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Abstract.
Background: Pause duration analysis is a common feature in the study of dis-

course in Alzheimer’s disease (AD) and may also be helpful for its early detec-
tion. However, studies involving patients at the preclinical stage of mild cognitive
impairment (MCI) have yielded varying results.

Objectives: To characterize the probability density distribution of speech pause
duration in AD, two multi-domain amnestic MCI patients (with memory encoding
deficits, a-mdMCI-E, and only with retrieval impairment, a-mdMCI-R) and healthy
control groups (HC) and to check if there are significant differences between them.
To discuss the potential of those findings in clinical practice.

Method: 112 picture-based oral narratives were manually transcribed and an-
notated for the automatic extraction of pause durations and their subsequent log-
conversion. We consider different probability distributions to fit speech pause dura-
tion truncating shorter ranges taking into account latest statistical findings to avoid
inherent methodological uncertainties present in them.

Results: Lognormal distribution (LND) explains the distribution of pause dura-
tion in speech for all groups, and its fitted parameters (µ ,σ ) followed a gradation
from the group with shorter durations and a higher tendency to produce short pauses
(HC) to the group with longer pause durations and a considerably higher tendency
to produce long pauses with more variance (AD). Importantly, a-mdMCI-E pro-
duced significantly longer pauses with greater variability than their a-mdMCI-R
counterparts (α = 0.05) across all groups of study.

Conclusion: We characterize and report significant differences at group level in
the speech pause distribution across all groups of study that could be used to design
tools and experiments for early prediction of AD progression.
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Introduction

With nearly half of the individuals diagnosed with Mild Cognitive Impairment (MCI)
due to Alzheimer’s Disease (AD) developing dementia within three years [1,2], it has
been suggested that diagnosis at the prodromal stage represents the optimal time-window
for onset delay and potential intervention [3]. Not only is it more cost-effective than
diagnosis at the dementia stage [4], but it is also considered to be less distressful for pa-
tients in comparison to population screenings, allowing for care planning when concerns
are raised and assistance is needed [5]. The assessment of the constellation of cognitive
deficits found in the prodromal stage of AD has proven to provide considerable diagnos-
tic power regarding dementia progression regardless of biomarker use [6] and seems to
have clearer clinical utility [2,7]. Crucially, neuropsychological testing is accessible in
every clinical context, which makes cognitive profiling the current focus of general clin-
ical practice [9] and prevention efforts [10]. However, due to the heterogeneity in MCI’s
clinical profile and outcome, risk factors for Alzheimer’s dementia and their association
with MCI subtypes need yet to be ascertained [11].

While the prognostic relevance of the number of cognitive domains affected is still un-
der debate [11,1,12], the presence of memory deficits –with or without accompanying
impairment in other domains– was initially considered a definitory feature of the clinical
syndrome [13,14,15] and is a consistent factor in the clinical profile of a great proportion
of MCI patients with a later progression to dementia [16,17,18,19,20,21]. More specif-
ically, impairment in episodic memory encoding reflected in unsuccessful cued recall
and susceptibility to intrusion effects has been associated with higher probability of un-
derlying [22,23,24] even at the prodromal phase of MCI [25]. More recent studies have
demonstrated that this particular cognitive profile in MCI is compatible with positive
AD biomarkers [26,27,28,29,30], as well as abnormal neural connectivity [31,32,33] and
cerebral perfusion patterns [34] during memory encoding tasks. Moreover, declines in
memory encoding have been predicted in amyloid-positive cognitively-normal individu-
als [35,36,37] alongside downstream tau increases [38,39,40,41], as well as in patients
with subjective cognitive complaint with positive AD biomarkers [42]. Abnormal cor-
tical activity has also been observed in genetic carriers during memory encoding tasks
[43,44], supporting the thesis of a preference of AD pathology for cortical areas devoted
to memory processing and, more precisely, those involved in encoding and retrieval of
newly learned information.

Language impairment has also been consistently observed in MCI patients who end up
with a dementia diagnosis [45,46]. AD progressors perform significantly worse than non-
progressors at naming [47,48,50,49] and semantic fluency [50,51,52,53] with prediction
models combining biomarkers and composite cognitive scores benefitting significantly
from the inclusion of language-related scores[16,54,55]. Spontaneous speech is a highly
complex process recruiting various levels of linguistic processing that has revealed sub-
stancial differences between patients with MCI due to Alzheimer’s Disease (AD) and



their healthy counterparts, predominantly in the form semantic impoverishment and re-
duced fluency (see [56,57] for recent reviews).

