. For the applications, the authors
compare the figure of merit of each application measured in the Arm system against another system that serves
as a reference. In most cases, there is no further exploration on why the performance in one system is better
or worse compared to the baseline. It is unclear if the origin of inefficiencies comes from the architecture, the
software ecosystem or the code itself.

Lastly, in [33] the authors present the testing and evaluation of the fastest supercomputer in the Top500,
Summit. Their work includes a description on how the system was deployed, which acceptance tests were
performed and, finally, a discussions on the lessons learned. The authors explain that the work that they
present took several months to accomplish.

Overall, I found out that most machine evaluations are organized in layers of complexity. The authors start
by running kernels and micro-benchmarks that stress a particular component of the systems (e.g., STREAM and
lmbench). In some cases, the study also includes some benchmarks that use some external libraries but are not as
complex as full scientific applications (e.g., HPL and HPCG). Finally, the evaluation always includes execution
of scientific applications. In most cases, the authors choose two or three applications. Some publications study
a bigger set of applications. When this happens, the study tends to be limited to compare the figure of merit
of the given application between to machines.

In this thesis, I present an evaluation methodology based on the work published in [2]. In this deliverable, the
authors evaluate an HPC system at three levels: micro-benchmarks, benchmarks, and applications. A refined
version of the study was published in [3]. In this publication, the authors include scalability analysis of four
scientific applications. However, as with [31, 32], there is no analysis of why the applications might not scale.
In this thesis, I incorporate in the evaluation methodology the performance model used in [4].

8 CHAPTER 2. CONTEXT

2.3 Research questions and contributions

Research questions

1. How can we precisely evaluate a new HPC cluster under a short time constraint?

2. When performing measurements with benchmarks or HPC applications, how can we spot inefficiencies
and where do they come from?

Contributions

1. Definition of a methodology to evaluate HPC systems under the following constraints:

• Provides insightful information (i.e., not a single figure of merit).

• Is applicable to multiple CPU architectures.

• Is applicable under sensible time constraints (e.g., the Student Cluster Competition).

2. Application of the methodology on three HPC clusters that have different CPU architectures.

3. Performance study of a production scientific application.

Chapter 3

Technical Background

Measure what is measurable, and make measurable
what it is not so.

— Galileo Galilei

3.1 The architecture of a cluster

Core

The core is the basic computational unit of a cluster. In this thesis, I model the core as a simple machine
that takes a sequence of instructions and executes them. We call Instruction Set Architecture (ISA), or simply
architecture, the set of executable instructions. Examples of ISAs are Intel’s x86, Armv8 from Arm, and Power9
from IBM. Generally, architectures are incompatible between each other, meaning that a sequence of x86
instructions cannot be understood by an Armv8 core. However, common operations such as adding operands
or storing data are present across all architectures, even if they are encoded differently.

We call micro-architecture the internal implementation of a core. The micro-architecture defines how a core
executes instructions. Some micro-architectural features, like the number of stages of the execution pipeline, are
available to the public. On the other hand, implementation details such as length of internal buffers are mostly
undisclosed. An end user can only infer some of these details with empirical measurements. In this thesis, I
consider the micro-architectural features of the core as a black box. I present methods to evaluate, empirically,
the details of the micro-architecture implementation.

Even if we model the core implementation as a black box, we can identify some high level components that
are present in all micro-architectures. For example, all general purpose cores have a specific unit to execute
arithmetic operations. HPC applications are heavily based on floating point arithmetic, either with single or
double precision. For this reason, micro-architectures targeting HPC have powerful Floating Point Unit (FPU)
and SIMD units. The rate at which these floating point units execute instructions is called Floating point
throughput and it is measured in Floating-point operations per second (Flop/s). Section 3.4 elaborates on this
topic.

Figure 3.1 shows a simple schematic of how we model the core implementation. An instruction is fed to
the control unit which triggers the execution. When this occurs, we say that the instruction has been issued.
Source operands are read from the register bank and travel to the right into one of the multiple functional units
of the core. For simplicity, I have only included two FPUs and one SIMD units, but there can be other types
of units. Once the functional chosen unit has computed a result, it is stored in a reorder buffer, waiting until
the control unit triggers a write operation to the register bank. When this occurs, we say that the instruction
has been committed.

Please note that the model I present in this section and the schematic shown in Figure 3.1 are simplifications
of a much more complex system. However, our simplified model is enough to carry on the methodology I present
in this thesis.

As a concluding remark I would like to mention that some cores implement Simultaneous Multi-Threading
(SMT), which effectively multiplexes the operational units of the core between multiple instruction threads. All
the machines I study in this thesis implement SMT but it has been disabled for all experiments.

9

10 CHAPTER 3. TECHNICAL BACKGROUND

Figure 3.1: Simplified schematic of the functional units inside a core and how they are connected

Memory hierarchy

The memory is a unit that stores data. Historically, the memory has been divided into multiple levels,
forming a hierarchy depending on the access speed to the stored data. The simplest memorization element is
the register or register bank. Registers are physically inside the core and serve as a very quick access memory
(in the order of a cycle). Most instructions have one or more registers as source operands and one register as a
place to store the result of the operation.

The capacity of the register bank is very limited (in the order of KiB at most). The main memory, or simply
memory, is the memorization element that sits on top of the register bank. The capacity of the memory is much
greater than the register bank (in the order of GiB) at the cost of being much slower (access time in the order
of hundreds of cycles). The main memory is physically outside of the core. Most ISAs include instructions to
access the main memory. The rate at which data is transferred to/from memory is called Memory bandwidth
and it is measured in Bytes per second (B/s). Section 3.4 elaborates on this topic.

All modern core implementations add levels to the memory hierarchy that serve as halfway points between
the register bank and the main memory. These intermediate memorization units are called caches or cache
levels. Cache levels are named following a numbering scheme: L1 cache for the smallest and closest to the
core, followed by the L2 cache and so on. State-of-the-art processors use memory hierarchies with three levels
of cache, having the first cache level inside the core. The behavior and implementation of caches is an active
research field. In this thesis, I do not provide details on the cache implementation of each machine. This study
is limited to measure the access time and bandwidth across the memorization elements of the memory hierarchy.

There is an additional memorization element above the main memory. We call this last level of the memory
hierarchy the disk or external storage. Access time to the disk is in the order of millions of cycles but can
store, virtually, an infinite amount of data. Most scientific applications access the disk to read the input set of
a simulation and store the result back to the disk. Generally, the access to the disk is both at the beginning
and end of the program execution, and it has no impact on the performance of the computational part of the
simulation. Other workloads require a lot of data movement with the disk and have a very important impact
on the execution time. For this reason, storage is an active research field and has been marked as a major
challenge in the road to Exascale [19]. In this thesis I do not study the impact of the external storage.

Figure 3.2 shows a schematic view of the memory hierarchy. Memorization elements at the top have the
least capacity and access time, while the ones at the bottom have the highest capacity and access time. The
annotations at either sides of the pyramid show a rough estimation of the level of magnitude in capacity and
access time for each level.

3.1. THE ARCHITECTURE OF A CLUSTER 11

Figure 3.2: Classical depiction of the memory hierarchy

CPU and node

We call CPU the physical package sold by vendors. The CPU contains on or more cores. In fact, all modern
CPUs are composed by multiple cores that work in parallel. The number of cores per CPU, or core count, varies
widely across market segments and vendors. There is no magic number that fits all necessities. At the time of
writing, CPUs in the HPC market house from 16 up to 64 cores.

The CPU package also hosts the first levels of the memory hierarchy (up to the L3 cache) and a network
that connects all the components inside the package. The CPU is inserted into a socket, which connects it to
a bigger system. The socket bridges the connection between the CPU and other components such as the main
memory, accelerators, and other sockets. In HPC it is common to use CPU and socket interchangeably. For
example, a CPU package may have 32 cores but we can also say that there are 32 cores per socket.

We call node the computational element sold by hardware providers and integrators. A node is the basic
unit of an HPC system. The node contains one or more sockets and slots to connect modules such as memory
and network cards. The connection grid and placement of components in a node board can affect the overall
performance of the system. The memory modules are commonly connected to a single socket of the node. In
this case, all CPUs can access all memory modules, but the access time to modules that are connected to a
different socket is higher than the access time to a memory module that is connected to the socket directly.
We call these memory scheme Non Uniform Memory Access (NUMA) and may impact the performance of the
execution.

Figure 3.3 shows a picture of a compute node in MareNostrum4, the flagship supercomputer installed in
BSC. The image shows a node with two sockets, each one with eight memory modules. The node also has
a 240GB Solid State Drive (SSD) local storage.

Scaling out

We say that an HPC system is scaling out when interconnects more than one node. The connection between
nodes is usually done through a network. The rate at which data is transferred between nodes is called network
bandwidth and it is measured in B/s. There are different commercial network technologies that are used in
HPC systems. Each network technology has a given peak network bandwidth, which should be disclosed by the
vendor. The network topology has also an impact on the overall performance of the system. Depending on the
network topology, the system is more or less resilient to system failures and network congestion. Please note
that HPC systems are usually shared between multiple users, which makes it difficult to predict the network
traffic at any given time.

Multiple nodes can be grouped together in a single physical structure called rack. Apart from compute
nodes, a rack may also have one or more network switches, management modules, Power Supply Units (PSUs)
and other features. Figure 3.4 shows a picture of a compute rack of MareNostrum4.

12 CHAPTER 3. TECHNICAL BACKGROUND

Figure 3.3: Annotated picture of a compute node in MareNostrum4

Figure 3.4: Picture of a MareNostrum4 compute rack

3.2. SOFTWARE STACK 13

3.2 Software stack

Compilers

The compiler is in charge of translating high level human-readable code into machine code, or binary, which
is a representation of the sequence of instructions mentioned in Section 3.1. The translation process is generally
called compilation and has multiple steps. For each step, there is a specific utility. Hence, we should refer to
the set of utilities as toolchain, although the terms compiler and toolchain are commonly used interchangeably.
In this thesis, I only study the final product of a compilation, comparing the resulting binary with the source
code.

We divide compilers in two categories: open source and vendor specific compilers. Open source compilers
are generally available to the public and cover a wide range of CPU architectures. The most notable open
source compilers are the GNU Compiler Toolchain and LLVM. On the other hand, vendor specific compilers
are provided by the CPU vendor and they usually require a license to be used. The selling point of vendor
compilers is that they focus on a specific CPU architecture, which should mean that are able to better leverage
the computational resources of the micro-architecture of that CPU.

During the compilation of a program there are one or more optimization phases. These phases apply different
techniques to produce a binary which yields a better performance. The user can, at some degree, specify which
optimizations should be performed by passing to the compiler a set of optimization flags. Each compiler has
a wide range of optimization flags, which makes it difficult to the end user to select the ones that are of most
interest. To make matters worse, two compilers may have a flag with the same name that trigger completely
different optimization options. The most common practice is to use a set of compiler flags given by the system
provider or the system administrator. In Chapter 5, I study the effect of the recommended optimization flags.

Arithmetic libraries

Arithmetic libraries implement widely used arithmetic routines such as matrix operations, signal processing
functions, etc. As with compilers, arithmetic libraries can be open source or vendor specific. In this thesis I
present a performance study of Alya, an application which does not require external dependencies to arithmetic
libraries. For this reason, I do not cover any arithmetic library.

Programming models

Programming models are the paradigm that programmers use to leverage the resources in a parallel system.
They govern how parallel applications are written. There are multiple programming models in HPC but we can
classify them in two major categories.

Shared memory programming models are based in threading. A process has multiple threads that execute
in parallel. The execution within a thread is sequential but there is no implicit synchronization across threads.
In this programming model, all threads share a virtual memory space, meaning that they can access the same
memory locations without the need for explicit data exchange between threads. pthreads is a UNIX library that
implements a shared memory programming model. The programmer manages parallel regions by spawning and
explicitly synchronizing threads via calls to the pthread library. OpenMP is a shared memory programming
model based on code annotation. The programmer adds pragma directives that do not interfere with the
sequential code. Please note that OpenMP is a standard and has multiple implementations. It is common for
compiler toolchains to include an OpenMP implementation in the form of a runtime library. For example, the
GNU compiler toolchain ships with the libgomp library and the Arm HPC Compiler toolchain ships with the
libomp library. Both libraries are implementations of the same standard. At compile time, if the appropriate
OpenMP flag is used, the compiler identifies the OpenMP directives and injects the necessary calls to the
underlying threading library. A priori, a code with OpenMP directives can both be compiled with and without
support for OpenMP and execute just fine.

Distributed memory programming models are based on processes that have isolated virtual memory spaces.
This means that a process cannot access data from another process without some kind of explicit data exchange
primitive. Message Passing Interface (MPI) is a distributed memory programming standard. It is based on
point-to-point ant collective operations that programmers invoke in their code. Point-to-point communications
exchange data between a pair of processes while collective communications can involve more than two processes.
Similar to OpenMP, MPI is a standard with multiple implementations. The most common libraries that
implement the MPI standard are OpenMPI, mpich, and Intel MPI.

The programmer might also combine both shared and distributed memory programming models. We call
this a hybrid programming model. A common example of this in HPC is a program with both OpenMP and
MPI parallelization. In this thesis, I use a performance model for MPI-only applications. For this reason, I only
cover this specific programming model.

14 CHAPTER 3. TECHNICAL BACKGROUND

As a concluding remark, I would like to point out that there are other programming models specifically
designed for heterogeneous systems with different hardware accelerators. In this study, I do not focus on any
hardware accelerator so these programming models are outside of the scope of the thesis.

Performance counters

Performance counters are hardware elements that measure events that occur inside the CPU, such as num-
ber of instructions executed, number of accesses to a given cache level, etc. These counters are the closest a
programmer can get to measure a bare metal-system. The set of performance counters available on a CPU vary
greatly depending on the micro-architecture, the architecture, the system integrator and the system adminis-
trator. Two CPUs with the same model may have a different set of performance counters available due to how
the system administrator has configured the system. Furthermore, the method and the latency to read these
performance counters can be drastically different depending on the CPU architecture. Most ISAs have specific
instructions to access performance counters.

perf is a UNIX utility to access performance counters and it is portable across architectures. This tool
defines a list of generic performance counters that match with the real hardware performance counters. Thanks
to this layer of abstraction, the programmer can access with the same alias a wide set of performance counters
that perf maps to the correct hardware counters depending on the CPU architecture.

Performance Application Programming Interface (PAPI) is a library that leverages the portability of perf
and has an easy programming interface. PAPI also defines a list of generic counters called presets that should be
available on most CPUs. However, and important comment is that, even with the same name, PAPI counters
may not measure the same event when read in different systems. For example, PAPI VEC INS may read all
issued vector instructions on a CPU while only measuring issued arithmetic vector instructions on another
system. Furthermore, there have been cases were the hardware implementation of the performance counter, or
the PAPI library were not implemented correctly. The authors in [34] show that the PAPI VEC INS counter in
a ThunderX CPU was not matching the specifications of the Armv8 ISA.

All in all, PAPI is the de-facto standard for reading performance counters in production systems. In this
thesis, I perform some measurements using the PAPI library and present them in Chapter 5. On top of that,
I present a performance study of a scientific application using performance monitoring tools that leverage the
underlying PAPI library.

3.3 Machines under evaluation

Dibona - Arm

Dibona is the final prototype developed during the Mont-Blanc3 European Project. The cluster was inte-
grated by ATOS/Bull with their Sequana infrastructure. At the time of deployment, the system has 40 compute
nodes. A preliminar study of the system was done in [2]. The work was expanded upon and published in [3].
The compute nodes of the Dibona cluster house two Marvell ThunderX2 CPUs. Figure 3.5 shows a schematic
view of a compute node in Dibona. All data related to Dibona in this thesis is color-coded in red and labeled
as mb3. Figure 3.5 shows a schematic view of a node in Dibona.

MareNostrum4 - Intel

MareNostrum4 is the flagship Tier-0 supercomputer hosted at BSC. It has 3456 nodes. The authors in [2]
use MareNostrum4 as a baseline to compare with Dibona. The cluster ranked 29th in the Top500 of June
2019. The compute of the MareNostrum4 cluster house two Intel Xeon Platinum 8160 CPUs. Figure 3.6 shows
a schematic view of a compute node in MareNostrum4. All data related to MareNostrum4 in this thesis is
color-coded in blue and labeled as mn4. Figure 3.6 shows a schematic view of a node in MareNostrum4.

