
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-23-2020

On-device Security and Privacy Mechanisms for Resource-limited On-device Security and Privacy Mechanisms for Resource-limited

Devices: A Bottom-up Approach Devices: A Bottom-up Approach

Leonardo Babun
Florida International University, lbabu002@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Babun, Leonardo, "On-device Security and Privacy Mechanisms for Resource-limited Devices: A Bottom-up
Approach" (2020). FIU Electronic Theses and Dissertations. 4431.
https://digitalcommons.fiu.edu/etd/4431

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.fiu.edu%2Fetd%2F4431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4431?utm_source=digitalcommons.fiu.edu%2Fetd%2F4431&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

ON-DEVICE SECURITY AND PRIVACY MECHANISMS FOR

RESOURCE-LIMITED DEVICES: A BOTTOM-UP APPROACH

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL AND COMPUTER ENGINEERING

by

Leonardo Babun

2020

To: Dean John Volakis
College of Engineering and Computing

This dissertation, written by Leonardo Babun, and entitled On-device Security and
Privacy Mechanisms for Resource-limited Devices: A Bottom-Up Approach, having
been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

Kemal Akkaya

Alexander Perez-Pons

Leonardo Bobadilla

A. Selcuk Uluagac, Major Professor

Date of Defense: March 23, 2020

The dissertation of Leonardo Babun is approved.

Dean John Volakis

College of Engineering and Computing

Andres G. Gil

Vice-President for Research and Economic Development
and Dean of University of Graduate School

Florida International University, 2020

ii

c© Copyright 2020 by Leonardo Babun

All rights reserved.

iii

DEDICATION

To my family.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to the members of my dissertation committee

for their insightful comments, encouragement, and generous support. In addition, I

would like to express my deepest gratitude to my major professor, Prof. A. Selcuk

Uluagac, for his priceless guidance, mentorship, motivation, patience, and immense

support while completing this research and during all my doctoral graduate studies.

His insights and words of encouragement have often inspired me and encouraged me

to overcome all difficulties. I am deeply indebted to him for his tireless support. Also,

I would like to thank my colleagues from the Cyber-Physical Systems Security Lab

(CSL) for their encouragement, accompaniment, and collaboration through all these

years. Finally, I would also like to acknowledge the support provided by the U.S.

Department of Energy, U.S. National Science Foundation, the University Graduate

School, and the Department of Electrical and Computer Engineering at Florida In-

ternational University. This dissertation is mostly based upon the work supported by

the U.S. Department of Energy under Award Number DE-OE0000779 and the U.S.

National Science Foundation under Award Number NSF-1663051.

v

ABSTRACT OF THE DISSERTATION

ON-DEVICE SECURITY AND PRIVACY MECHANISMS FOR

RESOURCE-LIMITED DEVICES: A BOTTOM-UP APPROACH

by

Leonardo Babun

Florida International University, 2020

Miami, Florida

Professor A. Selcuk Uluagac, Major Professor

This doctoral dissertation introduces novel mechanisms to provide on-device security

and privacy for resource-limited smart devices and their applications. These mech-

anisms aim to cover five fundamental contributions in the emerging Cyber-Physical

Systems (CPS), Internet of Things (IoT), and Industrial IoT (IIoT) fields. First,

we present a host-based fingerprinting solution for device identification that is com-

plementary to other security services like device authentication and access control.

Then, we design a kernel- and user-level detection framework that aims to discover

compromised resource-limited devices based on behavioral analysis. Further we ap-

ply dynamic analysis of smart devices applications to uncover security and privacy

risks in real-time. Then, we describe a solution to enable digital forensics analysis

on data extracted from interconnected resource-limited devices that form a smart

environment. Finally, we offer to researchers from industry and academia a collection

of benchmark solutions for the evaluation of the discussed security mechanisms on

different smart domains. For each contribution, this dissertation comprises specific

novel tools and techniques that can be applied either independently or combined to

enable a broader security services for the CPS, IoT, and IIoT domains.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Research Purposes . 9
1.2 Research Problem . 9
1.3 Significance of the Study . 12
1.4 Organization of the Dissertation . 13

2. PRELIMINARIES . 14
2.1 Overview of Cyber-Physical Systems . 14
2.2 CPS Device-class Identification . 15
2.3 System-level Smart Grid Substation Architecture 16
2.3.1 Behavioral Analysis of Smart Grid Devices 18
2.3.2 Genuine Smart Grid Devices . 19
2.3.3 Compromised Smart Grid Devices . 20
2.3.4 Behavioral Analysis of Smart Grid Devices 22
2.3.5 Classes of Smart Grid Devices . 23
2.3.6 Open-source Design Approach . 24
2.3.7 Extracting Operations from Smart Grid Devices 25
2.4 Resource-limited App Taint Sources and Sinks 26
2.4.1 Sources of Sensitive Information in IoT Apps 26
2.4.2 Functions to Leak Information in IoT Apps 26
2.5 IoT Application Context . 27
2.6 Generic Smart Environment Architecture 28
2.7 Smart App Structure . 29

3. LITERATURE REVIEW . 32
3.1 Identification of Resource-limited Devices 32
3.1.1 Device-class Fingerprinting . 32
3.1.2 Device-host Fingerprinting . 33
3.1.3 Behavioral-based Device Fingerprinting 33
3.2 Detecting Compromised Resource-limited Devices in CPS 34
3.2.1 Security Challenges of Cyber-physical Systems 34
3.2.2 Detection of Compromised Resource-limited Devices 35
3.2.3 Call Tracing Techniques for Security Applications 36
3.3 Resource-limited Device Application Analysis 37
3.3.1 Static Analysis of IoT Applications . 37
3.3.2 Dynamic Analysis of IoT Applications 39
3.4 Digital Forensics on Resource-limited Device Data 40
3.4.1 Forensic Data Collection from the Smart Environment 40
3.4.2 Smart Data Logging . 41

vii

4. HOST-BASED RESOURCE-LIMITED DEVICE CLASS IDENTIFICATION 42
4.1 Introduction . 42
4.1.1 Differences from Existing Works. 43
4.2 Threat Model and Use Case . 44
4.2.1 Problem Scope . 45
4.3 Overview of S&F . 46
4.4 Device Feature Acquisition . 47
4.4.1 Challenge-Response Approach . 47
4.4.2 Parametric Call List (PCL) . 48
4.4.3 Device Performance Index (DPI) . 48
4.5 Device Signature Generation . 50
4.6 Ground Truth Devices - Learning Phase 51
4.7 Signature Correlation and Decision - Prediction Phase 54
4.8 Performance Evaluation . 56
4.8.1 Testbed Implementation . 56
4.8.2 Performance Metrics . 60
4.9 Performance of S&F during the Learning Phase 61
4.10 Performance of S&F during the Prediction Phase 62
4.11 Overhead Introduced by S&F . 66
4.12 Summary and Benefits . 68
4.13 Conclusion . 69

5. DETECTION OF COMPROMISED RESOURCE-LIMITED DEVICES . 70
5.1 Introduction . 70
5.1.1 Differences from Existing Works . 72
5.2 Adversary Model . 73
5.3 Overview of the Detection Framework 75
5.3.1 Probability of Detecting a Compromised Device 77
5.3.2 Learning Process . 79
5.3.3 Detection Process . 81
5.3.4 Decision Process . 84
5.4 Performance Analysis and Discussion . 85
5.4.1 Evaluation with a Realistic Smart Grid Testbed 85
5.4.2 Detection Performance . 86
5.4.3 Performance Metrics . 90
5.4.4 System Overhead . 94
5.4.5 Benefits and Features . 95
5.5 Conclusion . 96

6. SECURITY AND PRIVACY ANALYSIS OF RESOURCE-LIMITED DE-
VICE APPLICATIONS . 98

6.1 Introduction . 98
6.1.1 Differences from Existing Works . 100
6.2 IoT Privacy Survey . 100

viii

6.2.1 Survey Results . 102
6.2.2 Summary of Findings . 104
6.2.3 Example IoT Privacy Survey Questions 105
6.3 Problem Statement and Threat Model 107
6.4 Approach Overview . 109
6.4.1 Understanding Leakage in IoT Apps 110
6.4.2 Terminology Used . 112
6.5 IoTWatcH . 113
6.5.1 Code Instrumentor . 114
6.5.2 IoTWatcH Analyzer . 120
6.5.3 Response to App Data Leaks . 126
6.5.4 IoTWatcH API . 128
6.6 IoTWatcH’s Implementation Details 129
6.7 Performance Evaluation . 132
6.7.1 Evaluation Metrics . 134
6.7.2 Assigning Privacy Labels . 135
6.7.3 Performance of IoT String Classification 136
6.7.4 Analysis of Data Leaks in IoT Apps 140
6.7.5 Overhead Analysis . 142
6.8 Discussion . 143
6.9 Conclusion . 144

7. FORENSICS ANALYSIS OF RESOURCE-LIMITED DEVICE DATA . . 146
7.1 Introduction . 146
7.1.1 Differences from Existing Works . 147
7.2 Problem and Threat Model . 149
7.2.1 Problem Definition . 149
7.2.2 Assumptions and Definitions . 151
7.2.3 Threat Model . 152
7.3 IoTDots . 155
7.3.1 Forensically-valuable features in IoTDots 156
7.3.2 IoTDots Modifier (ITM) . 157
7.3.3 IoTDots Analyzer (ITA) . 162
7.4 Forensic Evidence Detection in IoTDots 164
7.4.1 IoTDots Data Characterization . 165
7.4.2 Analytical Model used in IoTDots 167
7.4.3 Data Binarization in IoTDots . 169
7.5 Performance Evaluation . 170
7.5.1 IoTDots Implementation . 171
7.5.2 Performance Metrics . 174
7.5.3 Forensic Activity Detection from Users 175
7.5.4 Detection of Forensic Behavior from Users 177
7.5.5 Detection of Forensic Behavior from Apps 178

ix

7.5.6 System Overhead . 179
7.6 Summary and Benefits . 181
7.7 Conclusion . 184

8. CONCLUDING REMARKS AND FUTURE WORK 186

BIBLIOGRAPHY . 191

VITA . 214

x

LIST OF TABLES

TABLE PAGE

3.1 Comparison between IoTWatcH and other similar analysis tools for An-
droid and IoT apps. 38

4.1 Comparison between Stop-and-Frisk and other fingerprinting techniques. 43

4.2 Different device classes used in our CPS testbed. 57

4.3 Average of system overhead introduced by S&F on the devices included
in the testbed. 67

5.1 Threats to the smart grid devices assumed in this dissertation. 74

5.2 Normalized rate of the system and function calls captured after using
our framework to detect compromised resource-limited devices (e.g.,
RTUs, PLCs): calls due to malicious activities are grayed. 87

5.3 Normalized rate of system and function calls captured after using our
framework to detect compromised resource-rich devices (e.g., PMUs,
IEDs): calls due to malicious activities are grayed out. 88

5.4 Average system overhead on resource-rich and resource-limited devices
after using the framework. 94

5.5 Specification values for Remote Terminal Unit RT2020 [Hon14]. 95

6.1 Participant responses when asked about their expectations from a privacy
analysis tool, which guided the design of IoTWatcH. The percentage
of agreement among the survey’s participants showed a strong inter-
rater reliability. 103

6.2 Examples of leaked strings extracted from IoT apps and their assigned
privacy labels. Observe that IoTWatcH is capable of assigning mul-
tiple privacy labels to specific strings with more complex semantics. . 123

6.3 Distribution of privacy labels used during IoTWatcH’s evaluation. . . . 135

6.4 Effectiveness of IoTWatcH in detecting sensitive data leaks using mes-
saging. 137

6.5 Effectiveness of IoTWatcH in detecting sensitive data leaks via Internet
communications. 138

6.6 Evaluation metric results in classifying IoT strings for all classification
thresholds. The rightmost column presents the average metrics. . . . 139

6.7 Evaluation results of IoTWatcH in classifying IoT strings to all the dif-
ferent privacy labels. 139

xi

6.8 Examples of privacy risks and the use of sensitive information in market
and malicious IoT apps. IoTWatcH identified six privacy-violating
behaviors and 62 leaks from market and malicious IoT apps. 141

7.1 Comparison between IoTDots and other IFA tools. 148

7.2 Summary of the threat model (forensically-valuable activities and be-
haviors) considered in this chapter. In Section 7.5), we utilize these
specific activities and behaviors to evaluate the efficacy of IoTDots. 154

7.3 IoTDots implements a binarizer to transform multi-class numeric logs
to binary numeric values. Logs of type Location refers to the Location
Modes “Office” or “Other”. 169

7.4 List of smart devices and sensors used during the data collection stage in
IoTDots’s evaluation. 173

7.5 Distribution of IoTDots evaluation data among three different types of
experiments. 174

7.6 Performance evaluation of IoTDots for inferring forensically-valuable
user activities. 176

7.7 Performance evaluation of IoTDots in detecting forensic behaviors from
smart apps. 178

xii

LIST OF FIGURES

FIGURE PAGE

1.1 Sample CPS, IoT, and IIoT resource-limited devices that are vulnerable
to cyber attacks. 2

1.2 Example of CPS network with spoofed devices. 3

1.3 An example application deeming privacy risks. In addition to performing
the expected task, this application leaks sensitive information to the
web. 6

1.4 This dissertation introduces a bottom-up approach to provide security
and privacy mechanisms to protect resource-limited devices and their
controlling applications. 10

2.1 System-level interaction of smart grid substation devices. The two-way
communications under protocol suite IEC61850 can be established
both horizontally (between devices from the same level) and vertically
(between devices from different levels). 17

2.2 Sample smart environment setup and architecture. The use of a central
controller (i.e., hub) is optional (dashed lines). 29

4.1 Architecture of Stop-and-Frisk to identify different CPS device classes. 45

4.2 Three-dimensional representation of the DPI of two different CPS device
classes. The DPI of device class A is greater than the DPI of device
class B in around 2x, 1.4x, and 2.5x of memory, CPU utilization, and
execution time, respectively. 50

4.3 We introduce a device-class identification framework using call tracing
techniques, signal processing, and device performance analysis. . . . 55

4.4 Experimental results from the evaluation of the learning phase: autocor-
relation results after applying Algorithm 1 on all the devices selected
as ground-truth. 62

4.5 Evaluation of the experimental results after considering PCL correlation
only: (a) accuracy, (b) precision, (c) recall, and (4) specificity. One
can observe that, in some cases, lower accuracy results were obtained
due to false positives among some device classes. These results were
improved after combining PCL-based correlation with DPI analysis
(Figure 4.6). 63

4.6 Evaluation of the experimental results after considering correlation and
device performance index for decision: (a) accuracy, (b) precision, (c)
recall, and (4) specificity. One can notice how the overall metrics
improved if compared results shown in Figure 4.5. 63

xiii

4.7 Correlation matrix for device-class identification using PCL approach
only. False positives as a result of applying only PCL-based corre-
lation are circled (e.g., between GZ and LPT 2 devices). 64

4.8 Average value of the DPI for all the devices included in the CPS testbed.
Experimental results shown that using the DPI-only approach to iden-
tify devices may lead to some false positives due to overlapping. . . . 65

4.9 The spatial distribution of the device’s DPI shows false positive results
due to overlapping between devices from different classes. 65

4.10 After combining PCL-based correlation techniques and DPI analysis, S&F
was able to identify the 11 different class of devices included in the
CPS testbed from the decision map. 66

5.1 Configurable framework introduced to monitor and detect compromised
smart grid devices. The learning process creates signatures based on
ground-truth devices that are utilized later to decide on potentially-
compromised devices. 76

5.2 Example implementation of the framework to detect compromised CPS
devices. 77

5.3 Index of Correlation between GTP and unknown devices: (a) Resource-
rich and resource-limited devices after applying our IOC-simple and
(b) IOC-advanced results comparison between genuine and compro-
mised resource-limited devices (using system call lists from library
interposition only). 89

5.4 Figures compare the performance of the IOC-simple algorithm on six
different types of compromised devices after using library interposition
and ptrace: (a) Accuracy, (b) Recall. 91

5.5 Figures compare the performance of the IOC-simple algorithm on six
different types of compromised devices after using library interposition
and ptrace: (a) Precision, (b) Specificity. 92

5.6 Performance metrics after applying IOC-advanced for the detection of
resource-limited devices when library interposition is utilized: (a) Ac-
curacy, (b) Recall, (c) Precision, and (d) Specificity. 93

6.1 An example IoT app leaking sensitive data to a hard-coded phone number
and performing insecure HTTP calls. 108

6.2 An example of an IoT app instrumented by IoTWatcH to support the
notification interface. 110

6.3 Overview of IoTWatcH architecture. Three main stages are highlighted:
first, IoT apps are modified at instrumentation time to enable IoT-
WatcH; second, the user selects their privacy preference at install
time; finally, at runtime, IoTWatcH analyzes the IoT app data to
uncover privacy risks and behaviors. 113

xiv

6.4 (a) Install-time interface of an IoT app and (b) Instrumented IoT app in-
terface: IoTWatcH interface enables users (1) to select privacy labels
and (2) to identify unauthorized recipients when a sensitive informa-
tion is leaked. 116

6.5 Sample IoT app that encrypts the sensitive data to be leaked in an at-
tempt to bypass the NLP analysis of IoTWatcH. The selective in-
strumentation capabilities of IoTWatcH permits the analysis of the
data before it is encrypted. 117

6.6 IoTWatcH’s findings are informed to the users through push notifica-
tions. The findings include (1) the privacy labels assigned to the sink-
call content, and (2) the potential privacy concerns associated with
the IoT communications. 127

6.7 The left console is the analysis area where the user inputs the original
IoT app. The right console returns the output of the instrumentation
process. We made IoTWatcH’s instrumentor freely available to the
community at https://IoTWatcH.appspot.com/. 130

6.8 Distribution of privacy labels among all the IoT strings included in the
corpus. 131

6.9 Evaluation results in the classification of IoT strings extracted from mes-
saging and Internet communications to user-friendly privacy labels:
(a) accuracy, (b) recall, (c) precision, (d) specificity, and (e) the aver-
age value of all considered performance metrics. 132

7.1 The architecture of the ITM. IoTDots-Modifier analyzes the smart apps
to detect and send forensic-relevant data logs to the ITD at runtime.
Later, during the event of a forensic investigation, the ITA analyzes
the data and infers forensically-relevant activities and behavior from
users and smart apps. 156

7.2 IoTDots is available online at https://iotdots-modifier.appspot.com/. . . 161

7.3 Accuracy of IoTDots in inferring activities in multi-user scenarios. . . 176

7.4 Accuracy of IoTDots in detecting forensic behavior from users versus
the number of tampered devices. 177

7.5 Accuracy of IoTDots in detecting forensic behavior from smart apps
versus different number of devices. 179

7.6 Average latency imposed by IoTDots to smart apps’ execution times.
The minimum latency (25ms) is obtained after combining the asyn-
chronous HTTPS request with AtomicState queuing. 181

xv

CHAPTER 1

INTRODUCTION

Emerging smart devices and their accompanying apps have changed the way we

live and perform day-to-day activities. In fact, they represent an essential component

of new engineering domains like the Internet of Things (IoT), the Cyber-Physical

Systems (CPS), and the Industrial IoT (IIoT). In these domains, the Tnternet-enabled

devices are interconnected and interact with each other, the physical world, and

with the users to enable different novel services and applications. Some of these

applications are directly related to the control and support of critical infrastructure

like the smart grid [N. 14, KBKK12, Kou12] and the implementation of commodity

environments like the smart home or the smart office [LL15,KSH16]. For instance, in

a smart home scenario, motion sensors may activate the smart thermostat when the

presence of the user is detected, or the smart lock may keep the door locked at night

time.

Nonetheless, several recent research works have proven CPS, IoT, and IIoT devices

(Figure 1.1) and applications to be vulnerable to cyber attacks [FJP16,Kus13,NM15].

Indeed, different mechanisms can be used to gain access to systems or leak sensi-

tive information through these devices [BAU19, ABC+18, CMT+19]. For instance,

from the previous smart home example, an attacker can have access to informa-

tion being leaked from the motion sensor to know when the owners are not inside

the house [CBS+18, BCMU19, SBAU19, BSAU18]. Similarly, in a smart grid, com-

promised devices can poison critical measurements from the network [BAU19]. In

general, device vulnerabilities can be found at all levels of a device’s/system’s archi-

tecture. At the hardware level, manufacturers can use unauthorized components or

hardware configurations that can impact the general performance of the devices or

leave back-doors open for future attacks [BAU19]; at the kernel level, attackers can

1

(a) CPS Devices (b) IoT Devices (c) IIoT Devices

Figure 1.1: Sample CPS, IoT, and IIoT resource-limited devices that are vulnerable
to cyber attacks.

tamper devices to change the configuration of the systems with malicious purposes or

inject malicious code to change the behavior of the devices’ operating systems (OS)

and/or drivers; and finally, at the user level, apps can be used to leak sensitive data to

malicious servers. Current cybersecurity solutions are not comprehensive and do not

consider attacker models that cover all these threats and only focus on specific types

of attacks. Also, most of the current solutions are intended to only specific device

domains (e.g., CPS or IoT only and not both) and they fail to cover multi-domain

scenarios. In this context, more comprehensive cybersecurity solutions that protect

and/or detect malicious devices and applications from multiple smart domains are

necessary.

Fingerprinting Resource-limited Devices

At the core of the Cyber-Physical Systems (CPSs) (e.g., smart grid, healthcare CPS,

oil and water treatment plants, etc.), smart devices such as Remote Terminal Units

(RTUs), Programmable Logic Controllers (PLCs), and Intelligent Electronic Devices

(IEDs) are utilized to collect data from the infrastructure, provide two-way communi-

cations, and monitor the health of the operations in real time. However, these devices

also present an opportunity for attackers to have access to sensitive information and

the critical Cyber-Physical System (CPS) infrastructure. For instance, insiders can

impersonate real CPS devices via spoofing to gain access to the systems, steal infor-

2

Figure 1.2: Example of CPS network with spoofed devices.

mation, make other devices in the network to behave erratically, or spread malware

(Figure 1.2) [D. 12].

Protecting against such attacks stemming from spoofed devices can be very chal-

lenging, considering the device diversity in the CPS infrastructure. An attacker may

use spoofed devices with software and hardware architectures very similar to real

devices. Additional, these fake devices may be capable enough to perform the at-

tacks while mimicking real CPS operations. In these scenarios, device fingerprinting

techniques can be used to identify original devices and discriminate them from the

impersonators. However, current fingerprinting solutions either require of extensive

analysis of network packets or study the behavior of very dynamic network met-

rics [ZDLZ14, DBCM16, KBC05, LPBZ12, SPJ15, XZSH16, FSL+16]. As a result, in

most cases these solutions introduce significant overhead to devices and systems,

putting the execution of critical time sensitive CPS tasks at risk.

3

Detection of Compromised Resource-limited Devices

Critical infrastructure networks such as utility, production, and distribution systems

are pillars of any nation and economy. They depend on intelligent and advanced

Cyber-Physical Systems (CPS) to guarantee the efficient and reliable delivery of the

data generated within these networks. These vital delivery systems have recently been

going through a massive effort to modernize their CPS infrastructure. For instance,

in the specific case of the power grid, a substantial effort has already been made

to modernize the traditional decade-old grid to the next generation of technology

(i.e., smart grid). The core concept of the smart grid relies on the integration of the

underlying electrical distribution with two-way communications capabilities between

the smart CPS devices in the grid. The uses of CPS devices in the grid allows new

functionalities and state-of-the-art computing systems for the smart grid infrastruc-

ture over the traditional power grid [Y. 12]. Nonetheless, new security concerns stem

from the use of CPS devices by the modern power grid.

Some of these concerns are related to:

• Increased number of devices: thousands of new two-way communications-enabled

devices embedded into the smart grid represent new entry points that can be

exploited by potential attackers.

• High interconnectivity: the smart grid interconnects a variety of different hetero-

geneous networks (i.e., home area networks, WAN, neighborhood area networks,

etc.) and devices, increasing the potential risk of malware spread.

• Higher attack payload: the amount of sensitive information available in the

smart grid makes it very attractive for cyber attackers.

• Vulnerable and well-known computing technologies: the smart grid adopts well-

known commercial communication technologies as well as their numerous secu-

rity threats (e.g., viruses, worms, trojans, etc.).

4

Indeed, with all its dependency upon device operations and communications, the

CPS is highly vulnerable to any security risk stemming from devices. Especially, the

use of compromised devices can wreak havoc on the smart grid’s critical functionalities

[D. 12,NM15] and can cause catastrophic consequences to the integrity of the smart

grid data and operations. Recent examples like the Stuxnet and Sandworm worm

attacks [Eur12, HSS17, Reu16] have proven that compromised devices represent a

serious threat for the smart grid. Specifically, in the case of Stuxnet, the worm first

targeted computers controlling Programmable Logic Controllers (PLCs)), to then

change the configuration of the PLCs and cause the uranium centrifuges to behave

erratically [Kus13]. The same way, in the case of Sandworm, the attack first targeted

computing systems using the BlackEnergy Trojan [Kas16] to gain control over Remote

Terminal Units (RTUs) and substation breakers to cause power blackouts [J. 16]. Due

to these real attacks, understanding the behavior of the smart devices, particularly the

compromised ones, has become more critical than ever. In fact, several government

agencies focus their efforts to protect the critical infrastructure using behavioral-based

approaches [Nat18].

Sensitive Information Leakage in IoT Applications

The Internet-of-Things (IoT) has quickly evolved to a new era where third-party de-

velopers are able to build applications. Several companies have already introduced

useful programming platforms such as Apple HomeKit [Appa], OpenHab [Opec], and

Smartthings [Sam] that provide developers APIs for controlling and interacting de-

vices.

These IoT programming platforms allow developers to access various information

to write custom automation and rules to control the connected devices and their

applications. The methods and attributes inside the developed apps/programs are

available to call in an application and gain access to the devices that are used to

5

Devices				:	office_door	od,	home_door	hd,							
													presence_sensor	ps,	thermostat	ther	
	

Location			:	office,	home	
	

User-defined	inputs:	temp,	time	
	

1:	Grant	permission	to	devices	
	

//	Set	temperature	and	manage	locks	
2:	if(everyBodyHome()	&&	time	==	“sunset”){	

		od.unlock()	
		hd.lock()	
		ther.setValue(temp)	
		transmitData()	//	injected	by	attacker	

			}	
	

//	Transmit	values	to	external	information	database	
3:	transmitData()	{	

	httpPost(URL,	temp,	time,	od.state,	hd.state,		
	ther.value,	ps.state,	location.currentMode,	

	ther.manufacturerName)	
}									

																																																								

Applica'on	context	
(Users’	lifestyle	and	habits)	

Device	states	
(Physical	privacy)	

Device	informa'on	
(Marke'ng	and	
	adver'sement)	

App:	Door	and	temperature	automa'on	

Users’	geo-loca'on	

Figure 1.3: An example application deeming privacy risks. In addition to performing
the expected task, this application leaks sensitive information to the web.

manage the applications’ behavior. However, the programming platforms provide only

coarse-grained controls for regulating access to information and provide no insight into

what information is sensitive and how they are being used by the applications after

the initial permissions are set by the users. This presents a number of unique privacy

risks if a sensitive data leaks.

To illustrate how IoT applications may misuse sensitive values inside an app/pro-

gram block, consider the application illustrated in Figure 1.3. The code sample

demonstrates an IoT application that has been granted access to lock, unlock doors,

and set the temperature when all family members are present at home after sunset.

A POST request is embedded in the application logic to store the values in a remote

system. This threat is vital when a malicious application profits from misusing sen-

sitive values. Such values become high-profile privacy risks for users (see comments

on the right of Figure 1.3). The aggregated data from a number of sensors and users

can be used to threaten physical safety through monitoring door lock preferences and

6

the presence of individuals, to send sensor information to advertisers, and to acquire

the profile of an individual’s lifestyle and habits.

Privacy Concerns in IoT Apps

Users install IoT apps to manage and control smart devices such as the smart ther-

mostat, door lock, and camera. These apps necessarily have access to sensitive in-

formation to implement their functionalities, communicate to external servers, and

send notifications to users [CFP+19,Smag,Opeb,Appb]. The sensitive information is

either obtained through APIs provided by an IoT platform (e.g., whether the door is

unlocked (door.unlocked) or the lights are off in the kitchen (kitchenLights.off)),

or they are simple texts defined by a developer or user at install time, for instance

“the door is open”, and “the kids returned to home”.

Previous research has demonstrated that IoT apps may leak sensitive information

to unauthorized parties [CBS+18, FPR+16]. Additionally, many IoT apps transmit

data to remote servers without users permission for data visualization or profile user

behaviors, such as their energy usage. However, users have no knowledge and control

over what type of sensitive data apps access or who see these data.

With the rapidly growing IoT devices and apps, users are oblivious to the privacy

risks that IoT apps pose. Existing IoT techniques focus on either analyzing the app’s

context to extract permissions of IoT apps [JCW+17,TZL+17] or use static analysis to

find sensitive data flows [CBS+18]. These approaches (albeit useful) have limitations

in over-approximating data-leaks, leading to false positives. Dynamic methods isolate

sensitive data within sandboxes, which requires intensive developer effort [FPR+16].

Additionally, none of the solutions consider sensitive data leaks of untainted strings

defined by a user or developer and contains, which we have found that out of 540

analyzed IoT apps, 64% of them leak through these strings. Lastly, the systems do

not consider users’ privacy preferences. There exist tools in other domains such as

7

mobile phones, [PCD+18, ARF+14, EGH+14, GTGZ14, PXY+13, QRZ+14] yet these

cannot be applied to analyze privacy risks of IoT app source code as IoT apps possess

a few unique challenges in terms of programming languages and structures.

Digital Forensics Analysis of IoT Data

The Internet of Things (IoT) has quickly evolved as a network of Internet-enabled

physical devices. The IoT devices communicate with each other and interact with

the users’ day-to-day activities through sensors. These capabilities enable the con-

cept of the smart setting (i.e., smart environments). Such an environment improves

the quality of the life of the people while handling a new set of data previously un-

tapped [NSG+14]. In general, the smart devices sense the users’ activities to change

the general state of the surroundings based on (1) what the users do, (2) the smart en-

vironment setup policies, and (3) the state of the devices. The interaction between de-

vices and users in this settings generates data with tremendous forensic value [ST17].

For instance, in a smart office setup containing motion sensors and smoke detectors,

the state of the motion sensors may reveal the presence of individuals at unauthorized

hours. Also, the data extracted from the smoke detectors may provide insights about

the exact location of sudden spikes in temperature values or the presence of smoke

right before a fire incident, which would be very valuable for insurance claims. In

fact, insurance companies have started giving incentives to customers if they install

measures like smart lighting, smart energy management systems, or smart fire and

water monitoring devices [Con,MIT].

Nonetheless, current IoT programming platforms do not provide any means for

forensic analysis. Indeed, the limitation of available computing resources in the ma-

jority of the smart devices [BAU17, ABC+18] and the distinctive cloud-based archi-

tecture of IoT make it very challenging to store data inside the devices for forensic

purposes. Additionally, the most popular IoT platforms (e.g., Samsung SmartThings,

8

openHab, Apple HomeKit) do not provide the mechanisms to access and indefinitely

store IoT data in the cloud [CDS16]. Previous works have used logging techniques

to acquire data from smart apps and devices [SKK+18, AYSM17] to implement, for

instance, IoT data provenance analysis [WHBG18]. However, these works either (1)

do not specifically focus on utilizing the acquired IoT data to implement forensic so-

lutions, (2) assume trusted devices which may be unrealistic nowadays [Smae,Mal17],

(3) or do not directly consider forensically-relevant activities and behavior from users

and smart apps in their threat models.

1.1 Research Purposes

This doctoral dissertation introduces novel mechanisms to provide on-device security

and privacy for resource-limited smart devices and their applications in the emerg-

ing CPS, IoT, and IIoT domains. These mechanisms aim to cover five fundamental

contributions: (1) a host-based solution for device fingerprinting and identification

that is complementary to other security services like device authentication and access

control; (2) a kernel- and user-level compromised device detection process; (3) dy-

namic analysis of smart devices’ applications; (4) a solution to enable digital forensics

analysis of data extracted from resource-limited devices; and (5) on-device security

benchmarks for the evaluation of the described security mechanisms on different smart

domains (Figure 1.4). For each contribution, this dissertation comprises specific novel

tools and techniques that can be applied either independently or combined to enable

a broader drvices for the CPS, IoT, and IIoT.

1.2 Research Problem

The research problem has five main components:

9

B
ot

to
m

-U
p

A
pp

ro
ac

h

IoT Data Forensics
Analysis

IoT Application
Analysis

CPS and IIoT Compromised
Device Detection

CPS and IIoT Device
Identification Hardware-level

OS/Kernel-level

Application-level

System-level

Benchmarking Solutions

Figure 1.4: This dissertation introduces a bottom-up approach to provide security
and privacy mechanisms to protect resource-limited devices and their controlling ap-
plications.

1. Device Identification: IoT and other resource-limited devices are prone to be

spoofed by attackers to steal their identity. Also, fake devices can be used to gain

unauthorized access to systems. In these scenarios, the precise identification

and classification of resource-limited devices used across different engineering

domains (e.g., CPS, IoT, and IIoT) is fundamental to support other security

services like authentication and access control.

2. Compromised Device Detection: Resource-limited devices from critical infras-

tructures like the smart grid can be compromised causing measurement poison-

ing and information leakage. The study of the different tools and techniques

that can be utilized for the detection of vulnerabilities and threats affecting

smart resource-limited devices at different architectural levels is an open re-

search problem. We evaluate our security approach with a use case that detects

compromised CPS devices in the smart grid.

