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ABSTRACT OF THE DISSERTATION 

UNDERSTANDING, QUANTIFYING, AND REDUCING BIAS IN FISHERIES-

INDEPENDENT VISUAL SURVEYS 

by 
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Professor Yuying Zhang, Major Professor 

Understanding spatiotemporal changes in populations is vital for conservation 

managers to assess current recovery efforts, determine future conservation priorities, and 

forms the basis to explore complex ecological questions. In fisheries, these data have 

traditionally been collected using fisheries-independent surveys that rely on extractive 

sampling practices (e.g., longlines, gillnets, trawls). However, with the growing 

availability of low-cost, high-definition cameras, researchers are increasingly using visual 

surveys as a non-invasive alternative. Camera surveys have a number of advantages 

including their archivable data, and offer insights into species habitat use and behavior. 

However, the use of cameras has a number of inherent biases. Understanding, 

quantifying, and mitigating against these biases is critical if camera systems are to be 

used to inform management and policy. In the present dissertation, potential biases were 

explored for two commonly used visual survey methods; baited remote underwater 

videos (BRUV), and unmanned aerial vehicles (UAV). Specifically, our objectives were 

to answer: (1) Are metrics of relative abundance derived from BRUVs linearly related to 

true changes in abundance for elasmobranchs, (2) Are these same metrics sensitive to 
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changes in density-independent factors, and (3) Can UAVs be used to replace or 

supplement traditional diver transects for marine invertebrate species? Using a 

combination of standard and full-spherical camera BRUV deployments, Chapter Two 

found that tradition BRUVs likely undercount sharks in high density environments, while 

also having lower probability of detection than full-spherical cameras. Using a spatially-

explicit, individual-based-model, Chapter Three revealed that metrics of relative 

abundance derived from BRUVs are also highly sensitive to factors unrelated to changes 

in abundance (e.g., swimming speed, current strength, and movement patterns). Lastly, 

using paired snorkeler-UAV transect sampling, Chapter Four found counts derived from 

UAV transects did not significantly differ from divers, and offered a number of 

advantages over traditional techniques (shorter sampling times, larger surveyed area, and 

automation). Furthermore, we found that UAVs can improve sampling designs used to 

quantify invertebrates, by estimating their distribution within a study region prior to 

initiating transect sampling. Collectively, these works improve our understanding and 

interpretation of video survey results that are used for management across the globe.  
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CHAPTER I 

INTRODUCTION
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A fundamental goal of fisheries research, and more broadly ecology itself, is to 

provide accurate estimates of species abundances. These estimates are used to measure 

the success of current management actions, identify species and regions that are in need 

of future protections, and form the basis for exploration of complex ecological processes. 

In fisheries, the data used to provide these estimates have historically been collected 

using a combination of fishing gears such as longlines, gillnets, and trawls (Shipman et 

al. 2001). Though important tools, the extractive properties of these methodologies have 

a number of disadvantages, including potential high rates of mortality for sampled 

individuals (Skomal 2007), and destruction of habitat critical for some species (Wheeler 

et al. 2005). Accordingly, an increasing amount of fisheries data are being gathered using 

minimally invasive, visual survey approaches (Struthers et al. 2015).  

Underwater visual surveys (UVS), sometimes referred to as underwater visual 

censuses, are a group of fisheries-independent sampling techniques used to quantify 

species richness, abundance, distribution, and size structure of aquatic populations around 

the globe (Edgar et al. 2004). Though used in a variety of environments, UVS are 

primarily employed in shallow, temperate, coral reef ecosystems, due to visibility 

requirements of the technique (Caldwell et al. 2016). Historically, UVS have been limited 

to using either snorkeler or SCUBA observers to count species of interest over a specified 

period of time (Sale and Douglas 1981), and could be further classified as either 

stationary point counts (SPC) or belt transect counts (BTC). In SPCs, the underwater 

observer stays in the same spot and provides counts for a fixed area over a specified time 

(Bohnsack and Bannerot 1986), whereas in BTCs the observer will swim in a straight line 

at constant speed over a given distance, and provide counts of organisms within a certain 
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transect width (Brock 1954), while sometimes providing estimates of the distance to each 

organism (Thomas et al. 2010). Each technique has its own advantages and shortcomings, 

and researchers must carefully consider the study questions as well as the species of 

interest before determining which method may be most appropriate (Smith 1989; 

Kulbicki et al. 2010). However, a universal limitation of UVS has been the use of human 

observers in the field. As a result of safety concerns, underwater observers have been 

constrained by depth and the amount of time in which they can be deployed, thus 

restricting their ability to sample certain habitats. Additionally, the mere presence of 

observers has been shown to attract some species while repelling others (Dearden et al. 

2010), which can severely bias survey results. Limited dive times coupled with the 

mobile nature of many fish species may also bias observers’ counts as they struggle to 

rapidly identify, estimate the size of, and distance to observed fishes. Though some 

studies have attempted to estimate the effects these types of biases may have on survey 

results, (e.g., potential of SCUBA diver bubbles as an attractant or repellant; Lindfield et 

al. 2006), the vast majority simply ignore their potential impacts, either explicitly or 

implicitly. Given the impact of human observers on UVS, along with their limited depth 

and duration capabilities, a growing number of UVS are replacing human observers with 

camera systems.  

Video cameras have been used in fisheries research since the introduction of the 

first videotape recorder in 1951 (Bellis 2004). Early iterations of underwater camera 

systems were used to study fish behavior, benthic organisms, plankton, and interactions 

with fisheries gear (Barnes 1951; Brawn 1960; Livingstone 1962; Richard 1968). The 

first seafloor mounted camera observation systems were designed by Kumpf and 
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Lowenstein (1962) and Stevenson and Myrberg (1996) to estimate species diversity and 

abundances, while also providing insights into species-specific behaviors and interactions 

(Steinberg et al. 1965; Myrberg et al. 1969). Though incredibly important for advancing 

the use of cameras in fisheries research, these early designs were impracticable for 

widespread use given their large size, high cost, and need for customized underwater 

housings (Struthers et al. 2015). However, as frequently occurs in the technological 

sector, increased consumer demand for video systems coupled with advances in optical 

technologies has resulted in the development of a variety of small, inexpensive, high-

definition cameras capable of being deployed underwater (e.g., GoProTM). Since their 

commercial emergence in the 1990s, these type of action cameras have been used to 

assess fish habitat (Carleton and Done 1995; Heithaus et al. 2002), estimate fish size 

(Harvey et al. 2002; Costa et al. 2006) assess community structure (Booth and Beretta 

2002; Cooke and Schreer 2002), validate foraging models (Hughes et al. 2003), and 

document fish behavior (Heithaus et al. 2002; Michel et al. 2002). Given that these 

camera systems are used for a variety of research purposes, it is not surprising that there 

are a number of accepted methodologies and platforms used to deploy them in the marine 

environment (Murphy and Jenkins 2010). Of these, two of the most commonly used 

platforms are Baited Remote Underwater Video Systems (BRUV or BRUVS) and 

Unmanned Aerial Vehicles (UAVs). 

Baited Remote Underwater Video Systems, sometimes referred to as Baited 

Remote Underwater Video Surveys, are a group of survey tools used to generate SPCs. 

Though BRUVS can vary in their complexity (e.g., pelagic, vertically oriented, or stereo 

BRUVS) they are generally comprised of a relatively simple platform (e.g, rebar cage; 
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Bond et al. 2012), with a single camera that is mounted in front of a bait source. The 

platform is typically lowered to the seafloor by hand, with the camera and bait arm 

oriented in the direction of the current flow to attract fishes to the BRUVS. Deployment 

times vary between studies, however, BRUVS are typically deployed for a minimum of 

60 minutes before being retrieved (Murphy and Jenkins 2010; Whitmarsh et al. 2017). 

Their low cost and ease of use have helped BRUVS to become one of the most popular 

UVS methods using cameras over the last two decades (Whitmarsh et al. 2017), and are 

utilized for a wide variety of scientific studies ranging from investigating species 

specific-behaviors (Santana-Garcon et al. 2014), to habitat associations (Harvey et al. 

2012; Espinoza et al. 2014) and community analyses (Whitmarsh et al. 2014). However, 

the most common use of BRUVS is to monitor and assess how populations of fishes are 

changing across space and time (Whitmarsh et al. 2017). In particular, their non-

extractive nature has made them widely used to study Marine Protected Areas (MPAs), 

where they are frequently used to study larger mobile predators such as sharks (Colton 

2010). However, the same non-extractive property of BRUVS that has made them so 

widely used, also presents unique challenges not found in traditional sampling 

techniques. 

In general terms, BRUVS work by attracting fishes in front of the camera’s field 

of view (FOV) using a bait plume, where they can later be identified and counted from 

the video footage (Cappo et al. 2007). However, enumerating fishes from these video 

data is not a straight forward process. As a result of the non-invasive sampling of 

BRUVS, coupled with the limited FOV of cameras, fishes have the potential to be 

repeatedly counted as they swim in and out of the camera’s FOV. If not accounted for, 
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this limitation can result in artificially inflated abundance estimates derived from BRUV 

data (Cappo et al. 2007). In an attempt to alleviate these concerns, a number of alternative 

methods have been developed to quantify fishes from BRUV footage. By far, the most 

commonly used of these methods are MaxN and MeanCount approaches (Campbell et al. 

2015; Whitmarsh et al. 2017). The metric MaxN is defined as a species-specific count of 

the maximum number of individuals observed on any single video frame across the entire 

BRUV deployment (Ellis and Demartinin 1995), while MeanCount is calculated by 

averaging the count of individuals observed on sub-sample of video frames taken at 

specified sampling intervals (e.g., 10s, 15s, 30s, or 60s; Bacheler et al. 2013; Schobernd 

et al. 2014; Campbell et al. 2015). Despite being widely used (e.g., Willis and Babcock 

2000, Stoner et al. 2008; Schnobernd et al. 2014), and reducing issues of inflated counts, 

these metrics have recently been criticized as the relationship between each and true 

population changes are not well understood under certain conditions (Schobernd et al. 

2014; Campbell et al. 2015; Kilfoil et al. 2017). Failure to understand these relationships 

can lead to hyperdepleted or hyperinflated indices of relative-abundance generated from 

these data, whereby true populations are changing while indices remain constant. 

Furthermore, almost no studies to date have explored how MaxN and MeanCount 

estimates may be influenced by factors unrelated to changes in abundances such as the 

size of the bait plume and the speed of surveyed species, despite recommendations for 

such works to be carried out (Taylor et al. 2013).   

In addition to underwater survey methods, action cameras are now being utilized 

to supplement and replace data collection for aerial surveys. In particular, pairing small 

camera technology with unmanned aerial vehicles (UAVs, commonly referred to as 
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drones), has dramatically increased over the last decade (Bryson and Williams 2015; 

Ivošević et al. 2015). As a wildlife monitoring tool, UAVs has been used to study a wide 

range of species and taxa, both in terrestrial and marine environments (Anderson and 

Gaston 2013; Colefax et al. 2017). In particular, UAVs have proved useful for gathering 

data on species and habitats that are difficult or dangerous to access directly with human 

observers, or whose presence may disrupt the objectives of the study such as identifying 

orangutan nests (Koh and Wich 2012), estimating the size and abundance of nesting birds 

(Goebel et al. 2015), and investigating the nesting behavior of crocodiles (Evans et al. 