Power9 - IBM

Power9 has a total of 50 compute nodes based on the IBM Power9 architecture. The architecture of the
Power9 cluster used in this paper is identical to Summit [35], the supercomputer ranked first in the Top500 list
(June 2019). Also, Power9 is ranked 5th in the Green500 list (June 2019). All data related to Power9 presented
in the rest of the paper are color-coded in green and labeled as p9. Figure 3.7 shows a schematic view of a node
in Power9.

3.3. MACHINES UNDER EVALUATION 15

Figure 3.5: Schematic view of a node in Dibona

Figure 3.6: Schematic view of a node in MareNostrum4

16 CHAPTER 3. TECHNICAL BACKGROUND

Figure 3.7: Schematic view of a node in Power9

Hardware and software comparison

Table 3.1 lists all the relevant hardware features and system software tools across the three machines I study
in this thesis.

3.4 Roofline model

Floating-point throughput

Let I be the number of instructions issued per cycle; O the number of floating point operations per instruc-
tion; and f the frequency of the processor. The theoretical peak throughput of the FPU, Fp can be computed
as shown in Equation 3.1.

Fp = I ×O × f (3.1)

Modern processors have SIMD units which can process more than one floating point element per instruction.
We can define the number of elements per SIMD registers, S1, and extend the previous equation to account for
SIMD registers. Equation 3.2 models the theoretical peak performance of a system with SIMD instructions.

Fp = I ×O × f × S (3.2)

The methodology I present in this thesis, tries to measure the peak floating point of a system empirically.
HPL is, historically, the most common benchmark to report floating-point performance in HPC. The reference
code has been parallelized with MPI and OpenMP. The performance reported by HPL approaches the theoretical
peak of the machine. In the Top500 list of November 2019, Summit reaches 75% of its theoretical peak. Even if
HPL is a very compute intensive benchmark, its performance does not depend exclusively on the floating-point
throughput. There are other factors such as parallelization schemes and network bandwidth that may have a
great impact on performance.

In this thesis, I present a custom micro-benchmark which depends exclusively on the floating-point perfor-
mance of the system. It also does not have dependencies with external math libraries. The micro-benchmark
is called FPU µKernel and measures performance by executing a sequence of fused-multiply-accumulate as-
sembly instruction with no data dependencies between them. Section 4.1 details the implementation of the
FPU µKernel and the results obtained in three systems with different architectures.

1On some architectures (e.g., RISC-V), S is also called vlen

3.4. ROOFLINE MODEL 17

Dibona MareNostrum4 Power9

CPU name Marvell Skylake IBM Power9
ThunderX2 Platinum 8335-GTH

Core architecture Armv8 Intel x86 Power ISA v3.0B
Frequency [GHz] 2.0 2.1 3.0
Sockets/node 2 2 2
Core/socket 32 24 20
L1 cache private 32 KiB private 32 KiB private 32 KiB
L2 cache private 256 KiB private 1 MiB shared 512 KiB
L3 cache shared 32 MiB private 33 MiB shared 10 MiB
Hw threads/core up to 4 up to 2 up to 4
Memory/node [GB] 256 96 512
Memory tech. DDR4-2666 DDR4-2666 DDR4-2666
Memory channels 8 6 8
Num. of nodes 40 3456 50
Interconnection Infiniband EDR Intel OmniPath Infiniband EDR
OS RHEL 7.5 Suse 12 SP2 RHEL 7.5
System integrator ATOS/Bull Lenovo IBM

GNU Compiler 8.2.0 8.1.0 8.1.0
Vendor Compiler Arm 19.0 Intel 2017.4 XL 16.1.1.2
Other Compiler PGI 18.10
MPI (OpenMPI) 3.1.2 3.1.1 3.1.1
PAPI 5.5.1.0 5.7.0 5.6.0
Extrae 3.5.4 3.7.1 3.7.1

Table 3.1: Hardware and software configuration of the HPC platforms

Memory bandwidth

Let M be the number of Bytes transferred to/from a given memorization element (i.e., caches or main
memory) and t the time it takes to complete the data transfer. We define the memory bandwidth, B, as
B = M/t. In contrast to the theoretical peak throughput of the FPU, there is no simple answer to what is
the theoretical peak memory bandwidth of a memorization element. For the main memory, the vendor should
provide a transfer rate which depends on the memory technology that the memory module uses. This transfer
rate, B0 is usually expressed in Transfers per second (T/s), which can be converted into B/s. Given that a CPU
has N memory modules connected via memory channels, we can model the theoretical peak memory bandwidth,
Bp of the main memory as shown in Equation 3.3. Please note that Equation 3.3 assumes that all memory
nodes are of the same technology.

Bp = B0 ×N (3.3)

On multi-socket systems, a CPU can also access the memory modules that are connected to remote sockets.
As mentioned in Section 3.1, this remote accesses are slower compared to the accesses to the local NUMA node.
For simplicity, I do not consider this effect when calculating the peak memory bandwidth.

For the cache levels, there is almost no information regarding its theoretical peak bandwidth. The only way
to know Bp is to ask the vendor directly. In some cases, we can design experiments to infer the peak memory
bandwidth empirically. In Sections 4.2 and 4.3, I present two state-of-the-art micro-benchmarks that aim to
measure the peak memory bandwidth across the whole memory hierarchy.

Arithmetic intensity

The arithmetic intensity I is defined as the number of floating point operations executed per each Byte of
data transferred to/from memory. Williams et al. in [36] point out the difference between Operational intensity
and Arithmetic intensity. The term Arithmetic intensity takes into account the data transferred from CPU
and cache, whereas Operational intensity also includes the traffic between caches and the main memory. The
authors also mention that Operational is a broader term which may include non-arithmetic workloads. For the
rest of the document I use the term arithmetic intensity. The methodology proposed in this thesis takes into
account data transferred between CPU, caches and main memory.

18 CHAPTER 3. TECHNICAL BACKGROUND

Basic roofline model

The roofline model characterizes the floating point performance of a machine in function of the arithmetic
intensity of a code. Given a peak floating point performance Fp and a peak memory bandwidth Bp of a system,
the attainable performance Fs(I) is defined as follows:

Fs(I) = min(Fp, Bp × I) (3.4)

This function can be represented as a curve in a two-dimensional plane where the x-axis is the arithmetic
intensity and the y-axis is the floating point performance. The curve has two very distinct regions. When
Fs(I) = Bp × I, the plotted function is a straight line with positive slope. In this region, the attainable
performance is limited by the peak memory bandwidth of the system. When Fs(I) = Fp, the plotted function
is a straight line with zero slope. In this region, the attainable performance is limited by the peak floating
point performance. The point where Bp × I = Fp is called machine balance and we denote it as Ir. We can
reformulate the roofline model in function of Ir:

Fs(I) =

{
Fp if I > Ir

Bp × I if I ≤ Ir
(3.5)

We can measure the arithmetic intensity of a given problem, I0, and place it along the x-axis of the roofline
model plot. The value Fs(I0) is the attainable performance of that given problem in the machine characterized
by the roofline model. If I0 < Ir, we say that the problem is memory bound. On the other hand, if I0 > Ir, we
say that the problem is not memory bound. When a problem is memory bound, it means that more floating
point resources do not provide any benefit to the attainable performance.

Extensions to the roofline model

Ilic et al. in [37] present an extension of the roofline model. Their work includes the bandwidth of the
multiple levels of caches. Each one of the cache levels adds to the plot a new straight line with positive slope.
This extended model gives even more insight on how the memory hierarchy can improve performance in memory
bound workloads. Marques et al. in [38] apply the cache-aware roofline model to an Intel system using the
Intel Advisor. Their work show how the model helps detecting performance bottlenecks and optimization hints.
Unfortunately, the Intel Advisor is an architecture specific tool. We employed a more portable and generic tool
to characterize machines implementing different ISAs with the roofline model.

3.5 Efficiency model

In this thesis I leverage the metrics for modeling the performance of parallel applications developed and
promoted by the European Center of Excellence (CoE) POP [39]. For this reason we often call the efficiency
metrics used for our performance analysis POP metrics. These metrics determine the efficiency of the MPI
parallelization and can be computed for any MPI application. While they are objective, they are not conclusive:
POP metrics represent indicators that guide a following detailed analysis to spot the exact factors limiting the
scalability.

In Chapter 6 I focus on analyzing the parallel efficiency of an MPI application. Also, all the analysis are
performed on traces obtained from real runs. A trace contains information about all the processes involved
in an execution, and they can include, among others, information on MPI or I/O activity as well as hardware
counters.

The efficiency model follows the same steps to analyze every application:

• Run the application with a relevant input and core count and obtain a trace from this run.

• Based on this trace, determine the Focus Of Analysis (FOA). This step is performed disregarding the
initialization and finalization phases, identifying the iterative pattern (if possible) and selecting some
representative iterations.

• Compute the performance metrics for different number of MPI processes in a single node. Based on these
metrics we analyze in detail the main limiting factors and performance issues when scaling inside a node.

• Compute the performance metrics when using multiple nodes. Note that for the multi-node study we used
always full nodes. Guided by the results on the metrics determine the issues that limit the scalability of
the code on multiple nodes.

The study I present in this thesis is done with strong scalability, but the methodology and metrics can be
applied also to weak scaling codes.

3.5. EFFICIENCY MODEL 19

Metrics for Performance Analysis

For the definition of the POP metrics needed in the rest of the thesis we use the simplified model of execution
depicted in Figure 3.8.

Figure 3.8: Example of parallel execution of 3 MPI processes.

We call P = {p1, . . . , pn} the set of MPI processes. We assume that each process can only assume two
states over the execution time: the state in which it is performing computation, called useful (blue) and the
state in which it is not performing computation, e.g., communicating to other processes, called not-useful (red).
For each MPI process p we can therefore define the set Up = {up1, u

p
2, . . . , u

p
|U |} of the time intervals where the

application is performing useful computation (the set of the blue intervals). We define the sum of the durations
of all useful time intervals in a process p as:

DUp =
∑
Up

� =

|Up|∑
j=1

upj (3.6)

Similarly we can define Up and DUp
for the red intervals.

The Load Balance measures the efficiency loss due to different load (useful computation) for each process.
Thus it represents a meaningful metric to characterize the performance of a parallel code. We define Ln the
Load Balance among n MPI processes as:

Ln =

avg|P |

∑
Up

�


max|P |

∑
Up

�

 =

n∑
i=1

DUi

n ·maxn
i=1DUi

(3.7)

The Transfer efficiency measures inefficiencies due to data transfer. In order to compute the Transfer
efficiency we need to compare a trace of a real execution with the same trace processed by a simulator assuming
all communication has been performed on an ideal network (i.e., with zero latency and infinite bandwidth). We
define Tn the Transfer efficiency among n MPI processes as:

Tn =
max|P |t

′
p

max|P |tp
(3.8)

Where tp is the real runtime of the process p, while t′p is the runtime of the process p when running on an
ideal network.

The Serialization Efficiency measures inefficiency due to idle time within communications (i.e., time where
no data is transferred) and is expressed as:

Sn =
max|P |DUp

max|P |t′p
(3.9)

Where DUp is computed as in Eq. 3.6 and t′p is the runtime of the process p when running on an ideal
network.

The Communication Efficiency is the product of the Transfer efficiency and the Serialization efficiency:
Cn = Tn · Sn. Combining the Load Balance and the Communication efficiency we obtain the Parallel efficiency
for a run with n MPI processes: Pn = Ln · Cn. Its value reveals the inefficiency in splitting computation over
processes and then communicating data between processes. A good value of Pn i) ensures an even distribution of
computational work across processes and ii) minimizes the time spent in communicating data among processes.
Once defined the Parallel efficiency, the remaining possible source of inefficiencies can only come from the blue
part of Figure 3.8, so from the useful computation performed within the parallel applications when changing
the number of MPI processes. We call this Computation Efficiency and we define it in case of strong scalability
as:

Un =

∑
P0
DUp∑

P DUp

(3.10)

20 CHAPTER 3. TECHNICAL BACKGROUND

where
∑

P0
DUp is the sum of all useful time intervals of all processes when running with P0 MPI processes

and
∑

P DUp
is the sum of all useful time intervals of all processes when running with P MPI processes, with

P0 < P . The possible cause of a poor Computation Efficiency can be investigated using metrics derived from
processor hardware counters (e.g., number of instructions, number of clock cycles, frequency, Instructions per
Cycle (IPC)).

Finally we can combine the efficiency metrics introduced so far in the Global Efficiency defined as Gn =
Pn · Un. Figure 3.9 shows the hierarchical structure of the efficiency model.

Figure 3.9: Hierarchical structure of the POP performance model

3.6 Performance analysis tools

In this thesis, I use the same methodology as in [4] to measure the POP metrics. I use BSC’s performance
evaluation tools Extrae, Paraver, and Dimemas. Measuring the efficiency metrics empirically might produce
metrics above the ideal one or 100%. We treat this results as if they were equal to the ideal value.

Extrae

Extrae is a tracing tool which intercepts MPI calls of an application and collects runtime information. The
information gathered includes performance counters, which MPI primitive was called and which processes were
involved during the communication. All this information is stored into a file called a trace. Tracing MPI
applications with Extrae does not require to recompile the application. Since Extrae performs its measurements
during runtime, it is bound to overheads. The amount of overhead depends on multiple factors, mainly: number
of communicating processes, number and frequency of MPI calls, amount of data collected at each interception.
We are still developing a method to quantify the tracing overhead. At the moment of writing, a general rule of
thumb is to discard all measurements derived from bursts shorter than ten micro-seconds.

Paraver

Paraver [40] is a visualization tool that helps navigate the traces generated by Extrae. A common visual-
ization mode when using Paraver is the timeline. Timelines represent the evolution of a given metric across
time. Figure 3.10 shows two examples of timelines. The x-axis represents time and the y-axis represents the
MPI processes. Each burst is color coded. For quantitative values (left timeline), the color scale goes from dark
blue (high values) to light green (low values). For qualitative values (right timeline), each color represents a
different concept (e.g., MPI primitive). We sometimes omit certain regions of the execution from the timeline.
For example, the top timeline in Figure 3.10 shows the number of instructions per burst. I only included the
bursts that perform useful computation and omitted all bursts which correspond to MPI calls. Omitted burst
are shown in white.

Dimemas

Dimemas [41] is a simulation framework for Paraver traces. It takes a trace as an input and generates a
new trace where all communications have an ideal latency and bandwidth. For blocking communications, this
means that the communication bursts will end when the slowest process arrives to the communication. For
non-blocking communication, the bursts shrink to as if they had a duration of zero. Please note that Dimemas
does not require to repeat the execution. It only manipulates an already existing Paraver trace file.

3.6. PERFORMANCE ANALYSIS TOOLS 21

Figure 3.10: Paraver timeline examples. Top: quantitative representation of number of instructions. Bottom:
MPI primitive calls.

Clustering

Clustering is a tool that, based in a Extrae trace, can identify regions of the trace with the same computa-
tional behavior. This classification is done based on hardware counters defined by the user. Clustering is useful
for detecting iterative patterns and regions of code that appear several times during the execution.

Representation of the efficiency model

The methodology I present in this thesis uses the same representation method presented in [4]. We measure
the POP metrics in traces with increasing number of MPI processes and we present them in a table where each
row represents a different metric and each column represents a run with different number of hardware recourse
(in this study, MPI processes). Table 3.2 shows an example of these tables. Each cell contains the value of a
given metric and is color coded. We consider a good efficiency value to be between 100% and 90%, a middling
efficiency between 90% and 80%, and a bad efficiency below 80%. We do not gain insight by observing a single
value of a given metric, but rather by studying the trend of the metric. Efficiency metrics are studied at two
scales: single node and multiple node analysis. The single node analysis focuses on how contention of resources
within a node can affect the performance of each process. This effect is typically observed with a degrading
IPC scalability. When scaling within a multi-socket node, it is important to acknowledge how processes are
distributed across sockets. Unless stated the contrary, we always distributed the processes evenly between
sockets. The multiple node analysis focuses on how well the application can scale beyond a single node. The
parallelization scheme and/or the communication network are the typical performance bottlenecks in this case.
The effects of resource contention are sometimes hidden in the multiple node analysis. This is because the
metrics labeled with Scalability are relative to a baseline run. In the case of multiple node analysis, the base line
is usually a run with two whole nodes. At the baseline point, the resources within a node are already saturated.

