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Abstract

This work presents a solution by means of light Convolutional Neural Net-
works (CNNs) in the Document Classification task, essential problem in the
digitalization process of institutions. We show in the RVL-CDIP dataset that
we can achieve state-of-the-art results with a set of lighter models such as the Ef-
ficientNets and present its transfer learning capabilities on a smaller in-domain
dataset such as Tobacco3482. Moreover, we present an ensemble pipeline which
is able to boost solely image input by combining image model predictions with
the ones generated by BERT model on extracted text by OCR. We also show
that the batch size can be effectively increased without hindering its accuracy
so that the training process can be sped up by parallelizing throughout multiple
GPUs, decreasing the computational time needed.
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1 Introduction

This thesis emerges from a real problem that appears in the document digitization
process, which has become a common practice in a wide variety of industries that
deal with vast amounts of archives. This is the case of the financial institution Caix-
aBank, collaborator of the Barcelona Supercomputing Center - Centro Nacional de
Supercomputación1. The proposed issue can be categorized as a document classi-
fication problem, which is a task to face when trying to automate their document
processes. Although initially the target of this work was to give a solution to the
aforementioned institute, we present the results using publicly available data. In Fig-
ure 1 we show one document for each of the classes from the used dataset. From left to
right: Letter, Form, Email, Handwritten, Advertisement, Scientific report, Scientific
publication, Specification, File folder, News article, Budget, Invoice, Presentation,
Questionnaire, Resume and Memory.

Figure 1: One document example of each of the classes in BigTobacco

The goal is to automatically classify these kinds of documents as accurately as
possible. The main problem is the high intra-class and low inter-class variability
between documents, which makes this a challenging problem.

Based on the topic literature, first attempts focused on structural similarity be-
tween documents [56] and on feature extraction [36, 16, 42] to differentiate charac-
teristics of each class. The combination of both approaches has also been tested
[18].

Several classic machine learning techniques have been applied to this problem, i.
e. K-Nearest Neighbor approach [9], Hidden Markov Model [24] and Random Forest
Classifier [41, 36] while using SURF local descriptors before the Convolutional Neural
Networks (CNNs) came into scene.

With the rise of Deep Learning, researchers have tried deep neural networks to
improve the accuracy of their classifiers. CNNs have been proposed in past works,
initially in 2014 by Le Kang et al. [38] who started with a simple 4-layer CNN trained
from scratch. Then, transfer learning was demonstrated to work effectively [29, 1] by

1https://www.bsc.es
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using a pretrained network on ImageNet [22], and later models have become increas-
ingly heavier [1, 63, 21, 2] with the speed and computational resources drawback this
entails.

Table 1: Parameters of the CNNs architectures used in BigTobacco.

Model #Params

AlexNet 60.97M
VGG-16 138.36M
ResNet-50 25.56M
Inception-V3 23.83M
EfficientNet-B2 9.2M
EfficientNet-B0 5.3M

Recently, textual information has been used by itself or as a combination to-
gether with visual features extracted by the previously mentioned models. Although
Optical Character Recognition (OCR) is prone to errors, particularly when dealing
with handwritten documents, the use of modern Natural Language Processing (NLP)
techniques have demonstrated a boost in the classifiers performance [50, 7, 6].

The contributions of this work can be summarized in two main topics:

• Algorithmic performance: we propose a model and a training procedure to deal
with images and text that outperforms the state-of-the-art in several settings
and is lighter than any previous neural network used to classify the BigTobacco
dataset, the most popular benchmark for Document Image Classification (Table
1).

• Training process speed up: we demonstrate the ability of these models to main-
tain their performance while saving a large amount of time by parallelizing
over several GPUs. We also show the performance differences between the two
PyTorch implementations to solve this task.

1.1 Document Image Classification

Document Image Classification task tries to predict the class which a document be-
longs to by means of analyzing its image representation. This challenge can be tackled
in two ways, as an image classification problem and as a text classification problem.
The former tries to look for patterns in the pixels of the image to find elements such
as shapes or textures that can be associated with a certain class. The latter tries
to understand the language written in the document and relate this to the different
classes.

10



1.1.1 Datasets

As mentioned earlier, in this work we make use of two publicly available datasets
containing samples of images from scanned documents from USA Tobacco compa-
nies, published by Legacy Tobacco Industry Documents created by the University of
California San Francisco (UCSF). We find these datasets a good representation of
what enterprises and institutions may face with, based on the quality and type of
classes. Furthermore, they have been go-to datasets in this research field since 2014
with which we can compare results.

RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) is
a 400.000 document sample (BigTobacco from now onwards) presented in [29] for
document classification tasks. This dataset contains the first page of each of the doc-
uments, which are labeled in 16 different classes with an equal number of elements per
class. A smaller sample containing 3482 images was proposed in [36] as Tobacco3482
(SmallTobacco henceforth). This dataset is formed by documents belonging to 10
classes not uniformly distributed.

0

200

400

600

ADVE Email Form Letter Memo News Note Report Resume Scientific

Figure 2: SmallTobacco classes distribution

In order to work with appropriate data formats to both feed correctly into the
classification system and be able to store it in our cluster’s memory, we need to
transform the datasets. In this case, we build HDF5 files for the datasets to work
with PyTorch and TFRecords in the TensorFlow case. Both HDF5 and TFRecord
formats serialize the dataset into a single file, which makes it much easier to deal
with.

To deal with text data in the SmallTobacco case, we extract the characters from
the document images by applying OCR Tesseract [58] to them.

We provide scripts to run OCR, save the datasets in HDF5 and TFRecords formats
in the accompanying repository https://javiferran.github.io/document-classification/.

1.1.2 Technologies

In this work a bunch of frameworks have been used. The Deep Learning library used
to develop all the different experiments have been PyTorch2, although we also pro-

2https://pytorch.org/
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vide some of the code for its usage in TensorFlow3. PyTorch, developed by Facebook,
and TensorFlow, by Google, are the two main Deep Learning frameworks nowadays.
PyTorch is the favorite for researchers while TensorFlow is more widely used in pro-
duction by companies. We selected PyTorch because its compatibility with some of
the NLP frameworks like FLAIR4 (from Zalando research) and Transformers5 (from
HuggingFace), although the latter has been adapted to TensorFlow while the develop-
ment of this work. Since PyTorch is more used in research and this project deals with
some state-of-the-art results, the fact that some of the code of the lately results are
just available in PyTorch, especially in the NLP field, has made us choose this option.
As mentioned earlier, the main two NLP libraries used in this project are FLAIR
and Transformers. The first includes a large number of NLP models, from which one
can obtain word embeddings or even NLP task ready output in a user-friendly man-
ner. The second focuses on Transformer architecture, providing pre-trained models
in different domains and languages.

3https://www.tensorflow.org/
4https://github.com/flairNLP/flair
5https://huggingface.co/transformers/
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2 Theoretical Framework

2.1 Deep Learning

The proposed methods in this work are based on supervised Deep Learning, where
each document is associated with a class (label) so that the algorithms are trained
by minimizing the error between the predictions and the truth. Deep Learning is a
branch of machine learning that deals with deep neural networks, where each of the
layers is trained to extract higher-level representations of the previous ones. These
models are trained by solving iteratively an unconstrained optimization problem. In
each iteration, a random batch of the training data is fed into the model to compute
the loss function value. Then, the gradient of the loss function with respect to the
weights of the network is computed (backpropagation) and an update of the weights
in the negative direction of the gradient is done. These networks are trained until
they converge into a loss function minimum.