The great advances in fields such as natural language processing and automatic
speech recognition in the last decades have contributed to a surge in studies re-
porting in most cases on a large number of linguistic and paralinguistic variables
[58,59,60,61,62,63,64,65,66,67,68,69], ranging from voice features [70,71,72] to dis-
course analysis [73,74,19,75,76] in the characterization of patients with MCI due to AD.
The measurement of voiced and unvoiced segments in connected speech has been a par-
ticularly prolific research avenue thanks to its relative methodological simplicity and the
great technical precision that current technologies grant. In this regard, it has been found
that AD patients produce more silent pauses than healthy controls (HC) [77], more fre-
quently [78,79] – although not in [80]- and with longer mean duration [79,80] (but not
in [77]), thus representing a larger proportion of discourse time in comparison to voiced
segments [78,79,62,81].

These speech fluency features are already present in MCI, with patients producing more
pauses [69] at a higher rate than HC [59,68], although pause rate did not differ in other
studies [69,82] and neither did the number of pauses [83]. Mean pause duration is another
recurring feature of study since patients with MCI are expected to produce pauses with
longer mean duration than those of healthy controls [62,59,82], although in other studies
no significant difference was found [68,83] or this was finding was task-dependent [69].
Voice-to-silence ratio seems to be a more reliable feature, consistently differentiating the
narratives of patients with MCI from their healthy counterparts with a lower proportion
of voiced time in relation to total discourse time [50,69,59,68,83].

Differences in task choice, criteria for pause labelling, temporal thresholding, or method-
ology applied -manual versus automatic transcription and segmentation- may have con-
tributed to some extent to discrepancies in the results, as seem to point out studies as-
sessing different task types as [69,59] in MCI and [79] in AD or comparing manual and
automatic annotation [68].

In previous studies it has been pointed out that speech segments are not normally dis-
tributed and that, therefore, moments of the distribution –e.g. mean and variance– may
be inadequate for the characterization of linguistic elements including words and speech
pauses [84,85,86,87,88,89]. Further studies, have shown that lognormal distribution is
a more accurate approximation for the description of speech pause duration distribution
in human voice, showing consistency across studies and good sensitivity for identifying
particular constraints such as distribution across discursive and syntactic boundaries or
task type [90,91,92]. Its application to language-impaired groups in other neurological
disorders such as vascular aphasia or ataxic dysarthria has confirmed these findings,
revealing differences in duration and distribution between those and healthy controls
[86,93,94].

In this work we firstly endeavour the characterization of the distribution of speech pauses
in AD, amnestic MCI and HC considering some limitations inherent to the segmenta-
tion of speech pauses such as higher relative errors on shorter ranges. For this purpose,



we address the fitting of truncated distribution considering recent discussions on cut-off
point selection on long-tail distributed data. In particular, we show that patients with con-
firmed Alzheimer’s dementia and amnestic multi-domain MCI patients with memory en-
coding deficits (a-mdMCI-E) at high risk of dementia progression produce significantly
longer pauses and with more dispersion than healthy controls, as well as to determine
the relative weight of long pauses in relation to their general pattern of pause production.
Crucially, we expect to also find significant differences in pause duration and distribution
between the group with a-mdMCI-E and their a-mdMCI counterparts with retrieval im-
pairment only (a-mdMCI-R), since the former are more prone to AD progression that the
latter. We discuss the validity of pause analysis in the prediction of MCI outcome in the
AD spectrum, contributing to the refinement of the current clinical profile of MCI due to
AD and to the race for non-invasive, low-cost diagnostic tools for dementia diagnosis.

1. Materials and methods

1.1. Participants

Patients were recruited prospectively and retrospectively through the Neurology units
of the Hospital General de Hospitalet de Llobregat (Hospitalet de Llobregat), Hospital
Moisés Broggi (Sant Joan Despı́) and Hospital Clı́nico San Carlos (Madrid) during the
period 2015 to 2019. Healthy controls included patients’ relatives and volunteers. A total
of 112 participants aged 58 to 91 were recruited for the purpose of this study.