10

3. Dynamic-Runtime Analysis of Applications: Thousands of new apps are being

utilized to control and manage resource-limited devices from different domains

(e.g., critical infrastructure, commodity). These applications may contain mali-

cious code to steal sensitive information from users and systems and compromise

their privacy and integrity, respectively. These applications’ source code can be

analyzed statically, but the static tools can not protect against malicious activi-

ties happening at run-time. To solve this research problem, researchers focus on

the design and application of algorithms, tools, and techniques to enable effec-

tive analysis of resource-limited apps without affecting the general performance

of the devices.

4. Digital Forensics Analysis: Smart devices and sensors may be used in a co-

operative way to create smart environments. In these settings, ample data is

generated as a result of the interactions between devices and the users’ daily ac-

tivities. This data may contain valuable forensic information about events and

actions occurring inside the smart environment. Nonetheless, current smart app

programming platforms do not provide any digital forensics capability to iden-

tify, trace, store, and analyze the data produced in these settings. External so-

lutions are necessary to enable digital forensics analysis on the resource-limited

devices’ data, so malicious activities from tampered devices and apps can be

detected.

5. Security Benchmark Solutions: Security and privacy solutions require specific

benchmarks to perform effective evaluation. The design of benchmarking solu-

tions that can be utilized across different domains is an open research problem.

In general, effective mechanisms for on-device security and privacy must guarantee

the safeguard of the devices at different levels: (1) hardware, (2) operating system, (3)

application, and (4) smart environment. Such protection must be provided without

11

compromising the general performance of the resource-limited device and with mini-

mal overhead to the systems. Additionally, the security solutions must be scalable to

guarantee effectiveness against current and future cyber threats affecting the devices.

Finally, since attacker models applied to different domains may differ substantially,

specific security benchmark solutions may be necessary to evaluate the effectiveness

of the security and privacy-preserving mechanisms here discussed.

1.3 Significance of the Study

Nowadays, resource-limited smart devices are integrated into multiple engineering do-

mains (i.e., CPS, IoT, and IIoT). These devices are capable of extracting, handling,

and processing data from critical infrastructures that, if compromised, can reveal sen-

sitive information from users and systems. Thus, securing the devices against cyber

attacks may represent the first step towards the protection of the critical systems

and users. In this thesis, we aim for the safeguard of resource-limited smart devices

by proposing effective security and privacy-preserving mechanisms that focus on five

main cybersecurity areas: (1) the proper identification and classification of devices

through their software and hardware characteristics; (2) the detection of compro-

mised devices by studying their behavior; (3) the study of potential threats affecting

the devices via malicious applications; (4) the implementation of solutions to enable

digital forensics analysis on resource-limited device data; and finally, (5) the design of

useful smart devices’ benchmarking solutions for the evaluation of current and future

cyber-solutions.

12

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we present back-

ground information to support the this dissertation. Then, in Chapter 3, we discuss

the related work. In Chapter 4, a novel identification framework for resource-limited

CPS and IIoT devices is detailed. Then, Chapter 5 introduces another framework

to identify compromised CPS and IIoT devices. Later, in Chapter 6, we investigate

security and privacy concerns in applications used to control resource-limited smart

devices. Here, we introduce a tool to analyze apps and uncover security and privacy

risks to the users and the smart systems in real time. Further, Chapter 7 investigates

the feasibility of performing forensics analysis on data extracted from smart environ-

ments to infer security risks. Finally, we conclude the dissertation and propose future

research paths in Chapter 8.

13

CHAPTER 2

PRELIMINARIES

In this chapter, we present an introductory background information about the funda-

mental building blocks of this dissertation. More detailed information can be found

in the related chapters.

2.1 Overview of Cyber-Physical Systems

Cyber-Physical Systems (CPSs) confirm the integration between virtual and physical

processes. In this context, the physical domain refers to capabilities that act over

physical objects. On the other hand, the virtual domain constitutes the set of software

and embedded systems intended to guarantee two-way communications, monitor the

realization of the physical processes, and provide control [GKGK16]. In general, one

can characterize CPSs networks by using the following features:

• Type of task performed : depending on the specific application and their loca-

tion inside the CPS architecture, the type of task performed by CPS devices

may range from just a simple service generated by a local host to an essential

component of a more complex and centralized process. In any case, individual

CPS processes are assumed to be simple, deterministic, and very specific actions

that support the entire system in a distributed topology [FSL+16].

• Resource availability : the total resource availability in CPS processes depends on

the type of device performing every particular task. In general, we can group CPS

devices into resource-rich and resource-limited devices [L. 17]. Resource-limited

devices have simple hardware (e.g., single-core CPU and limited memory) and

software architecture that allows for the execution of simple, specific tasks. On

the other hand, resource-rich devices have more complex Operating System

14

(OS) architecture and run with multi-core CPUs and plenty of memory. These

capabilities allow them to execute more complex processes inside the CPSs.

• Timing properties : as we mentioned before, one of the main goals of the cyber

domain in CPS is the monitoring and control of physical processes, which is

achieved through rigorous timing control mechanisms. In general, temporal

behavior of CPS is expected to be very precise, and should not change too much

over time [FSL+16].

2.2 CPS Device-class Identification

Traditionally, device-class classification has been performed by considering the branch,

model, specific device metrics characteristics, and the activities the devices should per-

form in the network [U.S10, U.S18, RBAU19]. The host-based fingerprinting mecha-

nism introduced in this dissertation provides a more secure approach to identify types

of devices in the network that also considers (1) the device behavior at the OS or

kernel level and (2) its performance at the hardware level. The main advantage of an

approach that includes behavior and hardware performance into its analysis is that

it allows for a more secure identification approach that does not depend on device

characteristics or metrics that can be spoofed by savvy (or even naive) attackers.

For this dissertation, we evaluate the following features to define a specific device

class :

• Device metrics : may include the device’s branch and model. Additionally, the

intended application of the device is considered as part of the device character-

istics (e.g., routers and firewall may be divided into two different groups based

on their different intended use).

15

• Device behavior : characterizes the device response to specific challenges at the

OS and kernel levels. We study device’s behavior based on the collection of

system and function calls triggered while reacting to specific challenges.

• Device performance: characterizes the device response to specific challenges at

the hardware level. We study the device’s performance by evaluating the de-

vice’s memory and CPU utilization as well as the execution time while reacting

to specific challenges or stimulants.

2.3 System-level Smart Grid Substation Architecture

The National Institute of Standards and Technologies (NIST) defines the smart grid

as a set of seven different interconnected domains [NIS14]. Specifically, two of these

domains are responsible for the generation and transmission of electricity, while the

other four provide business, operations, and customer support. Finally, at the center

of the smart grid architecture, the distribution domain (i.e., smart grid substations)

acts as a communication and control hub for the entire infrastructure, which makes

it especially attractive to cyber attackers [Y. 12].

In Figure 2.1, we present a simplified version of the smart grid distribution domain

architecture. Here, three main operation layers can be highlighted [JRSK17,ISTC13,

YCW+14]:

• Process Level : permits the data acquisition and control at the lowest level

of the smart grid substation architecture. The devices at the process level

(i.e., merging units) extract state information from sensors, transducers, and

actuators and deliver command controls from the upper layers.

• Bay Level : permits the two-way communication between the process level and

the upper operation layers of the smart grid substations. Here, Industrial Eth-

16

ernet switches interconnect different control and protection EIDs to allow: (1)

protection and control of the data exchanged between bay level and upper and

lower layers and (2) protection of the data exchanged between devices located

inside the bay level.

• Station Level : provides user interfaces and enable applications for engineering

and control of the lower layers. Here we can highlight operations from the

communication system, the time synchronization system, the substation data

collection and control, and servers and workstations.

PROCESS BUS

STATION BUS

Merging Units

IEC61850

Control

EIDs

Protection EIDs

Merging Units

Operation

Stations

Engineering

 Stations

IEC61850

Control

EIDs

Circuit Breaker 1 Circuit Breaker 2Circuit Transformers 1 & 2

Figure 2.1: System-level interaction of smart grid substation devices. The two-way
communications under protocol suite IEC61850 can be established both horizontally
(between devices from the same level) and vertically (between devices from different
levels).

The IEC61850 protocol suite enables the real-time communications between de-

vices from different substations levels (vertical communications) and devices within

the same level (horizontal communications) using Manufacturing Message Specifica-

tion (MMS), Generic Object Oriented Substation Events (GOOSE), and Sampled

17

Measured Values (SMV) messages [C. 13, S. 10]. Specifically, this standard includes

many underlying protocol stacks to support and monitor a variety of time-critical

services. Indeed, IEC61850 supports real-time operations, abstracts services, and

interoperability between devices used in energy automation [IEC03c, IEC03d].

2.3.1 Behavioral Analysis of Smart Grid Devices

For this dissertation, we focus on the behavioral characteristics of the smart grid

substation devices while they communicate and perform either intra- or extra-level

operations (i.e., horizontal and/or vertical communications) in the smart grid substa-

tion. We define behavioral characteristics of devices at the system level as the effect

of the device’s substations activities on the device’s kernel. Let assume that there is

a device O performing control operation at the Bay level. These operations can be

represented as the set OP where:

OP = {OP0 , OP1 , OP2 , ...OPN
}, (2.1)

then, we define the system-level behavioral characteristic of O as the function set BC

due to the reflection of OP at the device’s kernel level [PX17,ZM17], that is:

BC = fkernel({OP}), (2.2)

In all the cases, we characterize the devices’ kernel activity while the devices

perform their regular smart grid substation operations. Indeed, utilizing BC for

the compromised device classification allows for a proper generalization of security

solutions so they can also be successfully applied in other CPS domains outside the

smart grid.

18

2.3.2 Genuine Smart Grid Devices

We consider a smart grid device as genuine when no hardware nor software alteration

or tampering has been performed on the device before, during, or after the manufac-

turing process. To further characterize and identify genuine devices, we define the

parameter Index of Likeness (ILI). The ILI computes the similarity between individ-

ual operations Oi performed by a single device while executing a specific task T in

different time intervals. Similar modeling approaches have been utilized in the liter-

ature to characterize CPS [LFPF18,CPS18a]. The universe of operations performed

by a device to complete a task T at time instant t = 0 can be defined as:

T (t = 0) = {∪∞i=0Oi : ∃Oi ∈ T}, (2.3)

and the value of ILI for different t can then be expressed as:

ρILItILIt+i
=

∑
OtOt+i − nOtOt+i

nsOtsOt+i

, (2.4)

where Ot represents the set of operations Oi performed by the device to complete the

task T at the time instant t and Ot+i represents the set of operations performed to

complete the same task T at the time instant t+i. In the same equation, n represents

the cardinality of O and sOt and sOt+i
represent the standard deviation of O.

Based on our model, a genuine or ground truth smart grid device is expected to

have a high value of ILI on average. This assumption has been supported in the

literature by other research works that characterize Cyber-Physical Systems (CPS)

devices (including smart grid devices) as highly deterministic systems [ZDLZ14]. In

general, for processes running over time, ILI is expected to take values between 0 and

1: 0 is the result of entirely uncorrelated Ois and 1 is the result of remarkably high

correlated Ois. For a more realistic analysis, our dissertation work considers some

inherent level of randomness within the device operations. This assumption prevents

19

two Os from being completely identical even if one same device performs similar tasks

repeatedly over time.

Ground-truth Smart Grid Devices

In the context of this dissertation, ground truth devices constitute particular cases of

devices that are known as genuine. We assume full availability to ground-truth devices

from every device class present in the smart grid. For instance, the compromised

device detection framework introduced in Chapter 5 uses these ground-truth devices

during its learning process. In the following, we define the practical values of ILI that

allow for the characterization of ground-truth devices.

2.3.3 Compromised Smart Grid Devices

The smart grid (and other CPS) devices can be compromised either directly and

indirectly. The direct method occurs in cases where the devices are compromised

during any of the steps of the supply chain process [Int18,Asb09] or via insiders, by

directly changing the configuration of the devices or their executing apps. Here, the

attackers directly target the CPS devices without any other intermediate device. On

the other hand, indirect methods are most commonly used and usually require initial

access to the computing systems controlling the CPS devices in the network. Once

the attacker gains access to those computers, they can change the configuration and

behavior of the edge devices [Sym18,DBU20,DEB+19].

In this dissertation, we envision that the detection framework introduced in Chap-

ter 5 can be utilized to detect compromised devices in both the supply chain and in

the field. For that reason, our dissertation considers that genuine devices can be com-

promised during any stage of the manufacturing and application process. Specifically

for our analysis, we consider a compromised smart grid device as a genuine device

20

with some malicious function installed on it. The malicious function can be due to

compromised hardware or software component [K. 13, SS16b]. Also, the malicious

function is expected to change the basic operations of the genuine device. In general,

this function can be injected before, during, or after the device’s manufacturing pro-

cess. In Listing 2.1, we show realistic samples of a compromised device due to code

injection. In this specific example, the malicious functions aim to (1) cause degrada-

tion on the device’s resources and (2) save critical data on a file to be sent later to

attackers.

Listing 2.1: Example of malicious code injected to compromised smart grid devices
1 void stress mem()
2 {
3 srand(time(NULL));
4 long size = rand()%2147483647;
5 malloc(size);
6 }
7
8 void save and send later (GooseSubscriber subscriber)
9 {

10 FILE ∗f = fopen("/root/baduser/data.dat", "a");
11 fprintf(f, "%" PRIu64 "\n", GooseSubscriber getCriticalValue(subscriber));
12 fclose(f);
13 }

To further describe the compromised devices, we recall Equation 2.4. Here, the set

of operations O is compromised with a malicious subset Om executed to perform

the malicious activity [KAJM16]. That is, for compromised devices, the malicious

activity impacts the value of ILI by inserting malicious operations Omi
to O. Such

operations change the device’s kernel behavior (Equation 2.2) so additional function

or system calls are generated (see Listings 2.2 and 2.3). In general, the set Om is

expected to follow certain statistical distribution as detailed later in our adversary

model. Finally, for compromised devices, Equation 2.4 takes the form:

ρILItILIt+i
=

∑
OtOmtOt+iOmt+i

− nOtOmtOt+iOmt+i

nsOtsOmt
sOt+i

sOmt+i

, (2.5)

where the term Omt represents the malicious operations executed at time t and Omt+i

represents the malicious operations executed at time t+ i.

21

Listing 2.2: System calls extracted

from a genuine device
1 pthread detach
2 malloc
3 malloc
4 free
5 free
6 signal
7 malloc
8 malloc
9 free

10 free
11 .
12 .
13 .
14 .
15 .
16 .

Listing 2.3: System calls extracted

from a compromised device
1 pthread detach
2 malloc
3 malloc
4 malloc
5 malloc
6 open
7 free
8 free
9 signal

10 malloc
11 malloc
12 malloc
13 malloc
14 open
15 free
16 free

2.3.4 Behavioral Analysis of Smart Grid Devices

Behavioral analysis of smart grid devices may utilizes changes in kernel’s behavioral

patterns to identify compromised devices. There are three main architectural chal-

lenges that this analysis needs to overcome:

1. Challenge 1: The device class needs to be considered. Different types of devices

are expected to have different behavior; however, similar devices can also behave

differently based on their specific tasks. Such ambiguity can lead to mistakenly

identify genuine devices as compromised. For that reason, our detection frame-

work in Chapter 5 incorporates (1) device resources (e.g., CPU and memory),

(2) type of device, and (3) device task context into the analysis.

2. Challenge 2: Device classes are very diverse. Device class classification would

represent an implementation challenge due to the high device diversity present

in the smart grid [NIS14]. Additionally, after the initial classification, the list

of devices would need to be checked periodically due to possible changes in

network topology or new devices added to the network.

3. Challenge 3: Smart grid devices operations are not fully deterministic. OS oper-

ations possess some degree of randomness that reflects on the device operation

22

list O. During the detection process, the security framework introduced in

Chapter 5 needs to discriminate between additional operations present in the

call lists due to legitimate random processes and real malicious activities.

2.3.5 Classes of Smart Grid Devices

For this dissertation, we group the smart grid devices into different classes. Then,

we expect that devices from different classes have different behavior. To correctly

group the devices, we consider three main features that address the challenges above:

device’s computing resource availability, device’s type, and device’s task context.

Resource availability– we define two different types of devices based on the avail-

ability of their computing resources: resource-rich and resource-limited devices.

• Resource-limited devices : these devices have simple hardware and software ar-

chitecture. They run with low-performance CPUs and have minimal memory

capability. In general, the randomness of the resource-limited devices’ kernel

behavior highly depends on their software architecture [ZDLZ14]. Also, these

devices are built to execute specific tasks inside the smart grid network. Some

devices in this group are PLCs and RTUs.

• Resource-rich devices : these smart grid devices are close in configuration to full-

capacity computers. They have a full Operating System (OS), faster multi-core

processors, and significantly higher memory than the resource-limited devices.

This type of devices executes specialized tasks inside the smart grid network.

Some devices in this group are IEDs and PMUs.

Moreover, we group the devices depending on their specific application, brand,

and model. For instance, PMUs from the same model and manufacturer can be

grouped together while RTUs and PLCs are not considered of the same type. We

23

consider this classification because the devices from different classes have found to

behave differently, even if they perform similar tasks.

Finally, the class-classification process of smart grid devices considers the device’s

task context. For our purposes, the task context involves the type of activity that

the devices are performing and their specific logical location inside the smart grid

network. That is, we consider that devices of the same type can behave differently if

they are handling different types of data from different parts of the network.

In general, we consider that the devices perform similar and repetitive tasks over

time [ZDLZ14]. Then, our detection framework (Chapter 5) takes advantage of this

mode of operation to detect compromised devices based on changes in their expected

behaviour.

2.3.6 Open-source Design Approach

The smart grid testbed used in this dissertation utilizes open-source libiec61850 li-

braries [M. 16] to exchange smart grid time-critical messages using the GOOSE for-

mat [C. 13] among different devices. The use of open-source software provides some

additional design advantages: (1) our solution is more flexible, (2) the framework

(Chapter 5) is more open to customizations which translate on being highly config-

urable, and finally, (3) our solution can be easily adapted to other open standards

which increases interoperability. Therefore, to keep the detection framework from

Chapter 5 open-source, we implement our solutions on Linux-based systems. This

approach is considered realistic since a very high percentage of smart grid devices

still utilize some variant of Unix-based OS [RB15]. We believe that, due to the open-

sourced and configurable nature of our testbed, it constitutes an effective benchmark

to test the performance of this and other security tools designed to protect the smart

grid, that follows the behavioral analysis.

24

2.3.7 Extracting Operations from Smart Grid Devices

We utilize system and function call tracing techniques to extract the set of individual

operations O from the devices. These operations are analyzed while the devices

perform specific smart grid tasks T . We combine function and system call analysis, so

the device’s activity is detailed from both kernel and application-level, which increases

the robustness of the detection framework introduced in Chapter 5. For attackers

trying to exploit the calls to stealth their activities, the inconsistencies between system

and function calls triggered by the same process can also indicate the presence of

malicious activities. We take advantage of the open-sourced Unix-based nature of our

testbed to effectively utilize library interposition and ptrace as system and function

call tracing techniques, respectively.

Tracing system calls with library interposition. We use dynamic library inter-

position (LI) since this is a general-purpose system call tracing method that can be

applied to most C-compiled programs [LBAU17]. LI takes advantage of the use of

a shared object defined inside the runtime library. This object is in charge of fetch-

ing the system calls at the kernel level. At runtime, LI hooks this shared object to

intercept the calls and take control of the applications’ behavior.

Tracing function calls with ptrace. At the user level, we use Process Trace (i.e.,

ptrace), a popular Unix-based tool to trace function calls. Ptrace uses an external

process that acts as a parent for the C compiled program that wants to be traced.

Once the external process attaches to its child, the parent application has full control

of every time the traced application makes a function call.

Finally, for cases where the smart grid devices do not use Unix-based OS (e.g.,

Real-Time Operating System (RTOS)), similar approaches are utilized to trace the

system and function calls. Similar hooking techniques are possible to use because

these other systems behave in similar ways as Linux since they are also POSIX-

25

compliant OS. In general, the tracing technique utilized for hooking into the system

and function calls is a configurable feature that depends on every specific application

[LBAU17].

2.4 Resource-limited App Taint Sources and Sinks

2.4.1 Sources of Sensitive Information in IoT Apps

IoT apps have access to data that can be highly private. We classify taint sources

into five groups [CBS+18]. Taint sources include sensor states (e.g., door locked/un-

locked), device information (e.g., manufacturer name and brand details), user inputs

(e.g., a temperature value to set the heating point of a thermostat), and location (e.g.,

geo-location such as kitchen and living room, and geographical location such as zip

number).

2.4.2 Functions to Leak Information in IoT Apps

IoT apps define specific APIs to send information out from the apps (i.e., taint

sinks) [Smah, Opec]. These APIs define methods to send data out of the apps using

two different mechanisms (i.e., Internet calls and messaging communications) [Smaf,

Smaj,CBS+18].

Internet. IoT apps may act as web services or request HTTP calls to external

services defined by the developer or, in very rare occasions, by the user. First, web

services expose URLs to predefined endpoints that allow requests from IoT apps. For

instance, web services request whether an appliance is on to model energy usage of

an environment. Second, IoT apps use HTTP calls along with system information

26

for app functionality. For instance, an IoT app may send device type and model to

obtain its detailed specifications.

Messaging. Messaging can be categorized into two types as well: SMS and Push

notifications. These are used to inform an app user or other recipients about changes

in an environment, for instance, notifying users when battery of a door lock is below

a threshold.

Sink calls require two types of information to be executed, the recipient and body.

Recipients define whom to send or request information, and the body contains the

necessary information to make the call. In messages calls, the recipients are the phone

numbers and are often defined by the user at install time [CBS+18], while the body

can be specified either by the developer or the user. In Internet calls, the recipients

are, in most cases, external web server addresses are defined by the developer (some

previous works have reported Internet call’s URLs also defined by the user [CBS+18]).

On the other hand, the body contains information obtained from the app depending

on its permissions (e.g., device location and device states).

2.5 IoT Application Context

Context represents the functionality of an IoT app that considers real-world needs of

users and environments. We use two sources of information to infer IoT app context,

app description block, and app permissions. First, IoT programming platforms often

provide guidelines to regulate the way that the functionality of the apps presented

to the users in IoT apps [Smag, Opeb, Appb]. This information is usually needed to

inform the user about the functionality of the apps that helps the user to understand

the app purpose and used at install at time. For instance, a smoke-alarm app descrip-

tion includes a string that says “This app sounds alarm when smoke is detected.”,

and definition for devices, “Which alarm?”. Second, IoT apps require user permission

27

to implement the app logic. The user provides this information at install-time and,

in some platforms, it can be updated later at the user’s convenience. User-defined

information includes devices, inputs for device functionality (e.g., min and max tem-

perature in a smart thermostat control app) to trigger event handlers after reaching

a specific temperature threshold, device location information to control specific set

of devices (e.g., devices in a kitchen or living room), and contact information (e.g.,

phone number) to receive notifications from the apps.

2.6 Generic Smart Environment Architecture

The high-level architecture of a smart environment setup is presented in Figure 2.2. In

this dissertation, we consider Smart Environment as the interconnection of Internet-

enabled devices and sensors that are capable of communicating with each other and

interacting with the users (the smart environment is expected to change its overall

state based on the user’s activity). These devices and sensors create a local network

that is remotely managed via both controller apps (installed in the user’s smartphone)

and smart apps installed either in the cloud backend (i.e., cloud-based architecture)

or a central device called a Hub (i.e., hub-based architecture) [ZMR17].

Through the controller app, the user can change the device settings and receive

notifications from the system. Then, the system executes the smart environment’s

logic by considering inputs from the different devices’ states, the sensors’ readings,

and the user-defined settings via the smart apps. Several IoT programming platforms

(e.g., Samsung SmartThings, Apple’s Homekit, or OpenHAB) share similar settings

and architectural characteristics to deploy their systems.

While deploying the smart environment, users may download the smart apps from

some of the available official repositories online [Smag, Opea], depending on the IoT

platform used. Then, the apps are uploaded and installed into the cloud servers using

28

Cloud Backend

Smart App Logic

Device Handlers

Events
Actions

Controller
App

Hub

Settings
Notifications

Readings
Dev. States

Actions

Figure 2.2: Sample smart environment setup and architecture. The use of a central
controller (i.e., hub) is optional (dashed lines).

the user’s smart platform credentials. However, for some of the open-source platforms

like SmartThings, users can even develop their own apps or use source code that other

developers make freely available online through third-party app repositories [Smac].

2.7 Smart App Structure

In general, IoT programming platforms [Smab,Opeb,Appc] define the means to access

and handle the smart apps’ data and to transmit it out of the applications. Through

these processes, smart apps utilize sensor readings, user-defined inputs, and apps’

events to execute the application logic either in the hub (i.e., hub-based setup) or

in the cloud (i.e., cloud-based setup). Therefore, through the analysis of the smart

applications’ structure, one can identify and label smart app resources that could

potentially contain relevant information for forensic purposes. In the following, we

detail these forensically-relevant resources.

29

Events. These are used to respond to changes in the physical environment. At install

time and depending on the app context, a smart application subscribes to a set of

device events. Then, event handler methods are called every time such events occur.

Actions. After an event occurs, the smart app calls an action through the event

handler to control the subscribed device. Actions specifically define how a smart

environment setup responds to changes in device states.

User-defined Inputs. Smart applications often require inputs from users either to

manage the application logic or to define device settings [AZZ+17]. These inputs,

which are considered granted permissions, are defined at install time and set specific

thresholds to trigger actions. Also, user inputs may define contact information used

to send notifications to specific recipients.

Device Information. Device information is used to match smart app events and

actions with specific devices. Logging this information allows for tracking authorized

or unauthorized changes (e.g., device replacement or tampering) in the smart envi-

ronment.

Time and Location. Successful forensic analysis of a smart environment requires

not only the timing information of the events/actions but also their physical locations.

In that way, such events can be directly attached to specific geo-location information

of smart devices. Additionally, unique identifiers can be assigned to the different data

logs.

Smart app programming platforms define APIs [Smaf, Oped] to transmit data

outside the applications. We can categorize these APIs into two main groups:

Internet. IoT smart apps logic usually run as cloud-based services, which imposes

a noticeable difference if compared to other domains (e.g., smartphone apps) where

local solutions are preferred. Therefore, smart apps are designed to directly act as

web services or make calls to external services defined by the developers. These calls

30

can make requests to smart apps via endpoints to obtain information such as device

states, events, or even propose specific actions to control the smart solution.

Notifications. Smart applications can also define custom messages to send notifi-

cations to users. These notifications can be of the three different types: (1) push

notification in the mobile app, (2) email, or (3) short message services (SMS). Such

categorization allows the developer to create a dedicated notification system to alert

the user when specific events occur.

31

CHAPTER 3

LITERATURE REVIEW

In this chapter, we present the related work to which we referred for each individual

research work in this dissertation.

3.1 Identification of Resource-limited Devices

Device fingerprinting is an appealing research area that follows two main paths:

device-class and device-host fingerprinting.

3.1.1 Device-class Fingerprinting

Device fingerprinting is an appealing research area that follows two main paths:

device-class and device-host fingerprinting. In this work, we focus on the former.

In [DBCM16] the feasibility of large-scale host fingerprinting via motion sensors is

analyzed with 90% accuracy. Other works use microscopic deviations in clock skews to

identify specific devices [KBC05,LPBZ12,SHS12], however, these approaches are vul-

nerable to simple countermeasures and require the analysis of several network packets

for accurate results. Authors in [DBC14] use embedded acoustic devices (microphone

and speakers) on smartphones to fingerprint individual devices. Even when they re-

port accuracy values in the range of 98%, these results are only possible in close-range

distances (0.1 meters). Similar directions were followed in [ZDLZ14, PBL15] where

frequency responses of devices’ speakers are used to identify individual devices. Other

works report the use of the devices’ behavior as a response to specific network packets

(i.e., stimulant) [NHO12, BCKP08]. In spite of their positive results, these types of

fingerprinting techniques also come with some limitations. For instance, the proposed

approaches only apply for specific types of network protocols (e.g., transport layer

32

protocols like UDP, TCP, etc.) or they are vulnerable to the network dynamics such

as WiFi channel characteristics, traffic delay, etc.

3.1.2 Device-host Fingerprinting

As for the identification of different classes of devices, in [KCB10], the authors pro-

pose a passive blackbox technique for determining the type of access point (AP)

connected to a network based on its behavior. In [FSL+16], the authors use time

as a baseline for device type fingerprinting. In this case, the proposed fingerprinting

methods are mainly based on (1) the response time to network-based interactions

(cross-layer fingerprinting) and (2) the response time to physical operations (physical

fingerprinting). Although their results are promising, the first approach highly de-

pends on configurable network attributes like the level of priority of TCP messages

and ACK implementation. Further, the second proposed method also depends on the

SCADA system configuration. In different works, passive device class fingerprinting

are proposed by using the timing distributions between network packets as the finger-

printing features [URC+13,RUB15]. In similar approaches applied to domains other

than CPS, researchers propose the analysis of network dynamics to infer IoT device

classes [TDS+19,MMH+17,NMM+18,DJ17].

3.1.3 Behavioral-based Device Fingerprinting

Several security approaches make use of system and function call analysis to regulate

and monitor the behavior of specific applications [Gar03, Blu13, LBAU17]. For in-

stance, researchers have proposed the use of system and function call analysis for the

design of intrusion detection systems (IDS) [JS99,FKF+03], the identification of op-

erating system functions [HB99], sandboxing [KZ13], and the implementation of soft-

33

ware portable packages. Also, some works have demonstrated that similar approaches

are suitable for the classification of behavioral anomalies [FKF+03, MKLP12]. Al-

though these last works report high overhead introduced to the systems, other similar

implementations are more lightweight [SBDB01].

3.2 Detecting Compromised Resource-limited Devices in CPS

3.2.1 Security Challenges of Cyber-physical Systems

There are several works studying security challenges in the the cyber-physical systems

(CPS) [KHLF10,TAA15,SSG+16,WL13]. In general, cyber attacks against CPS are

categorized into four different groups: denial of services (DoS) attacks, malicious data

injection attacks, traffic analysis attacks, and high-level application attacks [WL13].

In [DS12], [X. 12], [AVJA15], and [BGK16], the authors provide several examples of

DoS attacks impacting different parts of the smart grid architecture. Most of these

attacks are executed from compromised hosts, servers, and devices inside the smart

grid.

Examples of malicious data injection attacks can be found in [DS12,SS16a,KPJ16].

One compelling case is studied in [ZM16]. In this work, the authors analyze four

different types of attacks in the state estimation process and examine the least-effort

data injection attack to find the optimal attack vector.

In the case of traffic analysis attacks, authors in [SC11] describe how an attacker

can monitor and intercept the frequency and timing of transmitted messages over

the CPS network to deduce information and user’s behavior. In [N. 14], high-level

application attacks are described as the way an attacker can disrupt the essential

functions of a power system (i.e., state estimation, power flow measurement, etc.).

34

3.2.2 Detection of Compromised Resource-limited Devices

The topic of compromised devices detection has not been extensively studied in the

literature. In most cases, researchers focus on proposing anomaly detection mech-

anisms [Kos16] for different types of attacks in the smart grid [SGLL13, HPK+14,

FHDK16,OEV+16], without particularizing on the attack sources (e.g., compromised

devices). In a few cases, however, the particular behavior of the smart grid device

is considered. In [YMA+16], the authors study the minimal number of compromised

sensor that can be used to manipulate a given number of smart grid states effectively.

Further, they consider the optimal Phasor Measurement Unit (PMU) placement to

defend against this type of data integrity attacks.

Some other works focus on other CPS and industrial environments. In [MR16],

the authors propose a vector-valued model-based cumulative sum procedure to iden-

tify compromised sensors in CPS. Even though this work achieves good results in

simulation environments, its threat model only considers false data injection attacks.

Also, no results are shown on the overhead introduced to the CPS devices, essential

to consider suitable security applications for real-time critical infrastructures like the

smart grid. In a different approach, the authors in [VBC14] apply attestation ap-

proaches to detect comprised devices in the CPS. In this work, however, they utilize

stimulant-response mechanisms to detect compromised devices based on their specific

reaction to controlled inputs, which can also be impractical for the smart grid and

results can depend on several undesired networks’ and physical channels’ dynamics.

Other works propose similar attestation approaches [CPS18b, LGGG07, VBC14] to

detect attacks in CPS. However, these works focus on building models of the entire

CPS network instead of focusing on individual devices, which impacts the overhead

and the general performance of the proposed solutions. Finally, most of these works

35

apply to Wireless Sensor Networks (WSN) and are not directly applicable to the

smart grid domain.

Intelligent, secure packaging, outbound beaconing, and better tracking systems

are some of the countermeasures that are being proposed to prevent the introduction

of compromised devices in the smart grid supply chain [D. 12, M. 13, Y. 16, U. 14].

However, skilled attackers could have remote access to legitimate devices (e.g., RTUs,

PMUs, IEDs, etc.) outside the supply chain and create opportunities for tampering

smart grid devices in the field.

3.2.3 Call Tracing Techniques for Security Applications

Function and system call tracing techniques constitute a powerful method for regu-

lating and monitoring applications behaviour [Blu13], so they have been largely used

in security applications [Gar03]. System and function call tracing techniques can be

found in applications like intrusion detection and confinement [JS99], binary detection

of OS functions [HB99], sandboxing [KZ13], and software portable packages [GE11].