2.2 Deep Feedforward Networks

Deep feedforward networks, also known as multilayer perceptrons (MLPs) try to ap-
proximate a function y = f ∗(x, θ) by adjusting the θ parameters that better fits to the
’label’ data y. Usually, this function describing the network is composed by multiple
functions, each one representing one layer. At the same time, each layer is formed
by several neurons, which fire following an activation function output. Every of these
networks has an input layer, an output layer and can have one or several hidden lay-
ers. The number of layers is called the depth of the network, usually the term ’deep’
network are used to those with more than one hidden layer.

These networks are named feedforward because information flows in a one-way
direction, with no recursive steps such as in Recurrent Neural Networks.

Figure 3: Fully-connected feedforward network
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In the above figure it is depicted a fully-connected feedforward network, where
each neuron is connected to every neuron of the previous layer. The mathematical
expression of the computation done in a neuron j of the layer l is:

njl =

Dim(l−1)∑
i=0

wlijo
l−1
i

Where ol−1 is the previous layer output and wij represents the weight associated
with the neuron j and the previous layer output oi. The activation function applies
a non-linear transformation to njl, which could be a differentiable function mapping
values to [0,1] range such as the sigmoid function, giving oli = g(njl). A bias term b
can be added to the calculation.

One way to represent the previous calculations for a complete layer transformation
is by means of a weight matrix W , where each row stores the weights of one neuron,
so the output of a hidden layer (l) can be computed by ol = g(ol−1W l + b).

2.3 Convolutional Neural Networks

The most used architecture in Computer Vision have been CNN-based networks.
Their main operation is the convolution one, which consists on a succession of dot
products between the vector representations of both the input space6 (Lq ×Bq × dq)
and the filters (Fq ×Fq × dq), which are learnable parameters. We slide (or convolve)
each filter around the input volume getting an activation map of dimension Lq+1 =
(Lq −Fq + 1) and Bq+1 = (Bq −Fq + 1). The output volume then has a dimension of
Lq+1 ×Bq+1 × dq+1, where dq+1 refers to the number of filters used.

Figure 4: Applying two 3× 3× 3 filters over a 6× 6× 3 input space. Source [35]

Usually, each convolution layer is associated with an activation layer, where an ac-
tivation function is applied elementwise to the whole output volume, without changing

6Same notation as in [3]
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its dimension. To reduce the number of parameters of the network and its computa-
tional costs, a pooling layer is typically located between convolution operations. The
pooling layer takes a region Pq × Pq in each of the dq activation maps and performs
an arithmetic operation as shown in Figure 5. The most used pooling layer is the
max-pool, which returns the maximum value of the aforementioned region.

Figure 5: Max-pooling operation. Source [19]

Some important hyperparameters to take into account when building CNNs are
the stride, the zero-padding, the number of filters and their size Fq. The stride defines
the number of elements in the input matrix that are jumped in each slide. The higher
the stride the smaller the output volume. Zero-padding expands the input volume by
including zero elements around it as shown in Figure 6.

Figure 6: Zero-Padding over a a 2D input. Source [3]

2.4 Recurrent Neural Networks

Recurrent Neural Networks are a type of network which are especially good at dealing
with sequences. This has helped to improve the performance in tasks like speech
recognition, machine translation, time series forecasting, etc. A simple layer of a
RNN has a weight matrix A which takes an input vector xt and outputs ht, often
named as hidden state. In this case, the hidden state enters again by multiplying A.

15



So the output ht+1 depends on both the input xt+1 and the previous hidden state ht.
In the next figure we can see the folded (left) and the unfolded (right) representation
of a RNN.

Figure 7: RNN. Source [51]

The problem of vanilla RNNs are the difficulties it has to deal with long-term
dependencies. So, for a long sequence such as a long sentence, the hidden state at the
last step time step will carry little information about the beggining of the sentence,
which in some cases can hurt the performance of the model. To solve this issue, a
new variant named the Long Short Term Memory (LSTM) network was proposed by
Hochreiter, S. and Schmidhuber, J in [33] and has been highly adopted in NLP.

2.4.1 LSTM Networks

LSTM networks are a type of RNN that are constructed to deal better with long-term
dependencies by providing a more complex architecture that allows information from
previous time steps flows through the network without losses. In the Figure 8 it is
shown the elements of a LSTM cell.

Figure 8: LSTM Network. Source [51]

Each LSTM cell is composed of four layers, the yellow squares represent the weights
matrices with an activation function, which are sigmoid σ and tanh functions, and
the pink circles represent pointwise operations. Starting from the left, the forget gate
(1) rules how much information comes into the cell, ft values close to 0 means that
no information comes from the previous cell output ht−1 and values close to 1 means
that almost all of the information is let pass.

Next, through the input gate (2) we get the information ht−1 and xt, which are
concatenated. This it values are compared with the candidates C̃t (3), which are
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calculated through the tanh layer, to choose which values are added to the new cell
state Ct. Then the cell state Ct (4) is updated by multiplying the previous cell
state by ft and adding it ∗ C̃t. Finally, the hidden state ht (6) is obtained from the
multiplication of the tanh transformation of Ct and the output of the sigmoid gate ot
(5). Here is the mathematical formulation of the LSTM:

ft = σ(Wf · [ht−1, xt] + bf ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ(Wo[ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

Figure 9: Steps of a LSTM. Source [51]

As we will see in Section 2.6 LSTMs have been used to get word representations
based on the context, which has helped the improvement in Natural Language Pro-
cessing tasks.

2.5 Computer Vision

The field where machines try to get an understanding of visual data is known as
Computer Vision (CV). One of the most well-known tasks in CV is image classifica-
tion. In 2010 The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was
introduced, a competition that dealt with a 1.2 million images dataset belonging to
1000 classes. In 2012 appeared the first CNN-based model that significantly reduced
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the error rate (AlexNet [40]), setting the beginning of the explosion of deep neural
networks. From then onwards, deeper networks have become the norm.

2.5.1 CNNs for Image Classification

To illustrate how convolution layers are stacked to form an image classification system
we show the VGG-16 architecture (Figure 10), which is a relatively simple neural
network that won the first place in the ImageNet Challenge 2014. It is made of a
succession of convolution layers with ReLU activation and max-pooling operations
on top of three fully-connected layers and a final softmax layer. The key point when
introducing this model was the use of filters with a relatively small receptive field
(3 × 3). Instead, they played with the depth of the architecture, increasing it up to
19 layers. With this, they demonstrated that increasing the depth of the model is
beneficial for the classification accuracy.

Figure 10: VGG-16 architecture. Source [30]

The use of deeper neural networks led to training difficulties such as the degrada-
tion problem, where accuracy gets saturated and then degrades quickly when adding
more layers to the network. To help mitigate this issue in 2015 were introduced the
ResNet family [31], which was considered a big leap forward. ResNet family of models
make use of shortcut connection (Figure 11) as a solution to the training difficulties
imposed by deep networks.