Probable AD diagnosis was based on the criteria of the National Institute of Neurolog-
ical and Communicative Disorders and Stroke/Alzheimer’s Disease and Related Dis-
orders Association (NINCDS-ADRDA) [95] and the National Institute on Aging and
Alzheimer’s Association (NIA-AA) [96] for the retrospective and prospective cohort,
respectively. All patients included in this group (n = 26) had a Clinical Dementia Rating
(CDR) [97] score of 1.

56 subjects with MCI were diagnosed according to Petersen criteria [98] in the initial
cohort and NIA-AA criteria [99] for prospective participants. More specifically, patients
were of the amnestic-multidomain MCI subtype (a-mdMCI) with a CDR score of 0.5.
Patients in this group were further classified into two groups according to their memory
impairment profile at the Rey Auditory Learning Test (RAVLT) [100]. One subgroup
displayed impaired delayed recall but normal recognition memory (deficit in retrieval
processes, a-mdMCI-R, 28 participants), and the other one showed both impaired de-
layed recall and recognition memory (deficit in encoding processes, a-mdMCI-E, 29 par-
ticipants) [22]. As explained in the introductory section, the latter pattern of impairment
has been observed to be more prone to AD progression [23,101]. Follow-up of 16 of the
29 a-mdMCI-E patients and of 18 of the 28 a-mdMCI-R participants revealed that 10
(55%) of the former progressed to AD diagnosis within three years, whereas only one
a-mdMCI-R patient (6%) followed the same course.

Additionally, 29 age-matched cognitively unimpaired participants, with no history of
neurological disease and a minimum Mini Mental State Examination (MMSE) [101]



score of 25 were also recruited as healthy controls (HC). Confirmation of any other neu-
rological condition, history of psychiatric disorder, alcohol abuse or the use of any medi-
cation or systemic disease that might justify the observed cognitive impairment was con-
sidered a motive for exclusion. None of the participants suffered any visual or hearing
impairment that could affect their performance.

1.2. Standard protocol approval and patient consent

The study was approved by the Bioethics Committee of Universitat de Barcelona
(IRB00003099), by the clinical research ethics committees of Hospital Clı́nico San
Carlos (ref. 19/046-E) and by the Consorci Sanitari Integral-Hospital Universitari de
Bellvitge in the case of Hospital General de l’Hospitalet de Llobregat (ref. 19/43-
PR222/19). All participants signed a written informed consent form prior to enrollment
in the study.

1.3. Neuropsychological protocol

Patient assessment included, in addition to MMSE [101] and the Rey Auditory Verbal
Learning Test [100], the 60-item version of the Boston Naming Test (BNT) [102], di-
rect and reverse WAIS digits and Block Design test [103], category (animals) and letter
fluency (letter p), the clock-Drawing test [104] and Poppelreuter’s Overlapping Figures
Test [105]. Biographic memory was evaluated by means of a five-item questionnaire re-
questing two important dates -usually a wedding and a relative’s birthday- and the names
of three famous people. During the same testing session participants were asked to com-
plete the picture description task of the Bilingual Aphasia Test [106], based on a simple
six-picture story depicted on a single sheet of paper – see Figure 1–.

1.4. Participant characteristics

Participant mean age was 76± 7 years of age and mean years of education was 6± 3
years. Patients in the AD group were significantly older (81 ± 6) than HC (76 ± 8)
and both the a-mdMCI-R (75 ± 7) and the a-mdMCI-E (76 ± 5) groups, F(3,111) =
4.58, p < 0.05. There were significant differences in years of education across groups
(H(3) = 16.11, p< 0.05) since AD patients (5.6±2.5) and participants in the a-mdMCI-
E group (6.1± 2.9) had significantly less years of education than HC (8± 2). MMSE
scores differed significantly (H(3) = 64.23, p < 10−3), with individuals with AD ob-
taining the lowest mean score (21.8± 2.5), which was significantly lower than that
of HC (29± 1.2), a-mdMCI-R patients (27.4± 2.3) and individuals with a-mdMCI-E
(25.5± 2.6). a-mdMCI-E patients scored significantly lower than HC at MMSE (Bon-
ferroni correction and Dunn post hoc test, p < 10−3). More detailed information on the
demographic characteristics of the sample are provided in Table 1.



