

Master thesis

Temporal Interpolation of human

point clouds using neural networks

and body part segmentation

Author: Ignacio Reimat Corbella

Supervisors: Irene Viola, Pablo Cesar

Tutor: Antonio Chica

A thesis submitted in fulfillment of the requirements for the Master in

Innovation and Research in Informatics – Computer Graphics and Virtual Reality

from :

Research conducted at Centrum Wiskunde & Informatica in Amsterdam

2

Abstract

In the context of social VR, one of the media formats that is gaining popularity is that of a

point cloud. Point clouds are unstructured volumetric representations of individual points

that represent a 3D shape. They are easy to render but are voluminous in size, and thus they

require high bandwidth to be transmitted, so concessions have to be made either in spatial

or temporal resolution.

In this thesis we explore the state-of-the-art solutions for temporal interpolation of dynamic

point clouds, with a focus on human bodies. We see that the current solutions work well

predicting rigid motions but not deformations, which is the case of the human bodies. We

hypothesize that the performance of these architectures can be boosted by segmenting the

body in different body parts and predicting the interpolation for each body part individually.

Due to the lack of dynamic human point clouds datasets, we generate our own point cloud

dataset based on a publicly available image dataset, being that the first contribution of this

thesis. It consists of a total of 248.080 point cloud frames representing 40 avatars (20 males

and 20 females) performing 70 actions each.

We adapt a current state of the art neural network architecture to fit our data, changing the

loss function, tuning some parameters from its feature’s extraction layers, and adding an

extra layer to obtain the desired output. We obtain an architecture capable of performing

temporal interpolation, which is the second contribution of this thesis.

We design a set of experiments in order to validate our hypothesis. These consist on a series

of models trained to interpolate individual body parts, and one model trained to interpolate

the full body. We observe performance gains in all the models trained with individual body

parts, so we conclude with the hypothesis that applying body part segmentation and

predicting the interpolation of individual body parts can improve the accuracy of point cloud

temporal interpolation systems.

3

Table of Contents

Abstract .. 2

List of Figures ... 4

List of tables ... 6

List of equations ... 6

1. Introduction ... 7

2. Related Work ... 12

2.1 Temporal interpolation on video ... 12

2.2 Learning on point clouds .. 12

2.2.1 View-based methods ... 13

2.2.2 Volumetric methods .. 13

2.2.3 Direct learning on points ... 14

2.3 Scene flow and temporal interpolation of point clouds .. 15

2.4 Segmentation and Pose estimation ... 17

2.4.1 Segmentation .. 17

2.4.2 Human 3D pose estimation ... 18

3. Datasets.. 20

3.1 Available datasets .. 20

3.1.1 Direct Point clouds ... 20

3.1.2 Image-based .. 20

3.2 The 3DPeople dataset .. 22

3.3 Generation of our dynamic point clouds dataset .. 24

3.3.1 Corrupted depthmap ... 24

3.3.2 Correcting Misalignments.. 26

3.3.3 Optical flow .. 28

3.3.4 Final point clouds ... 28

4. System Architecture ... 29

4.1 Downsampling .. 29

4.2 Interpolation Network.. 30

4.3 Upsampling ... 31

5. Evaluation and Results ... 32

4

5.1 System description ... 32

5.2 Experiments .. 32

5.2.1 Experiment 1.. 33

5.2.2 Experiment 2.. 38

5.2.3 Experiment 3.. 42

5.2.4 Experiment 4.. 46

5.2.5 Experiment 5.. 50

5.3 System performance .. 54

6. Conclusions and Future Work .. 56

6.1 Summary .. 56

6.2 Discussion ... 57

6.3 Future work .. 59

References ... 60

List of Figures
FIGURE 1. SCREENSHOTS FROM FACEBOOK SPACES (LEFT) AND VTIME(RIGHT)... 7
FIGURE 2. SCENES FROM VRTOGETHER [4]. FROM LEFT TO RIGHT: RECORDED 2D VIDEO PRESENTER USING CHROMA INSERTED IN A

CGI SCENARIO, POINT CLOUD SELF-REPRESENTATION AND POINT CLOUD REPRESENTATION OF THE PARTNER. 8
FIGURE 3. COMPARISON BETWEEN A POLYGON MESH (LEFT) AND POINT CLOUD (RIGHT) .. 8
FIGURE 4. SOME MODELS FROM THE 3D PEOPLE DATASET [8] PERFORMING DIFFERENT ACTIONS ... 10
FIGURE 5. EXAMPLE OF TEMPORAL INTERPOLATION OF FRAMES IN A VIDEO SEQUENCE [9].. 12
FIGURE 6. VISUAL EXAMPLE OF VIEW-BASED METHODS FOR CLASSIFICATION OF 3D OBJECTS [13] .. 13
FIGURE 7. EXAMPLE OF CONVERSION FROM A POINT CLOUD (LEFT) INTO A VOXELIZED VERSION (RIGHT) [17] 14
FIGURE 8. POINTNET ARCHITECTURE [18]. “MLP” STANDS FOR MULTI-LAYER PERCEPTRON, NUMBERS IN BRACKET ARE LAYER SIZES.

BATCHNORM IS USED FOR ALL LAYERS WITH RELU. DROPOUT LAYERS ARE USED FOR THE LAST MLP IN CLASSIFICATION NET. .. 15
FIGURE 9. APPLICATION OF POINTNET [18]. CLASSIFICATION (LEFT), PART SEGMENTATION (MIDDLE), SEMANTIC SEGMENTATION

(RIGHT ... 15
FIGURE 10. THE THREE TRAINABLE LAYERS FROM FLOWNET3D. ... 16
FIGURE 11. SCENE FLOW ESTIMATION FROM POINTCLOUDS (FLOWNET3D) .. 16
FIGURE 12. HIGH-LEVEL STRUCTURE OF THE TEMPORAL INTERPOLATION ARCHITECTURE .. 16
FIGURE 13. NEIGHBOR SNAPPING. THESE FIGURES SHOW THE POSITION OF A NUMBER OF POINTS (VERTICAL AXIS) OVER TIME

(HORIZONTAL AXIS). ON THE LEFT WE HAVE A SCENE FLOW ESTIMATION THAT IS NOT FULLY-CONNECTING, WHILE ON THE RIGHT

SIDE WE HAVE THE SAME SCENE FLOW ESTIMATION AFTER NEIGHBOR SNAPPING HAS BEEN APPLIED.................................. 17
FIGURE 14. SCHEMATIC NEURAL NETWORK ARCHITECTURE USED IN DGCNN .. 18
FIGURE 15. COMPARISON OF SEGMENTATION RESULTS .. 18
FIGURE 16. ILLUSTRATION OF THE POINT CLOUDS PROPOSAL MODEL ... 19
FIGURE 17. OVERVIEW OF THE 3D HUMAN POSE ESTIMATION NETWORK ... 19
FIGURE 18. RECONSTRUCTION PROBLEMS DUE TO DATA CORRUPTED IN PURPOSE TO AVOID COPYRIGHT ISSUES 24
FIGURE 19. CODE SNIPPET OF THE GENERATION OF THE CORRECTION MATRIX .. 25
FIGURE 20. ORIGINAL RECONSTRUCTION (LEFT) AND THE RESULTING POINTS AFTER APPLYING N TIMES THE CORRECTION MATRIX. THE

COLOR ENCODES THE 4 TILES, ONE FOR EACH CAMERA. .. 25

5

FIGURE 21. RESULTING POINT CLOUDS RECONSTRUCTED AFTER APPLYING THE CORRECTION TO THE DEPTHMAP. 26
FIGURE 22. 2D APPROACH TO FILL GRAY PIXELS .. 26
FIGURE 23. POINT CLOUD RESULTING OF THE RECONSTRUCTION USING THE 2D APPROACH TO REMOVE THE BACKGROUND 27
FIGURE 24. POINT CLOUD OF THE BODY PART SEGMENTATION RECONSTRUCTED USING THE 3D APPROACH IN 2 STEPS 27
FIGURE 25. DATA STRUCTURE OF ONE OF THE OUTPUT POINT CLOUDS GENERATED STORED IN A PLY FILE 28
FIGURE 26. HIGH-LEVEL ARCHITECTURE OF OUR SYSTEM .. 29
FIGURE 27. EXAMPLE OF DOWNSAMPLE OF THE HEAD. LEFT: RAW POINT CLOUD. RIGHT: DOWNSAMPLED POINT CLOUD TO 2048

POINTS .. 30
FIGURE 28. NETWORK ARCHITECTURE CONSISTING IN A SMALL MODIFICATION OF FLOWNET3D. IMAGE ADAPTED FROM [6] 31
FIGURE 29. LOGARITHMIC PLOT OF THE EVOLUTION OF THE LOSS FOR THE MODEL 𝑀ℎ𝑒𝑎𝑑𝑠. THE MODEL WAS SAVED ON EPOCH 958

 .. 34
FIGURE 30. LOGARITHMIC PLOT OF THE EVOLUTION OF THE LOSS FOR THE MODEL 𝑀𝑓𝑏. THE MODEL WAS SAVED ON EPOCH 740 ... 34
FIGURE 31. POINT2POINT MSE FOR BOTH MODELS IN EXPERIMENT 1 ... 35
FIGURE 32. POINT2PLANE MSE FOR BOTH MODELS IN EXPERIMENT 1 .. 35
FIGURE 33. POINT2POINT HAUSDORFF DISTANCE FOR BOTH MODELS IN EXPERIMENT 1 .. 35
FIGURE 34. POINT2PLANE HAUSDORFF DISTANCE FOR BOTH MODELS IN EXPERIMENT 1 .. 36
FIGURE 35. BOX PLOT OF THE ERROR METRICS (ZOOMED IN) IN EXPERIMENT 1 .. 36
FIGURE 36. VISUAL COMPARISON OF THE PREDICTION OF THE HEADS USING BOTH MODELS IN EXPERIMENT 1. LEFT: USING 𝑀𝑓𝑏.

MIDDLE: USING 𝑀ℎ𝑒𝑎𝑑𝑠 . RIGHT: GROUNDTRUTH ... 37
FIGURE 37. THE MODEL 𝑀𝑓𝑏 SEEMS TO BE LEARNING THE SKELETON OF THE BODY .. 38
FIGURE 38. LOGARITHMIC PLOT OF THE EVOLUTION OF THE LOSS FOR THE MODEL 𝑀𝑓𝑏_2. THE MODEL WAS SAVED ON EPOCH 779

 .. 39
FIGURE 39. POINT2POINT MSE FOR BOTH MODELS IN EXPERIMENT 2 .. 39
FIGURE 40. POINT2PLANE MSE FOR BOTH MODELS IN EXPERIMENT 2 .. 39
FIGURE 41. POINT2POINT HAUSDORFF DISTANCE FOR BOTH MODELS IN EXPERIMENT 2 .. 40
FIGURE 42. POINT2PLANE HAUSDORFF DISTANCE FOR BOTH MODELS IN EXPERIMENT 2 .. 40
FIGURE 43. BOXPLOT OF THE ERROR METRICS (ZOOM IN) IN EXPERIMENT 2 .. 40
FIGURE 44. VISUAL COMPARISON OF THE PREDICTION OF THE HEADS USING BOTH MODELS IN EXPERIMENT 2. LEFT: USING 𝑀𝑓𝑏.

