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Abstract—The current air traffic control system tries to allo-
cate as many flights as possible in a scenario that is expected
to be time-efficient, cost-efficient, and safe. To guaranty these
safety conditions, it is performed a cyclic process known as
Demand-Capacity Balancing. During this process, a specialized
Air Traffic Controller analyses the situations where the demand
is over the capacity to identify the required corrective actions.
These corrective actions are mostly in the form of regulations,
and they are necessary to avoid overload during the day of
operation. The task of declaring a regulation is complicated,
very time-consuming, and based on the Air Traffic Controller’s
experience. A massive amount of information must be considered
simultaneously, together with a risk maturation process because
of the uncertainty and granularity in the information. This
paper proposes and evaluates two Deep Learning models able to
mimic the current procedure’s behavior, and therefore, helping
the specialized Air Traffic Controller to automatically detect the
imbalances that will require regulation. Both models, one based
on Convolutional Neural Networks, and the second one based
on Recurrent Neural Networks, have demonstrated the potential
to predict regulations, with an accuracy of 81.45% and 80.73%
respectively over the entire MUAC region in 30-minute intervals.
This accuracy can be increased by up to 91% by developing
specialized models for each airspace sector. Additionally, we
performed an in-depth analysis of the most relevant features
using SHapley Additive exPlanations.

Keywords—Demand-Capacity Balancing, Regulations, Deep
Learning

I. INTRODUCTION

In the coming years, Air Navigation Service Providers
(ANSPs) will have to handle and accommodate a continuously
increasing traffic demand, in a scenario that is expected to
be more time-efficient and cost-efficient [1]. Therefore, the
most challenging problem facing the Air Traffic Management
(ATM) will be to meet the airspace sectors’ capacity with the
growing demand. While at the same time, safety levels must
be maintained or increased.

An airspace sector’s capacity is directly related to the
number of simultaneous flights an ATCO can safely manage
[2], and the ANSPs establish it since they design the airspace’s
configuration and define the operative sectors during the day
of operations (D0).

The process of ensuring that the demand is under the
capacity, in all possible circumstances, is known as Demand-
Capacity Balancing (DCB). The Air Traffic Flow and Capacity

Management (ATFCM) role is in charge of this task, which
starts months in advance to the day of operation. Typically,
when the airlines, or flight operators, submit the initial flight
plans. Therefore, it is a cyclic process whose primary goal
is to ensure that no ATCO has managed a sector where the
workload is above a predefined threshold.

First of all, automatic tools will report the locations (place
and time) where it is detected a higher demand than the
predefined capacity (imbalance). Second, this imbalance is
studied manually by the ATFCM. Third, if regulation is
declared, the most optimal DCB-measure is implemented.

Figure 1 shows an approximation of the most relevant
factors at different time horizons concerning D0.

Figure 1. Main phases and available information depending on the time
horizons with respect to D0.

From several days to 4 hours before the congested area
event, the ATFCM must guarantee a non-excessive density of
aircraft, mainly applying delays. Then, from 4 hours to 15
minutes before the entry of a flight in a congestion area, the
Dynamic DCB process starts. In this case, using the available
traffic forecast, more specific metrics can be used to control
the workload of the ATCOs. Notice that no detecting them
implies that there will be an airspace sector, during the day of
operation, where there are not enough ATCOs to handle both
the current and incoming traffic.

In this scenario, we propose to use a Deep Learning (DL)
system to establish the relationships between the reported
imbalances by the current system and the decision-making
process executed by the ATFCM to regulate them. More pre-
cisely, we want to automatically detect those imbalances that
have to be solved, and reduce the required cognitive resources
(e.g., time spent per task, or required knowledge). Therefore,
the ATFCM could cover a larger volume of traffic or focus



on other tasks. Moreover, it would allow other stakeholders
involved in ATM to have more accurate information in advance
and anticipate corrective actions.