Specifically, in [E. 01], the authors use system call tracing to implement intrusion

detection systems (IDS). Also, in [FKF+03] and [MKLP12], the authors proposed

anomaly detection mechanism based on information obtained from system calls be-

havior analysis. In these cases, the implementation of the security tools resulted too

heavy in terms of system overhead. One similar application with improved system

overhead can be found in [SBDB01]. In this case, the proposed solution is required

to run continuously and serves the purpose of complementing antivirus software.

36

3.3 Resource-limited Device Application Analysis

3.3.1 Static Analysis of IoT Applications

Mirroring the expansion of IoT itself, there has been an increasing amount of recent

research exploring IoT security. These works centered on the security of emerging IoT

programming platforms and IoT devices. For example, Fernandes et al. [FJP16] iden-

tified design flaws in permission controls of SmartThings home apps and revealed the

severe consequences of over-privileged devices. In another paper, Xu et al. [XWP14]

surveyed the security problems on IoT hardware design. Other efforts have ex-

plored vulnerability analysis within specific IoT devices. For example, Oluwafemi

et al. [OKGP13] investigated the security risks in light systems controlled by com-

promised automation systems and Ho et al. [HLM+16] studied the security of smart

locks. These works have found that apps can be easily exploited to gain unauthorized

access to control devices and leak sensitive information of users and devices.

Many of previous efforts on taint analysis focus on the mobile-phone platform [C+07,

ARF+14, GKP+15, EGH+14, ZJS+11, GLL+13]. These techniques are designed to

model domain-specific challenges like on-demand algorithms for context and object

sensitivity. Several efforts on IoT analysis have focused on the security and correctness

of IoT programs using a range of analyses. To restrict the usage of sensitive data,

FlowFence [FPR+16, RFP16] enforces sensitive data flow control. Yet, FlowFence

requires additional developer effort and computational overhead at run-time. Con-

texIot [JCW+17] is a permission-based system that provides contextual integrity for

IoT programs at run time. It is designed to infer the app context automatically and

to enforce permissions based on that context.

37

T
o
o
l

N
a
m

e
D

o
m

a
in

S
o
u

r
c
e

C
o
d

e

A
n

a
ly

si
s

D
y
n

a
m

ic

A
n

a
ly

si
s

S
e
m

a
n
ti

c
s

A
n

a
ly

si
s

P
r
iv

a
c
y

A
n

a
ly

si
s

N
L

P
/
M

L

A
n

a
ly

si
s

U
se

r

A
w

a
r
e
n

e
ss

O
v
e
r
h

e
a
d

E
v
a
lu

a
ti

o
n

F
r
e
e
ly

A
v
a
il

a
b

le

T
a
in

tD
ro

id
[E

G
H

+
1
4
]

A
n

d
ro

id

F
lo

w
D

ro
id

[A
R

F
+

1
4
]

A
n

d
ro

id

F
lo

w
C

o
g

[P
C

D
+

1
8
]

A
n

d
ro

id

F
lo

w
F

en
ce

[F
P

R
+

1
6
]

Io
T

C
o
n
te

x
tI

o
T

[J
C

W
+

1
7
]

Io
T

S
a
in
T

[C
B

S
+

1
8
]

Io
T

P
ro

v
T

h
in

g
s

[W
H

B
G

1
8
]

Io
T

iR
u

le
r

[W
D

Y
+

1
9
]

Io
T

Io
T
W
a
t
c
H

Io
T

T
ab

le
3.

1:
C

om
p
ar

is
on

b
et

w
ee

n
Io

T
W
a
t
c
H

an
d

ot
h
er

si
m

il
ar

an
al

y
si

s
to

ol
s

fo
r

A
n
d
ro

id
an

d
Io

T
ap

p
s.

38

3.3.2 Dynamic Analysis of IoT Applications

Information Flow Analysis (IFA) tools have been proposed for the mobile phone

[ZJS+11,GLL+13,C+07,ARF+14,GKP+15,EGH+14] and IoT apps [FJP16,CBS+18,

RFP16]. Table 3.1 compares IoTWatcH with other IFA tools. Though these solutions

are effective in identifying sensitive data flows, they only consider privacy concerns

from data flows that contain tainted variables. FlowCog [PCD+18] recently proposed

a solution to address this issue. Here, the authors analyze context from Android app

views and establish data flow dependencies based on app context. However, due to

specific architectural differences, Android-based solutions cannot be directly applied

to IoT apps. There exist a few systems for IoT app analysis. FlowFence [FPR+16]

makes the consumers of IoT data declare their intended activities to enforce data flow

policies. More recently, SainT, a static analysis system, is proposed to detect sensitive

data flows of IoT apps [CBS+18]. SainT does not consider sensitive data leaks at

runtime and data leaks-through strings, while FlowFence often over-approximates the

data leaks which would lead to false positives when a precise dependency between

taint variables and the leaks cannot be established. Indeed, our analysis showed

that 64% of the analyzed apps leak sensitive data through simple strings that did not

include information from taint variables, yet the strings contain sensitive information;

thus the analysis of strings are required. Lastly, ProvThings [WHBG18] uses static

and dynamic analysis to collect provenance to identify the root cause of attacks in

IoT apps. ProvThings is limited to analyze dependencies between events and data

states and does not offer any built-in privacy analysis.

39

3.4 Digital Forensics on Resource-limited Device Data

Smart settings such as smart home/office systems have become popular in recent

years. However, there exists no platform for forensic analysis of data from a smart

environment that considers the interaction between smart devices, users, and security

policies in place. Also, existing solutions assume trusted devices [WHBG18] which

despite considered in other works [FJP16, FPR+16, JCW+17], can be unrealistic in

several scenarios. In this section, we discuss existing forensic data analysis platforms

for smart environments and their shortcomings.

3.4.1 Forensic Data Collection from the Smart Environment

Previous approaches collect data from the smart environment and devices. Some of

these works only focus on vendor-specific devices [CPLK12], present general methods

to only collect data without any future analysis [OJES13, WD16], or have proposed

models to collect data for forensic purposes using IoT [PNR15, HV17, BGV18]. Ke-

bande et al. proposed a generic approach, DFIF-IoT, to analyze digital forensic data

in IoT settings [KR16]. Here, the authors presented a generalized method to capture

forensic data from IoT devices including cloud, network, and device-level forensic

data. However, this work only discusses theoretical approaches without any real-life

implementation and evaluation, which decreases the practicality of this work. Za-

woad et al. proposed FAIoT, a forensic-aware eco-system to collect forensic data

from IoT platforms [ZH15]. FAIoT collects data systematically and organizes it for

further analysis. One shortcoming of this work is that there is no implementation of

data analysis as part of the framework. Chung et al. proposed a forensic framework

to collect and analyze forensic data in an IoT eco-system [CPL17]. However, this

solution is limited to Amazon Alexa with only one device-specific solution.

40

3.4.2 Smart Data Logging

Previous works have used logging to have access to information as a result of smart app

executions. Some IoT programming platforms provide the ways for logging smart app

data [Win, Iri, Log, Smai]. Personalized open-source solutions are also popular [Sim,

Smae]. In this context, solutions like ProvThings [WHBG18] provide a comprehensive

analysis of smart apps and smart devices logs. Specifically, the authors propose a

platform-centric approach that looks at activities from smart apps for data provenance

purposes. However, the analysis is limited to only consider the temporal relationship

between devices and apps events without providing further and deep analysis on the

data. Lastly, this work assumes trusted devices which despite considered in other

works [FJP16,FPR+16,JCW+17], can be unrealistic in several scenarios.

41

CHAPTER 4

HOST-BASED RESOURCE-LIMITED DEVICE CLASS

IDENTIFICATION

4.1 Introduction

In this chapter, we address the challenge of applying expensive fingerprinting tech-

niques to resource-limited devices by introducing Stop-and-Frisk (S&F), a novel

CPS signature-based fingerprinting framework intended to perform device class iden-

tification and complement other traditional security mechanisms in the CPS infras-

tructure. Specifically, the fingerprinting approach combines system and function call

tracing techniques, signal processing, and performance analysis on the devices to im-

plement a signature-based challenge-response fingerprinting solution. By using this

approach, S&F studies the behavior of the devices within a CPS infrastructure as

well as their software/hardware architecture and configuration to identify real CPS

devices and discriminate them from impersonators.

To test the efficacy of S&F, we implement a realistic CPS testbed that con-

tains different classes of devices with different resources (i.e., memory and CPU),

architectures, computing capabilities, and configurations. The experimental results

demonstrate that, by combining behavioral and performance analysis at both kernel

and hardware levels, S&F achieves excellent rate for the CPS device class identifica-

tion. Finally, the performance analysis shows minimal overhead on the CPS devices’

computing resources.

The contributions of this chapter are as follows:

1. Stop-and-Frisk: We designed and implemented a novel CPS signature-based

fingerprinting approach that performs CPS device class identification using sys-

tem and function call information, signal processing, and performance analysis

42

Fingerprinting
Tool

Requires
Extensive
Analysis

Depends on
Network
Dynamics

Analyzes
Physical
Metrics

Analyzes
OS

Metrics

Yield
High

Overhead

[KBC05,URC+13,KCB10,FSL+16,RUB15] X
[SPJ15,LPBZ12,ZDLZ14] X

S&F

- Yes, - No, and X - Not reported

Table 4.1: Comparison between Stop-and-Frisk and other fingerprinting techniques.

of the devices. The fingerprinting solution may complement other traditional

security mechanisms and provide dependability to CPSs.

2. Realistic CPS testbed: We designed a realistic and representative CPS security

testbed that includes different classes of CPS devices with varying resources

and configurations.

3. High performance: The results from the performance evaluation prove that the

fingerprinting framework achieves very high accuracy while introducing minimal

overhead in the utilization of the computing resources available in the CPS

devices.

4.1.1 Differences from Existing Works.

Table 4.1 compares S&F against other fingerprinting techniques based on specific de-

sign and implementation criteria. We selected these features as we believe some of

them may directly impact the performance of the time-critical CPS infrastructure.

For instance, Table 4.1 shows that, as opposed to S&F, other fingerprinting technique

require of extensive data analysis or depend on specific network metrics to achieve

their results. Surprisingly, these solutions do not offer specific overhead performance

analysis, even though fingerprinting solutions that focus on the behavior of the net-

work dynamics may impact the performance of the CPS infrastructure. Additionally,

43

their effectiveness either depend on the network’s configuration, the analysis of exten-

sive amount of data, or the observation of fingerprinting features over long periods.

S&F is different from other discussed solutions since it is host-based and device-

centered. Also, it does not require traffic monitoring, the study of the interaction

between CPS devices and other network equipment, nor need to overcome inevitable

errors or overhead (e.g., latency) that can be introduced from changes in network

dynamics. The introduced framework implements a signature-based device type fin-

gerprinting mechanism that studies the behavior and performance of the CPS devices

at both hardware and kernel levels. S&F utilizes a challenge-response approach where

the devices perform standard CPS functionalities and operations. Finally, our tech-

nique achieves excellent identification results while introducing very little overhead

to the CPS devices at downtime.

4.2 Threat Model and Use Case

Stop-and-Frisk considers an attacker that inserts unauthorized devices into a CPS

infrastructure. The unauthorized devices intend to spoof real CPS devices to gain

access to restricted areas of the network and perform malicious operations. These

malicious operations may include: (1) stealing sensitive information, (2) poisoning

physical measurements, and (3) creating the conditions for new attacks in the future.

We consider these realistic scenarios where the attackers do not have access to original

CPS devices with the same hardware and software configurations used in the field. In-

stead, they utilize spoofing devices that mimic real CPS network operations. Finally,

in this chapter, we do not consider counterfeit or compromised (either by hardware

or software) real CPS devices as part of the threat model as they are outside of the

scope of this fingerprinting work. In the following, we present a simple use case that

44

?

Type A
Type A

Type B Type A

Unknown

CPS Environment

Device Feature

Extraction
2

3

1

Host-based

Local Service

Signature

Correlation

Decision

5

6

Server-based

Remote Service

Signature

Generation
4

• System and

function calls

• Hardware

performance

analysis

Figure 4.1: Architecture of Stop-and-Frisk to identify different CPS device classes.

describe the problem scope of S&F. Then, we overview the device class fingerprinting

framework and present details of its modules and processes.

4.2.1 Problem Scope

We present the problem scope through a use case. Let’s assume that there is a CPS

network infrastructure where devices of different types interact to execute a task T .

The specific class of some of the devices in the setup is known (i.e., Type A and Type

B); however, an Unknown device is also present. There are two direct benefits derived

from implementing S&F: (1) the network operators may be able to verify that the

devices in the network are of the expected class (based on the specific tasks they are

executing) and (2) they may be able to identify unknown devices and determine if

they are, in fact, authorized to be present or not.

Since most of the CPS devices perform time-critical operations in the network, our

CPS device class fingerprinting framework is intended to be applied at the device’s

patch- or maintenance-time (i.e., downtime). That way, S&F’s operations would

focus on individual devices and would put minimal overhead on the systems. Such

operations require of the interaction of two different services: a server-based remote

service (running from a remote server that monitors the CPS environment) and a

host-based local service (running on the CPS devices).

45

4.3 Overview of S&F

Figure 4.1 depicts the general overview of the device class fingerprinting framework.

First, a scheduler running in the remote server that executes S&F makes a signature

request to the CPS device (i.e., localhost) at downtime (1). Such a request activates

the host-based local service that implements the Device Feature Extraction module

(2). This module executes a secret challenge and extracts software- and hardware-

related data generated during the device’s reaction to the challenge. Specifically,

it hooks into the device’s activity and extracts lists of system and function calls.

Additionally, the Device Feature Extraction monitors the performance of the device

regarding CPU utilization, memory utilization, and application execution time while

extracting the calls. Once finished, the module derives specific features from the

collected data. Specifically, these features are related to the set of function and

system calls triggered, the amount of every different call type, and their arguments,

respectively. Additionally, it computes the CPU utilization, the amount of memory

allocated to execute the challenge’s response, and the total execution time. Once all

the required features are acquired, the local service sends it to the remote server using

a secure channel (e.g., VPN-based data exchange) for further analysis (3).

On the server side, the collected features are then utilized to generate the signa-

ture of the CPS device inside the Signature Generation module (4). Further, the

generated signature is correlated (5) against other signatures previously extracted

from known-type CPS devices (i.e., ground-truth). Finally, a threshold-based decision

algorithm defines the unknown device class (6).

46

4.4 Device Feature Acquisition

The first step in the fingerprinting process is to obtain the list of features used to create

the device-class unique signature. In general, the implementation of the introduced

host-based fingerprinting technique is simple and CPS operation-friendly since (1) it

does not require traffic monitoring over long periods and (2) the devices are monitored

at downtime and under standard CPS operating conditions.

4.4.1 Challenge-Response Approach

S&F uses a challenge-response mechanism to study the behavior and performance of

the unknown CPS devices. Such study generates device type-specific signatures that

are used later for identification purposes. The Device Feature Extraction module run-

ning in the host is the one in charge of securely storing and executing the challenge.

There are some advantages associated with storing and executing the challenge locally

in the host devices. First, it eliminates the need of creating extra secure channels to

receive files from the remote server, especially at downtime when connection capa-

bilities may be limited. Second, S&F may automatically flag as unauthorized those

devices with the wrong challenge or where the Device Feature Extraction module is

unavailable at test time (which adds additional security layer in case attackers try

to mimic the performance of S&F). Third, even if the attackers can still implement

S&F in the spoofing devices, the final decision depends on the device behavior rather

than on metrics that can be easily spoofed. Assuming that the attackers can change

the device’s behavior and also modify the hardware performance results in S&F’s

signature, they still need to guess the right values to guarantee that the fake signa-

ture would correlate with the one stored in S&F’s server for the specific device type

analyzed.

47

4.4.2 Parametric Call List (PCL)

S&F utilizes system and function call hooking techniques [LBAU17] to obtain all the

system and function calls that a specific CPS device-class triggers as a response to a

stimulant (i.e., challenge). From the call lists, the Device Feature Extraction module

obtains the value of distinctive metrics such as (1) the set of specific triggered calls,

(2) the total number of calls by type (e.g., malloc, free, open, etc.), and (3) the value of

specific call’s arguments (e.g., the amount of memory allocated by malloc). We refer

to this list of parameters extracted from the system and function calls as Parametric

Call List (PCL), which is defined as:

PCLi = {xi ∈ Xi : ∃Xi ∧Xi 6= ∅}, (4.1)

where PCLi represents the PCL extracted from device i, xi represents the parameters

of the calls extracted from device i, and Xi represents the call lists extracted from

device i. Finally, the hooking technique utilized to extract the system and function

calls is irrelevant to our design and it is specific to every device’s architecture and

OS [LBAU17]. Due to reduced complexity, the PCL generation is completed on the

host devices. Once finalized, the PCL is sent to the S&F remote server using secure

communication channels.

4.4.3 Device Performance Index (DPI)

The second feature used in our framework to identify CPS device classes is the Device

Performance Index (DPI). Since call lists can be faked by attackers to mimic authentic

CPS devices, S&F further combines hardware performance analysis as part of its

identification mechanisms. As mentioned in Chapter 2 (Section 2.1), CPS devices are

not expected to change their general functionality, so the average system performance

is also expected to remain steady over time [FSL+16]. Hence, as every class of CPS

48

device has specific functionalities, the device’s performance obtained under regular

operating conditions can be used for identification purposes.

S&F integrates three different metrics into the DPI analysis: memory utilization

(α), CPU utilization (β), and execution time (γ). Since every metric is evaluated

over a certain time interval t of interest, we can consider every metric as a vector

quantity as:

~α = {|α|, φα},

~β = {|β|, φβ},

~γ = {|γ|, φγ}.

(4.2)

where |α|, |β|, and |γ| represent the magnitude of memory utilization, CPU utilization,

and execution time, respectively and φα, φβ, and φγ represent the direction of change

(e.g., positive for increased utilization and negative for decreased utilization) of every

metric in t, respect to any previous time interval t0. From here, we can define DPI

as the volume of the parallelepiped (Figure 4.2) whose adjacent sides are defined by

the averaged metrics ~α, ~β, and ~γ. The parallelepiped volume can be found via the

scalar triple product of these metrics as:

DPI = |~γ · (~α× ~β)|,

= εijkγiαjβk : i, j, k ∈ 1, 2, 3...n,

= det

γ1 γ2 γ3 . . . γn

α1 α2 α3 . . . αn

β1 β2 β3 . . . βn

 .
(4.3)

S&F computes the DPI for every CPS device class and includes this value, along

with the PCL, as part of the unique device signature. Due to a higher complexity

compared to the PCL generation, S&F generates the DPI in the Signature Generation

module, and before creating the specific device signature.

49

CPU
Utilization (𝛽𝛽)

M
em

or
y

U
til

iz
at

io
n

(∝
)

Dev A

Dev B

Figure 4.2: Three-dimensional representation of the DPI of two different CPS device
classes. The DPI of device class A is greater than the DPI of device class B in around
2x, 1.4x, and 2.5x of memory, CPU utilization, and execution time, respectively.

4.5 Device Signature Generation

Once S&F completes the device feature acquisition (i.e., PCL and DPI), it generates

the unique CPS device-class signature based on the extracted features. Such features

are selected, so they guarantee a comprehensive analysis on the device behavior and

performance at both OS and hardware levels, while keeping identifiable device char-

acteristics (e.g., network metrics, device ID) out of the analysis to preserve privacy.

The signature structure must solely guarantee the correct identification of the device

classes so the spoofing or unauthorized devices can be detected. The final signature

for every CPS device type has the following format:

[µ(PCLlists), µ(DPIlists)]. (4.4)

where µ(PCLlists) represent the average of parameters extracted from the system

and function calls and µ(DPIlists) represents the average of CPU utilization, memory

utilization, and execution time values included in the DPI.

50

4.6 Ground Truth Devices - Learning Phase

The effectiveness of S&F in identifying different classes of CPS devices relies on the

use of reliable ground-truth device-based signatures. S&F correlates the ground-

truth signatures against the behavior and performance of the unknown devices for

identification purposes. In general, ground truth-capable devices must adhere to two

basic rules: (1) they must indeed characterize the behavior of the device classes in

their network region, and (2) they must perform stationary deterministic operations

inside the CPS infrastructure over time. The first rule guarantees that the device’s

metrics and the type of activity (i.e., the device’s specific application inside the CPS

network) performed by the ground-truth device are both considered to define its class

(Chapter 2, Section 2.1). On the other hand, the second rule guarantees reliability.

S&F requires that ground-truth devices behave in a deterministic way to guarantee

that, if the same challenge is applied, every device class always generates the same

signature over time. Steady behavior constitutes a realistic requirement since previous

research works have highlighted the deterministic behavior of CPSs [FSL+16]. Finally,

the mechanism of obtaining signatures from ground-truth devices is known as learning

phase. Once S&F completes this process, it stores the ground truth device-based

signatures into a signature database (SDB).

Ground-truth devices characterize a CPS network region. As discussed in Chap-

ter 2 (Section 2.2), device class classification have been traditionally focusing on the

branch, model, and the specific application of the devices. We also utilize these met-

rics to perform a first-round classification of the potential ground-truth devices classes

and to determine how many different classes may be present in the network. We also

utilize this information to better organize signatures in the SDB. Thus, we first group

the different classes of devices in the network based on these metrics. Further, we ap-

51

ply behavioral and performance analysis to extract the signatures from every device

class.

To evaluate the reliability of the ground truth devices, we calculate the autocorre-

lation of different PCLs and DPIs obtained while the devices execute the same process

(i.e., challenge) but at different time intervals t. We use Equations 4.5 and 4.6 to

calculate PCL and DPI autocorrelation, respectively, as follows:

ρPCLti ,PCLti+1
=

∑
PCLtiPCLti+1

− nPCLtiPCLti+1

nsPCLti
sPCLti+1

, (4.5)

ρDPIti ,DPIti+1
=

∑
DPItiDPIti+1

− nDPItiDPIti+1

nsDPItisDPIti+1

, (4.6)

where PCLti , PCLti+1
, DPIti , and DPIti+1

represent PCL and DPI metrics extracted

from the same CPS process, but executed at different time interval, n represents the

size of the arrays PCL and DPI, and s represents the standard deviation.

Algorithm 1: Generate Signature (Learning Phase)

1: iterations← N
2: PCLlists ← null
3: DPIlists ← null
4: for i = 0 to iterations− 1 do
5: PCLlists[i]← getParamList()
6: DPIlists[i]← getDPIndex()
7: end for
8: for i ∈ 0...size(PCLlists)− 1 do
9: gTV ec← ρyi,yi+t

(PCLlists[i], PCLlists[i+ 1])
10: end for
11: grdTh← µ(gTV ec)
12: if grdTh > ξ then
13: SDB ← [µ(PCLlists), µ(DPIlists)]
14: end if

Algorithm to obtain CPS ground truth device-based signatures during the learning process.

Algorithm 1 details the process of obtaining the ground-truth signatures during

the learning phase. Initially, in Line 1, the number of iterations (for averaging pur-

poses) is initialized and the local variables PCLlists and DPIlists are declared. These

52

variables contain the list of parameters from every iteration, i. Then, in Lines 5

and 6, system and function call tracing techniques are applied to obtain the PCL at

different time intervals t. Also, the algorithm guarantees the calculation of the DPI

for every iteration. In Line 9, the autocorrelation vector between the different time

intervals of PCL is calculated. Later, in Line 11, the average of all autocorrelation

values is computed. Finally, if the autocorrelation value is greater than ξ from Line

12, the algorithm accepts the evaluated CPS device as ground-truth, and stores its

signature into the SDB (Line 13). In practice, the value of the threshold ξ is agnostic

and can be determined based on the specific characteristics of the operations in the

ground-truth device.

Algorithm 2: Identify Device Class (Prediction Phase)

1: CPSsignList← SDB
2: iterations← N
3: PCLlists, DPIlists, CPSdeviceID ← null
4: signatue← null
5: for i = 0 to iterations− 1 do
6: PCLlists[i]← getParamList()
7: DPIlists[i]← getDPIndex()
8: end for
9: signature← [µ(PCLlists), µ(DPIlists)]

10: corrXYmax← 0
11: for i = 0 to size(CPSsignList)− 1 do
12: corrXY ← ρx,y(CPSsignList(i), signature)
13: if corrXY > δ & corrXY > corrXYmax then
14: CPSdeviceID ← i
15: corrXYmax← corrXY
16: end if
17: end for

Stop-and-Frisk algorithm for CPS device class identification.

53

4.7 Signature Correlation and Decision - Prediction Phase

On the server side, S&F correlates the signature obtained from the unknown CPS

device against the ground-truth signatures stored in the SDB. This process is known

as prediction phase and is detailed in Algorithm 2. The process to obtain the signature

of the unknown CPS device follows similar steps as in Algorithm 1. However, this

time the system is not required to calculate autocorrelation since S&F assumes that

the signature of the unknown CPS device is valid after n different iterations (Lines 2,

6 and 7 in Algorithm 2). Once the unknown signature is finally generated in the server

(Line 9), S&F calculates the correlation between signature and all the unique CPS

ground-truth signatures from the SDB (Line 12) using Equation 4.7 and Equation

4.8:

ρPCLX ,PCLY
=

∑
PCLXi

PCLYi − nPCLXPCLY
nsPCLX

sPCLY

, (4.7)

ρDPIX ,DPIY =

∑
DPIXi

DPIYi − nDPIXDPIY
nsDPIXsDPIY

. (4.8)

where n represents the size of PCLX (i.e., ground truth PCL), PCLY (i.e., unknown

device PCL), DPIX (i.e., ground truth DPI), and DPIY (i.e., unknown device DPI),

PCLX , PCLY , DPIX , and DPIY represent the mean value, and sPCLY
, sPCLY

,

sDPIX , and sDPIY represent the standard deviation, respectively.

After computing correlation, the decision process starts. The logical condition in

Line 12 evaluates that (1) the correlation between the unknown device and signature i

from the database is greater than a certain threshold δ and (2) this value of correlation

is a maximum obtained from all the iterations in Algorithm 2. If such a condition

holds, the unknown CPS device is deemed to be the same CPS device class as CPS

device i from the database (Line 14). On the other hand, if the condition in Line 13

is never satisfied, the unknown device is classified as Unknown, and flagged by S&F.

One can observe that, from Algorithms 1 and 2, the value of the correlation threshold

54

Ground Truth Device

Feature Extraction

Sys Calls

Function Calls

Memory

CPU

Time

Signature
Generation

Signature Correlation

Autocorrelation

Le
ar

ni
ng

 P
ha

se

Device Signature Database
(SDB)

Unknown Device

?

Feature Extraction

Sys Calls

Function Calls

Memory

CPU

Time

Signature
Generation

Signature Correlation

PCL-based

DPI-based

Decision

Pr
ed

ic
tio

n
Ph

as
e

Figure 4.3: We introduce a device-class identification framework using call tracing
techniques, signal processing, and device performance analysis.

δ is a configurable parameter and depends on the threshold ξ used to generate the

ground-truth device signature.

Finally, the processes described in Algorithms 1 and 2 are summarized in Figure

4.3. One can notice that, for both learning and prediction phases, S&F reuses the

first two modules of its architecture since they contain similar operation steps. In

both phases, S&F needs to extract features and create signatures from ground truth

or unknown devices, respectively.

55

4.8 Performance Evaluation

In this section, we present experimental results that demonstrate the effectiveness of

S&F to fingerprint and identify different classes of CPS devices. The main purpose

of these experimental evaluations is to answers the following research questions:

• RQ1: Learning Phase. How the fingerprinting framework performs during

the learning phase? (Section 4.9).

• RQ2: Prediction Phase. What is the accuracy of S&F in fingerprinting

CPS devices while implements (1) PCL correlation only, (2) DPI correlation

only, and (3) combines both PCL and DPI analysis? (Section 4.10).

• RQ3: Overhead. What is the overhead introduced by S&F to the CPS

devices? (Section 4.11).

4.8.1 Testbed Implementation

We implemented our CPS device fingerprinting testbed considering the characteristics

of the CPS described in Chapter 2 (Section 2.1). These characteristics were included

in our testbed as follows:

1. Diversity in hardware and software resources : We included 11 different CPS

device classes with a variety of computing resource characteristics and different

hardware/software configurations. This diversity makes our testbed representa-

tive of a large population of real CPS devices; from small devices with limited

resources to resource-rich devices [L. 17].

2. Discriminate then Regroup: Our implementation must prove the effectiveness

of S&F in first, discriminating all different types of CPS devices (to avoid false

positives outcomes) and second, grouping devices of the same type together (to

56

C
la

ss
#

D
e
v
ic

e
ID

M
o
d

e
l

N
a
m

e
H

a
r
d

w
a
r
e

S
p

e
c
ifi

c
a
ti

o
n

s
O

p
e
r
a
ti

n
g

S
y
st

e
m

R
e
le

a
se

1
B
B

1
B

la
ck

A
M

3
5
5
x

C
o
rt

ex
-A

8
@

1
G

H
z

5
1
2
M

B
D

D
3

R
A

M
L

in
u

x
B

ea
g
le

b
o
n

e
4
.1

.5
D

eb
ia

n
8
.3

J
es

si
e

2
B
B

2
B

la
ck

A
M

3
5
5
x

C
o
rt

ex
-A

8
@

1
G

H
z

5
1
2
M

B
D

D
3

R
A

M
L

in
u

x
B

ea
g
le

b
o
n

e
3
.8

.1
3

D
eb

ia
n

7
.9

W
h

ee
zy

2
B
B

3
B

la
ck

A
M

3
5
5
x

C
o
rt

ex
-A

8
@

1
G

H
z

5
1
2
M

B
D

D
3

R
A

M
L

in
u

x
B

ea
g
le

b
o
n

e
3
.8

.1
3

D
eb

ia
n

7
.9

W
h

ee
zy

3
G
Z

2
-1

.0
A

M
D

G
X

2
1
0
H

A
@

1
G

H
z

1
G

B
D

D
3

R
A

M
L

in
u

x
U

b
u

n
tu

-m
a
te

4
.4

.0
U

b
u

n
tu

1
6
.0

4
x
en

ia
l

4
L
M

1
A

-1
0

A
1
0

C
o
rt

ex
-A

8
@

1
G

H
z

5
1
2
M

B
D

D
3

R
A

M
L

in
u

x
A

1
0
L

im
e

3
.4

.9
0

D
eb

ia
n

3
.4

.9
0

4
L
M

2
A

-1
0

A
1
0

C
o
rt

ex
-A

8
@

1
G

H
z

5
1
2
M

B
D

D
3

R
A

M
L

in
u

x
A

1
0
L

im
e

3
.4

.9
0

D
eb

ia
n

3
.4

.9
0

5
O
D
R

X
U

3

H
M

P
S

a
m

su
n

g
E

x
y
n

o
s

5
4
2
2

C
o
rt

ex

A
1
5

Q
u

a
d

co
re

@
2
G

H
z

A
7

Q
u

a
d

co
re

@
9
0
0
M

H
z

2
G

B
D

D
3

R
A

M

L
in

u
x

O
d

ro
id

3
.1

0
.9

6
U

b
u

n
tu

-M
a
te

1
6
.0

4

6
O
P
i 1

P
C

H
3

Q
u

a
d

co
re

C
o
rt

ex
-A

7
@

1
G

H
z

1
G

B
D

D
3

R
A

M
L

in
u

x
O

ra
n

g
e

P
i

K
a
li

3
.4

.3
9

K
a
li

2
.0

6
O
P
i 2

P
C

H
3

Q
u

a
d

co
re

C
o
rt

ex
-A

7
@

1
G

H
z

1
G

B
D

D
3

R
A

M
L

in
u

x
O

ra
n

g
e

P
i

K
a
li

3
.4

.3
9

K
a
li

2
.0

7
R
P
i 1

2
B

C
o
rt

ex
-A

7
@

9
0
0
M

H
z

1
G

B
D

D
3

R
A

M
L

in
u

x
R

a
sp

b
er

ry
P

i
4
.1

.7
R

a
sp

b
ia

n
8
.0

je
ss

ie

7
R
P
i 2

2
B

C
o
rt

ex
-A

7
@

9
0
0
M

H
z

1
G

B
D

D
3

R
A

M
L

in
u

x
R

a
sp

b
er

ry
P

i
4
.1

.7
R

a
sp

b
ia

n
8
.0

je
ss

ie

8
R
P
i 3

3
B

C
o
rt

ex
A

5
3

Q
u

a
d

co
re

@
1
.2

G
H

z

1
G

B
D

D
3

R
A

M
L

in
u

x
R

a
sp

b
er

y
P

i
4
.4

.1
1

R
a
sp

b
ia

n
8
.0

je
ss

ie

8
R
P
i 4

3
B

C
o
rt

ex
A

5
3

Q
u

a
d

co
re

@
1
.2

G
H

z

1
G

B
D

D
3

R
A

M
L

in
u

x
R

a
sp

b
er

y
P

i
4
.4

.1
1

R
a
sp

b
ia

n
8
.0

je
ss

ie

9
R
P
i 5

1
B

A
R

M
1
1
7
6

@
7
0
0
M

H
z

5
1
2
M

B
D

D
3

R
A

M
L

in
u

x
R

a
sp

b
er

ry
P

i
4
.1

.1
3

R
a
sp

b
ia

n
7
.0

w
h

ee
zy

1
0

L
T
P
1

D
el

l
E

6
5
2
0

In
te

l
C

o
re

i7
-2

7
6
0

Q
M

@
2
.4

G
H

z

6
G

B
D

D
3

R
A

M
L

in
u

x
3
.1

9
.0

U
b

u
n
tu

1
4
.0

4
tr

u
st

y

1
1

L
T
P
2

T
o
sh

ib
a

P
5
5
W

In
te

l
C

o
re

i5
-5

2
0
0

@
2
.7

G
H

z

6
G

B
D

D
3

R
A

M
L

in
u

x
4
.4

.0
U

b
u

n
tu

1
6
.0

4
x
en

ia
l

T
ab

le
4.