MIDDLE: USING 𝑀𝑓𝑏_2. RIGHT: GROUNDTRUTH .. 41
FIGURE 45. LOGARITHMIC PLOT OF THE EVOLUTION OF THE LOSS FOR THE MODEL 𝑀ℎ𝑎𝑛𝑑𝑠. THE MODEL WAS SAVED ON EPOCH 266

 .. 42
FIGURE 46. POINT2POINT MSE FOR BOTH MODELS IN EXPERIMENT 3 .. 43
FIGURE 47. POINT2PLANE MSE FOR BOTH MODELS IN EXPERIMENT 3 .. 43
FIGURE 48. POINT2POINT HAUSDORFF DISTANCE FOR BOTH MODELS IN EXPERIMENT 3 .. 43
FIGURE 49. POINT2PLANE HAUSDORFF DISTANCE FOR BOTH MODELS IN EXPERIMENT 3 .. 44
FIGURE 50. BOXPLOT OF THE ERROR METRICS (ZOOMED IN) IN EXPERIMENT 3... 44
FIGURE 51. VISUAL COMPARISON OF THE PREDICTION OF THE HANDS USING BOTH MODELS IN EXPERIMENT 3. LEFT: USING 𝑀𝑓𝑏.

MIDDLE: USING 𝑀ℎ𝑎𝑛𝑑𝑠. RIGHT: GROUNDTRUTH ... 45
FIGURE 52. LOGARITHMIC PLOT OF THE EVOLUTION OF THE LOSS FOR THE MODEL 𝑀𝑓𝑒𝑒𝑡. THE MODEL WAS SAVED ON EPOCH 24146
FIGURE 53. POINT2POINT MSE FOR BOTH MODELS IN EXPERIMENT 4 .. 47
FIGURE 54. POINT2PLANE MSE FOR BOTH MODELS IN EXPERIMENT 4 .. 47
FIGURE 55. POINT2POINT HAUSDORFF DISTANCE FOR BOTH MODELS IN EXPERIMENT 4 .. 47
FIGURE 56. POINT2PLANE HAUSDORFF DISTANCE FOR BOTH MODELS IN EXPERIMENT 4 .. 48
FIGURE 57. BOX PLOT OF THE ERROR METRICS IN EXPERIMENT 4 .. 48
FIGURE 58. VISUAL COMPARISON OF THE PREDICTION OF THE FOOT USING BOTH MODELS IN EXPERIMENT 4. LEFT: USING 𝑀𝑓𝑏.

MIDDLE: USING 𝑀𝑓𝑒𝑒𝑡. RIGHT: GROUNDTRUTH .. 49
FIGURE 59. LOGARITHMIC PLOT OF THE EVOLUTION OF THE LOSS FOR THE MODEL 𝑀𝑐ℎ𝑒𝑠𝑡𝑠. THE MODEL WAS SAVED ON EPOCH 339

 .. 50
FIGURE 60. POINT2POINT MSE FOR BOTH MODELS IN EXPERIMENT 5 .. 51
FIGURE 61. POINT2PLANE MSE FOR BOTH MODELS IN EXPERIMENT 5 .. 51
FIGURE 62. POINT2POINT HAUSDORFF DISTANCE FOR BOTH MODELS IN EXPERIMENT 5 .. 51
FIGURE 63. POINT2PLANE HAUSDORFF DISTANCE FOR BOTH MODELS IN EXPERIMENT 5 .. 52
FIGURE 64. BOXPLOT OF THE ERROR METRICS IN EXPERIMENT 5... 52

6

FIGURE 65. VISUAL COMPARISON OF THE PREDICTION OF THE CHEST USING BOTH MODELS IN EXPERIMENT 5. LEFT: USING 𝑀𝑓𝑏.

MIDDLE: USING 𝑀𝑐ℎ𝑒𝑠𝑡𝑠. RIGHT: GROUNDTRUTH ... 53
FIGURE 66. BLOCK DIAGRAM OF THE INTERPOLATION SYSTEM .. 54

List of tables
TABLE 1. SUMMARY OF THE DYNAMIC POINT CLOUD DATASETS .. 20
TABLE 2. SUMMARY OF THE IMAGE-BASED DATASETS .. 22
TABLE 3. DISTRIBUTION OF THE DATA FOR EACH STAGE OF THE EXPERIMENTS .. 32
TABLE 4. DESCRIPTION OF THE EXPERIMENTS ... 33
TABLE 5. NUMBER OF POINTS AND MEAN DISTANCE BETWEEN POINTS IN THE DOWNSAMPLED POINT CLOUDS 33
TABLE 6. RADII USED IN EXPERIMENT 1... 33
TABLE 7. RADII USED IN EXPERIMENT 2... 38
TABLE 8. RADII USED IN EXPERIMENT 3... 42
TABLE 9. RADII USED IN EXPERIMENT 4 .. 46
TABLE 10. RADII USED IN EXPERIMENT 5 .. 50
TABLE 11. PERFORMANCE VALUES OF THE READING BLOCK ... 54
TABLE 12. PERFORMANCE VALUES OF THE DOWNSAMPLING BLOCK ... 54
TABLE 13. PERFORMANCE VALUES OF THE INTERPOLATION BLOCK .. 54
TABLE 14. PERFORMANCE VALUES OF THE UPSAMPLING BLOCK .. 55
TABLE 15. PERFORMANCE VALUES OF THE FULL PIPELINE(TOP) AND THE PIPELINE WITHOUT THE UPSAMPLING BLOCK (BOTTOM) 55

List of equations
EQUATION 1. CORRECTED DEPTHMAP FUNCTION .. 25
EQUATION 2. MSE USED AS LOSS FUNCTION ... 30
EQUATION 3. UPSAMPLING THE PREDICTED FLOW ... 31

7

1. Introduction

In the current technology revolution, Cross Reality (XR) Technologies (term that includes

Augmented Reality, Virtual Reality and Mixed Reality) are gaining popularity. Because of this,

new software, hardware (head-mounted-displays, sensors, 3D scanners, 360 cameras…), and

media formats are constantly appearing to satisfy the demand of new immersive contents.

Social VR is the term used to designate the concept of getting together in a simulated world

using Virtual Reality. Some examples are Facebook Horizon[1], vTime[2] and Mozilla hubs[3].

Figure 1 shows visual examples of these applications.

Figure 1. Screenshots from Facebook Spaces (left) and vTime(right)

In most of these systems, participants are represented as avatars, virtual identities chosen by

the user to represent himself. One of the benefits of these representations is that you only

need to send the model once to the other users, reducing the amount of data to transmit for

each frame. The model is sent at the beginning of the connection, and later the server just

needs to transmit the movement information or the new positions of the joints of the

skeleton.

Other applications instead want to use a photorealistic representation of the user in real-

time. This can be achieved with 3D scanners or a combination of depth cameras. This is the

case of the H2020 European project VRTogether [4] that aims to develop an end-to-end

system for the production and delivery of photorealistic social immersive virtual reality

experiences. The goal of the project is to improve the immersive experience by innovating in

how media formats are used (i.e., how audio, video and graphics are captured, delivered and

rendered at users’ homes) demonstrating a significant improvement of the feeling of being

there together and the photorealistic quality of the content. The system combines different

types of media (conventional 2D video with chroma, 360 video, Computer-Generated Imagery

(CGI) objects, Time Variant Meshes (TVM) and dynamic point clouds) in a shared virtual space.

A recent output from this project is the paper from J. Jansen et al. [5], where they present the

design and development of an architecture intended for volumetric videoconferencing. The

system provides a highly realistic 3D representation of the participants, and it is based on

point clouds.

8

Figure 2. Scenes from VRTogether [4]. From left to right: recorded 2D video presenter using chroma inserted in a CGI scenario,
point cloud self-representation and point cloud representation of the partner.

One of the media formats that is becoming popular for volumetric representation is the point

cloud. A point cloud is a collection of individual points that represent a 3D shape. Each point

has at least a set of {x,y,z} coordinates denoting its position, and can also contain additional

attributes such as color {R,G,B}, intensity or normal vectors. Unlike meshes, where points are

grouped in polygonal faces, point clouds are sets of unordered and unrelated points. That

means that no 3D reconstruction is needed to be rendered, making them suitable for real-

time delivery systems.

Figure 3. Comparison between a polygon mesh (left) and point cloud (right)

To use point clouds in social VR applications, it is necessary to transmit big amounts of data

through the network, so there is a need of reducing the bandwidth. That can be accomplished

in multiple ways: applying compression algorithms, using spatial interpolation

(downsampling), or temporal interpolation (dropping frames and predicting them in the client

side). So the main research question of this master thesis is going to be focus on the latter.

Research question: How to perform temporal interpolation of dynamic point clouds?

Another technology which is becoming popular is Artificial Intelligence (AI), a term that has

multiple definitions, as it currently covers a wide variety of subfields. Ranging from general

areas as learning and perception, to more specific ones such as chess, mathematical

theorems, poetry writing and disease diagnosis. AI synthesizes and automates intellectual

tasks, and is, therefore, potentially relevant to any field of human intellectual activity.

9

A subfield of AI that is attracting a special interest is Machine Learning, a set of techniques

and algorithms that have the ability to acquire their own knowledge, by extracting patterns

from raw data. Deep Learning is a subgroup of Machine Learning that tries to simulate the

behavior of human neural networks. Some of its best-known architectures are deep neural

networks (DNN), Recurrent Neural Networks (RNN) and Convolutional Neural Networks

(CNN). These architectures have been applied to multiple research fields such as computer

vision, speech recognition, natural language processing, audio recognition, social network

filtering, bioinformatics, and medical image analysis.

Machine learning algorithms, and especially CNN have been applied in the field of video

coding and have become the current state of the art in temporal interpolation in 2D video.

Therefore, exploring how CNNs can be used to achieve temporal interpolation of point cloud

contents might lead to promising results. An example of that is Flownet3D[6]. This network

architecture is capable to estimate the scene flow from a pair of input point clouds. Scene

flow is the same concept to the optical flow on 2D video but adapted to the 3D space.

The paper Temporal Interpolation of Dynamic Digital Humans using Convolutional Neural

Networks [7] presents a novel architecture for temporal interpolation of point clouds using

CNN’s. It takes as input two point clouds and computes the scene flow between them, and

uses the scene flow to predict the point cloud in between. The results are promising,

improving accuracy over current state-of-the-art algorithms, but it can be improved. We work

with the assumption that local deformation of human bodies is more difficult to predict than

rigid transformations (translations, rotations) of objects. That is why we hypothesize that

applying a similar architecture as the one presented on this paper, independently, to each

part of de body, can improve the results. One of our research sub questions is thus:

Sub question: How pose estimation/segmentation can be used to improve temporal

interpolation of human bodies?

One of the problems nowadays is the lack of point cloud datasets, and specifically dynamic

point clouds datasets with segmentation annotations. This is because the process of manually

annotating 3D data, is complicated and time consuming. To solve this issue we decide to use

the 3D People dataset[8]. This synthetic image dataset contains 2 million images of 40 male

and 40 female performing 70 actions, captured from 4 cameras. The information provided is:

the camera matrices, the rgb frames, depth maps, normals, 3D skeleton joints, body part and

cloth segmentation and optical flow. Our idea is to use the 3D people images dataset to

generate a dataset of dynamic point clouds with body part segmentation annotations.

10

Figure 4. Some models from the 3D People dataset [8] performing different actions

By answering our research questions, the contributions of this thesis will be two: 1) a dynamic

point clouds dataset; 2) an architecture for point cloud interpolation based on body part

segmentation. In order to prove our results, we are going to use existing point cloud error

metrics. We decided to train the network using the dropped point cloud frames (the one that

has to be predicted) as the ground truth and using the point to point distance metric as loss

function.

We designed a set of experiments in order to validate our hypothesis. These consist on a

series of models trained to interpolate individual body parts, and one model trained to

interpolate the full body. We observe performance gains in all the models trained with

individual body parts. We also noticed a drop in performance for the interpolation of the

hands, which is not surprising, because the hand itself has several articulations, and therefore,

it does not behave as a rigid body. The extended experiments and results exposed in this

thesis conclude that, the use of body part segmentation to solve the problem of temporal

interpolation of dynamic point clouds, improves the accuracy of the interpolation systems.