Finally, to achieve the presented goal, we will consider
both the visual representation of the information used and the
corresponding scalar values. By visual representation, we refer
to artificial images showing the airspace’s configurations, such
as the aircraft’s coordinates, its flight level (FL), its flight phase
(climbing, cruising or descending), and its heading. While by
scalar variables, we refer to the exact numbers of flights inside
the sectors, the number of incoming flights at different time
horizons, or the number of flights in a specific phase.

II. DEMAND-CAPACITY BALANCING

We have used to term ATFCM to refer to the specialized
ACTO whose main tasks focus on DCB activities because
it was the first acronym established in the European com-
munity. Nevertheless, several names are associated with this
position/task: ATFCM, Flow Manager Position (FMP), and
Integrated Network management & ATC Planning (INAP).
Since INAP is is the most recent acronym, it is the one we
will use in the rest of the paper.

DCB-measures need to be organized in such a way that
common situation awareness (network information sharing)
and Collaborative Decision Making (CDM) processes are
maintained between all ATM actors, enabling the various
organizations to continuously adjust their actions according
to the most up-to-date DCB events, to optimize them as much
as possible. Therefore, two different kinds of DCB-measures
are available:

• DCB-measures at the Network Manager (NM) level con-
sists of the assignation of ground delay, using the CASA
algorithm [3], to solve the required imbalances at the
early stages. They are known as Regulations,

• DCB-measures at sector level consists of the fine-tuning
of the sector configuration (e.g., level-capping, group-
ing/splitting of sectors), or smaller modifications in the
aircraft’s trajectories (e.g., rerouting). They are taken a
few hours before the flight enters the congested sector,
and they are known as Cherry-Picking Measures.

Before going into more detail in the next subsection, Fig. 2
summarises the main steps done during the DCB process.

Figure 2. Main steps and metrics used to detect and solve capacity-demand
imbalances.

A. Imbalance detection

During the imbalance detection step, the INAP can use
many metrics. But, the most common are the expected flights
entering to the sector in a given interval of time (Entry Count -

EC), the number of flight inside the sector (Occupancy Count
- OC), and a local analysis (additional metrics used to have a
better intuition of the workload that will have the ATCO who
is handling the traffic).

Some of the available metrics for the local analysis are the
number of interactions between flights or the number of flights
in a specific flight phase. On the other hand, a more complex
metric is the overall complexity of a sector (a mathematical
model that combines some of the primary metrics).

Therefore, to guaranty a safe level of workload and the ap-
plication of the required measures, there is a set of predefined
thresholds for some of these metrics [4]:

• The Peak threshold represents the maximum number of
flights that can be handled, in a sector, at the same time.
When the count > peak, it indicates a potential overload.

• The Sustain threshold represents an acceptable number
of flights that can be handled in a sector under specific
circumstance, and in particular, if the duration of the
overload is not too long. When the count > sustain, and
count < peak, it also indicates a potential overload.

• The Overload duration threshold represents the max-
imum duration beyond which an imbalance should be
considered in case of count > sustain.

The previous thresholds refer to potential/possible overloads
(when the ATCO’s workload is too high). Nevertheless, the
process of determining if each of these imbalances will require
a DCB-measure is purely done by a human being through
experience, knowledge, and skills.

As an illustration, the criteria to identify an overload could
be: The occupancy count is above the peak threshold, or the
occupancy count is continuously between sustain and peak for
20 minutes or longer. However, before declaring the start/end
time of the overload, the INAP must perform a deep analysis
of the traffic in that airspace sector to determine the following
key parameters:

• Predictability: assessing data uncertainty, granularity, or
integrity based on the flight status (e.g., planned, con-
firmed) to evaluate the quality/precision of the informa-
tion.

• Complexity per flight: the contribution of each flight, or
the contribution of a flow, to the overall complexity.

Finally, Fig. 3 shows how all the previous information is
combined to identify imbalances that must be solved.

Figure 3. Metrics used according to the time horizon with respect to the D0.
The size of the circles and the color-map is a visual representation of the
uncertainty, and granularity in the information according to the time horizon.



