Simplexity of the n-cube

Peter Graziano
Providence College

Follow this and additional works at: https://digitalcommons.providence.edu/computer_science_students
Part of the Mathematics Commons

Graziano, Peter, "Simplexity of the n-cube" (2020). Mathematics \& Computer Science Student Scholarship. 5.
https://digitalcommons.providence.edu/computer_science_students/5

This Poster is brought to you for free and open access by the Mathematics \& Computer Science at DigitalCommons@Providence. It has been accepted for inclusion in Mathematics \& Computer Science Student Scholarship by an authorized administrator of DigitalCommons@Providence. For more information, please contact dps@providence.edu.

Simplexity of the n-cube of Low Dimensions

Peter Graziano (Mathematics, '20)
Mathematics, Providence College

Objectives

- Recreate the preexisting results for the $n=4$ case independently. - Find a bound for the $n=5$ case by a method besides brute force. - Find a general pattern in the number of possible external faces of a simplex with respect to its possible volume.
- Find a general pattern in the minimal number of simplices for some n-cube.

Introduction

This project studied mathematical objects called n-cubes, which, like a square (2-cube) or a (3-)cube, have $\frac{n 2^{n}}{2}$ edges such that all edges are the same length and any two edges which touch are perpendicular to each other in some plane, and their relation to mathematical objects called n-simplices, which, like triangles (2-simplices), have $n+1$ vertices with no more than 3 in the same plane. Specifically, it studied how few simplices are needed to cover a n-cube for a particular value of n. The simplest case, when $n=2$, simply shows how a square (2 -cube) can be covered with two triangles (2- simplices), but any higher case has several different coverings possible. This project was concerned with finding a lower bound on the minimal number of simplices needed to cover the 4 -cube and 5 -cube.
The project was based upon a line of papers by Mara, Heiman, Cottle, Salee, and others using various techniques to tighten the bounds on optimal solutions for coverings (or triangulations) of the n-cube for particular values of n or for a general n.

Definitions

- An n-simplex, S^{n}, is an n-polytope with $n+1$ vertices, $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$, such that $v_{i}-v_{j}$ is linearly independent, $\forall i, j \in V$.
- A triangulation of an n-polytope, P, is a finite set S of n-simplices such that S covers P completely and disjointly, or symbolically
(1) $P=\cup S$
(2For all $a, b \in S, a \cap b$ is a face of both a and b or $a \cap b=\emptyset$.

Process

In broad strokes, the process was as follows:

- Take simple geometric object, in this case, the n-cube
- Find a map to an algebraic object, in this case, the matrix representation of the n-cube
- Associate geometric quality with algebraic quantity, in this case, the volume of the simplices and the value of the determinant of a matrix which describes it.
- Use the known quantities to set up systems of inequalities.
- Solve the systems using linear programming algorithms
$n=3$ case

(a) Trivial triangulation of the 3 -cube

(b) Optimal triangulation of the 3 -cube

Mathematical Section

In order to find the main result, a bound on the volume of a simplex was needed.
There are ways to represent a simplex as a square matrix C with only 1 or 1 in its entries. This allows the use of Hadamard's inequality (which concerns the maximum value of the determinant of a certain class of square matrices) to find a bound on the determinant of C, namely:

$$
\begin{equation*}
|\operatorname{det} C| \leq\left|\frac{(n)^{\frac{n}{2}}}{2^{n-1}}\right| \tag{1}
\end{equation*}
$$

Since the volume of all the simplices in a triangulation of a cube is equal to the volume of the whole cube, a bound on the volume of a simplex leads to a bound on the number of possible simplices in a triangulation of a cube.

Main Result

$$
\begin{aligned}
& \text { Let } T^{n} \text { be a triangulation of } I^{n} \text {. Then, } \\
& \text { (1) } \min \left|T^{3}\right| \geq 5 \text {. (2) } \min \left|T^{4}\right| \geq 16 \text {. (3) } \min \left|T^{5}\right| \geq 60 \text {. }
\end{aligned}
$$

Conclusion

While doing the research for this project, I found that the actual optimal value of $\left|T^{5}\right|=67$. The methods used to discover this, however, involved computing every possible 5 -simplex and and checking possible triangulations by computer. This project was the beginnings of an attempt to replicate this result by a more elegant method.
I found, however, that the method I used was not powerful enough to develop new independent results, and so more research would be needed.

References

[1] Cottle, Richard W. "Minimal Triangulation of the 4-cube" Discrete Mathematics $40 \mathrm{pp} .25-29,1982$.
[2] Haiman, Mark. "A Simple and Relatively Efficient Triangulation of the n-Cube." Discrete and Computational Geometry 6 pp.287-289, 1991.
[3] Mara, Patrick Scott. "Triangulations for the Cube." Journal of Combinatorial Theory 20 pp.170-177, 1976.
[4] Sallee, John F. "A Triangulation of the n-cube.' Discrete Mathematics 40 pp. 81-86, 1982.

Acknowledgements

I could not have done this project without the help of Dr. Su-Jeong Kang, to whom I am very grateful. I was funded through the Providence College Undergraduate Student Grant program.

Contact Information

- Email: pgrazian@friars.providence.edu