Table 3.2: Example of how we represent the efficiency metrics on a table

22 CHAPTER 3. TECHNICAL BACKGROUND

As a last note, I would like to address how to apply the single node analysis to applications which do not
fit a single node due to memory constraints or require more MPI processes than cores in a node. A possible
solution would be to fix the number of MPI processes to the minimum required, N . Consider a system with
nodes with C cores. The baseline run would require N/2 nodes, having two process per node. Successive runs
would double the number of processes per node until filling a whole node. The i-th case would require N/2i
nodes with 2i processes per node. Please note that this solution has limitations. If N is too big, the baseline
run with two processes per node would be a waste of HPC resources. For this reason, I suggest choosing a
baseline with a higher number of processes per node.

Chapter 4

Micro-benchmarks

Entia non sunt multiplicanda praeter necessitatem.

“More things should not be used than are necessary.”

— William of Ockham

The first layer of abstraction of the methodology I present evaluates the system as close to a bare-metal
environment as possible. This layer is comprised of a set of codes which stress a specific component of the system.
The goal is to have a set of simple tools that can measure the quantities that characterize the architecture of
HPC clusters.

In Section 4.1, 4.2 and 4.3 I present the measurements of the quantities (i.e., peak floating point performance
and memory bandwidth) needed to derive the roofline model of each machine. The roofline itself is presented in
Section 4.4. This model gives insight on the empirical boundaries under which a scientific applications operates
(Chapter 6 elaborates on this). In Section 4.5 I present a method to measure latency across the memory hier-
archy. Finally, I focus on the performance of the communication network. I model the communication network
as different software layers that build upon each other. Section 4.6 studies the first software layer with the tools
provided by the manufacturer (i.e., ibverbs). There are other software layers that can influence performance
in communication bound applications. The second software layer corresponds to the MPI implementation,
which I discuss in Chapter 5.

4.1 FPU and SIMD performance

We designed a micro-kernel to measure the peak floating point throughput of the machine. We call this
code FPU µKernel and contains exclusively fused-multiply-accumulate assembly instructions with no data de-
pendencies between them. The kernel has four versions distinguishing between i) scalar and vector instructions;
and ii) single and double precision.

We started with a simple C statement a * b + c and observed which instructions were generated by the
compiler. Table 4.1 shows the assembly instructions used in the micro-kernel. Although the x86 ISA has floating
point instructions that run on the FPU, it is recommended to use the more recent SIMD instructions so the
compiler uses VFMADD132SS and VFMADD132SD for single and double precision, respectively. This means that
the scalar version of the code in the x86 architecture uses vector instructions with the same behavior as scalar
floating point instructions.

Figure 4.1 shows results of the FPU µKernel on one core of each machine. We observe a higher scalar
floating point performance in Power9 than in Dibona and MareNostrum4. This is because the CPUs in Power9
run at a higher frequency and have a higher instruction throughput. For the vector versoin of the micro-kernel,
it is important to note that the MareNostrum4 nodes have a SIMD unit of 512-bits while the SIMD registers
of Dibona and Power9 are 128-bits wide. This results on ×4 and ×2 performance improvement for single
and double precision, respectively, compared to Dibona. The FPU µKernel shows us that the floating point
performance is closely related to the clock frequency of the CPU and the width of the SIMD registers.

Figure 4.1 only accounts for the single-core performance of each machine. The theoretical peak floating point
throughput of a whole node can be computed as the single-core performance times the number of cores in a
node. For example, the FPU in one Marvell ThunderX2 core reaches 8 GFlop/s for double precision arithmetic.
Each node in Dibona houses two TX2 CPUs with 32 cores each, which amounts to a total of 512 GFlop/s.

23

24 CHAPTER 4. MICRO-BENCHMARKS

Machine Instruction Type

Dibona FMADD Sx,Sx,Sx,Sx FPU SP
MareNostrum4 VFMADD132SS mmx,mmx,mmx FPU SP
Power9 FMADDS x,x,x,x FPU SP
Dibona FMADD Dx,Dx,Dx,Dx FPU DP
MareNostrum4 VFMADD132SD mmx,mmx,mmx FPU DP
Power9 FMADD x,x,x,x FPU DP
Dibona FMLA Vx.4S,Vx.4S,Vx.4S SIMD SP
MareNostrum4 VFMADD132PS mmz,mmz,mmz SIMD SP
Power9 XVMADDASP x, x, x SIMD SP
Dibona FMLA Vx.2D,Vx.2D,Vx.2D SIMD DP
MareNostrum4 VFMADD132PD mmz,mmz,mmz SIMD DP
Power9 XVMADDADP x, x, x SIMD DP

Table 4.1: Instructions in the FPU µKernel

Figure 4.1: Sustained performance in one core of the four versions of the FPU µKernel

4.2. STREAM 25

4.2 STREAM

STREAM is a simple synthetic benchmark to measure sustainable memory bandwidth. The program is
structured in four distinct computational kernels: Copy, Scale, Add and Triad. The reference version of the
benchmark includes a parallel version using OpenMP. We used the STREAM benchmark (v5.10.1) leveraging
an OpenMP parallelization.

The kernels iterate through data arrays of double precision floating point elements (8 B) with a size fixed
at compile time. It is required that the size of each array must be at least four times the size of the sum of all
the last-level caches or ten million elements (the maximum value between the two).

E ≥ max {4 · S/8 , 10000000}

Where E is the number of elements of each array (refered to as STREAM ARRAY SIZE in the code); and S is
the size of the last level caches in Bytes. Table 4.2 shows the minimum value for E on one node of Dibona,
MareNostrum4 and Power9. These are the values used to perform our tests.

Table 4.2: E minimum values for each cluster

Machine S E

Dibona 67108864 33554432
MareNostrum4 69206016 34603008
Power9 209715200 104857600

We run the benchmark by fixing the problem size to the minimum valid value of E for each platform as
reported in Table 4.2 and increasing gradually the number of OpenMP threads. Threads are pinned to cores
by using OMP PROC BIND=true and distributed evenly between both sockets of the node.

Figure 4.2 shows the results of our studies. We report only the Triad kernel as a representative of a typical
HPC workload. The x-axis represents the number of OpenMP threads, and the y-axis indicates the maximum
achieved bandwidth of 200 executions. The horizontal lines indicate the theoretical peak bandwidth for each
system.

Figure 4.2: STREAM Triad on one node of Dibona, MareNostrum4 and Power9

We observe that all three systems have a similar behavior when running STREAM. The achieved bandwidth
increases when adding more threads. This is because the memory petitions from each thread can be served by
the different memory controllers in the CPU. There is a point in which adding more threads fills the capacity of
the memory controllers of serving requests to the memory making the memory bandwidth reaching a plateau.
In this situation, we say that we saturate the memory bandwidth.

26 CHAPTER 4. MICRO-BENCHMARKS

Dibona reaches around ∼ 230 GB/s (67% of the peak) in the Triad kernel when running with 64 threads.
MareNostrum4 gets ∼ 165 GB/s (64% of the peak) with 48 threads. Power9 reaches ∼ 260 GB/s (76% of the
peak) with 40 threads. Power9 has a significantly different memory hierarchy than the other two systems. It
also runs at a higher frequency. Both of these factors may be the cause of it reaching a higher bandwidth with
respect to the theoretical peak.

4.3 lmbench

lmbench is a collection of benchmarks designed by Larry McVoy and Carl Staelin [42]. A full run of all the
benchmark suite analyzes the machine’s hardware capabilities: integer and floating point performance, memory
latency and bandwidth, disk access performance, network latency, and OS noise.

In this section, we report the results obtained with the “Memory Read Bandwidth” test within lmbench.
This test measures the memory hierarchy’s load bandwidth. In contrast with STREAM, lmbench results clearly
show memory bandwidth measurements at different cache levels. The author of STREAM published in 2003
a followup version, STREAM2. This version is designed to measure sustained bandwidth at all levels of the
memory hierarchy. Like STREAM, STREAM2 has multiple kernels. Each kernel yields a different memory
bandwidth since it has a unique memory access pattern. Since the multiple kernels of STREAM2 do not provide
a unified result, I decided to use lmbench to measure the memory bandwidth across the memory hierarchy.

The memory load bandwidth test takes a size S, in MiB, a number of processes P , and a number of repetitions
N as input parameters. The output of the test is the sustained bandwidth of P threads performing sequential
reads to an array of size S averaged across N traversals of the whole array. lmbench manages threading with
POSIX threads.

If we perform successive runs with constant P and N , but increasing S, we obtain the sustained read
bandwidth of the different levels of the cache hierarchy. When S is greater than a given cache size, the program
will be bottlenecked by the next level in the memory hierarchy.

Figures 4.3, 4.4, and 4.5 show the sustained memory bandwidth measured in Dibona, MareNostrum4, and
Power9 respectively. The x-axis represents the problem size S and the y-axis represents the memory bandwidth
as reported by the test. Each point in the figures represents one run of the test with N = 10. Each line
represents a different sequence of runs with a given number of processors P . For simplicity, I only included the
runs with one processor, half a node, and a full node. Threads are always spread evenly across sockets. The
vertical lines indicate a jump up in the memory hierarchy. These lines divide the plot into four regions. From
left to right: L1 cache, L2 cache, L3 cache, and main memory. As confirmation, the highest memory bandwidth
in the main memory region is the same as the best bandwidth measured with STREAM in Section 4.2.

Figure 4.3: lmbench Memory load Bandwidth in Dibona

4.3. LMBENCH 27

Figure 4.4: lmbench Memory load Bandwidth in MareNostrum4

Figure 4.5: lmbench Memory load Bandwidth in Power9

28 CHAPTER 4. MICRO-BENCHMARKS

First of all, we observe a drop in bandwidth each time that the problem size crosses one of the vertical lines.
The drop is not always exact. For Dibona, it clearly occurs when the problem size S crosses the boundaries of
the L1 size and the L2 size. In MareNostrum4, it also occurs from L1 to L2, but it has a smoother transition
when going from L2 to L3. I do not have an exact explanation of this behavior but it might be due to the cache
allocation and replace policies. Power9 has a very different behavior than the other systems. When running
with the whole node, there is no drop when going from L1 to L2 caches. Moreover, with half of the node, there
is no drop from L2 to L3 cache. This is most likely due to the cache hierarchy in the Power9, which has L2 and
L3 caches shared across pairs of cores. The bandwidth drops substantially with S > 4 MiB. This is because,
even if the total size of the L3 cache is 100 MiB, the amount of L3 cache per pair of cores is 10 MiB, which
makes tests with a bigger problem size go to main memory.

We also observe that Dibona has a lower L1 cache bandwidth, ∼ 2000 GB/s, compared to MareNostrum4
and Power9, both at ∼ 2500 GB/s. This means that programs which are memory bound, but have a good L1
cache locality, might perform worse in Dibona. The L2 cache bandwdidth in Dibona and MareNostrum4 drops
to ∼ 1600 GB/s. Similar to our observation for the L1 cache, the drop in L2 cache bandwidth might show a
better performance in Power9 for programs which exploit L2 cache locality.

In conclusion, we have a tool to measure memory bandwidth at different cache levels. Since vendors do
not provide nominal bandwidth for each level in the memory hierarchy, I use the results of the lmbench test to
construct the roofline model.

4.4 Roofline model

We could construct the roofline model of a machine following its technical specification. The floating point
throughput of a CPU and the memory bandwidth of a DRAM chip are widely advertised by vendors. However,
vendor specifications may not reflect what the final user can achieve. For this reason, it would be useful to
construct the roofline model from empirical measurements using micro-benchmarks.

Yu et al. present in [43] their Roofline Toolkit. A tool to construct the empirical roofline model of a machine.
Their framework is flexible and can be extended to multiple CPU architectures. It also supports systems with
GPUs. The Roofline Toolkit consists on running a simple kernel written in C which has a compile-time parameter
that controls its arithmetic intensity. The tool constructs the roofline model executing multiple times the kernel
with different arithmetic intensities. The Roofline Toolkit shows promising results. However, there are is some
tuning to do in order to adapt it to some architectures. Calore et al. in [29] explain how they had to modify
the algorithm of the Roofline Toolkit kernel in order to accommodate the limitations of the fused-multiply-
and-add operation in Armv8. Moreover, the Roofline Toolkit struggles to approach the theoretical performance
peaks. With the modifications proposed in [29], the authors go from ∼ 25% to ∼ 66% of the theoretical peak
performance. It is a considerable gain, but still far from the peak.

In this thesis, I present a method to construct the roofline model from the results of the FPU µKernel and
lmbench. The peak floating point performance Fp is the result labeled as “Total” of the FPU µKernel. The
peak memory bandwidth of the system Bp is the result of the memory load bandwidth test. Both codes are run
with a whole node of the system having one thread per core. The roofline models include ceiling curves for the
different levels of caches as well as double precision SIMD and FPU units.

In Section 4.3 I showed that the sustained bandwidth on a given cache level has some variation. For
simplicity, I define Bp of each cache level as the second highest measurement in that same level. This excludes
measurements which correspond to a transition between cache levels.

Figure 4.6, 4.7, and 4.8 show the roofline model for one node of Dibona, MareNostrum4 and Power9. The
x-axis represents the arithmetic intensity and the y-axis represents the sustainable performance. Solid lines
represent ceilings in the roofline model. There are two floating point performance ceilings corresponding to the
FPU and SIMD units. There are four memory ceilings corresponding to the three cache levels and the main
memory. For clarity, I included dotted lines, which represent the floating point performance ceilings.

I analyze the roofline models from the point of view of when a machine becomes memory bound. A program
or kernel that is memory bound is much more cumbersome than one that is bound by the floating point
performance. We say that a machine that takes a lower arithmetic intensity than another to become memory
bound, it becomes memory bound slower. Following this definition, and looking at the L1 cache ceilings, we
say that Power9 becomes memory bound the slowest of the three machines, at an arithmetic intensity between
1/4 and 1/2. Dibona follows closely, becoming memory bound at 1/2. Lastly, MareNostrum4 is the fastest
machine to become memory bound at an intensity of 1. Looking exclusively at the L1 cache, it seems that
the theoretical peak performance of a memory bound program degrades faster on MareNostrum4 than in the
other two clusters. Please note that I am referring to the trend in sustainable performance, not the actual
performance, which is still higher in MareNostrum4.

4.4. ROOFLINE MODEL 29

Figure 4.6: Roofline model in Dibona with double precision arithmetic

Figure 4.7: Roofline model in MareNostrum4 with double precision arithmetic

Figure 4.8: Roofline in Power9 with double precision arithmetic

30 CHAPTER 4. MICRO-BENCHMARKS

We can interpret the gap between the L1 and L2, and L2 and L3 caches as the gain in theoretical peak
performance when leveraging cache locality. In the case of Dibona, there seems to be a lower gain between L1
and L2 than in MareNostrum4. In Power9, there is little no no gain. This is because, as seen in Section 4.3, we
measured that there is no memory bandwidth drop when jumping from L1 to L2 cache. In Dibona, the widest
gap is from L2 to L3 cache. This may be due to the topology inside the chip.

Looking exclusively at the main memory ceilings, we find the same pattern as in the L1 ceilings. Power9 is
the slowest to become memory bound, closely followed by Dibona and with MareNostrum4 being the fastest of
the three. Most scientific applications have arithmetic intensities much lower than 1, as shown in Chapter 6.
Based on the roofline model, a machine which becomes memory bound slower than another, has a theoretical
peak performance which degrades slower. Please note the emphasis on theoretical peak. There are multiple
factors which may make the sustained performance lower than the theoretical peak. The most important of
them being the software environment. Depending on how the compiler leverages the system’s resources, it yields
a better or worse performance.

In conclusion, the roofline model defines a best-case scenario for a code or kernel with a given arithmetic
intensity. This theoretical peak might not be reached in practice due to the system’s software. However, if we
measure both the theoretical peak and sustained performance, we have a way to determine how much room of
improvement there is for a certain region of code. In Chapter 5 I explain how to evaluate the system’s software
environment to tied it back into the roofline model.

4.5 Memory hierarchy latency

lmbench has a test to measure memory load latency. I used this benchmark in Dibona and reported the
results in [2]. I was unable to reproduce the results using the same tool. For this reason, I decided to write a
simpler version of the test.