Notice that according to the time horizon to D0, the INAP
prioritizes some metrics over others. When the time horizon
is broad (higher uncertainty), more generic metrics are con-
sidered, such as the density. While when the time horizon is
close to D0 (less uncertainty), more accurate metrics can be
used, such as the interactions between specific aircraft pairs.

III. STATE OF THE ART

One important aspect to highlight is that a system based
on DL works with the patterns that it discovers in the data.
The algorithm learns only from the data we provide, so the
success of the system depends mainly on the quality and
quantity of the input data. If the data is not well selected,
clean, and transformed, even the best algorithm will give us
low-quality predictions. Therefore, we will start by identifying
the possible key features of the problem. Next, we will focus
on the research done for overload detection and solving using
DL. And finally, due to we want to mimic a human cognitive
capability, we will review the literature related to AI applied
to Collaborative Decision Making for ATM.

For a more thorough view of the DL field, the reader may
refer to [5], and [6].

A. Identification of the key features

Over the years, many different factors have been used to
try to estimate the complexity of a given ATC sector or to
quantify the controllers’ workload.

In [7], the authors presented a multi-year, multi-
organizational research initiative related to the measurement
and prediction of sector-level complexity using Dynamic Den-
sity (DD). This concept is based on traffic characteristics,
and ”it is a function based on the number of aircraft and
their changing geometries for a given airspace sector” [7].
Similarly, in [8], the authors presented a model to quantify the
workload impact using traffic density, sector geometry, flow
direction, and air-to-air conflict rates.

It is interesting to notice that, in the previous publications,
only traffic characteristics were used, and only results for
specific sectors were reported. However, in [9], the authors
used Neural Networks (NNs) to predict the controllers’ work-
load mainly focusing on cognitive factors (e.g number of
keystrokes), or focusing on physiological factors (e.g heart
rate or electrocardiogram). In this publication, the authors
concluded that ”the NN method with complexity measures is
successful in predicting controller workload” [9], neverthe-
less, they realized that the physiological factors are not the
best factors for measuring the workload due to the job of an
ATCO is primarily cognitive and information-intensive, rather
than physical and labor-intense.

Finally, the most recent work-related to forecasting the air
traffic controller workload is [10]. They compared several ML
methods on the problem of learning a model of the ATCO’s
workload from historical data. They started analyzing the ex-
isting metrics of complexity and doing a Principal Component
Analysis (PCA) to found the most representative factors. And
after the analysis, their results showed that the most accurate

method was the NN with an 82% of accuracy, and the most
relevant factors for building airspace configuration prediction
models are the following ones:

• The airspace volume of the considered ATC sector;
• The number of aircraft within the sector boundaries at

time t;
• The incoming traffic flow within the next 15 minutes;
• The incoming traffic flow within a 1 hour time horizon;
• The average absolute vertical speed of the aircraft within

the sector;
• The number of speed vector intersections with an angle

greater than 20 degrees.

Notice that the previous metrics were not used to predict
or detect congested sectors, they were developed to better
estimate the complexity of a sector. In other words, our
objective goes beyond complexity metrics, by trying to directly
predict regulations.

B. Overload detection and solving using Deep Learning

To our knowledge, there is no previous research literature
conducted for imbalance detection, or DCB, using supervised
learning. Nevertheless, some approaches have been presented
using reinforcement learning, where the imbalance detection
and resolution problem was faced indirectly.

Focusing on DCB in the pre-tactical phase, in [11] the
authors presented DART (Data-driven Aircraft Trajectory Pre-
diction Research), which is composed by a data-driven trajec-
tory prediction (individual trajectory prediction), and agent-
based collaborative learning. Moreover, they took into account
additional information such as calendar properties, weather,
and aircraft characteristics. The aim here is to overcome the
fact that existing ATM information is not accurate enough
during this phase. Similarly, in [12], it was formalized the
problem as a multi-agent Markov decision process (MDP)
towards deciding flight delays to resolve DCB problems in
ATM. The presented formulation allows agents to interact, and
form their policies in coordination with others.