18



Figure 11: Residual connection. Source [31]

The residual learning framework performs an addition between an identity map-
ping and the output of more than one layer. The authors hypothesize that it is easier
to optimize the residual mapping F(x) + x.

Further improvements have been done throughout the past years. These improve-
ments have been focused on both increasing the accuracy of the image classifiers and
trying to keep a good performance while reducing the size of the models. One example
of an architecture developed with this latter direction in mind has been the family of
MobileNets [54], which can be considered the base of the network we use in this work.
Their main objective is the reduction of the network’s number of parameters. One
of the improvements in the second version of this architecture (MobileNet-V2) is the
substitution of the classical 2D convolution by a depthwise and a pointwise operation
allowing a lighter and faster model.

2.5.2 Transfer Learning in Computer Vision

Transfer learning can be defined as the improvement of learning in a new task through
the transfer of knowledge from a related task that has already been learned. In
Computer Vision, ImageNet database has served not only as a way of measuring
model’s performance but also as a manner of giving models fundamental knowledge
about image recognition that has helped improve the results in other datasets.
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Figure 12: ImageNet sample. Source [22]

Pretrained convolutional neural network models can be easily downloaded. When
dealing with additional data from the same application the level of transfer learning
can be set. One can fine-tune a subset of the layers in the pretrained neural network
with this additional data. If the amount of application-specific data available is low,
the parameters of the early layers can be frozen to their pretrained values and the
fine-tune can be applied only to the last layers of the model. These first layers usually
contain primitive features, which are common to similar applications. For example,
in a convolutional neural network, the first layers learn features like curves or edges,
which can be useful for detecting any kind of object. However, the later layers contain
more complex features which are more specific to the dataset properties. If the data
available in the application-specific task is large it can be useful to fine-tune a large
number of layers. So, deep neural networks are flexible in terms of how much transfer
learning is applied from one task to another.

20



2.6 Natural Language Processing

The features learned from the OCR output are achieved by means of Natural Lan-
guage Processing techniques. NLP is the field that deals with the understanding of
human language by computers, which captures underlying meanings and relationships
between words.

The way machines deal with words is by means of a real value vector represen-
tation. Word2Vec [48] showed that a vector could represent semantic and syntactic
relationships between words. CoVe [45] introduced the concept of context-based em-
beddings, where the same word can have a different vector representation depending
on the surrounding text. ELMo [52] followed CoVe but with a different training ap-
proach, by predicting the next word in a text sequence (Language Modeling), which
made it possible to train on a large available text corpus. Depending on the task
(such as text classification, named entity recognition...) the output of the model can
be treated in different ways. Moreover, custom layers can be added to the features
extracted by these NLP models. For instance, ULM-Fit [34] introduced a language
model and a fine-tuning strategy to effectively adapt the model to various downstream
tasks, which pushed transfer learning in the NLP field. Lately, the Transformer ar-
chitecture [64] has dominated the scene, being the bidirectional Transformer encoder
(BERT) [23] the one who established recently state-of-the-art results over several
downstream tasks.

2.6.1 Word Embeddings

2.6.1.1 Neural Model

Given a text sequence of n words wt−n+1, · · · , wt−1 which can be expressed as wt−1t−n+1

where w ∈ vocabulary V , a language model tries to learn a function f(wt, · · · , wt−n+1)
that maximizes the probability of the word wt given the sequence wt−1t−n+1, P̂ (wt|wt−1t−n+1),
with the constraint that∑|V |

i=1 f(i, wt−1, · · · , wt−n+1) = 1 for any wt−1t−n+1. The model can be divided in two
parts: a mapping for every element i in the vocabulary V to a real vector C(i) ∈ Rm

and a function g that outputs the conditional probability over words in V given the
concatenation of real-valued vectors C(wt−n+1), · · · , C(wt−1). The whole model can
be described as:

f(i, wt−1, · · · , wt−n+1) = g(i, C(wt−1), · · · , C(wt−n+1)))

The function g can be implemented by any parametrized function, such a feed-
forward neural network (feedforward NNLM). The mapping C is represented as a
matrix m × | V | of weights where each column corresponds to the feature vector of
a word in the vocabulary. The parameters of the C matrix are shared across every
input word.
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Figure 13: Feedforward Neural Network Language Model

2.6.1.2 Continuous Bag-of-Words (CBOW)

CBOW introduces a new method where past and future words are used. For window
size m, the set C of context words of wt is made of wt−m, · · · , wt+m, excluding wt.
The words in the context are used to correctly classify the current (middle) word
wt. CBOW is similar to the feedforward NNLM but it gets rid of the non-linear
hidden layer. Moreover, the projection layer C is now calculated as an average of
the embedded word vectors of the context C̄ = C(wt−m), · · · , C(wt+m), so the order
of appearance in the sequence is not taken into account, that is why it received the
name of bag of words. In this case, parameter matrices C and U are the ones to be
learned during the training process.
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Figure 14: Continuous Bag-of-Words (CBOW) model

2.6.1.3 Continuous Skip-Gram Model

The skip-gram model tries to predict each context word separately, given the center
word. The one-hot encoding of the center word is used as input and the one-hot
encodings of the context words are used as correct labels. So, given a text sequence
and a window size, the skip-gram model is trained by taking all possible center word
wt and ’context’ words pairs inside that window-size.

A softmax activation function is applied to the output layer to give a probability
distribution. Each of the output layer neurons gives the probability of each of the
words in the vocabulary to be the one in the same context as the input word. So, a
total number of | V | neurons are used in the output layer.
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Figure 15: Continuous Skip-Gram model

A common loss function used to measure the similarity between two probability
distributions, the predicted probabilities ŷ and the ground truth y is the cross-entropy
function, that in the discrete setting looks like H(ŷ, y) = −

∑
v∈V p(y) log p(ŷ). In our

case the probability y is zero for every word in V except for the center word wt.

Lθ = −
|V |∑
i=1

P (yi) logP (ŷi)

= − logP (ŷt)

= − logP (wt|C)
= − logP (ut|C̄))

= − log
exp(utC̄)∑|V |
j=1 exp(u

T
j C̄)

= −uTc C̄ + log

|V |∑
j=1

exp(uTj C̄)

The weights of the hidden layer represent the embedding for each of the words in the
vocabulary. Once trained, C matrix can be used as a look up table for other NLP
tasks.
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2.6.2 Sequence to sequence learning

Ilya Sutskever et. al [60] proposed a model that learned to map sequences to sequences
by means of RNNs. This paper started a new way of training models by making use
of the translation task. Machine translation is a subfield of NLP where models try to
translate from a source language to a target language. Initially, statistical machine
translation models where used, but lately it has been neural machine translation
(NMT) the predominant type of architectures. A neural machine translation system is
a neural network that directly models the conditional probability p(y|x) of translating
a source sentence, x1, ..., xn, to a target sequence, y1, ..., ym. NMT basic models
are made of an encoder and a decoder. The encoder calculates a representation of
the input sequence (s) and the decoder generates a sequence based on the encoder
representations and the previous target words. Typically, the encoder and decoder
are RNNs.

