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Abstract—Automatic Speech Recognition (ASR) systems are
changing the way people interact with different applications on
mobile devices. Fulfilling such user-interactivity requires not only
a highly accurate, large-vocabulary recognition system, but also a
real-time, energy-efficient solution. However, these ASR systems
need high memory bandwidth and power budget, which may
be impractical for most of small form-factor battery-operated
devices.

In this paper, we propose two combined techniques imple-
mented on top of a state-of-the-art ASR accelerator in order
to significantly reduce its energy consumption and memory
requirements. First, by leveraging the locality among consecutive
segments of the speech signal, we develop a Locality-AWare-
Scheme (LAWS) which exploits the on-chip recently-explored
data while removing most of the off-chip accesses during the
ASR’s decoding process. As a result, we remove up to 60% of
ASR’s workload.

As the second step, we introduce an approach to improve
LAWS’s effectiveness by selectively adapting the amount of ASR’s
workload, based on run-time feedback. In particular, we exploit
the fact that the confidence of the ASR system varies along the
recognition process. When confidence is high, the ASR system
can be more restrictive and reduce the amount of work. The
end design including both techniques provides a saving of more
than 87% in the memory requests and 2.3x reduction in energy
consumption, and a speedup of 2.1x with respect to a state-of-
the-art baseline design.

Index Terms—Automatic Speech Recognition (ASR), Viterbi
Beam Search, Hardware Accelerator, WFST, Memory-Efficient,
Low-Power Architecture.

I. INTRODUCTION

After achieving human parity in speech recognition [1]], a
main focus of Automatic Speech Recognition (ASR) systems
is turning towards mobile, wearables and IoT devices. Such
a high degree of accuracy comes at the expense of huge
memory requirements and computational cost in terms of
performance and energy [2], which is unaffordable in most
of these devices. An ASR system traverses a huge graph-
based recognition model that contains millions of states and
arcs in order to decode the speech signal by searching among
different alternatives to find the most likely sequence of
words [3]]. Several accelerators have been recently proposed
to target some challenges of ASR [2], [4]-[9]. However, the
main challenges of high energy-consumption and memory-
bandwidth requirements still remain when deploying ASR in
small form-factor battery-operated devices. [[10]

Even though the End-to-End (E2E) ASR models based
on standalone RNN or CNN are getting popular since they
simplify the overall pipeline, the Kaldi’s hybrid system [11]

TABLE I. WER of four ASR decoders for Librispeech
dataset [[11]).

System Type WER(%) |
Human - 12.69
Kaldi’s ASR (DNN + Viterbi) Hybrid 10.62
DeepSpeech2 [12] End-to-End 13.25
Deep bLSTM with attention [13] | End-to-End 12.76
wav2letter++ [14] End-to-End 11.24

composed of DNN, Viterbi beam search, and RNN rescoring
still achieves higher accuracy, especially for noisy audio.
Furthermore, E2E systems also require a beam search based
on a language model to achieve accuracy comparable to
hybrid systems [[12]. We compared the accuracy of Kaldi’s
ASR decoder [11]] with different E2E systems: Baidu’s Deep-
Speech2 [12]], a state-of-the-art LSTM network with attention
mechanism [13] and Facebook’s wav2letter++ [14]. Table [
shows the Word Error Rate (WER) collected for one of our
speech corpora, Librispeech, that includes several hours of
challenging noisy speech.

A state-of-the-art speech recognition accelerator requires
an average memory bandwidth of 16 Gb/s [2] in order to
run ASR on different speech corpora. On the other hand,
IoT and wearable devices normally use low-power memory
technologies with limited throughput, such as NAND/NOR
flash memories [15]. As reported by Micron, these memory
systems can achieve a maximum bandwidth ranging from 1 to
6 Gb/s [16]]. As a result, the ASR’s memory management needs
significant improvement in order to be deployed for these
devices. Furthermore, it has been shown that each DRAM
memory access consumes nearly three orders of magnitude
more energy than a typical computation or on-chip memory
accesses [17]]. Therefore, high memory requirement is also the
main energy bottleneck for ASR systems.

Each step of an ASR system processes one frame of typi-
cally 10 ms of the speech signal. For each frame, it expands
multiple nodes in a speech graph, called hypotheses, to decode
the speech by finding the most likely path on this graph. Each
node of this graph represents a partial hypothesis, i.e. a partial
sequence of words from the beginning up until the current
frame. From now on, we use the term hypothesis to refer to a
partial hypothesis. Considering all possible hypotheses would
grow the size of the dynamically explored graph exponentially,
which is not feasibly tractable. Instead, ASR systems use a
beam in order to control the search space. For each frame, we
keep track of the best hypothesis and those hypotheses whose
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Fig. 1: The bars show the average acoustic-cost of hypotheses
grouped based on their data availability on-chip. We also show
the percentage of states and arcs that are the same in two
consecutive frames (data locality) [18].

score (likelihood) is lower than the best score minus the beam
are discarded. The beam is selected in a conservative way to
obtain the desired accuracy [19], whereas a more restrictive
beam would improve performance and energy. In this work,
we introduce a new way of managing ASR’s workload which
takes into account the hypotheses’ data-locality besides using
a lower beam distance, in order to reach an efficient trade-off
in accuracy and energy-consumption.

ASR shows high correlation for the hypotheses evaluated
in consecutive frames of speech, as they share quite similar
data of the speech graph [18]]. Based on the observation for
Librispeech Corpus [20]], Viterbi search expansion exhibits
nearly 86% data-locality between consecutive frames [18§]]
(see Figure E]) Moreover, we have seen that the ‘“correct”
hypothesis at each frame, i.e. the hypothesis that ends up
being part of the final answer which is not known until the
end of processing each utterance, often resides in the on-chip
memory. Note that the best hypothesis at each frame can be
different from the correct one, since the correct one may have
lower likelihood at some intermediate frames while still being
in the most likely full-hypothesis from the beginning to the
end of an utterance.