Another example of research done using reinforcement
learning, and trying to resolve demand-capacity imbalances
is [13]. In this case, it is interesting the fact they conclude
that: ”Two important drawbacks of such prediction methods
are that (a) they are limited to single trajectory predictions,
and (b) their prediction horizon is a short time one. [13]”.

Notice that these two last approaches imply a different
paradigm of behavior, however, they can be of interest, as
they can consider the uncertainty and the temporal evolution.

C. AI applied to Collaborative Decision Making

Advances in AI-integrated decision making support systems,
or intelligent decision support systems (IDSS), are increasingly
used to assist decision making in such areas as finance,
healthcare, marketing, commerce, and cybersecurity.

Pioneer work was done in [14], where it was proposed and
validated a new organization for ATC which allows ATCOs to
stay active in the control and supervisory loop of the process



to maintain the present traffic safety level and to improve the
global system performances.

In [15], the authors explored several approaches focusing on
look-ahead reasoning whose main components are uncertainty
and preferences. And similarly, in [16], it was presented an
ATCO Psychological Model that considers two main compo-
nents: the functional structure of the ATCO cognitive system,
and the attentional resources needed. The authors reported a
Root-Mean-Square Error (RMSE) of 0.76.

IV. METHODOLOGY

This paper focuses on identifying Regulations during the
pre-tactical phase over the MAUC region. To detect/predict
them, we have used two types of inputs: artificial images and
scalar variables.

From the images, we want to extract the airspace configu-
ration, the locations, and interactions between aircraft (overall
situation) using Convolutional Neural Networks (CNN). On
the other hand, we have extracted specific metrics such as
the estimated workload or the number of flights entering the
sector in the following minutes as scalar variables. In this case,
we have used a Recurrent Neural Networks (RNN) to process
them.

In both cases, we have generated the input samples using
information/data from the AIRACs (detailed description of the
aerospace configuration for a specific period) used in the R-
NEST (model-based simulation tool). Concretely, we used the
AIRACs from June, July, August, and September from 2019.

A. CNN-based model

CNNs are mainly used to process and extract features
from static images (e.g., image classification), but we want
an architecture able to handle images that evolve on time.
Therefore, our samples will be composed of multiple images
representing the airspace configuration at different consecutive
time steps (see Fig. 4).

Figure 4. Example of an input sample composed by five time steps. The
grey points show the path of a unique aircraft. The colors show the different
flight phases (climbing in green, cruising in blue, and red descending). The
points show the location of the aircraft, and their size reflects the FL. The
lines show the heading, and the length represents the speed. Finally, the black
mask expresses the shape of the airspace sector (in this case EDYYB3EH).

To process the previous sets of images, we have imple-
mented an architecture equivalent to Fig. 5. This approach
captures the temporal information since the images per set are
processed in parallel.

Finally, they will be evaluated at the time steps level, but
also at the interval level (see Sec. IV-C).

Figure 5. Architecture of the CNN used. Conv2D correspond with a 2D CNN
layer, Dense X express a dense layer composed by X neurons, and rows show
the connections between layers. Parallel processing has been done using the
TimeDistributed function in the framework Keras. Notice that only five input
time steps are shown for simplicity.

B. RNN-based model

An RNN is a class of NN where information travels in loops
from layer to layer so that the state of the model is influenced
by its previous states allowing it to exhibit temporal dynamics.

For this approach, the model will receive as input multi-
ple time steps with a combination of the most basic scalar
variables and those extracted in [10] after the PCA analysis:

• Timestamp (associated interval of the studied day);
• Capacity of the sector;
• Occupancy count;
• Entry count next 20 and 60 minutes;
• Expected workload;
• Number of conflicts;
• Number of flights at the different phases (climbing,

cruising and descending)

Figure 6 is a graphical representation of the architecture
used.

Figure 6. Architecture of the RNN used. TX refers to the time step X in the
input sample.



The output will be a prediction for each time step, as in
the CNN model. Therefore, the model will be evaluated at the
time steps level and for the entire interval (see Sec. IV-D).

Finally, we have decided to use a Long-Short Term Memory
(LSTM) in the two previous models because they have shown
better performance, for the problem we are facing, than Gated
Recurrent Units (GRU) or purely RNN’s cells.