In summary, in this thesis we focus on the temporal interpolation of point clouds representing

humans, using neural networks. We study how body part segmentation can increase the

accuracy of such algorithms. In order to do so, we generate a dataset of dynamic point clouds

with body part segmentation annotations, and we use it to train our neural networks and

perform some experiments to validate our hypothesis.

The thesis follows the following structure: In chapter 2, 2. Related Work, we provide some

background about video interpolation, learning on point clouds, scene flow and temporal

interpolation of point clouds. On chapter 3. Datasets, we provide an overview of the existing

datasets and go through the process of generating our own dynamic point clouds dataset. On

chapter 4. System Architecture, we describe the different modules that compose the selected

architecture. On chapter 5. Evaluation and Results, we report the experiments we have

carried out in order to validate our hypothesis we discuss the obtained results. Finally, in

chapter 6. Conclusions and Future Work, we summarize the full process of completing the

11

thesis, discussing our system limitations, problems encountered, lessons learned, and

highlighting the remaining challenges and the future work.

12

2. Related Work

In this chapter we provide a brief review of the related work that motivated this master thesis.

We will start in Section 2.1 Temporal interpolation on video, explaining current state of the

art of temporal interpolation on video (2D), to have a baseline in order to jump to the

temporal interpolation in 3D data. In Section 2.2 Learning on point clouds, we will review

different ways to use deep learning techniques to learn on point clouds. Some of them

converting the point cloud to an intermediate format, and others directly learning on point

clouds. In Section 2.3 Scene flow and temporal interpolation of point clouds, we will review

Flownet3D, a neural network that predicts the scene flow between to input point clouds, and

the paper [7], a first approach to perform interpolation in point clouds using CNN. Finally, in

Section 2.4 Segmentation and Pose estimation, we will see some techniques to segment and

extract pose estimation from point clouds.

2.1 Temporal interpolation on video

Temporal interpolation has been successfully used in video coding to increase the frame rate

of video sequences. This technique works by estimating the optical flow between input

frames and synthesizing intermediate frames based on this optical flow. Optical flow is the

pattern of apparent motion of objects, surfaces, and edges in a visual scene. It describes a

sparse or dense vector field, where a displacement vector is assigned to a certain pixel

position, that points to where that pixel can be found in another image.

Figure 5. Example of temporal interpolation of frames in a video sequence [9]

Over the last years with the increasing interest in artificial intelligence, neural network-based

approaches have been introduced also in this field [10], [11], and now represent the state-of-

the-art in video frame interpolation [12].

2.2 Learning on point clouds

The idea would be to apply the same concepts used in 2D video, for temporal interpolation

on point clouds. However, traditional neural network approaches, like convolutional neural

networks, are not directly applicable to this media format, given that point clouds do not

follow a regular grid structure. Also, 3D convolutional neural networks are expensive. We

should then focus in other strategies to deal with learning on point clouds. The most well-

13

known are view-based methods, volumetric methods and direct learning on point clouds. We

are going to briefly explain them in the next subsections.

2.2.1 View-based methods

These methods work by transforming the irregular structure into an intermediate format

where traditional learning techniques can be applied. An example of these methods is the

one that generates a 2D view of the point cloud by projecting the point cloud onto a surface

and then performs the processing based on 2D images.

Multi-View CNN (MVCNN) [13] is an example of these methods. MVCNN system takes as input

a point cloud and performs 2D captures of the point cloud from 20 different viewpoints. For

each view four rotations are taken (0, 90, 180 and 270 degrees). The 80 images are passed

through a special CNN that merges all the information in a global shape descriptor to predict

the final classification of the object.

Figure 6. Visual example of view-based methods for classification of 3D objects [13]

An advantage of view-based methods is that 2D learning techniques can be used, but it is still

a challenge to decide the number of views to generate, and some viewpoints may have

difficulties dealing with occlusions or ambiguities. In the context of point cloud temporal

interpolation, the output of the network must be converted again into a point cloud, which

adds extra computation and complexity. For this reason we decide against using view-based

methods in this thesis.

2.2.2 Volumetric methods

Similar to view-based methods, volumetric methods transform the point clouds to an

intermediate format to apply 2D learning techniques. In this case the intermediate format is

a volumetric representation, like occupancy grids (or voxels) [14], [15] and KD-trees [16].

The advantages and shortcomings of volumetric methods are then similar to the view-based

methods. Transforming the point cloud to an intermediate format allows applying 2D

techniques for learning on the data, but the output needs to be converted back to a point

cloud if we want to use it in an interpolation context. Additionally, volumetric methods

resolution tends to scale poorly, so in the task of temporal interpolation, where fine-grained

14

motions play an important role, it can cause some troubles. Given the mentioned

shortcomings, we choose not to use this kind of methods.

Figure 7. Example of conversion from a point cloud (left) into a voxelized version (right) [17]

2.2.3 Direct learning on points

Even though transforming the point cloud to an intermediate format sometimes results into

good results, the process of conversion can be expensive and may cause the loss of essential

information. That is the reason why other methods try to avoid it, and focused on learning

directly on unstructured and irregular point cloud data. But this type of data presents some

difficulties: a point cloud is an unordered set of points, so the network needs to be invariant

to any permutation. At the same time, the relationships between a point and its neighbors

are meaningful, so that also needs to be taken into account by the network.

PointNet [18] network learns to summarize an input point cloud by a sparse set of key points,

which roughly corresponds to the skeleton of the objects. There is a base architecture for

classification, and modified/extended versions for 3D object part segmentation and semantic

segmentation in scenes. Examples of the output of each version are shown in Figure 9. The

classification network takes n points as input, applies input and feature transformations, and

then aggregates point features by max pooling. The output is classification scores for k classes.

The segmentation network is an extension to the classification net. It concatenates global and

local features (as point segmentation requires a combination of local and global knowledge)

and outputs per point scores.

15

Figure 8. PointNet architecture [18]. “mlp” stands for multi-layer perceptron, numbers in bracket are layer sizes. Batchnorm
is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

Figure 9. Application of PointNet [18]. Classification (left), part segmentation (middle), semantic segmentation (right

PointNet does not capture the local structure induced by the metric space, limiting its ability

to recognize fine-grained patterns. That is something that tries to solve its successor

PointNet++ [19]. PointNet++ leverages local neighborhood structure by first partitioning the

input sets into overlapping local regions, extracting local features capturing fine geometric

structures from the small neighborhood. This process is repeated hierarchically to generate

increasingly high-level features. Although PointNet and PointNet++ achieved state-of-the-art

result at that time, points in local regions are still processed independently, meaning it does

not consider relationship between points.

2.3 Scene flow and temporal interpolation of point clouds

We have seen some neural network architectures that work by extracting high-level features

in order to perform tasks of classification and segmentation. There are other network

architectures focused on finding relationships between points. In this section we present

some examples.

FlowNet3D [13] uses a neural network architecture to estimate the scene flow from a pair of

input point clouds. Scene flow is the same concept to the optical flow on 2D video explained

in Section 2.1, but led to the 3D space.

16

Figure 10. The three trainable layers from Flownet3D.

Flownet3D uses convolutional layers from PointNet++, called set conv layer, to learn deep

hierarchical point cloud features. Then the flow embedding layer learns geometric relations

between two point clouds to infer motions. Finally, the set upconv layers up-sample and

propagate point features in a learnable way, giving as result the refined flow 3D.

Figure 11. Scene flow estimation from pointclouds (Flownet3D)

The network is trained with synthetic scene flow ground-truth data, which proves to transfer

well to the real-world data. However, the model is only evaluated on data featuring rigid

motions, thus not including deformations, which is the case of human bodies.

The paper Temporal Interpolation of Dynamic Digital Humans using Convolutional Neural

Networks [7] is one first attempt for temporally interpolating on point clouds. It presents a

proposal of a temporal interpolation architecture using convolutional neural networks. It is

capable to increase the temporal resolution of dynamic digital humans represented using

point clouds. The architecture achieves bandwidth savings by dropping frames in the sender

side and recreating them in the receiving side.

Figure 12. High-level structure of the temporal interpolation architecture

The network takes as input a pair of point clouds, which are downsampled and then the scene

flow between is estimated. The scene flow is refined with a technique called neighbor

snapping, that makes an existing scene flow estimation fully-connected in order to provide

17

more smoothness in the temporal interpolation (check Figure 13 for a better understanding

of this technique). With this information, a new point cloud is computed among the two input

point clouds.

Figure 13. Neighbor snapping. These Figures show the position of a number of points (vertical axis) over time (horizontal axis).
On the left we have a scene flow estimation that is not fully-connecting, while on the right side we have the same scene flow
estimation after neighbor snapping has been applied.

The results were above the current state of the art but this kind of networks are shown to

work better for predicting rigid transformations than deformations, which is the case of a

dynamic human body. Our hypothesis is that those results could be further improved by

segmenting the body in parts so each part movement is closer to a rigid transformation.

2.4 Segmentation and Pose estimation

Since we want to segment human body parts, Section 2.4.1 explores different methods for

performing segmentation in point clouds. As our thesis is based on human bodies, in Section

2.4.2 we also explore 3D pose estimation methods. They can be used to implement

segmentation based on the body joints.

2.4.1 Segmentation

Some tasks in geometry processing and analysis, such as segmentation and classification,

require to find similarities between shapes. Similarity can be found by extracting feature

descriptors of the geometrical structure. There are many papers proposing local feature

descriptors for point clouds, to solve different problems. The paper Recent Trends,

Applications, and Perspectives in 3D Shape Similarity Assessment [20] gives a good overview

on point features and similarity assessment.

We already talked about PointNet and PointNet++, which extract point features and use them

for classification, and its extension for segmentation. In the same line there is PointCNN [21],

which uses k-nearest neighbor search and MLPs to learn a transformation, and uses that

transformation in order to weigh the input features, and permute the input points into a

latent and potentially canonical order. Once points have been transformed, convolution can

be applied.

The paper DGCNN[22] aims at improving performance by also applying a conversion. In this

case it converts point clouds into k-nearest neighbor graphs. They propose a module named

EdgeConv, which operates directly over the point cloud and incorporates some important

properties, such as local neighbor information. The module can easily be inserted into existing

18

architectures and has been proven to capture and exploit fine-grained and global properties

of point clouds, giving good results both in classification and segmentation. Figure 14 shows

its architecture. Figure 15 shows some visual results of the segmentation task.

Figure 14. Schematic neural network architecture used in DGCNN

Figure 15. Comparison of segmentation results

2.4.2 Human 3D pose estimation

3D human pose estimation methods can be divided into two categories: discriminative and

generative methods. Discriminative methods directly estimate 3D human pose from the input

images. There are several CNN contributions based on discriminative methods used to predict

3D human pose [23], [24]. The paper from Marin-Jimenez et al. [25] uses a linear combination

of the pose prototypes to estimate the 3D human pose from the depth. The accuracy of these

methods could be poor due to extraordinary poses and occlusions.

Generative methods make use of the 2D information extracted from an input image to infer

reasonable 3D poses [26]–[28]. The paper DeepPose proposes a method for human pose

estimation based on Deep Neural Networks (DNNs). The pose estimation is formulated as a

DNN-based regression problem towards body joints. The advantage of these methods is that

they only require easily accessed annotations such as 2D joint locations. But at the same time,

DGCNN

19

it can become a drawback, because the performance of generative 3D human pose methods

is largely affected by the accuracy of these 2D information extraction.

The paper Weakly Supervised Adversarial Learning for 3D Human Pose Estimation from Point

Clouds [29] innovates by combining direct learning on point clouds using a Generative

Adversarial Network (GAN), with a view-based method. So instead of using either 2D or 3D

representations of depth images, they exploit both point clouds and the input depth image,

combining discriminative and generative methods.