Furthermore, we have observed that the correct hypothesis
and the best one at each frame are often the same, and even
when they differ, their scores (i.e. likelihoods) are quite close.
This has motivated us to propose a scheme that uses a more
restrictive beam when the explored hypotheses require off-chip
memory accesses. The rationale behind it is that these accesses
are very expensive and based on the above observations are
very unlikely to contain the correct hypotheses. In this paper,
we propose a Locality-AWare Scheme (LAWS) for ASR,
which dynamically adjusts the beam distance based on the
hypotheses’ data-locality. In other words, our scheme uses
the locality and hypotheses’ likelihood to decide the search
strategy, unlike previous schemes that use only likelihood
information. This results in a more efficient expansion on the
search graph in terms of energy consumption with negligible
impact on accuracy.

LAWS uses a dynamic beam adaptation policy, as stated
above. This policy not only takes into account the locality of
the data, besides the likelihood scores, but also the confidence
of the ASR system at each frame. There are some frames for
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Fig. 2: The number of hypotheses along the frames of an audio
test containing 1024 frames (10.42 seconds of speech) for the
default fixed beam used by Kaldi.

which there are many hypotheses with scores very close to
the best, whereas there are fewer in other frames. When the
number of hypotheses close to the best one is high, we say
that the ASR system has low confidence, since there are many
alternatives similar to the best one, whereas we say that the
confidence is high when this number is low.

Figure 2] shows an example of how the number of hypothe-
ses that are close to the best one (using the default fixed beam
in Kaldi [19] toolkit) changes during the evaluation of the
frames of one sample audio test. We can observe that there are
huge variations. For some frames, we have tens of thousands of
hypotheses, whereas for others, we just have a few tens. LAWS
exploits this information to adapt the beam search. We have
seen that when the confidence is high, the correct hypothesis
tends to be closer to the best one than when the confidence
is low. This suggests that for high confidence intervals, we
can be more restrictive with the beam to save energy without
negatively impacting accuracy.

To summarize, we propose a new approach (LAWS) for
implementing the Viterbi search in ASR systems that takes
into account both the architectural and statistical features of
the application in order to efficiently reduce the number of
explored hypotheses with negligible impact on accuracy. By
applying our techniques on a state-of-the-art ASR accelerator,
we obtain 2.1x speedup and 2.3x energy savings with a small
area overhead of less than 0.1% in the total accelerator’s
design. In addition, by removing most of the memory activity
thanks to discarding most of the hypotheses requiring an off-
chip memory access, we save around 74% of the memory
bandwidth. The main contributions of this paper are as follows:

e We propose a novel scheme called LAWS, which com-
bines the likelihood score and the data locality of the
Viterbi’s explored hypotheses, in order to reduce the
ASR’s workload by almost 60% with an accuracy loss
of 1%.

e On top of the above scheme, we develop an adaptive
approach to dynamically adjust the amount of Viterbi’s
workload based on the search confidence for each frame.

o By combining these techniques, LAWS achieves more
than 2x improvement in both performance and energy
consumption, while maintaining accuracy and reducing
the main memory activity by more than 7.9x.



The remainder of this paper is organized as follows. Sec-
tion provides some background on speech recognition
systems. We show some analysis of different run-time ASR’s
characteristics in Section Section presents our base-
line accelerator’s design for speech recognition. Section [V]
introduces the two new techniques to efficiently adapt the
Viterbi search workload. Section describes our evaluation
methodology and Section shows the experimental results.
Section reviews some related work and, finally, Sec-
tion [IX] sums up the main conclusions of this work.

II. BACKGROUND

State-of-the-art ASR systems employ a pipeline that in-
cludes a DNN and a Viterbi search to decode the sequence of
words from speech waveforms. First, the input audio signal,
divided into several frames of normally 10 milliseconds, is
fed into a signal processing algorithm such as Mel Frequency
Cepstral Coefficients (MFCC) [21]] to encode each frame
as a feature vector. Next, these feature vectors are used as
the input of a DNN network, which produces the acoustic
scores, i.e. the probabilities of detecting different phonemes
of the language at each frame. Then, the acoustic scores
are used to run a Viterbi search on either one or several
Weighted Finite State Transducers (WFSTs) [22] using the
DNN-processed frames. Viterbi generates a dynamic graph of
all the alternative hypotheses explored during the search. Each
hypothesis represent an alternative transcription of the input
speech signal. Finally, a backtracking step is performed to
find the best path on the graph, representing the most likely
sequence of words.

A WFST is a Mealy finite state machine which represents
the mapping between input and output labels and applies a
weight to each transition as the probability to traverse the
arc between each two states, based on an offline training
phase [3]. Regarding ASR systems, different knowledge is
required in order to build their WFST, including an Acoustic
Model (AM) and a Language Model (LM) [23]]. AM represents
the pronunciation of the different words in the vocabulary
of a language, whereas LM scores the different hypotheses
taking into account the probabilities of alternative sequences
of words according to a given grammar. In order to merge
multiple WFSTs into a single unified WFST, several arithmetic
operations such as composition and graph minimization [3]]
are required. Although the size of both AM and LM WFSTs
is normally in the order of 100 MB, the offline-composed
WEST becomes large, requiring more than 1 GB in practice for
large vocabulary systems, since multiplicative combinations of
states and arcs occur in the composition process.

In order to run the Viterbi search on the speech graph(s),
two different approaches have been proposed. The first scheme
that consists in using the fully-composed WEFST, is common
in both software [19] and hardware [4], [6]], [7]. In spite
of the search simplicity due to exploring only one graph to
decode the speech, the search has vast memory requirements
as lots of hypotheses are expanded to explore the enormous
search space. Therefore, the main bottleneck of such systems
is the high memory requirements, as they typically require
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Fig. 3: The diagram shows the probability of seeing correct
hypotheses at different beam distances. The distances are
rounded up. Also, the likelihoods are shown based on whether
or not hypotheses’ data is on-chip.

around 10 GB/s of bandwidth [2]]. Furthermore, considering
the acceleration of such system, the most important energy
consumer is the main memory.

