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Simulating SARS-CoV-2 epidemics by region-specific
variables and modeling contact tracing app containment
Alberto Ferrari 1✉, Enrico Santus 2, Davide Cirillo3,4, Miguel Ponce-de-Leon 3, Nicola Marino4,5, Maria Teresa Ferretti4,
Antonella Santuccione Chadha4, Nikolaos Mavridis4,6 and Alfonso Valencia3,7

Targeted contact-tracing through mobile phone apps has been proposed as an instrument to help contain the spread of COVID-19
and manage the lifting of nation-wide lock-downs currently in place in USA and Europe. However, there is an ongoing debate on its
potential efficacy, especially in light of region-specific demographics. We built an expanded SIR model of COVID-19 epidemics that
accounts for region-specific population densities, and we used it to test the impact of a contact-tracing app in a number of
scenarios. Using demographic and mobility data from Italy and Spain, we used the model to simulate scenarios that vary in baseline
contact rates, population densities, and fraction of app users in the population. Our results show that, in support of efficient
isolation of symptomatic cases, app-mediated contact-tracing can successfully mitigate the epidemic even with a relatively small
fraction of users, and even suppress altogether with a larger fraction of users. However, when regional differences in population
density are taken into consideration, the epidemic can be significantly harder to contain in higher density areas, highlighting
potential limitations of this intervention in specific contexts. This work corroborates previous results in favor of app-mediated
contact-tracing as mitigation measure for COVID-19, and draws attention on the importance of region-specific demographic and
mobility factors to achieve maximum efficacy in containment policies.
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INTRODUCTION
Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is
a novel coronavirus strain, discovered in 2019, responsible of a
severe respiratory illness named Coronavirus Disease 2019
(COVID-19) that has been declared a public health emergency
since January 2020. As of August 18th 2020 more than 13 million
people worldwide have developed COVID-19 and more than
773,000 have died from it.
The spread of COVID-19 has raised new challenges for

healthcare systems all over the world, hitting with particular
strength Europe and USA, after China. According to the available
data, Italy had among the highest number of contagions and dead
toll from COVID-19, with over 200,000 confirmed cases and more
that 30,000 deceased as of May 14th 2020. However, the spread of
COVID-19 has been quite heterogeneous in speed, reach, and
lethality, not only from country to country, but also in different
regions of the same country. The main possible explanation is
given by the delay between the onset of the epidemic, the
first diagnosis, and the kick-off of containment measures. Other
reasons may be due to region-specific variables, such as
population density and mean age, societal structure, and
behaviors. A third factor depends also on the adopted policies
for containment and testing, in particular for what concerns the
fraction of infectious individuals that never display symptoms
(asymptomatic).
In fact, it is now known that the course of infection includes

an incubation pre-symptomatic period, during which the
patients show no sign of disease but are still potentially
infectious (likely to a lesser degree), after which some
individuals progress to a symptomatic state, while others remain

asymptomatic, but still potentially infectious1. This behavior has
important consequence on how we model COVID-19’s epide-
miology and plan countermeasures.
Most countries dealing with the epidemics have resorted to

nation-wide lock-downs and social distancing to slow down the
outbreak; the strategy has been effective in slowing down the
epidemic, but lock-downs are temporary measures by nature and
simply releasing them without any other parallel containment
strategy could very well lead to a new increase of cases. Dedicated
works in the scientific literature show that this scenario is
avoidable as long as extensive policies of testing and contact
tracing are adopted2,3.
However, the effectiveness of such measures in controlling the

epidemic strictly depends on efficiency in isolating positive and
symptomatic cases, as well as their contacts. Earlier work on the
topic showed that efficient outbreak control may require tracing
and isolation of up to 80% of the contacts, and with very short
delay from onset to isolation4. This is hardly feasible on a large
scale using only traditional methods for contact tracing, and
managing the epidemics in the long term will likely require the
use of information technology to help implement measures of
containment and mitigation. In particular, precise identification
of cases and contact tracing and isolation can hardly be
performed with traditional methods, and the use of targeted
phone apps could highly improve the efficiency of these
processes, as shown by the experience of multiple Asian
countries – such as South Korea.
Different infrastructures and working interfaces for such an

instrument have already been proposed5, and its potential impact
on the virus’s reproductive rate has also been studied6–8. Tracing
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apps could play a key role in ensuring that the epidemic remains
sustainable on the healthcare systems, not exceeding their
capabilities, which would otherwise lead to excess mortality.
South Korea pioneered in this approach, both by suggesting to

the public the use of applications able to notify contacts with
infected subjects, and by mandatory installation, for travelers, of
an app implemented by the Ministry of Health and Welfare to
monitor COVID-19 symptoms and quarantine for 14 days. Another
app, by the Ministry of Interior and Safety, was aimed at
monitoring trajectories and contacts of infected subjects and to
apply self-surveillance and self-quarantine9.
Despite concerns over potential privacy violations, the South