C. Evaluation metrics

To evaluate the performance of these models, we will
perform two analyses. The first one is based on analyzing
the prediction per input time step (time step classification
metrics). And the second one is based on analyzing how
good are our models for the entire given interval (interval
classification metrics)

TIME STEP CLASSIFICATION METRICS

This first analysis consists of analyzing the accuracy, recall,
and F1-score of the predictions done by the model at each
input time step (for instance, every five minutes):

• Accuracy: The fraction of predictions our model got
right.

– Accuracy = TP+TN
TP+TN+FP+FN

• Recall: Attempts to answer the question of what propor-
tion of the positive time steps were correctly identified.

– Recall = TP
TP+FN

• Precision: Attempts to answer the question of what
proportion of positive identifications were correctly iden-
tified.

– Precision = TP
TP+FP

• F1 score: It is the harmonic mean of the precision and
recall, or it can be interpreted as a weighted average of
the precision and recall

– F1 score = 2 Precision∗Recall
Precision+Recall

TP refers to correct positive predictions, TN refers to correct
negative predictions, FP refers to wrong positive predictions,
and FN refers to wrong negative predictions.

INTERVAL CLASSIFICATION METRICS

In the second analysis, we want to evaluate the model’s
performance predicting the overall situation, that is, to predict
whether the entire given interval contains a regulation or no.
The reason for this is because predicting exactly the starting
and ending moment of regulations is a challenging task. Figure
7 is a graphical example of the explained issue.

Figure 7. In green ground truth sample, and in red a predicted sample. The
symbol X shows the time steps which required a regulation. (Left) Samples
per time step. (Right) The grouped samples.

Therefore, we propose an Interval analysis where we will
group the labels from both the ground truth and the predictions
to determine if each sample contains information from a
regulated period or not. Then, we will perform the previously
explained analysis of the accuracy, recall, precision, and F1
score. Positive samples will be the ones containing information
from periods with regulations, and negative samples, the ones
with information from none regulated periods.

Notice that this Interval analysis requires a threshold to
determine how many positive time steps are required to
determine that a sample belongs to a regulated period. This
threshold will be set to one because we consider it more critical
no detecting a regulation than a false-positive case.

Finally, to complement the analysis, we will perform a
novel Matching analysis. In this case, we will compare the
ground truth and the predictions allowing the model to have
mismatches in only a few time steps, ensuring that the overall
situation is coincident.

For instance, using samples of 30 minutes and a threshold
of 85%, we will be detecting predictions with less than five
incorrect time steps.

Finally, we will compute three additional metrics:
• Perfect matching: Proportion of predicted samples that

exactly match the ground truth,
• Strong matching: Proportion of predicted samples that

do not exactly match the ground truth, but they are above
the threshold,

• Weak matching: Proportion of predicted samples under
the specified threshold.

D. Model explainability

Explainable machine learning offers the potential to provide
the stakeholders with insights into model behavior. Moreover,
understanding the reasons behind predictions is crucial in
assessing trust when we want to take action based on them.

It is often the case that deep neural networks are considered
”black boxes”. In response, various methods have recently
been proposed to help users interpret the predictions of com-
plex models.

SHapley Additive exPlanations (SHAP) [17] is a game
theory approach to explain the output of any machine learn-
ing model. It connects optimal credit allocation with local
explanations using the traditional Shapley values from game
theory and their related extensions. It compares each neuron’s
activation and assigns contribution scores (input feature) by
optionally giving separate consideration to positive and nega-
tive contributions.

In our case, we will perform the SHAP analysis on the RNN,
aiming to identify which input features are more relevant for
the trained model over the entire MUAC region. Therefore, we
will represent the different features showing the relationship
between how larger (or smaller) their values are, respect to
the activation they generate.



V. RESULTS

First, we will perform a statistical analysis of the data we are
going to use. Second, we will present the results obtained usind
the two proposed models: the CNN-based model that uses
images as inputs and the RNN-based model that uses scalar
variables as inputs. Finally, we will analyse the relevance of
the input features in the RNN-based model using SHAP.