Figure 1. Picture description task. Bilingual Aphasia Test, Paradis (1987) [106].

1.5. Neuropsychological profile

Regarding the two a-MCI groups, patients with a-mdMCI-E performed significantly
worse than subjects with a-mdMCI-R at MMSE . The only other significant differences
between the two groups were observed in their RAVLT performance, with a-mdMCI-E
obtaining significantly lower total and delayed recall scores than patients with a-mdMCI-
R. No significant differences were found between the two groups in any other cognitive
domain as per their scores at BNT, WAIS digit span (direct and reverse), semantic and
phonological fluency, WAIS III blocks, Clock Drawing Test, Poppelreuter’s Overlapping
Figures Test and remote memory. Patients with AD performed significantly worse than
patients in the two a-MCI groups at every test except the two WAIS digits tasks, where
no differences were observed amongst the groups of study. Full details and pairwise
comparison results are provided in Table 2.

1.6. Data acquisition and segmentation

Oral narratives were recorded in a quiet room in hospital by means of a SONY IICD-
SX78 recorder at a sampling frequency of 44.1 kHz and subsequently processed in Praat



[107] at the same sampling frequency. Audios were transcribed and annotated manually
by the first author to allow pause tally and duration extraction by means of a script de-
signed ad hoc.

Pauses were defined as any filled or silent interruption of the speech flow that could not be
identified as a linguistic item (such as a disfluency) or as a false start. Filled pauses were
thus standardized place-holders that were not lexicalized such as “uhm” or “erm”, as
opposing filler expressions such as “bueno” (”well”) or the strategic lengthening of con-
juctions, which were labelled as fillers and included in the disfluency tally. While some
authors consider these vocalized pauses disfluencies [108,109] or fillers [110,111,112],
most studies in the speech and dementia literature count them as filled pauses when ex-
plicitly described [69,61,113]. The lower temporal threshold for pause segmentation was
set at 50 milliseconds.

1.7. Interrater agreement

With the purpose of testing the coherence and replicability of the annotation system 10%
of the original 112-narrative corpus (10 narratives) were transcribed and annotated by
the fifth author. Comparison of word-by-word transcriptions reached an agreement level
of 97.5%, whereas interrater agreement at pause identification was 99.04%. The mean
absolute difference of duration measures between the two annotators was 17 ms with a
Pearson correlation coefficient of 0.99.

1.8. Truncated distributions

Following previous work [89], we here consider three possible candidate families of long
tail probability density distributions, being all of them defined with two parameters: Log-
normal distribution (LND), Gamma distribution and Weibull distribution. LND is known
to be generated by multiplicative processes but also additive processes when some con-
ditions are met, as seems recently shown to happen in speech [89]. LNDs are present in
many natural systems [114] and have as a property that, being X an independent con-
tinuous random variable generated by a LND, then the logarithm of X is normally dis-
tributed. LND, Gamma and Weibull distribution functions are defined as follows:

i) Lognormal distribution:

LND(x; µ,σ) =
1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 (1)

ii) Gamma distribution:

Gamma(x;k,θ) =
1

Γ(k)θ k xk−1e−
x
θ (2)



being Γ the gamma function.

iii) Weibull distribution:

Weibull(x;k,λ ) =
k
λ

( x
λ

)k−1
e−(

x
λ
)

k
(3)

A truncated probability distribution is a distribution whose observations are reduced to
some specific range. This technique is particularly useful when it is not possible to have
reliable samples for the entire range but the underlying generating dynamic is expected
to remain stable, so that the full distribution can be fitted into the truncated observed
range. This may be the case for speech segmentation, where shorter samples are subject
to higher uncertainty due to factors including Automatic Speech Alignment limitations
[115], manual segmentation bias [89] and speaker-driven mixed statistical artifacts (see
SI in [89]).

1.9. Statistical analysis

Omnibus between-group differences were assessed using one-way ANOVA or Kruskal-
Wallis tests as appropriate, followed by pairwise testing with Student T or Mann-Whitney
U where applicable.