Korean approach managed to achieve efficient control of the
epidemics in its earliest phases, and represents a good example of
how such an approach could work.
Notable efforts have been done by epidemiologist to model

epidemic trends for COVID-19 and the effect of containment
measures.
In this proof-of-concept study we built a comprehensive

framework to model the COVID-19 epidemic, taking into account
population density, the different contributions of symptomatic,
pre-symptomatic and asymptomatic contagions, and using
it to test the efficacy of targeted interventions such as the
aforementioned contact tracing app. In contrast to previous
work7,8 aimed at modeling the two-way dynamic between
individual behaviors and containment policies, we chose to build
a global compartmental modeling framework that can account
for region-specific factors, such as the effect of population
density on contact rate or the role of expected compliance to
containment procedures.
Our research builds a model that allows testing the effect of

both case isolation and app-mediated interventions in a region-
specific fashion.

RESULTS
We built an improved Susceptible-Infectious-Recovered (SIR)
model10 with the aims of a) faithfully reproducing the dynamics
of the SARS-CoV-2 epidemics, including the respective roles of
asymptomatic infection and population density; b) testing the
effects of distinct interventions, and specifically the use of phone
apps for contact tracing. As Italy was the first western country
affected by the SARS-CoV-2 and for which region-specific and
intervention-related data was readily available, our analysis is
focused on the Italian case. This has allowed us to study how the
virus spreads at a very different pace in different Italian districts
(Figs 1 and 2).
Results of the simulations from the model are summarized in

Figs 3 and 4, showing the time curves of the sum of the infected (I)

and quarantined infected (QI) compartments and expected
mortality. Clearly the epidemic peak is expected to vary with
increasing contact rate, assuming that transmissibility and
recovery rate are constant. As expected, in all simulated scenarios,
app-aided contact tracing significantly decreased the effective
reproductive number Rt and height of the epidemic peak. In our
sensitivity analyses, using the slightly longer incubation time had
no significant impact in our simulations, whereas the increased
infectiousness causes an expected delay in the complete
suppression of infections, in particular under conditions of normal
mobility.

Constant contact rate
In scenarios with constant contact rate equal to 7.5, symptomatic
cases isolation was per se very effective in slowing the epidemic,
so much so that app-mediated contact tracing managed to
achieve suppression even with only 75% (Fig. 4b) of the
population using the app and complying to self-quarantine,
whereas with 50% peak height was reduced more than 2-fold
(Fig. 3b). This shows that, in scenarios with lower baseline contact
rate and efficient isolation of cases, app-mediated contact tracing
can achieve epidemic suppression.
On the other hand, nation-wide suppression was not achieved

in the less optimistic scenarios with 10 and 14.8 contact rate;
however, the app induced a very effective mitigation, with
peak number of infectious reduced roughly 4-fold in the worst-
case scenario and with 75% of the population using the app
(Fig. 3d, f).

Density-dependent contact rate
In scenarios where contact rate was allowed to vary with
population density the epidemic trend was, as expected,
significantly different from region to region. In Fig. 3, left panels,
the curves of symptomatic infections over time are shown;
compared to simulations with constant contact rate, it is evident
the presence of two more or less distinct epidemic peaks; this may
reflect the presence of groups of districts with different population
densities. However, the distinction tends to disappear with
increasing proportions of app users. The simulations show that
suppression can be achieved in most regions even with only 25%
of the population using the app (dashed lines), but the epidemics
does not die out, being almost entirely sustained by the districts
with the highest population density (Milan, Monza, Neaples;
Fig. 5). This result is, clearly, achieved by using the app to augment
an efficient tracking and isolation of new symptomatic cases, and
indicates that, as for all interventions, effectiveness of app-
mediated contact-tracing and voluntary quarantine should be
evaluated in the light of region-specific differences.