As an alternative, Yazdani et al. presented UNFOLD [2],
which significantly reduces the speech dataset by an average
of 31x and proposed a novel accelerator architecture that
performs the Viterbi search with on-the-fly composition of AM
and LM. The technique of merging the separate speech graphs
at run-time has been explored in several previous works [23]]—
[26]. A software implementation of the on-the-fly Viterbi takes
an order of magnitude longer than the fully-composed [2],
[27]], since the composition is done during run-time whenever
necessary. UNFOLD includes hardware specialized for on-
the-fly WFST composition to achieve real-time performance
by a large margin, while providing the benefits of reducing
memory requirements by an order of magnitude and saving
energy consumption by 28%.

Despite the benefits reported by UNFOLD, there is still one
main requirement which prevents it to be entirely applicable
for the small form-factor wearable and IoT devices: the
memory bandwidth of almost 16 Gb/s which is much higher
than the peak bandwidth of around 1 Gb/s to 6 Gb/s of either
the NOR [15]] or NAND [28]] Flash memories. In this work,
we will focus on this part of ASR as it represents the main
power and memory bottleneck, in order to reduce the Viterbi
workload in a way to minimize the energy consumption and
memory usage, while maintaining accuracy.

III. LEVERAGING ASR FEEDBACK AT RUN-TIME

In this section, we present our analysis of different prop-
erties of the recognition process in ASR that we later exploit
to built a highly efficient accelerator. First, we evaluate the
locality between the processing of successive frames of speech
during the Viterbi search. Then, we define the basics of
LAWS and illustrate its efficiency compared against a naive
solution that consists on simply reducing the beam. Finally, we
elaborate on our selective approach of dynamically adapting
the amount of ASR’s workload based on the Viterbi search’s
confidence.
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Fig. 4: Viterbi expansion under Locality-AWare Scheme.

A. ASR’s Frame-to-Frame Data-Locality

In order to illustrate how useful data-locality is for the
ASR’s search, we compute the average probability of the
hypotheses, considering whether or not their data is on-chip. In
general, probabilities are represented in the negative log-space
for ASR systems, in order to simplify operations by replacing
multiplications with additions and also prevent arithmetic
underflows [6]. Regarding the beam pruning of Viterbi search,
we consider 15 as the beam value as specified for the Kaldi
ASR toolkit [19], which is representative as the very low prob-
ability of 3.1e-7. In other words, hypotheses whose distance
to the best hypothesis is higher than 15, up to the current
frame, are discarded (pruned) in order to keep the search
space tractable. Figure [I| shows the average acoustic-cost, i.e.
negative log-probability, of the different hypotheses, for 15
audio tests selected from different speakers of the Librispeech
corpus [20]. In addition, we measure the average frame-
to-frame locality for all audio tests using the UNFOLD’s
architecture parameters [2[]. We can see that on average 86% of
the WEST states and arcs used in a given frame are reused in
the next frame. Besides, we can also observe that hypotheses
whose data is on-chip have considerably lower cost, i.e. higher
probability, than the ones explored for the first time in each
frame, whose data requires an off-chip memory access.

Furthermore, we extend our analysis to show that on-chip
hypotheses are more likely to be in the correct path at the
end of Viterbi search. Considering the decoding of the entire
Librispeech corpus (5.4 hours of speech), we have measured
the likelihood of seeing the correct hypotheses regarding
their data location. Figure [3] depicts the probability that the
correct partial hypotheses have scores at a given beam distance
(distances are rounded up), distingushing between hypotheses
whose data is on-chip and those whose data is off-chip. We
can see that the vast majority of of correct hypotheses are
stored on-chip, about three to four orders of magnitude more
than off-chip, and most of them are at a beam distance lower
than 1.

Based on the above data, we propose to prioritize the
expansion of the hypotheses that exhibit good temporal lo-
cality due to two main reasons. First, they are less expensive
from a computational point of view, which is beneficial for
performance and energy. Second, they are much more likely
to be in the correct path, which is beneficial for accuracy. On
the other hand, we are more selective with the hypotheses that

1200 == Above LAWS_Beam (off_chip)

. Above LAWS_Beam (on_chi

Below LAWS_Beam

100.0 —&— Workload Reduction

@
o
o

Explored hypotheses (%)
g
o

40.0
20.0
0.0
10 9 8 7 6
LAWS_Beam
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pending on the location of their data.

require off-chip memory accesses, by using a more aggressive
beam. Figure f]illustrates the Viterbi search expansion for both
the conventional beam search and our Locality-AWare Scheme
(LAWS). In the conventional approach, the hypothesis with
the best cost is identified on every frame. Hypotheses whose
distance to the best hypothesis is smaller than a given beam
are explored, whereas the rest are discarded since they are
very unlikely. Our scheme is different since we consider both
the scores (likelihood) of the hypotheses and their temporal
locality to prune the search space.

LAWS defines an additional beam, named LAWS_BEAM in
Figure ] smaller than the original beam. Hypotheses whose
distance to the best hypothesis is smaller than the LAWS_-
BEAM are still expanded, since the likelihood that they end
up in the correct path is significant. Hypotheses whose distance
is larger than the original beam are still discarded as in the
conventional search, since they are very unlikely to be correct.
However, hypotheses between LAWS_BEAM and the Viterbi
beam are only explored if their data is on-chip. Note that those
are hypotheses that are always explored in the conventional
search, but they are not very likely to be in the correct path.
Therefore, we consider that the cost of accessing main memory
is excessive for such unlikely hypotheses and, hence, we
discard them. Figure [5] shows that a significant percentage of
the hypotheses are above the LAWS_BEAM and have their
data off-chip and, hence, our scheme is effective at reducing
workload. More specifically, LAWS is able to save between
20% and 60% of the Viterbi search workload depending on
the selection of the LAWS_BEAM.