The network consists of two modules: the point clouds proposal module and the 3Dpose

regression module. On the point clouds proposal module, they use 2D CNN to extract 2D

human joints from the input depth image. They use the estimated pose to sample and

normalize the extracted point clouds from depth. This process is visually described in Figure

16.

Figure 16. Illustration of the point clouds proposal model

On the 3D pose regression module, which is built upon PointNet, they use the initial 3D pose

converted from the estimated 2D pose, and the normalized point clouds, to predict the final

3D human pose, using a GAN Network. The visual overview of the system is shown in Figure

17.

Figure 17. Overview of the 3D human pose estimation network

This thesis wants to prove first the effectiveness of using body-part segmentation in human

point cloud interpolation, so if our hypothesis results in positive results, we would consider

using pose estimation in our end-to-end system.

20

3. Datasets

In this chapter we start in Section 3.1 by providing an overview of the existing point clouds

and image-based dataset focused in dynamic humans. We continue in Section 3.1 with an

exhaustive vision of the 3Dpeople dataset on which we have based our point cloud dataset.

Finally, in Section 3.3 we describe the process of generating our dataset while enumerating

the encountered challenges and our proposed solutions.

3.1 Available datasets

One of the main problems when dealing with point cloud learning is the lack of point cloud

datasets. This is due to the novelty of the format but also the fact that is more complex to

generate annotations in 3D data[30]. It is true that new datasets are appearing, mostly thanks

to the high interest arousing around the topic of self-driving cars.

In our case we need to find a dataset of dynamic point cloud sequences, if possible with

annotations about body part segmentation. Some of the datasets presented below are not

point clouds but color and depth images. We will also consider them as they can be converted

easily to point clouds.

3.1.1 Direct Point clouds

The Microsoft Voxelized Upper Bodies [31] data set contains five dynamic point cloud

sequences of the upper bodies of human subjects. The sequences are captured using four

frontal RGBD cameras, and as such only the front of each subject is visible. Since we were

looking for full body data, we did not consider this one.

The 8iVFB v2 [32] dataset consists of four dynamic point cloud sequences. Each one captures

a different human subject, at 30 FPS over a 10 second period, resulting in 1200 frames in total.

The point clouds are captured from 42 RGB cameras capturing the subject from all directions.

Due to post-processing, this data set is clean. The resolution is high with point clouds frames

from 700.000 to 1 Million points. So the quality of the data is great, but the quantity is scarce.

Table 1 summarizes the point cloud datasets that we considered to use.

Dataset Characteristics

Microsoft Voxelized
Upper Bodies

- 5 dynamic point cloud sequences
- Captured using 4 frontal RGB cameras

8iVFB v2

- 4 dynamic point cloud sequences
- 1200 frames (30 fps) = 10 seconds per action
- Captured using 42 RGB cameras from multiple directions
- Resolution ≈ 700.000 to 1 Million points

Table 1. Summary of the dynamic point cloud datasets

3.1.2 Image-based

The Standford EVAL [33] dataset consists on a set of depthmaps captured from a single point

of view, representing 3 subjects performing 8 sequences each. It has annotations of the

21

estimated 3D joint positions. Since we want to reconstruct the full body, so one single point

of view is not enough.

In the same line, we find the ITOP dataset [34] that consists in 100K real-world depth images

taken from multiple camera viewpoints (front/side view and top) representing 20 people

performing 15 actions. The data is labeled with real world 3D joint locations.

The Berkeley MHAD [35] is a dataset captured with five different capturing systems: optical

motion, 4 multi-view stereo camera arrays, 2 Microsoft Kinects, 6 wireless accelerometers

and 4 microphones. It represents 12 people performing 11 actions each.

Surreal [36] is a dataset with synthetically-generated but realistic images of people rendered

from 3D sequences of human motion capture data. It consists of 6 million frames together

with ground truth pose, depth maps, and segmentation masks. Since it only have one point

of view, we discarded this one.

UBC3V [37] is a synthetic dataset representing 16 characters performing a total of 19.000

postures. The data has been captured by 3 randomly located virtual cameras for each pose.

This is a big one, but is based on independent postures. As we are looking for sequences, we

discarded this one.

In the end we decided to use the 3DPeople dataset [8], an image-based dataset of dynamic

human sequences with body part and cloth annotations. In the next section we describe it in

depth. The reasons to choose this dataset among others was of course the size of it, the

available information (body part segmentation and optical flow), but also the ease of access

to the data (everything comes in RGB images or .mat files). In other datasets for example it

was necessary to download models and install software to generate the raw data.

Dataset Characteristics

Standford EVAL
- depthmaps captured from a single point of view
- 3 subjects performing 8 sequences each

ITOP

- 100K real-world depth images
- Multiple camera viewpoints
- 20 people performing 15 actions
- 3d joints

Berkeley MHAD

- 12 people performing 11 actions each
- 5 different capturing systems:

- optical motion
- 4 multi-view stereo camera arrays
- 2 Microsoft Kinects,
- 6 wireless accelerometers
- 4 microphones

Surreal

- 6 million frames
- synthetically-generated
- human motion capture data
- ground truth pose
- depth maps
- segmentation masks

22

UBC3V

- synthetic
- 16 characters
- 19.000 postures
- 3 randomly located virtual cameras for each pose

3DPeople

- 80 avatars performing 70 actions each
- 4 camera views
- Camera info
- Rgb images
- Depthmaps
- Normal maps
- Optical flow
- Body and clothes segmentation
- 3D joints

Table 2. Summary of the image-based datasets

3.2 The 3DPeople dataset

To generate our dataset, we are making use of the 3DPeople dataset. It aims to be the first

dataset for computer vision research, of dressed humans with specific geometry

representation for clothes. It contains around two million images of 80 avatars (40 males, 40

females) performing 70 actions each. Every subject-action sequence has been captured from

4 camera views, so for each camera it provides:

▪ Camera parameters: provides the intrinsic and extrinsic matrices.

▪ RGB Images

▪ 3D skeleton joints

23

▪ Depthmaps

▪ Normals

▪ Optical flow (u,v)

▪ Body segmentation

▪ Cloth segmentation

24

No 3D meshes nor raw files of the models are provided for copyright reasons, as the models

used belong to Adobe. We will comment later some problems derived from it.

3.3 Generation of our dynamic point clouds dataset

For the building of the dataset we implemented some python scripts making use of the

open3d library. We encountered some challenges, so they are described in this section, as

well as the solutions developed for each of them.

3.3.1 Corrupted depthmap

The first step was to use the RGB and depth frames to reconstruct the 3D point cloud.

Although the process is straightforward, since camera matrices are given, we found the

alignment was not optimal as can be seen in Figure 18.

Figure 18. Reconstruction problems due to data corrupted in purpose to avoid copyright issues

The misalignment arises from the fact that the authors added noise to the data to avoid

reconstructing the original meshes, for copyright reasons. We considered moving to another

dataset, but they were not so complete, so we dedicated quite some effort to be able to use

the available data. We noticed some sort of spherical distortion on the depthmap, but only

affecting the depth component. So we developed a correction process that consists in

applying the opposite distortion to the depthmap. The process of generation of the correction

matrix 𝑀 can be seen in Figure 19.

The operation applied on the depthmap to obtain the corrected one is shown in Equation 1.

25

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑_𝑑𝑒𝑝𝑡ℎ𝑚𝑎𝑝 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑒𝑝𝑡ℎ𝑚𝑎𝑝 − 4 × 𝑀

Equation 1. Corrected depthmap function

Figure 19. Code snippet of the generation of the correction matrix

After some trial and error, we managed to find a sufficient to go on with the thesis and its

experiments. Part of the process of trial and error can be seen in Figure 20 where the color

encodes the 4 tiles of the point cloud, each one as corresponding to each of the 4 cameras.

This color encoding helped us to appreciate the spherical distortion on the original point

clouds, and the improvement while applying different scaling factors of the correction matrix

𝑀.

Figure 20. Original reconstruction (left) and the resulting points after applying n times the correction matrix. The color
encodes the 4 tiles, one for each camera.

26

Figure 21 shows the reconstructed point clouds generated with the corrected depthmap.

Figure 21. Resulting point clouds reconstructed after applying the correction to the depthmap.

3.3.2 Correcting Misalignments

On the generation of the point cloud from the RGB and depth frame, some pixels of the

background were assigned to the body, so the reconstructed point cloud had some noise. We

improved this by applying erosion on the depthmap using a small kernel size.

The same process of combining the depthmap with a colorframe was used to get the data of

the body and cloth segmentation for each point. Similar problems occurred with the

alignment. In this case the erosion on the depthmap was not enough, especially in the case

of the body segmentation. This segmentation does not consider the clothing, resulting in lots

of grey pixels from the background entering the point cloud.

Figure 22. 2d approach to fill gray pixels

27

Our first trial to solve this was the implementation of an algorithm that worked in the 2D

space, by assigning the closest color to the gray pixels. Figure 22 visually describes the

process. Even that in the 2D space it looked promising, the generated data in the 3D space

was not optimal, as can be seen in Figure 23

Figure 23. Point cloud resulting of the reconstruction using the 2D approach to remove the background

Then we tried to apply the same idea but directly in the 3D space. By using a nearest neighbors

search, we converted every gray point to the fashion of the points in a certain radius

(increasing the radius size if only gray points where found). It was not enough, again due to

some misalignment problems, we performed a 2nd step of the algorithm. In that case, for

every point, the algorithm applies the fashion of the colors in a fixed radius. The results were

promising as shown in Figure 24

Figure 24. Point cloud of the body part segmentation reconstructed using the 3D approach in 2 steps

28

3.3.3 Optical flow

The optical flow data gives information about the movement of the pixels in the 2D plane.

That means that the conversion to the 3D space is not straight forward. Some attempts were

made in order to compute the depth component using the depthmaps, but the results were

not good, mainly due to occlusions, and possibly because some corrupted data. So we were

not able to reconstruct the scene flow 3D from the optical flow.

3.3.4 Final point clouds

After all the process reported in this section, we achieved to get a dataset that could be used

in our experiments. The final point clouds dataset consists in 6202 frames for each avatar,

resulting in a total of 248.080 point cloud frames. They are stored in ply files following the

next structure:

ply

format ascii 1.0

element vertex 57238

property float x

property float y

property float z

property float nx

property float ny

property float nz

property uchar red

property uchar green

property uchar blue

property uchar tile

property uchar bodysegm

property uchar clothsegm

end_header

Figure 25. Data structure of one of the output point clouds generated stored in a ply file

The image resolution of the 3D people dataset (640x480) is limiting the resolution of the

output point clouds. Still, the number of points oscillates between 40.000 and 60.000 points.

The generated dataset is one of the contributions of this master thesis. It is a complete point

cloud dataset and it will allow us to train the interpolation neural network, as well as perform

multiple experiments related with point clouds, in the future.

The usage of this dataset goes beyond this thesis since it can be used for multiples

experiments, such as tiling, compression and segmentation.

29

4. System Architecture

As the goal of the thesis was to prove our hypothesis (segmenting body parts and predicting

the interpolation of each part gives better results), we decided to reuse the Flownet3D

architecture but applying some modifications. In this section we discuss those modifications,

while explaining the reason behind those decisions.

The system will take as input two raw point clouds 𝑃1 and 𝑃2 composed by its (𝑥𝑛, 𝑦𝑛, 𝑧𝑛)

position coordinates and its (𝑟𝑛, 𝑔𝑛, 𝑏𝑛) color coordinates, and will output the temporal

interpolated frame 𝑃𝑝𝑟𝑒𝑑. Figure 26 shows a high-level diagram of our system architecture. In

the next subsections we will describe every module.