2:
D

iff
er

en
t

d
ev

ic
e

cl
as

se
s

u
se

d
in

ou
r

C
P

S
te

st
b

ed
.

57

avoid false negatives outcomes). To evaluate both metrics, we also included in

our testbed multiple devices of some specific classes (Table 4.2). With this, we

can determine how S&F performs on classifying different types of devices into

different classes, and also, in grouping different devices of the same type into a

common class.

3. CPS-specific tasks and processes : During the learning phase, the devices in-

cluded in our testbed performed real CPS networking operations following the

IEC61850 communication standard [C. 13, IEC03d]. IEC61850 is a protocol

suite that defines the communication standards for electrical substation au-

tomation systems. For that, we used an open-source version of the IEC1850

standard (i.e., libiec61850) available online [M. 16].

4. Multiple OSes : Our experimental CPS devices ran 11 different Linux versions.

Using different versions of Linux constitutes a realistic approach since most

of the current CPS devices in the field still use some variant of Unix-based

OS [RB15]. Additionally, the use of open source approaches in S&F enables the

implementation of flexible solutions. In fact, the use of different non-Unix-based

OSs in our testbed would not impact the evaluation process of S&F. Previous

research works have detailed specific system and unction call hooking techniques

that can be applied to all major operation systems. In the end, obtaining the

PCL and DPI from devices with different operating systems is independent to

S&F’s architecture and more related to specific implementation challenges. Fi-

nally, despite their noted differences, we purposely kept some similarities among

the different devices classes in the testbed. For instance, as shown in Table 4.2,

most of the devices are Debian-based systems using ARM CPU architecture.

Such an implementation approach would additionally challenge S&F into iden-

58

tifying device classes whose differences are based on small features instead of

taking advantages of very noticeable architectural differences.

The specific devices included in the testbed are detailed in Table 4.2. The ra-

tionale behind including many different devices classes in our testbed stem from the

fact that CPS infrastructures contain a high diversity of devices. Also, the hardware

and software characteristics of the devices may considerably vary in real scenarios.

Specifically, in the CPS infrastructure, one can find devices with limited and rich

computing resources, various software configurations, and different architectures. In

this context, CPS devices’ hardware and software characteristics are specific to their

functionalities and applications. As a consequence, small changes in the CPS devices’

configuration should be highly noticeable in their general behavior. In this chapter,

we exploit these characteristics of CPS networks and devices to implement a finger-

printing technique that identifies different CPS device classes based on their behavior

and performance. In all the experiments, we computed the results after averaging 30

different runs for all the covered scenarios. The scenarios comprised the application

of Algorithm 1 and Algorithm 2 on the devices included in our testbed (Table 4.2)

in order to: (1) generate a trustworthy signature database, (2) evaluate device-class

similarities and differences, (3) identify different CPS device classes, and finally (4)

evaluate the overhead that S&F introduces to the CPS devices’ computing resources.

During the learning phase, we randomly selected one device from every different class

in our testbed. Then, we studied the behavior of the selected devices while they

performed real CPS operations. For this purpose, we calculated the autocorrelation

of similar CPS processes running in the devices at different time intervals (we set the

threshold ξ = 0.7). For the cases where a deterministic behavior was identified, the

devices were accepted as ground-truth. Then, S&F applied the challenge-response

59

approach discussed in Section 4.3 to extract the signatures. These signatures were

then stored in the SDB for identifications purposes during the prediction phase.

For the prediction phase, we set the threshold δ = 0.7, which marks the range

from moderate to high correlation that is widely accepted in the literature [Ros01].

Depending on the specifics of the evaluated CPS environment, this value of δ may

change during real S&F implementations. For instance, in practical applications of

S&F, the analysis over a group of well-known devices (i.e., control group) may give

the best decision threshold value for the specific network region. Finally, since we

are working with UNIX-based OSes, we utilized library interposition [GE11] and

ptrace function [R.] to extract the lists of system and function calls, respectively and

generate the PCL. Also, we utilized the top and time commands to extract relevant

information for the DPI. Finally, as an additional evaluation challenge, we used the

same challenge to trigger responses from all the tested devices. That way, S&F

detects and flags the differences between devices classes based not on the CPS tasks

they process, but only on the relative differences in specific behavior and hardware

performance.

4.8.2 Performance Metrics

To measure the performance of S&F, we further compute the standard classification

metrics of accuracy, recall, precision, and specificity. We define these metrics in

Equations 4.9, 4.10, 4.11 and 4.12, respectively.

ACC =
(TP + TN)

(TP + TN + FP + FN)
, (4.9)

REC =
TP

(TP + FN)
, (4.10)

PREC =
TP

(TP + FP)
, (4.11)

60

SPEC =
TN

(TN + FP)
. (4.12)

where TP stands for true positive or the case where a CPS device is correctly classified

as of some specific class; TN stands for true negative or the case where a CPS device

is correctly classified as of not from some specific class; FP stands for false positive or

the case where a CPS device is identified using the wrong signature; and finally FN

stands for false negative or the case where a CPS device whose signature has been

previously stored in the database cannot be correctly identified.

4.9 Performance of S&F during the Learning Phase

As described in Section 4.3, the first step towards applying S&F is to find a reliable set

of unique signatures that characterize the different CPS device classes. The signature

generation process uniquely uses autocorrelation between different realizations of PCL

and DPI. Moderate to high values of autocorrelation (typically over 0.7 [Ros01])

indicate that the specific CPS device (which is assumed to be a trusted CPS device

with no prior tampering or unauthorized components) can be used as ground-truth

to create a reliable signature for its class.

Figure 4.4 depicts the evaluation results after applying Algorithm 1 (Section 4.3)

over randomly selected devices from different classes included in the testbed. One

can observe that, in all the cases, the autocorrelation values are over the threshold

xi, which indicates the deterministic behavior of the devices over time. Again, we

obtained these results after 30 different PCL and DPI runs in every device at different

time intervals. These results constituted a strong indicator that ground-truth signa-

tures can be obtained for all the devices in the testbed. Finally, once the ground-truth

CPS devices were accepted, the signatures were generated and stored in the SDB.

61

Figure 4.4: Experimental results from the evaluation of the learning phase: autocor-
relation results after applying Algorithm 1 on all the devices selected as ground-truth.

4.10 Performance of S&F during the Prediction Phase

The primary goal of S&F is to predict the right class of every different host based on

similarities in OS’s behavior, hardware architecture, and configuration. Additionally,

S&F must be able to group devices from the same class effectively. Before executing

the prediction phase, S&F challenged the unknown devices, extracted its features,

and created their unique signatures. S&F applies system and function call hooking

techniques (i.e., library interposition and ptrace) to generate the PCL of the unknown

devices. At the same time, S&F extracted the performance features used to calculate

the DPI of every single device. Once these processes were completed, S&F sent

this information to the remote server for processing. The prediction phase was then

activated by applying Algorithm 2 (Section 4.3).

To thoroughly test the efficacy of S&F and evaluate the real contribution of ev-

ery fingerprinting feature, we first analyzed the performance of the framework by

using PCL-based correlation only. Then, we evaluated how the results improved after

incorporating the DPI analysis.

62

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Correlation threshold

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u
ra

c
y

BB
1

BB
2

BB
3

LPT
1

GZ

LM
1

LM
2

ODR

OPi
1

OPi
2

RPi
1

RPi
2

RPi
3

RPi
4

RPi
5

LPT
2

(a) Accuracy

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Correlation threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

BB
1

BB
2

BB
3

LPT
1

GZ

LM
1

LM
2

ODR

OPi
1

OPi
2

RPi
1

RPi
2

RPi
3

RPi
4

RPi
5

LPT
2

(b) Precision

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Correlation threshold

0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

BB
1

BB
2

BB
3

LPT
1

GZ

LM
1

LM
2

ODR

OPi
1

OPi
2

RPi
1

RPi
2

RPi
3

RPi
4

RPi
5

LPT
2

(c) Recall

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Correlation threshold

0.75

0.8

0.85

0.9

0.95

1

S
p
e
c
if
ic

it
y

BB
1

BB
2

BB
3

LPT
1

GZ

LM
1

LM
2

ODR

OPi
1

OPi
2

RPi
1

RPi
2

RPi
3

RPi
4

RPi
5

LPT
2

(d) Specificity

Figure 4.5: Evaluation of the experimental results after considering PCL correlation
only: (a) accuracy, (b) precision, (c) recall, and (4) specificity. One can observe that,
in some cases, lower accuracy results were obtained due to false positives among some
device classes. These results were improved after combining PCL-based correlation
with DPI analysis (Figure 4.6).

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Correlation threshold

0.88

0.9

0.92

0.94

0.96

0.98

1

A
c
c
u

ra
c
y

BB
1

BB
2

BB
3

LPT
1

GZ

LM
1

LM
2

ODR

OPi
1

OPi
2

RPi
1

RPi
2

RPi
3

RPi
4

RPi
5

LPT
2

(a) Accuracy

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Correlation threshold

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

BB
1

BB
2

BB
3

LPT
1

GZ

LM
1

LM
2

ODR

OPi
1

OPi
2

RPi
1

RPi
2

RPi
3

RPi
4

RPi
5

LPT
2

(b) Precision

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Correlation threshold

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

BB
1

BB
2

BB
3

LPT
1

GZ

LM
1

LM
2

ODR

OPi
1

OPi
2

RPi
1

RPi
2

RPi
3

RPi
4

RPi
5

LPT
2

(c) Recall

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Correlation threshold

0.88

0.9

0.92

0.94

0.96

0.98

1

S
p
e
c
if
ic

it
y

BB
1

BB
2

BB
3

LPT
1

GZ

LM
1

LM
2

ODR

OPi
1

OPi
2

RPi
1

RPi
2

RPi
3

RPi
4

RPi
5

LPT
2

(d) Specificity

Figure 4.6: Evaluation of the experimental results after considering correlation and
device performance index for decision: (a) accuracy, (b) precision, (c) recall, and
(4) specificity. One can notice how the overall metrics improved if compared results
shown in Figure 4.5.

PCL correlation analysis only. By applying PCL correlation only, S&F achieved

accuracy values over 87% for devices RPi4, RPi2 and BB1, and over 94% for GZ,

BB3, LPT2 and BB2, respectively (Figure 4.5). On the other hand, precision, recall,

and specificity metrics were also affected due to false positive events, as shown in

Figure 4.7. In this case, one can observe that S&F incorrectly decided the devices

LM1 and GZ as from the same class. These results impacted the general performance

of S&F as observed in Figure 4.5. For instance, one can observe that, for some cases

of incorrect class identification, accuracy values never went over 86%.

Figure 4.7 depicts the correlation map (NxN PCL-based correlation matrix) be-

tween all the device classes in the testbed before considering DPI analysis. A darker

63

B
B

1

B
B

2

B
B

3

L
P

T
1

G
Z

L
M

1

L
M

2

O
D

R

O
P

i 1

O
P

i 2

R
P

i 1

R
P

i 2

R
P

i 3

R
P

i 4

R
P

i 5

L
P

T
2

BB
1

BB
2

BB
3

LPT
1

GZ

LM
1

LM
2

ODR

OPi
1

OPi
2

RPi
1

RPi
2

RPi
3

RPi
4

RPi
5

LPT
2

C
o

rr
e
la

ti
o

n
 V

a
lu

e
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 False

Positive

 Events

Figure 4.7: Correlation matrix for device-class identification using PCL approach
only. False positives as a result of applying only PCL-based correlation are circled
(e.g., between GZ and LPT 2 devices).

color indicates high correlation while lighter colors indicate lower correlation values

between PCLs from different devices. As per Table 4.2, one should expect a total

of 11 different CPS device classes based on the different computing resources and

software/hardware configurations. However, from PCL-based correlation analysis,

S&F was only able to identify nine out of a total of 11 different classes of devices.

From Figure 4.7, one can observe that, for instance, the fingerprinting framework

mistakenly confused GZ and LPT2 as of the same class.

DPI correlation analysis only. We calculated the DPI values for every CPS device

in the testbed using Equation 4.3. In Figure 4.8, the results of the DPI calculation

are shown. As observed, several DPI values from different devices were very sim-

ilar, which negatively impacts the feasibility of using this feature for identification

purposes. However, for some specific devices, DPI values were significantly different

between different classes. To better understand this analysis, we further represented

the DPI values versus the average DPI of all the devices classes in the testbed (Figure

4.9). From this figure, it is unclear that DPI analysis may significantly contribute to

discriminating devices from different classes.

64

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
e
v
ic

e
 P

e
rf

o
rm

a
n
c
e
 I

n
d
e
x
 (

D
P

I)

10
5

B
B

1

B
B

2

B
B

3

L
P

T
1

G
Z

L
M

1

L
M

2

O
D

R

O
P

i 1

O
P

i 2

R
P

i 1

R
P

i 2

R
P

i 3

R
P

i 4

R
P

i 5

L
P

T
2

Figure 4.8: Average value of the DPI for all the devices included in the CPS testbed.
Experimental results shown that using the DPI-only approach to identify devices may
lead to some false positives due to overlapping.

0.5 1 1.5 2 2.5

Average DPI 10
5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

D
P

I

10
5

LM
1
 and LM

2

GZ

at 5.0x10
5

RPi
5

BB
2

OPi
1
 and OPi

2

RPi
3
 and RPi

4

ODR, LPT
1
 and LPT

2

RPi
1
 and RPi

2

BB
1

BB
3

Figure 4.9: The spatial distribution of the device’s DPI shows false positive results
due to overlapping between devices from different classes.

PCL and DPI analysis combined. We combined both PCL- and DPI-based

correlation analysis and obtained a new decision map in Figure 4.10. This time,

S&F was able to identify 11 different device classes by removing false positives from

previous results. Also, performance metrics significantly improved after incorporating

the DPI correlation. In Figure 4.6, we represent the performance metrics used to

evaluate S&F. One can observe that all the different metrics significantly improved

65

B
B

1

B
B

2

B
B

3

L
P

T
1

G
Z

L
M

1

L
M

2

O
D

R

O
P

i 1

O
P

i 2

R
P

i 1

R
P

i 2

R
P

i 3

R
P

i 4

R
P

i 5

L
P

T
2

BB
1

BB
2

BB
3

LPT
1

GZ

LM
1

LM
2

ODR

OPi
1

OPi
2

RPi
1

RPi
2

RPi
3

RPi
4

RPi
5

LPT
2

C
o
rr

e
la

ti
o
n
 V

a
lu

e
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.10: After combining PCL-based correlation techniques and DPI analysis,
S&F was able to identify the 11 different class of devices included in the CPS testbed
from the decision map.

if compared with the values presented in Figure 4.5. For the four different metrics,

S&F obtained performance values close to 100%.

4.11 Overhead Introduced by S&F

Table 4.3 summarizes the overhead introduced by S&F to the CPS devices. Despite

the benefits of our technique, the characteristics of the CPS devices do not allow for

too much overhead (Chapter 2). We calculated the system overhead by analyzing

the performance of the devices (1) under normal operating conditions and (2) while

applying our fingerprinting technique. In Table 4.3, ET refers to Execution Time,

CPU refers to CPU utilization, MEM refers to memory utilization, and Total MEM

refers to the percent of memory that our technique utilizes out of the total memory

available in every device. One can observe that the maximum overhead introduced by

S&F regarding increments in execution time, memory, the percentage of total memory,

and CPU utilization is 0.04%, 19.8%, 0.0218%, and 1.5%, respectively. Different from

other existing solutions, the fingerprinting framework introduced in this chapter did

66

D
e
v
ic

e
s

W
it

h
o
u

t
S

to
p

-a
n

d
-F

ri
sk

W
it

h
S

to
p

-a
n

d
-F

ri
sk

O
v
e
r
h

e
a
d

R
T

(s
)

M
e
m

(K
B

)
C

P
U

(%
)

R
T

(s
)

M
e
m

(K
B

)
C

P
U

(%
)

E
T

(s
)

M
e
m

(K
B

)
T

o
ta

l
M

e
m

(K
B

)
C

P
U

(%
)

v
a
lu

e
v
a
lu

e
v
a
lu

e
v
a
lu

e
v
a
lu

e
v
a
lu

e
%

%
%

%

B
B

1
6
0
.0

5
0

1
3
0
4

3
.0

6
0
.0

5
5

1
3
4
3

3
.0

0
.0

0
8

3
0
.0

0
3
9

0

B
B

2
6
0
.0

2
5

6
5
2

2
.0

6
0
.0

4
9

6
9
6

2
.0

3
0
.0

4
6
.7

0
.0

0
8
5

1
.5

B
B

3
6
0
.0

1
5

6
4
0

2
.0

6
0
.0

2
9

6
8
4

2
.0

0
.0

2
3

6
.9

0
.0

0
8
5

0

G
Z

6
0
.0

2
0

2
3
5
8

1
.0

6
0
.0

2
2
4
1
9

1
.0

0
2
.6

0
.0

0
6
1

0

L
M

1
6
0
.0

0
7

6
4
0

2
.0

6
0
.0

2
6

7
5
2

2
.0

0
.0

3
1
7
.5

0
.0

2
1
8

0

L
M

2
6
0
.0

0
1

6
4
0

2
.0

6
0
.0

2
7
5
2

2
.0

0
.0

3
1
7
.5

0
.0

2
1
8

0

O
D
R

6
0
.0

4
2

6
5
6

3
.0

6
0
.0

4
2

7
0
8

3
.0

0
7
.3

0
.0

0
2
6

0

O
P
i 1

6
0
.0

7
0

5
0
4

2
.9

6
6
0
.0

5
7

6
0
4

3
.0

∼
0

1
9
.8

0
.0

1
1
.3

5

O
P
i 2

6
0
.0

7
0

5
0
4

3
.0

6
0
.0

6
6
0
4

3
.0

∼
0

1
9
.8

0
.0

1
0

R
P
i 1

6
0
.0

4
0

1
5
6
8

2
.0

6
0
.0

4
1
6
1
4

2
.0

0
2
.9

0
.0

0
4
6

0

R
P
i 2

6
0
.0

4
0

1
5
8
5

2
.0

6
0
.0

4
1
6
2
9

2
.0

0
2
.7

0
.0

0
4
4

0

R
P
i 3

6
0
.0

3
0

1
5
7
5

1
.0

6
0
.0

3
8

1
6
3
0

1
.0

0
.0

1
3

3
.5

0
.0

0
5
5

0

R
P
i 4

6
0
.0

3
0

1
5
6
6

1
.0

6
0
.0

4
1

1
6
2
4

1
.0

0
.0

1
8

3
.7

0
.0

0
5
8

0

R
P
i 5

6
0
.0

4
0

1
5
3
7

5
.0

6
0
.0

4
7

1
5
9
9

5
.0

0
.0

1
4

0
.0

1
2

0

L
P
T
1

6
0
.0

0
1

2
0
4
2

1
.0

6
0
.0

0
1

2
1
5
4

1
.0

0
5
.5

0
.0

0
1
8

0

L
P
T
2

6
0
.0

1
3

2
1
2
5

1
.0

6
0
.0

1
5

2
1
7
3

1
.0

0
.0

0
3

2
.2

0
.0

0
0
8

0

T
ab

le
4.

3:
A

ve
ra

ge
of

sy
st

em
ov

er
h
ea

d
in

tr
o
d
u
ce

d
b
y
S
&
F

on
th

e
d
ev

ic
es

in
cl

u
d
ed

in
th

e
te

st
b

ed
.

67

not require to monitor the CPS devices over long periods. S&F was able to identify the

different device classes with high accuracy from the device’s behavior and performance

data extracted after only 30 sec of challenge response. Finally, please note that, since

S&F is execute during device’s downtime, the current overhead introduced, besides

minimal, only affect the devices while they are not performing time-critical CPS

operations.

4.12 Summary and Benefits

The CPS device class identification framework introduced here allowed for improved

dependability of CPS systems through the monitoring and detection of spoofing or

unauthorized devices trying to gain access to or being utilized in critical CPS infras-

tructures. For the threat model considered in this chapter, device class classification

is suitable to detect spoofing devices in CPS rather than host-based fingerprinting

that would require deeper analysis while providing unnecessary result metrics (S&F

provides details of the device characteristics rather than the device specific identifi-

cation).

Our technique demonstrated an excellent rate in the CPS device class identifi-

cation after analyzing a representative set of different device classes included in a

realistic testbed. The device diversity in the testbed, regarding computer resource

availability and software and hardware configurations, is considered genuinely rep-

resentative of the real CPS device diversity. The fingerprinting framework was able

to discriminate different classes of devices with high accuracy while grouping devices

from the same class together. S&F’s evaluation resulted in several false positive re-

sults after implementing the PCL, and the DPI approaches independently. However,

accuracy metrics improved significantly after combining the results of both correla-

tions in a single analysis.

68

Additionally, based on experimental results, our technique does not yield signifi-

cant overhead on the use of the devices’ computing resources. In fact, after reviewing

Table 4.3 (Section 4.8), we may conclude that the overhead introduced by S&F is

minimum if compared with the benefits that this tool can bring to the CPS security

domain. Also, since S&F analyzes the behavior and performance of the devices at

downtime, our solution can be considered complementary to other security mecha-

nisms proposed in CPS (Chapter 3). Finally, although the research work presented

in this chapter focuses on CPS device class fingerprinting, our approach can also be

applied to many other domains outside the CPS realm, as long as some necessary

conditions can be met (Section 4.3).

4.13 Conclusion

CPS use smart devices to collect data and monitor critical operations. However, these

devices can be spoofed by attackers to get access to systems, steal information, or

disrupt critical operations. In this chapter, we presented Stop-and-Frisk (S&F), a

novel CPS signature-based fingerprinting framework used to improve CPS depend-

ability by performing CPS device class identification and complement traditional CPS

security mechanisms. Specifically, our approach combined system and function call

tracing techniques, signal processing, and device performance analysis to implement a

challenge-response-based device class fingerprinting solution. Moreover, we evaluated

the efficacy of S&F on a realistic testbed that included different classes of CPS devices

with different hardware, software resources, and configurations. Experimental results

demonstrated that S&F achieves excellent rate in the identification of CPS devices

classes. Also, our performance analysis revealed that the use of the fingerprinting

framework would not yield a significant overhead on the CPS devices’ computing

resources.

69

CHAPTER 5

DETECTION OF COMPROMISED RESOURCE-LIMITED DEVICES

5.1 Introduction

In this chapter, we review a configurable system-level framework to detect compro-

mised devices performing unauthorized operations inside the CPS infrastructures.

Specifically, we introduce our solution through a use case that features the detec-

tion of compromised devices in the smart grid [Bab18, Bab19, KBAU18]. The de-

tection framework utilizes system and function call tracing techniques, signal pro-

cessing, and statistical analysis to detect compromised devices based on their unex-

pected behavior. In order to test our framework, we designed a realistic represen-

tative smart grid substation testbed in which generic CPS devices performed essen-

tial operations conforming to the International Electrotechnical Commission 61850

(IEC61850) [IEC03d, IEC03c, IEC03a, IEC03b] protocol suite. The IEC61850 is a

protocol suite that defines the communication standards for electrical substation au-

tomation systems [C. 13]. The implemented testbed includes both resource-limited

(e.g., RTUs, PLCs, and resource-rich (e.g., Phasor Measurement Units (PMUs), In-

telligent Electronic Devices (IEDs)) CPS devices. In the testbed, the devices use

open-source libiec61850 libraries [M. 16] to exchange smart grid time-critical mes-

sages using the GOOSE format [C. 13].

In addition, the adversary model complies with the security requirements specified

by the standardization organizations [The10] for the smart grid. In total, we consider

six different types of compromised devices defined by different combinations of device

computing resources and attack payloads.

Finally, we evaluate the performance of our framework by detecting and analyzing

behavioral differences between compromised and ground truth devices using three

70

different detection methods. Experimental results demonstrate that the detection

framework achieves an excellent detection rate. Performance metrics reveal accuracy

values between 95% and 99% for the different types of devices and detection methods

analyzed. Additionally, detailed performance analysis shows minimum overhead on

the use of the smart grid devices’ computing resources (i.e., CPU and memory). On

average, memory and CPU utilization does not increase more than 0.03% and 1.9%,

respectively.

Contributions: The contributions of this chapter are as follows:

1. We designed a configurable system-level framework that combines system and

function call tracing techniques with signal processing and statistical analysis

to detect compromised smart grid devices. To the best of our knowledge, this

is the first work that utilizes these techniques in detecting compromised devices

in the smart grid.

2. To test the efficacy of our framework, we designed a realistic smart grid sub-

station testbed that included both resource-limited and resource-rich devices.

These devices followed a GOOSE publisher-subscriber communication model

using open-source libiec61850 libraries. The implemented testbed represents

a valuable configurable benchmark for this, and other research works on CPS

security via behavioral analysis.

3. In the adversary model, we considered six different types of compromised devices

with different computational resources and attack payloads.

4. We evaluated the performance of our framework by detecting behavioral differ-

ences between the compromised device and ground truth devices. We obtained

accuracy results over 95% and precision results over 93% for all the different

attacks scenarios and types of devices analyzed. These metrics demonstrated

71

that the detection framework is highly effective to recognize compromised smart

grid devices using behavioral analysis.

5. Finally, our analysis shows that the framework does not represent a significant

overhead in terms of computing resources.

5.1.1 Differences from Existing Works

Our framework is different from other solutions discussed in Chapter 3 which, in

most cases, focus on specific threats to the smart grid instead of considering multiple

types of threats acting on different type of devices (e.g., resource-rich and resource-

limited). As discussed, there are also cases where different approaches are used for

the detection of compromised devices and/or monitoring application behavior. Only

in a few of these cases, the solution is intended to be applied in the smart grid do-

main. In addition, to succeed, these solutions need to monitor constantly-changing

environments like network traffic and computational systems or need to challenge the

devices with specific inputs to study their response, which constitutes a limitation in

terms of system overhead, resource utilization, and real-time analysis. Differently, our

framework has a simpler model and is lightweight in terms of system overhead while

providing excellent detection rate of the compromised smart grid devices while they

are performing typical real-time CPS operations. Also, we introduce a configurable

framework for both the supply chain and the smart grid operation field which is en-

visioned friendly and adaptive enough to be easily applied either within supply chain

testing scenarios and while the devices are performing real-time operations inside the

smart grid infrastructure. Finally, our detection framework may also complement

the existing security mechanisms in the smart grid domain with its open-source and

configurable nature.

72

5.2 Adversary Model

Our adversary model considers, conforming to the NIST guidelines, three possible

threats in the smart grid that are directly related to the use of compromised de-

vices [N. 14]:

1. Threat 1 (Information leakage): the compromised device opens additional com-

munication channels to leak valuable smart grid information to the adversary

(another untrusted insider or outsider) in real-time.

2. Threat 2 (Measurement poisoning): the compromised device generates fake data

that can be used to poison the real status of the smart grid.

3. Threat 3 (Store-and-send-later): the compromised device stores information in

hidden files that are recovered later by an attacker.

Based on these three well-defined threats and considering both resource-limited

and resource-rich smart grid devices, we further define six different types of compro-

mised devices as part of the adversary model:

1. Compromised Device 1 (CD1): the resource-limited device creates additional

instances of the IEC61850 GOOSE publisher object and starts leaking informa-

tion through unauthorized communication channels.

2. Compromised Device 2 (CD2): the resource-limited device allocates small and

unauthorized amounts of memory to create fake data and poison real measure-

ments.

3. Compromised Device 3 (CD3): the resource-limited device creates unauthorized

hidden files to store critical information which is retrieved later by the attacker.

4. Compromised Device 4 (CD4): the resource-rich device creates additional in-

stances of the IEC61850 GOOSE subscriber object and starts leaking informa-

tion through unauthorized communication channels.

73

5. Compromised Device 5 (CD5): the resource-rich device allocates small and

unauthorized amounts of memory to create fake data and poison real measure-

ments.

6. Compromised Device 6 (CD6): the resource-rich device creates unauthorized

hidden files to store critical information which is retrieved later by the attacker.

A summary of the adversary model, its impact on device resources, and the tar-

geted security services of such attacks in the smart grid infrastructure are given in

Table 5.1.

Adversary Model

Name
CPS Device

resource availability
Computing resources impacted Security services compromised

CD1 Limited Memory, CPU, communications Confidentiality

CD2 Limited Memory, CPU Integrity

CD3 Limited Memory, CPU Authenticity, confidentiality

CD4 Rich Memory, CPU, communications Confidentiality

CD5 Rich Memory, CPU Integrity

CD6 Rich Memory, CPU Authenticity, confidentiality

Table 5.1: Threats to the smart grid devices assumed in this dissertation.

We also assume that the compromised devices perpetrate their attacks following a

Poisson distribution. Poisson allows for randomly and efficiently spacing the attacks

and constitutes a valid model to emulate the randomness of such events [Ros01].

The behavior of the compromised device is modeled as follows. Consider t=[0, T],

the communication interval between the two smart grid devices. The probability of

having an attack from a compromised device CDi ∈ {CD1, CD2, CD3, CD4, CD5, CD6}

can be expressed as:

Pcd =
λke−λ

k!
, k ∈ R, (5.1)

where λ is the average number of attacks in the interval of time t and k is the total

number of attacks in the same interval.

74

5.3 Overview of the Detection Framework

In this section, we describe the framework to detect compromised devices in the smart

grid. Also, we present the details of our detection approaches and decision algorithm.

Figure 5.1 depicts the general architecture of the framework. As discussed before, the

main goal of the framework is to decide if an unknown smart grid device is genuine

or compromised [L. 17]. In this chapter, the term unknown refers to the level of

uncertainty regarding the smart grid device being compromised or not. Initially,

as part of the learning process, a ground-truth device from a specific device class is

evaluated to generate its corresponding device-class signature or Ground-Truth Profile

(GTP). This signature contains behavioral profiling information from the device and

is utilized to decide whether an unknown device from the same class is genuine or

compromised. Once the signature is obtained, it is stored in the Ground-Truth Profiles

Database. In our implementation, we define a separate service to execute the learning

process. Such a service separation permits the generation of new signatures every time

that new devices join the network. Also, an independent learning process guarantees

the replacement of old signatures every time that known devices assume new roles in

the smart grid network.

The second part of the framework (also known as detection process) starts by

extracting a similar profiling signature from the unknown device. Here, we assume

that we have enough information to classify the device into some specific device class.

Then, three different detection methods are applied to compare and correlate the

unknown signature to the corresponding GTP from a similar device class stored in

the database. Comparison and correlation results are then used to remove uncertainty

and decide if the unknown device has been compromised or not.

We envision the detection framework as a secured, centralized, and supervised

agent virtually located inside the smart grid network. There are several advantages

75

System Call Lists

Function Call Lists

ILI Calculation

Compromised

Device?

Data Collection

Data Processing

Decision

Data Collection

Ground-Truth

 Profiles

 Database

Genuine

Device

Compromised

Device

Yes

No

System Call Lists

Function Call Lists

Call Comparison

IOC-simple

IOC-advanced

Data Processing

Ground-Truth

 Device

Unknown

 Device

Figure 5.1: Configurable framework introduced to monitor and detect compromised
smart grid devices. The learning process creates signatures based on ground-truth
devices that are utilized later to decide on potentially-compromised devices.

from this implementation model; first, our framework would be compliant with the se-

curity challenges of the smart grid [HCG17b,HCG17a,JRSK17]; second, a centralized

solution represents a better option to monitor remotely-located devices from different

networks; and third, a supervised agent allows for monitoring group of devices with-

out degrading or interrupting critical tasks inside the smart grid. Figure 5.2 depicts a

simplified implementation example of our framework. Here, IED devices exchange in-

formation between different substation level networks while a detection agent is mon-

itoring them. Inside the devices, a lightweight scheduler (sch) runs parallel processes

at the kernel level to hook into the devices’ tasks and extract behavioral informa-

tion. The collected information is sent to the server along with specific device class

76

information using secure TCP-IEC61850 channels via either proxy or VPN-tunnel

protected (depending on the smart grid device capability). Then, on the server-side,

every scheduled action is processed using either priority or first-in-first-out (FIFO)-

based queues. The priority is assigned depending on the device class and may also

regulate the frequency of the scheduler’s execution. For every detection process, the

server executes queries to the GTP database using the device class ID and receiving

the corresponding behavioral signature. Finally, the server correlates the scheduler

data with the stored signature and decides on the devices as being compromised or

not.

IED_1

IED_2

IED_3

IED_4

GTP

Detection

Server

device class

signature

substation 4

substation 1

substation 2
substation 3

Figure 5.2: Example implementation of the framework to detect compromised CPS
devices.

5.3.1 Probability of Detecting a Compromised Device

In Section 5.2, we presented the probability of having a specific attack during a

time interval t, considering the device is compromised. In this section, we formally

describe the probability of detecting such attacks by using the described approach.

To generalize, we consider that the statistical relationship between the two discrete

77

random variables X and Y that represent the ground-truth signatures and the timed

operation of the unknown smart grid devices follow a bi-variate distribution B. From

here, we assume that the probability of having a particular specific sequence of calls

in the GTP is P (X). The same way, we assume a specific sequence of calls extracted

from the unknown device with probability P (Y).