Lower cut-off point selection when fitting long tail distributions –as those that appears
in speech pause duration– is a challenge that has been widely discussed over the last
years [116]. In this regard, there has been some agreement on fitting the parameters of
the distribution by maximum likelihood estimation (MLE) [117] and using Kolmogorov-
Smirnov distance for cut-off point selection [118]. First, for model selection we pick
several lower cut-off candidates and fit by MLE the three families of probability density
function with the two parameters explained above (Lognormal, Weibull and Gamma).
Then Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) were
used for model selection. Goodness of fit is checked by Kolmogorov Smirnov (KS) test-
ing as to whether reject the distribution or not at the significance level of p = 0.05.

Then, we refine the search for the lower cut-off point for the Lognormal distribution by
using the method proposed by [119], which is a modified version of [116]. The procedure
is as follows. (i) First pick any lower cutoff threshold value, (ii) Fit, by MLE the trun-
cated lognormal distribution to the range x >threshold. This lead to the fitted parameters
µ and σ . (iii) Compute Kolmogorov-Smirnov distance D between the theoretical distri-
bution with estimated parameters and the real data. (iv) Stochastically generate the same
number of samples but from the fitted distribution. (v) Compute Kolmogorov-Smirnov
distance Dr between stochastic data and the theoretical distribution. (vi) Repeat 1000
times steps iv and v counting the number of times where Dr < D. Repeat this process
for different lower cut-off points and select the one where Dr < D happens fewer times.
Note that [116] showed that there will be a minimum.



2. Results

2.1. Speech pause duration distribution analysis
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Figure 2. Relative error, interrater disagreement and lower cut-off point estimation. Interrater disagree-
ment (1-interrater agreement) quickly decreases after 100ms, while mean relative error of speech pauses that
coincide between annotators is quickly reduced after 150ms. The inset panel shows cut-off point selection
where ρ reach a minimum at 160ms [116,119].
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Figure 3. Probability time duration distribution of pauses in each group. For each patient group, the main
panel shows in linear axes the probability time duration distribution of pauses –bar representation– and the ML
fitted truncated LND. The inner panels are a visual representation of the same results with logarithmic binning
and log-linear axis.

We fit pause duration observations from each patient group into three possible theoret-
ical truncated distributions using MLE: Lognormal (LND), Gamma, and Weibull. We



use goodness of fit AIC and BIC for model selection (where the lowest the better, see
table 3), confirming that, for all cases, pause duration distribution is better explained by
a LND. These results are in line with previous reported analysis in speech [89,115].

Lower cut-off point has been calculated following the procedure explained in section 1.
Inset panel of Figure 2 shows that there is a minimum on the times that Dr <D (ρ) at 160
ms which will be chosen as lower threshold. Moreover, main panel of Figure 2 shows the
mean relative error between speech pause annotations (blue bars and line) is drastically
reduced for speech pauses longer than approximately 150ms, while interrater disagree-
ment (1−interrater agreement) is rapidly decreased for pauses longer than 100ms. Total
number of pauses for each group after the truncation is reflected in table 3, being 736 for
HC, 679 for a-mdMCI-R, 618 for a-mdMCI-E and 669 for AD.

In addition to this, Kolmogorov Smirnov testing confirms the goodness of fit of the LND
at a 95% confidence interval. This can be observed in Figure 3 with the empirical prob-
ability of pause duration distribution represented in bars for each group and their fitted
truncated LND with solid lines. For the sake of clarity we also provide log-linear repre-
sentations in the inset panels, where the shape of the LND turns to Gaussian. Estimated
LND parameters are listed in table 3, showing that:

µ : HC < a−mdMCI−R < a−mdMCI−E < AD (4)

σ : HC < a−mdMCI−R < a−mdMCI−E < AD (5)

where µ represents in LND the multiplicative mean and σ is related to more sparse
samples, clearly showing that the HC group has a higher probability of making short
pauses with a lesser deviation than AD patients (table 3), being mild cognitive impair-
ment groups between them with a-mdMCI-E closer to AD.

Finally, in Figure 4 we represent truncated LNDs with estimated parameters for
each group revealing that HC shows higher likelihood of making pauses at range
200ms−700ms in relation to their total pause production than the AD group, with firstly
a-mdMCI-E and subsequently a-mdMCI-R interestingly standing between AD and HCs
in the probability gradation. This is just the opposite at longer ranges (t > 1.5s), where
AD patients reveal higher probability than HCs to make long pauses, with the two a-
mdMCI groups again performing mid-range and a-mdMCI-E participants displaying a
more resembling performance to that of AD patients. Dotted lines represent the contin-
uation of the LNDs out of the truncated range and inner panels express the same results
through their log-linear representation.