The decoder defines the probability over the target sentence y as:

p(y) =
m∏
j=1

p(yj|y<j, s)

The conditional probability of each target word can be calculated from a RNN
decoder as:

p(yt|y<t, s) = softmax(g(hj))

where g is a transformation function that outputs a vector of the size of the target
language vocabulary, and hj is the jth hidden state of the decoder RNN, which is
calculated by taking as input hj−1 and the encoder representation s, hj = f(hj−1, s).
Bahdanau et al. [8] proposed a model where the encoder representation is checked in
every time step but other implementations have used it only to initialize the decoder
RNN. The training objective for these models is:

J =
∑
x,y∈D

− log p(y|x))

being D the parallel corpus.
Some lately models have used the attention mechanism between the encoder and

decoder. These models compute a context vector for every time step ct based on the
hidden states of the encoder, which is concatenated with the decoder hidden state ht
to give the attentional vector h̃t, calculated as:

h̃t = tanh(Wc[ct;ht])

The context vector ct is calculated as a weighted average of the hidden states of
the encoder ct =

∑n
s=1 αths This weights αt(s) are computed by comparing the target

hidden state ht and the source hidden state hs
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αt(s) = align(ht, hs)

=
exp(score(ht, hs))∑
s exp(score(ht, hs))

where the score function can be for instance the dot product between ht and hs.
Finally the attentional vector h̃t is passed through a linear transformation g to-

gether with softmax layer

Figure 16: Attention mechanism from [44].

2.6.2.1 CoVe

Machine translation was used by McCan et al. to give context information to word
vector representations [45]. These word embeddings are learned by means of a two-
layer bidirectional LSTM, which the authors called MT-LSTM. MT-LSTM is used
as the encoder that will later be used to transfer the knowledge learned into other
downstream tasks.

Firstly, GloVe vectors of the source language words wx = [wx1 , ..., w
x
n] are used as

input to MT-LSTM, which computes a sequence of hidden states, one for each input
word

h = MT-LSTM(GloVe(wx))

These hidden states are the new learned words vectors CoVe(wx).

To be more precise, the MT-LSTM produces ht = [
−→
h t;
←−
h t],
−→
h t = LSTM(xt,

−→
h t−1)

and
←−
h t = LSTM(xt,

←−
h t−1). xt represents the GloVe(wx) vector.

During the training phase, an attentional decoder is placed on top of the en-
coder producing a conditional distribution over the target language words p(wzt |
H,wz1, ..., w

z
t−1], where H represents the a stack of hidden states for each input word.

This decoder is made by a two-layer uni-directional LSTM which gives a hidden state
hdect for each time step calculated as

26



hdect = LSTM([zt−1, h̃t−1], h
dec
t−1)

Finally, the decoder computes a vector of weights α = softmax(H(W1h
dec
t ) + b1),

which are used in an attentional sum concatenated with the decoder state and passed
through a tanh activation function giving the context-adjusted hidden state h̃

h̃t = tanh(H(W2H
>αt) + b2;h

dec
t )

The distribution over the target language words p(wzt | H,wz1, ..., wxt−1] is then

generated by applying a softmax function to the transformation Wouth̃t + bout.

Figure 17: CoVe architecture. Source [66]

2.6.3 Language Models

Language modeling is a task where models try to predict the next word in a sequence.
This task allows training models without the need of having labels, since the next
word in the context acts as a label.

2.6.3.1 ELMo

Embeddings from Language Model (ELMo) [52] continued the concept of context-
based embeddings where the same word can have different vector representations
depending on the surrounding text. ELMo model is trained by predicting a word in a
text sequence, which makes it possible to be trained on large available text corpus in a
self-supervised way. In this case, it uses words before and after the target word. Word
representations are obtained by means of a linear combination of the internal states
of the network. It has a parameter that changes the result of this linear combination
depending on the task it performs (text classification, named entity recognition...).
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ELMo uses a two-layer bidirectonal LSTM (bi-LM), each bi-LSTM layer j ouputs

hidden states hLMk,j = [
−→
h LM
k,j ;
←−
h LM
k,j ] for the kth token, being j = 0 the token embedding

layer and j = L the top layer. ELMo kth token vector representation for a specific
task is computed as follows:

ELMotaskk = γtask
L∑
j=0

staskj hLMk,j

where staskj is a normalized-softmax weight vector and γtask allows scaling the
ELMo vector.

2.6.3.2 ULM-Fit

ULM-Fit (Universal Language Model Fine-tuning) [34] a fine-tuning procedure to
achieve transfer learning in NLP task. Specifically, Howard et al. propose discrimina-
tive fine-tuning, slanted triangular learning rates, and gradual unfreezing techniques.
In their experiments the use the AWD-LSTM model [47], a regular LSTM which to-
gether with the proposed pre-training methods is sufficient to beat the previous state-
of-the-art in several text classification datasets. We use slanted triangular learning
rates in the training process of the image model, which we talk about in Section 3.3.2,
and discriminative fine-tuning when training the text model in Section 3.3.4.

2.6.4 Transformer-based models

The Transformer architecture was introduced in [64]. It is based on a stack of encoders
and another stack of decoders, as in a seq2seq model. However, each encoder layer is
made up of a self-attention layer and a feed-forward network and each decoder layer
has this same two blocks but a masked attention layer at the bottom as well.
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Figure 18: The Transformer architecture. Source [64]

The Transformer model is trained in the machine translation task, where inputs
are sequences of words of the source language and the outputs are the translation into
a target language.

The encoder receives as input either a word embedding plus a positional embed-
ding, in the case of the first layer (gives information about the order of the tokens
in the sequence), or the output of the previous encoder. In every case, this input is
passed firstly through a self-attention layer, which does the following operation:

Attention(Q,K, V ) = softmax
QKT

dk
V

Each matrix Query (Q), a Key (K), and a Value (V) are created by multiplying
the embedding matrix (stack of token embeddings) or previous encoder output matrix
(stack of previous encoder output vectors) by three matrices that are trained during
the training process, WQ,WK and W V . These Q, K and V can be seen as matrices
were each row represent the q, k and v vector of each token.
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Figure 19: Multi-head attention layer. Source [64]

For better understanding we can simplify this by calculating the attention of the
i-th token Attentioni by using its vector qi. The self-attention calculation in this case
is:

Attentioni(qi, K, V ) = softmax
qiK

T

dk
V

A score between the input token of the sequence and every other is calculated.
This score represents how much focus to put on other parts of the sequence when
encoding a specific token (i in this case). So, a dot product is calculated between
the qi vector and the Key vector of every other object in the sequence (the intuition
is that this is a similarity operation, we try to find the key similar to the queries
and a high value to them), which is equivalent to multiplying qi by the matrix KT ,
giving as many scores as elements in the sequence. Then this output of scalars are
divided by the square root of the dimension of the key vectors dk (for getting more
stable gradients) and finally it is passed through a softmax operation. Once we have a
normalized score for every pair of tokens, we multiply this score by the value vector of
each of the tokens (each row in matrix V ) and finally sum up those vectors, generating
one single vector zi. So for each query we get one vector zi.