2015). However, one of the most pervasive uses of  UAVs today is to replace costlier and 

more dangerous manned aerial surveys (Colefax et al. 2017). The majority of this work to 

date has focused on large marine vertebrate such as dolphins (Hodgson et al. 2010; 

Fettermann et al. 2019;), dugongs (Hodgson et al. 2013; Maire et al. 2013), manatees 

(Martin et al. 2012), whales (Hodgson et al. 2017), sea turtles (Bevan et al. 2015; Rees et 

al. 2018), sea birds (McClelland et al. 2016; Brisson-Curadeau et al. 2017), and sharks 

(Kiszka et al. 2016; Rieucau et al. 2018). An as of yet unexplored application of UAVs is 

their ability to supplement or replace underwater survey methods. In particular, their 

ability to fly slow speeds, at low altitudes, over complex and repeatable flight patterns 

could make them an invaluable tool for surveying shallow water environments that divers 

and underwater vehicles have difficulty accessing.  

The goal of my dissertation is to investigate potential sources of biases for both 

BRUVs and UAV surveys used in fisheries research. Furthermore, I seek to not only 

identify and quantify potential sources of biases, but to also reduce their impacts on 

survey results through technological innovations. In Chapter Two, I begin by exploring 
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the relationship between MaxN and MeanCount with true changes in local abundances, 

focusing on the application of BRUVS to study elasmobranch species. By pairing BRUV 

deployments with traditional cameras and newly developed full-spherical cameras 

(capable of recording in 360 horizontal by 360 vertical FOVs), I go on to explore how 

these relationships may change in relation to the camera’s FOV. Furthermore, by pairing 

these camera systems, I am able to quantify detection probability for each using a 

Bayesian approach. In Chapter Three, I build off the initial findings of Chapter Two, and 

investigate if MaxN and MeanCount are sensitive to changes in factors unrelated to 

changes in localized shark densities. To answer this question, I developed a spatially 

explicit individual-based-model to test for the impact of species speed, movement 

patterns, attraction strength to bait, size of bait plume, and water visibility on resulting 

estimates of MaxN and MeanCount for standard and full-spherical BRUV platforms. 

Lastly, in Chapter Four I investigated the potential of UAVs to replace traditional diver 

BTCs for invertebrate species in shallow water environments. By pairing diver survey 

counts of sea cucumbers (class Holothuroidea) with manual and automated review of 

UAV transects over the same area and time, I was able to compare each method in terms 

relative accuracy and survey effort required. Overall, this work advances our 

understanding of biases inherent in currently used visual survey methods, while also 

improving the accuracy and interpretation of survey results. 
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BAITED REMOTE UNDERWATER VIDEO SURVEYS UNDERCOUNT SHARKS 

AT HIGH DENSITIES: INSIGHTS FROM FULL-SPHERICAL CAMERA 

TECHNOLOGIES
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Abstract 

Video surveys are an essential tool for monitoring marine communities. Their use 

to study elasmobranch populations has dramatically increased over the last decade. 

However, the restricted field-of-view of traditional cameras in these surveys may bias 

abundance estimates in a number of ways, including saturation at high densities, and low 

detection probability for rare or cryptic species. This study investigated these potential 

biases using newly developed full-spherical (FS) camera technology. A comparison of 35 

Baited Remote Underwater Video Surveys (BRUVs), using both FS and traditional 

cameras, was conducted from July-August 2016 in shallow waters (0.4-8.5m) of Tetiaroa, 

French Polynesia. Both blacktip reef (Carcharhinus melanopterus) and sicklefin lemon 

sharks (Negaprion acutidens) were quantified from traditional cameras using MaxN and 

MeanCount methods. These estimates were then regressed against FS cameras counts, 

which were assumed to more accurately represent site abundance, to test for gear 

saturation. Detection probabilities of the traditional and FS cameras were assessed using 

a Bayesian binomial model, with uninformed-uniform priors. Results indicated a 

significant effect of gear saturation for standard BRUVs as counts on FS cameras 

increased, regardless of the metric used. Furthermore, traditional cameras had a 

significantly lower detection probability (69.880.008%mean 2SD) than FS cameras 

(81.200.007%). Our findings show that traditional cameras are unlikely to adequately 

discriminate differences in shark relative abundance at high densities. Therefore, standard 
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BRUV techniques that use restricted FOV cameras are likely limited in their ability to 

provide accurate information to managers once populations have reached particular 

thresholds of abundance. 

 

 Introduction 

Over the last few decades many elasmobranch populations have experienced 

dramatic population declines (Ferretti et al. 2010; Worm et al. 2013; Dulvy et al. 2014). 

Though the magnitude of these declines varies considerably across species and 

ecosystems, an increasing number of shark and ray populations are in need of 

conservation and management actions (Dulvy et al. 2014; Dulvy et al. 2017). Effective 

elasmobranch conservation efforts rely on our ability to assess spatial and temporal 

variation in the abundance of populations, which is critical for identifying conservation 

priorities and assessing the progress of current recovery efforts (Cortés et al. 2015). 

Unfortunately, nearly half of all known elasmobranch species remains ‘data deficient’ 

(Dulvy et al. 2014), posing a significant obstacle to their future conservation. 

Traditionally, elasmobranch population data have been gathered through a combination 

of fisheries-independent and dependent sources, employing gears such as longlines, gill 

nets, and trawls from which Catch per unit of Effort (CPUE) data are used to estimated 

relative abundance. Though useful tools, these methods have limitations, including an 

inability to survey high complexity habitats such as coral reefs (Williams et al. 2010), 

high levels of physiological stress (Mandelman et al. 2009; Kneebone et al. 2013; 

Gallagher et al. 2014) and increased post-release mortality for a number of species 

(Morgan & Carlson 2010; Dapp et al. 2017; Kilfoil et al. 2017). Video surveys have 
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emerged as a potential way to address the deficiencies of traditional sampling methods, 

while also reducing current data gaps.  

Video surveys are increasingly used to assess the diversity and relative abundance 

of marine species across the globe (Whitmarsh et al. 2017). They are particularly suitable 

for the study of elasmobranchs because of their non-extractive nature (Cappo et al. 2006) 

and ability to sample previously ‘inaccessible’ environments (Whitmarsh et al. 2017). 

Though gathering data on sex, size, and individual recapture rates is more difficult with 

these methods as compared to traditional fishing gears, they provide a number of 

advantages including: a permanent record of the data (Harvey et al. 2013), insights on 

species behavior and habitat use (Langlois et al. 2010; Bacheler et al. 2013), and reduced 

issues with size (Wells et al. 2008) and species (Bacheler et al. 2013) selectivity to 

fishing gears. For elasmobranchs, one of the most common video survey approaches is 

the use of Baited Remote Underwater Video Surveys (BRUVs; e.g., Bond et al. 2012; 

Clarke et al. 2012; Santana-Garcon et al. 2014). A BRUV consists of a single, aka. mono, 

camera deployed behind a bait source and provides stationary point counts for species of 

interest that swim into the camera’s field-of-view (FOV) over a specified duration. To 

eliminate multiple counting of fishes swimming in and out of the FOV, one of two 

relative abundance metrics are often used: MaxN (Ellis & Demartini 1995) or MeanCount 

(Conn 2011). MaxN is defined as the maximum number of a species observed on any 

frame of a video (Ellis & Demartini 1995), whereas MeanCount provides an average 

count of the species observed over a sub-sample of video frames (Conn 2011). Although 

widely used (e.g., Willis & Babcock 2000; Stoner et al. 2008; Schobernd et al. 2013), 

these metrics have recently been criticized due to their inability to account for non-
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uniform spatial distributions of species around the camera (Campbell et al. 2015), and 

they may also result in biased estimates in high density environments because of issues 

stemming from FOV saturation.  

A fundamental assumption required to use indices of relative abundance (I) to 

monitor populations, is that they be linearly related to the true site abundance (N) given a 

constant catchability coefficient (q): 

 𝐼 = 𝑞𝑁 Eq. (1) 

If this assumption is violated or invalid, the metric of relative abundance may 

overestimate (hyperstable) or underestimate (hyperdepleted) abundance, resulting in 

imprecise indices which in turn will compromise the integrity of management decisions 

(Cooke & Beddington 1984). In the case of video surveys, simulation work has shown 

that this fundamental assumption may not hold true for teleost fishes due to limited FOVs 

failing to capture the non-uniform spatial distribution of fishes around the camera 

(Campbell et al. 2015). However, no work has addressed this issue specifically for 

elasmobranchs. For large-bodied fishes, including many elasmobranchs, a further 

hindrance may be the saturation of cameras in high density environments. Under these 

conditions, cameras may not be able to detect increases in abundance beyond some 

maximum observable threshold, resulting in a hyperstable relationship whereby 

catchability decreases as true site abundance increases. Furthermore, cameras with a 

restricted FOVs may reduce detection probabilities for elasmobranchs, which will in turn 

impact standardized indices of relative abundance through inflated zero counts (Campbell 

et al. 2015; Cortés et al. 2015). Given that one of the greatest challenges currently facing 

elasmobranch stock assessments is generating accurate and precise indices of relative 
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abundance (Cortés et al. 2015), these issues must be resolved if video surveys are to be 

used to monitor these populations. Recently developed full-spherical (FS) underwater 

video platforms may offer a means to test these concerns regarding the use of video 

surveys to monitor elasmobranchs. In this manuscript, we used this newly developed 

technology to conduct the first FS video survey of elasmobranchs. Specifically, our 

objectives were to determine: (1) if the catchability (q) of reduced FOV (mono) cameras 

derived from estimates of MaxN and MeanCount is constant across a range of site 

densities as estimated from FS cameras; and (2) the detection probability for mono and 

FS cameras. 

Methods 

Data collection 

 All video data were collected from July 17th to August 8th, 2016, in Tetiaroa; a 

small French Polynesian atoll in the Society Archipelago. Sampling locations were 

chosen haphazardly throughout the atoll’s inner lagoon in depths ranging from 0.4 to 8.5 

m. All deployments were conducted on sandy sediment, with a single BRUV deployed at 

any one time. At each sampling site, a small aluminum frame was deployed with 

approximately 1 kg of crushed sardines inside a wire mesh container that was attached to 

a bait arm (Fig. 1). The aluminum frame, hereafter referred to as BRUVfs, was equipped 

with both a single GoPro camera (hereafter referred to as ‘mono camera’) as well as six 

GoPro cameras mounted above the frame in a GoPro freedom360 (F360) TM housing 

(collectively referred to as a FS camera). To correct for light refraction underwater, dome 

port lenses were applied to all cameras in the F360. Although mono and FS cameras were 

set at 30 frames per second, FS cameras had additional setting requirements needed to 
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synchronize and stitch FS videos correctly (see supplemental material S1). To ensure 

units were not deployed on top of live reef habitat, they were set by snorkelers who could 

visually confirm the location and orientation of the frame for each deployment. Once 

settled on the sea floor, cameras soaked for approximately 60 min. Following 

deployment, depth and GPS coordinates of each site were recorded. Following video 

synchronization and stitching of video files, FS and mono videos were reviewed and 

annotated by trained, independent observers who estimated MaxN as well as MeanCount 

(derived from images sequenced every 10s) beginning once the frame was securely on 

the sea floor. To reduce issues with observer bias, MaxN and MeanCount were estimated 

by different individuals for each video.  