Figure 26. High-level architecture of our system

4.1 Downsampling

The first step is to downsample the raw point clouds 𝑃1 and 𝑃2 to a lower spatial resolution.

This is necessary because neural networks require that all inputs have the same number of

points, but also because computational time and memory requirements scales 𝑂(𝑛2) and our

resources are limited.

We considered different techniques for point cloud spatial downsample. Voxel downsampling

seemed a good approach, because it gives more informative results, but requires more

computation and is difficult to configure the output number of points, because some voxels

may be empty. We ended using a random downsampling technique, fast and easy to

configure. An example of the downsampling of the head using 2048 points is shown in Figure

27.

30

Figure 27. Example of downsample of the head. Left: raw point cloud. Right: downsampled point cloud to 2048 points

4.2 Interpolation Network

The systems we were considering to use as our interpolation network were Flownet3D and

the solution from [7]. Both systems take as input two point clouds 𝑃1 and 𝑃2 and are able to

predict the scene flow 𝐹 between them. So both systems are practically identical concerning

inputs and outputs. Both systems also use scene flow as groundtruth to train their networks.

We chose to work in Flownet3D given that it proved to work well in predicting rigid motions.

We observed the pretrained model from Flownet3D was not working well. Probably because

it was trained to predict the movement of buildings and cars, and our point clouds are quite

different in size and point density. There was a need to retrain the model. But as we already

commented in Section 3.3.3 Optical flow, the fact that we were not able to obtain the scene

flow in our dataset made us consider other options for training the network. We decided to

train the network using the dropped frame 𝑃𝑑 (the frame we want to predict) as our

groundtruth data.

In order to achieve this, we had to change the original loss function, because it was comparing

the error between the predicted flow vectors and its ground truth vectors. In our case, we

need a loss function able to compare point cloud distortion. We decided to use as loss

function the point to point error metric. In each batch step, we compare the predicted

(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) coordinates with the groundtruth (𝑥𝑔, 𝑦𝑔, 𝑧𝑔) data. For each point 𝑝𝑖 in the

predicted point cloud 𝑃𝑝𝑟𝑒𝑑 with 𝑁 number of points, we find the nearest neighbor 𝑝𝑗 in the

groundtruth point cloud 𝑃𝑔𝑡, and compute its distance. The loss then results as the mean

squared error of those distances as shown in Equation 1.

𝑙𝑜𝑠𝑠(𝑃𝑝𝑟𝑒𝑑) =
1

𝑁
∑(𝑝𝑗 − 𝑝𝑖)2

𝑁

𝑖=0

Equation 2. MSE used as loss function

We also needed to adjust some parameters of the network to fit our data. Specifically, we

changed the radius sizes for the feature extraction and flow refinement layers to be coherent

with our data scale.

31

Finally, we added a final layer in order to adjust the output to the new loss function. The

original network was giving as output the 3D vectors representing the scene flow. So we

added a last layer that consists in a direct sum between the original (𝑥1, 𝑦1, 𝑧1) coordinates

and ½ of the predicted flow vectors 𝑓(𝑥, 𝑦, 𝑧). The ½ factor is because we want to predict the

point cloud 𝑃𝑝𝑟𝑒𝑑 between 𝑃1 and 𝑃2, which is supposed to be approximately in a half way

between 𝑃1 and 𝑃2. The resulting architecture is shown in Figure 28.

Figure 28. Network architecture consisting in a small modification of Flownet3D. Image adapted from [6]

Even that the output has been modified to match the datatype needed for computing the loss

function, we are also saving the original predicted scene flow vectors. That will give us

flexibility in the future in the case we want to predict more than one frame between 𝑃1 and

𝑃2.

4.3 Upsampling

The output of the network is the scene flow vectors corresponding to the downsampled input

point clouds, so we need to upsample it to obtain the movement for each of the points in the

raw point cloud. We do this using 3D interpolation[19]. Given the raw point cloud 𝑃1 , its

downsampled version 𝑃1_𝑑𝑜𝑤𝑛 and the low resolution scene flow estimation 𝐹𝑑𝑜𝑤𝑛 , we

compute the upsampled scene flow estimation 𝐹𝑢𝑝 as described in Equation 3.

∀ 𝑝 ∈ 𝑃1, 𝑓𝑢𝑝(𝑝) = ∑ 𝑤(𝑝, 𝑝𝑖

𝑝𝑖 ∈ 𝑘𝑛𝑛(𝑝, 𝑃1_𝑑𝑜𝑤𝑛, 10)

) ∗ 𝑓𝑑𝑜𝑤𝑛(𝑝𝑖)

Equation 3. Upsampling the predicted flow

Here w is a normalized inverse-distance weight function. In other words, for each point 𝑝 ∈

 𝑃1 we take a weighted average of the scene flow vectors of all points from 𝑃1_𝑑𝑜𝑤𝑛 that are

in the 10-nearest neighborhood of 𝑝, assigning higher weights to the closer points.

32

5. Evaluation and Results

In this chapter we present the results of the performed experiments in order to prove our

hypothesis, showing visual results and objective metrics. On Section 5.1 we describe the

system used to carry out the experiments and how the dataset was splited for the different

steps of the training. Section 5.2 explains each of the experiments in detail. Finally, Section

5.3 shows the performance metrics for the different blocks of the system.

5.1 System description

All the training processes have been performed in a computer with a processor Intel i9-9900K

working at 3.6GHz, 16GB RAM and a NVIDIA RTX 2080Ti graphics card with 11GB GDDR6.

The evaluations have been performed in laptop machine due to the availability of the

resources. Its characteristics are a processor Intel i7-7700HQ working at 2.8GHz, 16GB RAM

and a NVIDIA GTX 1070 Max-Q graphics card with 8GB GDDR5.

For the training we have generated a small dataset of 1000 frame triplets. We chose 1000 due

to time limitations. Each triplet is formed by three time-consecutive point clouds. 𝑃𝑡, 𝑃𝑡+1

(the one we want to predict, so it will be used as groundtruth), and 𝑃𝑡+2. From these 1000

triplets, 800 are used for the training step, and 200 are used for the validation step.

We trained all our models 1000 epochs, as we considered this number of epochs good enough

to achieve convergence, meaning that more epochs will rarely improve our results. We use

an adaptive learning rate, starting at 0.0005 and decreasing in time. For the batch size we

selected a size of 4 point clouds. The reason for not having a bigger batch size is memory

limitations, because the loss computation requires a lot of available memory.

Another dataset of 200 frame triplets is used for the evaluation. Table 3 shows the distribution

of avatars and actions used in each stage. We selected different avatars and actions for each

stage. For a better understanding: for the train step we used 800 frame triplets selected

randomly from the full dataset. They correspond to the avatars Man 01-04 and woman 01-04

performing actions 01-20.

Stage Number of frames triplets Avatars Actions

Train 800 Man 01-04, woman 01-04 01-20

Validation 200 Man 05-06, woman 05-06 21-40

Evaluation 200 Man 11-12, woman 11-12 41-60

Table 3. Distribution of the data for each stage of the experiments

5.2 Experiments

We chose to do 5 experiments in order to prove our hypothesis and check the performance

of the system. A brief description of the experiments is shown in Table 4.

Brief description of the experiment

1
Compare model trained with only heads, with the model trained with the full body
(using same radius)

33

2
Compare model trained with only heads, with the model trained with the full body
(using different radius)

3 Check performance with model trained with the right hand

4 Check performance with model trained with the right foot

5 Check performance with model trained with the chest

Table 4. Description of the experiments

In order to read the experiments properly, in Table 5 we give a reference of the mean distance

between points in the downsampled point clouds. Note that, as expected, the bigger parts

have a bigger distance between points.

 Number of points Mean distance between points

Chest 2048 0.0118

Hands 1024 0.0069

Heads 2048 0.0078

Full body 2048 0.0196

Table 5. Number of points and mean distance between points in the downsampled point clouds

In order to deal with some frames with less points than the selected number of points, we

allow repeating points in the randomized downsample, only for those cases.

5.2.1 Experiment 1

The first experiment consists in training two models. The first model 𝑀ℎ𝑒𝑎𝑑𝑠, is trained using

only heads, the second one 𝑀𝑓𝑏, is trained using the full body. The hypothesis is that 𝑀ℎ𝑒𝑎𝑑𝑠

will give better results compared with the prediction of the head using 𝑀𝑓𝑏. First, because the

movement of individual body parts is more rigid, and second, because thanks to the

segmentation, the downsampling factor is smaller.

The experiment has been performed following the guidelines explained in Section 5.1, using

2048 points in both models as shown in Table 5. In this experiment the radius used for the

Features extraction and Feature propagation layers are the same for both models as shown

in Table 6.

 Radii 𝑀ℎ𝑒𝑎𝑑𝑠 Radii 𝑀𝑓𝑏

R1 0.01 0.01

R2 0.02 0.02

R3 0.03 0.03
R4 0.04 0.04

Table 6. Radii used in experiment 1

Figure 29 and Figure 30 show the evolution of the loss for the training and validation steps.

The model was saved on epoch 958 for 𝑀ℎ𝑒𝑎𝑑𝑠, and in epoch 740 for 𝑀𝑓𝑏, that corresponds

to the minimum loss value obtained on the validation step. We see the validation loss goes

down until 2𝑒−4 for Mheads and 6.2𝑒−4 for Mfb, so we expect Mheads to perform better.

34

Figure 29. Logarithmic plot of the evolution of the loss for the model 𝑀ℎ𝑒𝑎𝑑𝑠. The model was saved on epoch 958

Figure 30. Logarithmic plot of the evolution of the loss for the model 𝑀𝑓𝑏. The model was saved on epoch 740

The loss values obtained are coherent with the reference values presented in Table 5.

Next, we present the objective error metrics obtained with the evaluation set, corresponding

to 200 point clouds. We have computed the point to point and point to plane metrics, using

MSE and Hausdorff distance, between the ground truth point cloud and the predicted point

cloud. The results are presented in Figure 31, Figure 32, Figure 33, Figure 34, and Figure 35.

5E-05

0.0005

0.005
1

2
9

5
7

8
5

1
1

3
1

4
1

1
6

9
1

9
7

2
2

5
2

5
3

2
8

1
3

0
9

3
3

7
3

6
5

3
9

3
4

2
1

4
4

9
4

7
7

5
0

5
5

3
3

5
6

1
5

8
9

6
1

7
6

4
5

6
7

3
7

0
1

7
2

9
7

5
7

7
8

5
8

1
3

8
4

1
8

6
9

8
9

7
9

2
5

9
5

3
9

8
1

Epochs

Loss for 𝑀_ℎ𝑒𝑎𝑑𝑠
Train
Validation
Best Epoch

5E-05

0.0005

0.005

1

3
0

5
9

8
8

1
1

7

1
4

6

1
7

5

2
0

4

2
3

3

2
6

2

2
9

1

3
2

0

3
4

9

3
7

8

4
0

7

4
3

6

4
6

5

4
9

4

5
2

3

5
5

2

5
8

1

6
1

0

6
3

9

6
6

8

6
9

7

7
2

6

7
5

5

7
8

4

8
1

3

8
4

2

8
7

1

9
0

0

9
2

9

9
5

8

9
8

7

Epochs

Loss for 𝑀_fb

Train
Validation
Best Epoch

35

Figure 31. Point2Point MSE for both models in experiment 1

Figure 32. Point2Plane MSE for both models in experiment 1

Figure 33. Point2Point Hausdorff distance for both models in experiment 1

0.00001

0.0001

0.001

0.01

0.1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to point MSE
Heads predicted with M_heads

Heads predicted with M_fb

0.00001

0.0001

0.001

0.01

0.1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to plane MSE
Heads predicted with M_heads

Heads predicted with M_fb

0.001

0.01

0.1

1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to point Hausdorff Heads predicted with M_heads

Heads predicted with M_fb

36

Figure 34. Point2Plane Hausdorff distance for both models in experiment 1

Figure 35. Box plot of the error metrics (zoomed in) in Experiment 1

A median value always smaller for the model 𝑀ℎ𝑒𝑎𝑑𝑠, tells us that this model makes better

predictions in most of the cases, except for some outliers. Because of those outliers, the plots

in Figure 35 are zoomed in, otherwise the difference in the results would not be discernible.