Turning back to the matrix notation, the previous process can be done for the
entire input sequence by using matrix Q (each row is a token q vector). So, the
benefit of these matrices operations is that they can be parallelized. In this case we
end up with a matrix Z with each row representing the self-attention vector result of
each token.
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Figure 20: The Transformer encoder. Source [5]

This process is done in each of the self-attention heads, in the original transformer
the model has 8 heads. So, in total 8 matrices are output. Each head has its own
WQ,WK and W V weight matrices which are randomly initialized, so the result leads
to different representation subspaces in each of the self-attention heads.

The output matrix Z of every self-attention head are concatenated into a single
matrix to which a linear transformation is applied,
MultiHead = Concat(Zheadi , · · · , Zheadh)WO as show in Figure 19. This linear pro-
jection is added to the initial embeddings entering the encoder and then a LayerNorm
operation is performed.

On top of each encoder and decoder layer the transformer has a feed-forward
network (FFN) which consists of two linear transformations with a ReLu activation
function after the first transformation.

The decoder takes as input a double copy of the encoder output as K, V matrices.
The first self-attention layer, also composed of 8 heads gets K, V and Q inputs from
the output sequence but only from previously seen positions, the posterior ones are
masked.
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Figure 21: The Transformer decoder in action. Source [5]

The decoder outputs a vector of floats that is turned into a target language proba-
bility distribution by making a linear transformation and adding a softmax operation.
The cross-entropy loss function is used compare the output probability distribution
for each word and the ground-truth probability distribution.

2.6.5 BERT

BERT model [23] was presented in 2018 and it set a major breakthrough in NLP.
This model is based on the encoder layer of the Transformer model, so to understand
how BERT works we first needed to dive into the Transformer model.

BERT model gets rid of the decoder part of the Transformer, which leaves the
architecture showed Figure 22, note that this is top-down view. Two model sizes
were presented, BERT BASE with 12 layers, 12 attention heads and hidden vectors
∈ R768 and BERT LARGE with 24 layers, 16 attention heads and hidden vectors size
∈ R1024.
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Figure 22: BERT architecture. Source [12]

BERT introduces a language model that is able to learn from both sides of the
word it tries to predict, instead of a left-to-right model or a separate right-to-left and
left-to-right training such in [52]. BERT objective is to introduce a model that can be
fine-tuned into downstream tasks with minor changes to the architecture and starting
with the pre-trained parameters.

BERT is pre-trained using two tasks: Masked LM and Next sentence prediction
(NSP). In order to solve the problem in LM of the attention mechanism seeing the
token it is trying to predict in a multilayered model BERT uses masks. The way it does
it is by selecting 15% of the random tokens and masking with a 0.8 probability with
the token [MASK]. NSP task is about predicting if a pair of sentences are consecutive.
By choosing sentences A and B, 50% of the time B follows A and 50% of the time
it does not. In this case a token [SEP] is added between the two tokenized sentences
and a segment embedding is summed to the input tokens describing whether it is the
first or the second sentence.

BookCorpus [68] and English Wikipedia are used to pre-train the model.

2.7 Related Work in Document Image Classification

Several ways of measuring models have been shown in the past years regarding doc-
ument classification on the Legacy Tobacco Industry Documents [43]. Some authors

33



have tested their models on a large-scale sample BigTobacco. Others tried on a
smaller version named SmallTobacco, which could be seen as a more realistic scale
of annotated data that users might be able to find. Lastly, transfer learning from
in-domain datasets has been tested by using BigTobacco to pre-train the models to
finally fine-tune on SmallTobacco. Table 2 summarizes the results of previous works
in the different categories over time.

First results in the Deep Learning era have been mainly based on CNNs using
transfer learning techniques. Multiple networks were trained on specific sections of
the documents [29] to learn region-based high dimensional features later compressed
via Principal Component Analysis (PCA). The use of multiple Deep Learning models
was also exploited by Arindam Das et al. by using an ensemble as a meta-classifier
[21]. A VGG-16 stack of networks using 5 different classifiers has been proposed
[57], one of them trained on the full document and the others specifically over the
header, footer, left body and right body. The Multi Layer Perceptron (MLP) was the
ensemble that performed the better. A committee of models but with a SVM as the
ensemble was also proposed [53].

Table 2: Previous results comparison (accuracy in %).

BigTobacco SmallTobacco
BigTobacco Pre-training No Pre-training

Author Image Image Image + Text Image Image + Text
Kumar et al. (2014)[36] 43.8
Kang et al. (2014)[38] 65.37
Afzal et al. (2015)[1] 77.6

Harley et al. (2015)[29] 89.8 79.9
Csurka et al. (2016)[20] 90.7
Noce et al. (2016)[50] 79.8
Afzal et al. (2017)[2] 90.97 91.13

Tensmeyer et al. (2018)[63] 90.8
Das et al. (2018)[21] 92.21

Audebert et al. (2019)[7] 84.5 87.8
Asim et al. (2019)[6] 93.27 95.88

Proposed work (2020) 92.31 94.04 94.9 85.99 89.47

The addition of content-based information has been investigated on SmallTobacco
by extracting text through OCR and embedding the obtained features into the orig-
inal document images as a previous phase to the training process [50]. Lately, a
Mobilenetv2 architecture [54] together with a CNN 2D [39, 67] taking as input Fast-
Text embeddings [11, 37] have achieved the best results in SmallTobacco [7].

A study of several CNNs was carried out [2], where VGG-16 architecture [57] was
found optimal. Afzal et al. also demonstrated that transfer learning from in-domain
dataset like BigTobacco [2] increases by a large margin the results in SmallTobacco.

7Accuracy obtained in 9 classes that overlap in BigTobacco
8Evaluation method not specified
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This was further investigated by adding content-based information with CNN 2D with
ranking textual features (ACC2) to the OCR extracted.

As far as we are concerned, there is no study about the use of multiple GPUs in the
training process for the task of Document Image Classification. However, parallelizing
a computer vision task has been shown to work properly using ResNet-50, which is
a widely used network that usually gives good results despite its low complexity
architecture. Several training procedures are demonstrated to work effectively with
this model [4, 27]. A learning rate value proportional to the batch size, warmup
learning rate behavior, batch normalization, SGD to RMSProp optimizer transition
are some of the techniques exposed in these works. A study of the distributed training
methods using ResNet-50 architecture on an HPC cluster is shown in [14, 15]. To
know more about the algorithms used in this field, look at [10].
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3 Results

In this section we compare the performance of the different EfficientNets in Small-
Tobacco and BigTobacco as showed in Table 2 and demonstrate the benefits of the
multiple GPU training. Experiments have been carried out using GPUs clusters
Power-CTE9 of the Barcelona Supercomputing Center - Centro Nacional de Super-
computación10, each one composed by: 2 IBM Power9 8335-GTGH at 2.40GHz (20
cores and 4 threads/core), 512GB of main memory distributed in 16 dimms × 32GB
at 2666MHz and 4 GPU NVIDIA V100 (Volta) with 16GB HBM2.

The operating system is RedHat Linux 7.4. The models and their training are
implemented with PyTorch version 1.0 running on CUDA 10.1 and using cuDNN
7.6.4.