When an attack occurs, and it is detected, the expected value E(X) and E(Y)

of the random variables representing both the GTP and the unknown device call list

are P (X) and P (Y), respectively. From here, we can determine the variance V of

the attack indicator (an attack indicator is represented by the value of the random

variable that would indicate the presence of an attack) φx and φy from both the GTP

and the unknown call lists as:

V ar(φX) = E(φ2
X)− E(φX)2 = P (X)(1− P (X)), (5.2)

V ar(φY) = E(φ2
Y)− E(φY)2 = P (Y)(1− P (Y)). (5.3)

We directly establish the statistical correlation between the random variable X

and Y as the co-variance of these attack indicators:

Cov(φX , φY) = E(φXφY)− E(φX)E(φY),

= E(φX∩Y)− E(φX)E(φY),

= P (X ∩ Y)− P (X)P (Y).

(5.4)

Then, we can define the correlation between ground-truth device signatures and

the unknown smart grid devices based on the probability of detecting the attacks.

78

ρ(φX , φY) =
P (X ∩ Y)− P (X)P (Y)√

P (X)(1− P (X))P (Y)(1− P (Y))
,

=
(P (X|Y)− 1)P (Y)√

P (X)(1− P (X))P (Y)(1− P (Y))
,

(5.5)

where P (X|Y) represent the conditional probability of detecting an attack on a smart

grid device after assuming a ground-truth signature from the same device class has

been found. In general, we describe the successfulness of the introduced detection

approach to be the jointly bi-variate variable (Xi, Yj) with probability of occurrence

P (Xi > Xj|Yi > Yj) for any pair of calls i, j.

5.3.2 Learning Process

The primary goal of the learning process is to populate the Ground-Truth Profiles

Database that contains all the GTPs from device classes in a specific smart grid

network region. The execution of the learning process solves the first two architectural

challenges of our framework described in Chapter 2 (Section 2.3.4). The learning

process classifies the ground-truth devices into device classes and keeps the GTP

database up-to-date. For every different class of devices, the learning process performs

two specific tasks: (1) GTP data collection and (2) GTP data processing.

GTP Data Collection– this stage applies library interposition and ptrace tools to

extract the lists of system and function calls, respectively. The calls are extracted

while the ground-truth devices execute regular smart grid substation tasks T . As a

result, for every iteration of T , the learning process generates new lists of system and

function calls from the ground-truth device. In the end, the data collection process

generates a set of system and function call lists. Every list contains detailed informa-

tion about the specific operations that the devices executed at both the kernel and

the user level in every different run of T .

79

GTP Data Processing– the data processing stage calculates the ILIs for every

different ground-truth device class. The concept of ILI introduced in Chapter 2 (Sec-

tion 2.3.2) evaluates how much deterministic the performance of a ground-truth device

is over time. The more deterministic, the higher the ILI value and the more suitable

the ground-truth device is to obtain its GTP. In total, the framework calculates two

different values of ILIs, one from the set of system call lists and one from the set

of function call lists, respectively. To successfully calculate the ILIs, the framework

assigns a different weight δi to every different type of system or function call in the

order that they appear. The assignment of δi weights constitutes another configurable

feature of our framework. This can be done randomly (the weights are considered

normally distributed for simple processes where the different system or function calls

have the same level of impact on the completion of the task T) or by following a spe-

cific assignment criterion (adaptive assignment). The adaptive assignment depends

on the importance of the specific calls and the type of application that is being evalu-

ated. As a result of the assignment step, the framework generates a random variable

R that takes values between δmin and δmax. This variable describes the behavior of

O for every different system or function call list. Finally, the framework calculates

the ILIs using the Equation 2.4. In the end, the ILI values are compared against

a configurable threshold σ. Initially, the framework selects an initial value for the

threshold based on the device class, and then it continues adjusting this value until

the average performance reaches the desired target value for that specific class. If

both ILI values are above σ, the GTP is accepted and stored in the database.

Equation 5.6 represents the general format of the GTP used in our framework.

The final profile contains information about the device class (DeC), the entire set of

system and function call lists (SCL), and the threshold σ. At the end of the learning

80

process, the Ground-Truth Profiles Database contains all the possible signatures that

characterize the different device classes within a specific smart grid network region.

GTP = {DeC, SCL, σ}, (5.6)

5.3.3 Detection Process

The main goal of the detection process is to use the profile information stored in

the Ground-Truth Profiles Database to determine if the unknown devices are being

compromised or not. This process performs three main tasks:

1. Data collection: this step follows almost the same sequence of operations de-

tailed in the learning process. However, this time, the framework obtains the

call lists from a single execution of T on the unknown devices from the smart

grid networks. No T task is fixed for computing purposes nor is repeated over

time.

2. Data processing : constitutes the core of the detection process. In this step,

the framework combines three different detection mechanisms to detect com-

promised devices. The application of every detection approach is decided on-

demand, which has a positive impact on reducing the total overhead introduced

by our framework.

3. Decision: finally, the decision algorithm processes the results from data collec-

tion and processing to decide if the unknown device is genuine or compromised.

In the following, we provide details about the three detection mechanisms.

81

Detection mechanisms

Our framework implements three different detection mechanisms. To utilize computa-

tional resources efficiently, the detection mechanisms are applied orderly on-demand.

That means, our framework utilizes each detection approach in an ordered fashion,

and it always uses the best effort to make a final decision by applying the minimum

number of detection steps.

System and Function call list comparison– The simplest detection approach di-

rectly compares the SCL from the GTP to the system and function call lists extracted

from the unknown device. The comparison schema considers the type and amount of

system and function calls in both GTP and the newly extracted lists. This mechanism

is implemented, as shown in Equation 5.7. Specifically, the comparison approach gen-

erates a call vector that contains the total number of different calls extracted from the

unknown device of class c and normalized against the term GTP (c;SCL). Equation

5.7 details this process:

call vector = { unkc0

GTPSCL0

,
unkc1

GTPSCL1

, ...,
unkcn

GTPSCLn

}, (5.7)

where the term unkc0 refers to the amount of system or function calls of type 0

extracted from the unknown device and the term GTPSCL0 refers to the amount of

system or function calls of type 0 extracted from the GTP of the same device class. As

inferred from Equation 5.7, call vector’s items of value 0 represent types of calls that

are present in the GTP SCL but not in the lists of calls acquired from the unknown

device. On the contrary, call vector’s items of value∞, represent calls extracted from

the unknown device, but that cannot be found in the corresponding GTP. In general,

the execution of this first detection approach is very light in terms of computing re-

sources.

82

Index of Correlation Simple– A second detection mechanism calculates the sta-

tistical correlation between call lists from the unknown device and the GTP. In this

case, in addition to the type and amount of calls, the framework considers the order in

which these calls are being triggered. The result from calculating such statistical cor-

relation is known as Index of Correlation simple (IOC-simple). IOC-simple is similar

to the ILI value obtained during the learning process. The main difference between

both is that IOC-simple first determines the statistical correlation between call lists

from the unknown device and the corresponding GTP class. Here, an assignment

criterion is also used to convert calls into specific δi values.

IOC − simpleOGTP ,Ounk
=

∑
oGTPounk − noGTPounk

nsoGTP
sounk

, (5.8)

where oGTP represents the set of individual calls in the GTP and ounk represents the

set of individual calls extracted from the unknown device.

Index of Correlation Advanced– As mentioned in Chapter 2 (Section 2.3.2), one

should not expect smart grid devices to perform operations in a completely deter-

ministic pattern. This limitation exposes the third architectural challenge of our

framework (see Section 2.3.4) since legitimate random operations can be mistaken

as compromised behavior. To overcome this constraint, we further apply a more ad-

vanced IOC calculation (IOC-advanced). In IOC-advanced, our framework combines

the values from Oiunk to Oi+hunk in Ounk. This operation results in a new random vec-

tor O′unk smaller in size and with a lower random component. The index h represents

the number of individual calls from the original list that are combined to create the

new set O′unk. This index value h is proportional to the amount of randomness that

one intends to remove from the original Ounk and constitutes another configurable

parameter in our framework.

83

Algorithm 3: Steps for the detection and decision processes.
1: compromised← 0
2: UNK(DeCunk, SCLunk)← unknown device profile
3: GTP (DeCgtp, SCL, σ)← GTPs from Database

Detection:
4: if Exists DeCgtp & DeCunk == DeCgtp then
5: Calculate IOC
6: end if

Decision:
7: if IOC < β then
8: compromised← 1
9: end if

5.3.4 Decision Process

The final step of our framework is the decision process. In this step, our framework

compares results from the three detection mechanisms against a threshold β to decide

if the unknown smart grid device is compromised or not. The value of β depends on

the device class, and it is always a function of the threshold σ determined during the

training process and stored in the GTP. The relationship between σ and β values

depends on the targeted accuracy performance for every device class. In general,

for devices with a higher deterministic behavioral pattern, a higher value of β is

recommended. This design approach reduces the chances of false negatives during the

decision process. On the other hand, for devices with lower deterministic behavior,

a lower value of β may be sufficient to reduce false negatives. Finally, note that this

decision threshold is also configurable. The initial value of β for every device class

can be adjusted to an optimal in real-time and while the framework monitors the

devices in the field. In the next section, we analyze practical values of β for different

types of device classes.

Finally, Algorithm 3 details the detection-decision process of the framework. In

lines 1, 2, and 3 the variables compromised, UNK, and GTP are initialized with 0,

the profile of the unknown device, and all the signatures from the database, respec-

84

tively. Then, if a signature of the unknown device’s class exists (Line 4), the values

IOC (simple and advanced) are calculated in Line 5. Finally, if the value of IOC is

lower than the threshold β, the device is decided as compromised.

5.4 Performance Analysis and Discussion

In this section, we analyze the performance of the detection framework. In all the

cases, we obtain the results after averaging 30 different runs of all the covered scenar-

ios. The scenarios include six different types of attackers as a result of the combination

of three different threats and two different types of devices based on their computa-

tional resources, as described in Section 5.2. Also, we assume that the devices are

correctly grouped based on their type. Moreover, we measure the accuracy of our

framework with accuracy, precision, recall, and specificity metrics. Finally, we evalu-

ate the performance of the framework in terms of its overhead (e.g., CPU utilization,

memory usage, and execution time).

5.4.1 Evaluation with a Realistic Smart Grid Testbed

Our framework considers a realistic scenario from a smart grid substation. The

testbed’s configuration includes a publisher-subscriber two-way communications con-

figuration which sends and receives IEC61850-compliant GOOSE messages [C. 13].

For this purpose, we utilize an open-source version of IEC61850 [M. 16] protocol run-

ning on Linux-based systems. Our resource-limited devices (i.e., GOOSE publishers)

run on a Raspberry Pi 2B, using Advanced RISC Machine (ARM) 32 bits architecture

with limited memory and CPU. On the other hand, the resource-rich devices (i.e.,

GOOSE subscribers) run on a Linux Ubuntu 14.04 system with a more powerful CPU

and higher memory configuration. Finally, we utilize two different hooking techniques:

85

ptrace (that performs function call tracing) and library interposition (that performs

system call tracing). In our configuration, the publishers open the communication

session and wait for the subscribers to connect. Once the devices create and open the

communication sockets, the publishers start sending GOOSE messages to the sub-

scribers every one second for a total time interval t of 60 seconds. After the t seconds,

the devices close their communication channels. For every compromised device, the

malicious threat is active n times during the communication sessions as described in

the adversary model (see Section 5.2). Finally, as detailed in Table 5.1, compromised

devices CD1, CD2, and CD3 correspond to resource-limited devices of any class that

have been compromised with Threats 1, 2, and 3 respectively (see Section 5.2) and

compromised devices CD4, CD5, and CD6 correspond to resource-rich devices of any

class that have been compromised with Threats 1, 2, and 3, respectively. Despite that

the initial application of our testbed was intended to evaluate the performance of the

detection framework in realistic scenarios, we believe that, due to its open-source and

configurable nature, it can also be used as a benchmark to effectively evaluate the

performance of other security tools applied to the smart grid.

5.4.2 Detection Performance

In the following, we detail the performance of our framework after applying the three

detection mechanisms introduced in Section 5.3.

System and Function call lists comparison

Tables 5.2 and 5.3 summarize some of the system and function calls captured from

the resource-limited and the resource-rich devices, respectively. Columns Genuine

and CDi (i: 1 to 6) in both tables list the average rate of the system and function

calls normalized against the GTP for genuine and compromised devices, respectively.

86

Call Tracing Technique Type of Call Genuine CD1 CD2 CD3

ptrace

brk ∼1 ∼1 6.7 ∼1
clone ∼1 12.5 ∼1 ∼1
close ∼1 ∼1 ∼1 3.2
fstat64 ∼1 ∼1 ∼1 8.8
lseek ∼1 ∼1 ∼1 ∼1
mmap2 ∼1 2.4 4.4 2.4
mprotect ∼1 2.8 1.1 1
munmap ∼1 ∼1 2 13
open ∼1 ∼1 ∼1 5

rt sigprocmask ∼1 8.7 0.3 0.3
rt sigaction ∼1 ∼1 3 3

Interposition

close ∼1 ∼1 ∼1 ∼1
free ∼1 3.2 ∼1 ∼1
malloc ∼1 3.3 ∼1 ∼1
memcpy ∼1 ∼1 ∼1 ∼1
memset ∼1 ∼1 ∼1 ∼1
mmap ∼1 12.5 ∼1 ∼1
mprotect ∼1 12.5 ∼1 ∼1

pthread create ∼1 12.5 ∼1 ∼1
sendto ∼1 4.3 ∼1 ∼1
signal ∼1 24 ∼1 ∼1
socket ∼1 ∼1 ∼1 ∼1
usleep ∼1 3.5 ∼1 ∼1

Table 5.2: Normalized rate of the system and function calls captured after using our
framework to detect compromised resource-limited devices (e.g., RTUs, PLCs): calls
due to malicious activities are grayed.

Values greater than ∼1 (marked in gray) in columns CD1 to CD3 and CD4 to

CD6 represents extra system or function call activity due to the presence of malicious

operations. That is, extra call activity reveals the presence of malicious activity in

the devices. One can notice that, by using ptrace, our framework identified all cases

of compromised devices. On the other hand, in the case of library interposition, only

CD1 and CD4 were properly detected. Also, the reader can notice that in the case

of genuine devices, the normalized rate values of system and function calls are very

close to 1 in all the cases.

87

Call Tracing Technique Type of Call Genuine CD4 CD5 CD6

ptrace

brk ∼1 ∼1 8.3 ∼1
clone ∼1 23 ∼1 ∼1
close ∼1 6.5 6.8 6.75
fstat ∼1 12 12.5 12.25
mmap ∼1 4.1 6.64 2.6
mprotect ∼1 3.4 ∼1 ∼1
munmap ∼1 23 26 24
open ∼1 6.5 6.75 6.8

rt sigaction ∼1 8.3 ∼1 ∼1

Interposition

free ∼1 15.6 ∼1 ∼1
malloc ∼1 15.6 ∼1 ∼1
memcpy ∼1 17.8 ∼1 ∼1
memset ∼1 24 ∼1 ∼1
mmap ∼1 24 ∼1 ∼1
mprotect ∼1 24 ∼1 ∼1

pthread create ∼1 24 ∼1 ∼1
pthreaddetach ∼1 24 ∼1 ∼1
recvfrom ∼1 15.7 ∼1 ∼1
signal ∼1 24 ∼1 ∼1
socket ∼1 24 ∼1 ∼1
usleep ∼1 15.7 ∼1 ∼1

Table 5.3: Normalized rate of system and function calls captured after using our
framework to detect compromised resource-rich devices (e.g., PMUs, IEDs): calls
due to malicious activities are grayed out.

IOC-simple

The first detection approach could not identify Threats 2 and 3 when the framework

utilized library interposition. To overcome this limitation, we applied our second de-

tection mechanism, IOC-simple. As explained in Section 5.3, to utilize the framework

efficiently, the framework applies the different detection approaches in an ordered

fashion as needed.

Figure 5.3(a) shows the results after applying IOC-simple to system and function

call lists from GTP and compromised devices. In this figure, R-R refers to resource-

rich devices, and R-L refers to resource-limited devices.

88

R-R ptrace R-L ptrace R-R interposition R-L interposition
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
de

x
of

 C
or

re
la

tio
n

(I
O

C
)

Genuine Devices
Threat

1

Threat
2

Threat
3

IOC strength threshold

Index of correlation for
genuine devices
after applying IOC-simple

R-R: Resource-rich device
R-L: Resource-limited device

R-L interposition devices
needing
IOC-advanced

(a)

IOC - simple IOC - advanced
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
de

x
of

 C
or

re
la

tio
n

(I
O

C
)

Genuine Devices
Threat

1

Threat
2

Threat
3

IOC strenght threshold

Improved results
after applying
IOC-advanced

Genuine devices decided as
"compromised" after applying
IOC-simple

(b)

Figure 5.3: Index of Correlation between GTP and unknown devices: (a) Resource-
rich and resource-limited devices after applying our IOC-simple and (b) IOC-advanced
results comparison between genuine and compromised resource-limited devices (using
system call lists from library interposition only).

The reader can observe that, by using ptrace, we obtain low IOC values (in the

range of 0.15 to 0.35) between function call lists from GTP and compromised de-

vices. By setting the correlation strength threshold to 0.6 (moderate to high corre-

lation [Ros01]), our framework detects all the cases of the compromised devices. For

the case of library interposition, the framework performs very well for resource-rich

compromised devices. However, for resource-limited compromised devices IOC-simple

under-performs when the framework applies library interposition. In this particular

case, IOC-simple from genuine devices falls under the threshold, triggering false posi-

tive results. We relate these results to higher random activity in the resource-limited

compromised devices’ kernel [CGJ15].

IOC-advanced

To overcome the previous limitation, we can apply the IOC-advanced technique. By

using this approach, our framework can obtain new call lists with more deterministic

behavior from the resource-limited devices and enhance the statistical correlation

89

between these type of devices and their corresponding GTP. In Figure 5.3(b), the

reader can observe how IOC values from resource-limited genuine devices overcome

the threshold mark while the compromised devices are still under the borderline.

There exists a trade-off between the amount of randomness that can be removed

from system call lists without impacting the decision process. If the value of h is too

significant, critical behavioral information can also be potentially removed from the

call lists, limiting the performance of the decision algorithm in cases where tasks T

are too simple.

5.4.3 Performance Metrics

To further measure the efficacy of our detection methods, we calculate the standard

performance metrics of accuracy, recall, precision, and specificity. These metrics are

defined in Equations 5.9, 5.10, 5.11, and 5.12:

ACC =
(TP + TN)

(TP + TN + FP + FN)
, (5.9)

REC =
TP

(TP + FN)
, (5.10)

PREC =
TP

(TP + FP)
, (5.11)

Spec =
TN

(TN + FP)
. (5.12)

where TP stands for true positive or the case where a compromised device is decided

as compromised; TN stands for true negative or the case where a genuine device is

decided as genuine; FP stands for false positive or the case where a genuine device is

decided as compromised; and finally FN stands for false negative or the case where a

compromised device is decided as genuine. First, we evaluate the performance of our

framework with IOC-simple. Then, the improved results are shown after applying

IOC-advanced.

90

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Interposition on R-R devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Interposition on R-L devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

ptrace on R-R devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

ptrace on R-L devices

Threat
1

Threat
2

Threat
3

(a) Accuracy

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Interposition on R-R devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Interposition on R-L devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7
IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

ptrace on R-R devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

ptrace on R-L devices

Threat
1

Threat
2

Threat
3

(b) Recall

Figure 5.4: Figures compare the performance of the IOC-simple algorithm on six
different types of compromised devices after using library interposition and ptrace:
(a) Accuracy, (b) Recall.

In Figure 5.4(a), we evaluate the overall accuracy of our detection techniques

over the six different types of compromised devices. Since accuracy comprises TP

and TN results, this metric describes how well the framework can positively decide

between genuine and compromised devices without errors. In general, for ptrace,

our framework achieves an excellent accuracy performance (between 0.95 to 1) for

all types of devices. However, this analysis also reveals the performance limitations

of the framework for detecting resource-limited compromised devices in the case of

library interposition (top-right case in Figure 5.4(a)). Here, the framework achieves

a low accuracy value of 0.5.

In Figure 5.4(b), we evaluate the overall recall performance of the framework.

In this case, recall metrics show how well our framework detects the six different

types of compromised devices. Based on these results, the reader can observe that

the framework achieves the maximum recall (maximum value of TP s) for the selected

threshold β = 0.6. In the case of resource-rich devices, recall performance was high

for all the threshold values. On the other hand, for resource-limited devices, we can

91

notice low recall values for Threats 2 and 3 when the threshold values are under 0.6

for the case of library interposition.

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

P
re

si
ci

on

Interposition on R-R devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

P
re

si
ci

on

Interposition on R-L devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

ptrace on R-R devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1
P

re
ci

si
on

ptrace on R-L devices

Threat
1

Threat
2

Threat
3

(a) Precision

0.4 0.5 0.6 0.7
IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

S
pe

ci
fic

ity

Interposition on R-R devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

S
pe

ci
fic

ity

Interposition on R-L devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

S
pe

ci
fic

ity

ptrace on R-R devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7
IOC Strength Threshold

0

0.2

0.4

0.6

0.8

1

S
pe

ci
fic

ity

ptrace on R-L devices

Threat
1

Threat
2

Threat
3

(b) Specificity

Figure 5.5: Figures compare the performance of the IOC-simple algorithm on six
different types of compromised devices after using library interposition and ptrace:
(a) Precision, (b) Specificity.

Figure 5.5(a) depicts the precision evaluation. Precision values represent the sta-

tistical relationship between the number of successfully detected compromised devices

against the number of times that the framework fails to correctly decide a device as

genuine. By looking at the precision results, one can observe that our framework

under-performs in the case of library interposition for resource-limited devices.

Finally, we utilize specificity metrics to evaluate the true negative rate, that is,

how effectively our framework discriminates genuine devices. In Figure 5.5(b) (top

right), one can observe that, for the case of resource-limited devices with library

interposition, the framework achieves very low specificity. These results limit the

application of IOC-simple to decide on this particular type of devices. Specificity

value of 0 at β threshold between 0.45 and 0.7 demonstrates that a device was not

correctly decided as genuine in this case. However, in all the remaining three cases,

the framework performs very well.

92

0.4 0.5 0.6 0.7

IOC-advanced Strength Threshold

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Interposition on R-L devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC-advanced Strength Threshold

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Interposition on R-L devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC-advanced Strength Threshold

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Interposition on R-L devices

Threat
1

Threat
2

Threat
3

0.4 0.5 0.6 0.7

IOC-advanced Strength Threshold

0

0.2

0.4

0.6

0.8

1

S
pe

ci
fic

ity

Interposition on R-L devices

Threat
1

Threat
2

Threat
3

(a)

(b) (d)

(c)

Best accuracy
value for all
threats

Metric values drop after
configurable threshold
takes values over IOC

Figure 5.6: Performance metrics after applying IOC-advanced for the detection of
resource-limited devices when library interposition is utilized: (a) Accuracy, (b) Re-
call, (c) Precision, and (d) Specificity.

By analyzing the results in Figures 5.4 and 5.5, one can compare the performance

of the detection framework on resource-limited and resource-rich devices for the two

hooking techniques applied. Most evaluation metrics diminish their performance

when the framework applies the IOC-simple algorithm to detect resource-limited de-

vices using library interposition. These results reflect on the fact that for this type of

devices, a more robust detection mechanism is necessary. To improve these results,

we utilize the framework with the IOC-advanced algorithm. Figure 5.6 depicts the

improvements in all the performance metrics after applying IOC-advanced for com-

promised resource-limited devices with library interposition. In this figure, one can

observe that the correlation threshold of 0.6 provided the best results overall for this

particular testbed. Also, the framework obtained significant improvements in accu-

racy and precision if compared with the case of IOC-simple (accuracy improved from

0.5 to 0.96, and precision improved from 0.5 to 0.93). Finally, recall metrics retained

its high performance at the selected threshold value (recall = 1).

93

5.4.4 System Overhead

We expect our framework to perform with high accuracy and scalability without in-

troducing too much overhead. Table 5.4 summarizes the average of system overhead

on resource-limited and resource-rich devices. The metrics RT , ST , UT , Mem, and

CPU correspond to the values of real-time, system-time, user-time, memory, and

CPU, respectively. In this table, NF (No Framework) represents the case where de-

vices were evaluated without utilizing the framework, and WF (With Framework)

represents the cases where we evaluated the performance while utilizing the frame-

work. Additionally, LI represents the cases where we applied library interposition.

Finally, R-R refers to resource-rich devices, and R-L refers to resource-limited de-

vices. Results in Table 5.4 demonstrate that the utilization of the detection frame-

work does not introduce significant overhead on the devices. Particularly, in the case

of resource-limited devices, the framework utilizes 0.03% more of memory (out of the

total memory available in the devices) and 1.9% more of the CPU. For resource-rich

devices, the framework utilizes 0.001% more of memory (out of the total memory

available on the device) and an almost negligible amount of CPU. In summary, for

both resource-limited and resource-rich devices, library interposition introduces the

most overhead to the system. However, this overhead is considerably low if compared

with similar applications proposed in the literature [SBDB01,FKF+03].

Metrics NF WF
value value ptrace (%) LI (%)
R-R R-L R-R R-L R-R R-L

RT (s) 60.00 60.11 0.05 3.8 0.01 0.1
ST (s) 0.49 3.60 8.1 3.6 10.2 5.5
UT (s) 0.31 0.49 16.1 0.31 6.4 2.0

Mem (KB) 1967.5 1827.5 1.1e-3 4.3e-5 3.0e-2 1.0e-3
CPU (%) 1 6.02 0 1.9 0 1

Table 5.4: Average system overhead on resource-rich and resource-limited devices
after using the framework.

94

To further study the impact of our framework, we analyzed this overhead consid-

ering a real resource-limited smart grid device. In Table 5.5, we summarize the main

specifications of Remote Terminal Unit RT2020.

Item Specification Values
Processor Dual Core ARM A9 667 MHz

Dynamic Memory (RAM) 128 MB
Program Memory (Flash) 4 MB

Nonvolatile Memory 4 Mb
Real Time Clock Resolution 1 ms

Execution Cycle Time ≤ 100 ms

Table 5.5: Specification values for Remote Terminal Unit RT2020 [Hon14].

Looking at Table 5.5, we can conclude that for the worst case of resource utilization

(library interposition on a resource-limited device), the increment in execution time

because of the use of our framework would only represent up to 2.3 cycle times.

Additionally, our framework would only take 0.1% of the total memory of a real

resource-limited smart grid device.

5.4.5 Benefits and Features

There are several benefits associated with the design of our framework:

1. Excellent detection rate: the framework demonstrated an excellent rate for the

detection of compromised smart grid devices by combining three different de-

tection methods: system and function call comparison, IOC-simple, and IOC-

advanced.

2. Minimum overhead : the detection framework does not represent significant

overhead on the use of computing resources.

3. Specific vs. generic solution: the framework is designed to address the specific

problem of compromised smart grid device detection. The adversary and system

95

model introduced in this chapter follow the security requirements and architec-

ture characteristics of the smart grid. However, the approaches introduced here

for the detection of compromised smart grid devices are perfectly suitable for

other CPS security domains outside the smart grid domain.

4. Comprehensive adversary model : the adversary model used in this chapter con-

siders both resource-limited and resource-rich compromised devices. Also, it

combines three different threats affecting the smart grid.

5. Compromised device diversity : Our framework is suitable for a great range

of different compromised devices. The design of our system-level framework

makes it also suitable for detecting hardware counterfeiting [GFT13, Ch.15, A.

15] as observed from the system level. System and function call comparison

and statistical techniques are powerful tools capable of detecting changes in

hardware and system configuration. This makes our framework an appealing

solution to monitor and detect a wide range of different types of compromised

devices.

5.5 Conclusion

The smart grid vision depends on the secure and reliable two-way communications be-

tween smart devices (e.g., IEDs, PLCs, PMUs). Nonetheless, compromised smart grid

devices constitute a serious threat to a healthy and secure distribution of data in the

grid. In this chapter, we reviewed a system-level configurable framework capable of

monitoring and detecting compromised smart grid devices. Our framework combines

system and function call tracing techniques (i.e., ptrace, library interposition), sig-

nal processing, and statistical analysis (basic and advanced) to detect compromised

device behavior. To the best of our knowledge, this is the first work that utilizes

96

these techniques in detecting compromised devices in the smart grid. Moreover, we

evaluated the performance of our framework on six different types of compromised

devices, conforming to realistic smart grid scenarios. Such devices exchanged smart

grid GOOSE messages utilizing an open-source version of the IEC61850 protocol suite.

Specifically, we analyzed the efficacy of our framework under six different adversarial

settings affecting devices with different resource availability. Experimental results

demonstrated that our framework successfully detects different types of compromised

device behavior in a variety of different environments with high accuracy. Also, our

performance analysis reveals that the use of the detection framework yield minimal

overhead on the smart grid devices’ computing resources.

97

CHAPTER 6

SECURITY AND PRIVACY ANALYSIS OF RESOURCE-LIMITED

DEVICE APPLICATIONS

6.1 Introduction

In this chapter, we introduce IoTWatcH, a novel dynamic analysis tool that uncovers

the privacy risks of IoT apps at runtime. We designed and built IoTWatcH based on

an IoT privacy survey of human subjects that use different IoT devices. The survey

aimed at understanding the privacy concerns and expectations of users when they use

IoT devices and apps. IoTWatcH provides users with a simple interface that allows

them to specify their privacy preferences (e.g., location, device states, etc.) at install-

time. It then adds extra logic to the app’s source code to collect app information at

runtime. The collected information is used to classify the data sent out of the IoT

app into privacy preferences of users through Natural Language Processing (NLP)

techniques. Also, IoTWatcH analyzes the recipients of the data and detects leaks to

unauthorized parties. Finally, IoTWatcH notifies the users about the sensitive data-

leaks and privacy concerns in IoT apps, allowing them to make informed decisions

about their privacy. Privacy concerns include any app behavior that would put the

sensitive information at risk. For instance, an Internet communication that sends the

sensitive information to a remote server in plain text.

To evaluate IoTWatcH, we trained an NLP model with IoT strings extracted

from 380 SmartThings market apps. The model is used to classify IoT app strings

(e.g., “the door is locked”, and “kitchen lights are turned off”) to user privacy prefer-

ences. Then, we analyzed 160 different IoT apps to evaluate its accuracy at runtime.

IoTWatcH successfully classified 146 IoT strings to privacy preferences with an av-

erage accuracy of 94.25% and precision of 95%. Among its findings, IoTWatcH also

98

flags 35 IoT apps that leak sensitive data to unauthorized recipients. Finally, IoT-

WatcH yields minimal overhead to the IoT apps execution, introducing on average

105 ms additional latency.

Summary of Contributions. The contributions of this chapter are as follows:

• We conducted an IoT privacy survey with 123 IoT users through a set of struc-

tured questions. Although the survey is not the major focus of this manuscript,

it is instrumental for the IoT community, researchers, and users to understand

users’ privacy concerns, their privacy preferences, and expectations when they

use IoT devices and apps.

• We designed and built IoTWatcH, a dynamic privacy analysis tool for IoT apps.

IoTWatcH adds extra capabilities to an IoT app’s source code to provide users

with a privacy interface and collect app data. The interface allows users to

easily specify their privacy preferences such as device states and location. Also,

it permits the monitoring of data leaks and privacy behaviors in IoT apps at

runtime. Lastly, IoTWatcH informs the users when an app’s leak matches with

the privacy preference of a user. We made the IoTWatcH freely available to

the community at https://iotwatch.appspot.com/.

• We analyzed 540 current IoT apps during the implementation and evaluation

of IoTWatcH. First, we trained IoTWatcH with 380 apps. Then we evalu-

ated its accuracy on the remaining 160 IoT apps (120 market and 40 malicious

IoT apps). IoTWatcH classifies 146 IoT strings that are sent out of the apps

into privacy labels with 94.25% accuracy. Additionally, it successfully flags 62

sensitive leakages (29 via messaging and 33 via Internet communication) to

unauthorized parties in 35 IoT apps. IoTWatcH detects sensitive data leaks

without significant overhead, introducing on average 105 ms latency to an app’s

execution.

99

6.1.1 Differences from Existing Works

IoTWatcH is a novel dynamic tool that uncovers privacy risks of IoT apps. Consider-

ing the privacy expectations of IoT users, IoTWatcH instruments IoT apps to collect

and analyze the data sent to external parties in real time. IoTWatcH performs rich

NLP-based classification of IoT strings to four user-friendly privacy labels, which are

also customizable. Also, IoTWatcH analyzes the recipients of the sensitive informa-

tion to uncover data leaks and privacy behaviors. Finally, IoTWatcH implements

notification mechanisms to inform its findings to the user.

6.2 IoT Privacy Survey

We conducted an IoT privacy survey to understand the privacy concerns of IoT

users when they use various IoT devices and apps. Although the survey is not the

major focus of this manuscript, it provides rich insights into the users experiences

and expectations on control over IoT app permissions, IoT privacy nudges, and their

interplay. The entire survey was authorized by the institutional ethics review board

(IRB) and occurred between April 2019 and May 2019.

Privacy Survey Goals. We aim to answer the following questions: (1) what are the

privacy concerns of IoT users?, (2) is there a need for privacy analysis tools designed

for IoT?, and (3) what are the user expectations, in terms of usability requirements,

for privacy analysis tools?

We created 26 different questions organized into three categories. These categories

align with three specific privacy survey goals: (1) the characterization of the partic-

ipants, (2) privacy concerns of IoT users, and (3) the need for IoT privacy analysis

tools and their usability requirements. We provide the details of the questions in

Appendix 6.2.3) and present the profiles of participants and our key findings below.