The test I wrote measures the memory hierarchy’s load latency at different cache levels. The benchmark
takes a size n, in elements, and a stride S as parameters. It constructs an array of n elements where each
element has a size of 8 Bytes. Each element ei in the array is a pointer to another element which is strided by S
elements. For each pair of elements ei and ei+S , with S < i < n and 0 < S < n, the element ei+S points to ei.
We define a chain of pointers as the sequence of elements that points to each other. The start of the sequence
is the element with the highest index. The end of the sequence is the element with the lowest index. Figure 4.9
shows a chain of pointers in an array.

Figure 4.9: Memory latency test ring of pointers. Each element of the array points backwards S elements.

Once the array is constructed, the test traverses the array following the chain of pointers that ends in element
zero. The traversal is done by dereferencing each pointer in the chain. A dereference is equivalent to a memory
read. The number of memory reads in one traversal of the array is equal to (n − 1)/S. To get the time per
memory access, it would be enough to divide the total time of a traversal by the number of accesses. However,
the resolution of the gettimeofday C system call is not enough for this measurement. For this reason, the
program does multiple traversals of the array and reports the average access time.

One run of the program returns an average access time for a given size n and stride S. By keeping constant
S and increasing n, the allocated array starts by filling the L1 cache, then the L2 cache and, finally, the L3
cache. If we run the program for multiple values of n, we are be able to plot the memory latency at each level
of the memory hierarchy.

For my experiments, I used a sequence of input n which is more dense around sizes that trigger a jump up
in the cache hierarchy. This means that I made more measurements with array sizes close to the capacity of a
cache level and less measurements while the array is filling a cache partially. With this sequence, I get a better
resolution to observe the increase in access time when going from one cache level to the next. I used strides
S ∈ 32, 64, 128, 256, 512. Measurements with strides that are not powers of two produce inconsistent results.

Figure 4.10 shows the results of the memory latency micro-benchmark in Dibona. The x-axis represents the
array size in KiB and the y-axis represents the access time in nanoseconds. Each line represents a series of runs
with a fixed stride. The thick black vertical lines represent the size of the L1 and L2 caches.

4.5. MEMORY HIERARCHY LATENCY 31

Figure 4.10: Memory latency test in Dibona

The vertical lines in the plot divide the x-axis into three regions which correspond to the different levels of
cache. When the problem size fits in the L1 cache, the access time is 7ns. Moving up to the L2 cache, the access
time increases to 10ns. The jump to L3 cache is clearly visible for S ∈ 128, 256 but not so much for S ∈ 32, 64.
For big strides, the access time increases to 30ns, indicating that accesses are truly occurring at the L3 cache.
However, for small strides, the access time increases a bit when the problem size is around 256KiB and then
drops close to 10ns. I do not have a conclusive explanation for this behavior but I would suggest that it is an
effect of the hardware prefetcher. The small strides are simple enough for the prefetcher to be trained and have
a high accuracy.

Another observation that we can make by looking at Figure 4.10 is that big strides (S ∈ 256) have a lower
access time during the L1 and L2 regions of the plot. I attribute this to not having enough time resolution in
the measurements. The traversals of small arrays with such a big stride are too quick to time precisely.

Figure 4.11 shows the results of the memory latency micro-benchmark in MareNostrum4. As with Dibona,
we see increasing access time when going up in the memory hierarchy. However, the results in MareNostrum4
are not as clear as with Dibona.

Figure 4.11: Memory latency test in MareNostrum4

32 CHAPTER 4. MICRO-BENCHMARKS

The access time to the L1 cache for S ∈ 16, 32 is 2ns. The rest of strides in this range of sizes suffer from low
clock resolution and are inconclusive. For the L2 cache, we observe an access time of 6.5ns for S ∈ 16, 32. At a
problem size around 64KiB, we also see that measurements with S ∈ 64, 128 result in the same access time as
with smaller strides. At the tail end of the L2 cache region, we can observe a plateau that gets higher for larger
strides. The access time then slowly transitions to the L3 cache. This transition is much slower than in Dibona.
Once the problem size has reached the L3 region, we see widely different access times depending on the stride:
17ns for S = 64, 25ns for S = 128, and 30ns for S = 256. The high variability on access times depending on
the stride might be related on how well the caches manage data locality and how good the hardware prefetcher
can predict the access pattern.

Figure 4.12 shows the results of the memory latency micro-benchmark in Power9. The plot shows three
distinct plateaus which correspond to the three levels of cache in Power9. However, there seems to be some
variability in the measurements. For the L1 cache, the access time is between 6 and 10ns. For the L2 cache,
the access time is between 10 and 14ns. Lastly, for the L3 cache, the access time is between 16 and 18ns. For
any given plateau in Figure 4.12 the access time is bimodal. I currently do not have an explanation for this
behavior, though it might be due to the vastly different memory hierarchy in Power9 with respect to the other
two machines. I will try to investigate further in a future work.

Figure 4.12: Memory latency test in Power9

In this section I have presented the preliminary results of a hand-made micro-benchmark which measures
the read access latency to the different levels of the cache hierarchy. The results are promising but there are
some effects in the measurements that are still not explained. In a future work, I will try to refine the code to
better reflect the access time. The insight gained from these measurements would allow us to build a timing
model of the memory hierarchy, which would be very useful for applications which are bound by the memory
latency.

4.6 Infiniband read bandwidth

Dibona and Power9 have a communication network based on Infiniband. The provider of this technology,
Mellanox, packages with its driver a set of tests to evaluate the performance of the network. In this section, I
show the results of running the ib read bw utility. Please note that this utility is also present in MareNostrum4,
but it runs through the Ethernet network, since MareNostrum4 does not have Infiniband.

This test needs a client and a server process. Both processes exchange messages of increasing size and the
utility reports the achieved network bandwidth of each size. I placed the client and server processes in different
nodes to measure the actual network bandwidth. Figure 4.13 shows the result of this test in both Dibona and
Power9. The x-axis represents the message size and the y-axis represents the network bandwidth. I included a
horizontal line which represents the theoretical peak bandwidth of the Infiniband EDR technology.

4.6. INFINIBAND READ BANDWIDTH 33

Figure 4.13: Infiniband read bandwidth in Dibona and Power9

Both clusters have a similar behavior when increasing the message size. The achieved network bandwidth
follows a smooth curve that ramps up starting on messages bigger than 128 Bytes. The bandwidth saturates at
messages greater than 8 KiB (213 Bytes). It looks like the configuration in Power9 yields a better network band-
width with messages between 128 B and 8 KiB. This could have an impact on performance for applications that
are network bound and send messages in this range of sizes. The network bandwidth saturates at ∼11.5 GB/s,
which is 92% of the peak bandwidth. The missing 8% might be due to overheads in the driver or the physical
network card. As an end user, we cannot delve deeper into the source of the inefficiencies.

It is important to note that all the clusters in this study are in production. Other users are using the
communication network while I perform my measurements. I do not consider this a limitation of the model but
rather a strength, since it emulates a real environment which a user is exposed to.

34 CHAPTER 4. MICRO-BENCHMARKS

Chapter 5

System software

Experience without theory is blind, but theory without
experience is mere intellectual play.

— “old Kantian maxim” as declared by the Society
for the Advancement of General Systems Theory

In Section 2.2 I mentioned the importance of a strong software ecosystem on any given HPC system. Two
of the most important software tools in an HPC cluster are the compiler and the communication library (i.e.,
MPI implementation). In this chapter, I present a methodology to study the optimizations that the compiler
performs as well as the possible overheads introduced by the MPI library.

Sections 5.1, 5.2, and 5.3 study , through a set of small programs, how compiler optimization flags affect the
autovectorization of the code. We use PAPI to measure the number of dynamic instructions and how much the
compiler vectorized the code. For each machine and compiler, we compare for versions of each kernel depending
on the data type (i.e., single or double precision); and if the code is plain scalar C or if it has been manually
vectorized using intrinsics. The two compiler kernels I report in this thesis implement a multiplication t =
a*b and a fused multiply and add t = a*b + c, which represent a common pattern of operations in HPC.

All the compiler kernels follow a similar structure. First, we allocate two arrays of N elements. N is defined
at compile time. We then initialize the arrays with random values. Next, we traverse the arrays calling the
kernel on each iteration. Let vl the length, in elements, of a vector register. We choose a value for N which is
i) big enough to hide the overhead of the PAPI instrumentation; and ii) N%vl = 0 so there are no tail elements
when vectorizing. For this experiment, we chose N = 8192.

The third compiler kernel is a stencil code extracted from the miniAMR benchmark. It is a 27 point stencil
kernel written in C. I study how much the compilers are able to autovectorize depending on how much the code
exposes data reuse.

Lastly, I conclude the section by showing results of the OSU benchmark, which evaluates the MPI commu-
nication library. The implementation the communication library could cause some overheads over the physical
implementation of the network. To better understand these overheads, we should compare the results in this
section to the one found in Section 4.6

5.1 Multiply Kernel

Listing 5.1 shows the multiply compiler kernel. The first function is the scalar version. The second function
is an example of manual vectorization using Intel’s AVX512 vector extension. Notice the restrict clause
that serves as a hint for the compiler, indicating that pointers a and b are not aliases and there is no need to
check it. The functions are small enough that the compiler is able to inline them in the main routine.

i n l i n e void mul (double∗ r e s t r i c t a , double∗ r e s t r i c t b) {
double va = ∗a ;
double vb = ∗b ;
double vt = va ∗ vb ;
∗a = vt ;

}

i n l i n e void mul (double∗ r e s t r i c t a , double∗ r e s t r i c t b) {
m512d va = mm512 load pd (a) ;
m512d vb = mm512 load pd (b) ;

35

36 CHAPTER 5. SYSTEM SOFTWARE

m512d vt = mm512 mul pd (va , vb) ;
mm512 store pd (a , vt) ;

}
Listing 5.1: scalar and AVX512 version of the mul compiler kernel

Dibona

In Dibona, the available compilers are GCC and the Arm HPC Compiler. I compiled the scalar and
vectorized versions of the kernel using both compilers. Listings 5.2 show 5.3 show the dissasembled binaries of
the multiply kernel compiled with GCC and double precision. For brevity, I only included the part of the code
that is measured. The instructions highlighted with an asterisk represent the main operation of the kernel (i.e.,
multiplication).

b l 401048 <start measurements>
mov x0 , #0x0
l d r q0 , [x19 , x0]
l d r q1 , [x20 , x0]

∗ fmul v0 . 2 d , v0 . 2 d , v1 . 2 d
s t r q0 , [x19 , x0]
add x0 , x0 , #0x10
cmp x0 , #0x10 , l s l #12
b . ne 400 c38 <main+0x158>
l d r w0 , [sp ,#92]
mov x1 , x25
b l 4010 a8 <end measurements>

Listing 5.2: Scalar mul kernel in Dibona with GCC

bl 401048 <start measurements>
nop
l d r q0 , [x19]
l d r q1 , [x20] ,#16

∗ fmul v0 . 2 d , v0 . 2 d , v1 . 2 d
s t r q0 , [x19] ,#16
cmp x19 , x21
b . ne 400 c38 <main+0x158>
l d r w0 , [sp ,#108]
mov x1 , x28
b l 4010 a8 <end measurements>

Listing 5.3: Vectorized mul kernel in Dibona with GCC

The two binaries are almost identical. The GCC compiler is able to autovectorize the multiply operation as
well as the manual vectorization. However, Listing 5.2 has an extra instruction: add x0, x0, #0x10 that
prepares the operands of the loop check. This extra instruction in the binary makes it so the autovectorized
version of the kernel performs more instructions during execution than the manually vectorized version.

Listing 5.4 shows the dissasembled binary compiled with the Arm HPC Compiler. I only include the binary
of the scalar version because the manually vectorized version because there is no meaningful difference with the
one compiled with GCC.

b l 400 e3c <start measurements>
mov x8 , xzr
add x9 , x22 , x8
add x10 , x23 , x8
ldp q0 , q1 , [x9]
ldp q2 , q3 , [x10]
add x8 , x8 , #0x20
cmp x8 , #0x10 , l s l #12

∗ fmul v0 . 2 d , v2 . 2 d , v0 . 2 d
∗ fmul v1 . 2 d , v3 . 2 d , v1 . 2 d

stp q0 , q1 , [x9]
b . ne 4010 e8 <main+0x144>
l d r w0 , [sp , #12]
mov x1 , x20
b l 400 ea0 <end measurements>

Listing 5.4: Scalar mul kernel in Dibona using the Arm HPC Compiler

The most noticeable feature of the binary produced by the Arm HPC Compiler is that it has unrolled the loop
by a factor of two. We observe that there are two fmul instructions per loop iteration. Right after the multiply
instructions, we find a store-pair stp instruction, which stores two SIMD registers with a single instruction. By
unrolling the loop and using the stp instruction, the Arm HPC Compiler reduces the total number of executed
instructions. Please keep in mind that the stp reduces the total number of load instructions, but it may not
benefit the overall performance of the kernel, since the amount of data sent to the memory is the same as when
using two regular store instructions.

5.1. MULTIPLY KERNEL 37

Figure 5.1, and 5.2 show the number of total and vector instructions of each execution. The x-axis represents
different versions of the kernel. The first letter of the label indicates the precision: d for double and s for single.
The second letter of the label indicates if the original code is scalar (s) or manually vectorized (v). The y-axis
represents the value read from the PAPI counters. Lower is better.

Figure 5.1: Total inst. of mul kernel in Dibona Figure 5.2: Vector inst. of mul kernel in Dibona

In the previous listings, we observed that the GCC scalar binary had one more static instruction that the
manually vectorized one. This extra instruction results on ×1.15 higher dynamic instruction count. In contrast,
the scalar version compiled with the Arm HPC Compiler has an extra instruction, but it unrolls the loop by a
factor of two, which results in a lower dynamic instruction count.

One SIMD register in Dibona can hold four single precision elements and two double precision elements.
With N = 8192, we expect to execute V = N/vl vector arithmetic instructions. For single precision V = 2048,
and for double precision 4096. However, I measured ×1.5 more vector instructions than expected. I currently
do not have an explanation for this result.

MareNostrum4

In MareNostrum4, the available compilers are GCC and the Intel Compiler. Listings 5.5, 5.6 show the
dissasembled binaries of the kernel compiled with GCC and with double precision.

c a l l q 400 f00 <start measurements>
mov −0x38(%rbp) ,% rcx
mov −0x40(%rbp) ,% rdx
l e a 0x20(%rdx) ,% rax
cmp %rax ,%rcx
j a e 400b15 <main+0x1a5>
l e a 0x20(%rcx) ,% rax
cmp %rax ,%rdx
jb 400ba6 <main+0x236>
xor %eax ,%eax
nopw 0x0(%rax ,%rax , 1)

∗ vmovupd (%rdx ,%rax ,1) ,%ymm1
∗ vmulpd (%rcx ,%rax ,1) ,%ymm1,%ymm0
∗ vmovupd %ymm0,(% rdx ,%rax , 1)

add $0x20 ,%rax
cmp $0x10000 ,%rax
jne 400b20 <main+0x1b0>
vzeroupper
mov %r13 ,% r s i
mov −0x44(%rbp) ,% ed i
c a l l q 400 f50 <end measurements>

Listing 5.5: Scalar mul kernel in MareNostrum4 with GCC

c a l l q 400 ec0 <start measurements>
xor %eax ,%eax
nopl 0x0(%rax)
mov −0x40(%rbp) ,% rdx
add %rax ,%rdx
mov −0x38(%rbp) ,% rcx

∗ vmovapd (%rdx) ,%zmm1
∗ vmulpd (%rcx ,%rax ,1) ,%zmm1,%zmm0
∗ vmovapd %zmm0,(% rdx)

add $0x40 ,%rax
cmp $0x10000 ,%rax
jne 400b00 <main+0x190>
mov %r13 ,% r s i
mov −0x44(%rbp) ,% ed i
vzeroupper
c a l l q 400 f10 <end measurements>

Listing 5.6: Vectorized mul kernel in MareNostrum4 with
GCC

38 CHAPTER 5. SYSTEM SOFTWARE

In MareNostrum4, the binary of autovectorized version of the kernel produced by GCC is much more
complex than the manually vectorized. The most relevant difference is that the autovectorized binary does not
leverage the AVX512 instructions, which use SIMD registers of 512 bits (zmm registers). Even when using the
optimization flags provided by the system administrators1, the autovectorized kernel uses ymm SIMD registers,
which are 256 bits wide.