A visual comparison in Figure 36 confirm those results, giving as clear winner the model

𝑀ℎ𝑒𝑎𝑑𝑠, and therefore, confirming our hypothesis.

In the downsampled predicted point clouds from 𝑀𝑓𝑏 we have observed that the model

seems to be learning the skeleton. This effect is shown in Figure 37. In order to identify

possible causes of this behavior, we decided to perform Experiment 2.

0.0001

0.001

0.01

0.1

1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to plane Hausdorff Heads predicted with M_heads

Heads predicted with M_fb

37

Figure 36. Visual comparison of the prediction of the heads using both models in Experiment 1. Left: using 𝑀𝑓𝑏. Middle: using

𝑀ℎ𝑒𝑎𝑑𝑠 . Right: groundtruth

38

Figure 37. The model 𝑀𝑓𝑏 seems to be learning the skeleton of the body

5.2.2 Experiment 2

The second experiment wants to check the influence of using different radii for the Features

extraction and Feature propagation layers, when training the model with full bodies. We

decided to perform this experiment because the full body point clouds have a bigger size, and

the points are more distant due to a bigger downsample. Also, because in Experiment 1 we

observed that the model 𝑀𝑓𝑏 seems to be learning the skeleton of the point cloud.

For the experiment we are going to compare the model 𝑀𝑓𝑏 in Experiment 1 with a new

model. The new model 𝑀𝑓𝑏_2 , trained with full bodies, also uses 2048 points. Its radius are

shown in Table 7.

 Radii 𝑀𝑓𝑏 Radii 𝑀𝑓𝑏_2

R1 0.01 0.1

R2 0.02 0.2

R3 0.03 0.3

R4 0.04 0.4

Table 7. Radii used in experiment 2

Figure 38 shows the loss values obtained on the training and validation steps. We observe

slightly better results in 𝑀𝑓𝑏_2 , with a minimum of the validation loss around 6𝑒−4, in

comparison with 𝑀𝑓𝑏 with a minimum of the validation loss around 6.2𝑒−4 , but it is not a big

difference.

39

Figure 38. Logarithmic plot of the evolution of the loss for the model 𝑀𝑓𝑏_2. The model was saved on epoch 779

The error metrics are presented in Figure 39, Figure 40, Figure 41, Figure 42 and Figure 43. In

this case the values obtained are not conclusive. We observe a very similar performance in

both models, being slightly better the model Mfb from experiment 1.

Figure 39. Point2Point MSE for both models in Experiment 2

Figure 40. Point2Plane MSE for both models in Experiment 2

5E-05

0.0005

0.005
1

2
9

5
7

8
5

1
1

3
1

4
1

1
6

9
1

9
7

2
2

5
2

5
3

2
8

1
3

0
9

3
3

7
3

6
5

3
9

3
4

2
1

4
4

9
4

7
7

5
0

5
5

3
3

5
6

1
5

8
9

6
1

7
6

4
5

6
7

3
7

0
1

7
2

9
7

5
7

7
8

5
8

1
3

8
4

1
8

6
9

8
9

7
9

2
5

9
5

3
9

8
1

Epochs

Loss for M_fb_2
Train

Validation

Best Epoch

0.0001

0.001

0.01

0.1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to point MSE
Heads predicted with M_fb

Heads predicted with M_fb2

0.00001

0.0001

0.001

0.01

0.1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to plane MSE
Heads predicted with M_fb
Heads predicted with M_fb2

40

Figure 41. Point2Point Hausdorff distance for both models in Experiment 2

Figure 42. Point2Plane Hausdorff distance for both models in Experiment 2

Figure 43. Boxplot of the error metrics (zoom in) in Experiment 2

Figure 44 shows the visual results of the prediction of heads using both models. Again, we

observe that the visual results are not conclusive.

Since there is no clear winner, the results allow as to conclude that the radii sizes are not the

ones causing lower performance for the full body models.

0.001

0.01

0.1

1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to point Hausdorf Heads predicted with M_fb
Heads predicted with M_fb2

0.001

0.01

0.1

1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to plane Hausdorf Heads predicted with M_fb
Heads predicted with M_fb2

41

Figure 44. Visual comparison of the prediction of the heads using both models in Experiment 2. Left: using 𝑀𝑓𝑏. Middle: using

𝑀𝑓𝑏_2. Right: groundtruth

42

5.2.3 Experiment 3

The third experiment wants to check how our system performs for predicting the movement

of the hands. We have trained a model Mhands using only hands. As hands are smaller in size,

in comparison with other body parts, we are using 1024 points for this model, to avoid

duplicating lots of points. We are going to compare the performance while predicting hands

with Mhands versus the performance of predicting hands with Mfb (from experiment 1). The

radii used for the Features extraction and Feature propagation layers are the same than the

ones used for the heads only model, as shown in Table 8. We saw in experiment 2 that they

were not causing a decrease in performance, so there is no need to change them.

 Radii Mhands Radii Mfb

R1 0.01 0.01

R2 0.02 0.02

R3 0.03 0.03
R4 0.04 0.04

Table 8. Radii used in experiment 3

Figure 45 shows the evolution of the loss values obtained on the training and validation steps.

If we compare this graph with the one obtained in Experiment 1 for Mheads, we see a big drop

in performance. While in Mheads we achieved a validation loss around 2𝑒−04, in Mhands the

validation loss stays around 5𝑒−03.

Figure 45. Logarithmic plot of the evolution of the loss for the model 𝑀ℎ𝑎𝑛𝑑𝑠. The model was saved on epoch 266

The error metrics are presented in Figure 46, Figure 47, Figure 48, Figure 49 and Figure 50.

The lines plots, as well as the boxplot, show a slightly better performance for the model

Mhands, but the results are very noisy.

5E-05

0.0005

0.005

0.05

1

3
0

5
9

8
8

1
1

7

1
4

6

1
7

5

2
0

4

2
3

3

2
6

2

2
9

1

3
2

0

3
4

9

3
7

8

4
0

7

4
3

6

4
6

5

4
9

4

5
2

3

5
5

2

5
8

1

6
1

0

6
3

9

6
6

8

6
9

7

7
2

6

7
5

5

7
8

4

8
1

3

8
4

2

8
7

1

9
0

0

9
2

9

9
5

8

9
8

7

Epochs

Right hands loss
Train
Validation
Best Epoch

43

Figure 46. Point2Point MSE for both models in Experiment 3

Figure 47. Point2Plane MSE for both models in Experiment 3

Figure 48. Point2Point Hausdorff distance for both models in Experiment 3

5E-05

0.0005

0.005

0.05

0.5

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to point MSE
Hands with predicted with M_hands
Hands predicted with M_fb

0.00001

0.0001

0.001

0.01

0.1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to plane MSE
Hands with predicted with M_hands

Hands predicted with M_fb

0.0005

0.005

0.05

0.5

5

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to point Hausdorff
Hands with predicted with M_hands

Hands predicted with M_fb

44

Figure 49. Point2Plane Hausdorff distance for both models in Experiment 3

Figure 50. Boxplot of the error metrics (zoomed in) in Experiment 3

The visual results in Figure 51 show also that the predictions differ greatly from the desired

value, being closer to the groundtruth the predictions using Mhands.

This drop in performance does not surprise us, because it proves once more our main

hypothesis: the prediction of rigid motions is easier than the deformation. While is true that

we have segmented the hand, the hand itself, unlike the rest of the body segments, has its

own joints, so it is affected by deformation.

0.0003

0.003

0.03

0.3

3

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to plane Hausdorff
Hands with predicted with M_hands

Hands predicted with M_fb

45

Figure 51. Visual comparison of the prediction of the hands using both models in Experiment 3. Left: using 𝑀𝑓𝑏. Middle:

using 𝑀ℎ𝑎𝑛𝑑𝑠. Right: groundtruth

46

5.2.4 Experiment 4

On Experiment 3 we saw the prediction of the hands was poor and we attributed it to the fact

that they have articulations and therefore, it is not a rigid movement. We want to give more

solidity to this affirmation by training a model Mfeet only with feet, and by checking the

performance of the system for the feet. In that case, as the feet are wearing boots, we

hypothesize that the system will be able to make good predictions. In the experiment we are

going to compare the performance of Mhands with the model Mfb from Experiment 1.

Again, we are going to use the same radii from Experiment 1, as shown in Table 9. We have

selected 2048 points for the downsampling.

 Radii Mfeet Radii Mfb

R1 0.01 0.01

R2 0.02 0.02

R3 0.03 0.03
R4 0.04 0.04

Table 9. Radii used in Experiment 4

The loss curve in Figure 52 already shows us a similar behavior than in Mheads. In this case the

validation loss decays until a value of 5𝑒−4, 10 times smaller than Mhands.

Figure 52. Logarithmic plot of the evolution of the loss for the model 𝑀𝑓𝑒𝑒𝑡. The model was saved on epoch 241

The error metrics are shown in Figure 53, Figure 54, Figure 55, Figure 56 and Figure 57. We

can see that the median is around half for the model Mfeet, in comparison with Mfb. So it

confirms once again our hypothesis.

5E-05

0.0005

0.005

0.05

1

3
0

5
9

8
8

1
1

7

1
4

6

1
7

5

2
0

4

2
3

3

2
6

2

2
9

1

3
2

0

3
4

9

3
7

8

4
0

7

4
3

6

4
6

5

4
9

4

5
2

3

5
5

2

5
8

1

6
1

0

6
3

9

6
6

8

6
9

7

7
2

6

7
5

5

7
8

4

8
1

3

8
4

2

8
7

1

9
0

0

9
2

9

9
5

8

9
8

7

Epochs

Feet loss

Train

Validation

Best Epoch

47

Figure 53. Point2Point MSE for both models in Experiment 4

Figure 54. Point2Plane MSE for both models in Experiment 4

Figure 55. Point2Point Hausdorff distance for both models in Experiment 4

0.00002

0.0002

0.002

0.02

0.2

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to point MSE Foot predicted with M_feet
Foot predicted with M_fb

0.000006

0.00006

0.0006

0.006

0.06

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to plane MSE
Foot predicted with M_feet

Foot predicted with M_fb

0.0001

0.001

0.01

0.1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to point Hausdorff Foot predicted with M_feet

Foot predicted with M_fb

48

Figure 56. Point2Plane Hausdorff distance for both models in Experiment 4

Figure 57. Box plot of the error metrics in Experiment 4

The visual results are shown in Figure 58. Results show a slight performance gain for 𝑀𝑓𝑒𝑒𝑡;

however, they are not conclusive. This might be due to the characteristics of the body part

itself, having a similar shape to that of the skeleton, and obtaining benefit from the effect

discussed in Section 5.2.1 Experiment 1.

0.0002

0.002

0.02

0.2
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to plane Hausdorff Foot predicted with
M_feet

49

Figure 58. Visual comparison of the prediction of the foot using both models in Experiment 4. Left: using 𝑀𝑓𝑏. Middle: using

𝑀𝑓𝑒𝑒𝑡. Right: groundtruth

50

5.2.5 Experiment 5

Experiment 5 is another attempt to solidify our hypothesis. In this case we are going to check

the performance in the biggest part of the body: the chest. We are going to train a model

Mchests only with chests, and we are going to compare its performance against predicting

chests with the Mfb model from Experiment 1.