Relationship between video counts and site abundance 

 Two metrics were used to enumerate elasmobranchs from video data: MaxN and 

MeanCount. To examine the relationship between counts derived from mono cameras 

and site density, we assumed that the corresponding estimates derived from FS cameras 

(both MaxN and MeanCount) represented a site’s true abundance (as the abundance of 

each site could not be independently estimated), and that the volume of area sampled did 

not change between sites. Given these assumptions, and substituting for Eq. (1): 

 𝑀𝑜𝑛𝑜𝐸𝑠𝑡 = 𝑞 ∗ 𝐹𝑆𝐸𝑠𝑡 Eq. (2.1) 

 

which when rearranged gives  

 𝑞 =
𝑀𝑜𝑛𝑜𝐸𝑠𝑡

𝐹𝑆𝐸𝑠𝑡
   Eq. (2.2) 

where q denotes the catchability coefficient, MonoEst represents the count derived from 

the mono camera, and FSEst is the FS camera estimate. Under the assumption that 
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estimates derived from mono cameras exhibit a consistent linear relationship to true site 

abundance over a range of site densities, we would expect q to remain relatively constant. 

To test this assumption, q of each estimate was plotted against the FS estimate, and a 

linear model was developed to test for any relationship between q (response variable) and 

site abundance (predictor variable) using the base ‘lm’ function in R (R core team 2015).  

Detection probability 

 To estimate the detection probability for both mono and FS cameras, we 

examined the probability of detection at two scales: (1) a single image, and (2) the video 

as a whole. At the single image scale, detection histories for each camera type were 

categorized for every image as either both detected an elasmobranch (1,1), the mono 

camera detected an elasmobranch whereas the FS camera did not (1,0), the mono camera 

did not detect an elasmobranch but the FS camera did (0,1), or neither camera detected an 

elasmobranch (0,0). For each image, a ‘true presence’ was determined based on these 

catch histories, with (0,0) indicating absence and any other indicating presence. For each 

video, data were aggregated to elucidate the total number of images, the number of 

images in which a shark was present, the number of images in which a shark was 

detected by the FS camera, and the number of images a shark was detected by the mono 

camera. Detection probability for each camera was then estimated within a Bayesian 

framework using the ‘rjags’ package (Plumer 2013) in R (R core team 2015). Under this 

Bayesian framework, rather than assuming that a catch history of (0,0) is always 

indicative of true absence, we modeled the probability of occurrence as a Bernoulli 

process with an uninformed-uniform prior between zero and one. The detection 

probabilities of the mono and FS cameras were modeled using a binomial distribution, 
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also using uninformed-uniform priors between zero and one. Models were run for 

100,000 iterations, with a the first 10,000 iterations disregarded. To examine detection 

probability for the video as a whole, similar catch histories were developed as previously 

described (e.g., (0,1) indicates a shark was observed on the FS but not on the mono 

camera), but from the entire video rather than an individual image. Again, a species was 

considered absent only for a catch history of (0,0). The probability of a false negative 

(reporting a catch of 0, when it was truly present) was then calculated for both camera 

types and all observed elasmobranch species by summing their respective catch histories, 

divided by the total number of videos that the species was present. 

Results 

We deployed the BRUVfs platform 43 times at a variety of locations throughout 

Tetiaroa, French Polynesia, and during those deployments turbidity ranged from a scale 

of one (clear) to five (visibility less than 1m). Eight deployments had camera issues and 

or short recording times (< 40min) and were thus excluded from analyses, resulting in a 

total of 35 samples. Although a large diversity of reef fish species was observed on the 

collected videos, only two shark species were detected: blacktip reef (Carcharhinus 

melanopterus) and sicklefin lemon sharks (Negaprion acutidens). Accordingly, all MaxN 

(maximum count on any one frame) analyses pertaining to video data focused on these 

two species separately. However, resulting sequenced images had a number of partial 

sharks present (i.e., only snout or portion of the caudal fin visible), which reduced the 

ability of observers to distinguish between these two species. To account for this 

limitation, all counts of shark species present on a particular image were aggregated for 

subsequent analyses pertaining to MeanCount (average count over a subsample of 
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frames). Slight differences in recording times between sets resulted in small variations in 

MeanCount sample sizes (395.49139.01; mean SD). Average MaxN estimates from 

mono cameras for blacktip reef (5.064.17) and sicklefin lemons (1.942.42) were lower 

than those provided by FS cameras (6.626.04 - blacktip reef; 2.032.64 -sicklefin 

lemon). Similarly, MeanCount estimates were lower on mono cameras (1.401.65) than 

FS cameras (3.253.69). Furthermore, a higher rate of images with zero counts was 

observed on the mono camera (n=3,930) compared to the FS camera (n=2,120). 

Relationship between catchability and true site abundance 

 Full-spherical cameras provided a substantial increase in FOV, which often 

resulted in higher shark counts compared to the standard mono camera (Fig.2). 

Regardless of the relative abundance metric used, catchability of mono cameras 

decreased linearly as abundance on the FS camera increased (Fig. 3). For estimates of 

MaxN, this relationship held true for both the sicklefin lemon and the blacktip reef sharks 

(p <0.05 for both species; Fig. 3A). However, for sicklefin lemon sharks, which were 

detected in lower abundances, the negative correlation between catchability and site 

abundance was heavily influenced by two data points, with all others showing no 

relationship. Consistent with these findings, catchability derived from MeanCount 

estimates also showed a significant negative relationship with site abundance (p<0.001; 

Fig. 3B).  

Detection probability 

 Results from the Bayesian binomial model indicated a significant difference 

between detection probabilities for FS (81.200.007%) and mono cameras 
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(69.880.008%). Despite this disparity, there was no difference between the two cameras 

in their probability of false negatives on the entire video (reporting a species as absent, 

when it is truly present), with neither detecting a shark when the other did not. 

Discussion 

 By simultaneously sampling with FS and mono cameras, we were able to 

demonstrate how limited FOVs may reduce the effectiveness of these optical 

technologies in monitoring shark populations, particularly in regions where abundances 

are relatively high. Our field sampling efforts revealed that catchability estimates derived 

from MaxN had a significant negative correlation with site abundance. These findings 

support previous simulation efforts, which revealed MaxN to be non-linearly related to 

site abundance (Schobernd et al. 2013; Campbell et al. 2015). MaxN’s hyperstable 

relationship with site abundance is believed to be due to its basis as a maximum order 

statistic, whereby only the maximum count is considered. This limitation may result in 

estimates reaching a maximum threshold at which they plateau due to camera saturation 

or issues with spatial distribution of sharks around the cameras, while true site abundance 

continues to increase. For these reasons, Schobernd et al. (2013) postulated that estimates 

of larger predators from video data (which are often less aggregated and found in lower 

densities than other reef fishes) would be less influenced by issues of hyperstability. 

While this may be true for certain species and locations, our results do not support this 

hypothesis, as site density frequently exceeded the catchability threshold of mono 

cameras for both blacktip reef and sicklefin lemon sharks. Furthermore, whereas previous 

works found using MeanCount may resolve issues with hyperstability (Conn 2011; 

Schobernd et al. 2013; Campbell et al. 2015), we also observed a significant linear 
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decline in catchability derived from MeanCount as site abundance increased. It is 

possible that the large size of our focal species, coupled with densities higher than would 

occur naturally, as well as the presence of bait could have driven these results. 

 In addition to concerns surrounding catchability, mono cameras were found to 

have a significantly lower probability of detecting sharks than FS cameras at any given 

point in time. Namely, changing the cameras’ FOV from mono to FS improved the 

probability of shark detection by nearly 12%. However, it should be noted that neither the 

mono (70%) nor the FS camera (81%) had a 100% estimated detection probability based 

on the modeled probability of occurrence, which is often assumed in ecological studies 

(Yoccoz et al. 2001; Kellner & Swihart 2014; Monk 2014). Failure to account for this 

imperfect detection can result in biased and inaccurate estimates of species distributions 

(Chen et al. 2013), environmental drivers of these distributions (Gu & Swihart 2004), and 

trends in population dynamics (Kery & Schmidt 2008; Buckland et al. 2011).  

The results of this study have several implications for the use of video surveys to 

monitor elasmobranch populations. Indices of relative abundance, particularly for 

elasmobranchs, are frequently generated using zero-inflated models (i.e., delta-

generalized linear models; Bonfil 2005; Cortés 2011; Cortés et al. 2015). These types of 

models rely on the ability to accurately predict if a species will be present at a particular 

sampling location (i.e., binomial presence/absence data), as well as providing accurate 

counts if a species is present (i.e., Poisson presence only data). If either component is 

imprecise, the resultant index of relative abundance derived from these models is also 

imprecise. Results from this study reveal issues surrounding both factors derived from 
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traditional mono camera video surveys for elasmobranchs. Estimates of MaxN appear to 

be saturated around 6-7 individuals for the two shark species we examined. This 

hyperstable relationship between MaxN and true site abundance may hinder detection of 

changes in local population sizes through time. Imagine, for example, that a region’s true 

site density is 12 sharks per unit area sampled by BRUVs. Given issues with saturation, 

as evident in this study, the estimated MaxN for this region would most likely be around 

6. If this population then experience marked declines over some time period (e.g., a 50% 

decrease over five years), estimates of MaxN would appear unchanged over this time 

interval, leading to the incorrect assessment that the population is relatively stable. 

Similarly, this saturation issue may prevent one from detecting spatial differences in 

relative abundance (e.g., site 1 has a true density of 15 sharks/area, site 2 has true density 

of 7 sharks/area, but both have a MaxN estimate of 7). However, it should be noted that 

the results of this study indicate these issues will likely only be of importance once a site 

density exceeds a certain threshold (i.e., 6-7 sharks for the focal species observed in this 

study). For species that occur at lower densities (and are thus likely below any threshold 

value), survey results from FS and mono cameras will not likely differ significantly. 

Although MeanCount has been shown to reduce hyperstability for teleost fishes (Conn 

2011; Schobernd et al. 2013; Campbell et al. 2015), we did not find this benefit to be true 

for our focal elasmobranchs. Furthermore, detection probability on any given image was 

relatively low for the mono camera. This low detection probability likely drove the 

hyperstable relationship with true site abundance by highly inflating zero counts. This in 

turn would also affect the binomial component (presence/absence) of any delta model 

approach used to create an index of relative abundance. However, the probability of a 
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false negative for the video as a whole did not appear to be affected by the FOV of the 

camera. It should be noted, however, that the probability of occurrence for the entire 

video was not modeled, and thus catch histories of (0,0) were considered as a species 

being truly absent, when it is possible a species was present and simply not detected by 

either camera. Although this may bias our estimates of absolute detection probability, this 

bias would impact each gear type equally, and thus does not influence our resulting 

comparisons. When determining whether to use MaxN or MeanCount to enumerate 

elasmobranchs, researchers should also take into account species-specific considerations 

such as movement patterns and behaviors (e.g., slow moving species that have an affinity 

for the substrate may stay in front of the camera longer, and thus increase MeanCount 

estimates) that may influence which metric is more appropriate.  

 Despite the problems with mono cameras highlighted above, video surveys 

remain a viable tool for monitoring elasmobranch populations if limitations of restricted 

FOVs can be reduced or removed. By increasing the FOV to FS, we were able to greatly 

increase our instantaneous detection probability for elasmobranchs. Furthermore, 

increasing FOV reduced the effects of gear saturation at higher densities, and thus likely 

reduced the hyperstable relationship between counts derived from cameras and a site’s 

true abundance. This issue may be particularly important for larger species of sharks, for 

which mono cameras would become saturated with relatively few individuals in the 

camera’s FOV. Critically, these results demonstrate the influence of FOV on resulting 

video survey abundance estimates currently used by conservation managers to monitor 

elasmobranch populations. However, a major assumption of this study (as well as in 
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previous work), is that FS cameras represent the true site abundance. Full-spherical 

cameras also likely experience deviations from linearity with true site abundance due to 

density, environmental (e.g., poor visibility), and species-specific considerations (e.g., 

cryptic behavior).  These issues, however, should be reduced compared to standard video. 