Another important difference between the autovectorized and the manually vectorized versions of the kernel
is the amount of instructions surrounding the actual multiply operation. In Listing 5.6 we see that there are
a lot more instructions to prepare the operands and perform bookkeeping of the loop iterations in comparison
with the manually vectorized binary.

Listing 5.7 shows the dissasembled binary of the multiply kernel compiled with the Intel Compiler and double
precision elements.

c a l l q 401ab0 <start measurements>
mov (%rsp) ,% r9
mov %r9 ,%r8
and $0x1f ,%r8
mov 0x8(%rsp) ,% r10
t e s t %r8d ,%r8d
j e 401 e59 <main+0x209>
t e s t $0x7 ,%r8d
jne 40204 c <main+0x3fc>

[. . .]
∗ vmovsd (%r9 ,%rax ,8) ,%xmm0
∗ vmulsd (%r10 ,%rax ,8) ,%xmm0,%xmm1
∗ vmovsd %xmm1,(% r9 ,%rax , 8)

inc %rax
cmp %rcx ,%rax
jb 401 e3d <main+0x1ed>
jmp 401 e5b <main+0x20b>

[. . .]
∗ vmovupd (%r9 ,%rcx ,8) ,%ymm0
∗ vmovupd 0x20(%r10 ,%rcx ,8) ,%ymm2
∗ vmovupd 0x40(%r10 ,%rcx ,8) ,%ymm4
∗ vmovupd 0x60(%r10 ,%rcx ,8) ,%ymm6
∗ vmulpd (%r10 ,%rcx ,8) ,%ymm0,%ymm1
∗ vmulpd 0x20(%r9 ,%rcx ,8) ,%ymm2,%ymm3
∗ vmulpd 0x40(%r9 ,%rcx ,8) ,%ymm4,%ymm5
∗ vmulpd 0x60(%r9 ,%rcx ,8) ,%ymm6,%ymm7

[. . .]
c a l l q 401b00 <end measurements>

Listing 5.7: Scalar mul kernel in MareNostrum4 with the Intel Compiler

The first notable difference in the binaries generated by the Intel Compiler is their size. The binaries
produced by GCC weigh 18 kB while the Intel Compiler generates binaries of 104 kB. The Intel Compiler
produces a binary with multiple paths that are specialized to certain scenarios. For example, the scalar version
of the multiply kernel compiled with the Intel Compiler has a path that uses 128 bit SIMD registers (xmm
registers) and another path that uses 256 bit registers (ymm registers). The path to follow is determined at
runtime depending on the number of elements left in the vector.

Figure 5.3 shows that the static size of the binary does not correlate to the final number of instructions
executed. For all versions of the multiply kernel, GCC executes more instructions than the Intel Compiler. This
is because of the multiple specialized paths that the Intel Compiler produces. Loop unrolling justifies larger
binaries that execute less instructions compared to the unoptimized binary. We see in Listing 5.7 up to four
AVX instructions per iteration, which amounts to a total of 128 elements.

Looking at Figure 5.4, we see that the number of vector instructions executed is identical for both compilers.
In contrast to the results obtained in Dibona, the amount of vector instructions measured is around the expected.

1https://www.bsc.es/user-support/mn4.php

https://www.bsc.es/user-support/mn4.php

5.1. MULTIPLY KERNEL 39

Figure 5.3: Total number of instructions of mul kernel
in MareNostrum4

Figure 5.4: Vector instructions of mul kernel in
MareNostrum4

Power9

In Power9, the available compilers are GCC, the PGI compiler, and the XL compiler (provided by IBM).
The Power9 architecture has two vector extensions: AltiVec and VSX. Similar on how Intel’s AVX and AVX512
build one on top of the other, VSX is an extension of AltiVec. The PGI compiler does not support vector
intrinsics. The XL compiler does not support double precision VSX intrinsics. So for these two compilers I
could not produce a manually vectorized code like with the other machines I presented in this section.

Listings 5.8 and 5.10 show the dissasambled binary of the multiply kernel compiled in Power9 with GCC
and double precision elments. The autovectorized binary has more instructions that perform checks and brach
outside the loop. We would expect that the autovectorized binary executes more instructions compared to the
manually vectorized one. Looking at the multiply operation, we observe that both binaries use the same VSX
instruction, xvmuldp. We can say that, for this kernel, the autovectorization done by GCC is on par with the
manual vectorization.

b l <start measurements+0x8>
nop
ld r8 , 9 6 (r1)
ld r10 , 10 4 (r1)
l i r9 , 1
addi r7 , r8 , 16
cmpld cr7 , r10 , r7
bge cr7 ,10000 dd8 <main+0x1f8>
addi r7 , r10 ,16
cmpld cr7 , r8 , r7
i s e l r9 , 0 , r9 , 28
cmpwi cr7 , r9 , 0
beq cr7 ,10000 ea4 <main+0x2c4>
l i r7 ,4096
l i r9 , 0
mtctr r7
nop
nop
o r i r2 , r2 , 0
lxvx vs0 , r10 , r9
lxvx vs12 , r8 , r9

∗ xvmuldp vs0 , vs0 , vs12
stxvx vs0 , r10 , r9
addi r9 , r9 , 16
bdnz 10000 df0 <main+0x210>
lwa r3 , 1 1 2 (r1)
mr r4 , r27
b l <end measurements+0x8>

Listing 5.8: Scalar mul kernel in Power9 with GCC

bl <start measurements+0x8>
nop
l i r9 ,4096
l i r10 , 0
mtctr r9
nop
o r i r2 , r2 , 0
ld r9 , 10 4 (r1)
ld r8 , 9 6 (r1)
add r9 , r9 , r10
lvx v0 , r8 , r10
addi r10 , r10 ,16
r l d i c r r9 , r9 , 0 , 59
lxv vs0 , 0 (r9)

∗ xvmuldp vs0 , vs0 , vs32
stxv vs0 , 0 (r9)
bdnz 10000 dc0 <main+0x1e0>
lwa r3 , 1 1 2 (r1)
mr r4 , r27
b l <end measurements+0x8>

Listing 5.9: Vectorized mul kernel in Power9 with GCC

40 CHAPTER 5. SYSTEM SOFTWARE

Listings 5.10 and 5.11 show the dissasembled binaries of the multiply kernel compiled with PGI and XL.
Notice how both binaries are significantly different to the ones produced by GCC.

The PGI compiler produces a binary that uses the xvmuldp instruction, just like GCC. However, PGI has
also unrolled the loop by a factor of eight. There seem to be some instructions at the begining of the loop that
perform checks and branch outside the loop in case a certain condition is met.

In contrast, the XL compiler is unable to leverage the VSX vector extension. We observe that the binary
uses the xsmuldp which operates half of the elements as the xvmuldp instruction. The XL compiler unrolls
the loop by a factor of two, which decreases the number of executed instructions by a bit. But overall, we expect
that the binary produced by the XL will perform worse than the ones produced by GCC and PGI.

b l <start measurements+0x8>
nop
ld r3 , 10 4 (r1)
ld r4 , 9 6 (r1)
l i r5 , 0
l i r6 ,8193
nop
nop
o r i r2 , r2 , 0
lxvx vs0 , r3 , r5
lxvx vs1 , r4 , r5
add r7 , r3 , r5
add r8 , r4 , r5
addi r6 , r6 ,−16
cmplwi r6 , 4

∗ xvmuldp vs0 , vs0 , vs1
stxvx vs0 , r3 , r5
addi r5 , r5 ,128
lxv vs0 , 1 6 (r7)
lxv vs1 , 1 6 (r8)

∗ xvmuldp vs0 , vs0 , vs1
stxv vs0 , 1 6 (r7)

[. . .]
bgt 10001790 <main+0x258>
lwa r3 , 1 1 6 (r1)
mr r4 , r28
b l <end measurements+0x8>

Listing 5.10: Scalar mul kernel in Power9 with PGI

bl <start measurements+0x8>
nop
ld r3 , 12 0 (r1)
ld r4 , 12 8 (r1)
l i r0 ,8191
addi r3 , r3 ,−8
addi r4 , r4 ,−8
mtctr r0
addi r0 , r4 , 8
addi r5 , r3 , 8
addi r6 , r3 , 8
addi r5 , r4 , 8
l f d f0 , 8 (r3)
l f d f1 , 8 (r4)

∗ xsmuldp vs10 , vs0 , vs1
nop
s t f d f10 , 0 (r6)
addi r0 , r5 , 8
addi r3 , r6 , 8
l f d f2 , 8 (r6)
l f d f3 , 8 (r5)

∗ xsmuldp vs10 , vs2 , vs3
addi r5 , r5 , 8
addi r6 , r6 , 8
bdnz 10001680 <main+0x220>
s t f d f10 , 0 (r6)
lwa r3 , 9 6 (r1)
mr r4 , r26
b l <end measurements+0x8>

Listing 5.11: Scalar mul kernel in Power9 with XL

Figure 5.5 shows the total number of executed instructions of each version of the multiply kernel in Power9.
Recall that the double precision version cannot be manually vectorized with PGI and XL since they do not
support the VSX intrinsics. The PGI compiler also does not support the intrinsics of the single precision version.
In Figure 5.5, I denote the unimplemented versions of the kernel with no column and the number 0.

As expected, the binaries produces by the XL compiler execute more instructions that the binaries produced
by the other two compilers. On the other hand, GCC and PGI are in the same range of dynamic instructions.
It is unclear which one of the two will execute less instructions.

Figure 5.6 shows the number of vector floating point operations executed by each version of the kernel.
We observe very unexpected measurements. On the one hand, the number of operations is the same for the
GCC and PGI compiler in the double precision autovectorized version. On the other hand, GCC produces a
binary which executes half of the vector operations for the single precision of the autovectorized version. This
is because GCC is able to use VSX instructions to leverage the whole SIMD registers, while PGI does not.

5.2. FMA KERNEL 41

Figure 5.5: Total inst. of mul kernel in Power9 Figure 5.6: Vector inst. of mul kernel in Power9

5.2 FMA Kernel

All versions of the fused-multiply-add kernel in all machines with their respective compilers yield results that
are coherent with the observations we made with the multiply kernel. The compilers use similar optimization
strategies, compared with the multiply kernel, with the most notable difference being that the kernel has now
two floating point operations: multiply and add. However, all ISAs include a fused-multiply-add instruction
which is used by the compilers when they autovectorize the code.

5.3 Stencil

In this section, I present the measurements of a stencil kernel extracted from miniAMR[44]. Stencil compu-
tations are a relevant in the field of HPC and so we want to evaluate how the compiler is able to optimize the
access patterns. The program takes a problem size S as an input parameter to construct a three-dimensional
array of S3 double precision floating point elements. Each element of the array is initialized with a random
value. The program allocates a second array of S3 elements to store the results of the kernel. The stencil kernel
traverses the input array with three nested for loops that access, respectively, the x-axis with the induction
variable i, the y-axis with the induction variable j, and the z-axis with the induction variable k. For each
element (i, j, k) of the input array, the kernel computes the average of all adjacent cells plus the given element.
We consider a 27 element connectivity. The result is stored in element (i, j, k) of the result array. Figure 5.7
shows i) the orientation of the x-axis, y-axis, and z-axis of the matrix; and ii) a given element (i, j, k), in blue,
surrounded by its adjacent cells, in red.

Figure 5.7: Left: Orientation of axes of the matrix. Right: Adjacent cells of a given element (i, j, k)

I wrote two extended versions of the original stencil kernel. The first version, labeled unroll2, unrolls the
innermost loop (i.e., the one that traverses the matrix in the z-axis) by a factor of two. The objective of this
version is to expose to the compiler more opportunities to vectorize arithmetic operations, since there are more
sums per iteration of the k loop.

The second version, labeled reuse, starts from unroll2 and is built upon the knowledge that two elements
(i, j, k) and (i, j, k + 1) have adjacent cells in common. The reuse implementation of the kernel reuses the
data of the common adjacent cells to reduce the memory pressure of each iteration. Figure 5.8 shows the two
elements accessed, in blue, and their adjacent cells, in red, per iteration of the k loop in the unroll2 and
reuse implementations of the kernel.

42 CHAPTER 5. SYSTEM SOFTWARE

Figure 5.8: Elements (i, j, k) and (i, j, k + 1) of the matrix, in blue, and their adjacent cells, in red

The general structure of the program is as follows. First, allocate memory for three arrays (A, B, and C)
of S3 double precision elements. Initialize each element of A with random values. Run the original version of
the stencil kernel with A and B as the input and result arrays, respectively. Run the unroll2 version of the
stencil kernel with A and C as the input and result arrays, respectively, and validate the result by comparing B
and C. Run the reuse version of the stencil kernel with A and C as the input and result arrays, respectively,
and validate the result by comparing B and C. Deallocate arrays A, B, and C.

I used PAPI to measure the amount of cycles, issued instructions and vector instructions of each invocation
of the stencil kernel. I fixed the problem size S so that the total memory used by the program would be, at
least, 80% of the total memory of one node. Let M the total amount of memory of one node in Bytes. The
minimum problem size S of the stencil kernel is:

S =
⌈

3

√
M × 0.8

8× 3

⌉
For the rest of this section, I present the measurements of the program on each machine. For each machine,

I run the program three times and measured that the standard deviation of the measurements is always under
2% of the average value across all executions. Since the results have almost no variability, I present only the
measurements of the first run on each machine.

In addition to the measurements of the PAPI counters, I also present the autovectorization ratio. This
metric allows us to quantify the amount of autovectorization that each compiler is able to do on each machine.
The autovectorization ratio is defined as the ratio between the number of vector instruction divided the total
number of instructions.

Dibona

In Dibona, the Arm HPC Compiler is unable to autovectorize at all regardless of the version of the kernel. It
seems that the memory access pattern of the stencil is too complex for the autovectorizer. On the other hand,
GCC autovectorizes all of the versions. The autovectorization ratio of the reference version compiled with GCC
is 0.57. It increases when implementing the reuse and unroll optimizations, getting up to 0.69.

Figure 5.9 shows the total cycles for each version of the stencil kernel with both compilers in Dibona. It is
apparent that GCC has an edge in cycles over the Arm HPC Compiler. This is because GCC compiler executes
less instructions than the Arm HPC Compiler thanks to the autovectorization. For the reference version, GCC
has a ×2 speedup over the Arm HPC Compiler. For the other two versions, GCC has a ×1.70 speedup.

Figure 5.9: Total cycles of stencil kernel in Dibona

5.4. OSU BENCHMARKS 43

MareNostrum4

In MareNostrum4, both compilers are able to autovectorize the code. Figure 5.10 shows the total cycles of
each version of the stencil kernel. Figure 5.11 shows the total number of instructions executed by each version
of the stencil kernel.

For the reference version, the binary produced by the Intel Compiler executes less instructions than the
one from GCC. In turn, the binary generated by the Intel Compiler takes less cycles to complete the kernel.
However, for the reuse and unroll versions of the kernel, the binary produced by Intel Compiler executes
way more instructions compared to the one from GCC. In the worst case, the binary generated by the Intel
Compiler executes more than three times as many instructions as the binary from GCC. This huge difference in
dynamic instruction count results on the binary produced by GCC taking significantly less cycles to complete
in comparison to the one from the Intel Compiler. Looking at Figure 5.10 and 5.11, it is apparent that the
number of cycles is strongly correlated to the number of executed instructions.

Figure 5.10: Total cycles of stencil kernel in MareNos-
trum4

Figure 5.11: Total inst. of stencil kernel in MareNos-
trum4

Power9

In Power9, only GCC and PGI are able to autovectorize part of the stencil kernel. Figure 5.12 shows the
total cycles of each version of the stencil kernel. Figure 5.13 shows the total number of instructions executed
by each version of the stencil kernel.

For the reference version, all compilers have a very similar cycle count. It is not clear which one could yield
a better performance. Moving on to the reuse version, we observe that the binary produced by GCC takes
less cycles to complete while the binaries generated by PGI and XL do not benefit from this code modification.
Lastly, we observe that the unroll version has an increase of cycle count for all compilers.