Note that our scheme is better than a naive solution that
just lowers the beam used in the Viterbi beam search, since
hypotheses whose distance is between the LAWS_BEAM and
the Viterbi beam are still explored provided that their data is
on-chip. Furthermore, exploring these hypotheses is cheap as
they do not require off-chip memory accesses. Hence, from
the point of view of main memory, our scheme is equivalent
to a conventional Viterbi beam search with a more aggressive
beam, but we achieve much better accuracy since we explore
more hypotheses using already avaiable on-chip data. Figure
[6] shows the ASR accuracy, i.e. Word-Error-Rate (WER), for
decoding the entire Librispeech corpus, using different values
for the Viterbi beam and the LAWS_BEAM. As we can see,
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lowering the beam has a large impact on the accuracy of the
conventional Viterbi search, whereas LAWS is able to use
more aggressive beams with smaller impact on WER, because
the aggressive beam is used only for the hypotheses with
bad temporal locality, i.e. whose data is not on-chip. In the
next subsection, we show that by dynamically adjusting the
LAWS_BEAM, we can further reduce the impact on accuracy
while obtaining large performance and energy improvements.

B. Improving LAWS Using Viterbi’s Confidence

LAWS is highly effective at saving energy consumption
and main memory bandwidth by significantly reducing ASR’s
workload. However, its main issue is the potential increase
of WER which can be non-negligible for some applications
that require a high level of accuracy. In order to handle
this problem, we show that we can leverage a measure of
confidence at each frame to build an adaptive approach for
dynamically selecting the amount of workload, and reach
a high level of accuracy. We use the number of expanded
hypothesis at each frame as a measure of confidence of
the search. That is, when the number of hypothesis is low,
this implies that the search has high confidence whereas a
large number of hypothesis implies that the search has low
confidence.

Viterbi search exhibits very different levels of confidence
when decoding different frames of speech, as illustrated with
an example in Figure [2). Therefore, in order to decide the
degree of pruning based on the confidence of the search,
we partition audio frames in a way that each group has
approximately the same amount of work during the Viterbi
search, that is, a similar number of total hypotheses. To do so,
we dynamically compute the average number of hypotheses
explored per frame and use several multiples of this average in
order to balance the total number of hypotheses in each group,
as shown in Figure[7] In this study we use four categories but
more groups can be used for a finer granularity in controlling
the ASR workload.

Next, we measure the impact on ASR accuracy when
changing the beam for each group, so as to validate our
initial hypothesis that when the number of hypothesis is large,
confidence is low and thus correct hypotheses tend to be farther
from the optimal score (in other words, a larger beam should
be used), and vice versa. For this purpose, Figure (8| shows
the cumulative percentage of correct hypotheses expanded for
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Fig. 7: Cumulative percentage of hypotheses and frames
explored during the entire 5.4 hours of audio in Librispeech

corpus, for different groups of frames based on their number
of hypotheses.

each group of frames when varying the beam distance from 1
to 15 (distances are rounded up). We can observe that for any
beam the number of correct hypotheses is higher for groups
with higher confidence (i.e., lower number of hypothesis). In
other words, if we want to reach a certain level of accuracy,
we need to choose a different beam value for each group: the
higher the confidence of the frames, the lower is the beam-
distance required.

As illustrated in Figure [/| groups have different number
of frames, in contrast with the even distribution of the hy-
potheses among different groups. We can observe that nearly
65% of the frames have a number of hypotheses less than
average. On the other hand, a very small percentage of frames
have their hypotheses-count higher than 4 times the average.
Figure [8] suggests that low confident frames require higher
beam distance than the high confident ones in order to reach
a particular level of accuracy, but we can further refine the
selection of the beam by taking into account that there are
more frames with high confidence than with low confidence
(as shown in Figure [7). This suggest that we can decrease
the beam for low confident regions, which will affect very
few frames and thus cause a minor penalty on accuracy but a
large reduction in workload, since these frames have many
hypotheses, while slightly increasing it for high confident
regions, which will affect many frames and thus compensate
for the loss of accuracy with a small increase in workload,
since these frames have few hypotheses. Using this way, we
get the same global accuracy but with a significant reduction
in workload.

IV. BASIC DESIGN OF ASR’S ACCELERATOR

The proposed ASR system is built on top of UNFOLD ac-
celerator [2] to achieve high- performance and energy-efficient
Viterbi search. Figure [J] illustrates UNFOLD’s architecture. It
includes several pipeline stages and various on-chip memories.
The modified components are marked with dashed line, and all
the memory components are depicted in gray color. Regarding
the pipeline stages, several components are employed to fetch
WEST’s states and arcs, i.e. State and Arc Issuer, fetch DNN
acoustic scores, i.e. Acoustic-likelihood Issuer, compute the
likelihood of a hypothesis, i.e. Likelihood Evaluation, and
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write the information of the new hypothesis, i.e. Hypothesis
Issuer. Hypothesis Issuer stores both on-chip and off-chip,
the intermediate results and backtracking data of the new
hypotheses, respectively.

Two hash tables are used by UNFOLD to store the interme-
diate results of the different hypotheses for the current and next
frames of speech. These hash tables are direct mapped using
an XOR hash function of the WFST’s states of hypotheses’
information. Regarding the reminding mechanisms of the
hash structure, like handling collisions and overflows, they
are managed as described in [[6]. Moreover, the accelerator
provides several on-chip caches to speed up the accesses to
the different datasets used in ASR and an Offset Lookup Table
for storing the result of the on-the-fly composition of the AM
and LM WEFSTs.