A. Input data

We have access to the data from 112 days (28 days per
AIRAC and four AIRACs) with different types of regulations
(see Table I). To label our samples, we will use the ones related
to en route traffic and associated with demand regulations.
However, purely capacity regulations were taken into account
when showing this feature to the models.

TABLE I. AVAILABLE REGULATIONS IN THE AIRACS. C-ATC IS THE
ONLY REGULATION ASSOCIATED TO DEMAND REGULATIONS FOR en route
FLIGHTS.

Regulations Number of instances

C-ATC 132
S-ATC 18

M-Airspace 11
W-Weather 106
O-Others 4

Looking at the available data, the regulations we used to
label our samples were tagged as C-ATC. A statistical analysis
of the data showed that:

• 71 days had a demand regulation,
• 41 days had no demand regulations,
• The average duration of the regulations was 122.02 mins,
• And the average number of regulations per day were 2.5

Continuing with the statistical analysis, if we study the inter-
vals of time with and without regulations, and we compare the
Occupancy Count and the Entry Count with their associated
thresholds, we can see that:

1) 7.4% of the minutes, from regulated periods, had an
OC higher than the peak threshold, and 4.6% of the
minutes had an OC between the sustained and the peak
thresholds. On the other hand, for non-regulated periods,
7% of the minutes had an OC higher than the peak
threshold, and 4.7% of the minutes had an OC between
the sustained and the peak thresholds,

2) If we analyze the EC for the next 20 minutes for the
regulated periods, 24.4% of them were above the peak
threshold, and 10.3% of the minutes were between the
sustained and the peak thresholds. For the no regulated
periods, the analysis showed that 25.1% of the minutes
were over the peak threshold, and 10.2% of them were
between the sustained and the peak thresholds,

3) Finally, analyzing the EC for the next 60 minutes for
the regulated periods, 25.1% of the minutes had an EC
higher than the peak threshold, and 10.2% of them had
an EC between the sustained and the peak thresholds.

For no regulated periods, 38.9% of the cases had an
EC above the peak threshold, and 7.9% of them were
between the sustained and the peak thresholds.

Notice that we have only analyzed the scalar variables
associated with the OC and the EC because they are the
only ones with predefined thresholds (no all the metrics have
an associated threshold, or we do not have access to all of
them). However, the interesting part is that the proportion
of samples in the previous analysis is very similar in both
scenarios. The reason is that determining if an imbalance will
become a regulation is not done just by looking at one of the
above characteristics, but a combination of all of them is used.
Moreover, it is necessary to consider the prolongation in time
of these imbalances or their severity.

Finally, regarding the input samples, the random intervals
of time we are going to use can contain time steps of the
following three types:

• No regulation, from days without regulations;
• No regulation, from days with regulations;
• And regulation.

This fact will allow the models to detect in which precise
moment there is an overload. For instance, if there was a
regulation from 7:00 pm to 9:00 pm, and an input sample
covers the interval from 6:45 pm to 7:15 pm, the model
will only show a positive label for the time steps inside the
regulated period (from 7:00 pm to 7:15 pm).

Finally, from the four available AIRACs, three have been
used for training and the fourth for testing. Furthermore, we
have discarded some samples in order to have a balanced
dataset formed by the same number of positive and negative
time steps (half of the negative samples were extracted from
days without regulations and half of them from days with regu-
lations). At the end, the dataset used consists of approximately
1200 30-minutes intervals (70% of them for training and 30%
for testing).

B. CNN-based model

Generating the images and processing them requires a vast
amount of computational resources. Therefore, we have used
seven consecutive images (one every five minutes) to represent
a given interval of 30 minutes.

We have tested several scenarios (e.g., more or fewer
images, bigger or smaller intervals of time), and in all of the
scenarios, we have obtained a similar performance. Therefore,
we have decided to continue developing this one because it
has good performance with a reasonable computational time.