Looking at the instruction count in Figure 5.13, we see that the unroll and reuse versions execute a
higher number of instructions when compiled with PGI and XL. This is because the PGI compiler does not
vectorize when applying the code modifications and the XL compiler does not vectorize at all. On the other
hand, GCC decreases the number of instructions when going from the reference version to reuse but there is
no gain from the reuse to the unroll versions.

By observing both Figure 5.12 and 5.13, we can conclude that the increase in cycle count when running the
unroll version is not due to the number of instructions executed. In contrast to what we saw in MareNostrum4,
there is not a strong correlation between the number of cycles and the number of executed instructions. Actually,
the number of cycles increases in the unroll version of the kernel due to code replication, which leads to lower
instruction cache locality.

5.4 OSU Benchmarks

In Section 4.6 I presented the network bandwidth in Dibona and Power9 measured with the tools provided
by the manufacturer, Mellanox. I showed that the results from the ib read bw test approach the theoretical
peak network bandwidth. These utilities have the minimum software components to communicate through the
IB interconnect. However, scientific applications use, at least, one more software component to communicate
processes. This added layer is the MPI communication library. Depending on the MPI flavor (i.e., OpenMPI,
mpich, Intel MPI, etc.) and how it has been configured by the system administrator, the final user might not
be able to leverage the network bandwidth to its fullest due to overheads.

44 CHAPTER 5. SYSTEM SOFTWARE

Figure 5.12: Total cycles of stencil kernel in Power9 Figure 5.13: Total inst. of stencil kernel in Power9

In this section, I present the network bandwidth of Dibona, MareNostrum4, and Power9 measured with the
OSU benchmarks [45]. These are a collection of small MPI programs that measure latency and bandwidth of
different MPI primitives. The osu bw test, under pt2pt collection of test is an MPI program with a similar
behavior to the ib read bw. Two processes exchange point-to-point messages of a given size with blocking MPI
primitives. Figure 5.14 shows the achieved throughput, as a function of the message size of the communication.
All points represent the average value of 100 repetitions of the communication.

Figure 5.14: Bandwidth between two processes in different nodes

Both networks approach the theoretical peak as the message size increases (∼95%). It seems that OPA is
consistently achieving a better bandwidth than IB with message sizes over 256 KiB. The difference in bandwidth
is also very noticeable at message sizes around 4 KiB and 8 KiB, where OPA almost doubles IB. It seems that
measured bandwidth of OSU in Dibona stalls around 8 and 16 KiB but then shoots up to 10 GB/s for larger
message sizes. This behavior is consistent throughout multiple pairs of nodes and between executions. We
verified that this behavior disappears if we measure the bandwidth with the ib read bw tool by Mellanox.
As this tool exchanges data using the raw network protocol, we can only conclude that the “valley” appearing
in Figure 5.14 is caused by the OpenMPI configuration deployed by Bull/ATOS on the Dibona cluster at the
moment of the tests.

Chapter 6

Scientific applications - Alya

All our knowledge begins with the senses, proceeds
then to the understanding, and ends with reason.
There is nothing higher than reason.

— Immanuel Kant

6.1 Application characterization

Alya is a multi-physics code for solving mainly partial differential equations with the finite element method
on unstructured meshes. It is written in Fortran and is parallelized with MPI and OpenMP [46]. There exist
mainly two numerical methods to solve partial differential equations on unstructured meshes, namely the finite
volume and the finite element method [47]. In both cases, CFD codes involve two phases: the assembly of
vectors and possibly matrices, and the iterative solvers to solve the resulting algebraic systems, if required.
The assembly phase consists of a loop over some geometric entities of the computational mesh, namely faces,
elements, or edges. In the case of explicit schemes, no iterative solver is required so that the computational
performance of the code relies exclusively on the assembly [48].

Alya is fully parallelized with MPI. The mesh partitioning is achieved using METIS [49], minimizing the
number of neighbors.

Figure 6.1: Timeline of one time step of the simulation

To identify the different computational phases of Alya we used Extrae to obtain a trace with 48 MPI
processes and visualize it using Paraver. In Figure 6.1 we can see a timeline of one time step, each horizontal
line represents one MPI process, the x-axis shows the time. The color code represents the activity of each MPI
process at a given point in time. The different phases identified are: the three time steps, each one including the
Element assembly (blue) and the Boundaries operations (pink), the only MPI communication in these steps is a
global synchronization at the end of each step. We can observe that one of the main issues of both phases is the
load balance between MPI processes. Moreover, the load balance depends on the partition and the geometry.
Also, depending on the partition, some MPI processes may not have any boundary element to compute and
this issue worsens when increasing the number of partitions (MPI processes).

The algebraic Solver (red), on the other hand, includes a high number of communications. Each iteration
of the solver needs to perform several MPI communications, including point-to-point and global reduction
operations, as explained in [50].

45

46 CHAPTER 6. SCIENTIFIC APPLICATIONS - ALYA

In the example shown, the element assembly phase accounts for 40% of the time of the time step, the
boundary operations 10%, and the solver 12%. The reader should note that depending on the macroscopic
problem simulated by Alya, the underlying microscopic parameters of the simulations (e.g., number of elements,
boundary loops or iterations required by the solver) can change significantly. This means that the three phases
can have different relative durations.

6.2 Compiler comparison

As mentioned in Chapter 5, software tools (e.g., compilers, libraries, or runtimes) are necessary to hide
the underlying complexity of modern CPUs from end-users. These tools sometimes are provided by the CPU
vendors. Therefore, one would expect that they are be able to exploit the CPU performance at its maximum.
But they can also be provided by third parties or the open-source community.

In this section, we study the performance of Alya across our three HPC clusters using different compilers,
both from the open-source community and from CPU vendors. For this study, we employ four metrics to
evaluate the performance delivered by the various compilers in each phase: arithmetic intensity, computational
performance (or directly GFlop/s), IPC and autovectorization.

Methodology

Table 6.1 shows the list of the compilers available on each cluster as well as the optimization flags used for
each case of our study. All compilations were performed using the -O3 flag. All runs of this section have been
executed running the MPI-only version of Alya filling all cores of one compute node of each cluster.

Table 6.1: Compiler flags and PAPI counters used on each HPC cluster

Machine Compiler Flags f [Flop] m [Bytes] Vector instructions

GNU 8.1.0 -mcpu=thunderx2t99 -ffp-contract=fast -ffast-math PAPI FP INS +
Dibona

Arm HPC Compiler 19.0 -mcpu=thunderx2t99 -ffp-contract=fast -ffast-math 2 * PAPI VEC INS
64 * PAPI L2 DCM PAPI VEC INS

GNU 8.1.0 -march=skylake-avx512 -ffp-contract=fast -ffast-math
MareNostrum4

Intel Compiler 2017.4 -xCORE-AVX512 -mtune=skylake -heap-arrays -ipo
PAPI DP OPS 64 * PAPI L3 TCM PAPI VEC DP

GNU 8.1.0 -mtune=power9 -mcpu=power9 -maltivec
PGI 18.10 -fast -MunrollPower9
IBM XL 16.1.1.2 -qarch=pwr9 -qtune=pwr9

PAPI DP OPS 128 * PAPI L3 DCM PM VECTOR FLOP CMPL

We used Extrae to collect data from the PAPI library during the execution of Alya and generate a trace.
We then used Paraver to visualize the trace and extract the metrics described above. We measured that the
overhead introduced by Extrae is always below 5% compared to the execution time without tracing. The Extrae
instrumentation tool leverages events triggered by the application, e.g., the MPI calls, to gather information
about the running code, e.g., it calls the underlying PAPI library to collect data from hardware counters from
each of the MPI processes. Each phase p of Alya introduced in Section 6.1, is composed of B bursts while P is
the number of MPI processes.

For each burst of each MPI process, we collect f , the number of floating point operations executed in that
burst, m, the number of bytes exchanged with the main memory in that burst, t, the duration of the burst
itself. This way for each phase p we can compute:

fp =

P∑
j=1

B∑
i=1

fi,j mp =

P∑
j=1

B∑
i=1

mi,j tp =
P

max
j=1

B∑
i=1

ti,j (6.1)

Since the architectures under study offer different sets of hardware counters, we measure f and m using the
PAPI events as described in Table 6.1.

Since the TX2 CPU powering Dibona does not expose a counter of floating point operations, we approximated
it from PAPI FP INS and PAPI VEC INS. Our approximation holds under the following assumptions:

• PAPI * INS count retired instructions. The counters do not include instructions issued speculatively and
then squashed.

• Each instruction performs a single operation per floating point element.

• The vector instructions always use the whole 128 bits NEON register.

Also, in the TX2 CPU, the PAPI version we are using does not support any last level cache counter. Instead,
we use the L2 data cache miss counter, aware that it overestimates the traffic to the main memory.

6.2. COMPILER COMPARISON 47

Sustained performance

In this subsection, we use the metrics just introduced, f , m, and t to place the phases of Alya within the
roofline model I presented in Section 4.4. Figure 6.2 plots the measured performance in each phase under the
roofline curve of each cluster. The x-axis represents the arithmetic intensity I = f/m (in Flops/Byte) and the
y-axis represents the computational performance F = f/t (in GFlop/s). The three machines and each point
represents the pair (Ip, Fp) for each phase p of Alya on a given cluster using a specific compiler. Hence, the
distance from each point to the roofline curve in Figure 6.2 represents a theoretical room of improvement (please
note that both axes are represented in a logarithmic scale).

Figure 6.2: Roofline model of Dibona, MareNostrum4 and Power9 and measured performance per phase

First of all, we show how the arithmetic intensity varies drastically depending on the architecture due to
the different micro-architectures of the memory hierarchies. The point with the highest arithmetic intensity
of each combination of machine and compiler corresponds to the element assembly phase. While in the solver
and in the boundary operations all compilers in all architectures deliver similar arithmetic intensity and similar
computational performance (points are mostly overlapping in Figure 6.2), in the case of the element assembly
we see that points of different compilers are slightly scattered. We notice in particular that the GNU com-
piler enables a better use of the memory hierarchies (higher arithmetic intensity: +35% on Dibona, +15% on
MareNostrum4 and +72%).

Secondly, the boundary operations appears to be the phase falling furthest away from the theoretical peak
on all architectures. The reason comes from the nature of this phase. Since it deals with boundary elements
that heavily vary with the geometry of the input, it has been less optimized for any specific architecture.

Lastly, Alya is not optimized for a specific architecture. However, Figure 6.2 shows that MareNostrum4 is
systematically the closest to the peak. We consider this as a natural consequence of the higher maturity of the
x86 HPC ecosystem.

Instructions Per Cycle

The IPC is a relevant metric to understand how busy a CPU is, so in an HPC context, where usually only
one application per CPU is running, it is a good performance indicator for a given application. Figure 6.3 shows
a plot that correlates the average elapsed time of the element assembly phase (x-axis) with the IPC during the
same phase (y-axis). For our study, we use five compute nodes of each of the clusters, and we bind one MPI
process per core. Therefore, we have a different number of MPI processes per cluster: 240 in MareNostrum4,
320 in Dibona, and 200 in Power9. Each point in Figure 6.3 represents the average value per MPI process,
and the lines depict the standard deviation. A wide horizontal line means a large variability in execution time,
while a tall vertical line means a big variability in IPC across processes. The top-left corner represents a short
execution time with a high IPC, while the bottom-right corner represents a long execution time with a lower
IPC.

If we compare the element assembly time on each machine, it is clear that MareNostrum4 has a lower
elapsed time. The Intel Compiler achieves a 2× speedup with respect to the best cases of Dibona and Power9.
It is interesting to note that the GNU compiler on Dibona produces a binary with a higher IPC than in
MareNostrum4. Since MareNostrum4 has only a 5% higher clock speed, this points at that the longer execution
time in Dibona is due to a higher number of instructions being executed.

48 CHAPTER 6. SCIENTIFIC APPLICATIONS - ALYA

Figure 6.3: IPC and average duration of the element assembly

Comparing compilers within the same machine, we note that the GNU compiler produces a binary delivering
more performance than the vendor-specific compilers on Dibona and Power9. We do not have a clear reason for
this.

Figure 6.4 shows the same plot for the solver phase. In this case, all durations on the x-axis are within 0.20
and 0.35 seconds, regardless of the machine and compiler. It is important to note that, on Dibona, there is a
higher variability than in the rest of the machines.

Figure 6.4: IPC and average duration of the solver

Figure 6.5 shows the same plot for the boundary operations phase. This phase is similar to the solver in
that there seems to be little difference between machines and compilers even if there is a higher variability on
elapsed time in Power9.

Figure 6.5: IPC and average duration of the boundary ops.

All in all, the element assembly phase, which represents the more significant part of the time step, is also
the phase with a higher difference in performance across machines.

6.2. COMPILER COMPARISON 49

Vectorization

In Figures 6.3, 6.5, and 6.4 the reader should note that the IPC can significantly change when running a
binary generated with different compilers for the same architecture. A change of IPC on the same cluster that
is running at a given frequency can be due to either a different number of instructions generated by the compiler
or the use of different types of instructions that implies different latencies.

A typical case that can generate such differences in IPC values happens when a compiler can generate more
SIMD instructions than another. The difference in the autovectorization performed by the compiler and the
width of the SIMD unit in each machine could indeed increase/decrease the total executed instructions. For
this reason, we decided to study the vectorization of the different compilers available on the HPC clusters under
evaluation.

Each machine has different performance counters to count vector instructions, but there is no common
counter for all of them. Table 6.1 shows the PAPI counters we used to measure compiler autovectorization on
each machine and their corresponding description.

Figure 6.6: Compiler autovectorization in element assembly

Figure 6.6 shows the relationship between the total executed instructions (x-axis) and the vector instructions
(y-axis) on the element assembly phase. Each point represents the measurement of one MPI process – points of
the same color and type form a cluster. If a cluster spreads in the x direction, it means that the MPI processes
are affected by load imbalance as defined in Section 3.5.

Our measurements show that the binaries with a lower elapsed time in Figure 6.3 are also the ones with a
smaller number of executed instructions. In the case of MareNostrum4, there is little difference between the
GNU and the Intel Compiler. For Dibona, the binary generated with the GNU compiler v8 executes half the
number of instructions than the one generated with the Arm HPC Compiler. This may be the reason why the
binary generated with the Arm HPC Compiler takes twice as long in this phase.

Figure 6.7: Compiler autovectorization in solver

50 CHAPTER 6. SCIENTIFIC APPLICATIONS - ALYA

Figure 6.7 shows the same measurements for the solver phase. The compilers in Dibona are not able to
exploit the vector unit in this phase. Neither do the PGI and XL compilers in Power9, which generate zero
vector instructions and do not appear in the plot.

It is also interesting to note that the solver phase from the roofline model in Figure 6.2 appears to be memory
bound, so it should run faster on a platform with higher memory bandwidth like Dibona. However, Figure 6.4
tells us that Dibona is the slowest in executing this phase. The reason that makes MareNostrum4 outperforming
Dibona is that the solver phase also includes arithmetic instructions. So the wider SIMD unit of MareNostrum4
and the better autovectorization achieved by the compiler allow overcoming the memory bandwidth limitations.

Figure 6.8: Compiler autovectorization in boundary ops.

Figure 6.8 shows the measurements in the boundary operations phase. In Figure 6.5 we showed that
executions in Power9 were slower and we now show that a higher number of executed instructions may be the
cause.

6.3 Scalability

In this section, we present two scalability studies, the first one up to 32 nodes across all HPC clusters, and
the second one up to 256 nodes only in MareNostrum4. All results presented in this section are “by node”,
although the different clusters have a different number of cores per node. Also, all data are measured averaging
19 time steps of Alya, and the error bars depict the standard deviation. We use GNU for all the clusters.

Scalability airplane 31.5 million elements

The experiments presented here are obtained using the same input as in the previous sections.

Figure 6.9: Time step scalability in all clusters

In Figure 6.9, we can see the scalability of a time step in the three clusters. We can observe that Dibona and
Power9 perform similarly until four nodes. When using more than four nodes, the execution time in Dibona
becomes slightly longer than in Power9.

In Figure 6.10, we plot the elapsed time in the element assembly phase. In this phase, Dibona and Power9
have the same performance per node up to 16 nodes. The three clusters present a scalability of the element
assembly phase close to the ideal.