The only modification done to the images is a resize to 384 × 384 as explained
in Section 3.3.1 and, in order to avoid overfitting, a shear transformation of an angle
θ ∈ [−5◦, 5◦] [63] which is randomly applied in the training phase. No other modifica-
tions are used in our experiments. Source code is at https://github.com/javiferran/
document-classification.

3.1 Evaluation

In order to compare with previous results in SmallTobacco dataset, we divide the
dataset following the procedure in [36]. Documents are split into training, test and
validation sets, containing 800, 2482 and 200 samples each one. 10 different splits of
the dataset are created by randomly sampling from the 3482 documents so that 100
samples per class are guaranteed between train and validation sets. In the Figure 30
we give the accuracy on SmallTobacco as the median over the 10 dataset splits to
compare with previous results. Accuracy on BigTobacco is shown as the one achieved
on the test set. BigTobacco dataset used in Section 3.5 is slightly modified, where
overlapping documents with SmallTobacco are extracted. Top performing model’s
accuracies are written down in Table 2.

3.2 Early Results

In order to iterate fast and get an intuition about how to solve the proposed problem
we first made use of the SmallTobacco dataset. A few different image and text models
were tried. In the text side, we started with FLAIR library embeddings. As explained
in Section 2.6.1, embeddings are the way computers deal with words. FLAIR offers a
wide variety of word embeddings:

Moreover, FLAIR library allows combining several embeddings with its StackedEm-
bedding functionality. Basically, it concatenates the values of the embeddings for each

9https://www.bsc.es/support/POWER CTE-ug.pdf
10https://www.bsc.es
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Class Type Paper
BertEmbeddings Embeddings from pretrained BERT [23]
BytePairEmbeddings Subword-level word embeddings Heinzerling and Strube (2018)
CharacterEmbeddings Task-trained character-level embeddings Lample et al. (2016)
ELMoEmbeddings Contextualized word-level embeddings [52]
FastTextEmbeddings Word embeddings with subword features Bojanowski et al. (2017)
FlairEmbeddings Contextualized character-level embeddings Akbik et al. (2018)
PooledFlairEmbeddings Pooled variant of FlairEmbeddings Akbik et al. (2019)
OneHotEmbeddings Standard one-hot embeddings of text or tags -
OpenAIGPTEmbeddings Embeddings from pretrained OpenAIGPT Radford et al. (2018)
RoBERTaEmbeddings Embeddings from RoBERTa Liu et al. (2019)
TransformerXLEmbeddings Embeddings from pretrained transformer-XL Dai et al. (2019)
WordEmbeddings Classic word embeddings
XLNetEmbeddings Embeddings from pretrained XLNet Yang et al. (2019)
XLMEmbeddings Embeddings from pretrained XLM Lample and Conneau (2019)

of the words into a larger vector. With these options, the possibilities are almost end-
less.

Given the embeddings of a sequence (document in our case) one can concatenate
them into a single vector and connect it to an MLP or stack the embeddings as a
matrix and perform more complex operations like in the case of convolutions over
the matrix as in Figure 23. This method was successfully proved in [39] and works
by applying a CNN 2D operation with different filter sizes. Each filter slides in a
one-way direction, only through the rows of the embedding matrix. The width of
the filter is determined by the word embedding vector length and the height is left
as a hyperparameter. To the feature maps obtained from the convolution operation
we apply a max-pooling operation. Then, these values are concatenated into a single
vector and passed to a fully-connected layer with a softmax function.
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Figure 23: CNN operation on the sequence embedding matrix [67]

In this work we carry out multiple experiments with this embedding + CNN
2D configuration, some of the results obtained are shown in Figure 3. Moreover,
FLAIR allows obtaining a single embedding per document (document embedding). It
is calculated based on a word embedding type. It applies a pooling operation (max,
min or mean) over the whole document word embeddings. Note that in the table we
show the document embeddings results using Flair forward embeddings.

Embedding Accuracy (%)

Fast 77,07%
Byte 70,78%
FastText + Byte 64.7%
Flair forward 73,53%
Flair forward + backward 75,66%
Forward + Fast 78.2%
Forward + Backward + Fast 77.7%
Glove 67,10%
BERT 80.3%
Document embedding (max) 62,10%
Document embedding (min) 61,20%
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Document embedding (mean) 69,60%

After testing some of the FLAIR embeddings, BERT outperforms any other em-
bedding. To further investigate how BERT embedding can help improve the per-
formance on this task we continue with the Huggingface’s Transformers library and
directly tune the model. The details of the implementation are explained in Section
3.3.4.

3.3 Proposed Approach

In this section we present the models used and a brief explanation of them. We
also show the training procedure used in both BigTobacco and SmallTobacco and the
pipeline of our approach to the problem.

3.3.1 Image model

EfficientNets [62] are a set of light CNNs designed to scale up in a structured manner.
The network’s width (w), depth (d) and resolution (r) are defined as: w = αφ, d = βφ

and r = γφ, where φ is the scaling compound coefficient. The optimization problem
is set by constraining α · β2 · γ2 ≈ 2 and α ≥ 1, β ≥ 1, γ ≥ 1.

By means of a grid search of α, β, γ with AutoML MNAS framework [61] and
fixing φ = 1, a baseline model (B0) is generated optimizing FLOPs and accuracy.
Then, the baseline network is scaled up uniformly fixing α, β, γ and increasing φ.
We find that scaling the resolution parameter as proposed in [62] does not improve
the accuracy obtained. In our experiments in section 3 we proceed with an input
image size of 384 × 384, which corresponds to a resolution r = 1.71, as proposed by
Tensmeyer et al. in [63] with AlexNet architecture [40].

The main block of the EfficientNets is the mobile inverted bottleneck convolution
[54, 61]. This block is formed by two linear bottlenecks connected through both a
shortcut connection and an intermediate expansion layer with a depthwise separable
convolution (3 × 3) [17]. Probabilities P (class|FC) are obtained by applying the
softmax function on top of the fully connected layer FC of the EfficientNet model.

1x1 conv,
ReLu6

3x3 Dwise,
ReLu6

1x1 conv +

Linnear
bottleneck

Linnear
bottleneck

Expansion
layer

Figure 24: Mobile inverted bottleneck block.
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Figure 25: EfficientNet B0 architecture

3.3.2 Pre-training on BigTobacco

We train EfficientNets (pretrained previously on ImageNet) on BigTobacco using
Stochastic Gradient Descent for 20 epochs with Learning Rate Warmup strategy [32],
specifically we follow STLR (Slanted Triangular Learning Rate) [34] which linearly
increases the learning rate at the beginning of the training process and linearly de-
creases it after a certain number of iterations. We chose the reference learning rate
η following the formula proposed in [27] and used in [4] and [32]. Specifically, we set
η = 0.2 · nk

256
, where k denotes the number of workers (GPUs) and n the number of

samples per worker (4). Figure 27 shows the multi-GPU training procedure to get
EfficientNetBigTobacco, which represents EfficientNet model pretrained on BigTobacco.
EfficientNet is loaded with ImageNet weights (EfficientNetImageNet) and then located
in different GPUs within the same node.
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Figure 26: Slanted Triangular learning rate

3.3.3 Fine-tuning on SmallTobacco

We fine-tune on SmallTobacco the pre-trained models by freezing the entire network
but the last softmax layer. Just 5 epochs are enough to get the peak of accuracy.
STLR is used this time with η = 0.8 · nk

256
. Since only the last layer is trained,

there’s no risk of catastrophic forgetting [46]. Final fine-tuned model is represented
as EfficientNetBigTobacco in Figure 27.
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Figure 27: Pipeline of the different stages of the pre-training of EfficientNet over
multiple GPUs.