The accelerator’s pipeline starts at the State Issuer. By going
through all the hypotheses using the current Hash table, State
Issuer firstly checks the condition regarding the beam pruning,
and it fetches the state’s information of each non-pruned
hypothesis using State Cache. Next, Arc Issuer generates new
hypotheses by expanding all the arcs outgoing from each
state that is received from State Issuer, by fetching their data
from memory through the Arc Cache. After that, Acoustic-
likelihood Issuer reads the DNN-computed probabilities for
the sub-phoneme associated with each arc. Then, Likelihood
Evaluation Unit computes the scores of the new hypothesis
using the previous hypothesis’s scores, arc’s weight and the
DNN likelihood. Finally, the Hypothesis Issuer stores the new
hypothesis’s intermediate results in the next Hash table and
also stores its backtracking information in memory using the
Word Lattice Cache. At the end of each frame’s evaluation,
the Hash tables are swapped to continue with the new hy-
potheses formation in the next frame. At the end of search, a
backtracking phase is executed to locate the best sequence of
words on the word lattice generated by the search.

To add our Locality-AWare Scheme, we modify the accel-
erator’s design in a way to add another level of beam pruning
at State Issuer. Also, we change the State Cache to notify
State Issuer of the locality of hypotheses’ data using an status-
signal. Our proposed scheme is added at the initial stage of
the pipeline, after the beam pruning and before fetching the
state’s information.
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Fig. 9: Architecture of UNFOLD |[2], a state-of-the-art Viterbi
search accelerator. All the memory components are in gray
color. Modified parts are shown with dashed lines.

V. LOCALITY-AWARE SCHEME FOR ASR ACCELERATION

In this section, we elaborate on the implementation details
of our Locality-AWare Scheme on top of UNFOLD. Then,
we provide some initial results to show the benefits of this
approach. Next, we evaluate different strategies in order to
determine the pruning beam based on the search confidence.
Finally, we introduce several configurations by combining
our two proposed techniques, providing an efficient trade-off
between accuracy, performance and energy of the ASR system.

A. LAWS Mechanism

The analysis in section |[[II-A| showed the benefit of LAWS
for efficiently expanding the Viterbi search for ASR systems.
Unlike the previous schemes, our approach considers both
the likelihood of the evaluated hypotheses and the locality
of their data on the on-chip memory components as an
important aspect for driving the search. LAWS’s mechanism is
implemented in the State Issuer of the UNFLOD’s architecture,
which is processed after fetching the information of each
hypothesis from the current Hash table (see Figure [9).

Figure [I0] shows the speedup achieved in the Viterbi search
with respect to the baseline (LAWS_Beam = 15) using dif-
ferent LAWS_Beam values. We assume the same size of 256
KB for the State Cache as reported for UNFOLD [2]. As
seen in this figure, we can obtain nearly 55% performance
improvement over UNFOLD by using LAWS_Beam of 9,
without losing any accuracy. However, if higher speedup is
required, ASR loses some accuracy up to 1% when using
LAWS_Beam = 6. To solve this issue, we combine LAWS with
a new method of controlling ASR accuracy, by dynamically
adapting the beam during runtime, based on the confidence of
the search at each frame’s evaluation.

The size of State Cache is an important parameter when
combining hypotheses’ likelihood with their data-locality.
Thus, we have tested several cache sizes in order to accu-
rately measure LAWS’s benefits. Figure [T ] shows the speedup
achieved for each cache size versus different LAWS_beams.
As illustrated, using a larger cache than UNFOLD’s base
configuration would result in approximately similar speedup
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Fig. 10: Speedup and Word-Error-Rate (WER) of LAWS using
different LAWS_Beam. LAWS achieves 55% speedup without
losing any accuracy. Further performance improvement causes
some accuracy loss.

for LAWS. On the other hand, by decreasing the cache size,
we see that speedup grows significantly by applying a more
aggressive LAWS_beam. However, these improvements come
at the cost of losing some accuracy, due to discarding some
correct hypotheses because of their poor locality.

B. Adaptive Beam-Selection Approach

As discussed in Section [[II-B] the confidence of Viterbi
search is one of the important ASR’s characteristics that
LAWS leverages. To measure confidence during the search,
we count the number of hypotheses that are expanded at each
frame. Using this number, we score the confidence of each
frame with respect to the different confidence regions specified
by the four groups of frames (see Figure [7). As mentioned
in Section by choosing a range of beam distances
rather than just one for the different frame regions, we can
obtain higher accuracy while significantly reducing the ASR’s
workload. Therefore, we define a multi-beam selection scheme
for LAWS that can adapt the LAWS_Beam dynamically based
on the search confidence.

Figure shows different models of controlling ASR’s
workload by selecting the beam distance based on the search
confidence. The Single-beam scheme considers only one beam
regardless of the confidence of each frame. However, as men-
tioned in Section [III-A] in order to maintain ASR accuracy, we
are limited to almost 30% of potential performance improve-
ment when using a single LAWS_Beam. On the other hand,
the Multi-beam model is more flexible as it chooses the beam
values proportional to the search confidence. Nevertheless, we
have seen that we can obtain most of the benefits of this
scheme by using two or three beam values. In the last model,
called Dual-Beam, we use two beams, high and low, for low
and high confident regions, respectively.