Table II shows the Time step analysis using the presented
scenario and trying to predict regulations over the entire
MUAC region. Table III displays the values obtained per-
forming the Interval analysis to visualize how good is this
model detecting whether the complete given input interval will
require regulation or not (overall situation). Finally, Table IV
exhibits the results from the Matching analysis, allowing the
model to have mismatches in less than 5 minutes.



TABLE II. TIME STEPS ANALYSIS, CNN, AND MUAC REGION. THE
COLUMN Train/Test SHOWS THE NUMBER OF SETS OF SAMPLES USED.

Accuracy(%) Recall(%) Precision(%) F1 score[0,1] Train/Test

78.68 77.80 83.13 0.80 840/369

TABLE III. INTERVAL ANALYSIS, CNN, AND MUAC REGION.

Accuracy(%) Recall(%) Precision(%) F1 score[0,1]

81.45 92.64 78.13 0.84

TABLE IV. MATCHING ANALYSIS, CNN, AND MUAC REGION. Strong
REFERS TO SAMPLES WITH LESS THAN 1 MISMATCHES (5 MINUTES). Valid
predictions IS THE COMBINATION OF BOTH THE Perfect AND Strong.

Perfect(%) Strong(%) Weak(%) Valid predictions(%)

28.32 50.72 20.96 79.04

From this experiment, we can conclude that the CNN
architecture has an accuracy close to an 80%, with high recall
and precision. The main drawbacks of this model are the
difficulty of taking into account the incoming traffic (EC) due
to only information from previous images (from the same input
set) can be used as incoming traffic, and the limited resolution
(seven time steps per input set). Nevertheless, during the
Interval analysis, the model reported a recall of 92% detecting,
in most cases, the intervals that required regulation.

These promising results indicate that it could be used for
the presented task and for more specialized problems, such as
spatially identifying the region that must be regulated.

C. RNN-based model

The RNNs require much less computational resources dur-
ing the training. Therefore, for a given interval of 30 minutes,
we have decided to extract the selected scalar variables at every
minute, having 30 inputs and 30 outputs per sample.

Table V shows the Time step analysis. Table VII exposes the
results obtained computing the Matching analysis. And Table
VI, presents the Interval analysis.

TABLE V. TIME STEPS ANALYSIS, RNN, AND MUAC REGION. THE
COLUMN Train/Test SHOWS THE NUMBER OF SETS OF SAMPLES USED.

Accuracy(%) Recall(%) Precision(%) F1 score[0,1] Train/Test

76.68 86.23 79.57 0.81 1030/343

TABLE VI. INTERVAL ANALYSIS, RNN, AND MUAC REGION.

Accuracy(%) Recall(%) Precision(%) F1 score[0,1]

80.73 100 75.87 0.86

TABLE VII. MATCHING ANALYSIS, RNN, AND MUAC REGION. Strong
REFERS TO SAMPLES WITH LESS THAN 5 MISMATCHES (5 MINUTES).

Perfect(%) Strong(%) Weak(%) Valid predictions(%)

49.46 39.89 10.65 89.35

Notice that, as in the previous case, several intervals of
time have been tested, and this configuration showed excellent

results with a reasonable amount of computational resources.
Moreover, it allows us to have the two models (CNN & RNN)
working with the same temporal window.

From the previous results, we can conclude that the RNN
model presents a 10% increase in the recall, and an equiva-
lent accuracy when analyzing the predictions per time steps.
Furthermore, it can be seen a 10% improvement (from 80%
in the CNN to 90% in RNN) in the Matching analysis, if we
allow the model to have 5% of mismatches.

Finally, it is crucial to notice that using this model, we have
achieved a recall equal to 100% in the Interval analysis, and
therefore, we have detected all the intervals which contained
a regulation. However, due to the very restrictive way of
grouping samples within an interval, it is also predicted as
positive 25% more time steps than necessary.

D. RNN-based model for specific airspace sectors

Due to the good results obtained in the previous experiment,
we have decided to extend the analysis and figure out if our
best model can work only using regulations from specifics sec-
tors. The main reason for this experiment is to verify whether
we can improve the model’s performance by specializing it
for a particular airspace sector.