Two sided Kolmogorv-Smirnov testing has been used under the null hypothesis that dif-
ferent group samples come from the same distribution and that differences are due to
stochastic variations, confirming in all paired cases that differences are significant, there-
fore rejecting the null hypothesis (see table 5).
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Figure 4. Comparison of time duration distribution between controls and patients groups. The main
panel displays the truncated LND-fitted time duration distribution for each group. The HC group shows a
higher probability of making short pauses (200-600 ms) than the AD group, while AD patients show the
opposite pattern with a higher probability of making long pauses (1.5s - 2.5 s) than HC (tail of the distribution).
Interestingly, a-mdMCI-E and a-mdMCI-R always stand in the middle of the continuum for both pause types.
Solid lines represent the range with reliable observations, while the dotted line represents the continuation of
the LND to shorter timescales. The inner panel shows the same results on the log-linear axis.

3. Discussion

We have characterized the probability density distribution of speech pauses in AD,
healthy controls, and two aMCI groups with differential memory impairment profiles,
being able to show significant differences across all groups. A gradation has been found
in the parameters and shape of the LNDs from AD to HCs, with a-mdMCI-E and a-
mdMCI-R standing in the middle of the continuum between those groups (inequations 4
and 5). Moreover, this issue has been addressed in a censoring context affecting shorter
pauses which, as it has been shown, lack the reliability of shorter pauses in terms of
interrater agreement. For this purpose, we have considered the latest discussions on the
fitting of long-tailed distributions [116,119], successfully recovering LNDs for pauses
longer than 160ms.

Previous discussions addressing the use of these distribution type have proposed tempo-
ral thresholds differentiating short pauses from long speech pauses setting this barrier at
268ms [94], 323ms [120] or more recently at 338ms [93]. However, other authors have
suggested up to three pause types: short (< 200ms), intermediate (200− 1000ms) and
long pauses (> 1000ms) [90]. The classification of “short” and “long” pauses was long
reduced to a conceptual discussion about articulatory and/or respiratory (short) pauses
on the one hand, and (long) cognitive pauses on the other [121,122]. This theoretical
positioning has long gone undisputed -save for some exceptions, see [123,124]- but is
currently under question as technical improvements allow for more precise location and
measurement of pauses [93,120], and other topics of research has been recently open
[125]. We have shown that shorter ranges are affected by higher mean relative errors
and lower interrater agreement, which in turn may affect the conclusions drawn from the



data (Figure 2). This led us to apply a quantitative method that determines a minimal
threshold for pause duration (160ms) so that only occurrences beyond that point are con-
sidered, a method that can be applied beyond the study of the verbal production in AD.
In any case, studying only pauses beyond that threshold may have sense in the context
of Alzheimer’s disease as it has been discussed to be related with cognitive generation
processes.

Pause duration distribution in speech is adequately explained with a LND that can be in-
ferred with the help of truncated distributions, even when information on shorter ranges
is incomplete or censored. To the best of our knowledge, this is the first study where the
shape of the lognormally-fitted pause duration distribution is used in the classification
of different groups with cognitive impairment in the context of AD. More concretely,
the shape and parameters of the LND allow the detection of significant differences in
the probability distribution of pauses according to duration across all groups of study
(HC, a-mdMCI and AD patients). This pause duration distribution reveals the existence
of a continuum from the group with the highest probability of producing short pauses
(HC) to the group with the highest probability of making long pauses (AD patients),
with a-mdMCI-R performing in the range between HCs and a-mdMCI-E and the latter
showing a production pattern more resemblant to that of AD (Figure 4). The confirma-
tion of a higher likelihood to produce more long pauses and less short pauses for those
in the group with higher probability of AD progression (a-mdMCI-E) in comparison to
the a-mdMCI-R group suggest a new promising tool for dementia prognosis that should
be addressed in further studies.