a                                      b

Fig. 1 Density and mobility influence contact tracing app effectiveness. Compared to low density regions (a), epidemics may be
significantly harder to contain through contact tracing apps in areas with very high population density (b).
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Quarantine measures impact
The model allows to also keep track of the number of I subjects
successfully quarantined ("true positives”) and of the subjects
that underwent quarantine without actually being infected
("false positives”), by tracing the population in the QI (subjects

that were rightfully quarantined) and QS (Quarantined-
Susceptible, subjects that were quarantined but did not
contract infection) compartments. The maximum number of
subjects in each compartment at the same time is summarized
in Table 1.

0 50 100 200 300

0e
+0

0
3e

+0
5

a

Su
bj

ec
ts

v = 1.5

0 50 100 200 300

0
60

00
00

b

Su
bj

ec
ts

v = 2.5

0 50 100 200 300

0
10

00
00

0

c

Time (days)

Su
bj

ec
ts

v = 5.2

0 50 100 200 300

0
20

00
0

40
00

0

d

0 50 100 200 300

0
20

00
0

50
00

0

e

0 50 100 200 300

0e
+0

0
6e

+0
4

f

Time (days)

0 50 100 200 300

0
15

00
00

0

g

C = 7.5

0 50 100 200 300

0e
+0

0
4e

+0
6

h

C = 10

0 50 100 200 3000.
0e

+0
0

8.
0e

+0
6

i

Time (days)

C = 14.8

0 50 100 200 300
0

10
00

00
25

00
00

j

0 50 100 200 300

0e
+0

0
2e

+0
5

4e
+0

5
k

0 50 100 200 300

0e
+0

0
3e

+0
5

l

Time (days)

Fig. 3 Symptomatic population and mortality. Total symptomatic population (red) and simulated mortality (black) in the 48 scenarios.
Density-dependent contact rate simulations on the left (plots a–f); fixed contact rate simulations on the right (plots g–l). Each curve results
from the sum over 110 districts averaged over 50 replicates per district. Solid lines represent no app users; dashed, dotted and dashed–dotted
lines show increasing fractions of the population using the app (25, 50, 75%). All simulations can be interactively explored at https://flowmaps.
life.bsc.es/shiny/ct_app/.

Fig. 2 Model outline. Graphical representation of the interactions among the different compartments of the extended SIR model.
S susceptible, I infected, R recovered, A asymptomatic, P pre-symptomatic, QS quarantined susceptible, QI quarantined infected, QA
quarantined asymptomatic, QP quarantined pre-symptomatic. Rates of transfer between compartments are a function of the parameters
annotated on the arrows. A detailed description of such parameters is provided in “Methods” and Table 1.
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Both false positives and true positives are naturally dependent
on the success or failure of epidemics suppression, and will be
very low when suppression is achieved. In density-dependent
scenarios with 75% of app users the maximum number of
SUSCEPTIBLE subjects quarantined at the same time ranged from
200, 000 to 2, 000, 000, whereas in scenarios with fixed density the
variation was much higher, mainly due to the fact that with
contact rate C= 7.5 and 75% app users suppression is achieved.
As expected, true positives decrease as app coverage increases

and epidemic spread is impaired, but at the same time the

number of subjects that are subjected to voluntary quarantine
without reason increases. The two quantities cross over between
j= 0.25 and j= 0.5, where subjects that are wrongly quarantined
surpass those that are actually infectious.

DISCUSSION
The use of targeted app for contact tracing has been proposed as
a means to control the COVID-19 epidemics when lockdown
measures are lifted. It has been shown that, given certain
combinations of efficacy in case identifications and compliant
use of such an instrument, the approach can contribute to the
effective reproductive number Rt of the disease below 16. Here we
aimed to model the effect of app-mediated contact tracing taking
into account population density and transportation, at the same
time making it possible to monitor the number of patients that are
quarantined and their status concerning the infection.
This is a much needed approach if we wish to implement

precise and timely specific intervention making the infections and
contagion sustainable for healthcare systems.
The model uses a series of Q* compartments to model the