3.3.4 Text model

Predictions from OCR Tesseract are obtained by means of the BERT model [23].
BERT is a multi-layer bidirectional Transformer encoder model pre-trained on a large
corpus. In this work we use a modification of the original pre-trained BERTBASE

version. In our case, we reduce to 6 the number of BERT layers since we find less
variance in the final results and faster training/inference times. The output vector
size is kept to 768. The maximum length of the input sequence is set to 512 tokens.
The first token of the sequence is defined as [CLS], while [SEP ] is the token used
at the end of each sequence. Since some documents are larger than the 512 token’s
limit, we have to leave out of the model some of the text in the documents. In this
case we select the first 128 tokens and the last 382, as proposed in [59].

A fully connected layer is added to the final hidden state of the [CLS] token h[CLS]
of the BERT model, which is a representation of the whole sequence. Then, a softmax
operation is performed giving P (class|h[CLS]) the probabilities of the output vector
h[CLS], i.e the whole input sequence, pertaining to a certain class.

The training strategies used in this paper are similar to the ones proposed in
[65, 59]. We use a learning rate ηB = 3e−5 for the embedding, pooling and encoder
layers while a custom learning rate ηC = 1e−6 for the layers on top of the BERT
model. A decay factor ξ = 1e−8 is used to reduce gradually the learning rate along
the layers, ηl = ξ ·ηl−1. ADAM optimizer with β1 = 0.9 and β2 = 0.999 and L2-weight
decay factor of 0.01 is used. The dropout probability is set at 0.2. Just 5 epochs are
enough to find the peak of accuracy with a batch size of 6, the maximum we could
use due to memory constraints.
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3.3.5 Image and Text ensemble

In order to get the final enhanced prediction of the combination of both text and
image model we use a simple ensemble as in [6].

P (class|outimage, outtext) = w1 · P (class|h[CLS]) + w2 · P (class|FC)

Predicted Class = arg max
class

(P (class|outimage, outtext))

In this work w1, w2 = 0.5 are found optimal. These parameters could be found by a
grid search where

∑N
i=1wi = 1, being N the number of models. This procedure shows

to be an effective solution when both models have similar accuracy and it allows us
to avoid another training phase [7]. In Figure 28 this whole process is depicted.
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Figure 28: Pipeline of the proposed multimodal approach.

3.4 Results on BigTobacco

The best performing model in BigTobacco dataset is EfficienNet-B4 with 92.31%
accuracy in the test set. Although it beats the previous state-of-the-art just for a bit,
the main difference is that we use one single model to do so while Das et al. [21] used
an ensemble of 5 different networks.

Table 4: Previous results on BigTobacco (accuracy in %).

BigTobacco
Author Image

Harley et al. (2015)[29] 89.8
Csurka et al. (2016)[20] 90.7

Afzal et al. (2017)[2] 90.97
Tensmeyer et al. (2018)[63] 90.8

Das et al. (2018)[21] 92.21
Proposed work (2020) 92.31
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Table 5: Time (hours) needed to train the EfficientNet models.

PPPPPPPPPModel
GPUs

1 2 3 4

B0 13.33 6.81 4.58 3.4
B1 19.44 9.81 6.81 4.94
B2 20.55 10.22 6.92 5.16
B3 25.64 12.94 8.78 6.55
B4 34.28 17.36 11.69 8.75

We show in Table 5 the time it takes to train the different networks while using 1,
2, 3 or 4 GPUs in a single node. In order to take advantage of the multiple GPUs we
use data parallelism, which consists of placing a copy of the model in each of them.
Since every GPU share parameters, it is equivalent to having a single GPU with larger
batch size.
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Figure 29: Speedup of the training process when parallelizing.

The time reduction to complete the entire training process with B0 variant is
≈ 61.14% lower when compared with B4 (4 GPUs). Time reduction by using multiple
GPUs is clearly shown in Figure 29. For instance, EfficientNet-B0 benefits from a
≈ 75.4% time reduction after parallelizing over 4 GPUs.
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Table 6: Previous results on SmallTobacco (accuracy in %).

SmallTobacco
BigTobacco Pre-training No Pre-training

Author Image Image Image + Text
Kumar et al. (2014)[36] 43.8
Kang et al. (2014)[38] 65.37
Afzal et al. (2015)[1] 77.6

Harley et al. (2015)[29] 79.9
Noce et al. (2016)[50] 79.8
Afzal et al. (2017)[2] 91.13
Das et al. (2018)[21] 84.5 87.8

Audebert et al. (2019)[7] 93.2
Proposed work (2020) 94.04 85.99 89.47

3.5 Results on SmallTobacco
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Figure 30: Accuracy obtained in SmallTobacco by models pre-trainined on BigTo-
bacco (Left) and without BigTobacco pre-training (Right).

Accuracies of the EfficientNets pre-trained on BigTobacco and finally fine-tuned on
SmallTobacco are depicted in the left plot of Figure 30. Simpler models perform
with less variability between the 10 random splits than the heavier ones. The best
performing model is the EfficientNet-B1, achieving a new state-of-art accuracy of
94.04% median over 10 splits.

In this work, we also wanted to test the potential of light EfficientNet models on
a small dataset such as SmallTobacco without the use of transfer learning from in-
domain dataset, and compared it with the previous state-of-the-art. Results given by
our proposed method described in section 3.3.5 are shown in the right plot of Figure
30. Although we perform the tests over 10 different random splits to give a wider view
of how these models work, in order to compare with Audebert et al. [7] we calculate
the average over 3 random splits, which gives us an 89.47% accuracy.
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Every ensemble model achieves better accuracy than previous results, and there
is almost no difference between different EfficientNets results.
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4 Parallel and Distributed Deep Learning

Single GPU training requires a huge amount of time, especially when dealing with
heavy architectures. For this reason, experimenting with several workers is crucial to
minimize the amount of time spent on these tasks. In order to try to minimize the time
spent in training these models and taking advantage of the computational resources
of the Barcelona Supercomputing Center - Centro Nacional de Supercomputación, we
exploit the available libraries to accomplish this goal. We focus on PyTorch framework
and its own APIs for making a parallel training in several GPUs by means of data
parallelism PyTorch’s Dataparallel and DistributedDataparallel.

4.1 Data Loading

Data, initially stored in the disk, is sent to the host, where changes from pageable to
pinned memory. From pinned memory can then be transferred to the GPU. When
trying to optimize the whole training procedure, an important step is to parallelize
the data loading process so that it does not become a bottleneck. To do so, PyTorch
allows set the number of processes in the CPU that participates in the data transfer
from disk and also allows to using multi-threading in the pageable to pinned memory
conversion. The key point here is that the whole data loading process takes less time
than the operations done by the GPU with the previous batch of data. However,
an excess number of workers will end up not being useless and wasting unnecessarily
computational resources.