The finding that patients with a-mdMCI-E produce significantly longer pauses with more
variance than HC confirms our initial hypothesis and is in line with previous findings
[69,59,82]. The gradation found along the AD spectrum and more specifically within the
a-mdMCI subtype initially suggests a central role of memory degradation as reflected in
the impaired delayed recall and recognition observed in the a-mdMCI-E group in com-
parison to a-mdMCI-R. Previous studies including correlation analyses of neuropsycho-
logical scores and pause duration suggest that longer pause durations arise from difficul-
ties in the retrieval of relevant information from episodic memory both in AD [79] and in
MCI due to AD [82], a cognitive domain particularly affected in AD that is compatible
with the impaired encoding and consolidation processes observed in our a-mdMCI-E
participants.

The fact that other studies using memory-taxing speech tasks failed to find significant
differences in mean pause duration [59,68] invites for further enquiry as to criteria for
pause labelling and analysis. Our picture description task [106] does not exert the same
level of demand on recent anterograde memory while still managing to capture flu-
ency impairments in a-mdMCI patients, in line with previous studies also implement-
ing picture description tasks [59,83,60,64]. In light of this evidence and considering
the well documented constellation of semantic and lexical processing deficits in AD
[126,127,128,129,130], our results suggest a generalised, more profound deterioration
of the memory system from the preclinical stages of Alzheimer’s disease. Our elicita-
tion task successfully taps onto these emerging deficits by imposing a controlled lexico-
semantic setting that is also demanding on working memory for discourse building and



task maintenance, testing other dimensions of memory in addition to episodic antero-
grade memory and verbal learning, –which are clearly impaired in these patients– avoid-
ing thus circularity in their diagnosis, which is already based on verbal memory assess-
ment. In MCI the fluency factor is highly correlated with memory measures [60] but
to an even greater degree with BNT score (a picture-based test of lexical and semantic
memory integrity). However, [64] failed to find such correlations between fluency pa-
rameters and psycholinguistic measures in very early MCI. These differences may be
the reflection of different stages of the progressive degradation of memory and language
that takes place in AD, that in the case of our a-mdMCI-E sample would be at a more
advanced phase given their neuropsychological profile and the fact that a considerable
number of these individuals progressed to Alzheimer’s dementia within three years (see
1.1. Section). Our two a-mdMCI groups only differed significantly in their memory and
pause profile while there were no significant differences in number of months since MCI
diagnosis, which suggests that they represent two distinct subtypes with not only differ-
ential progression rates, but also eventual outcome and, therefore, prognosis.

While LNDs are very common manifestation in natural sciences, the particular genera-
tive process involved in showing this manifestations in speech pause distributions are still
not known. Further than being the reminiscence of an unknown multiplicative process,
they could be the result of an additive process under some specific constrains [89] or a
pattern result of specific neural activity [131]. However, further studies should be carried
out to fully understand the production processes and how their deviations are related with
healthy disorders. Future studies should also consider the inclusion and comparison of
different speech-eliciting tasks in order to clarify the role of memory in the linguistic be-
haviour of patients in the AD spectrum and evaluate the relative weight of other deficits
that might also be at play, in addition to confirming the applicability of this methodology
in the design of tests that may serve as early low-cost markers in dementia detection.
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ural Language Processing Techniques: A Possible Tool for Very Early Detection of Cognitive Decline?
Front. Aging Neurosci. 10, 369.

[60] Fraser KC, Lundholm Fors K, Eckerström M, Öhman F, Kokkinakis D (2019) Predicting MCI Status
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Différents Styles De Parole. Journées d’Etudes sur la Parol. In: Actes des 28èmes journées d’étude sur
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Table 1. Demographic information

HC a-mdMCI-R a-mdMCI-E AD Omnibus test Pairwise comparisons

Female |Male 21|8 20|8 19|10 18|8 - -
Age (yrs.) 76±8 75±7 76±5 81±6 4.59∗ AD >HC, a-mdMCI-R
Education (yrs.) 8.1±2 6.8±2.8 6.1±2.9 5.6±2.5 16.11∗∗ HC >a-mdMCI-E, AD
MMSE 29±1.2 27.4±2.3 25.4±2.6 22±2.6 64.23∗∗ HC >a-mdMCI >AD

Including Healthy Controls (HC), amnestic multimodal MCI group with memory encoding deficits and a high
proportion of AD converters (a-mdMCI-E), MCI with only memory retrieval issues (a-mdMCI-R) and AD
patients (AD). *Bonferroni and Tukey/Tamhane corrected one-way ANOVA followed by two-independent
sample T test if applicable. **Bonferroni and Dunn corrected K samples Kruskal-Wallis test followed by

Mann-Whitney U if applicable. All test performed significantly with p < 0.05.