However, this experiment only can be carried out for the
top three sectors. We have to guarantee enough number of
instances in the sector to have enough variety in the samples.

TABLE VIII. TIME STEPS ANALYSIS, RNN, AND SPECIFIC SECTORS.
THE COLUMN Train/Test SHOWS THE NUMBER OF SETS OF SAMPLES USED.

Sector Accuracy(%) Recall(%) Precision(%) F1 score[0,1] Train/Test

BOLN 90.95 98.11 85.51 0.94 274/119

B3EH 84.14 92.98 70.51 0.88 227/99

D6WH 80.04 88.82 79.61 0.84 237/107

TABLE IX. INTERVAL ANALYSIS, RNN, AND SPECIFIC SECTORS.

Sector Accuracy(%) Recall(%) Precision(%) F1 score[0,1]

BOLN 91.51 100 87.32 0.93

B3EH 83.54 100 73.47 0.84

D6WH 83.22 100 75.73 0.86

TABLE X. MATCHING ANALYSIS, RNN, AND SPECIFIC SECTORS. Strong
REFERS TO SAMPLES WITH LESS THAN 5 MISMATCHES (5 MINUTES).

Sector Perfect(%) Strong(%) Weak(%) Valid pred.(%)

BOLN 67.22 28.57 4.21 95.79

B3EH 31.31 64.6 4.09 95.91

D6WH 54.37 33.75 11.88 88.12

The results show that these specialized models have an
equivalent performance of the model that handles regulation
from the entire MUAC region in the worse case. In the
best case, it has improved the overall performance by 10%.
However, more AIRACs are required to do proper validation.



E. Model explainability

As mentioned, we will apply the SHAP analysis on the RNN
(see Fig. 8) to understand the reason behind the predictions
and have a better intuition of its behavior. Notice that this
study can not be applied to the CNN because of the input
samples’ nature.

Figure 8. From top to bottom the image shows the more relevant features. The
color map indicates how larger or smaller was the value of the input feature,
and the location in the corresponding horizontal line represent the activation it
generated. The zero in the X-axis represent no contribution to the prediction.

From the Timestamp feature, we can see that are detected
more regulations at the early stages of the day, probably,
because they want to avoid propagation of an overload along
the day. On the other hand, regulations in the afternoon are
less likely because of the traffic reduction. If we analyze the
Entry Count for the next 60 minutes, it is surprising not to see a
clear pattern of behavior. The reason could be that it is a really
relevant feature, but in combination with another (similar for
the cruising flights). Remember, we have seen that information
from multiple features is used to make the decisions. However,
the Entry Count for the next 20 minutes shows the opposite
trend. We can clearly see how larger countings are producing
more activation. The Capacity can be seen as a crucial feature
when it has a higher value. The higher the capacity, the larger
the sector, and therefore, more aircraft and it is more likely
they generate an overload. From the Occupancy Count and
the Workload every minute, we can see that positive values
have a higher activation. The Number of descending aircraft
shows the opposite trend. Finally, the rest of the features do
not appear to be decisive.

VI. CONCLUSION

We have proposed and evaluated two models capable of
detecting situations that require regulation. Although the CNN-
based model exhibits slightly higher accuracy than the RNN-
based model (81.45% in front of 80.73% at the interval level),
the RNN-based model achieved the maximum recall (100%
in front of 92.64%). This means that it is detecting all the
cases in which a regulation is needed, which in this particular
scenario is preferable to high precision, that is, a low number
of false positives. Moreover, accuracy can be increased by up
to 91.51% developing specialized models for each airspace
sector. On the other hand, if it is preferred more specific

information, the Time steps analysis showed and accuracy of
90.95% and recall of 98.1% using specialized models.

Despite the good results obtained, further analysis of some
of the hyperparameters is required to fine-tune the models,
together with a deeper analysis of the false-positive cases.

Finally, due to the excellent performance of both models
independently (CNN and RNN), we will study whether exist
a hybrid model that could take advantage of each one and
increase the precision while maintaining a high recall.
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