behavior and status of subjects that are quarantined for
symptomatic infection or based on contact tracing. To our
knowledge, this is the first model that allows simulation and
prediction of the outcomes of the epidemic both accounting for
differential population density and quarantine measures. This is
particularly important since it allows to visualize the effect of
contact-tracing apps along the entire duration of the epidemics,
and also because the management of the infection has to take
into account the specific characteristics of a given region and
implement measures accordingly. In fact, the application of
containment policies disregarding region-specific conditions can
result in measures which are not needed or too drastic. As a
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Fig. 4 Successful/unsuccessful suppression in the first 50 days. Detail of Fig. 3. Density-dependent contact rate simulations on the left
(a, c, e); fixed contact rate simulations on the right (b, d, f). Suppression is achieved in the most optimistic scenario (contact rate 7.5, app users
75%) with fixed contact rate (b), whereas its success varies from district to district in scenarios with density-dependent contact rate.
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Fig. 5 Epidemic curve by district. Epidemic curve for individual
nodes (districts) in the scenario with average velocity v ¼ 1:5 and
fraction of app users j= 25%. The epidemic outbreak is entirely
sustained by the three highest-density districts, whereas in the
others the effective reproductive number is below 1.
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consequence, rather than providing support, such policies might
result in a burden for the psychological well-being of people as
well as detrimental for the economy11.
Compartmentalization of quarantined subjects has a remark-

able potential usefulness in studying the socio-economic impact
of voluntary self-quarantine suggested by app tracing. Clearly, a
larger proportion of app users entails better epidemic control.
However, it is expected that the number of false positives in the
QS compartment increases accordingly, with increased losses in
terms of well-being and resources.
Despite the many parameters considered in our model, our

work still falls into a classic compartmental epidemiologic
framework; this is a net advantage in terms of interpretability of
results and generalizability. To our knowledge, this is also the first
model that allows keeping track of subjects that undergo
voluntary quarantine.
According to our model, case isolation is per se a very effective

containment measure that, as long as cases are identified and
isolated with a very high success rate, can achieve suppression of
the epidemics in a series of theoretical scenarios. However,
coupling case isolation with immediate app-mediated contact
tracing produces a remarkable improvement in success of the
strategy, achieving in all scenarios a very effective mitigation of
contagion and, in some scenarios, full suppression. These results
highlight the benefit of introducing contact-tracing as a measure
of pandemic prevention and control as well as the positive impact
that this would have especially upon critical circumstances.
Feasibility of epidemic control by app-mediated contact tracing

has been suggested already by Ferretti et al.6; by decomposing
contributions to R0 from symptomatic, pre-symptomatic, asymp-
tomatic, and environmental sources, they show that Rt < 1 can be
attained for certain combinations of efficiency in case isolation

and compliance in contact tracing. Our model allows to directly
simulate such scenarios while at the same time keeping track of
the trends in isolated and quarantined cases. This is particularly
relevant as it allows to quantify the effect of interventions on
specific compartments, e.g., it is possible to trace the number of
individuals that are quarantined at a specific time-point, a piece of
data that is potentially very helpful in designing cost-effectiveness
analyses of containment measures.
Another important result comes from our simulations with a

density-dependent contact rate. In our simulation different Italian
districts behaved very differently, and in all scenarios suppression
was easily attained in the less densely populated regions, whereas
it failed in the others (Fig. 5). This is consistent with the different
epidemic trends that have been observed to date in Italian
districts; however, it must be pointed out that differences
between districts may as well be justified by different approaches
in dealing with the epidemics, time to first diagnosed case versus
numbers of people already infected in the population and not
yet recognized and, most importantly, is influenced by the nation-
wide/region-wide lockdown put in place by the central
government.
It is also of note that by making contact rate dependent on both

density and daily distance traveled, our model takes into account
the potential effectiveness of policies aimed at optimizing and
regulating transportation, especially in high-density regions.
According to the model, effective suppression of the epidemics
in such areas is strongly dependent on such measures.
The main limitation of our work is that there is some uncertainty