As the Dual-beam approach is simple and highly efficient,
we implement it in the Viterbi accelerator to improve LAWS’s
accuracy. To do so, we add the required logic at State Issuer
to compute the average number of hypotheses at each frame
(multiply+add+division). Moreover, we use a table that con-
tains the LAWS_Beams and a table for storing the confidence
threshold for the different groups of frames. We use these
tables at run-time, in order to choose between LAWS_Beams
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Fig. 11: LAWS speedup versus beam width, for different

sizes of cache. The larger the cache, the higher the locality

it provides and the more hypotheses are explored, resulting in

lower speedup.

based on the confidence of the Viterbi search, by comparing
the number of hypotheses being processed at each frame
with the confidence thresholds. Note that we consider the
hypotheses at the beginning of processing each frame for their
confidence measurement, but not the ones that are generated
at the end of each frame. The confidence thresholds are
dynamically updated during the search, by constantly updating
the dynamic average number of hypotheses. We completely
overlap these operations with the processing of the best
hypothesis at the beginning of each frame.

Regarding Librispeech corpus, we choose 6 as the low
LAWS_Beam since it provides the highest reduction in work-
load, and 8 as the high LAWS_Beam to compensate for the
accuracy with negligible loss compared to the baseline. We
call this scheme Smallg-Bigg, which selects the beam 8 and
6 for the frames with the number of hypotheses smaller and
bigger than the specified threshold, respectively.

Figure [I3] shows the performance and accuracy of Smalls-
Bigg for the different confidence thresholds. Furthermore,
it also shows the LAWS’s single-beam approach for several
beam widths. As depicted, the single-beam scheme loses be-
tween 0.7% to 1% accuracy to achieve the same performance
as what Smallg-Bigg offers. For instance, Smallg-Bigg ob-
tains a speedup of 2.45x with a negligible increase of 0.32% in
WER, whereas by using a single beam, we lose almost 0.85%
of accuracy to achieve the same performance improvement.
As illustrated, by using beam 6 at more frames with low
confidence, we can obtain better speedup while losing some
accuracy. Therefore, based on each application’s requirements,
we can choose either of these thresholds to both maintain the
accuracy and gain high performance benefits. Furthermore, we
have tested several configurations using three LAWS_Beams
to improve the trade-off between accuracy and workload
reduction. However, we observed very slight improvement in
speedup while losing some accuracy. Therefore, we conclude
that it is better to use only two beams as it results in a simpler
scheme.

We have also evaluated our scheme for two more ASR
decoders, Tedlium [29] and Voxforge [30]. Tedlium is a more
challenging benchmark than Librispeech, because it includes
spontaneous speech in noisy environments and, hence, the
WER is larger (22.6%). On the other hand, Voxforge decodes
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speech over a smaller vocabulary, which results in a simpler
task and higher accuracy of 13.3% for the baseline system.
Figure [T4] depicts Tedlium ASR workload reduction versus
WER, when applying each part of our proposal separately.
By applying LAWS, the number of hypotheses decreases
significantly with respect the baseline. Regarding the case of
using Beam 9, we shrink the workload to less than 0.68 with
negligible change in accuracy (less than 0.01% increase in
WER). However, we incur some accuracy loss for achieving
higher performance benefit when considering beams smaller
than 8. By using the Smallg-Bigs approach, we can alleviate
the problem by obtaining a better tradeoff between perfor-
mance and accuracy. For instance, by setting the threshold
of switching between beams 6 and 8 to 2avg, we achieve
almost the same hypotheses reduction as LAWS with Beam-
7, whereas improving WER by 0.3%. Regarding Voxforge, we
achieve up to 40% workload reduction by using LAWS, with
an accuracy loss of 1.26%. We reduce this accuracy loss to
just 0.55% using the adaptive beam-selection scheme, while
maintaining LAWS’s efficiency.

VI. EVALUATION METHODOLOGY

The overall ASR system comprises a EIE [17] and a
modified UNFOLD [_2]] accelerators for the DNN and Viterbi
search respectively. The integration between them is performed
as described in [7]. The input speech is split into batches of
N frames and the the two accelerators work in parallel: the
EIE computes the acoustic scores for the current batch while
the UNFOLD performs the decoding of the previous batch.
The EIE communicates the acoustic scores through a shared
buffer in main memory. Our simulations account for the time
and energy required by the accesses to this shared buffer.

In order to evaluate our scheme, we developed a cycle-
accurate simulator which models the on-the-fly Viterbi search
accelerator described in [2]. The simulator also works as a
functional emulator, which produces the most likely sequence
of words for the input speech to evaluate the Word-Error-
Rate (WER). Furthermore, we have implemented in the Viterbi
simulator all the hardware extensions necessary for the LAWS.
Regarding the parameters of the accelerator’s architecture, we
use the same configuration as UNFOLD, shown in Table [T
Regarding the DNN accelerator, we use EIE [17] configured
with parameters shown in Table [l We use the 70%-pruned
Kaldi network with its weights quantized to 12-bit. Finally,
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Word-Error-Rate(%)
Fig. 13: Speedup versus Word-Error-Rate (WER), for the
Dual-beam selection scheme, called Smallg-Bigg. High con-
fidence threshold provides better speedup, while maintaining
accuracy.
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regarding our datasets, we employ the Librispeech corpus [20],
which includes 2620 utterances from 87 different speakers
(more than 5.4 hours of speech).

All the accelerator’s pipeline stages are implemented in
Verilog and synthesized to obtain the delay and power using
the Synopsys Design Compiler, the modules of the Design-
Ware library and the technology library of 28/32nm from
Synopsys [31]]. On the other hand, we characterize the memory
components of the accelerator by obtaining the delay, energy
per access and area using CACTI-P [32]]. For both the Design
Compiler and CACTI, we use the technology library and the
typical configurations with a supply voltage of 1 V. Finally,
to model the off-chip main memory, we use the Micron
power model for an 8-GB LPDDR4 [33]], [34]. The simulator
provides the activity factors for the different components
and the total cycle count, which are then used to compute
execution time, and dynamic and static energy by combining
them with the estimations of the Design Compiler, CACTI and
MICRON’s power models.