Figure 31: Data loading process. Source [49]

4.2 Data Parallelism

Data Parallelism consists of dividing the data samples that form each training batch
into different chunks, each one placed in a different computational resource (GPU
in this case). A copy of the model is placed on every device and in each training
step a forward-pass is done independently in each of them computing the outputs.
Then, the loss with respect to the network parameters is computed, the gradients
are averaged and the network’s weights are updated. As networks get bigger, the
information flowing through the communication channels between GPUs gets bigger
since each parameter has its own gradient, reaching even gigabytes per second.
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4.2.1 PyTorch’s DataParallel library

The simplest way to perform data parallelism is to set a GPU as the master. The
master is in charge of getting the outputs computed by each of the network’s devices,
calculating the gradients and averaging them, then sending back to each GPU as
shown in Figure 32.

Figure 32: Data Parallelism. Source [26]

In PyTorch this is implemented by means of DataParallel library, which performs
the aforementioned operations:
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Figure 33: PyTorch’s Dataparallel. Source [49]

We can see that data is read from the disk to the host memory, then passed
to the master GPU and finally scattered to every other GPU. This is an inefficient
procedure. Moreover, before each forward-pass the master must send a new copy of
the model with the newly updated parameters so that they are synchronized. Finally,
there is a uneven usage of the GPUs since the master GPU is the one performing the
loss function and the average of the gradients thus computing more than the rest.

To help mitigate these inefficiencies some solutions in terms of more optimal com-
munication between GPUs have been done. A big step forward has been the intro-
duction of an HPC technique called Ring All-Reduce.

4.2.2 PyTorch’s DistributedDataParallel library

DistributedDataParallel applies data parallelism but makes use of a novel technique
to solve the previous method communication issues named Ring All-reduced. Ring
All-Reduce applied to Deep Learning was introduced by Baidu Research [26]. In this
configuration, each GPU is connected to two more following a ring layout where each
GPU receives data from its left neighbor and sends data to its right neighbor (Figure
34). As opposed to the previous section method, the cost of the ring all-reduce does
not grow linearly as the number of GPUs increases, it remains constant regardless of
the number of GPUs and it is only determined by the speed of the communication
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channel between GPUs.

Figure 34: Ring All-reduce method. Source [26]

The algorithm can be divided into two main steps: the scatter-reduce and the all-
gather. The scatter-reduce phase consists of dividing data in each GPU into chunks
of data, each of those is then shared to the next GPU and a reduced operation is
performed, the average for instance. In the all-gather phase every reduced result is
communicated until every GPU has the same information. This is very useful in the
case of neural networks training. During the backward-pass gradients are calculated
starting from the last layer all the way to the first layer. As gradients are being
computed in each GPU, the already computed gradients can be scatter-reduced to
the rest of the GPUs, while the backward-pass is still being executed.

PyTorch’s DistributedDataParallel functionality follows the all-reduce procedure
as shown in Figure 35.
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Figure 35: PyTorch’s DistributedDataparallel. Source [49]

4.2.3 Parallel platforms results

As mentioned in Section 4 single GPU training requires a huge amount of time, espe-
cially when dealing with architectures like in the case of the EfficientNet-B4, which
takes almost two days to complete the whole training phase. For this experiment
we use the B0, B2 and B4 EfficientNets models. In Figure 36 we show the speedup
values for these models with PyTorch’s Dataparallel (PyTorch/DP) and PyTorch’s
DistributedDataparallel (PyTorch/DDP). Clearly the strategy using all-reduce algo-
rithm outperforms the naive data parallel approach.
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5 Conclusion

In this work we have presented the use of EfficientNets for the Document Image
Classification task and their scaling capabilities through several GPUs. By means of
two versions of the Legacy Tobacco Industry Documents, a huge and a small dataset,
we demonstrated the training process to obtain high accuracy in both of them. We
have compared the different versions of the EfficientNets and raised the state-of-the-
art classification accuracy to 92.31% in BigTobacco and 94.04% when fine-tuned in
SmallTobacco. We can consider the B0 the best choice when considering limited
computational resources. We have also presented an ensemble method by adding the
content extracted by OCR. A reduced version of the BERT model is trained and both
models predictions are combined to achieve a new state-of-the-art accuracy of 89.47%.

Moreover, we have demonstrated that it is possible to distribute the training
process in several GPUs by means of data parallelism and to achieve a linear speedup
performance.

With this work we also provide researchers a benchmark in the Document Image
Classification task, which can serve as a reference point to effortlessly test parallel
systems in both PyTorch and TensorFlow.

Lastly, we release as open source in GitHub the code needed to run the experi-
ments shown in this work and a webpage that shows a brief explanation of the whole
work and a usage guide https://javiferran.github.io/document-classification/. As an
outcome of this thesis a research paper has been presented in ICCS 2020 [25].

5.1 Acquired knowledge

Throughout the development of this thesis we have been exposed to multiple technolo-
gies, which we have been forced to understand both in the theoretical and practical
sides. This knowledge includes a deeper understanding of the NLP and Computer
Vision techniques that are being developed lately. Since both fields are closely related
to Deep Learning, we have been exposed to the recent model architectures and their
implementations. Having used PyTorch as the main framework, we have developed
fluency not just building Deep Neural Network models but also in many of the pack-
ages that form PyTorch. While working on the optimization of the training process
of the models, we have acquired a deeper understanding of the current techniques for
distributed training such as the HPC technique Ring All-Reduce.

While working at the Barcelona Supercomputing Center - Centro Nacional de
Supercomputación we have acquired a bigger understanding of how it is to work on a
research project, to meet the deadlines and to work as a group. We are sure this all
this knowledge will be valuable in our careers.

5.2 Future work

Future work may evaluate the use of different OCR engines, as we suspect this could
have a great impact on the quality of the text model predictions as well as more
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advanced preprocessing techniques over the extracted text. Another area to focus on
is the use of the latest language models developed during the realization of this thesis
such as the GPT-3 [13] or language models which are pretrained in related domain
texts [28]. In the scalability side, the use of distributed libraries such as Horovod
[55] for multiple nodes training, which we have already done some experiments in the
Barcelona Supercomputing Center, can be useful to further reduce training times and
facilitate the prototyping speed.
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Cortada, J., Valero, M.: Improving accuracy and speeding up document image
classification through parallel systems. In: Krzhizhanovskaya, V.V., Závodszky,
G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J. (eds.)
Computational Science – ICCS 2020. pp. 387–400. Springer International Pub-
lishing, Cham (2020), https://doi.org/10.1007/978-3-030-50417-5 29

[26] Gibiansky, A.: Bringing hpc techniques to deep learning.
https://andrew.gibiansky.com/ (2017), https://andrew.gibiansky.com/blog/
machine-learning/baidu-allreduce/

[27] Goyal, P., Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A.,
Tulloch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet
in 1 hour. CoRR, vol. abs/1706.02677 (2017)

54

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
https://doi.org/10.1007/978-3-030-50417-5_29
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
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