We are going to use the same radii from Experiment 1, as shown in Table 9. We have selected

once more 2048 points for the downsampling, as this is a big part of the body.

 Radii Mchests Radii Mfb

R1 0.01 0.01

R2 0.02 0.02

R3 0.03 0.03
R4 0.04 0.04

Table 10. Radii used in Experiment 5

The loss curve in Figure 59 shows the evolution of the loss for the train and validation steps

in Mchests. We see that the validation loss goes down to 2.8𝑒−4, very close to the results on

Mheads where we obtained an error of 2𝑒−4, and lower than Mfb where we got around

6.2𝑒−4.

Figure 59. Logarithmic plot of the evolution of the loss for the model 𝑀𝑐ℎ𝑒𝑠𝑡𝑠. The model was saved on epoch 339

The error metrics are presented in Figure 60, Figure 61, Figure 62, Figure 63 and Figure 64. In

all of the lines graphs we can clearly see that Mchests is performing better. The boxplot graph

also shows that the median for Mchests is half of Mfb, giving Mchests as a clear winner.

5E-05

0.0005

0.005

1

3
0

5
9

8
8

1
1

7

1
4

6

1
7

5

2
0

4

2
3

3

2
6

2

2
9

1

3
2

0

3
4

9

3
7

8

4
0

7

4
3

6

4
6

5

4
9

4

5
2

3

5
5

2

5
8

1

6
1

0

6
3

9

6
6

8

6
9

7

7
2

6

7
5

5

7
8

4

8
1

3

8
4

2

8
7

1

9
0

0

9
2

9

9
5

8

9
8

7

Epochs

Chests loss

Train

Validation

Best Epoch

51

Figure 60. Point2Point MSE for both models in Experiment 5

Figure 61. Point2Plane MSE for both models in Experiment 5

Figure 62. Point2Point Hausdorff distance for both models in Experiment 5

0.00002

0.0002

0.002

0.02

0.2

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to point MSE
Chests with M_chests

Chests with M_fb

0.000006

0.00006

0.0006

0.006

0.06

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to plane MSE
Chests with M_chests

Chests with M_fb

0.001

0.01

0.1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to point Hausdorff Chests with M_chests

Chests with M_fb

52

Figure 63. Point2Plane Hausdorff distance for both models in Experiment 5

Figure 64. Boxplot of the error metrics in Experiment 5

The visual comparisons in Figure 65 clearly show, that the predictions using Mchests are closer

to the desired value, proving once again our main hypothesis.

0.0002

0.002

0.02

0.2
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Point to plane Hausdorff Chests with M_chests

Chests with M_fb

53

Figure 65. Visual comparison of the prediction of the chest using both models in Experiment 5. Left: using 𝑀𝑓𝑏. Middle: using

𝑀𝑐ℎ𝑒𝑠𝑡𝑠. Right: groundtruth

54

5.3 System performance

In this section we are going to analyze the performance of each block of the prediction

module, in order to see the viability of bringing the current system to work in a real-time

pipeline. If we want to create a pipeline to work real-time, at 30fps, we need that the full

process works at most 15fps (in the case we want to interpolate only half of the frames).

Figure 66 shows a block diagram of the different blocks of the interpolation system. In our

case we are reading from file, but in a real-time pipeline this block could be the one reading

the point clouds from the network.

Figure 66. Block diagram of the interpolation system

The time on the reading block depends on the number of points of the raw point cloud, as

can be seen in Table 11. So reading large point clouds could be a bottleneck.

 Head Hand Foot Chest Full body

Avg. # points (raw) 6467 960 2053 20129 60000

Time (ms) 7.3 3.3 5.4 17.6 38.4

Fps 136.99 303.03 185.19 56.82 26.04

Table 11. Performance values of the reading block

The time of the downsampling process also depends on the number of points of the raw point

cloud. Random downsample is really fast, as can be seen in Table 12, so it will not be a

bottleneck.

 Head Hand Foot Chest Full body

Avg. # points (raw) 6467 960 2053 20129 60000
Time (ms) 0.60 0.26 0.37 1.38 3.59

Fps 1669.06 3778.43 2717.02 723.03 278.26

Table 12. Performance values of the downsampling block

The time predicting/interpolating the downsampled frames seems to be correlated with the

number of points of the downsampled point cloud. As we can select this number, it will not

be a bottleneck.

 Head Hand Foot Chest Full body

points (downsampled) 2048 1024 2048 2048 2048

Time (ms) 34.3 24.4 34.6 36.3 38.2

Fps 29.15 40.98 28.90 27.55 26.18

Table 13. Performance values of the interpolation block

55

The time upsampling depends on the number of points of the raw point cloud, because for

each point in the raw point cloud, the algorithm finds its 10 nearest neighbors to compute

the upsampled flow of the point. We can see in Table 14 that this process is extremely

expensive as it is right now, implemented in a sequential form. We can affirm that this is the

current bottleneck and it is killing the system performance. This process could be easily speed

up by applying parallelism to the computation. This is possible because the computation for

each point does not depend on any other computation.

 Head Hand Foot Chest Full body

Avg. # points (raw) 6467 960 2053 20129 60000
Time (ms) 437.7 66.8 134.4 1332.8 4285

Fps 2.28 14.97 7.44 0.75 0.23

Table 14. Performance values of the upsampling block

The top part of Table 15 presents an overview of the accumulated time considering the whole

pipeline. We can see that in the current state, the system is unable to work in real time, having

a poor throughput fps. In the lower part of Table 15 we can see the accumulated time

considering the whole pipeline but the upsampling block. This allows us to see that we still

have some margin, so by solving the upsampling bottleneck, the system will be able to work

in real time to interpolate individual body parts.

 Head Hand Foot Chest Full body

Acc. Time (ms) 479.90 94.76 174.77 1388.08 4365.19

fps 2.08 10.55 5.72 0.72 0.23

Acc. time without
upsampling (ms)

42.20 27.96 40.37 55.28 80.19

fps 23.70 35.76 24.77 18.09 12.47

Table 15. Performance values of the full pipeline(top) and the pipeline without the upsampling block (bottom)

56

6. Conclusions and Future Work

In this chapter summarize the contributions of this master thesis, discuss the encountered

difficulties as well as the lessons learned in the process of carrying out this thesis. We will end

the chapter with a discussion about the remaining challenges and the future work.

6.1 Summary

The goal of this project and the main research question, was: How to perform temporal

interpolation of dynamic point clouds? In order to answer this question, we explored the state

of the art solutions in point cloud learning, scene flow and temporal interpolation of point

clouds. We considered as possible solutions Flownet3D[6] and [7].

With the focus on social VR, we reflected about how to use current solutions to perform

temporal interpolation of human bodies, in order to reduce the bandwidth needed for

transmission. We decided to reuse the architecture from Flownet3D. We realized that one of

the weakness of such approach, is that while it performs well for interpolating rigid motions,

it is not so good for predicting deformations, which is the case of dynamic human bodies.

Based on this, our hypothesis arose: If we segment the human point clouds in different body

parts, the movement of each part is closer to be a rigid motion, so by predicting each part

movement individually, the performance should increase. That through our research sub

question: How pose estimation/segmentation can be used to improve temporal interpolation

of human bodies?

In order to design some experiments to test our hypothesis, first we needed to find a suitable

dataset of dynamic human point clouds, with body part segmentation annotated. As we did

not find any dataset fulfilling our requirements, we decided to generate our own dynamic

human point cloud dataset, based on the 3DPeople[8] image dataset. That was not an easy

process due to various drawbacks presented in Section 3.3 . We solved most of those

drawbacks, resulting in one of the main contributions of this master thesis: a dataset of

dynamic human point clouds with body part annotations.

We chose to use the neural network from Flownet3D to estimate the scene flow and use it to

compute the interpolated frames. Flownet3D was designed to use the scene flow as ground

truth. Unfortunately, our dataset does not contain scene flow information, so we decided to

modify the network to use the dropped frames (the ones we want to predict) as ground truth.

We had to change also the loss function in order to work with the new ground truth data. We

also tuned some parameters of the network in order to be consistent with our data size and

points density. Even though we have not designed from scratch the network core

architecture, the fact that we were able to predict scene flow without actually having the

scene flow as ground truth, adds a novelty to the thesis.

Once we had our suitable dataset and neural network, we designed a series of experiments

to test our hypothesis. On the first experiment, we put the focus on the heads, and we clearly

see that the interpolation gives better results in the model trained to predict heads motion,

when comparing to a model trained to predict full body motions. To discard that the radii

parameters in the network are affecting the full body performance, we adjusted the radii of

57

the Features extraction and flow refinement layers, to be more consistent with our point

cloud size. We saw similar results and can conclude it is not the radii the one affecting its

performance.

The third experiment puts its focus on the hands. Using the same protocol that in the first

experiment: training one model to interpolate hands movement and the other one with the

full body. The results show a noisy interpolation in both of the cases, but still it provides

slightly better results for the model train to predict only hands. This drop in performance does

not surprise us, but it reinforces our hypothesis, because especially the hand has multiple

articulations, and therefore, the movement is not so rigid as in other body parts.

The fourth and fifth experiments want to explore the performance in other body parts (feet

and chests). The results give more solidity to our hypothesis, giving as clear winners the

models trained with single body parts (feet and chests), against the model trained to predict

the full body movement.

With the different experiments carried out in this thesis, we have been able to validate our

hypothesis. We conclude by affirming that the usage of body part segmentation can boost

the performance of temporal interpolation of point clouds, in the case of dynamic digital

humans.

6.2 Discussion

Because of the lack of datasets fulfilling our requirements, we cannot confirm that our model

is generalizable. In order to acquire body part annotations, we considered using other

segmentation techniques mentioned in Section 2.4 Segmentation and Pose estimation. The

main reason not to compare different segmentation techniques is time. It would add extra

complexity to the project. It is worth mentioning that using those techniques would add more

noise to our experiments, in the sense that we would be relying on the performance of those

systems instead of having a ground truth.

We were not able to generate the scene flow from the 2D optical flow. As we mentioned in

Section 3.3.3 Optical flow, this is a complex process due to occlusions and point

correspondences. Scene flow is something that would be easy to get from a synthetic dataset

based on meshes, where we can easily know at every moment the exact position of each

point. On the other hand, working with point clouds generated from meshes is not ideal to

train systems to work with real data. Models use to be not very realistic and the animations

can be sort of unnatural. The data acquired with real capturing systems contain more noise

and interferences, and can be affected by different lightning conditions. These divergences

between real data and synthetic data, can affect the learning. Again, because of the

availability of dynamic point cloud datasets with our desired characteristics, we decided that

the selected dataset was our best option.

Most of the work related with learning on point clouds is focused on segmentation and

classification tasks. These networks are built with some layers that perform downsampling of

point clouds in order to obtain high-level features. These high-level features are then used to

classify or segment the point cloud. Flownet3D is using this kind of layers too. It downsamples

58

the input point cloud in the features extraction layers and computes the flow for those

features. Then it performs the opposite process in the feature propagation layers to obtain

the upsampled scene flow. We think that in this process, the network is losing the information

of fine-grained patterns. This explains why the network performs well in big body parts like

the chest, and not so well in other parts like the hands, where fine grained parameters are

more important.

It could be advantageous to be able to compute the scene flow estimation on point clouds of

higher resolution than 2048 points, as this would allow the network to make a more fine-

grained estimation. Actually, our solution of performing interpolation of each part

independently, works to improve that aspect. By working with individual body parts, the

downsampling factor is much lower.