Future research needs to be conducted for a variety of species, and across multiple 

systems to investigate the potential for regional, environmental, physical, and species-

specific considerations that may influence resulting estimates. Following these efforts, it 

may be possible to develop a correction factor so that researchers can convert estimates 

of relative abundance from mono cameras to an equivalent FS estimate (e.g., with a linear 

model allowing for an asymptotic effect), and thus provide a method to incorporate 

historic data with estimates derived from emerging FS technology. Full-spherical camera 

technology continues to develop, including recent advances reducing the number of 

cameras required (i.e., BoxFish 360 VR; https://www.boxfish-research.com/products) as 

well as now allowing for stereo-camera length estimates of fishes (Campbell personal 

communication). As the technology continues to advance, and the associated costs 

continue to decline, it is likely that FS video surveys will become the new norm for video 

surveys of elasmobranchs and teleost fishes. 
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Figures 

 
Figure 1. Baited Remote Underwater Visual Full-spherical (BRUVfs) array deployed in 

Tetiaroa, French Polynesia (July 17th to August 8th, 2017). Red inset depicts GoPro F360 

mounting used to later generate full-spherical videos, with its location on the BRUVfs 

also highlighted with a red square. Orange inset depicts the single Hero4 GoPro used as 

the mono camera comparison, with its location on the BRUVfs highlighted with a 

corresponding orange square. 
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Figure 2. Still images extracted from stitched full-spherical (left panel) and mono (right 

panel) BRUV deployments in Tetiaroa, French Polynesia (August, 2016). Red dots 

indicate elasmobranch species that could be identified (left panel, N=8; right panel, N=2) 

at the same point in time.
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Figure 3. A) Relationship between site abundance (assumed to be equivalent to the full-

spherical count) and estimates of MaxN from mono camera (upper panel), as well as 

catchability (q) of the mono camera (lower panel). Blacktip reef sharks (Carcharhinus 

melanopterus) are represented by black X marks, whereas sicklefin lemon sharks 

(Negaprion acutidens) are represented by open grey squares. Data points with both X and 

open grey squares represent both sicklefin lemon and blacktip reef sharks. Dashed lines 

represent what relationship would be typically assumed for MaxN (upper panel; y=x), 

and catchability (lower panel; q=1.0). B) Relationship between site abundance (assumed 

to be equivalent to full-spherical count) and estimates of MeanCount from mono camera 

(upper panel), as well as catchability (q) of the mono camera (lower panel). Data are 

aggregated across both sicklefin lemon and blacktip reef sharks and represented by open 

circles. Dashed lines represent what relationship would be typically assumed for 

MeanCount (upper panel; y=x), and catchability (lower panel; q =1.0). 



 38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III 

INFLUENCE OF SHARK BEHAVIOR AND ENVIRONMENTAL CONDITIONS ON 

BAITED REMOTE UNDERWATER VIDEO SURVEY RESULTS
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Abstract 

Baited remote underwater video systems (BRUVS) have become an important 

and frequently used tool by resource managers to monitor relative abundances for a 

variety of marine species. The sampling method offers a number of advantages over 

traditional fisheries surveys including being minimally invasive, reduced issues with 

sampling selectivity, and providing insights into species behavior and habitat use. As 

with any abundance survey method, fundamental assumptions of the technique are that 

counts derived from videos accurately reflect true changes to abundances, while being 

robust to changes in density-independent factors. We tested these assumptions using a 

spatially-explicit individual-based simulation model for two of the most commonly used 

video survey metrics of relative abundance; MaxN and MeanCount. Simulating a 1-km2 

area over a 60-min BRUV deployment targeting elasmobranch species, we evaluated how 

resulting estimates of each metric were influenced by swimming speed, relative 

directness of movement patterns, relative attraction strength to bait, bait plume size, and 

water visibility. By simulating both standard (120) and full-spherical (FS; 360) fields of 

view, we were also able to explore if newly developed FS cameras could help reduce the 

influence of these density-independent factors. Each simulation scenario, whereby one 

factor varies within a range of values while all others are held constant, was repeated 

1,000 times. An additional simulation scenario, where all factors were allowed to vary 

across their respective ranges simultaneously, was repeated 1,000 times and was used to 

develop a generalized linear model (GLM) for each video survey metric and camera 

combination. Allowing for main effects of all factors, GLM results indicated that both 

density and density-independent factors were highly significant in predicting metric 
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values, regardless of the camera type used. Simulations indicated that the relative bias in 

MaxN and MeanCount estimates were not constant across the range of values used for 

the density-independent factors tested. The direction and the shape of relationships were 

similar across metrics and camera types, however, MaxN estimators with FS cameras 

showed the lowest bias overall. Despite the lower bias for the FS cameras they showed 

higher variability in the bias estimates themselves. These findings highlight how current 

video survey metrics are sensitive to factors unrelated to changes in density. Given that 

these trends held true for both FS and standard cameras, future efforts should focus on 

developing robust video survey metrics of relative abundance. 

 

Introduction 

The use of baited remote underwater video systems (BRUVS) to study fish 

communities in the marine environment has dramatically increased over the last two 

decades (Cappo et al. 2001; Cappo et al. 2006; Harvey et al. 2013; Whitmarsh et al. 

2017). The popularity of the method stems from its ease of use, low cost, minimal 

invasiveness, and because of the insights into species behavior and habitat use that it 

provides (Bacheler et al. 2013; Klages et al. 2014; Roberts et al. 2016; Whitmarsh et al. 

2017). Although there is no single accepted protocol, BRUVS generally involve 

deploying a camera mounted to a platform with an attached bait source for an extended 

period of time (i.e., 60 mins; Cappo et al. 2006; Whitmarsh et al. 2017). One critical 

assumption of this method is that individuals who come in contact with the bait plume 

will search for and encounter the bait source at some point during the deployment, where 

they can be ‘sampled’ by the camera (Cappo et al. 2006). The non-extractive property of 
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BRUVS makes them a preferred method to study many depleted species and populations, 

but also presents unique challenges not found in fishing-based surveys. Chiefly, fishes 

have the potential to be observed multiple times in a single deployment, and thus simply 

recording raw counts would likely artificially inflate abundance estimates (Cappo et al. 

2006). Accordingly, various methods have been developed to enumerate species observed 

on BRUVS. 

Methods to quantify fishes from BRUVS include time in – time out, time at first 

occurrence (T1st), MeanCount, and MaxN. Time in – time out is calculated by monitoring 

both the time of entry and exit for each animal observed on the BRUV video data and is 

most commonly used for behavioral studies (Schobernd et al. 2014). Similarly, T1st refers 

to the first time a species is observed on a video, and can be used to get an idea of the 

distance the animal was from the bait source and/or the strength of attraction to bait for 

that species (Campbell et al. 2015). To monitor the relative abundance of species through 

time and space, either MeanCount or MaxN is typically employed (Campbell et al. 2015; 

Whitmarsh et al. 2017). Of these two, MaxN is the most commonly used method, and is 

simply defined as the maximum number of individuals for a species of interest observed 

on any single video frame (Ellis and Demartini 1995). By limiting counts to this 

conservative approach, researchers prevent the possibility of counting the same 

individual multiple times. MeanCount calculates a mean estimate of abundance over the 

duration of the BRUV by averaging the counts for each species of interest on every frame 

taken at a specified sampling interval (i.e., every 5,10, 30, or 60s; Bacheler et al. 2013; 

Schobernd et al. 2014; Campbell et al. 2015). 
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As with any survey index, metrics of relative abundance derived from video data have 

a number of inherent biases. However, what distinguishes camera systems from 

traditional survey techniques, is these biases can be readily explored rather than simply 

ignored. Understanding, acknowledging, and mitigating these biases is essential for 

implementing video surveys, and enabling the correct interpretation of survey results for 

assessment purposes. In particular, the relationship between the calculated metric and 

true changes to local population sizes, aka density, must be understood. Typically in 

fisheries, this relationship is assumed to be linear (Maunder and Starr 2003), despite 

many indices exhibiting non-linear relationships with the true abundance (Hilborn and 

Walters 1992; Erisman et al. 2014). Failing to understand these relationships can lead to 

hyperstability or hyperdepletion, whereby survey metrics remain constant even as the 

actual abundance is changing. MeanCount was developed in response to concerns that 

MaxN had a non-linear relationship with true abundance (Schobernd et al. 2014) and has 

been shown, through simulations and empirical data, to reduce issues of non-linearity 

under certain conditions (Schobernd et al. 2014; Campbell et al. 2015). However, this 

improved linearity was not observed for large elasmobranch species, for which both 

MaxN and MeanCount were shown to be ineffective at reflecting changes in abundance 

at high densities (Kilfoil et al. 2017; Sherman et al. 2019). These findings highlight that 

no single count method is consistently superior for all research purposes, species, or 

environments. Furthermore, it is possible that these count methods are theoretically 

sound, but are simply limited by the camera technology often employed. For example, 

advances in full-spherical (FS) cameras have demonstrated that by increasing the 

observed field of view (FOV), both MaxN and MeanCount can maintain a linear 
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relationship with true abundance across a wider range of localized densities (Campbell et 

al. 2015; Kilfoil et al. 2017; Campbell et al. 2018; Whitmarsh et al. 2018). 

In addition to preserving a linear relationship with changes in abundance, survey 

metrics must also be robust to fluctuations in factors independent of changes to local 

densities (e.g., abiotic conditions). If this relationship does not hold true for a chosen 

metric, it becomes difficult to determine if changes detected by a survey are caused by 

true changes in species densities, or are instead a byproduct of unrelated variables. 

Although it is widely accepted that density-independent factors such as swimming speed 

(Ward-Paige et al. 2008), movement patterns (Watson et al. 1995; Fewster et al. 2008), 

and environmental conditions (Gruss et al. 2017) can influence survey metrics, it is often 

assumed (either implicitly or explicitly) that these biases are negligible and/or constant, 

thus having a minimal impact on survey results. Further obscuring our understanding of 

the potential impacts of density-independent factors on survey results is the inability of 

researchers to isolate the effects of any one variable. This is particularly true for large 

bodied species such as sharks, for which laboratory experiments are often logistically 

impractical. Given that BRUVS are frequently used to study and inform management 

decisions for elasmobranch species (e.g., Bond et al. 2012; Goetze and Fullwood, 2013; 

Murray et al. 2019; Winter et al. 2019), there remains a need to understand how density-

independent factors may influence metrics of relative abundance for this group. 

Accordingly, we explored these questions within a simulated spatially-explicit, 

individual-based modelling approach. Specifically, our objects were to determine how 

density-independent factors – including swimming speed, directedness of movement 

patterns, species attraction strength to bait, bait plume size and visibility – influence 
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relative bias for estimates of MaxN and MeanCount for BRUVS. Moreover, we explored 

how these relationships varied between standard and FS cameras. Although we limited 

the scope of our study to elasmobranch species, the results have broad applications to 

BRUVS and other underwater video surveys used to gather fisheries-independent data. 

Methods 

To simulate a BRUV survey aimed at enumerating elasmobranchs, we 

constructed an individual-based model (IBM) within the R core environment (R Core 

Team, 2018). For simplicity, our IBM simulation represented a featureless two-

dimensional space, having an origin in the lower left quadrant (0,0; X, Y) and an upper 

bound of 1000 for each axis, representing a 1-km2 area. Every simulation occurred in 

discrete time steps representing one second intervals and was comprised of three primary 

components: bait plume, shark movement, and camera detection field. 