6.3. SCALABILITY 51

Figure 6.10: Element assembly scalability in all clusters

Figure 6.11: Solver scalability in all clusters

In Figure 6.11, we present the execution time of the solver phase. We show that the cluster that delivers
the best performance is Power9, outperforming MareNostrum4 by a 20%. This is coherent with observations
of Figures 6.4, that the solver presents lower execution times in Power9 than in MareNostrum4 (also 20%
lower). This can be explained by the frequency at which Power9 cores operate (3.0 GHz) compared to the
MareNostrum4 one (2.0 GHz). Dibona performs worse than the other two clusters in the solver. This was
already shown in Figure 6.4, we concluded that GNU is not able to generate a binary that exploits the vector
units of the core.

Figure 6.12: Boundary ops. scalability in all clusters

Finally, in Figure 6.12, we can see the elapsed time in the boundary operations phase. We can observe
that in this phase, MareNostrum4 is the one with the lowest elapsed time, but the efficiency degrades when
scaling beyond eight nodes. This phase, as explained in Section 6.1, is highly dependent on the partition (and
consequently on the number of MPI processes). The Load Balance of the boundaries operations with 4 nodes
in MareNostrum4 is 0.83 while when running on 16 nodes it is 0.72.

Dibona performs better than Power9 in this phase up to 4 nodes as was expected based on the results from
previous sections (see e.g., Figure 6.5).

Scalability airplane 252 million elements

Finally, in this subsection, we present the scalability up to 256 nodes in MareNostrum4. For this study, we
use a more detailed mesh of the same airplane; the input mesh used has 252 million elements.

52 CHAPTER 6. SCIENTIFIC APPLICATIONS - ALYA

Figure 6.13: Time step scalability in MareNostrum4

In Figure 6.13, we show the scalability of a single time step when simulating the 252 million elements airplane
in MareNostrum4. We can see that the whole simulation scales well up to 64 nodes (3072 cores). However,
when using 128 and 256 nodes, the parallel efficiency drops. It should be noted that in these two cases, the
workload per MPI process is very low (40 and 20 thousand elements, respectively).

Figure 6.14: Parallel efficiency up to 256 nodes

In Figure 6.14, we present the parallel efficiency of each phase. The efficiency E has been computed as
follows: E = t1/(i · ti), where t1 is the execution time when running with one node and ti is the execution
time when running with i nodes. Therefore, efficiency takes values in the [0..1] range, being 1 the ideal parallel
efficiency. We observe that the phases responsible for the loss of performance for more than 64 nodes are the
algebraic solver and the boundaries operations. In particular, the performance of the solver drops for 128 and
256 nodes. The boundary operations phase also has a poor parallel efficiency, but it steadily drops between 4
and 128 nodes. Also, the parallel efficiency of the element assembly phase is good up to 256 nodes.

In Figure 6.15, we can see the percentage of the time step time spent in each of the phases when increasing
the number of nodes. We can see that the assembly phase is the dominant one up to 64 nodes. For more
nodes, the solver becomes the dominant phase and also the bottleneck for the scalability, as we have seen in
Figure 6.14.

In Figure 6.16, we show the percentage of time step spent in MPI communication when increasing the
number of MPI ranks. We can observe that the time in MPI increases drastically with the number of nodes and
MPI processes used. Therefore, we can say that the performance loss observed in Figure 6.14 is due to MPI
communication. Nevertheless, with the current data, we cannot demonstrate if the performance loss of MPI is
due to the load balance, the overhead of MPI, or the transfer time of the network.

6.4. EFFICIENCY MODEL 53

Figure 6.15: Percentage of time spent in each phase

Figure 6.16: Percentage of time in MPI up to 32 nodes

6.4 Efficiency model

In Figure 6.1 we report a timeline of one iteration of Alya running in one node of MareNostrum4 using 48
MPI processes. In this section, I present a performance study of Alya running on MareNostrum4 and compiled
with the Intel Compiler. The FOA includes 4 time steps of the iterative phase of the application. Appendix B
contains the efficiency model tables for the three clusters that I cover in this thesis.

Single-node analysis

In Table 6.2 we report the POP efficiency metrics when running Alya on a single node of MareNostrum4.
The header of the columns express the number of processes per node. The reader should remember that we run
Alya with a fixed number of processes (48), spawning an increasing number of processes per node in each test.
So, the column with the header “2” reports the efficiencies of Alya running with 48 MPI processes, spawning
2 processes per node on 24 compute nodes of MareNostrum4.

We see that the load balance presents a low value that remains constant for the different runs. This behaviour
is as expected because all runs refers to a partition of the problem into 48 MPI ranks. The load balance problem
re-appear in the multi node study and we study it in more details in the next Section where we can see how it
changes when increasing the number of MPI processes (partitions of the problem).

As often happens, Table 6.2 shows that after the load balance the main limiting factor when increasing the
number of processes per node is the drop of the IPC.

To study this phenomenon, we use the Clustering tool introduced in Section 3.6. We clusterize each execution
trace of Alya using IPC and number of instructions. We identify three main computational clusters: Residual
Assembly (RAss), Timestep Computation (TsComp), Algebraic Solver (Solver). Please note that these clusters
do not correspond to the phases I introduced in Figure 6.1. The phases Element assembly and Boundaries
operations have merged into a single cluster called Residual Assembly. This is because the type of operations
that Alya performs in those two phases are very similar and the Clustering tool identifies them as the same
execution cluster. In Figure 6.17 we highlight with different colors the clusters identified by the Clustering tool
over a timeline.

54 CHAPTER 6. SCIENTIFIC APPLICATIONS - ALYA

Table 6.2: Single-node efficiency metrics of Alya

Figure 6.17: Timeline of 3 iterations highlighting the clusters

We characterize the clusters using their duration and we plot them in Figure 6.18. We notice that the Solver
is the responsible for the lack of scalabilty when increasing the number of processes per node.

Figure 6.18: Cluster duration with 48 MPI ranks with different processes per node distribution

The IPC drop could be generated by the saturation of resources (e.g., memory bandwidth). For this reason
we study the density of L3 cache misses per µsecond per socket. We perform the study on each cluster and
we confirm that the Solver phase is the root cause of the IPC drop. In Figure 6.19 we report the number of
L3 cache misses per µsecond per socket (y-axis) when changing the number of processes per node (x-axis). We
notice that while the Residual Assembly phase and the Timestep Computation phase have a steady low L3
miss density, the Solver shows an increasing density of cache misses, corresponding to lower values of IPC when
increasing the number of processes per node.

We conclude that IPC drop within the node is due to memory resource saturation when increasing the
number of MPI processes per node. We suggest to find a better data layout that would allow a better cache
data reuse.

6.4. EFFICIENCY MODEL 55

Figure 6.19: Study of the density of L3 data cache misses per µs per socket

Multi-node analysis

In Table 6.3 we can find the efficiencies obtained by Alya when using from 48 to 768 MPI processes (1 to 16
nodes). We can see that the main factor limiting scalability is the load balance.

Table 6.3: Multi-node efficiency metrics of Alya

Number of processes 48 96 192 384 768
Load Balance 84.51% 83.63% 83.09% 80.19% 70.95%
Instruction Balance 83.10% 82.63% 82.82% 79.83% 71.03%

Table 6.4: Alya: Load and Instruction Balance when increasing number of processes

In Table 6.4 we can see the load balance in useful time as computed by the POP efficiency metrics, and
the load balance in the number of instructions. We can conclude that the load balance of Alya comes from
the partition of the problem, because some processes execute more instructions than others. The example
considered for the present analysis is a full airplane simulation. The mesh is hybrid, composed of prisms in
the boundary layer region, tetrahedra in the core flow and pyramids in the transition region. For this study,
we have partitioned the mesh disregarding the type of elements, which cost for assembling the residuals is
different. This relative cost is responsible for the load imbalance. This issue can be addressed using a better
heuristic to partition the problem or use a dynamic load balancing mechanism as have been proved useful in
other works [46, 51].

56 CHAPTER 6. SCIENTIFIC APPLICATIONS - ALYA

In the case of Alya we study a second factor limiting the scalability, looking at Table 6.3 we can see that
after the Load Balance, the main problems are serialization and transfer. As usually serialization comes from
load balancing problems in different phases with a different pattern and we have already suggested the load
balance problem we study the transfer efficiency in Alya.

Figure 6.20: Transfer time per MPI primitive

We analyze the transfer time spent by the different class of MPI calls. The class of calls are P2P sync includ-
ing MPI send, MPI recv, and MPI sendrecv; P2P async including MPI isend, MPI irecv, MPI waitall;
Allreduce including MPI Allreduce. In Figure 6.20 I report the time spent communicating data for different
types of MPI calls. We observe that the transfer time increases steady for the asynchronous point to point MPI
calls (P2P async). It also increases for the synchronous calls but stops increasing after 384 MPI processes, the
amount of time spent in the AllReduce call also increases drastically for 768 MPI processes.

Figure 6.21: Bytes exchanged per MPI primitive

Figure 6.22: Byte exchanged by each process per MPI primitive

In Figure 6.21 and 6.22 we can see the number of bytes exchanged per MPI call and per MPI process
respectively. We can see that the number of bytes exchanged per call synchronous and asynchronous MPI calls
decreases drastically with the number of MPI processes. If we look at the number of bytes exchanged by process
we observe that also decrease for both kinds of calls as we increase the number of MPI processes.

6.4. EFFICIENCY MODEL 57

Figure 6.23: Number of calls by each process per MPI primitive

In Figure 6.23 we show the number of calls performed of each type by each process. We observe that the
number of asynchronous point to point is very high and increases with the number of MPI processes. Therefore,
the transfer time spent in the asynchronous point to point MPI call is due to the high number of calls and the
overhead associated to them. The suggestion to address this issue is to refactor, if possible, the communications
to group them and use a single call to send several data. It can happen that algorithmically this is not possible,
in that case the suggestion is to look at the partition of the problem because the high number of point to point
communications is a symptom of having too many neighbours.

58 CHAPTER 6. SCIENTIFIC APPLICATIONS - ALYA

Chapter 7

Conclusions

Ahora os toca a vosotros.

“Now is up to you.”

— Agustin Fernández

In this thesis, I have presented an evaluation methodology for HPC clusters that works across multiple
CPU architectures and can be applied under a short time constraint. The evaluation is done at three distinct
levels: micro-benchmarks, which stress specific components of the system; system software, which evaluates the
software tools that are available to the user; and a performance study of a scientific application. To bridge
these three levels, I leveraged two theoretical performance models, the Roofline model and the POP Efficiency
model, which I constructed with empirical measurements.

In Chapter 4, I showed the results of the first level of the evaluation model. Micro-benchmarks offer a simple
approach to focus on a single element of the machine at the time. The evaluation of the floating point throughput
presented in Section 4.1 demonstrates that it is easy to write a code to measure a performance close to the
theoretical peak provided by the manufacturer or extrapolated from the technical specifications of the machine.
On the other hand, the measurements of bandwidth and latency of the memory hierarchy in Sections 4.2,
and 4.3 show that there are multiple benchmarks available. It can be difficult to determine which benchmark is
more suitable for the evaluation methodology. Moreover, the complexity of the memory hierarchies in modern
processors makes it difficult to design experiments with consistent results. As an example, the memory latency
measurements I presented in Section 4.5 show promising results but require further investigation to be able to
fully characterize the memory hierarchies of the three machines. In general, there is little information about
the theoretical figures of the cache levels, which means that we cannot know how close are our measurements
to the peak bandwidth or access time.

In Chapter 5, I presented an evaluation of some of the software tools in each machine. Firstly, the compiler
study shows that using optimization flags yield a better performance than when compiling a binary with the
default compiler optimizations. However, the flags that the system administrator provides may not leverage the
micro-architecture features to the fullest (e.g., using the latest vectorization instructions in MareNostrum4).
Secondly, the OSU benchmarks results show that the MPI implementation introduces multiple layers of ab-
straction over the raw network protocol. These layers may add communication overheads.

In Chapter 6, I conduct a performance study of a Computational Fulid Dynamics application. To this end,
I leverage an efficiency model developed at BSC. This model works across multiple CPU architectures and can
be applied if the machine support a basic set of PAPI counters and the application is MPI-only. The efficiency
model gives a general idea to spot the eventual performance scalability bottlenecks. However, the model does
not give a detailed answer and requires further investigation.

All in all, the evaluation methodology I presented in this thesis is a solid start point that build on top of
the work I have contributed to since I started working at BSC. In the future, I would like to generalize further
this methodology and apply it to new HPC machines. In addition, I would like to incorporate the performance
evaluation of hardware accelerators and power consumption analysis.

59

60 CHAPTER 7. CONCLUSIONS

Acronyms

ANL Argonne National Laboratory.

B/s Bytes per second.

BSC Barcelona Supercomputing Center.

CFD Computational Fulid Dynamics.

CoE Center of Excellence.

CPU Central Processing Unit.

EPI European Processor Initiative.

Flop/s Floating-point operations per second.

FOA Focus Of Analysis.

FPU Floating Point Unit.

HPC High-Performance Computing.

HPCG High-Performance Conjugate Gradient.

HPL High-Performance Linpack.

IP Intellectual Property.

IPC Instructions per Cycle.

ISA Instruction Set Architecture.

MPI Message Passing Interface.

NUMA Non Uniform Memory Access.

ORNL Oak Ridge National Laboratory.

PAPI Performance Application Programming Interface.

POP Performance Optimization and Productivity.

PSU Power Supply Unit.

SIMD Single-Instruction Multiple-Data.

SMT Simultaneous Multi-Threading.

SSD Solid State Drive.

T/s Transfers per second.

TX2 ThunderX2.

61

62 Acronyms

Appendix A

Reproducibility

Reproducibility is one of the most important aspects in scientific literature. Throughout this thesis, I tried
to organize all the experiments and make available as much information as possible so they can be reproduced.
The this thesis is hosted at a public git repository1. The repository is organized as follows:

hpc−systems−eva lua t i on /
+−− exper iments
| +−− micro−benchmarks
| +−− system−so f tware
+−− l a t e x
+−− p l o t s
+−− python−v i r t u a l e n v

The experiments directory contains all the source code and scripts I used to conduct the experiments I
presented in this thesis. Since the version of Alya that I used is closed source, I cannot provide the source code.
The latex directory contains the LATEXsource of this very document. The plots and python-virtualenv
directories contain data and scripts to remake the plots I presented in this document. Section A explains how
to install and run the environment to reproduce the plots.

In addition to the resources found in the git repository, all the raw data from the experiments is available
in a public Google Spreadsheet2.

Generating plots

All plots, with exception of the figures shown in Chapter 6 and Appendix B, presented in this thesis are
generated using matplotlib3. To remake the plots I prepared a python virtual environment with the required
packages.

First, install virtualenv:

$ sudo apt i n s t a l l v i r t u a l e n v

Then, create a new virtual environment. Make sure you point to a valid python3 installation:

$ v i r t u a l e n v −p / usr / bin /python3 my−v i r t u a l e n v
Already us ing i n t e r p r e t e r / usr / bin /python3
Using base p r e f i x ’/ usr ’
New python executab l e in /tmp/my−v i r t u a l e n v / bin /python3
Also c r e a t i n g executab l e in /tmp/my−v i r t u a l e n v / bin /python
I n s t a l l i n g s e tuptoo l s , pkg re sources , pip , wheel . . . done .