in the parameters that have to be plugged-in the simulations;
anyway, we were able to derive reasonable estimates for all of
them, and performed a sensitivity analysis to check that our
results are robust to changes in the most uncertain parameters.
We adopted some credible figures for the asymptomatic/
symptomatic infections ratio and for relative decrease in
infectiousness in asymptomatic subjects, as well as for probability
of infection per contact; however the greatest uncertainty is
precisely in estimation of contact rate, as this is a variable that is
influenced by specific environmental and cultural factors, e.g.,
individual mobility, social interactions, transportation systems, as
well as general social distancing measures that have been
implemented wherever the epidemics took place. Our first choice
estimate for contact rate came from the experience of the
Diamond Princess, based on which we estimated it at a very
impressive figure of 14.8, a condition that would hardly allow for
suppression in a nation-wide context. However, it is evident that
the situation in a closed environment favors a higher contact rate,
thus this number is likely to be significantly overestimated. This
makes the scenario a worst-case one, suggesting that, in real
world experience, case isolation and contact tracing may be more
effective than predicted.
In scenarios where we modeled contact rate as a function of

population density, the most relevant scaling factor is v, i.e., the
theoretical average daily distance traveled by individuals. This is a
measure that is not readily estimable, which is why in the present
work we showed results for a series of credible scenarios; however,
using mobility data from European cities we managed to obtain
credible figures to plug-in the model. Our model does take into
account interpersonal distance in the form of R parameter; a
potential expansion of this framework is to account for time spent
within the 1m interpersonal distance, as well as distinguishing
between high-risk (e.g., taxis, buses) and low-risk (e.g., walking,
personal car) means of transportation.
However, this work proves the feasibility of including popula-

tion density and transportation in an expanded SIR model, and
suggests that, even if travel between districts is forbidden, the
epidemics may still be significantly harder to contain in areas with
very high population density (for example, in Italy, the districts of
Milano, Monza, and Napoli). The model can be further improved

Table 1. Average maximum true positives (QI) and false positives (QS)
in each scenario.

j QI QS

v ¼ 1:5 0 411850.46 0

v ¼ 1:5 0.25 345302.96 126772.1

v ¼ 1:5 0.5 195800.12 304706.56

v ¼ 1:5 0.75 58791.4 227277.26

v ¼ 2:5 0 1082325.62 0

v ¼ 2:5 0.25 937295.72 344843.98

v ¼ 2:5 0.5 617449.32 958998.18

v ¼ 2:5 0.75 282200.52 1096092.2

v ¼ 5:2 0 1774628.08 0

v ¼ 5:2 0.25 1641431.7 589880.54

v ¼ 5:2 0.5 1202505.64 1801323.82

v ¼ 5:2 0.75 702748.88 2656114.82

C = 7.5 0 2482094.86 0

C = 7.5 0.25 2029409.8 747889.48

C = 7.5 0.5 866790.1 1346998.68

C = 7.5 0.75 13639.94 51768.96

C = 10 0 5993749.92 0

C = 10 0.25 5110050.2 1879426.1

C = 10 0.5 3023884.64 4691037.66

C = 10 0.75 960177.86 3703523.2

C = 14.8 0 10492705.48 0

C = 14.8 0.25 9162768.02 3395616.34

C = 14.8 0.5 6105113.84 9497105.26

C = 14.8 0.75 2977727.44 11519918.38
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and expanded by adding age-specific compartments, sex and
gender factors, and risk classes, by refining the implementation of
vital dynamics, and by modeling different methods for contact
tracing with varying degree of compliance.
We approached the model with a simulation-based approach;

this is computationally intensive but still manageable by most
software and hardware and less demanding than stochastic
models based on individual data, and allows for a high degree
of customizability by fine-tuning its parameters on specific
interventions.
The model constitutes a viable framework to monitor epidemic

trends and assess the effect of interventions. Our results show that
(1) voluntary self-quarantine based on contact-tracing apps,
together with efficient case isolation, can give a relevant, and in
some scenarios decisive, contribution to epidemics mitigation/
suppression; (2) at the same time, the success of this strategy can
depend heavily on population density and transportation.