Bait plume 

To generate bait plumes in our two-dimensional space, we used a simple bait odor 

particle dispersal model developed by Vabø et al. (2004). Following this general 

procedure, an odor source was placed in the center of the study site (500,500; X,Y), with 

a large number of initial odor particles (𝑆0) randomly placed within a small region 

representing a bait bag (BB). At each time step the leaching rate (𝜆) determined how 

many particles were released from the BB using the equation: 

𝑆𝑡 =  
𝑆0

(1 + 𝜆 ×  𝑡) 
 

where 𝑆𝑡 represents the amount of odor particles remaining in the BB at time step 𝑡. 

These released odor particles (𝑂𝑃) then moved through the simulated space based on 
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their previous XY position, a current vector (𝑈) which was assumed to be constant 

throughout the study region, and a small degree of diffusion with random movement.  

Specifically, at any time step the XY position of each particle  (𝑂𝑃𝑋𝑡
 and 𝑂𝑃𝑌𝑡

 

respectively) was defined by the equations: 

𝑂𝑃𝑋𝑡
=  (𝑂𝑃𝑋𝑡−1

+  𝑈𝑥) + (𝐷 ×  √𝐷𝐹 ) 

𝑂𝑃𝑌𝑡
=  (𝑂𝑃𝑌𝑡−1

+ 𝑈𝑦) + (𝐷 ×  √𝐷𝐹  ) 

where 𝐷 denotes a random error with a uniform distribution between a positive and 

negative displacement parameter (𝐷𝑆𝑃), and 𝐷𝐹 represents a constant diffusion rate. This 

process was repeated for 300 time steps, representing a ‘burn in’ period for BRUV 

surveys whereby researchers do not review footage. This ‘burn in’ period is typically 

used to allow for sediment to resettle, the FOV to clear, and to reduce the impact of 

potential attraction or avoidance behaviors of fishes to the platform. Although rarely 

considered, it is also likely that during this time the gear effected area of the BRUV has 

its largest variation as the bait plume disperses through the water column. The current 

vector (direction) was set to be held constant for all simulation runs, and by varying the 

speed of the current vector we were able to generate bait plumes of varying sizes and 

shapes. Odor particle point data were then smoothed at the end of the ‘burn in’ to give a 

more realistic odor gradient by converting to raster data using a high bandwidth 

(bandwidth =15) kernel density estimation procedure in the Kernsmooth package (Wand, 

2015). These resulting raster data were then rescaled with the highest value equal to one, 

and the total number of raster cells containing positive odor particle values used to 

calculate bait plume sizes (Fig. 1). 
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Shark movement 

Swimming behaviors for simulated sharks were also modelled using an 

individual-based approach. Each simulated shark’s movement properties and behavioral 

rules were tracked and generally defined in relation to common foraging strategies (i.e., 

scavenging), whereby each simulated shark had a total length of one meter. At the initial 

time step (𝑇0) a total number of sharks (Nsharks) were randomly populated within the study 

region and given a random heading from 0-360. At each time step, every shark 

determined the odor particle concentration of the raster cell associated with its XY 

location, which was used to assign the shark to one of four behavioral states; plume 

search, bait search, near bait, and bait found. Each behavioral state had its own set of 

rules that determined how each shark moved by influencing their selected step length 

(a.k.a., distance moved) and heading choice.  

Plume search behavior was assigned when the shark had yet to detect any odor 

particles within its current cell. Under plume search behavior, the shark selects a step 

length from a normal distribution defined by a mean (𝜇𝑠𝑝𝑒𝑒𝑑) and variance (𝜎𝑠𝑝𝑒𝑒𝑑
2 ). Its 

heading options were then limited to either any three cells in front of their of their current 

heading (representing a range of -45, 0, or +45), with an equal probability of selection 

initially assumed. However, the probability of selecting its current heading was then 

multiplied by a directionality strength parameter (𝐷𝑆), which varied from 1-10, where 1 

would indicate no directedness of movements, while 10 would be considered a highly 

directed movement pattern as it was 10x more likely to move in the same direction that to 

choose a neighboring cell. All sharks were also assigned a spatial-memory of their last 25 
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time-steps, whereby a shark would not select a cell previously selected within this tabu 

list.  

If a shark detected an odor particle concentration of greater than zero within its 

raster cell, it moved from plume search to bait search behavior, and would not re-enter 

plume search for the remainder of the simulation. While in bait search, a shark’s step 

length was selected from the same normal distribution as defined in plume search, but 

with its mean parameter doubled to simulate an excited response to bait by increasing 

swimming speed. Its heading options were again restricted to its previous heading or 

either adjacent cell, with an assumed equal probability of selection for each. However, 

the odor values for each potential heading were evaluated by the shark prior to selection, 

with the highest having its probability of selection multiplied by an attraction strength 

parameter (𝑎), that could vary from 1-10. If however, this value was less than 95% of the 

shark’s current cell value (across a smoothed raster surface), the shark would then 

determine that it was likely moving away from the source of the bait and instead picked a 

random heading in the another direction (i.e., 90, 135, 180, 225, or 270 relative to 

current heading). 

If the shark moved to a raster cell adjacent to the BB, its movements were 

governed by near bait behavioral rules. These movement rules were very similar to bait 

search behavior, but reduced the mean value defining the step length distribution to half 

of its initial value, thus slowing the sharks down by roughly half as they approached the 

bait source (determined from personal observations of sharks interacting with bait bag 

from BRUV footage). 
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Lastly, if a shark was in contact with 𝐵𝐵 (meaning in the same raster cell), its 

movements were then governed by bait found behavioral rules. The rules governing this 

behavior were very similar to the previously described near-bait behavior. The shark used 

the same step length distribution and heading selection rules but had a 50% probability of 

implementing its chosen step length, and a 50% probability of selecting a step length of 0 

instead (thus remaining in contact with the bait). 

In an addition to these behavioral types, shark movements are dictated by a set of 

rules which are held universal. To maintain a constant shark density throughout the 

simulation, the study site is considered to be a closed system, meaning sharks cannot go 

outside the X and Y axis bounds. If a shark’s selected heading and step length go outside 

these bounds, the shark will instead choose a random heading that does not go outside the 

study region. Secondly, each raster cell has a maximum of 4 sharks allowed at any time 

step in its represented 1-m2 area. If sharks’ movements result in having more than 4 

individuals in any one raster, n sharks will be randomly selected to move into adjacent 

cells (n=N-4, where N is the total number of sharks found in the cell at the beginning of 

the time step). The resulting shark tracks generated by the IBM (Fig. 2) were then 

visually compared to shark tracks gathered in previous empirical (Heithaus et al. 2002) 

and simulated (Ward-Paige et al. 2008) studies to verify whether the movement patterns 

were biologically realistic. 

Camera detection field 

For each simulation, we modeled a BRUV deployment with two simultaneous 

camera recording systems. The first camera assumed a 120 FOV (referred to as standard 

camera), while the second assumed 360 (referred to as full-spherical). Cameras were 
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fixed at the center of the study area (500,500) for the whole duration of the simulation. 

Cameras were oriented in the same direction as the current vector for each simulated 

deployment. Both cameras were assigned two visibility parameters (Fig. 3). The first, 

lower visibility (𝐿𝑉), defined the distance (meters) within which a camera could detect a 

shark 100% of the time, given the shark was within the camera’s FOV. The second, upper 

visibility (𝑈𝑉), was set to 1.5 𝐿𝑉 and defined the distance behind which sharks could not 

be detected by the cameras. A linear decline in detection probability was assumed 

between 𝐿𝑉 and 𝑈𝑉, resulting in steeper declines in detection rates for lower visibility 

environments. If a shark was detected within a camera’s FOV, it cast a 5 visual shadow, 

behind which subsequent sharks could not be detected by the camera. For each simulation 

run, the number of sharks detected by each camera type was reported at every time step. 

Simulation scenarios and analyses 

To determine which and how factors impact MaxN and MeanCount estimates, 6 

variables were considered. These variables included aspects of shark behavior 

(swimming speed, attraction strength to bait, directedness of movement patterns), 

environmental conditions (visibility, bait-plume size), and density. To test the individual 

effects of each of these factors, a simulation scenario was established for each, where the 

variable of interest was made to vary over a range of biologically acceptable values (e.g., 

burst swimming for Carcharhinus leucas of 5.3 ms-1; Gray 1971) while all other 

parameters were held constant (Table 1). Each scenario was run for 3600 time steps 

(representing a 60-min deployment) and replicated 1000 times. For each simulation run, 

the estimated MaxN and MeanCount (using a 10s sampling interval) were noted for each 
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camera. Using these estimates, a measure of relative bias for each metric was calculated 

at the end of every simulation run using the equation: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 = (𝑀𝑐 − 𝑁)/𝑁 

where 𝑀𝑐 denotes the metric derived count, and N represents the true number of sharks in 

our simulated space.  

Lastly, a simulation scenario was conducted where all parameter values were 

allowed to vary between their lower and upper bounds, and was replicated 1,000 times. 

From this scenario output, we created a generalized linear model (GLM) trying a variety 

of appropriate distributions (i.e., Poisson, Gamma, Negative-binomial, Tweedie) with 

video survey metrics of relative abundance for each camera type modeled using all 

factors as predictor variables, allowing for main effects. From these, the best model was 

selected using AIC with the MASS package stepAIC function (Venables and Ripley, 

2002). 

Results 

A total of 6,000 simulation runs were conducted, consisting of 1000 runs for each 

simulation scenario. The baseline run, whereby density was varied while all other 

parameter values were held constant, indicated that our simulated BRUVS were capable 

of detecting changes in localized abundance. For FS cameras, both MaxN and 

MeanCount demonstrated a linear relationship with site abundance (Fig. 4). However, 

similar to previous empirical work (i.e., Kilfoil et al. 2017; Sherman et al. 2019), standard 

cameras had an apparent saturation effect after the number of sharks present exceeded 

approximately 25, after which FS and standard camera counts began to diverge (Fig.4). 
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When density is held constant, the null assumption often made by researchers is 

that the relative bias introduced by density-independent factors would be constant over a 

wide range of potential values. In contrast to this null expectation, nearly all of tested 

variables introduced bias into our estimates of relative abundance, regardless of the 

camera type or metric used. More importantly, these relative biases were not constant 

over a range of each parameters’ respective values (Fig. 5). When considering all 

parameters together, relative bias showed the highest variability when MaxN and FS 

cameras were used as compared to MeanCount and Standard Cameras. However, the 

MaxN with FS cameras consistently showed lower relative bias in comparison with 

MeanCount and standard cameras across all parameters and all parameter values. 

Although it should also be noted that FS and standard cameras had very similar 

relationships between parameters and relative biases. The exact relationship between a 

density-independent factor’s parameter value and introduced bias did vary from one 

parameter to another. Swimming speed had the most complicated relationship with bias. 

As speed of individuals increased, the amount of relative bias declined in a linear fashion, 

until a speed of 2.0 ms-1 was reached. After this apparent threshold, relative bias 

increased as speed went up. Attraction strength to bait also demonstrated a linear decline 

in bias as its value increased to 2.5, after which no apparent pattern exists. Both 

directionality strength and visibility had a linear decline in relative bias as their parameter 

value increased. Interestingly, the size of the bait plume within the study area had no 

apparent relationship with the amount of bias introduced into either metric of relative 

abundance, regardless of the camera used. 
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The GLM was parameterized with a number of different error distributions, but 

ultimately Poisson and Gamma were deemed most appropriate for MaxN and MeanCount 

estimation respectively, regardless of camera type. The results of each GLM indicated 

that while density was the most influential factor in predicting metric values, all density-

independent factors were also found to be highly significant (P<0.001; Fig. 6). 