Another limitation of the neural networks for this type of data, is the fact that they require

inputs of the same size. As we commented already in the introduction, point clouds are an

unstructured type of data, so especially for dynamic point clouds, it is practically impossible

to get the same number of points between adjacent frames without applying any

adjustments. We believe that this is a key point, that requires investigation, if we want to

continue using neural networks for this type of data.

Regarding the loss function, the point to point error metric implementation worked good

enough for our purpose, but it has its limitations. The nearest neighbor search does not

consider duplicity of points, so this could be one of the reasons behind the skeleton effect

commented in the first experiment, because the network can consider it cheaper to

concentrate lots of points around a single point in order to decrease the error. The optimal

solution could be to apply a point cloud version of the Hungarian algorithm [38], but this is of

the order of 𝑂(𝑛3), hindering even more the scalability of these systems. We could also

explore other error metrics considering not only the geometry, but also the color.

We have performed our experiments using a custom dataset of 1000 triplets for training and

validating the system. Given that we had a full dataset of 248.080 point cloud frames, we

could have used a bigger size dataset. Again the reason to choose only a thousand triplets,

was time. We plan to perform new experiments with a larger size dataset to explore if that

improves our current results.

In this thesis, we focused only on analyzing the performance of different body parts

independently, but we have not checked yet the big picture. In other words, we need to

explore also the result of putting all the interpolated parts together, to see if the composition

works straight forward or if we need to apply some refinements.

In the last section 5.3 System performance, we saw that nowadays, the main limitation of our

system, if we want to bring it real time, is the upsampling process. As it is implemented right

now, it is clearly a bottleneck, but it could be easily improved by applying some parallelization

strategies. For this reason, we consider this limitation to be mostly an engineering problem

rather than a research one.

59

6.3 Future work

In the discussion above, we have already given clues about the paths we still have to travel in

our future work. In this section we summarize them.

From the dataset point of view, we have three remaining tasks: 1) Generate our own dynamic

point cloud dataset using our own capturing system. The plan is to use the new Kinect Azure

cameras, which already incorporate a skeleton detection framework. This could provide us

already enough information in order to perform body part segmentation; 2) Explore the

solutions on body part segmentation mentioned in Section 2.4 Segmentation and Pose

estimation, in order to incorporate them in our end to end pipeline; 3) Obtain a dynamic point

cloud dataset with scene flow ground truth data in order to retrain our network with the

original architecture, and compare the differences in performance with the current system.

From the point of view of the interpolation system we have identified five lines of action for

future work: 1) explore different error metrics to implement the loss function; 2) retrain our

models with a larger dataset to check if that increases the performance; 3) explore the results

of training a single model with all the different body parts, to test if that gives better results

than having a specific model for each body part; 4) explore the results of reassembling all the

interpolated parts together; 5) reimplement the upsampling module in order to achieve real-

time performance.

60

References

[1] “Facebook Horizon.” https://www.oculus.com/facebookhorizon/?locale=es_ES
(accessed Jun. 17, 2020).

[2] “vTime XR: Social AR and VR - Out Now for Oculus Go, Samsung Gear VR, Windows Mixed
Reality, Oculus Rift, iPhone, Google Daydream View, and Google Cardboard.”
https://vtime.net/ (accessed Jun. 17, 2020).

[3] “Hubs by Mozilla.” / (accessed Jun. 17, 2020).
[4] “VRTogether - Social VR like never seen before.” https://vrtogether.eu/ (accessed Mar.

16, 2020).
[5] J. Jansen et al., “A pipeline for multiparty volumetric video conferencing: transmission of

point clouds over low latency DASH,” in Proceedings of the 11th ACM Multimedia Systems
Conference, Istanbul Turkey, May 2020, pp. 341–344, doi: 10.1145/3339825.3393578.

[6] X. Liu, C. R. Qi, and L. J. Guibas, “FlowNet3D: Learning Scene Flow in 3D Point Clouds,”
arXiv:1806.01411 [cs], Jul. 2019, Accessed: Mar. 04, 2020. [Online]. Available:
http://arxiv.org/abs/1806.01411.

[7] I. Viola, J. Mulder, F. De Simone, and P. Cesar, “Temporal Interpolation of Dynamic Digital
Humans using Convolutional Neural Networks,” in 2019 IEEE International Conference on
Artificial Intelligence and Virtual Reality (AIVR), Dec. 2019, pp. 90–907, doi:
10.1109/AIVR46125.2019.00022.

[8] A. Pumarola, Dataset-3DPeople. 2020. https://github.com/albertpumarola/3DPeople-
Dataset (accessed Mar. 16, 2020).

[9] “Using Frame Interpolation.”
https://files.support.epson.com/docid/cpd5/cpd52094/source/adjustments/tasks/fram
e_interpolation.html (accessed Mar. 18, 2020).

[10] S. Niklaus, L. Mai, and F. Liu, “Video Frame Interpolation via Adaptive Separable
Convolution,” arXiv:1708.01692 [cs], Aug. 2017, Accessed: Mar. 17, 2020. [Online].
Available: http://arxiv.org/abs/1708.01692.

[11] S. Niklaus, L. Mai, and F. Liu, “Video Frame Interpolation via Adaptive Convolution,”
arXiv:1703.07514 [cs], Mar. 2017, Accessed: Mar. 17, 2020. [Online]. Available:
http://arxiv.org/abs/1703.07514.

[12] H. Men, H. Lin, V. Hosu, D. Maurer, A. Bruhn, and D. Saupe, “Technical Report on Visual
Quality Assessment for Frame Interpolation,” arXiv:1901.05362 [cs], Mar. 2019,
Accessed: Mar. 17, 2020. [Online]. Available: http://arxiv.org/abs/1901.05362.

[13] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view Convolutional Neural
Networks for 3D Shape Recognition,” in 2015 IEEE International Conference on Computer
Vision (ICCV), Santiago, Chile, Dec. 2015, pp. 945–953, doi: 10.1109/ICCV.2015.114.

[14] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural Network for real-
time object recognition,” in 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Sep. 2015, pp. 922–928, doi: 10.1109/IROS.2015.7353481.

[15] Y. Zhou and O. Tuzel, “VoxelNet: End-to-End Learning for Point Cloud Based 3D Object
Detection,” arXiv:1711.06396 [cs], Nov. 2017, Accessed: Feb. 07, 2020. [Online].
Available: http://arxiv.org/abs/1711.06396.

[16] R. Klokov and V. Lempitsky, “Escape from Cells: Deep Kd-Networks for the Recognition
of 3D Point Cloud Models,” arXiv:1704.01222 [cs], Oct. 2017, Accessed: Mar. 17, 2020.
[Online]. Available: http://arxiv.org/abs/1704.01222.

61

[17] “ALS Point Cloud Classification with Convolutional Neural Networks | Institute for
Photogrammetry | University of Stuttgart.” https://www.ifp.uni-
stuttgart.de/en/research/remote_sensing/als_point_cloud_classification/ (accessed
Mar. 18, 2020).

[18] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation - Slides,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, Jul. 2017, pp. 77–85, doi:
10.1109/CVPR.2017.16.

[19] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: deep hierarchical feature learning
on point sets in a metric space,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, Long Beach, California, USA, Dec. 2017, pp. 5105–
5114, Accessed: Feb. 06, 2020. [Online].

[20] S. Biasotti, A. Cerri, A. Bronstein, and M. Bronstein, “Recent Trends, Applications, and
Perspectives in 3D Shape Similarity Assessment,” Computer Graphics Forum, vol. 35, no.
6, pp. 87–119, 2016, doi: 10.1111/cgf.12734.

[21] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN: Convolution On X-
Transformed Points,” in Advances in Neural Information Processing Systems 31, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran
Associates, Inc., 2018, pp. 820–830.

[22] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic
Graph CNN for Learning on Point Clouds,” arXiv:1801.07829 [cs], Jun. 2019, Accessed:
Mar. 30, 2020. [Online]. Available: http://arxiv.org/abs/1801.07829.

[23] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis, “Coarse-to-Fine Volumetric
Prediction for Single-Image 3D Human Pose,” arXiv:1611.07828 [cs], Jul. 2017, Accessed:
Jun. 06, 2020. [Online]. Available: http://arxiv.org/abs/1611.07828.

[24] X. Sun, B. Xiao, F. Wei, S. Liang, and Y. Wei, “Integral Human Pose Regression,”
arXiv:1711.08229 [cs], Sep. 2018, Accessed: Jun. 06, 2020. [Online]. Available:
http://arxiv.org/abs/1711.08229.

[25] M. J. Marin-Jimenez, F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer,
“3D human pose estimation from depth maps using a deep combination of poses,”
arXiv:1807.05389 [cs], Jul. 2018, Accessed: Feb. 11, 2020. [Online]. Available:
http://arxiv.org/abs/1807.05389.

[26] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional Pose Machines,”
arXiv:1602.00134 [cs], Apr. 2016, Accessed: Jun. 06, 2020. [Online]. Available:
http://arxiv.org/abs/1602.00134.

[27] “[1611.08050] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields.”
https://arxiv.org/abs/1611.08050 (accessed Jun. 06, 2020).

[28] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet effective baseline for
3d human pose estimation,” arXiv:1705.03098 [cs], Aug. 2017, Accessed: Jun. 06, 2020.
[Online]. Available: http://arxiv.org/abs/1705.03098.

[29] Z. Zhang, L. Hu, X. Deng, and S. Xia, “Weakly Supervised Adversarial Learning for 3D
Human Pose Estimation from Point Clouds,” IEEE Trans. Visual. Comput. Graphics, pp. 1–
1, 2020, doi: 10.1109/TVCG.2020.2973076.

[30] C. Kendrick, K. Tan, T. Williams, and M. H. Yap, “An Online Tool for the Annotation of
3D Models,” in 2017 12th IEEE International Conference on Automatic Face Gesture
Recognition (FG 2017), May 2017, pp. 362–369, doi: 10.1109/FG.2017.52.

62

[31] “JPEG Pleno Database: Microsoft Voxelized Upper Bodies - A Voxelized Point Cloud
Dataset.” http://plenodb.jpeg.org.website-eu-central-1.linodeobjects.com/pc/microsoft
(accessed Jun. 05, 2020).

[32] “JPEG Pleno Database: 8i Voxelized Full Bodies (8iVFB v2) - A Dynamic Voxelized Point
Cloud Dataset.” http://plenodb.jpeg.org/pc/8ilabs/ (accessed Jun. 05, 2020).

[33] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real-Time Human Pose Tracking
from Range Data,” in Computer Vision – ECCV 2012, vol. 7577, A. Fitzgibbon, S. Lazebnik,
P. Perona, Y. Sato, and C. Schmid, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 738–751.

[34] A. Haque, B. Peng, Z. Luo, A. Alahi, S. Yeung, and L. Fei-Fei, “Towards Viewpoint
Invariant 3D Human Pose Estimation,” arXiv:1603.07076 [cs], Jul. 2016, Accessed: Feb. 27,
2020. [Online]. Available: http://arxiv.org/abs/1603.07076.

[35] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, “Berkeley MHAD: A
comprehensive Multimodal Human Action Database,” in 2013 IEEE Workshop on
Applications of Computer Vision (WACV), Jan. 2013, pp. 53–60, doi:
10.1109/WACV.2013.6474999.

[36] G. Varol et al., “Learning from Synthetic Humans,” 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4627–4635, Jul. 2017, doi:
10.1109/CVPR.2017.492.

[37] A. Shafaei and J. J. Little, “Real-Time Human Motion Capture with Multiple Depth
Cameras,” in 2016 13th Conference on Computer and Robot Vision (CRV), Victoria, BC,
Canada, Jun. 2016, pp. 24–31, doi: 10.1109/CRV.2016.25.

[38] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research
Logistics, vol. 2, no. 1–2, pp. 83–97, Mar. 1955, doi: 10.1002/nav.3800020109.