METHODS
Model design
The typical SIR model assumes that some degree of immunity, at least
temporary, is acquired after SARS-CoV-2 infection; therefore, it is assumed
that subjects move from the S (SUSCEPTIBLE) compartment to the
I (INFECTIOUS) compartment, and from there, with a daily rate equal to
the inverse of recovery time, to the R (RECOVERED) compartment, until the
relative densities of S and I become too low for the epidemic to continue.
In order to simulate the behavior of asymptomatic and pre-symptomatic
individuals, an A (ASYMPTOMATIC) and P (PRE-SYMPTOMATIC) compart-
ment were added to the model.
To simulate the effect of targeted quarantine measures, we introduced a

series of Q* compartments indicating the number of subjects that are
quarantined and their status regarding the disease. To model the
reversible transition from the different compartment into the state-
specific quarantine compartments, there are four different Q compart-
ments: QS, QI, QA, and QP. Whenever they are infected, individuals are
supposed to move from the S compartment to the A or P compartments,
with respective probabilities pa and pi= 1 − pa. Subjects in the
P compartments then transfer to the I compartment with a daily rate of
1/τi, where τi is the incubation period. We also assume that asymptomatic
and pre-symptomatic patients are less infectious than symptomatic
individuals by a factor f.
However, there is evidence that pre-sympromatic individuals are highly

infectious already about τd= 2 days before symptom onset12, and the
focus of our model is transmission dynamics, rather than symptoms
manifestations. Under this profile, a P subject is already akin to a I subject
τd days before symptom onset. Therefore, we let P subjects move into
I compartment after an incubation period that is τd= 2 days shorter, while
at the same time increasing the recovery period by the same amount.
Our model assumes the use of a phone app that keeps track of contacts

and, once a symptomatic case is identified, notifies the event to everyone
who had contacts with them in the pre-symptomatic period, so that they
can enter a voluntary quarantine (Fig. 1). Such an application is heavily
reliant, on one hand, on effectiveness of case isolation on the part of the
authorities, and on the other hand on compliance and widespread use of
the system by the population. Thus, we assume, for our model, that a
J fraction of symptomatic cases is identified and undergoes perfect
quarantine with zero contacts. We call j the fraction of the population
using the app and we assume that once in quarantine, they reduce the
contact rate by a factor q. Therefore, j2 is the fraction of contacts that
happen between individuals using the app. Quarantined subjects that
develop the infection undergo the entire course of the disease, whereas
those that were not infected in the contact eventually exit quarantine after
the quarantine period τq (15 days) and become SUSCEPTIBLE again. In the
classic SIR model, the rate of transfer between the S and I compartments
depends on transmission rate β, that is, the product of number of contacts
per subject, C, and probability of transmission during a single contact μ13.
To estimate contact rate as a function of population density we built on

previous results by Rhodes and Anderson14 who derived a formula for
estimation of daily contact rate of a subject in a population with density

ρ moving with velocity v as

C ¼ 8Rvρ
π

(1)

where R is the minimum distance within which two individuals can be said
to have a “contact”; for COVID-19, and other air-borne diseases transmitted
by droplets expelled from nose or mouth, it is commonly estimated
as 1m15.
In our model we assume that SUSCEPTIBLE subjects move to the

P compartment with a rate proportional to the probability of meeting an
A, I, or P subject, assuming that at least one of the two does not use the
tracing app and/or the case is not successfully identified. This is modeled
by making the rate dependent on 1 − Jj2. The remaining Jj2 fraction of the
contacts between S and I individuals leads to a transfer from S to one of
the three QP, QA, and QS compartments, each with probability equal to
pi, pa, or 1− pi− pa, i.e., the probability of the contact leading to
symptomatic infection, asymptomatic infection, or no infection. Individuals
in the QP compartment eventually transfer to the QI compartment after
incubation, whereas QA and QS transfer to R and to S, respectively, with
rates equal to 1/τi and 1/τq.
The structure of the model is shown in Fig. 2 and it is described by the

following set of differential equations. By defining α= Jj2 as the proportion
of contacts that are successfully contained, we have:

dS
dt

¼ �μCS
1� αð Þ fP þ Ið Þ þ fq QP þ QAð Þ

N
μ� CS

fA
N
� 1
τd

αCS
I
N
þ QS

τq
(2)

dI
dt

¼ P
τi
� I
τh

� JI
τd

(3)

dP
dt

¼ piμCS
1� αð Þ fP þ Ið Þ þ fAþ fq QP þ QAð Þ

N
� 1
τd

αCP
I
N
� P
τi

(4)

dA
dt

¼ paμCS
1� αð Þ fP þ Ið Þ þ fAþ fq QP þ QAð Þ

N
� 1
τd

αCA
I
N
� A
τh

(5)

dR
dt

¼ I
τh

þ A
τh

þ QI
τh

þ QA
τh

(6)

dQS
dt

¼ 1
τd

αC 1� pi � pað ÞS I
N
� QS

τq
(7)

dQP
dt

¼ 1
τd

αC piSþ Pð Þ I
N
� QP

τi
(8)

dQA
dt

¼ 1
τd

αC paSþ Að Þ I
N
� QA

τh
(9)

dQI
dt

¼ JI
τd

þ QP
τi

� QI
τq

(10)