$ t r e e −d −L 1 my−v i r t u a l e n v /
my−v i r t u a l e n v /
+−− bin
+−− i n c lude
+−− l i b
+−− share

4 d i r e c t o r i e s

1https://repo.hca.bsc.es/gitlab/fixers/hpc-systems-evaluation
2https://drive.google.com/drive/folders/1SqS1JQjzWGOhgnE7ndkphLIzwnHLcjJo?usp=sharing
3https://matplotlib.org/

63

https://repo.hca.bsc.es/gitlab/fixers/hpc-systems-evaluation
https://drive.google.com/drive/folders/1SqS1JQjzWGOhgnE7ndkphLIzwnHLcjJo?usp=sharing
https://matplotlib.org/

64 APPENDIX A. REPRODUCIBILITY

To activate the virtual environment, you simply source the activate file inside the bin subdirectory:

$ source my−v i r t u a l e n v / bin / a c t i v a t e
(my−v i r t u a l e n v) \$

By default, you should have a virtual environment with no extra packages installed:

$ pip l i s t
Package Vers ion
−−−−−−−−−−−−− −−−−−−−
pip 2 0 . 0 . 2
pkg−r e s o u r c e s 0 . 0 . 0
s e t u p t o o l s 4 6 . 0 . 0
wheel 0 . 3 4 . 2

To install the necessary packages to remake the plots, use the requirements.txt file:

$ pip i n s t a l l −r requ i rements . txt
[. . .]
$ pip l i s t
Package Vers ion
−−−−−−−−−−−−−−− −−−−−−−
c y c l e r 0 . 1 0 . 0
k i w i s o l v e r 1 . 1 . 0
matp lo t l i b 3 . 0 . 3
numpy 1 . 1 8 . 1
pandas 0 . 2 4 . 2
pip 2 0 . 0 . 2
pkg−r e s o u r c e s 0 . 0 . 0
pypars ing 2 . 4 . 6
python−d a t e u t i l 2 . 8 . 1
pytz 2019 .3
s e t u p t o o l s 4 6 . 0 . 0
s i x 1 . 1 4 . 0
wheel 0 . 3 4 . 2

You can now remake the plots by executing the python scripts under the plots subdirectory.
Exit the terminal to close the virtual environment.

Appendix B

Efficiency model tables

Dibona - Arm

At the time of writing, there were not enough resources in Dibona to perform the efficiency study.

MareNostrum4 - Intel

Tables B.1 and B.2 show the efficiency metrics of Alya compiled with the Intel Compiler and run in MareNos-
trum4. These tables are the same as the ones shown in Chapter 6.

Table B.1: MareNostrum4 - Single-node efficiency metrics

Power9 - IBM

Tables B.3 and B.4 show the efficiency metrics of Alya compiled with the GNU Compiler and run in Power9.

65

66 APPENDIX B. EFFICIENCY MODEL TABLES

Table B.2: MareNostrum4 - Multi-node efficiency metrics

Table B.3: Power9 - Single-node efficiency metrics

Table B.4: Power9 - Multi-node efficiency metrics

Bibliography

[1] Fabio F. Banchelli Gracia, Daniel Ruiz, Ying Hao Xu Lin, and Filippo Mantovani. Is Arm software
ecosystem ready for HPC? November 2017. Accepted: 2017-11-02T11:24:26Z. 1, 2.2

[2] Fabio Banchelli et al. MB3 D6.9 – Performance analysis of applications and mini-applications and bench-
marking on the project test platforms. Technical report, 2019. 1, 2.2, 3.3, 3.3, 4.5

[3] Filippo Mantovani, Marta Garcia-Gasulla, Jose Gracia, Esteban Stafford, Fabio Banchelli, Marc Josep-
Fabrego, Joel Criado-Ledesma, and Mathias Nachtmann. Performance and energy consumption of HPC
workloads on a cluster based on Arm ThunderX2 CPU. Future generation computer systems, 2020 – in
press. 1, 2.2, 3.3

[4] F. Banchelli, K. Peiro, A. Querol, G. Ramirez-Gargallo, G. Ramirez-Miranda, J. Vinyals, P. Vizcaino,
M. Garcia-Gasulla, and F. Mantovani. Performance study of hpc applications on an arm-based cluster
using a generic efficiency model. In 2020 28th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pages 167–174, 2020. 1, 2.2, 3.6, 3.6

[5] Fabio Banchelli, Marta Garcia-Gasulla, Guillaume Houzeaux, and Filippo Mantovani. Benchmarking of
state-of-the-art hpc clusters with a production cfd code. In Proceedings of the Platform for Advanced Scien-
tific Computing Conference, PASC 20, New York, NY, USA, 2020. Association for Computing Machinery.
1

[6] Michael Feldman. China Fleshes Out Exascale Design for Tianhe-3 Supercomputer. https://www.
nextplatform.com/2019/05/02/china-fleshes-out-exascale-design-for-tianhe-3/ -
Last accessed Apr. 2020, May 2019. 2.1

[7] U.S. Department of Energy and Intel to deliver first exascale supercomputer. https://www.anl.gov/
article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
- Last accessed Apr. 2020. 2.1

[8] U.S. Department of Energy and Cray to Deliver Record-Setting Fron-
tier Supercomputer at ORNL. https://www.ornl.gov/news/
us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
- Last accessed Apr. 2020. 2.1

[9] Eurohpc. http://eurohpc.eu/ - Last accessed Apr. 2020. 2.1

[10] European processor initiative. https://www.european-processor-initiative.eu/ - Last ac-
cessed Apr. 2020. 2.1

[11] Top500, November 2018. 2.1

[12] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK Benchmark: past, present
and future. Concurrency and Computation: Practice and Experience, 15(9):803–820, 2003. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.728. 2.1

[13] Hpl - a portable implementation of the High-Performance linpack benchmark for Distributed-Memory
computers. https://www.netlib.org/benchmark/hpl/ - Last accessed Apr. 2020. 2.1

[14] Michael A Heroux, Jack Dongarra, and Piotr Luszczek. HPCG Technical Specification. page 21. 2.1

[15] Jens Domke, Kazuaki Matsumura, Mohamed Wahib, Haoyu Zhang, Keita Yashima, Toshiki Tsuchikawa,
Yohei Tsuji, Artur Podobas, and Satoshi Matsuoka. Double-precision FPUs in High-Performance Comput-
ing: an Embarrassment of Riches? arXiv:1810.09330 [cs], October 2018. arXiv: 1810.09330. 2.1

[16] Green500, November 2019. 2.1

67

https://www.nextplatform.com/2019/05/02/china-fleshes-out-exascale-design-for-tianhe-3/
https://www.nextplatform.com/2019/05/02/china-fleshes-out-exascale-design-for-tianhe-3/
https://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
https://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
https://www.ornl.gov/news/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.ornl.gov/news/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
http://eurohpc.eu/
https://www.european-processor-initiative.eu/
https://www.netlib.org/benchmark/hpl/

68 BIBLIOGRAPHY

[17] Michael Feldman. Arm Supercomputer Captures The Energy Efficiency Crown, November 2019. Library
Catalog: www.nextplatform.com Section: HPC. 2.1

[18] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty Denneau, Paul
Franzon, William Harrod, Jon Hiller, Sherman Karp, Stephen Keckler, Dean Klein, Robert Lucas, Mark
Richards, Al Scarpelli, Steven Scott, Allan Snavely, Thomas Sterling, R. Stanley Williams, Katherine
Yelick, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty Denneau,
Paul Franzon, William Harrod, Jon Hiller, Stephen Keckler, Dean Klein, Peter Kogge, R. Stanley Williams,
and Katherine Yelick. ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems
Peter Kogge, Editor & Study Lead. Technical report, 2008. 2.1

[19] Stijn Heldens, Pieter Hijma, Ben Van Werkhoven, Jason Maassen, Adam S. Z. Belloum, and Rob V.
Van Nieuwpoort. The Landscape of Exascale Research: A Data-Driven Literature Analysis, March 2020.
2.1, 3.1

[20] Amd epyc® 7002 series processors. - Last accessed Apr. 2020. 2.1

[21] Michael Feldman. Arms Methodical March to HPC Adoption, November 2019. Library Catalog:
www.nextplatform.com Section: HPC. 2.1, 2.2

[22] Timothy Prickett Morgan. Stacking Up Arm Server Chips Against X86, March 2020. Library Catalog:
www.nextplatform.com Section: Compute. 2.1

[23] Mont-blanc project. https://www.montblanc-project.eu/ - Last accessed Apr. 2020. 2.1

[24] Nikola Rajovic, Paul M Carpenter, Isaac Gelado, Nikola Puzovic, Alex Ramirez, and Mateo Valero. Super-
computing with commodity CPUs: Are mobile SoCs ready for HPC? In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, page 40. ACM, 2013. 2.1

[25] Dibona cluster - MONTBLANC-3. http://montblanc-project.eu/prototypes, 2018. 2.1

[26] Fabio Banchelli and Filippo Mantovani. Filling the gap between education and industry: evidence-based
methods for introducing undergraduate students to HPC. In 2018 IEEE/ACM Workshop on Education
for High-Performance Computing (EduHPC), pages 41–50, November 2018. 2.1

[27] Yi-Chao Wang, Jin-Kun Chen, Bin-Rui Li, Si-Cheng Zuo, William Tang, Bei Wang, Qiu-Cheng Liao,
Rui Xie, and James Lin. An Empirical Study of HPC Workloads on Huawei Kunpeng 916 Processor. In
2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), pages 360–367,
December 2019. ISSN: 1521-9097. 2.2

[28] Kazuhiko Komatsu, Shintaro Momose, Yoko Isobe, Osamu Watanabe, Akihiro Musa, Mitsuo Yokokawa,
Toshikazu Aoyama, Masayuki Sato, and Hiroaki Kobayashi. Performance Evaluation of a Vector Super-
computer SX-Aurora TSUBASA. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 685–696, November 2018. 2.2

[29] Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifano, and Raffaele Tripiccione. ThunderX2
Performance and Energy-Efficiency for HPC Workloads. Computation, 8(1):20, March 2020. Number: 1
Publisher: Multidisciplinary Digital Publishing Institute. 2.2, 4.4

[30] Adrian Jackson, Andrew Turner, Michle Weiland, Nick Johnson, Olly Perks, and Mark Parsons. Evalu-
ating the Arm Ecosystem for High Performance Computing. In Proceedings of the Platform for Advanced
Scientific Computing Conference, PASC ’19, pages 1–11, Zurich, Switzerland, June 2019. Association for
Computing Machinery. 2.2

[31] S D Hammond, C Hughes, M J Levenhagen, C T Vaughan, A J Younge, B Schwaller, M J Aguilar, K T
Pedretti, and J H Laros. Evaluating the Marvell ThunderX2 Server Processor for HPC Workloads. page 8.
2.2

[32] Simon McIntoshSmith, James Price, Tom Deakin, and Andrei Poenaru. A performance analysis of the first
generation of HPC-optimized Arm processors. Concurrency and Computation: Practice and Experience,
31(16):e5110, 2019. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5110. 2.2

[33] Vernica G. Vergara Larrea, Wayne Joubert, Michael J. Brim, Reuben D. Budiardja, Don Maxwell, Matt
Ezell, Christopher Zimmer, Swen Boehm, Wael Elwasif, Sarp Oral, Chris Fuson, Daniel Pelfrey, Oscar
Hernandez, Dustin Leverman, Jesse Hanley, Mark Berrill, and Arnold Tharrington. Scaling the Summit:
Deploying the Worlds Fastest Supercomputer. In Michle Weiland, Guido Juckeland, Sadaf Alam, and Heike
Jagode, editors, High Performance Computing, Lecture Notes in Computer Science, pages 330–351, Cham,
2019. Springer International Publishing. 2.2

https://www.montblanc-project.eu/
http://montblanc-project.eu/prototypes

BIBLIOGRAPHY 69

[34] Enrico Calore et al. Advanced performance analysis of HPC workloads on Cavium ThunderX. In 2018
International Conference on High Performance Computing & Simulation (HPCS), pages 375–382, 2018.
3.2

[35] Sudharshan S. Vazhkudai, Bronis R. de Supinski, Arthur S. Bland, et al. The Design, Deployment, and
Evaluation of the CORAL Pre-exascale Systems. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, SC ’18, pages 52:1–52:12, Piscataway, NJ,
USA, 2018. IEEE Press. 3.3

[36] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An Insightful Visual Performance
Model for Multicore Architectures. Commun. ACM, 52(4):65–76, April 2009. 3.4

[37] A. Ilic, F. Pratas, and L. Sousa. Cache-aware Roofline model: Upgrading the loft. IEEE Computer
Architecture Letters, 13(1):21–24, January 2014. 3.4

[38] D. Marques, H. Duarte, A. Ilic, L. Sousa, R. Belenov, P. Thierry, and Z. A. Matveev. Performance Analysis
with Cache-Aware Roofline Model in Intel Advisor. In 2017 International Conference on High Performance
Computing Simulation (HPCS), pages 898–907, July 2017. 3.4

[39] Michael Wagner, Stephan Mohr, Judit Giménez, and Jesús Labarta. A structured approach to performance
analysis. In International Workshop on Parallel Tools for High Performance Computing, pages 1–15.
Springer, 2017. 3.5

[40] Vincent Pillet, Vincent Pillet, Jess Labarta, Toni Cortes, Toni Cortes, Sergi Girona, Sergi Girona, and
Departament D’arquitectura De Computadors. PARAVER: A Tool to Visualize and Analyze Parallel
Code. Technical report, In WoTUG-18, 1995. 3.6

[41] Sergi Girona, Jess Labarta, and Rosa M. Badia. Validation of Dimemas Communication Model for MPI
Collective Operations. In Jack Dongarra, Peter Kacsuk, and Norbert Podhorszki, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, Lecture Notes in Computer Science, pages
39–46. Springer Berlin Heidelberg, 2000. 3.6

[42] Larry W McVoy, Carl Staelin, et al. lmbench: Portable tools for performance analysis. In USENIX annual
technical conference, pages 279–294. San Diego, CA, USA, 1996. 4.3

[43] Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J. Ligocki, Matthew J. Cordery, Nicholas J.
Wright, Mary W. Hall, and Leonid Oliker. Roofline Model Toolkit: A Practical Tool for Architectural
and Program Analysis. In Stephen A. Jarvis, Steven A. Wright, and Simon D. Hammond, editors, High
Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation, Lecture Notes
in Computer Science, pages 129–148, Cham, 2015. Springer International Publishing. 4.4

[44] Aparna Sasidharan and Marc Snir. Miniamr-a miniapp for adaptive mesh refinement. Technical report,
2016. 5.3

[45] Jiuxing Liu, Balasubramanian Chandrasekaran, Jiesheng Wu, Weihang Jiang, Sushmitha Kini, Weikuan
Yu, Darius Buntinas, Pete Wyckoff, and Dhabaleswar K Panda. Performance comparison of mpi implemen-
tations over infiniband, myrinet and quadrics. In SC’03: Proceedings of the 2003 ACM/IEEE Conference
on Supercomputing, pages 58–58. IEEE, 2003. 5.4

[46] Marta Garcia-Gasulla, Filippo Mantovani, Marc Josep-Fabrego, Beatriz Eguzkitza, and Guillaume
Houzeaux. Runtime mechanisms to survive new hpc architectures: A use case in human respiratory
simulations. The International Journal of High Performance Computing Applications, 2019. 6.1, 6.4

[47] Rainald Löhner. Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite
Element Methods. John Wiley & Sons, 2008. 6.1

[48] Rainald Löhner and Joseph D. Baum. On maximum achievable speeds for field solvers. International
Journal of Numerical Methods for Heat & Fluid Flow, 24(7):1537–1544, 2014. 6.1

[49] Karypis G. and Kumar V. MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System.
http://www.cs.umn.edu/ metis, University of Minnesota, Minneapolis, MN, 2009. 6.1

[50] Mariano Vázquez, Guillaume Houzeaux, Seid Koric, et al. Alya: Multiphysics Engineering Simulation
Toward Exascale. Journal of Computational Science, 14:15–27, 2016. 6.1

[51] Marta Garcia, Jesus Labarta, and Julita Corbalan. Hints to improve automatic load balancing with lewi
for hybrid applications. Journal of Parallel and Distributed Computing, 74(9):2781 – 2794, 2014. 6.4

	1 Introduction
	2 Context
	2.1 Technological challenges
	2.2 State of the art
	2.3 Research questions and contributions

	3 Technical Background
	3.1 The architecture of a cluster
	3.2 Software stack
	3.3 Machines under evaluation
	3.4 Roofline model
	3.5 Efficiency model
	3.6 Performance analysis tools

	4 Micro-benchmarks
	4.1 FPU and SIMD performance
	4.2 STREAM
	4.3 lmbench
	4.4 Roofline model
	4.5 Memory hierarchy latency
	4.6 Infiniband read bandwidth

	5 System software
	5.1 Multiply Kernel
	5.2 FMA Kernel
	5.3 Stencil
	5.4 OSU Benchmarks

	6 Scientific applications - Alya
	6.1 Application characterization
	6.2 Compiler comparison
	6.3 Scalability
	6.4 Efficiency model

	7 Conclusions
	Acronyms
	Appendix A Reproducibility
	Appendix B Efficiency model tables