Furthermore, the estimated coefficient of each parameter was similar across all metrics 

and camera types. Following density, visibility had the greatest influence on estimated 

metric values, followed by speed and/or attraction strength to bait, and lastly plume size 

and directedness of movements (Fig. 6). 

Discussion 

The results of the present study quantified the potential influence of 

environmental factors and aspects of species behavior on two of the most widely used 

video survey metrics of relative abundance, MeanCount and MaxN. Overall, our 

simulations highlighted that factors unrelated to changes in abundance can significantly 

impact video survey results. Outside of density, visibility had the strongest influence on 

counts derived from video data, suggesting that if not accounted, differences in visibility 

may lead to a misinterpretation of BRUV survey results. Researchers should therefore 

make it standard practice to quantify the approximate visibility range over the survey 

period (i.e., examining surface visibility via Secchi disk) or even quantifying how 

visibility may change over the course of the BRUV deployment using stereo-camera 

systems. Additionally, speed had a very complicated relationship in influencing counts 

derived from video data, with high relative bias occurring at both high and low speeds. 

Previous research has found similar results; whereby highly mobile fishes are over-
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counted in underwater visual censuses (Ward-Paige et al. 2010). Given that speed is 

highly correlated with the size/age of elasmobranchs, this pattern with bias could lead to 

inaccurate assessments of local population size/age structures, whereby juveniles have a 

lower probability of being sampled than larger adults. Furthermore, similar issues could 

arise if researchers attempt to compare animals and species with differing speeds, 

mobility and behavioral patterns in habitat use. The same issues apply when trying to 

compare individuals or species which differ in their relative attraction towards bait, as 

well as the directedness of their movement patterns, both of which were associated with 

increased bias as their respective values decreased. 

The popularity of MaxN and MeanCount as metrics of relative abundance is 

likely because of their ease of use, relatively short processing times, ability to compare 

results to previously published literature using the same techniques, and their 

conservative methodology which prevents inflating abundance estimates via double 

counting individuals (Willis and Babcock 2000; Cappo et al. 2010). However, to be a 

viable means for monitoring populations, estimates must not only be conservative, but 

ideally maintain a linear relationship with true abundance, or at the very least have this 

relationship be clearly understood. Previous research using simulations and empirical 

data have indicated that this assumption likely does not hold true under certain conditions 

for either MaxN (Campbell et al. 2015; Kilfoil et al. 2017; Sherman et al. 2018) or 

MeanCount (Kilfoil et al. 2017). Reasons for this divergence from linearity are not well 

understood, but could be caused by species exhibiting non-uniform spatial distribution 

around BRUVS (Campbell et al. 2015), or saturation of the camera under high densities 

(Kilfoil et al. 2017). Not surprisingly, researchers have found that by increasing the 
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camera FOV used in video surveys, both MaxN and MeanCount can preserve a linear 

relationship with true abundance over a wider range of values (Campbell et al. 2015; 

Kilfoil et al. 2017; Campbell et al. 2018; Sherman et al. 2018). Our simulation results 

support these previous findings, with MaxN and to a lesser extent, MeanCount deviating 

from linearity as local abundance increases using the standard view camera. However, it 

should be noted that the deviation from linearity did not occur until very high densities 

were reached (approximately 20 sharks/km2), and thus may not be of great concern when 

sampling relatively low density environments. By increasing the simulated FOV to mimic 

newly developed full-spherical (FS) cameras, both metrics proved capable of maintaining 

a linear relationship with true abundance. Unfortunately, this advantage for FS cameras 

did not extend to reducing the influence of density-independent factors on metric 

estimates. MeanCount and MaxN estimates from both FS and standard cameras were 

highly sensitive to changes in factors unrelated to density, including swimming speed, 

attraction to bait, directness of movements, and distance at which you can positive 

identify fish from camera footage (camera visibility range). Furthermore, the bias 

introduced by these density-independent factors appears to show greater variability for 

FS cameras over the range of each parameters’ value. Importantly, this trend is likely a 

result of FS cameras showing lower bias than standard cameras across all parameters and 

all parameter levels tested. Though optical technologies are constantly improving and 

will likely provide solutions to many issues facing visual surveys (e.g., multispectral 

imaging to increase camera visibility range), researchers should also simultaneously work 

to develop more robust metrics of relative abundance that can be derived from these data. 
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As with any simulation, our IBM model attempted to simplify inherently complex 

biological and ecological processes to improve our understanding of how these factors 

may interact with one another in situ. Though relatively simple, additional complexities 

could be integrated into our model, depending on the research questions one wishes to 

answer. Though not the intended focus of the present study, future iterations could 

explore how results may vary under different models of species movement patterns (i.e., 

levy vs. correlated random walks), additional sources of attraction (i.e., visual, acoustic), 

predatory strategies (i.e., lie-and-wait vs. roving predators), interactions effects between 

density-independent variables and density, and added complexities to the simulation’s 

spatial structure (i.e., adding a third dimension or incorporating habitat complexity). 

Furthermore, though the aim of this paper was to cover a potential parameter values for a 

wide range of shark species, researchers could use this simulation framework to test 

similar questions focusing on specific species or environments. Additionally, further 

efforts should explore the potential influence of bait-plum size on survey metrics and 

animal behavioral responses. Interestingly, our simulation results indicated that bait-

plume size had a relatively small, but significant, negative impact on estimates of relative 

abundance. This is in contrast to previous studies (Harvey et al. 2007; Heagney et al. 

2007; Bernard and Gotz, 2012; Dorman et al. 2012), and may be caused by the closed-

system structure of our IBM. By restricting the survey to a 1-km2 area, it is possible that 

the effects of relatively large bait plumes are dampened, since their greatest impact may 

be caused by attracting sharks from farther away than this limit.  

Overall, our simulation study indicates that the density-independent factors can 

significantly affect metrics of relative abundance derived from video data. Given that 
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BRUVS are frequently used by resource managers to monitor populations trends (Barord 

et al. 2014), gain insights on species richness (Mallet et al. 2014; Andradi-Brown et al. 

2016), and to evaluate the effectiveness of marine protected areas (Sanguinetti, 2013; 

Bond et al. 2017), it is critical that researchers understand how their survey results may 

be impacted by factors unrelated to density. Baited Remote Underwater Video Systems 

are still a viable survey method, capable of detecting and tracking changes to local 

population sizes with minimal impact on the animals and habitats in which they are 

employed. However, until more robust metrics of relative abundance are developed and 

tested, or the biases of current metrics are further explored and accounted for, researchers 

must carefully evaluate if differences observed in video data are driven by differences in 

population size, or some other unrelated factors. 
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Figures and Tables 

 
Figure 1. Simulated bait odor particle locations (indicated by small black dots) following 

five minutes of dispersal from the center (500,500) of the study system with a constant 

current speed of 1.5 meters per second. Odor particle locations were used to create a 

smoothed raster of particle concentrations of 1.0 (highest concentration, indicated by 

pink) to 0.0 (lowest concentration, indicated by grey).  
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Figure 2. A) Resulting shark movement tracks (indicated by black lines) for a simulated baited remote underwater video 

deployment, with a mean swimming speed of 1.5 meters per second. B) Zoomed image of the same shark movement tracks, 

highlighting track patterns once the shark is in contact with the bait plume (indicated by color gradient of pink to light orange).
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Figure 3. Figure illustrating full-spherical and standard camera detection ranges for simulated baited remote underwater video 

survey deployments. Red circle represents both camera types, with yellow shading used to indicate restricted field of view (120) 

for standard camera. Standard camera is oriented to the direction of the simulated current flow, and detection probability for both 

cameras (indicated in blue shading) reduces a function of distance from the camera. Inside the lower visibility (LV) region, 

cameras have a 100% probability of detection for sharks, and outside the upper visibility (UV) region cameras have a 0% detection 

probability. All sharks (represented by small black circle) cast a 5 degree visual shadow, behind which subsequent sharks cannot 

be detected by either camera.
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Figure 4. Relationship between shark density (1-125/km2) and resulting MaxN (upper 

panel) and MeanCount (lower panel) estimates from simulated baited remove underwater 

video system deployment. Black circles represent estimates derived assuming a full-

spherical (360) field of view, while grey dots assume a standard (120) view. White 

dashed lines represent a fitted linear model using the geom_smooth function in R’s 

ggplot2 package
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Figure 5. Comparison of MaxN (upper panels) and MeanCount (lower panels) estimates’ 

relative bias in relation to: A) Mean swimming speed B) Relative attraction strength to 

bait (alpha) C) Directedness of movement patterns (directionality), D) Camera visibility 

range, E) Bait plume size (km2). White dashed lines represent a fitted linear model using 

the geom_smooth function in R’s ggplot2 package.
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Figure 6. Standardized coefficient estimates for all highly significant factors in 

generalized linear models created for MaxN using full-spherical cameras (FS_MaxN; 

light-grey circle), MeanCount using full-spherical cameras (FS_MeanCount; medium-

grey diamonds), MaxN using standard cameras (Standard_MaxN; light-grey squares) and 

MeanCount using standard cameras (Standard_MeanCount; dard-grey triangles). Values 

have been scaled to their mean values to aid in comparison. Surrounding each parameter 

estimate is the assumed normal distribution with 95% confidence intervals. 
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Table 1. Parameter description and value range when varied, as well as fixed value when 

not varied for each simulation scenario. 



 68 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV 

USING UNMANNED AERIAL VEHICLES AND MACHINE LEARNING TO 

IMPROVE SEA CUCUBMER DENSITY ESTIMATION IN SHALLOW HABITATS
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Abstract 

Sea cucumber (Holothuroidea) populations across the globe have experienced 

dramatic declines caused by overexploitation and habitat loss. The status of populations 

and potential harvest levels are determined from fisheries-dependent and independent 

data sources, such as diver transect surveys. Though widely used, diving-derived data 

typically cover relatively small spatial scales and have a number of inherent biases that 

can reduce the accuracy of surveys. Unmanned aerial vehicles (UAVs) may offer a means 

to supplement current survey efforts while simultaneously overcoming several issues 

associated with traditional methods in shallow habitats. Here, we tested the potential of 

UAVs to estimate sea cucumber abundance in a shallow marine environment, while also 

exploring the potential of machine learning to automate sea cucumber counts. To 

evaluate this question, we conducted 24 diver belt transects paired with simultaneous 

UAV transect sampling of sea cucumbers in the small French Polynesian atoll of 

Tetiaroa, in July 2018. All UAV images were reviewed by three independent observers, 

as well as with a recently developed convolution neural network (CNN) model known as 

ResNet50. Comparison of counts derived from all three methods (divers, manual review 

of UAV data, and ResNet50) indicated no significant differences between any one 

method. Though regression of counts from manually reviewed UAV images were highly 

correlated with diver counts, CNN estimates appeared asymptotic at higher densities. 

Additionally, we estimated the spatial distribution of sea cucumbers using a UAV-

derived photomosaic of the study site. We then bootstrapped potential transect locations 

and determined that a minimum number of 25 samples is required to reduce sampling 

variance and reliably estimate sea cucumber density. Collectively, these results highlight 
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the potential for UAVs to supplement current data collection efforts and would 

potentially enable surveys in regions previously inaccessible. 