The model is governed by a set of ordinary differential equations (2–10)
that depend on different parameters. Model parameters are based on
values found in different bibliographic references (see Table 2).
For COVID-19 attack rate μ we adopted data from the epidemic in

Shenzen, where secondary attack rate was estimated between 0.10 and
0.1516. According to Ferretti et al.6 the most likely estimates for f and pa are
0.1 and 0.4. The 0.4 estimate for the asymptomatic fraction is corroborated
by a recent epidemiological study on COVID-19 prevalence in Veneto17.
In the simulations, we included some basic vital dynamics by adding a D

(DECEASED) compartment (not shown), for which we assumed an overall
mortality of 1% in symptomatics. Mortality estimates for COVID-19 are
actually still quite uncertain, but INFECTIOUS removal by mortality is not
expected to significantly affect epidemic trends.
The parameter estimates have a degree of uncertainty and, most

importantly, the body of evidence supporting them is continuously
growing. Incubation time τi, for example, has been recently suggested to
be higher than our 5.1 days estimate, at 7.7618. Relative infectiousness of
A and P versus I, f is another parameter that has strong uncertainty. For this
reason, we performed a sensitivity analyses on the two most uncertain
parameters (see Supplementary Figs. 1 and 2).
The simulations were run using R package SimInf, a system for stochastic

simulation of compartmental models of epidemics19.
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Experiments
For our experiments we assumed that J= 75% of symptomatic cases are
identified and perfectly quarantined at symptom onset, i.e., two days after
their infectiousness increases. On the other hand, contacts undergoing
voluntary self-quarantine are supposed to reduce their contact rate ten-
fold (q= 0.1).
We simulated 12 scenarios with varying contact rate C and, most

importantly, assuming a different proportion j of app users in the
population (0, 0.25, 0.5, and 0.75). Each simulation was run on 110 nodes
representing Italian districts (with data on area and resident population
updated to 2016), and was repeated 50 times, with globally 5500 simula-
tions per scenario.
For a first set of simulations we assumed a constant population density

for all the nodes; this equals the assumption of a unique transmission rate
and, therefore, a unique R0 for the entire set, so that the only region-
specific factor affecting the outcome was relative population. Transmissi-
bility has been previously estimated, based on data from the Diamond
Princess outbreak, at 1.4820; accordingly, assuming 0.10 attack rate, in this
scenario we set a contact rate equal to 14.8. However, this was calculated
in a particular scenario where contact rate was supposedly higher than in
normal conditions, thus we simulated two more scenarios with lower
contact rates, 10 and 7.5.
A second set of simulations accounted for different population densities

across the 110 districts. Here, contact rate was allowed to vary following
population density under an assumed average daily distance traveled by

the subjects, according to Eq. (1). Mobility data from two sample European
cities (Berga and Barcelona) show an average daily distance traveled per
person varying between 1.2 and 5.2 km (personal communication); starting
from these figures we simulated scenarios in which subjects travel, on
average, 1.5, 2.5, and 5 km per day.
An interactive R Shiny web application, enabling the exploration of

simulation scenarios, is available at https://flowmaps.life.bsc.es/shiny/
ct_app/.

Data
Our simulations were based on population and surface area data from 110
Italian districts updated to 2016. This kind of data is subject to frequent
administrative rearrangements, but actual demographics have remained
substantially stable for the aims of this work, and since some districts have
since be grouped together, older data has actually higher spatial resolution.
Table 3 summarizes population data about the five most and least

densely populated districts. Over the entire national territory, density was
2.01/km2, and in districts it ranged from 0.03 to 2.65. Corresponding
surface area ranged from 212 to 7400 km2. Globally, population was 60,
589, 085. Ogliastra was both the least populated and least densely
populated district, with 57, 185 inhabitants and a density of 0.03/km2; the
district with most residents was Rome (4, 353, 738 residents), but the most
densely populated was Neaples.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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