100

Survey Overview and Recruitment. We made the survey available to partici-

pants for four weeks. The users could access the survey and submit their responses

via an online questionnaire hosted on Google Forms [Gooc]. The questionnaire in-

cluded single choice questions (e.g., yes, no), multiple-choice questions, and free-form

questions (detailed in Appendix 6.2.3). We made all the questions required except

for the ones requesting an additional explanation from users in the form of free-text

input. Finally, we recruited the participants using recruitment emails sent to lists of

students, faculty, and staff in our institutions. The emails included a brief explanation

about the survey and link to the online form.

Participant Characteristics. We recruited 123 participants of which 69 partici-

pants (56.1%) were in the range of 18-25 years old and 37 (30.1%) were in the range

of 26-35 years. The remaining 17 (13.8%) participants were 36 years or older. The

majority of the participants (110 (89%)) had at least completed some bachelor-level

courses and 37 (30%) were enrolled in graduate-level courses. A total of 112 (91.05%)

users shared that they currently use or are planning to use IoT devices in their homes.

Finally, 19 (15.4%) participants knew how to develop their own IoT apps while 82

(66.7%) participants had previous experience installing apps from an IoT market or

via using the source code of IoT apps available online.

Ethics and Analysis. The human subjects review board of our institutions ap-

proved the privacy survey. The participants had to be over 18 years old to partici-

pate. The survey did not collect any personal information from participants, other

than an institutional email address that was requested for compensation purposes.

We did not allow participants to submit multiple responses, but they had the chance

to change their answers anytime before the survey closing date. We processed and

accepted all the responses obtained from the participants. Further, we directly quan-

tified the responses from single- and multiple-choice questions. Finally, we used two

101

independent researchers to analyze the free-from responses and did not consider any

answers flagged as potential outliers.

Compensation. After the survey’s closing date, every participant was compensated

either with extra-credit in their coursework or a gift card with a monetary value. The

student participants could opt for receiving extra credit or monetary compensation.

Faculty and staff all received gift cards.

6.2.1 Survey Results

Privacy Concerns of IoT Users. The participants were concerned about their

private information being inadvertently leaked to unauthorized parties. Specifically,

65 (52.8%) participants felt uncomfortable about their personal data (e.g., their pass-

word to login into edge devices), their behavior and habits (e.g., when they go to

sleep), location (e.g., whether they are home or away), device’s settings (e.g., heat-

ing value of a thermostat) and time configuration (e.g., when kids leave home), and

device states (e.g., whether the door is locked or not) being handled by IoT systems.

Also, at least 89 (72.4%) participants expressed to be aware of IoT apps collecting

their sensitive information and sending it to remote servers for data analytics such as

profiling their energy usage and for advertisement purposes [ABC+18]. Finally, 103

(83.7%) participants expressed privacy concerns on the use of IoT systems, and 88

(71.5%) mentioned having heard about privacy issues in IoT systems from the news

or other media.

The Need for Real-time Privacy Tools. In total, 112 (91.1%) participants raised

broad concerns about lack of an existing tool that informs the user regarding potential

privacy risks of IoT systems in real-time. Also, 119 (96.74%) participants found the

idea of using a tool to uncover privacy risks in IoT highly plausible. Our participants

were willing to use automatic tools that modify (i.e., instrument) original IoT apps

102

Expectations of survey’s participants % Agreement

Real-time privacy analysis 91.6%
Configurable privacy preferences 87.5%
Control over unauthorized data disclosure 86.6%
On-demand privacy controls 81.6%
Timely privacy notifications 85.3%

Inter-rater Reliability 86.5%

Table 6.1: Participant responses when asked about their expectations from a privacy
analysis tool, which guided the design of IoTWatcH. The percentage of agreement
among the survey’s participants showed a strong inter-rater reliability.

to enable privacy analysis in real-time. Out of the 123 participants, 119 (96.74%)

expressed their support to this option if the tool is verified by the IoT platform.

User’s Expectations. To understand the characteristics of an easy-to-use privacy

tool, we asked participants a set of questions to evaluate their usability expectations.

Table 6.1 summarizes the participants’ responses. Here, we detail the percentage of

agreement among users for every privacy feature and the inter-rate reliability score.

Finally, we evaluated the participants’ approval of four different privacy labels utilized

to classify information accessed by IoT apps. The term “Device-info” was considered

appropriate to define information from devices (e.g., device states or device type)

by 109 (88.6%) participants, while the label “User-behavior” received 103 (83.7%)

positive responses to define information related to the user (e.g., what the user does,

how the user configure his/her IoT system). Furthermore, the label “Location” was

approved by 110 (89.4%) participants to define information related to the location

of devices and users. Lastly, the label “Date-time” was approved in 100 (81.3%)

responses to define timing-related information.

103

6.2.2 Summary of Findings

Our findings shed new light on the need for cooperative privacy management practices

between users and IoT markets, which mitigate privacy risks based on user privacy

preferences. Table 6.1 presents the needs of the users that align with their control

over their privacy preferences. We obtained an inter-rate reliability of 86.5%, which

can be considered strong. Here, we summarize the privacy features that guides design

and development of IoTWatcH considering participants responses.

Real-time Privacy Analysis. The participants reflected their opinion about being

aware of apps privacy behavior in what information leaves an IoT system and where

it is transmitted. Additionally, they reported that they expect to have minimal

configuration when new devices are dynamically plugged into their IoT systems and

new IoT apps are installed.

Configurable Privacy Preferences. The participants mentioned that fears about

lack of privacy preference controls limit their willingness to use IoT devices. For

instance, they prefer to have categories that define a high-level category that shows

the information-type leaving the IoT system, such as “the door is locked” associated

with a specific privacy label and ”the mode is changed to sleep“ with another label.

Unauthorized Data Disclosure. The participants like having better control over

the disclosure of any private information. For instance, they prefer to be notified

when IoT systems share their data with other parties. Additionally, participants

mentioned strategies that notify unencrypted Internet requests or hard-coded mes-

saging recipients, which mitigates the consequences of privacy violations.

On-demand Privacy Controls and Privacy Notifications. The majority of

the participants acknowledged the effectiveness of configurable privacy preferences

over the IoT apps. They mentioned these configurations help them have a better

experience with a few numbers of notifications and minimal runtime delay.

104

6.2.3 Example IoT Privacy Survey Questions

We present a list of representative IoT privacy survey questions from all the categories.

The entire user study can be found at https://anonymous.com.

Participant Characterization

1. Do you use, have used, or are you planning to use any IoT device?

() Yes

() No

() Maybe

2. What is your technical experience with IoT apps?

() I can build, implement, code my own IoT app

() Installed/can install/configure an IoT app using the source code available

online

() Installed/can install/configure an IoT app’s marketplace (Google Play, App

Store, etc.)

() I just know how to press the buttons

() I have no idea how to deal with IoT apps

Security and Privacy Concerns in Smart Apps

1. What information would you consider sensitive if used in IoT apps/devices?

Please check all that apply.

() My personal data (e.g., email address, phone number, residential address,

etc.) () Whatever I do, my behavior (e.g., when I arrive home, when I leave

home, I go to sleep, etc.)

() My (or my devices’) location (e.g., my location while using the apps, etc.)

105

() My device settings/the way I configure the devices (e.g., Time of the day

the lights turn On/Off, my thermostat temperature settings, etc.)

() My (or my devices’) timing (e.g., the time passed since I left home, the time

passed since I went to sleep, etc.)

() Information from my devices (e.g., device type, manufacturer, device IDs,

etc.)

() Data from my devices (e.g., door state open or close, light on or off, etc.)

() Other

If you selected ”Other”, please explain:

2. Have you heard or personally have privacy concerns on the use of the IoT devices

and systems?

() Big concerns () Some concerns

() I do not, but I know someone that does

() Never thought about it, until now

() I do not care

Privacy Analysis Tools and Features

1. Do you think there is a need for a tool to check for security privacy risks from

the smart apps?

() Yes

() No

() Maybe

106

2. Would you be willing to use available automatic tools that analyze and modify

smart apps to enable security and privacy analysis in real-time?

() Yes

() No

() Maybe

6.3 Problem Statement and Threat Model

Problem Statement. We use an example source code abstracted from a smart-lock-

control app (Figure 6.1) to illustrate the privacy concerns and behaviors in IoT

apps. The expected behavior of the app is to lock the door and notify to user-

defined contacts that the door is locked when the user leaves the house. At install-

time, the user grants permissions to the smart lock, presence sensor, and enters a

phone number for messaging notifications (1). The app subscribes to two event han-

dlers f1 and f2 to implement the app functionality. The event handlers are invoked

based on the presence sensor’s state (user-present and user-not-present) (2). When

the user leaves home, “not-present” event handler (i.e., f2) locks the door, sends a

message notification, and transmits out the door lock state to a remote server (i.e.,

http://support.com) (3). However, the actual behavior of the app adds a piece of

code that invokes a function (i.e., leakinfo()) sending a string that contains “No-

body is Home” to a hard-coded phone number (4). This string is highly private and

informs an adversary that the house is empty. This information can be abused, for

instance, to facilitate a burglar to break into the house. This example shows that

a user does not have control over what an IoT app does with the sensitive data,

who sees it, and what they do with it. Unfortunately, IoT development platforms do

not provide users with sufficient information to make informed decisions about their

privacy preferences in IoT environments.

107

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

// smart-lock-control app: “controls the smart lock”
// Permissions Block

Device: smart_lock sl, presence pr
User-defined inputs: phone

// Events Subscription
subscribe(pr, “present”, f1)
subscribe(pr, “not present”, f2)

//Events Handler
f1(){…}
f2(){ sl.lock()

notifyUser(sl.state, phone)
leakInfo()}

// Sends notification to the user
notifyUser(state, number){

sendSMS(“Your lock is: ” + state, phone)
POST(“http://support.com”, sl.getLocation())

// Leaks sensitive data to attacker
leakInfo(){

sendSMS(“Nobody is Home”, 123-456-7890)}

3

2

1

4

Figure 6.1: An example IoT app leaking sensitive data to a hard-coded phone number
and performing insecure HTTP calls.

Limitation of Existing Privacy Tools. There exist systems to identify sensitive

data-flows in IoT apps. For instance, SainT is a static system that uses taint anal-

ysis to identify sensitive data-flows in IoT apps [CBS+18]. FlowFence, a dynamic

system, uses quarantined modules to enforce data-flow policies on the use of sensitive

data [FPR+16]. However, these approaches are limited in precision and the num-

ber of privacy policies enforced. For instance, SainT and FlowFence have no way

of knowing if an app leaks sensitive data through developer- or user-defined strings.

For instance, the string “Nobody is home” leaked through leakinfo()). Meanwhile,

our analysis of 540 IoT market apps showed that 64% of apps potentially leak sen-

sitive data through strings that do not include any tainted data, yet the string is

sensitive. Lastly, static systems like SainT, iRuler [WDY+19], and privacy tools for

trigger-action platforms [IFT] fail to detect sensitive data leaks from methods defined

dynamically in IoT apps [Met]. Additionally, there are no approaches that allow

users to examine their sharing and privacy preferences over individual IoT apps. For

instance, a user may desire to share her energy usage data with a third party in a

108

specific IoT app yet she wants to restrict sharing all other sensitive information with

third-parties. This requires a personalized privacy setting for each app that gives

control to the users over what to share.

In contrast to previous approaches, IoTWatcH analyzes data-flows at runtime;

thus, the flow’s content is analyzed to determine whether a data-flow constitutes a

privacy concern or not. Such a runtime analysis capability overcomes the limitations

of static analysis tools that fail to consider taint variables generated dynamically.

Additionally, IoTWatcH provides additional user interfaces that allow users to con-

figure their privacy settings for each app and informs the users about its findings.

We provide a detailed comparison of IoTWatcH with other privacy tools for IoT and

Android apps in Chapter 3.3.2.

Threat Model and Assumptions. We consider sensitive data leaks in IoT apps

through malicious apps or unintentional developer mistakes. We consider sensitive

information leaks in IoT apps via messaging and Internet connections, apps that

transmit data to the recipients that are not authorized by users, or apps that transmit

sensitive data without proper data protection mechanisms implemented. We do not

consider safety and security violations in IoT apps [CMT18, CTM19]. Additionally,

we do not track data-flows via push notifications or sink functions that are authorized

by OAuth (e.g., a user authorizes a third-party service through OAuth protocol to

share the device states for data visualization).

6.4 Approach Overview

IoTWatcH, a runtime privacy analysis system, collects the information exchanged

with external parties in IoT apps to uncover privacy risks. The collected information

is used to classify sensitive data into easy-to-understand privacy labels. The findings

are checked against users’ privacy preferences and users are notified if there is a

109

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

// iotwatch-enabled smart-lock-control app
Description: “controls the smart lock”
// Permissions Block

Device: smart_lock sl, presence pr
User-defined inputs: phone

// Event Subscription
subscribe(pr, “present”, f1)
subscribe(pr, “not present”, f2)

//Event Handler
f1(){…}
f2(){ sl.lock()

notifyUser(sl.state, phone)
leakInfo()}

// Send notification to the user
notifyUser(state, number){

sendSMS(“Your lock is: ” + state, phone)
sendPush(“App is using data of type:”

classification)}
// Leak sensitive data to attacker

leakInfo(){
sendSMS(“Nobody is Home”, 123-456-7890)
sendPush(“Privacy Risk of type:” context

“with data of type:” classification)}

C1

C2

C4

C3

C5

Figure 6.2: An example of an IoT app instrumented by IoTWatcH to support the
notification interface.

mismatch. IoTWatcH helps users define their privacy preferences and have better

control over their sensitive data and maintain better privacy practices.

6.4.1 Understanding Leakage in IoT Apps

We use the smart-lock-control app depicted in Figure 6.1 to illustrate the logical

steps of IoTWatcH (Figure 6.2). The instrumentor first adds extra logic to the app’s

source code to implement a user interface (UI). The UI allows a user to select a set

of privacy labels and the type of potential leakage mechanisms to be tracked by IoT-

WatcH. We provide users with four privacy labels: location, user-behavior, device-

info, and date-time, and two potential leakage mechanisms: messaging and Internet,

to define their privacy profile. Additionally, the code instrumentor adds extra logic to

send app data to IoTWatcH server at runtime. The data includes user-defined input

variables (i.e., phone) (C1) and the content and recipients of the functions used to

send data out of the app. The sample code in the smart-lock-control app includes

two messaging functions (C2 and C4). IoTWatcH instruments both the messaging

110

functions to collect their content (i.e., “Your lock is: ” + state, and “Nobody is

Home”) and their recipients (i.e., phone and 123-456-7890). Lastly, the instrumentor

inserts extra code to enable the notification of IoTWatcH’s results to users (C3 and

C5).

At install-time, a user configures two pieces of privacy settings for the app based

on her privacy preferences: (1) the privacy labels that are of interest of the user and

(2) the types of possible leakage methods to be tracked by IoTWatcH. These privacy

settings define the user’s privacy profile and are used to notify the user when her sen-

sitive data is transmitted out of an app. The user then installs the instrumented app,

which transmits its data to the IoTWatcH server once a specified data-flow is flagged.

This information enables IoTWatcH to identify the type of sensitive information that

the IoT app used and to analyze the information obtained from the app to uncover

privacy data leaks and potential privacy behaviors. IoTWatcH implements a novel

algorithm to verify whether the sensitive data is sent to recipients defined by the user

via matching the user-defined inputs to the data recipients. For instance, for the first

potential leakage (C2), the data is sent to a user-defined phone number (C1). For

the second possible leakage (C4), the data is sent to a hard-coded phone number,

which might indicate a privacy violation to the user. Also, by analyzing the content

of these potential leakages with NLP-based techniques, IoTWatcH verifies that the

app uses sensitive information regarding the devices (i.e., “Your lock is:”) and loca-

tion (i.e., “Nobody is Home”). Lastly, IoTWatcH informs the user of its findings

and generates privacy awareness. For the first possible leakage, IoTWatcH sends a

push notification with the privacy labels of the information included in the message

(C3). For the second potential leakage, IoTWatcH informs the privacy content of

the message and also alerts the user regarding the potential privacy violations of the

user’s privacy (C5).

111

6.4.2 Terminology Used

We define some of the terms used to explain IoTWatcH’s architecture.

Sink-calls. IoT programming platforms define specific APIs to send information out

of the apps (i.e., sink-calls) [Smah,Opec] as external data-flows. In this manuscript,

we focus on sink-calls of type messaging and Internet. Sink-call methods require two

types of information: the recipient and the content. Specifically, the recipients define

where the information contained in the sink-call is being sent to, and the content

defines the message or data sent in the form of IoT strings.

Privacy Labels. We define four different privacy labels (i.e., date-time, device-info,

location, and user-behavior) to classify IoT strings (i.e., sink-call content) in IoT apps

that users can specify. These privacy labels were selected based on the findings and

takeaways extracted from a privacy survey as noted in Section 6.2.

Privacy Profile. We consider the collection of privacy labels and notification pref-

erences defined by the IoTWatcH’s user as a privacy profile. At install-time, the user

selects the preferred type of privacy information and communication methods (e.g.,

messaging, Internet) to be tracked by IoTWatcH.

Privacy Leakage. We consider any data that is sent to an external recipient that

is not authorized (i.e., defined by the user at install-time) or acknowledged (i.e.,

informed to the user via the app’s description block) by the user of the IoT app as a

leakage.

Privacy Behavior. We consider any sink-call that sends data to an authorized

recipient, but that potentially puts the sensitive information at risk as a privacy be-

havior. For instance, Internet communications sending the information to legitimate

servers in plain text.

112

User Privacy
Preferences

Install Time

IoT
Corpus

Privacy
Notifications

Runtime App
Execution

IOTWATCH Analyzer
(NLP-based IoT String Classification, String

Recipient Analysis)

Runtime

Instrumentation
(IOTWATCH-enabled App)

Original
IoT App

Source Code

1 def var
2 def fo
3 myDevice (fo)
4 ...
10 leakinfo (fo, var)
11 http (myURL)

Intermediate
Representation (IR) AST & ICFG

Instrumentation Time

Instrumented
IoT App

IOTWATCH API
user-defined info

sink-call info
classification results

privacy analysis

Figure 6.3: Overview of IoTWatcH architecture. Three main stages are highlighted:
first, IoT apps are modified at instrumentation time to enable IoTWatcH; second,
the user selects their privacy preference at install time; finally, at runtime, IoTWatcH

analyzes the IoT app data to uncover privacy risks and behaviors.

6.5 IoTWatcH

Figure 6.3 illustrates IoTWatcH’s architecture which includes processes performed

in three main phases: instrumentation time, install time, and runtime. At instru-

mentation time, the code instrumentor adds extra logic to the app’s source code (1)

to implement a privacy interface (Section 6.5.1) where users specify their privacy

preferences, and (2) to collect app information required for IoTWatcH analysis. At

install time, the user defines the type of privacy information they desire to be tracked

and notified about by IoTWatcH. Finally, at runtime, the app sends its information

to IoTWatcH server, which classifies the collected data into privacy labels through

NLP techniques (Section 6.5.2). In addition, IoTWatcH performs analysis on the

data recipients (Section 6.5.2) for potential privacy leakages. In the case of sink-calls

of type messaging, it matches their recipients to user-defined inputs to check if the

apps send sensitive information to unauthorized parties. In the case of Internet com-

munications, it checks whether an app sends information to the remote servers using

unencrypted HTTP calls. IoTWatcH’s classification process is supported by a model

implemented from a market IoT corpus. Lastly, IoTWatcH informs the user about

its findings (Section 6.5.3).

113

6.5.1 Code Instrumentor

IoTWatcH’s code instrumentor analyzes the source code of an original IoT app to

build an intermediate representation (IR). The IR allows one to extract the sensor-

computation-actuator paradigm of IoT apps [CBS+18, CMT18]. The use of an IR

enables the design of generic solutions that can be implemented for different IoT pro-

gramming platforms (e.g., Smasung SmartThings and OpenHAB) [CBS+18]. Then,

the instrumentor extracts the Abstract Syntax Tree (AST) of the app and implements

custom node visitors to build the Inter-procedural Control Graph (ICFG). The ICFG

is used to flag user-defined inputs in the permission block of the app, and the recipi-

ents and content of the sink-call functions (i.e., messaging and Internet). Then, the

instrumentor adds extra code to collect and transmits this data to the IoTWatcH’s

server, and to implement push notifications that informs the user about IoTWatcH’s

findings in real-time. The code instrumentor groups collected data into two different

categories: (1) app information and (2) sink-call information. We detail each of them

as follows:

App Information. IoTWatcH’s code instrumentor visits the permission block (Fig-

ure 6.2) in IoT apps and extracts information defined by the user. Specifically, it col-

lects user-defined inputs required to implement the sink-calls (e.g., phone numbers to

receive notifications from the app). As we detail in Section 6.5.2, this data is matched

with the information directly extracted from sink-calls (i.e., recipients) to detect, for

instance, data sent to unauthorized recipients (i.e., not defined by the user), which

may lead to potential privacy issues for the user.

Sink-Call Information. It includes the content and recipients of messaging and

Internet communications. For instance, in the app’s source code depicted in Figure

6.2, IoTWatcH extracts the content “Your lock is: + state” from the first messaging

function in Line 16, and the content “Nobody is Home” from the second messaging

114

function in Line 21. As per the recipients, it extracts the recipient’s value contained

in the variable phone from the first messaging method (Line 16) and the hard-coded

phone number “123-456-7890” from the second messaging function (Line 21). IoT-

WatcH uses the content of the sink-calls to make the user aware of the type of

sensitive information that IoT apps handle. We use an NLP-based model to analyze

the content of external data-flows and classify them into four privacy labels that are

easy to understand by the user. Also, it uses the recipient information in IoTWatcH

analyzer to uncover sensitive data leaks. Our tool matches the recipient information

extracted from messaging and Internet communications with both the user-defined

and user-acknowledged information at install-time. The user-defined information is

entered by the user (Line 5) and the user-acknowledged information is informed by

the developer via the app’s description block (Line 2) and approved by the user. In

cases where the sink-call (i.e., messaging or Internet) is executed using unauthorized

recipients, the flow is flagged as leak, and the user is informed. With this analysis,

IoTWatcH creates awareness of sensitive information being disclosed to unauthorized

or malicious recipients. Besides, for Internet communications, we verify that the re-

cipient supports data encryption. With this, our tool guarantees that the sensitive

information is protected from potential eavesdroppers.

Selective App Instrumentation

In addition to collecting app information, IoTWatcH performs a selective code in-

strumentation to support on-demand privacy analysis/notifications and to facilitate

the analysis of encrypted IoT strings.

Privacy User Interface. The instrumentor adds additional code to implement a

UI and create a privacy profile of the user. Figure 6.4(a) shows the original user

interface of an IoT app presented to the user during install-time, and Figure 6.4(b)

115

smart-lock-control

12:01

< Back Save

Select Smart Lock:

Which?
Lock1

>

Enter Security Code:

Phone Number
111-111-1111

>

Notifications:

Number
12345

>

Set mode(s):

(a) Original IoT app

smart-lock-control

12:01

< Back Save

IOTWATCH Privacy Labels:

Notification Options:

Date-time Information

Device Information

Location Information

User Behavior

Notify Messaging Communications

Notify Internet Communications

1

2

(b) Instrumented IoT app

Figure 6.4: (a) Install-time interface of an IoT app and (b) Instrumented IoT app
interface: IoTWatcH interface enables users (1) to select privacy labels and (2) to
identify unauthorized recipients when a sensitive information is leaked.

illustrates the selective code instrumentation options of the IoTWatcH-enabled app.

IoTWatcH’s instrumentor does not impact the UI experience of the IoT app at

runtime, but offers new privacy features at install-time not available in the original

app. The instrumented app offers the user the possibility to create a privacy profile

and receive notifications regarding specific privacy labels that are of interest to the

user (1). Also, it allows for selecting which privacy concerns (e.g., option to notify

leaks from messaging or Internet communications) must be analyzed and informed

by IoTWatcH (2). Such a design supports the expectations of the IoT app users

with (1) configurable privacy preferences, (2) on-demand privacy controls, and (3)

timely privacy notifications (Table 6.1) as were summarized in Section 6.2. Finally,

since we target open-source IoT platforms, the use of selective instrumentation does

116

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

//Encryption to obfuscate sink-call content
def crypto = new Crypter()
def plainText = “Let’s leak this message"
def secret = “123456789“
//Selective Instrumentation before encryption
IoTWatch.collect(plaintext)
def encryptedText = crypto.encrypt(plainText, secret)
leakInfo(encryptedText)

// Send notification to the user
notifyUser(state, number){

sendSMS(“Your lock is: ” + state, phone)
sendPush(“App is using data of type:”

classification)}
// Leak sensitive data to attacker

leakInfo(encryptedText){
sendSMS(encryptedText, 123-456-7890)
sendPush(“Privacy Risk of type:” context

“with data of type:” classification)}

1
2

3

Figure 6.5: Sample IoT app that encrypts the sensitive data to be leaked in an
attempt to bypass the NLP analysis of IoTWatcH. The selective instrumentation
capabilities of IoTWatcH permits the analysis of the data before it is encrypted.

not change or impact the original user interface of the app that may be considered

as intellectual property. For closed-source platforms, we envision developers using

the features offered in IoTWatcH to evaluate and improve the protection of sensitive

information and the privacy of users.

We detail Algorithm 4, which describes the source code analysis and app instru-

mentation process in IoTWatcH. Our privacy tool requires open access to the IoT

apps’ source code (Line 1). This requirement does not constitute a limitation since

several IoT platforms (e.g., SmartThings, OpenHAB) make the source code of the

apps available online through official and third-party repositories [Smag,Opea,Smac].

The first step towards analyzing the apps is to generate the IR (Line 2) and extract

the ICFG (Line 3) of the app. From there, the app’s data-flow analysis starts by

flagging relevant app and data-flow information (e.g., user-defined data, data-flow re-

cipients). Then, the automatic instrumentation process starts by inserting extra code

that defines the different IoTWatcH-related global variables inside the installed()

and updated() methods (Lines 7, 8, 13, and 14). In that way, IoTWatcH always

keeps the current value of the flagged data through all the different node executions.

117

Also, the instrumentor implements a UI to define the privacy preferences of the user

(Line 9). Finally, one can notice from Line 22 and Line 26 that two different methods

are inserted to monitor messaging and Internet communications, respectively.

Algorithm 4: App source code analysis and code instrumentation in IoTWatcH

1: appSC ← app source code
{Source Code Analysis}

2: IR← generateIR(appSC)
3: ICFG← generateICFG(appSC)
{Instrumentation}

4: for All ICFG nodes invoking sinks do
5: if node has not been previously visited then
6: if node invokes install method then
7: global← user-defined recipients
8: global← user-defined URLs
9: Implements Privacy Settings UI

10: Flag ICFG node as visited
11: end if
12: if node invokes install method then
13: global← user-defined recipients
14: global← user-defined URLs
15: Flag ICFG node as visited
16: end if
17: if node invokes update method then
18: Update global
19: Flag ICFG node as visited
20: end if
21: if node invokes messaging sink then
22: Insert WatchMsg method
23: Flag ICFG node as visited
24: end if
25: if node invokes Internet sink then
26: Insert WatchInt method
27: Flag ICFG node as visited
28: end if
29: end if
30: end for

IoTWatcH vs. Data Encryption. The use of encryption to hide the content of a

sink-call may limit the effectiveness of NLP techniques. For instance, NLP models

created from plain-text data would fail to classify encrypted strings. However, selec-

tive instrumentation may facilitate the analysis of IoT apps that codify or encrypt

118

the data that is sent out to hide their intent. In general, IoT programming platform

only permits limited (i.e., white-listed) number of libraries to implement the app’s

execution [Smaa]. In popular IoT platforms like Samsung SmartThings, this group of

white-listed APIs does not include a single class that implements encryption. Also,

as a general rule, IoT platforms reject obfuscated apps when developers submit them

for approval during the vetting process. However, there still several reasons to allow

encryption-handling in IoTWatcH. First, malicious apps may skip the vetting pro-

cess of IoT programming platforms and while still be in the app market. Second,

encryption handling allows for a privacy tool that is not only exclusive to specific IoT

platforms, but that can be generalized as broader solution. As explained before, the

use of a limited (i.e., white-listed) number of libraries to code the IoT apps facilitates

the detection of encryption functions by IoTWatcH. Figure 6.5 shows a sample IoT

app that implements encryption to hide its intentions of leaking a sensitive string

via messaging. The method crypto.encrypt is known to be approved to implement

encryption. IoTWatcH’s selective instrumentation extracts the call graph of the

app and detects the presence of a function implementing encryption (2) on a tained

variable plainText. The result of the encryption is stored in a new taint variable

encryptedText, which is later leaked via messaging (3). To solve this challenge, the

instrumentor tracks the flow’s path of the encrypted variable and inserts extra code

to collect its content before it is encrypted (1).

During our analysis, out of 540 current market and malicious IoT apps, we did

not find a single case of an app encrypting the content while using messaging. How-

ever, we found several cases of encryption in Internet communications. IoTWatcH’s

instrumentor bypasses encryption on the content of the Internet calls by analyzing

the entire data-flow path within the apps (i.e., from the data source to the sink func-

tions), and by collecting the information related to the sink-call content before it is

119

encrypted or codified. In the specific case of encrypted Internet communications, the

instrumentor flags the call graph nodes containing the https call methods and adds

additional code to collect its content before the encryption call is executed.

6.5.2 IoTWatcH Analyzer

IoTWatcH uses NLP techniques to analyze and classify an app’s sink-call contents

to four privacy labels. Additionally, it flags messaging and Internet communications

that disclose sensitive information to unauthorized recipients. Finally, it uncovers

privacy concerns from apps that do not protect the sensitive information from passive

observers. Figure 6.3 illustrates the logical steps of the IoTWatcH’s analyzer at

runtime, that includes: (1) classification of sink-call content through NLP techniques,

(2) privacy analysis of recipients of sensitive information, and (3) building a user

privacy notification interface to inform the user about IoTWatcH’s findings.

Algorithm 5 details the steps followed in IoTWatcH’s analyzer. First, in Line

1, the analyzer extracts all the information received from the IoT app through IoT-

WatcH’s REST API. Also, variables are initialized in Lines from 2 to 9. After IoT-

WatcH completes the initialization step, the tool applies multi-class classification on

the app’s data-flow contents in Line 12. Then, it also performs data-flow recipient

analysis by correlating recipients from sink-calls with user-defined data to detect for

privacy behaviors (Lines 14 and 17). Finally, IoTWatcH’s results are sent back (Line

21) to the user as a Push Notification.

Classification of Sink-Call Content

The content of messaging and Internet communications in IoT apps may include

sensitive information from taint variables or might be just string messages with pri-

vacy implications to the user. As noted earlier, the sink-call content classification

120

Algorithm 5: Sink-call recipient analysis and privacy classification of IoT
strings at runtime

1: inputs← IoTWatcH’s API content
2: userinfo← input.userinfo
3: labels← input.selectedLabels
4: content← input.content
5: recipient← input.recipients
6: url← input.url
7: flowResult← NULL
8: labelResults← NULL
9: semanticsLabels← NULL

10: for input ∈ inputs do
11: if (content 6= NULL) then
12: labelResult← NLP(content)
13: end if
14: if url is insecure then
15: flowResult← ”privacy concern”
16: end if
17: if recipient /∈ user − info then
18: flowResult← ”privacy concern”
19: end if
20: end for
21: sendResults(flowResult, labelsList)

of IoTWatcH takes the content of messaging and Internet communications as input

and assigns it to privacy labels returned as the output. For instance, if the sink-call

contains the string message “the door is unlocked”, the classifier performs semantic

analysis on the string and classifies it as “Device-info”. The conversion of IoT strings

into privacy labels helps the user to understand how IoT apps use sensitive informa-

tion so they can make informed privacy decisions. Below, we present how to construct

a training set for classification from a corpus of IoT apps.

Constructing Privacy Labels. IoTWatcH classifies IoT app sink-call contents

into a set of privacy labels. The use of privacy labels provide three main advantages.

First, they allow users to understand what type of data the apps leak. For instance,

a string that contains “The mode has been changed to Home” can be presented to

users as leaking location. Second, the privacy labels permit users to have control over

121

their privacy preferences. For instance, a user may desire to allow an app to trans-

mit energy usage of a thermostat to a remote server, yet she restricts other types of

privacy-related information. Third, the privacy labels enable an on-demand notifi-

cation system that guarantees an improved user experience with less disruptive and

more intuitive notifications, and minimal runtime delay added to the app’s execution

time.

We define four privacy labels through the analysis of the semantics of strings

extracted from messaging and Internet communications in IoT apps (although adding

more privacy labels later is a straightforward task). The privacy labels are based on

user feedback that we acquired via a privacy survey (Section 6.2). Also, to adequately

protect the user’s privacy, some strings may require the use of more than one privacy

label to guarantee completeness on the classification. For instance, the message string

“The door will remain open for another 5 minutes” supports multi-labeling of types

Device-info and Date-time. Similarly, “Garage door is not opening since the car was

not present at Home, less than 15 sec ago”, would be labeled as Device-info (the

door is not opening so it is still closed), Location (the car was not present at Home),

and Date-time (15 sec ago). Some examples of IoT sink-call contents assigned to

the various privacy labels are presented in Table 6.2. In general, the use of multiple

privacy labels to a single text considers more complex semantics structures of string

and reveals more privacy-sensitive information contained in the leaked message. As

we explain later in this section, we successfully use NLP to achieve this goal. We

present the four privacy categories used to classify IoT strings:

• Date-time: defines an app text that contain time or date information. For in-

stance, a messaging call that sends the string “door is unlocked at 5:00 pm” con-

tains time information that specifies the time that the door would be unlocked.