To set the frequency of the system, we consider the critical
path-delay and access times reported by Design Compiler
and CACTI respectively. We take the maximum delay among
the different components, which is 1.25 ns for accessing Arc
Cache, resulting in 800 MHz of frequency.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the benefits of our scheme,
called LAWS, when implemented on top of a state-of-the-art
accelerator for speech recognition, UNFOLD [2f]. We consider
several configurations using different beams. First, we report
the decoding time and energy consumption of the proposed ap-
proach compared to the baseline accelerator. Next, we present
the reduction in memory accesses by exploiting the locality in
ASR. Finally, we show the power-dissipation benefits achieved
by LAWS. We refer to our baseline design as UNFOLD,
and the different configurations of LAWS using different
beams as LAWS-Beam-8, LAWS-Beam-7, and LAWS-Beam-
6, respectively. Also, we use analogous terminology for the
Smallg-Bigs scheme that uses different confidence thresholds
in order to adjust the ASR’s workload in LAWS’s mechanism.

Figure shows the Viterbi and DNN breakdown of the
ASR’s decoding time per one second of speech for the differ-
ent approaches. We group different configurations of LAWS
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Fig. 14: ASR workload reduction versus WER increase,
for the LAWS single-beam approach and Smallg-Bigs. We
significantly improve performance with a minor overhead in
accuracy.

based on whether they use either single or dual beams. As
shown, Viterbi is by far the main bottleneck in ASR, represent-
ing 95.2% of the execution time in the baseline configuration
(UNFOLD+EIE). By using our scheme, we achieve more
than 1.5x speedup compared to UNFOLD in all the LAWS
configurations. The main reason of this improvement is the
decrease of ASR’s workload, which is achieved by combining
the hypotheses’ data-locality with their likelihood in driving
the Viterbi search. With the conservative selection of LAWS
beam width of 9, we can reduce the decoding time by 1.52x.
On the other hand, by aggressively pruning hypotheses with
bad temporal locality, LAWS largely reduces workload with
small impact on accuracy.

When using a single beam, LAWS reaches up to 2.5x
speedup by using the most aggressive configuration. However,
by having only one beam, LAWS suffers some accuracy loss
near to 1% (see Figure [I0). This is because LAWS discards
the hypotheses requiring off-chip accesses at all the frames
similarly. On the other hand, by applying two different beams
and selecting between them based on different confidence
thresholds, we can adjust the workload reduction in various
speech frames and achieve high speedup with better accuracy.
The more aggressive we set the threshold on the number
of hypotheses, the higher the performance improvement and
WER. For instance, considering 2avg as the threshold, we
obtain 2.1x speedup with a negligible increase of 0.2% in
WER (see Figure [T3).

Another main benefit of LAWS, as a results of the ASR’s
workload reduction, is a significant saving in energy con-
sumption. Figure [16|shows the energy consumed for decoding
one second of speech in the baseline and different LAWS’s
configurations. Regarding the breakdown, Viterbi takes the
bulk of energy consumption (more than 97%), whereas the
DNN represents just around 3%. Compared with UNFOLD,
our scheme saves energy by more than 1.62x in all the config-
urations. Similar to the performance improvements, Smallg-
Bigg provides the best trade-off between accuracy and energy
reduction. When using the threshold of 2avg, the energy-
consumption decreases by 2.3x. Additionally, we can save
26% more energy reduction using a more aggressive threshold
as lavg. Doing so increases the WER by 0.32%, which may
be acceptable for most applications. Thus, by means of an

TABLE II: UNFOLD’s configuration.

Technology 32 nm
Frequency 800 MHz

State Cache 256 KB, 4-way, 64 B/line
Arc Cache 768 KB, 8-way, 64 B/line

Word Lattice Cache
Acoustic Likelihood Buffer
Hash Table
Offset Lookup Table
Memory Controller
Likelihood Evaluation Unit

128 KB, 2-way, 64 B/line
64 Kbytes
576KB, 32K entries
192KB, 32K entries
32 in-flight requests
4 FP adders, 2 FP comparators

TABLE III: EIE’s configuration.

Technology 45 nm
Frequency 800 MHz
Number of PEs 16
PE FIFO Size 8
Quantization 12-bit
DNN model size 2 MB

more intelligent beam pruning that leverages data-locality, we
achieve significant improvements in energy consumption and
performance of ASR systems. Furthermore, we maintain the
ASR accuracy by adapting the workload reduction using a
measure of the Viterbi search confidence.

We have also compared LAWS with a recent ASR acceler-
ation scheme [8]]. In that work, the authors employed a DNN
accelerator designed for dense models that is not particularly
efficient for pruned (sparse) DNNs. In our work, we employ
a state-of-the-art accelerator for sparse DNN models (EIE)
combined with UNFOLD. For this reason, the execution time
of the DNN is very small in our baseline compared to the
one reported in [8]. This difference in the methodology makes
it difficult to directly compare our numbers with the ones
reported in [8]]. In any case, our work is orthogonal to [8]], since
they propose a new hash structure to restrict the hypotheses
to 1024, but they are still generating more hypotheses during
the search expansion as there are collisions in the hash table.
When implementing LAWS with LAWS_beam 7 on top of [§]],
we obtain a 1.7x speedup at the cost of increasing WER by
0.35%. We can further reduce accuracy loss to around 0.2%,
by leveraging our dynamic beam selection technique.