Table 2. Neuropsychological profile

a-mdMCI-R a-mdMCI-E AD Omnibus test Pairwise comparisons

RAVLT-total 26±6.9 21.6±6.5 15.4±4.9 19.31∗ a-mdMCI-R >a-mdMCI-E >AD
RAVLT-delayed 3.7±2.2 0.6±1.3 0.08±0.39 51.1∗∗ a-mdMCI-R >a-mdMCI-E, AD
WAIS (direct) 4.4±0.6 4.2±0.5 4±0.8 5.83∗∗ -
WAIS (reverse) 2.7±0.9 2.8±0.7 2.4±0.6 3.63∗∗ -
BNT 48.9±4.6 46.3±3.5 34.6±5.9 67.60∗ a-mdMCI-R, a-mdMCI-E >AD
Poppelreuter 10±0 10±0 9.7±0.5 13.99∗∗ a-mdMCI-R, a-mdMCI-E >AD
Clock Drawing Test 3.6±0.8 3.6±0.8 2±1.3 28.62∗∗ a-mdMCI-R, a-mdMCI-E >AD
WAIS block design 20.9±9.6 18.5±8.9 12.1±6. 7.04∗ a-mdMCI-R, a-mdMCI-E >AD
Letter fluency 8.3±3.8 9.2±4.2 5.7±3.1 11.69∗∗ a-mdMCI-R, a-mdMCI-E >AD
Category fluency 10.1±4.8 10.8±4.5 6.8±2.6 7.3∗ a-mdMCI-R, a-mdMCI-E >AD
*Bonferroni and Tukey/Tamhane corrected one-way ANOVA followed by two-independent sample T test if

applicable. **Bonferroni and Dunn corrected K samples Kruskal-Wallis test followed by Mann-Whitney U if
applicable. All test performed significantly with p < 0.01 except WAIS (direct) with p∼ 0.54 and WAIS

(reverse) with p∼ 0.16.



Table 3. LND parameters and goodness of fit

LND Goodness of fit AIC | BIC
samples µ σ LND Gamma Weibull

HC 736 −0.56±0.03 0.75±0.02 779 | 789 792 | 801 794 | 803
a-mdMCI-R 679 −0.51±0.03 0.85±0.03 992 | 1000 979 | 988 979 | 988
a-mdMCI-E 618 −0.42±0.04 0.86±0.03 958 | 967 977 | 987 974 | 983
AD 669 −0.36±0.04 0.92±0.03 1241 | 1250 1272 | 1281 1264 | 1273

(Left) Estimated LND parameters (µ , σ ) for speech pause duration distributions in each patient group and
truncated below 160 ms. (Right) AIC and BIC goodness of fit for different alternative distributions (the lower

the AIC and BIC the better). All tested distributions are defined by two parameters and within each patient
group they are evaluated under the same conditions, so goodness of fit values can be used for model selection.

For almost all cases LND is the most plausible distribution and in all cases LND passes the Kolmogorov
Smirnov goodness of fit test at a 95% confidence level.



Table 4. Filtered dataset: demographic information.

HC a-mdMCI-E Omnibus test

Female | male 7 | 3 6|6 -
Age 76±7 78±6 .006 (p∼ 0.64)∗

Years of education 8.4±1.9 6.5±3.7 −1.99 (p < 0.05)∗∗

MMSE 28.5±1.6 24±2.6 −3.6 (p < 10−3)∗∗

*Bonferroni and Tukey/Tamhane corrected one-way ANOVA followed by two-independent sample T test if
applicable. **Bonferroni and Dunn corrected K samples Kruskal-Wallis test followed by Mann-Whitney U if

applicable.



Table 5. Two sided KS test between groups

KS Test

HC-amdMCIr p < 0.05
HC-amdMCIe p < 10−3

HC-AD p < 10−3

amdMCIr-amdMCIe p < 0.05
amdMCIr-AD p < 10−3

amdMCIe-AD p < 10−3