122

App Sink-Call Content Assigned Privacy Labels

Thermostat is turned on. device-info
The door will remain open for another
5 minutes.

device-info,
date-time

Door is not opening since car was not
present at Home, less than 15 sec ago.

device-info,
location,
date-time

Sleep time set for you as requested. user-behavior

Table 6.2: Examples of leaked strings extracted from IoT apps and their assigned
privacy labels. Observe that IoTWatcH is capable of assigning multiple privacy
labels to specific strings with more complex semantics.

We found that many IoT apps contain date-time information for reporting the

state of a device at any given time.

• Device-info: defines the text that contain the states of devices and also device

information (i.e., device type, model, manufacturer). For instance, an Internet

call that contains “energy usage” transmits out the power state of a thermostat.

We assign all strings that contain information from devices with a device-info

label to inform the users about potential privacy violations.

• Location: defines the text that reveal physical and geo-location location of users

and devices. For instance, the string “kids have arrived home” contains physical

location information, and “the patio door is unlocked” contains the geo-location

of a house.

• User-behavior: defines the text that provides information about user prefer-

ences. We found that many IoT apps leak strings in messaging calls about app

configuration and user activities. For instance, an app includes a string, “the

user mode changed to vacation from home”.

NLP Model Construction. Our search for an adequate corpus that characterizes

IoT app’s data-flows faced particular challenges. First, we could not find any exist-

ing IoT corpus. Second, most of the datasets available online contain raw unlabeled

123

data that would require a considerable amount of pre-processing time and resources.

Third, the privacy labels considered by IoTWatcH could not be inferred from n-gram

shingles extracted from a single corpus only. Thus, we combined different knowledge-

based datasets to create a larger corpus. We combined the natural language datasets

from Google Books N-grams [Goob] and Wikidata [Wik], which contain strings re-

lated to geographic (location), economic (devices, user’s goods), climate (location),

and encyclopedic (general knowledge) datasets. We structured, cleaned, and manu-

ally labeled the crawled data. First, we divided the corpora into single shingles (i.e.,

n-grams of n=1). Then, for cleaning purposes, we filtered out punctuation and stop

words. We tested the first NLP model with 61 IoT strings extracted from 45 mar-

ket IoT apps [Smag, Smac]. An average value of 72% accuracy proved that the first

considered model could not accurately represent information extracted from IoT en-

vironments. Based on these results, we decided to train the NLP model using specific

IoT corpora only.

We implemented an NLP model that uses a specific IoT corpus for training pur-

poses. Then, we used the model to classify unknown sink-call contents to privacy

labels. To train the model, we used a supervised learning approach that required la-

beled data as input. We found that the supervised approach yields better results than

other approaches such as keyword-search. This is because often, the IoT string does

not include enough information to assign the labels through simple keyword-search-

based analysis. For instance, keyword-search would fail to identify the user-behavior

in a messaging communication that leaks a string “the kids left home”. Moreover,

we used doc2vec [Ayy18] to represent every n-gram IoT corpus text into a multi-

dimensional vector. We use doc2vec over other known approaches like bag-of-words

(BoW) [LM14] as it considers the entire structure of the text to perform syntax

analysis (i.e., multi-word expression analysis) [MCCD13]. We then performed topic

124

classification of the IoT strings using an automated machine learning approach [Auta].

Note that the analysis of NLP results from different classification algorithms is out

of the scope of this manuscript. In fact, our automatic machine learning approach

selects the best classification algorithm depending on the structure of text; thus, the

best accuracy value is always guaranteed in IoTWatcH. In Section 6.6, we provide

details of the NLP implementation, including the IoT corpus used to train the model.

IoT App Corpus. Our study of sink-call contents (i.e., IoT strings) from 540

real IoT apps showed that they pose a few unique characteristics compared to data-

flows from other domains. First, the size of the texts extracted is usually three

to four shingles on average, yet it contains highly private data (e.g., “the door is

unlocked”). Second, their linguistic structure is minimal regarding semantics (e.g.,

“mode changed to away”) compared to other short documents extracted from popular

general-knowledge corpora [N. ,Goob,Wik]. Third, their meanings usually are closely

attached to the app’s context (e.g., “if the user is not-present, turn off the light”).

Based on these facts, we designed an NLP model that can be effective for classifying

semantic-deficient, but information-rich texts. To understand whether leaked strings

includes sensitive information and assign them a privacy label, we first implemented

a classification model using publicly available data corpora [N. ,Goob,Wik]; however,

due to the specific characteristics of IoT texts, we obtained very low classification

accuracy. To improve these initial results, we constructed an IoT-specific corpus for

classification purposes that successfully considers and solves the challenges above. To

do so, we first collected the content of messaging and Internet calls from current IoT

market apps. We pre-processed the resulting dataset by filtering out punctuation and

stop words. Further, we manually labeled the IoT strings to the four privacy labels.

Here, we applied multi-labeling to contents that contained information related to

more than one privacy label. We detail constructing the IoT corpus in Section 6.6.

125

Sink-Call Recipient Analysis

IoTWatcH performs sink-call recipient analysis via messaging by matching recipients

of the data with information defined by the user at install-time. For instance, in

Figure 6.1, the user defines an authorized recipient in the variable phone. IoTWatcH

extracts this information and correlates it with the app data extracted at runtime.

In this specific example, two outcomes are possible. In Line 15, a messaging function

is executed using phone as the recipient. Since IoTWatcH recognizes that the user

previously authorized this recipient, the flow does not represent a leakage. However,

a second messaging function is executed in Line 19. In this case, IoTWatcH sees

discrepancies between the recipient used (i.e., 123-456-7890) and the one that was

defined by the user, and flags it as a leakage. Also, the analyzer checks the capabilities

of the recipients of Internet communications to support encryption and adequately

protects the sensitive information from, for instance, eavesdroppers. Back to our

example, in Figure 6.1, an Internet communication is executed in Line 16. IoTWatcH

extracts the recipient used (i.e., URL) and observes that the remote server is being

accessed via Hyper Text Transfer Protocol (HTTP), so the information is sent out

of the app in plain text. This constitutes a privacy behavior that could expose the

content of the Internet message to passive observers (i.e., eavesdroppers). In this

case, IoTWatcH flags this flow as a potential privacy concern for the user.

6.5.3 Response to App Data Leaks

Our privacy survey (Section 6.2) shows that users of IoT apps desire on-demand pri-

vacy analysis and notifications. Based on this feedback, IoTWatcH implements two

different privacy notification options (Figure 6.6). First, it allows a user to select

specific privacy labels (one, multiple, or all) to create a privacy profile and receive

notifications. For instance, if the user is only concerned about the use of data related

126

smart-lock-control

12:01

< Back Save

IOTWATCH Data Flow Labels:

Notification Options:

Date-time Information

Device Information

Location Information

User Behavior

Notify Messaging Communications

Notify Internet Communications

IOTWATCH has detected data sent
containing information related to

your Location.

(a) User configuration

smart-lock-control

12:01

< Back Save

IOTWATCH Data Flow Labels:

Notification Options:

Date-time Information

Device Information

Location Information

User Behavior

Notify Messaging Communications

Notify Internet Communications

Privacy Behavior: information related
to your Device was sent unprotected

to www.support.com

(b) Notification to users

Figure 6.6: IoTWatcH’s findings are informed to the users through push notifications.
The findings include (1) the privacy labels assigned to the sink-call content, and (2)
the potential privacy concerns associated with the IoT communications.

to location information, she may select the location label so that IoTWatcH informs

if a sink-call content contains information related to her and the devices’ location. In

this case, the user would not receive notifications regarding the use of other types of

sensitive information within the IoT app. Second, IoTWatcH allows the user to de-

cide if she desires to be notified regarding messaging, Internet calls, or both, whenever

they potentially leak data to unauthorized parties. The approach of implementing a

selective user-specific notification system provides flexible privacy options to the user,

lowers the latency overhead of IoTWatcH by reducing the number of processed and

classified IoT strings, and enhances the user experience by reducing the number of no-

tifications at runtime. Finally, even though its flexible and very configurable nature,

IoTWatcH enables all the privacy labels and notifications options by default. On

127

the one hand, technically-enthusiastic users that fully understand the privacy risks

of IoT apps may create their own privacy profiles by disabling install-time options in

IoTWatcH, for a better user experience. On the other hand, users that are not aware

of the privacy implications of sensitive information being leaked to third parties via

IoT apps, or that do not completely understand the privacy labels in IoTWatcH,

may rely on the default options.

6.5.4 IoTWatcH API

The analyzer collects app data to uncover data leaks and privacy behaviors in IoT

apps. We implemented a REST API to enable effective data exchange and communi-

cation between the instrumented IoT app and IoTWatcH’s analyzer running in the

cloud (Figure 6.3). From the app to the server, the API constructs a JSON object

with the user-defined recipients and the sink-call information. From the server to the

app, another JSON is transmitted including the analysis results and the notifications

to the user. Listing 6.1 illustrates an example of a JSON object used to send data

from an IoT app to IoTWatcH analyzer. Once the app data is received, the analyzer

extracts the data required to enable recipient analysis and NLP-based classification of

the IoT strings. The API also handles IoTWatcH’s privacy notifications to the user.

Once the privacy analysis is completed, IoTWatcH sends back to the user another

JSON object containing its findings (Listing 6.2). We implemented the API using the

asynchttpv1 class of Samsung SmartThings [Smah] which allows asynchronous and

encrypted data exchange between the instrumentor and the analyzer.

128

Listing 6.1: An example of a JSON object sent from an IoT app to IoTWatcH for
further analysis.
1 /∗ An example of a JSON object sent to Daint analytics tool ∗/
2
3 data "{
4 ’exfiltration’:{
5 ’texttype’:’PLAIN_TEXT’,
6 ’calltype’:’Messaging’,
7 ’phone’:’111-111-1111’,
8 ’content’:’The door was opened for 10 min’
9 ’userrecipients’:’123-456-7890’,

10 }
11 }" "https://iotwatchanalyticstool.com/classifytext/"

Listing 6.2: An example IoTWatcH response as a JSON object received by an IoT
app.
1 /∗ An example of a JSON object as response from our analytics tool ∗/
2
3 data "{
4 ’exfiltration’:{
5 ’texttype’:’PLAIN_TEXT’,
6 ’classification’:[’device-info’, ’date-time’]’,
7 ’risklevel’: ’privacy concern’
8 }
9 }"

6.6 IoTWatcH’s Implementation Details

We implemented IoTWatcH for IoT applications developed for Samsung Smart-

Things, which is the IoT platform that has the highest share of devices and appli-

cations in the current IoT market [SSIPD, Smab]. Samsung SmartThings apps are

developed in Groovy, a dynamic programming language that supports static com-

pilation. Static compilation permits for all methods and classes in the apps to be

annotated at compile time, which makes this information fully available to the in-

strumentation portion of IoTWatcH.

Code Instrumentation. IoTWatcH traverses on the Abstract Syntax Tree (AST)

of the IoT app’s IR through the ASTTransformation class and builds an app’s Intra-

procedural Control Flow Graph (ICFG) [CBS+18]. IoTWatcH involves around 1700

lines of code written in Groovy to analyze the app source code, construct the IR,

generate the ICFG, and perform the code instrumentation. We implemented IoT-

WatcH’s instrumentor as a web application using Groovy programming language.

We made the instrumentor available online at: https://IoTWatcH.appspot.com/.

129

f2(){ sl.lock()
notifyUser(sl.state, phone)
leakInfo() }

// Send notification to the user
notifyUser(state, number){

sendSMS(“Your lock is: ” + state, phone)
// Leak sensitive data to attacker
leakInfo(){

sendSMS(“Nobody is Home”, 123-456-7890)}

IOTWATCH Analysis Console

Actions Analyze IoT App Publish This App View Recent Apps

…
// Send notification to the user
notifyUser(state, number){

sendSMS(“Your lock is: ” + state, phone)
sendPush(“App is using data of type:” classification)}

// Leak sensitive data to attacker
leakInfo(){

sendSMS(“Nobody is Home”, 123-456-7890)
sendPush(“Privacy Behavior using:” classification)}

Analysis Result Stacktrace

iotwatch.appspot.com

Reset Console

Figure 6.7: The left console is the analysis area where the user inputs the orig-
inal IoT app. The right console returns the output of the instrumentation pro-
cess. We made IoTWatcH’s instrumentor freely available to the community at
https://IoTWatcH.appspot.com/.

Figure 6.7 depicts details of the online version of IoTWatcH’s instrumentor. At the

left console, the user inputs the IoT app source code that needs to be modified to

enable IoTWatcH, and at the right console, the tool automatically returns the IoT-

WatcH-instrumented app. Below, we detail the implementation steps of IoTWatcH.

Collection of IoT Corpus. To avoid overlapping between the data used for training

and evaluation of IoTWatcH, out of 540 apps, we selected 380 current market apps

crawled from SmartThings repositories [Smag, Smac] to build the IoT corpus. The

app population included apps from 6 different categories: Convenience, Smart Home

Automation, Entertainment, Personal Care, Security & Safety, and Smart Trans-

portation. From the selected apps for training, we extracted a total of 2014 different

IoT strings. We then labeled these strings according to the four privacy labels. Specif-

ically, 46.8% of the strings contained information related to the IoT devices, while

20.8% contained relevant information related to Date-time. The remaining 19.2% and

13.2% of the IoT strings shared information related to location and user-behavior,

respectively. Additionally, we allowed up to 75% of inter-labeling assignment to the

strings, meaning, up to three different privacy labels can be assigned to a single string.

Figure 6.8 depicts statistical details of the privacy label distribution used to build the

IoT corpus. In total, we applied multi-labeling to 72% of the privacy strings in the

IoT corpus. Finally, we used 75% of the total corpus to train the classifier. Then,

130

Date-time Device-info Location User-Behavior
0

200

400

600

800

1000

N
u
m

b
er

 o
f

S
in

k
-c

al
l

C
o
n
te

n
t

S
tr

in
g
s

418 (20.8 %)

942 (46.8 %)

387 (19.2 %)

267 (13.2 %)

Figure 6.8: Distribution of privacy labels among all the IoT strings included in the
corpus.

we verified the obtained model with the remaining 25% of the data. Initial testing

results on the NLP model showed an average precision of 94.3% and recall of 89.6%.

Classification of IoT Privacy Strings. We use Automatic Machine Learning

(Auto-ML) tools offered by Google App Engine [Auta] to perform privacy classifica-

tion of IoT strings. Among its benefits, modern auto-ML approaches perform neural

architecture search, enable hyper-parameter optimization, and utilize advanced model

architectures to classify contents to privacy labels with high accuracy. More partic-

ularly, we implemented a custom multi-class multi-label model using the Natural

Language API offered by Google (Google-NL) [Autb]. Google-NL offers a suite of

ML algorithms that automatically optimize the algorithm parameters based on the

specific algorithm utilized and the characteristics of the dataset to guarantee the

highest accuracy. Our initial analysis of 2014 IoT strings showed remarkable seman-

tic similarities among them; thus, the use of labeled data reduces the training time

considerably. Finally, we noticed that only two (0.5%) IoT strings in the corpus were

in an idiom different from English (Spanish in both cases). Thus, we implemented

our NLP solution to classify strings defined in English.

131

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Classification Threshold

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y
Date-time
Device-info
Location
User-behavior

Privacy Labels

(a) Accuracy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Classification Threshold

0.6

0.7

0.8

0.9

1

R
ec

al
l

Date-time
Device-info
Location
User-behavior

Privacy Labels

(b) Recall

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Classification Threshold

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io

n

Date-time
Device-info
Location
User-behavior

Privacy Labels

(c) Precision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Classification Threshold

0.5

0.6

0.7

0.8

0.9

1

Sp
ec

if
ic

ity

Date-time
Device-info
Location
User-behavior

Privacy Labels

(d) Specificity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Classification Threshold

0.5

0.6

0.7

0.8

0.9

1

M
ul

ti-
la

be
l A

ve
ra

ge
 V

al
ue

Accuracy
Recall
Precision
Specificity

Optimal
Threshold
Value (th = 0.4)

(e) Average Value

Figure 6.9: Evaluation results in the classification of IoT strings extracted from mes-
saging and Internet communications to user-friendly privacy labels: (a) accuracy,
(b) recall, (c) precision, (d) specificity, and (e) the average value of all considered
performance metrics.

6.7 Performance Evaluation

We evaluated IoTWatcH based on the three research questions (RQ) below:

132

RQ1 What is the effectiveness of IoTWatcH in correctly classifying the IoT strings

into privacy labels? (Section 6.7.3).

RQ2 What is the effectiveness of IoTWatcH in detecting sensitive data leaks and

potential privacy behaviors in IoT apps? (Section 6.7.4).

RQ3 What is the runtime performance overhead of IoTWatcH in terms of latency

and storage? (Section 6.7.5).

We used a total of 540 current IoT apps to implement and evaluate IoTWatcH.

Out of the total, 380 SmartThings apps were used to build the IoT corpus and

train the NLP model, and the other 160 apps were used to evaluate its performance.

For comprehensiveness, we included in the evaluation phase 120 SmartThings mar-

ket apps [Smag, Smac], and 40 malicious apps crawled from the IoTBench reposi-

tory [IoT17]. IoTBench is an IoT-specific test corpus used to evaluate systems de-

signed for IoT app security and privacy. It includes flawed apps that perform various

malicious activities, including sensitive data leaks via both messaging and Internet

functions. After instrumentation of the evaluation apps was completed, we executed

the instrumented apps in the SmartThings IDE [Smad], which is a propriety simu-

lation environment to execute SmartThings apps. IoTWatcH’s instrumentor adds

25% more lines of code (LoC) to the apps on average, which translates into adding

65 LoC to an IoT app that has an average size of 265 LoC. While being executed in

SmartThings IDE, the instrumented apps send their privacy data to IoTWatcH’s

analyzer which runs on a Python web server hosted on Google App Engine [Gooa].

We evaluated IoTWatcH’s accuracy in classifying strings extracted from IoT mes-

saging and Internet communications into users’ privacy preferences (i.e., privacy la-

bels) (Section 6.7.3). Also, we check its effectiveness in detecting sensitive data leaks

and flagging potential privacy behaviors in IoT apps (Section 6.7.4). As noted earlier

in Section 6.4.2, a leak is defined as a piece of information that leaves an IoT app

133

without user consent. In IoT apps, the consent of a user is either asked through an

app description block or through acknowledging the flow’s recipients at install-time.

However, we found that, out of 160 apps, only 121 (75.6%) define some type of app’s

description. Additionally, in most cases users are not informed nor given the chance

to assert the app’s intent or the recipients of sensitive information. For instance, a

messaging function using a hard-coded recipient not entered by a user, or an Internet

communications that sends sensitive data to a server that is not informed to the user

via an app description block is clearly a leak. Finally, we define privacy behaviors

that put the sensitive information at risk. For instance, an Internet communication

that sends data to a remote server without using encryption.

6.7.1 Evaluation Metrics

The performance metrics used during IoTWatcH’s evaluation:

1. True Positive (TP) represents the number of times a privacy label is correctly

applied to an IoT string for certain threshold th.

2. True negative (TN) represents the number of times a privacy label is correctly

discriminated for certain threshold th.

3. False Positive (FP) is the number of times a privacy label is incorrectly assigned

to certain IoT string for certain threshold th.

4. False Negative (FN) is the number of times a privacy label is incorrectly dis-

criminated for certain threshold th.

5. Accuracy is the overall ability of IoTWatcH to correctly apply privacy labels

to the IoT string for every different th.

6. Recall is the ability of the classifier to correctly assign the privacy labels to a

specific IoT string after considering both the correctly classified and the incor-

rectly ignored privacy labels for every value of th.

134

Label
Category

Messages
without
Leaks or
Privacy

Concerns

Internet
without
Leaks or
Privacy

Concerns

Messages
with

Leaks or
Privacy

Concerns

Internet
with

Leaks or
Privacy

Concerns

Total % Total

Device-info 47 12 43 17 119 52.3
Date-time 7 1 7 0 15 6.6

User-behavior 21 2 34 10 67 29.3
Location 8 0 14 5 27 11.8

Total 83 15 98 32 228 100

Table 6.3: Distribution of privacy labels used during IoTWatcH’s evaluation.

7. Precision is the ability of our classifier to correctly apply the privacy labels to a

specific IoT string after considering both the correct and the incorrectly applied

privacy labels for every value of th.

8. Specificity is the ability of our tool to discriminate the privacy labels for every

different th.

The performance metrics are defined by the following equations:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
, (6.1)

Recall =
TP

(TP + FN)
, (6.2)

Precision =
TP

(TP + FP)
, (6.3)

Specificity =
TN

(TN + FP)
. (6.4)

6.7.2 Assigning Privacy Labels

Table 6.3 summarizes the distribution of the privacy labels during evaluation. One

can notice that, out of 228 different labels assigned, 52.3% corresponds to device-

info, followed by a 29.3% of user-behavior information. We also show in Table 6.3 the

number of labels assigned to the different call types (i.e., messaging and Internet).

135

For instance, 83 labels were assigned to strings extracted from messaging that do not

leak information, while 98 labels were assigned to strings extracted from messaging

that leaked information. On the other hand, Internet communications without privacy

concerns received 15 privacy labels while 32 were assigned to Internet communications

that leak data. With this distribution, one can notice that the majority of labels

were assigned to leaked data. These results reflect on the fact that privacy leakage

constitute a serious problem in IoT. Indeed, the more privacy-sensitive labels assigned

to potential leaks, the higher the risk of users’ and system’s sensitive information being

leaked by IoT apps.

6.7.3 Performance of IoT String Classification

IoTWatcH’s analyzer classifies IoT app strings into four privacy labels. The classifi-

cation results include the assigned label and the confidence scores through a threshold

th. If the classification score is over the predefined threshold, the privacy label is as-

signed to the string. For instance, the string “the front door at home is unlocked” re-

sulted in classification scores of device-info=0.94, user-behavior=0.03, location=0.86,

and date-time=0.3. By design, the classification scores are independent of each other,

that is, if th value is set to 0.7, IoTWatcH classifies the string into privacy informa-

tion of type device-info and location. In total, IoTWatcH classified 146 IoT strings

extracted from 95 different IoT apps. Out of these, 112 strings were extracted from

messaging communications; 54 messages from 44 market IoT apps and 58 messages

from 30 malicious apps. The remaining 34 strings were extracted from Internet com-

munications; 12 Internet calls extracted from 10 market IoT apps, and 22 extracted

from 11 malicious IoT apps.

Classification of Encrypted IoT Strings. As detailed in Section 6.5.1, the se-

lective instrumentation of IoTWatcH enables NLP analysis on encrypted data. We

136

App
Type

Total
Apps

Analyzed

Messaging
Ccommunications

Analyzed

No. of
Data
Leaks

No. of
Privacy

Concerns

IoTWatcH
Effectiveness

Market 120 54 0 – –
Malicious 40 58 29 – 100%

Total 160 112 29 – 100%

Table 6.4: Effectiveness of IoTWatcH in detecting sensitive data leaks using mes-
saging.

study the effectiveness of IoTWatcH in classifying IoT strings that have been previ-

ously encrypted. Out of 160 apps analyzed, we found seven benign apps executing nine

encrypted Internet communications. Similarly, we found 11 malicious apps executing

23 Internet communications with encrypted content. Despite the use of encryption

techniques, IoTWatcH effectively collected and classified the information sent as en-

crypted strings in 100% of the cases. Finally, we did not find any IoT application

using encrypted messaging.

Accuracy by Threshold Values. We study how IoTWatcH’s classifier performs

for different threshold values th. The goal of this analysis is to find the value th

that leads to the highest performance overall. Figure 6.9 illustrates the accuracy,

recall, precision, and specificity of the NLP model. Overall, IoTWatcH yields the

best accuracy with the threshold values between 0.1 to 0.5. Figure 6.9(e) summarizes

the average metrics for different values of th. We observe that th = 0.4 yields the

best classification results for all metrics. Finally, IoTWatcH classifies IoT strings to

correct privacy labels with 94.25%, 85.17%, 95.01%, and 97.34% average accuracy,

recall, precision, and specificity, respectively.

Accuracy by Privacy Label. We further study the sensitivity of IoTWatcH’s clas-

sifier to each privacy label. The goal is to determine the effectiveness of IoTWatcH

in classifying strings to the different privacy labels. IoTWatcH achieves the highest

accuracy for privacy labels of type location and date-time. This is because date, time,

137

App
Type

Total
Apps

Analyzed

Internet
Communications

Analyzed

No. of
Data
Leaks

No. of
Privacy

Concerns

IoTWatcH
Effectiveness

Market 120 12 11 3† 100%
Malicious 40 22 22 3‡ 100%

Total 160 34 33 6 100%

† Includes one privacy concern that does not constitute a data leak and two privacy
concerns that were also flagged as data leaks.
‡ Includes three privacy concerns that were also flagged as data leaks.

Table 6.5: Effectiveness of IoTWatcH in detecting sensitive data leaks via Internet
communications.

and location can be easily inferred from semantically-simple strings. Also, it is very

common to find information related to these privacy labels embedded in the same

string (e.g., “he arrived home 5 minutes ago”). In contrast, IoTWatcH obtained

the lower accuracy results for privacy labels of type user-behavior. This is because

user-behavior information is harder to infer from simple strings. In spite of these

results, IoTWatcH achieved the lowest accuracy of 90.79% for user-behavior labels,

which is comparable with the best classification results of other similar tools in the

market [PCD+18]. Table 6.6 details average metric values in classifying IoT strings

to privacy labels for every different th. Also, we present the average metric values

after combining results from all considered privacy labels and thresholds. One can

verify that IoTWatcH obtains the best performance for threshold values of 0.4, which

supports the results showed in Section 6.7, Figure 6.9(e). For th values higher than

0.5, the accuracy decreases for the privacy labels of device-info and user-behavior.

This is mainly because the evaluation of semantically-limited strings related to these

two privacy labels requires more sophisticated analysis. For instance, user-behavior

achieved incorrect or lower classification scores as the string “IoT switched to sleep

mode” cannot be easily related to user activities. We obtained similar results for

recall metrics; however, recall values of date-time are lower compared to other labels.

We found that date-time information could be easily missed from short strings, which

138

Evaluation

Metric

Classification Thresholds

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average

Accuracy 0.9537 0.9623 0.9692 0.9743 0.9623 0.9469 0.9296 0.9092 0.8750 0.9425

Recall 0.9754 0.9400 0.9379 09341 0.8821 0.8419 0.7919 0.7359 0.6263 0.8517

Precision 0.8470 0.8776 0.9163 0.9587 0.9803 0.9833 0.9929 0.9975 0.9835 0.9501

Specificity 0.9283 0.9498 0.9682 0.9772 0.9823 0.9855 0.9876 0.9907 0.9907 0.9734

Table 6.6: Evaluation metric results in classifying IoT strings for all classification
thresholds. The rightmost column presents the average metrics.

Privacy

Label

No. of Times

Evaluated
TP TN FP FN Accuracy Recall Precision Specificity

Device-info 1285 958 232 11 84 0.9260 0.9214 0.9890 0.9547

Date-time 1314 99 1161 18 36 0.9589 0.7333 0.8918 0.9847

User-behavior 1313 508 684 26 95 0.9079 0.8425 0.9585 0.9633

Location 1314 221 1061 10 22 0.9756 0.9095 0.9610 0.9907

Table 6.7: Evaluation results of IoTWatcH in classifying IoT strings to all the dif-
ferent privacy labels.

makes the label specially vulnerable to false negative events. The precision and speci-

ficity improves with th for all the labels, which denotes a remarkable confidence of

the model for those results with the highest classification scores. Finally, Table 6.7

illustrates the performance of IoTWatcH in classifying IoT strings for every different

privacy label.

Findings on Privacy Analysis of IoT Strings. IoTWatcH classifies IoT strings

to privacy labels with an average accuracy of 94.25%. Out of 160 apps, IoTWatcH

identified 50 (31.25%) apps that transmit data related to device information via mes-

saging, and 20 (12.5%) apps that do the same via Internet communications. Also, 11

(6.9%) apps handled data related to date and time in messages and only one trans-

mit similar information using the Internet. IoTWatcH also identified 38 (23.75%)

apps transmitting information related to the user behavior in their messages and nine

(5.6%) including similar type of information in Internet communications. Further, 20

(12.5%) apps sent information related to location via messaging, while six (3.7%)

apps did the same via Internet. Finally, we evaluated how the privacy analysis of IoT

139

strings benefited from the use of NLP. IoTWatcH assigned multiple privacy labels

to classify more semantically-complex IoT strings, which guaranteed completeness in

the privacy analysis. Out of 146 strings analyzed, IoTWatcH applied multi-labeling

to 68 (46.5%). Specifically, 54 IoT strings (36.9%) received two privacy labels and 14

(9.6%) strings received three privacy labels.

6.7.4 Analysis of Data Leaks in IoT Apps

We evaluated the correctness of IoTWatcH in identifying data leaks. Table 6.8

presents examples of data leaks in IoT apps, and the associated privacy labels assigned

to the leak.

Findings on Data Leaks via Messaging. Table 6.4 shows IoTWatcH’s findings

after analyzing messaging recipients. IoTWatcH extracted 54 recipients in messages

from market apps and 58 from malicious apps. We found no data leaks via messaging

in market apps, meaning, all recipients were defined (or authorized) by the user at

install-time. We believe this is due the strict review process enforced by SmartThings

IoT market. Further, we found 29 leaks from 14 different malicious apps [IoT17],

meaning, all these recipients were hard-coded by a developer and their intent were

not defined in the app’s description block. For instance, the User Event app [IoT17]

leaks privacy labels of type device-info, location, and user-behavior (“Everyone is

away and hub ID is #”) to a hard-coded phone number. We manually reviewed the

app source codes and verified that all IoTWatcH’s findings were correct. Also, we

verified that all data leaks via messaging were properly flagged.

Findings on Data Leaks via Internet. Table 6.5 details the effectiveness of IoT-

WatcH’s analyzer in finding data leaks via Internet communications. IoTWatcH

analyzed 34 recipients from Internet communications, 12 from market and 22 from

malicious apps. Our tool flagged 11 Internet communications from seven market apps

140

T
y
p

e
*

A
p

p
N

a
m

e
L

e
a
k

T
y
p

e
*
*

R
e
c
ip

ie
n
t

C
o
n
te

n
t

B
e
h

a
v
io

r
P

r
iv

a
c
y

L
a
b

e
ls

1

S
q
u

ee
ze

B
o
x

C
o
n
tr

o
ll
er

[S
m

a
c]

I
h
tt

p
:/

/
$
ip

:$
p

o
rt

“
O

p
en

b
o
x
”

D
ev

ic
e-

in
fo

S
ta

tH
a
t

Q
u

ic
k

S
ta

rt
[S

m
a
c]

I
h
tt

p
:/

/
a
p

i.
st

a
th

a
t.

co
m

/
ez

T
h

er
m

o
st

a
t1

:t
h

er
m

o
st

a
t

D
ev

ic
e-

in
fo

T
h

in
g
S

p
ea

k
L

o
g
g
er

[S
m

a
c]

I
h
tt

p
:/

/
a
p

i.
th

in
g
sp

ea
k
.c

o
m

D
ev

ic
eI

D
:3

3
3
:K

ey
:1

2
3

D
ev

ic
e-

in
fo

U
se

r
L

o
ck

M
a
n

a
g
er

[S
m

a
c]

M
d

efi
n

ed
b
y

u
se

r
U

se
r

n
o

lo
n

g
er

h
a
s

a
cc

es
s

to
th

e
d

o
o
r

D
ev

ic
e-

in
fo

U
se

r-
b

eh
a
v
io

r

S
m

a
rt

L
o
ck

[S
m

a
c]

M
d

efi
n

ed
b
y

u
se

r

S
m

a
rt

L
o
ck

d
is

a
b

le
d

.

D
o
o
r

w
il
l

re
m

a
in

u
n

lo
ck

ed
in

d
efi

n
it

el
y

D
ev

ic
e-

in
fo

U
se

r-
b

eh
a
v
io

r

2

F
ir

e
A

la
rm

[I
o
T

1
7
]

I
h
tt

p
:/

/
1
4
1
.2

1
2
.1

1
0
.2

4
4
/
st

m
a
lw

a
re

/

m
a
li
ci

o
u

sS
er

v
er

.p
h

p
–

–

R
a
n

so
m

w
a
re

[I
o
T

1
7
]

I
h
tt

p
:/

/
1
4
1
.2

1
2
.1

1
0
.2

4
4
/
st

m
a
lw

a
re

/

m
a
li
ci

o
u

sS
er

v
er

.p
h

p
–

–

R
em

o
te

C
o
m

m
a
n

d
[I

o
T

1
7
]

I
h
tt

p
:/

/
1
4
1
.2

1
2
.1

1
0
.2

4
4
/
st

m
a
lw

a
re

/

m
a
li
ci

o
u

sS
er

v
er

.p
h

p
–

–

S
p
y
w

a
re

[I
o
T

1
7
]

M
1
2
3
−

4
5
6
−

7
8
9
0

D
o
o
rs

lo
ck

ed
a
ft

er

ev
er

y
o
n

e
d

ep
a
rt

ed

D
ev

ic
e-

in
fo

U
se

r-
b

eh
a
v
io

r

U
se

r
E

v
en

t
[I

o
T

1
7
]

M
1
2
3
−

4
5
6
−

7
8
9
0

E
v
er

y
o
n

e
is

a
w

a
y

a
n

d
H

u
b

ID
is

1
2
3

D
ev

ic
e-

in
fo

L
o
ca

ti
o
n

U
se

r-
b

eh
a
v
io

r

*
1

is
fo

r
M

a
rk

et
Io

T
a
p

p
s

a
n

d
2

is
fo

r
M

a
li
ci

o
u

s
Io

T
a
p

p
s

(H
a
n

d
cr

a
ft

ed
)

*
*
I

is
fo

r
In

te
rn

et
a
n

d
M

is
fo

r
M

es
sa

g
in

g
.

is
fo

r
P

ri
v
a
cy

R
is

k
a
n
d

is
fo

r
P

ri
v
a
cy

P
re

fe
re

n
ce

o
f

a
u

se
r.