In addition to the benefits in energy reduction and perfor-
mance, LAWS solves another main challenge of ASR systems,
by reducing the memory requirements by almost an order of
magnitude. Figure [I7|depicts the normalized memory requests
and bandwidth required for UNFOLD and LAWS using the
different configurations. Regarding the DNN, all the weights
(2 MB for 70%-pruned model) are stored on-chip and memory
traffic is mainly consumed for fetching speech frames’ feature
vectors. However, this amount only stands for less than 1% of
the total ASR memory bandwidth requirement. As shown in
this figure, by using a single beam, LAWS reduces memory
activity to less than 22%. In addition, the dual beam approach
shows between 87% to 89% decrease in memory requests
depending on the confidence thresholds. We achieve this huge
reduction in memory requirements since LAWS removes most
of the memory fetches required for the hypotheses whose
data is off-chip. Regarding memory bandwidth, we save more
than 64% in all the configurations. By reducing the beam,
bandwidth requirement gets as low as 381 MBY/s, reduced by
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Fig. 15: ASR’s decoding time per one second of speech for
the baseline and different configurations of LAWS using single
and dual beams.

almost 74% compared to the baseline. Furthermore, Smallg-
Bige achieves between 73% to 74.5% saving in bandwidth.
As LAWS performs much faster than UNFOLD, the results of
bandwidth savings show lower improvement than the reduction
in memory requests.

Figure [I8] shows the breakdown of the power dissipation in
different components for the Smalls-Bige LAWS’s configura-
tion and UNFOLD. Furthermore, the DNN power is shown in
both cases. As illustrated, the main power bottleneck is Viterbi,
which dissipates nearly 70% of the total power. The power is
almost similar for most of the accelerator’s components, except
for main memory, which has been reduced by 73% in LAWS.
The reason for a total moderate power reduction is that LAWS
improves performance and at the same time it saves energy by
a large amount. Overall, it achieves a power reduction between
3.6% and 4.2%. The total power of the system is 1.06 W.

Finally, we have evaluated the area overhead of our design,
with respect to the UNFOLD’s baseline architecture. Our
synthesis results show an area increase of 7.5% in the State
Issuer to implement the LAWS’s mechanism and less than 1%
in the State Cache, which results in less than 0.1% increase in
total Viterbi accelerator’s area. The total area including LAWS
and EIE is 46.86 mm?2.

VIII. RELATED WORK

Accelerating ASR systems in hardware has attracted the
attention of architectural community recently. There have been
two main types of acceleration for small [Sf], [35], [36] and
large [2f, [4]l, [6l, [7, [37] vocabulary speech recognition
systems. The former designs use very small speech models to
avoid the main memory bottlenecks, whereas the latter ones
search very large WFSTs to provide higher accuracy. As the
various applications of mobile systems and wearable devices
require highly accurate ASR systems supporting a large vo-
cabulary, several research works focused on accelerators to
solve different challenges such as achieving real-time [4], [[7]],
reducing memory-footprint [2]], [38]], [39], and lowering the
power dissipation and energy-consumption [6]], [37]], [40].

Although a state-of-the-art ASR accelerator [2] significantly
reduces the speech data-set footprint, there is still high band-
width requirement for the dynamic memory activity. IoT
and wearable devices have the tightest memory bandwidth
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Fig. 16: ASR’s energy-consumption for decoding one second
of speech for the baseline and different configurations of
LAWS using single and dual beams.

limitation as they normally operate on battery and need to be
ultra low-power [15]]. To deal with this problem, there have
been several proposals on reducing the ASR’s workload [4],
[27], [41]. The most well-known approach is to prune the
hypotheses that have lower likelihood than the best one minus
a fixed beam width. Johnston et.al [4] presented a thorough
analysis on how to use the beam pruning and proposed a
preemptive pruning which discards the hypotheses in advance
during each frame’s evaluation. Our baseline scheme includes
this method and our LAWS proposal is completely orthogonal.

Other schemes of pruning are more complex and ineffi-
cient for hardware implementation [27]], [41]]. For instance,
Ortmanns et.al [41]] proposed the histogram pruning, which
only expands the K-best hypotheses and needs to sort the
hypotheses on each frame. Kaldi [19] uses the same technique,
called absolute pruning, on top of the relative preemptive
pruning to keep the search space manageable. In absolute
pruning, only the K-best hypotheses are kept whereas the
rest are discarded. Price et. al. [37]], [42] propose a hardware
implementation of absolute and relative pruning that does
not require a full search of the hypotheses. However, this
scheme requires stalling the pipeline of the accelerator to re-
prune the hypotheses when the on-chip resources are exceeded,
introducing non-negligible overheads as the re-pruning process
may be repeated multiple times. Our proposal is different since
we introduce a novel method for reducing ASR’s workload
combining hypotheses’s likelihood with their data-locality.
Moreover, we have shown that by taking into account the
search confidence at each frame, we efficiently reduce the
workload while maintaining the accuracy by using several
beam-widths depending on the search confidence.

Regarding the adaptive beam selection scheme, there have
been some previous proposals [43]], [44]. However, they have
mainly evaluated several pruning techniques and used different
values of the beam width in order to choose the one that
best suits the trade-off between recognition accuracy and
performance. There is also some similar measurement of
confidence in [44] that is used as a complementary pruning
phase to the relative likelihood preemptive pruning in a system
that combines different pruning schemes to achieve higher
speedup. Our confidence-based approach is different due to
two main reasons. First, it dynamically sets the beam width.
Second, it is much simpler as it only uses one beam pruning
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policy without adding the extra complexity of having multiple
pruning strategies and choosing between them, being more
amenable for a hardware implementation.

IX. CONCLUSIONS

In this paper, we target one of the main challenges for
ASR systems in mobile, IoT and wearable devices, which is
the high memory and energy requirements to perform speech
recognition. Previous schemes try to solve this issue by dis-
carding the unlikely hypotheses expanded by the Viterbi search
using a beam pruning. Although reducing the beam width
decreases ASR’s workload significantly, it causes an important
loss of accuracy. We present LAWS, a scheme that obtains
high benefits in workload reduction without compromising
accuracy by a new approach that combines novel insights
about data-locality and confidence of the Viterbi search with
the statistical scores computed by during the search. LAWS
removes over 87% of the off-chip memory activity, which
improves performance and energy-consumption by 2.1x and
2.3x, respectively, with negligible impact in accuracy.
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