 

 Introduction 

Sea cucumbers (Holothuroidea) are marine benthic invertebrates that play an 

important role in coral reef ecosystems (Purcell et al. 2014a). Their digestion of organic 

matter associated with ingested coral sand and rubble results in the dissolution of acidic 

CaCO3 particulates and, consequently, increases local alkalinity in reef environments 

(Hammond 1981; Schneider et al. 2013; Purcell et al. 2016). Importantly, this digestive 

process may help to buffer against the effects of increasing ocean acidification (Schneider 

et al., 2013). As a digestive by-product, sea cucumbers also secrete ammonia (NH3) that 

contributes to nutrient cycling and encourages productivity in coral systems (Uthicke and 

Klumpp 1998; Uthicke 2001). Furthermore, sea cucumbers directly increase oxygen 

levels in the sediment through bioturbation (Hammond 1982). By implication, the 

presence of sea cucumbers may improve reef resilience and stability under future 

anthropogenic stressors (Schneider et al. 2013), and it has been suggested that their 

removal can result in diminished ecosystem functionality (Purcell et al. 2016).  

            Many species of tropical sea cucumbers are commercially valuable (Conand 

1998; Purcell et al. 2014b), with the majority harvested to produce bêche-de-mer 

products for consumption in Asian markets (Anderson et al. 2011; Eriksson and Clark 

2015). Their ease of collection, low recruitment, slow growth, and high longevity makes 

them particularly vulnerable to overfishing (Conand 2001; Uthicke et al. 2004). These 

factors coupled with high global demand for sea cucumber products has resulted in 70% 
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of tropical sea cucumber species being listed as exploited, over-exploited, or depleted 

(Anderson et al. 2011; Purcell et al. 2014b), with many local populations having already 

been extirpated (Purcell et al. 2014b). To determine optimal harvest levels, stakeholders 

must be able to assess the spatiotemporal population dynamics from a variety of data 

sources including fisheries-independent surveys. 

To date, the majority of fisheries-independent surveys used to help sea cucumber 

management decisions comes from underwater visual censuses (UVCs), which provide 

density estimates over a small area using counts from SCUBA diver or snorkeler 

transects (e.g., Shepard et al., 2003; Leopold et al. 2013; Rehm et al. 2014; Wolfe and 

Bryne 2017; Idreesbabu and Sureshkumar 2017). Though important tools, these surveys 

have a number of shortcomings, including high costs, errors and bias owing to observer 

experience, low detection rates, and small spatial coverage (Shepard et al. 2003; Prescott 

et al. 2013). They are also time-consuming and logistically impractical in many of the 

shallow sand flat habitats where sea cucumbers are abundant (Mercier et al. 2000; 

Idreesbabu and Sureshkumar 2017). Given the limitations of current survey methods and 

an increasing need for accurate sea cucumber abundance estimates, it is critical to 

develop tools and techniques to better monitor these ecologically and economically 

important populations. 

Unmanned Aerial Vehicles (UAVs) have rapidly developed over the last decade 

and have been increasingly used by ecologists as a wildlife monitoring tool (Ivošević et 

al. 2015). Their low cost, ease of use, relatively large spatial coverage, programmable 

flight paths, and ability to be deployed in remote locations, have enabled UAVs to be 
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applied to a wide range of studies in both terrestrial and marine environments (Anderson 

and Gaston 2013; Colefax et al. 2017). The majority of work in marine population 

monitoring has focused on the application of UAVs to replace traditional manned aerial 

surveys of large vertebrates such as dugongs (Hodgson et al. 2013), cetaceans 

(Christansen et al. 2016), sea turtles (Rees et al.  2018) and elasmobranchs (Kiszka et al. 

2016). More recently, UAVs have been used to examine aspects of species behavior 

(Rieucau et al. 2018) and to quantify changes in coral health (Parsons et al. 2018). An as 

yet unexplored potential application of UAVs, however, is their ability to provide density 

estimates for shallow water invertebrate species, for which remote underwater vehicles or 

diver transects may be impracticable. 

In this study, we aimed to demonstrate how UAVs could provide a means to 

supplement current data collection efforts for sea cucumbers in shallow water 

environments, while also overcoming many issues associated with traditional diver 

surveys. Specifically, our objectives were to compare estimated counts and the time 

required to extract counts for sea cucumber transects using: 1) In-situ diver observations 

2) UAV data manually generated by observers 3) UAV data generated using machine 

learning. Additionally, we explored how UAVs may be used to improve survey design 

and quantify required survey effort for diver transects. 

Methods 

Data collection 

We conducted sea cucumber transect surveys over shallow (<2m) sandflats of 

Tetiaroa, French Polynesia, a small atoll in the Society Archipelago (Fig. 1) from 22-24 
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July 2018. In total, 24 paired diver transects were conducted, with a random starting and 

heading selected for each (Fig. 1). Prior to sampling, each survey location was verified 

using a Garmin eTrex 39x hand held GPS. Each transect covered a 4x10m area, and 

occurred between 08:00 to16:00 local time. To aid in observer counts (i.e., reduce double 

counting), each transect was subdivided into 1x10m areas by connecting two grey 1m 

PVC tubes covered in red electrical tape using weighted ¼” black line, each at 10m in 

length (Fig. 2). Once the observers had deployed the transect grid, depth at both the 

starting and end points of each transect were measured using a weighted Komelon 6622 

open reel measuring tape. Following these measurements, observers waited until all 

sediment had settled before beginning transect surveys (approximately 60s). Transects 

were conducted one at a time by two independent snorkelers, with their times required to 

complete each transect recorded in seconds. Following snorkel transects, each location 

was then surveyed using a DJI Mavic Air (168x83x49mm; 430g) equipped with a 

polarizing lens to reduce issues with sun glare. The UAV was flown directly over the 

center of the transect grid at an altitude of 7m and all videos were shot in 4k resolution at 

30fps. 

Manual review of UAV data 

 Counts from snorkelers were recorded in-situ, whereas UAV video transects 

required additional steps to enumerate sea cucumbers. For each transect, a single image 

was selected from the video footage to be reviewed, using the ImageMagic package 

within a UNIX shell. Each image was then independently reviewed by two trained 

observers using the application Visual Counter (version 1.2; iVanya™ 2015), with total 

time in seconds recorded for each observer to process an image. Visual Counter allowed 
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observers to click on sea cucumbers present on an image, and provided a total count of 

marked objects, relieving observers from self-tracking raw counts (Fig. 2). After manual 

annotations of the sea cucumbers were completed by both observers, each pair of 

annotated images were compared to one another to by a third independent observer who 

provided the final count. To assist the third observer in comparing these two images, 

areas marked by both initial observers were converted to yellow, while areas of 

discrepancy (i.e., sea cucumbers marked by one observer but not the other) were 

converted to red. This colorization process was accomplished in MATLAB, by 

expanding the annotated pixel areas (to account for the same sea cucumber being marked 

in slightly different locations) and isolating marked pixels in the L*a*b colorspace.   

Automated UAV data review 

To automate the process of identifying and enumerating sea cucumbers from 

UAV data, we elected to use ResNet50: a 50-layer Convolution Neural Network (CNN) 

that supports Residual Learning. Convolution Neural Networks are widely considered to 

be the current ‘gold standard’ for image classification, and function by transforming an 

input image through a specified number of hidden layers. Each layer type serves a 

different function in the network, from feature extraction (convolution), to dimensionality 

reduction (pooling), and final feature aggregation (fully connected). ResNet50 was 

developed and trained using ImageNet: a large database of over 14 million annotated 

images (Russakovsky et al. 2015). Using the pre-trained ResNet50 architecture, we 

constructed a faster-RCNN object detector for sea cucumbers. To train the faster-RCNN 

detector, we used 72 augmented images taken from our UAV transects (flipped vertically, 

horizontally, and both). Each image was annotated for 5 separate classifiers: small sea 
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cucumbers, large sea cucumbers, rocks, detritus, and transect lines. Once trained, image 

classifiers were then used to predict the number of sea cucumbers present on the original 

(un-augmented) UAV transect images, with all proposed objects given probability of 

90% or greater of being a sea cucumber, accepted in the final count. 

Comparing count estimates  

 Counts generated for each estimation method were statically compared using a 

Kruskal-Wallis rank sum test. Additionally, we compared the resulting estimates of each 

UAV review method to diver transects using a simple linear model, whereby the mean 

value of the divers was assigned as the ‘true count’ for that transect. The time required to 

provide sea cucumber estimates for divers and manual review of UAV data was set as the 

sum of the individual times of each observer for any one transect. To determine if 

snorkelers or manual review of UAV data had significantly different time requirements, a 

Mann-Whitney-Wilcox test used. All data were analyzed in the R core environment (R 

Core Development Team, 2018), with significance accepted at a p-value of less than or 

equal to 0.05. 

UAVs to improve diver survey designs  

 Using the application Pix4DCapture (Version 4.6.0), we created a photomosaic of 

the entire study region using a series of 57 overlapping, geo-referenced images. The 

mosaic was then manually reviewed by a single observer using Visual Counter in the 

same manner as described for the manual review of UAV data, whereby all observed sea 

cucumbers were marked with a small, colored square (e.g., blue). The XY coordinates of 

these marker positions were then extracted via the same color channel filtering in L*a*b 

colorspace as previously described. We then randomly selected a 4x10m representative 
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section of the mosaic, and provided the total number of marked sea cucumbers in this 

area. This procedure was then replicated for 2-100 simulated transects at a time, and was 

then repeated 1,000 times. Using these simulated samples, we then explored how total 

sample variance changed in relation to the simulated number of transects (1-100).  

Results 

Sea cucumber counts provided by divers varied broadly across transects (range=0-

111), with a mean of 53.6 (±79.9; ±2SD). However, counts among divers were relatively 

precise, averaging a difference of only 2.25 (±6.0) with a maximum difference of 11. 

Difference in sea cucumber counts between divers was greatest for transects with the 

highest number of observed individuals (Fig. 3). Estimated counts from all three methods 

did not differ significantly (p=0.08, df=2, Kruskal-Wallis chi-squared = 4.96), though 

estimates from the CNN were qualitatively lower than those from either divers or manual 

UAV counts (Fig. 3). Counts from manual review of UAV data were highly correlated 

with those from the diver surveys (adjusted R2=0.94, p<0.01; Fig. 3). Although linear 

regression of CNN estimates against mean diver counts also yielded a significant 

relationship (p<0.01), the correlation between the two variables was modest (adjusted 

R2=0.54), and visual inspection of the regression indicated an asymptotic relationship 

(Fig. 3).  

 Processing times for UAV images that were manually reviewed showed high 

variability from one image to another (range = 144-760s), averaging 380.6s (±156.1s). 

The amount of time required to process any one image was strongly related to the number 

of sea cucumbers estimated to be present, but did not appear to be influenced by transect 

depth. Processing times required by divers for each transect were significantly shorter 
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than those by UAV review (W=170, p=0.01), with an average time required of 275.5s 

(±238.4). However, times also varied greatly between transects for divers (range = 92-

456), and had a mean difference of less than two minutes as compared to manual review 

of UAV images.  

 Pix4D proved capable of generating a photomosaic of the entire surveyed area 

(Fig. 4). Furthermore, it was possible for observers to manually annotate sea cucumbers 

within these images using Visual Counter (Fig. 4). Visual inspection of simulation results 

indicated that sample variance dramatically declined once sample size reached at least 5 

transects, but that decreases in variance began to plateau at approximately 25 transects 

(Fig. 5). 

Discussion 

In the present study, we have demonstrated how UAVs may be used in a new 

realm of marine research by highlighting their ability to monitor relatively small 

invertebrate communities. Specifically, we found that UAVs represent a viable option to 

assess the abundance of sea cucumber species in shallow marine environments. 

Importantly, counts estimated using manually processed UAV data did not differ 

significantly from estimates made by snorkelers in the field. Although the time required 

to manually extract counts was higher for UAVs than for snorkelers, this process 

represents a relatively small increase in effort, particularly when considering other time 

constraints that we did not address in this study (e.g., time spent deploying and retrieving 

transects, time moving between site locations). This is in contrast to many other video 

survey platforms, that are often rendered unusable for resource managers because of the 

elapsed time between collecting and extracting data (Harvey et al. 2013). Furthermore, 
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we were able to demonstrate that by using CNNs, it may be possible to fully automate the 

process of extracting counts from UAV data, which could further reduce time 

requirements. 

Our results indicate that manual reviewing UAV images, as well as automatically 

estimating counts with CNNs, does not differ significantly from traditional diver-derived 

counts. However, counts generated from CNNs data did tend to be lower, particularly in 

higher density areas. There are a number of factors that may have contributed to this 

lower than desired detection capability, but it was most likely driven by the small size of 

the dataset used to train the model. Numerous studies have shown that one of the most 

important factors for improving CNN model performance is to increase the size of the 

training dataset (Windrim et al. 2016; Ozbulk et al. 2016). As UAVs become more 

frequently used for this type of research, the amount of data available to develop these 

models will likely increase exponentially.  

When considering the potential of CNNs to automatically enumerate sea 

cucumbers from image data, coupled with the relatively low cost of UAVs (~$1000 

USD) and their ability to be deployed in remote regions, UAVs become an obvious 

choice to supplement current UVC techniques as a research tool, and may even facilitate 

the gathering of data where none currently exist. The utility of UAVs may be particularly 

high in areas where UVC techniques are too expensive or logistically unrealistic to be 

implemented. Given the increasing popularity of UAVs in the public sector, it is also 

feasible that UAVs could be a source of large-scale citizen science data in the future. 

Though identifying sea cucumbers and other invertebrates from UAV data requires 

extensive training, it would be relatively simple to establish a repository where citizen 
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scientists could contribute UAV images to be later reviewed by scientist, or ideally by 

machine learning methods such as CNNs. Similar citizen scientist image databases 

already exist, such as eBird (https://ebird.org/home), eMammal (https://emammal.si.edu), 

and Reef Vision (https://recfishwest.org.au/our-services/research/reef-vision-artificial-

reef-monitoring/). 

Importantly, our results build on previous work (e.g., Shepard et al. 2003) to 

indicate that sea cucumbers do not distribute uniformly or even randomly throughout 

their environment, but instead cluster in large groups. Therefore, UAVs may be 

particularly well-suited to study these communities because they can cover a much larger 

area in a shorter timeframe than is typical of UVC techniques. By mapping the study 

region ahead of deploying diver transects, researchers may be able to quantify the general 

spatial distribution of their target species, and potentially identify what physical 

characteristics of the environment may be driving these observed distributions (e.g., 

distance to coral, tidal state). Furthermore, using photomosaic mapping could enable 

researchers to determine what survey effort is required to accurately and precisely 

estimate species densities. In the present study we demonstrated how this technique could 

be used to determine the number of samples required to reliably estimate sea cucumber 

density within a study site. Using this same approach, researchers could determine how 

different sampling designs (e.g., random, stratified-random, systematic, or adaptive) and 

chosen transect sizes (i.e., better to have many small transects, or fewer large transect) 

may impact their resulting count estimates. Given the potential limitations of UAVs to 

identify sea cucumbers to the species level, coupled with depth restrictions of the 
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technique, UAVs may be best served as a tool for improving diver transects until these 

limitations can be addressed. 

As UAVs continue to advance and drop in price, they will undoubtedly be used 

increasingly by researchers and conservation managers. Here we have presented how this 

innovative technology can be used in the marine environment to enumerate small marine 

invertebrates such as sea cucumbers. Given the ecological importance of sea cucumbers 

(particularly in the face of increasing ocean acidification due to climate change) as well 

as their massive global economic importance, it is imperative that we have reliable 

fisheries-independent data to help inform fisheries management as well as potential 

conservation measures. This data need is made all the more crucial by the fact that many 

sea cucumber species are undergoing dramatic declines in the face of overexploitation 

and other anthropogenic stressors (Purcell et al. 2014a). Although UVC techniques such 

as diver transects will continue to play an important role in quantifying marine 

invertebrate communities, the reliability and numerous advantages of UAV surveys 

demonstrated in this study highlight their likely future role in describing spatiotemporal 

changes of shallow water coral reef communities. 
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Figures 

 

Figure 1. All unmanned aerial vehicle (UAV) transects for this study were flown in 

sandflat habitats of Tetiaroa (French Polynesia) of less than 2 meters in depth, from 22-

25 July 2018. Lower inset depicts nearby islands of the Society Archipelago; Tahiti and 

Moorea. Upper inset highlights northern region of lagoon where UAV transects were 

flown.
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Figure 2. Example images of UAV data flown over snorkeler transects used in Tetiaroa, 

French Polynesia. Snorkeler transects are highlighted by weighted PVC and connected 

lines to ease comparison between divers and UAV. A) Image after being processed by 

observer using Visual Counter software. Sea cucumbers identified by the observer one 

are represented by small purple squares, while observer two markings are indicated in 

blue. B) Image of sea cucumber counts processed by two independent observers, with 

areas of agreement (represented by small orange squares) and disagreement (represented 

by small red squares) identified using MATLAB color channel filtering in the L*a*b 

color space.
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Figure 3. Left panel: Results from linear regression of sea cucumber counts estimated by 

manual review of UAV images (black circles) and via the employed convolution neural 

network model (CNN; grey triangles) as compared to mean count obtained by divers for 

the same transect. Small dashed line represents a perfect correlation, with the range in 

diver estimates illustrated by grey shadowing. Larger dashed lines represent an fitted 

polynomial of the manual review (black) and CNN (grey) estimates to aid in pattern 

visualization using the geom_smooth function in ggplot. Right panel: Boxplot for counts 

estimates derived from CNN, Divers, and Manual review of UAV data. Median values 

are indicated by center box line, with the integral quartile range represented by boxes, 

and minimum/maximum quartile ranges indicated by extended lines.
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Figure 4. Photomosaic map of study region in Tetiaroa, French Polynesia generated by 

stitching 56 overlapping, geo-referenced images using the application Pix4DCapture. 

Inset highlights zoomed in portion of image with sea cucumbers manually marked using 

Visual Counter.
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Figure 5. Sample variance from simulated transects (1-100) in relation to the number of 

transects sampled, based on sea cucumber locations taken from UAV generated 

photomosaic of the study region in Tetiaroa, French Polynesia. A total of 1,000 

simulations were run for each number of simulated transects sampled.
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS
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 Nearly all branches of applied ecology have their foundation rooted in a simple 

objective; providing counts of organisms. Estimating population size is fundamental for 

conservation planning, establishing sustainable harvest practices, elucidating community 

dynamics, understanding trophic interactions, and predicting how these dynamics may 

change under future conditions. Though providing accurate species counts is vital to the 

field of ecology, it is also inherently difficult. This is especially true in fisheries research, 

where species are often highly mobile, cryptic, capable of actively avoiding detection, 

and inhabit an environment not readily accessible to human observers. As fisheries 

scientist John Shepard aptly summarizes, “Managing fisheries is hard. It’s like managing 

a forest, in which the trees are invisible and keep moving around.” An obvious question 

facing fisheries scientists is how can we overcome these challenges to improve the way in 

which we survey abundance and biodiversity? Often our greatest leaps forward in this 

realm come from technological advances. From acoustic telemetry, to global positioning 

devices, remote sensing, to hydroacoustics, innovations in technology continue change 

the way in which we survey the marine environment. In the last two decades, one of the 

greatest such advances has been the integration of various optical technologies into 

survey platforms. Small, inexpensive cameras are now capable of counting organisms for 

durations and depths well beyond human capabilities, and are becoming common place in 

fisheries research. While these technologies offer numerous advantages over invasive 

fishing-based survey methods, their novelty also means they have not yet undergone 

extensive scrutiny for potential biases and sources of error. Understanding, quantifying, 
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and (if possible) mitigating against these biases is critical to insuring that data gathered 

using these methods are correctly interpreted and utilized for conservation planning. 

  In this dissertation, I investigated potential biases for two of the most commonly 

used camera based survey methods in fisheries research today; Baited Remote 

Underwater Video Systems (BRUVs) and Unmanned Aerial Vehicles (UAVs). In 

Chapter Two, I examined the relationship between common metrics of relative 

abundance derived from BRUVS and ‘true’ changes to local populations for two different 

reef shark species. Results from this chapter indicated that current relative abundance 

metrics likely undercount sharks in high density environments, which could lead to 

hyperdepleted or hyperinflated estimates of abundances, and thus mislead management 

decisions based on these data. Additionally, in this chapter we found that detection 

probability for standard BRUVS, which are often assumed to be 100%, was relatively 

low as compare to newly developed full-spherical cameras that are capable of recording 

in 360° horizontal by 360° vertical fields-of-view. Chapter Three builds off of these 

initial findings using a spatially-explicit individual-based-model to test if these same 

metrics of relative abundance were sensitive to changes in density-independent factors 

such as species speed, movement pattern, attraction strength to bait, and environmental 

considerations such as bait plume size and water clarity. Results from this chapter 

provided empirical support for what is often suspected of baited surveys such as BRUVS, 

in that the metrics derived from these data were highly sensitive to changes in factors 

unrelated to local densities. Cumulatively, these chapters highlight the limitation of 
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current relative abundance metrics derived from BRUV data, and suggests that 

researchers and conservation managers should carefully consider survey results before 

translating them into management actions. The goal of Chapter Four was to see if UAVs 

could be use as a means to supplement data collection for small invertebrate species such 

as sea cucumbers in shallow marine environments. Results from this chapter indicate that 

UAVs provide similar density estimates as compared to widely used diver transects, and 

can be utilized to survey a much greater area with far less effort (and thus lower cost). 

Furthermore, it is possible to automate the process of extracting count data from UAV 

footage, which could facilitate the collection and analysis of UAV data gathered by 

citizen scientists, and thus exponentially increase the amount of data available to inform 

management for these depleted populations. Together, these chapters advance our 

understanding on the limitations of current optical technologies used in fisheries research, 

and offers insights on how to account for, and diminish, their impact on survey results. 

This dissertation adds to a growing body of work in methods research which 

strives to improve the accuracy and interpretation of various surveys. However, as is 

often the case in science, the answers uncovered in this work naturally have lead to more 

questions which need to be explored. For example, expanding on Chapter Three, is it 

possible that density-independent factors such as speed and bait plume size interact to 

impact estimates of species counts in a different way? Or do these factors have different 

impacts depending on the density of the target species? Similarly, from Chapter Two, 

would we get the same answers if we used a large-scale enclosure experiments rather 

than assuming full-spherical cameras represented a ‘true’ abundance? Furthermore, could 
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we expand off these works and develop a more robust metric of relative abundances for 

BRUVS?  When looking at the ability of UAVs to survey the marine invertebrates, a 

logical next step would be to investigate potential depth limitations of this method, and to 

see if other technologies such as multispectral imaging could improve their capabilities. 

There is obviously still much work to be done in these areas of research, but with each 

step, with every new question explored, we improve our understanding of the marine 

world, and perhaps just as importantly, how that view may be skewed by the very tools 

we use to explore it. 
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