T
ab

le
6.

8:
E

x
am

p
le

s
of

p
ri

va
cy

ri
sk

s
an

d
th

e
u
se

of
se

n
si

ti
ve

in
fo

rm
at

io
n

in
m

ar
ke

t
an

d
m

al
ic

io
u
s

Io
T

ap
p
s.

Io
T
W
a
t
c
H

id
en

ti
fi
ed

si
x

p
ri

va
cy

-v
io

la
ti

n
g

b
eh

av
io

rs
an

d
62

le
ak

s
fr

om
m

ar
ke

t
an

d
m

al
ic

io
u
s

Io
T

ap
p
s.

141

that leak privacy data without user consent. That is, the user is neither informed

about the recipient of the data in the app description block nor enters the URL or

domain name herself. For instance, the ThingSpeak Logger app [Smac] transmits a

device ID to a remote server through an HTTP call, which is identified through a

device-info privacy label. For malicious apps, IoTWatcH flagged 22 Internet com-

munications from 14 different malicious apps as leaks. We manually verified that

all IoTWatcH’s findings were correct. Also, we verified that 100% of data leaks via

Internet were properly flagged.

Findings on Privacy Behaviors via Internet. IoTWatcH further verifies whether

an IoT app protects the sensitive information before sending it to an external party.

The use of encryption gives the sensitive data extra protection against unauthorized

disclosure to passive eavesdroppers. Out of 12 Internet communications analyzed

from market apps, IoTWatcH flagged three from three different apps which make

unsecured HTTP requests. Interestingly, one of these calls was authorized by the user

at install-time through the app description block. Coincidentally, our tool also flagged

three Internet communications from three different malicious apps that constituted

potential privacy behaviors. Finally, IoTWatcH did not detect any privacy behavior

via messaging.

6.7.5 Overhead Analysis

We evaluated the performance overhead of IoTWatcH in terms of runtime and stor-

age overhead.

Runtime Overhead. Latency refers to the time elapsed from the moment the IoT

app sends relevant data via IoTWatcH’s API (see Section 6.5.4) to the moment that

the user receives IoTWatcH’s notifications. Latency overhead is calculated as the

average difference in the execution time of the original and instrumented apps. On

142

the one hand, IoTWatcH required 75 ms to perform the NLP-based classification of

the sink-call contents on average. On the other hand, we implemented IoTWatcH’s

API using asynchronous HTTPS communications via the asynchttp v1 class defined

in SmartThings [Smah]. With this, we obtained a communication latency of 35 ms

on average while supporting encrypted communications that protected the sensitive

information sent to IoTWatcH’s server. In the end, we found that the total latency

introduced by IoTWatcH was 105 ms on average.

Storage Overhead. We measured the storage overhead imposed by IoTWatcH.

Our tool does not store app information after the analysis is completed; thus, the

storage cost is determined by the total storage size of the JSON object used to

exchange information between the IoT apps and IoTWatcH’s analyzer (Section 6.6).

We evaluated the storage overhead imposed by the analysis of 160 IoT apps. On

average, IoTWatcH imposes 1 KB of storage overhead, which we consider negligible.

6.8 Discussion

IoTWatcH is the first dynamic tool that performs NLP-based real-time privacy anal-

ysis in IoT apps to (1) classify IoT strings to privacy labels that are easy to understand

by the user, and to (2) flag IoT apps that represent privacy concerns for the user. We

implemented IoTWatcH for SmartThings IoT platform, and we plan to extend our

analysis to other IoT platforms. Additionally, we analyzed 380 IoT apps and con-

structed a dataset to study how these apps use privacy-sensitive information. While

our corpus included IoT strings extracted from SmartThings market apps, we plan

to investigate other IoT platforms to construct similar datasets.

We designed and built IoTWatcH by first understanding the privacy needs of

IoT users. We plan to conduct an additional study to evaluate the usability of IoT-

143

WatcH which is outside the scope of the current manuscript. Also, IoTWatcH’s

analysis would benefit from mapping the app descriptions to privacy labels. How-

ever, this is challenging as the description block of an IoT app does not explicitly

state the app’s privacy behavior but its functionality. We plan to use more advanced

NLP techniques to address this challenge. Finally, IoTWatcH’s execution requires

the collection and analysis of privacy-sensitive information. We use secure HTTPS

communications to protect the communication between IoT apps and IoTWatcH’s

server. In addition, IoTWatcH does not keep record of any collected information

nor share this information with any third party. As a future work, a complete pri-

vacy assessment of IoTWatcH may be conducted to guarantee that user’s privacy is

completely preserved.

6.9 Conclusion

IoT apps access sensitive data that, if leaked, can compromise the privacy of the users.

IoT platforms do not offer real-time privacy analysis that informs users about how

the IoT apps use sensitive information and what they do with it. In this chapter, we

introduced IoTWatcH, a novel dynamic privacy analysis tool for current IoT apps.

We designed and built IoTWatcH based on a privacy survey with 123 IoT users.

IoTWatcH uses NLP techniques to classify IoT strings extracted from messaging

and Internet communications to a set of privacy labels at runtime. Additionally,

IoTWatcH enables users to select their privacy preferences and reports its findings

based on their privacy profiles. This allows users to make informed decisions about

their privacy and reject apps. We analyzed 540 real IoT apps to train the NLP model

and evaluate its effectiveness. IoTWatcH classifies IoT strings to correct privacy

preferences with an average accuracy of 94.25% and flags 35 apps that leak data.

144

Finally, IoTWatcH imposes minimal overhead to an IoT app’s execution, introducing

on average 105 ms additional latency.

145

CHAPTER 7

FORENSICS ANALYSIS OF RESOURCE-LIMITED DEVICE DATA

7.1 Introduction

This chapter introduces IoTDots, a novel digital forensic framework for smart set-

tings. IoTDots has two main components: IoTDots-Modifier (ITM) and IoT-

Dots-Analyzer (ITA). The ITM analyzes and instruments smart applications to de-

tect, log, and store forensically-relevant information into a secure IoTDots Database

(ITD) at runtime. Later, in the case of a forensic investigation, the ITA applies data

processing and machine learning techniques on the ITD data to learn the overall state

of the smart environment. IoTDots considers the events inferred from the ITD data

and the security policies defined for the smart environment to detect security viola-

tions from users, devices, or smart apps. We evaluate IoTDots in a real-life smart

environment containing 22 different off-the-shell smart devices and sensors including

smart lights, thermostats, and motion sensors. Also, we considered 10 different cases

of forensically-relevant activities and behavior from users and apps analyzing a total

of 96209 forensics incidents. Our experimental results demonstrate the effectiveness

of IoTDots in logging, storing, and processing forensically-relevant data from the

environment to infer activities and behavior. Specifically, for activity detection, the

framework achieves over 99% accuracy for both time-dependent (i.e., activities al-

lowed only over certain specific time frame t) and time-independent (i.e., activities

performed freely without considering any specific time frame) user activities. On the

other hand, for the case of forensic behavior detection, the framework achieves over

96% accuracy. Finally, the analysis shows that IoTDots yields minimal overhead to

the smart devices ans apps.

146

Summary of Contributions: The contributions of this chapter are as follows:

• IoTDots: We introduce IoTDots, a novel digital forensic framework for smart

settings. The framework automatically analyzes and instruments smart apps

to detect and stores forensically-relevant data from the smart environment.

Then, in the event of a forensic investigation, IoTDots detects valuable forensic

evidence from smart devices, apps, and users.

• ITM: We made the IoTDots-Modifier freely available online at https://IoTDots-

modifier.appspot.com/. IoTDots users may utilize our automated system

to perform source code analysis and instrumentation of their smart apps to

enable IoTDots.

• ITA: Our ITA applies data processing and machine learning techniques to infer

forensic activities and behaviors related to careless and malicious users, mali-

cious apps, and tampered devices over large sets of data extracted from the

smart environment.

• Realistic Evaluation: We evaluated IoTDots in a real smart environment with

22 off-the-shell smart devices and sensors. Our results demonstrate that IoT-

Dots achieves very high accuracy on revealing forensic-relevant activities and

behaviors with minimal overhead.

7.1.1 Differences from Existing Works

Table 7.1 summarizes the major differences between IoTDots and other IFA tools.

In general, solutions prior to IoTDots are limited to policy enforcement or data

provenance in IoT. IoTDots achieves the capabilities of all the considered tools

with high accuracy and low overhead. In addition, the framework also offers the

capability of applying deep data analysis to solve a comprehensive forensic model

147

T
o
o
l

N
a
m

e
C

ro
ss

A
p
p

A
n
a
ly

si
s

C
o
n
si

d
e
r

D
e
v
ic

e
s

N
o

P
la

tf
o
rm

M
o
d
ifi

ca
ti

o
n

F
re

e
ly

A
v
a
il
a
b
le

O
n
li
n
e

C
o
n
si

d
e
r

T
a
m

p
e
re

d
D

e
v
ic

e
s

D
e
e
p

D
a
ta

A
n
a
ly

si
s

T
o
o
l

G
o
a
ls

a
n
d

C
o
m

m
e
n
ts

F
lo

w
F

en
ce

[F
P

R
+

16
]

P
ro

te
ct

s
d

at
a

b
y

en
fo

rc
in

g
d

at
a

fl
ow

p
ol

ic
ie

s
fr

om
u

se
rs

.

C
on

te
x
tI

oT
[J

C
W

+
17

]
D

et
ec

ts
m

al
ic

io
u

s
d

at
a

fr
om

ap
p

co
n
te

x
t

in
a

si
m

u
la

ti
on

en
v
ir

on
m

en
t.

S
aI

N
T

[C
B

S
+

18
]

D
et

ec
ts

d
at

a
ex

fl
it

ra
ti

on
s

fr
om

sm
ar

t
ap

p
s.

P
ro

v
T

h
in

gs
[W

H
B

G
18

]
D

et
ec

ts
m

al
ic

io
u

s
d

at
a

fl
ow

b
y

an
al

y
zi

n
g

ap
p

co
n
te

x
t.

Io
T
D
o
t
s

E
n

ab
le

s
fo

re
n

si
cs

an
al

y
si

s
in

sm
ar

t
se

tt
in

gs
.

C
on

si
d

er
s

ta
m

p
er

ed
d

ev
ic

es
.

T
ab

le
7.

1:
C

om
p
ar

is
on

b
et

w
ee

n
Io

T
D
o
t
s

an
d

ot
h
er

IF
A

to
ol

s.

148

that includes challenges related to careless users, malicious users, malicious apps, and

tampered devices. Compared to these prior works, IoTDots presents a lightweight

solution that automatically analyses smart apps source code and performs app in-

strumentation to collect forensically-relevant data from a smart environment. Also,

IoTDots includes tampered devices in its analysis, something that has not been

considered by previous works. Additionally, the IoTDots framework provides the

means to apply machine learning algorithms to analyze the logged data and detect

anomalous activities and malicious behavior from users, devices, and smart apps.

IoTDots flags the actions that potentially violate the security policies of the smart

environment and may help to hold the perpetrators accountable in a holistic manner

during forensic investigations.

7.2 Problem and Threat Model

In this section, we introduce the problem through a use case. Then, we provide

assumptions and definitions of different terms in the context of IoTDots. Finally,

we articulate the threat model.

7.2.1 Problem Definition

This dissertation assumes that there exists an office O. The office has deployed several

devices to create a fully equipped smart environment. The topology of the smart

environment in O includes devices like smart thermostats, locks, lights, presence

sensors, security cameras, and smoke detectors. We also assume that the general

manager, Bob, is the only person in O with administrative rights to handle the apps

that control the smart devices. By policy, these are IoTDots-modified apps, and

they are the only ones authorized to manage the devices inside O. Bob, however,

149

is not authorized to modify the security policies in place for the smart environment.

Finally, the security policies of O prohibit the presence of any person between 8:00

pm to 7:00 am from Monday through Friday and anytime during the weekends. At

some point, a fire incident inside O has caused the loss of sensitive information along

with important economic consequences. After the incident, the insurance company

requests a forensic investigation.

We introduce IoTDots as a novel framework that utilizes the logs extracted from

the IoT-modified apps to perform the forensic analysis of the events in O. Indeed,

IoTDots can be used in conjunction with traditional forensic analysis tools and

techniques to hold the person, smart app, or device (if any) accountable if a case

of negligence or deliberate violation of security policies is detected. By using IoT-

Dots, we can answer several forensic questions: (1) What was happening inside O

right before the fire incident had occurred (e.g., right before the smart smoke detector

started sensing the smoke presence)? (2) Was anyone inside the room (e.g., presence

sensor state changed)? (3) Was the door opened/closed anytime before the fire in-

cident (e.g., smart lock state changed)? Further, the forensic framework would be

able to evaluate the different states of connected devices and the overall smart envi-

ronment. Them, this information can be matched with the security policies in place

to detect any (intentional or involuntary) violation of the security policies. Some

of these violations could be: workers accessing the office at night time (i.e., careless

unauthorized activities), Bob tampering the security camera to avoid video recording

(i.e., device tampering), or smart apps running malicious code to modify the values

of the presence sensor (i.e., malicious behavior).

150

7.2.2 Assumptions and Definitions

We assume and define some terms that we use to explain IoTDots threat model and

further sections.

• Assumption 1–Smart Environment Security Policies: We assume that a

smart environment is centrally-managed by well-defined security policies, and

users are not authorized/allowed to change its pre-defined settings. For instance,

configuration settings on thermostat’s and smart lock’s cannot be changed un-

less management requests and approves a modification in the smart environment

settings. With this, we assume that security policies regulate both the access

level and settings of the smart environment.

• Definition 1–Forensically-relevant Data: We define Forensically-relevant

Information as the smart apps events, device’s actions, user-defined inputs, de-

vice’s information, and time and location information that IoTDots extract-

s/logs from the smart apps. This information typically reflects on the state of

the different smart devices and sensors as a function of the users’ and smart

apps’ activities.

• Definition 2–Authorized User: We use the term authorized user to define

users that are authorized to perform activities or access specific locations and

devices inside the smart environment, but only during the permitted hours

specified by the security policies in place.

• Definition 3–Unauthorized User: We use the term unauthorized user to

define those users that carelessly or deliberately try to change the pre-defined

settings of the smart environment. Also, unauthorized users are those who per-

form activities and access the smart environment locations during not-permitted

hours. Depending on the specific time, date, the context of the activity, and

151

the smart environment policies, authorized users can act in an unauthorized

manner.

• Definition 4–Attacker (insider or outsider): We consider the attacker as

an insider or outsider that maliciously tries to disrupt or take control over the

smart environment or any of its entities (i.e., devices and sensors) to learn

user behaviors, steal sensitive information, gain access to the systems, or even

interrupt the normal operations of IoTDots.

• Definition 5–Malicious App: We call malicious app a smart app with ma-

licious code intended to leak sensitive information from users and the smart

environment to attackers, change/replace legitimate IoTDots logs with the

intention to hide malicious behavior, or perform any other malicious activity

inside the smart setup (e.g., side channel attacks).

• Definition 6–Tampered Device: We define as tampered device a smart entity

that is forced to change its expected (based on the user activity) state by a

different one that does not reflect the real overall state of the smart environment.

Also, this group includes devices that are deliberately relocated, disabled, or

turned off without the required authorization.

• Definition 7–Regular User Activities: Any action performed by the au-

thorized users inside the smart environment that does not violate the security

policies in place.

7.2.3 Threat Model

For IoTDots, we consider two different sets of forensic threats: (1) anomalous user

activities and (2) malicious behavior from users, smart apps, and devices.

152

Anomalous User Activity. We consider threats related to user activities based on

their time dependency, that is, we explicitly consider time-based actions to evaluate

IoTDots in detecting anomalous user activities. Anomalous user activity defines

any careless and unintentional action performed by an unauthorized user inside the

smart environment that is considered a violation of the security policies in place.

Since IoTDots considers these policies to perform its analysis, we categorize user

activities as time-independent and time-dependent. In the first group, we include all

the user actions whose execution time is irrelevant to IoTDots. On the other hand,

the second group gathers those actions whose execution time is strictly regulated by

the security policies of the smart environment (e.g., the presence of an authorized

user in O is only a violation between 8:00 pm and 7:00 am).

Malicious Behavior. We consider as malicious behavior any intentional action

performed by authorized users, unauthorized users, smart apps, and/or smart devices

that clearly violates the security policies and can be considered a threat for other users

and/or the overall state of the smart environment. These forensic behaviors include

impersonation attacks, false data injection attacks, reply attacks, Denial-of-Service,

and side channel attacks. IoTDots considers all these attacks as they may affect

the smart environment and the overall performance of the forensic framework.

We provide details of specific forensic activities and behaviors considered in our

threat model in Table 7.2. For every activity/behavior, we specify the attack method

utilized, time dependency, and specific examples in the context of the problem con-

sidered in this chapter. Later, these activities and behavior are utilized to test the

efficacy and performance of IoTDots (Section 7.5).

153

T
h

re
a
t

T
im

e
-d

e
p

e
n

d
e
n

c
y

A
tt

a
ck

M
e
th

o
d

S
p

e
c
ifi

c
A

tt
a
ck

E
x
a
m

p
le

A
ct

iv
it

y
-1

T
im

e-
in

d
ep

en
d

en
t

T
am

p
er

ed
d

ev
ic

e
B

ob
ch

an
ge

s
th

e
or

ie
n
ta

ti
on

of
th

e
p

re
se

n
ce

se
n

so
r

to
fi

t
in

a
n

ew
eq

u
ip

m
en

t.

A
ct

iv
it

y
-2

T
im

e-
in

d
ep

en
d

en
t

C
ar

el
es

s
u

n
au

th
or

iz
ed

u
se

r

B
ob

m
an

u
al

ly
lo

w
er

s
th

e
te

m
p

er
at

u
re

of
sm

ar
t

th
er

m
os

-
ta

t
fr

om
h

om
e,

th
e

n
ig

h
t

b
ef

or
e

of
a

b
ig

m
ee

ti
n

g
w

it
h

th
e

st
ak

eh
ol

d
er

s

A
ct

iv
it

y
-3

T
im

e-
d

ep
en

d
en

t
C

ar
el

es
s

u
n

au
th

or
iz

ed
u

se
r

B
ob

is
in

si
d

e
a

re
st

ri
ct

ed
ar

ea
(s

er
ve

rs
ro

om
)

at
8:

45
p

m
.

A
ct

iv
it

y
-4

T
im

e-
d

ep
en

d
en

t
C

ar
el

es
s

u
n

au
th

or
iz

ed
u

se
r

B
ob

is
ge

tt
in

g
in

to
th

e
offi

ce
at

8:
45

p
m

.

A
ct

iv
it

y
-5

T
im

e-
d

ep
en

d
en

t
C

ar
el

es
s

u
n

au
th

or
iz

ed
u

se
r

B
ob

is
u

si
n

g
th

e
se

cu
re

p
in

to
u

n
lo

ck
th

e
sm

ar
t

lo
ck

.

B
eh

av
io

r-
1

T
im

e-
in

d
ep

en
d

en
t

T
am

p
er

ed
d

ev
ic

e
B

ob
d

is
ab

le
s

th
e

sm
ar

t
ca

m
er

a
to

st
op

re
co

rd
in

g
w

h
il

e
h

e
is

p
er

fo
rm

in
g

u
n

au
th

or
iz

ed
ac

ti
v
it

ie
s

in
si

d
e

th
e

offi
ce
O

.

B
eh

av
io

r-
2

T
im

e-
in

d
ep

en
d

en
t

Im
p

er
so

n
at

io
n

A
tt

ac
k

A
li

ce
ge

ts
ac

ce
ss

to
th

e
offi

ce
O

u
si

n
g

th
e

sm
ar

t
lo

ck
p

in
th

at
sh

e
ob

ta
in

ed
th

ro
u

gh
a

m
al

ic
io

u
s

ap
p

th
at

le
ak

s
in

-
fo

rm
at

io
n

.

B
eh

av
io

r-
3

T
im

e-
in

d
ep

en
d

en
t

F
al

se
D

at
a

In
je

ct
io

n
R

ep
ly

A
tt

ac
k

T
h

e
p

re
se

n
ce

se
n

so
r

ap
p

re
p

or
ts

in
ve

rt
ed

st
at

es
to

Io
T
D
o
t
s.

B
eh

av
io

r-
4

T
im

e-
in

d
ep

en
d

en
t

D
en

ia
l-

of
-S

er
v
ic

e
A

tt
ac

k
T

h
e

sm
ok

e
d

et
ec

to
r

ap
p

tr
ig

ge
rs

th
e

sm
ar

t
w

in
d

ow
s

an
d

lo
ck

s
op

en
b
y

re
p

or
ti

n
g

fa
ls

e
u

se
r

p
re

se
n

ce
.

B
eh

av
io

r-
5

T
im

e-
in

d
ep

en
d

en
t

S
id

e
C

h
an

n
el

A
tt

ac
k

T
h

e
sm

ar
t

li
gh

t
ap

p
d

is
ab

le
th

e
co

m
p

ro
m

is
ed

sm
ar

t
ca

m
e-

ra
b
y

cr
ea

ti
n

g
a

sp
ec

ifi
c

li
gh

t
on

/o
ff

p
at

te
rn

.

T
ab

le
7.

2:
S
u
m

m
ar

y
of

th
e

th
re

at
m

o
d
el

(f
or

en
si

ca
ll
y
-v

al
u
ab

le
ac

ti
v
it

ie
s

an
d

b
eh

av
io

rs
)

co
n
si

d
er

ed
in

th
is

ch
ap

te
r.

In
S
ec

ti
on

7.
5)

,
w

e
u
ti

li
ze

th
es

e
sp

ec
ifi

c
ac

ti
v
it

ie
s

an
d

b
eh

av
io

rs
to

ev
al

u
at

e
th

e
effi

ca
cy

of
Io

T
D
o
t
s.

154

7.3 IoTDots

Figure 7.1 depicts the general architecture of IoTDots, which includes two main

components: IoTDots-Modifier (ITM) and IoTDots-Analyzer (ITA). The first

part of IoTDots involves the ITM. Here, the IoTDots user downloads the original

smart app source from one of the freely available online repositories 1 . Then, the

ITM automatically analyzes and instruments the smart apps at compile time to allow

logging of forensically-relevant data to the secure ITD 2 . The ITM processes include

(1) the analysis of the source code of the smart apps [CBS+18, SaI] and (2) the

smart app instrumentation. Then, upon utilization, the IoTDots-modified apps

send forensic logs containing states and actions occurring in the smart environment

to the ITD 3 .

The second part of the architecture involves the ITA (Figure 7.1). This stage

performs data processing and applies machine learning techniques on the IoTDots-

collected data 4 . The purpose of this analysis is to extract forensically-relevant

information from the IoTDots logs. This information includes devices’ states and

actions, configuration changes, notifications, etc. Collecting this data may potentially

allow learning the state of the smart environment during specific incidents and provide

insights about the users’, apps’, and devices’ activities. Finally, IoTDots correlates

these activities with the security policies defined for the smart environment to de-

tect anomalous user activities and potential malicious behaviors from users, smart

apps, and devices 5 . In the next sub-sections, we detail essential aspects of these

operations.

155

Smart App Cloud Backend

IOTDOTS-modified
Smart App

Device Handlers

Events
Actions

Smart Environment

Smart App Repository

IOTDOTS-Modifier (ITM)

Source Code Analysis

Forensically-relevant Points

Smart App Instrumentation

12

3 4

IOTDOTS-Analyzer (ITA)

User Activity Inference
Forensic Behavior

Security Policies

Forensic Decision

IOTDOTS Database

5

Figure 7.1: The architecture of the ITM. IoTDots-Modifier analyzes the smart apps
to detect and send forensic-relevant data logs to the ITD at runtime. Later, during
the event of a forensic investigation, the ITA analyzes the data and infers forensically-
relevant activities and behavior from users and smart apps.

7.3.1 Forensically-valuable features in IoTDots

In Chapter 2 (Section 2.7), we described smart app features that could potentially

contain relevant information for forensic purposes. We consider events since they

define physical changes in the smart environment setup based on the user’s activities

(e.g, the door’s sate was ”unlocked” at an unauthorized time). Also, our architec-

ture considers actions extracted from smart apps because they potentially contain

valuable timing information that can define changes in forensic timelines (e.g., the

fire event occurred after the door was unlocked). These actions are correlated by

IoTDots to detect tampered devices in the smart environment. Additionally, we

consider user-defined inputs in our architecture. Changes in user-defined inputs are

critical during forensic analysis since unauthorized modifications directly impact the

execution of the apps’ events, actions, and notification mechanisms (e.g., Bob changed

the notification recipient of the smoke detector app right before the fire event). Other

features considered by IoTDots are time and location information. Including time

and location information in our analysis not only provides valuable timing informa-

tion from forensic actions but also avoid reply attacks from malicious users trying to

inject fake activity data into the smart environment (e.g., it prevents Alice from using

156

old benign logs to hide current potentially dangerous activities). Finally, IoTDots

tracks smart apps exfiltrations to correlate the logged data with information obtained

from notifications. For instance, the device state obtained through specific IoTDots

logs can be confirmed or disproved by checking the notifications sent by the smart

app. This process may help to identify tampered devices or attackers trying to inject

fake device state data into the system to disrupt the normal operations of IoTDots.

7.3.2 IoTDots Modifier (ITM)

As mentioned before, the ITM analyzes the source code from the original smart

applications to detect forensically-relevant points and automatically inserts specific

code for logging purposes.

Source Code Analysis and Instrumentation

The purpose of the source code analysis in IoTDots is to automatically detect the

previously defined forensically-relevant points inside the smart app.

The first step toward analyzing the smart app source code is to create an inter-

mediate representation (IR) of the app and model the application’s structure. In

general, a smart app’s structure follows the sensor-computation-actuator paradigm,

which means, smart solutions are generally designed the same way regardless of their

specific application and complexity [CBS+18]. This facilitates the design of a gen-

eralized solution through the IR to integrate apps and devices from multiple IoT

platforms into IoTDots’s analysis. Furthermore, modeling the smart app permits

the extraction of smart apps’ entry points, events, and control flow of data. Also,

it allows for identifying the data sources and exfiltrations methods (i.e., sink func-

tions) that are used to define (1) the origin of the forensic-relevant information and

157

(2) how this information is sent out from the smart apps and to which destination,

respectively.

We use an Abstract Syntax Tree (AST) representation of the smart apps for build-

ing algorithms to find forensically-relevant points inside the source code’s IR. Once

IoTDots generates the AST, the source code analysis starts by constructing an Inter-

procedural Control Flow Graph (ICFG) of the apps and by extracting the specific

nodes that define events handlers, actions, and user inputs. Particularly, we im-

plement the ASTTransformationCollector-CodeVisitor [Gro] at compile-time and

create a customizer that analyzes each node of the ICFG and looks for forensically-

relevant points. While analyzing the ICFG, IoTDots considers the following smart

apps’ distinctiveness:

App Permissions. In smart apps, permissions include the smart device information,

the device capabilities, and the user inputs defined at install time. The ITM considers

the permissions to flag nodes from the ICFG that potentially contain device and

user-defined information. We noticed that, in addition to install-time, permissions

are modified through updates in the smart apps. For that reason, the ITM flags

both, installed()- and updated()-related events in the smart app. Also, we flag

subscribe()-related methods utilized to define the different device’s events.

Entry Points. Smart apps define multiple entry points to subscribe to the different

events occurring in the smart environment. In general, to subscribe to such events,

smart apps consider the subscribed event and the event handler invoked every time

the event occurs. Hence, such event handlers can be utilized to extract the device

actions. As a result, the ITM flags the ICFG nodes that define the event handlers to

extract the different device’s actions from the smart app.

Handler-dependent Methods. Once IoTDots flags the event handlers, the ITM

visits all the methods invoked by every specific handler. With this, the ITM constructs

158

the different call graph branches of the ICFG starting from the event handlers to the

different smart app’s sinks.

Sinks. The ITM flags the smart app’s sinks invoked in every ICFG branch. Sink

functions contain considerable forensic information. By analyzing the sinks, IoT-

Dots can confirm that notifications were sent to the authorized recipients right after

forensic events occur in the smart environment. Additionally, sink’s information can

be used to correlate device states acquired via IoTDots logs which may potentially

flag malicious activities trying to disrupt the normal operations of the IoTDots.

For instance, the logs from a smart app controlling a motion sensor can be modified

to hide user presence. However, by analyzing the notification received by the user,

IoTDots can detect malicious behavior if the content from the sink function does

not match with the recorded log. Also, sink information may flag unauthorized app

settings (e.g., modification of the sink’s recipients). Finally, in case of missing sinks

(e.g., notifications never received by the authorized users) IoTDots analysis may

provide evidence of devices that were disabled or turned off.

Once the source code analysis is completed, IoTDots performs smart app instru-

mentation to insert custom-defined code at every forensically-relevant point location

to enable logging. In Listing 7.1 and Listing 7.2, we show how a smart application is

modified by IoTDots for forensic purposes. In Listing 7.1, IoTDots flags a user-

defined input recipients. This specific input defines the phone number to which all

the notification from the smart apps are sent to. As explained earlier in this section,

these types of inputs are very critical for forensic purposes since careless or malicious

users can modify this info anytime without being noticed, which can negatively im-

pact the final purpose of tracking the events and actions executed by apps. Going

back to the previous example, after labeling the user input, IoTDots modifies the

159

app by inserting a forensic log (Listing 7.2). Here, the log.IoTDots function defines

an https request that securely pushes the log information to the remote ITD.

Listing 7.1: A sample code for a smart app
1 /* A section of a code block of an original smart app */
2
3 section("Via a push notification and/or an SMS message") {
4 input("recipients", "contact", title: "Send notifications to") {
5 input "phone", "phone", title: "Enter a phone number to get SMS", required: false
6 }
7 }

Listing 7.2: A sample code for an IoTDots-modified smart app
1 /* A section of a code block of an \namefor-modified smart app */
2
3 section("Via a push notification and/or an SMS message") {
4 input("recipients", "contact", title: "Send notifications to") {
5 input "phone", "phone", title: "Enter a phone number to get SMS", required: false
6 }
7 log.IoTDots (”New recipient defined: $phone”) //IoTDots log
8 }

Further, Algorithm 6 details the processes performed by the ITM to analyze and

modify a smart app. During Analysis, the application source code is loaded into the

IoTDots modifier (Line 1). Recall that in this chapter, we are targeting open source

smart app application platforms, so the availability of the source code is assumed.

Then, the IR and AST are generated and extracted in Lines 2 and 3, respectively.

From here, we extract forensically-relevant features to construct the ICFG of the

app, starting from the event-handler methods (Line 4). Once the ICFG is obtained,

the nodes are explored and all the forensic-relevant points are flagged in Line 7. This

step concludes the Analysis process in Algorithm 6. Finally, the Instrumentation

process customizes the smart apps by inserting the IoTDots logs in Line 12.

Runtime Data Collection. Source code analysis and app instrumentation do

not guarantee completeness of the smart environment taxonomy and description based

solely on the device activities. While most of the data flow paths may be inferred

from the source code analysis, some IoT platforms utilize programming languages

that allow dynamic method invocation and the use of closures which may generate

160

Algorithm 6: Steps in the IoTDots-Modifier (ITM).

1: appSC ← app source code
Analysis:

2: IR← generateAST(appSC)
3: AST ← generateAST(IR)
4: ICFG← createICFG(AST)
5: if Exists ICFG then
6: for nodes in ICFG do
7: forensicPT ← forensic-relevant points
8: end for
9: end if

Instrumentation:
10: if forensicPT then
11: for points in forensicPT do
12: Insert IoTDots Logs
13: end for
14: end if

IoTDots Modifier Console

Iotdots-modifier.appspot.com

Modify SmartThings App Reset Console Publish This App View Recent Apps

. . .

ecobee.poll()

}

def initialize() {

subscribe(app, appTouch)

private void sendMsgWithDelay() {
if (state?.msg) {

send state.msg
}

}
def appTouch(evt) {

def plugSeLngs = [holdType: "${givenHoldType}"]
. . .

Analysis Result Stacktrace

Actions

def initialize() {

private void sendMsgWithDelay() {
if (state?.msg) {

send state.msg

}

. . .

Log.iotdots (“Method invoked: initialize”)

Log.iotdots (“Message content: state?.msg”)
Log.iotdots (“Message recipient: state?.msg”)

ecobee.poll()
subscribe(app, appTouch)
Log.iotdots (“Method invoked: subscribe”)

}. . .

Figure 7.2: IoTDots is available online at https://iotdots-modifier.appspot.com/.

different data flow at runtime [CBS+18]. By combining handler-dependent methods

and sink logging, IoTDots performs data collection at runtime which guarantees,

based on the device activities, accuracy on the collected data and completeness on

the smart environment characterization.

ITM Online Web App. We made the ITM available online at: https://IoTDots-

modifier.appspot.com/. Figure 7.2 depicts details of the online version of the ITM.

On the left side, the user simply inputs the original source code of the app that

needs to be modified to enable IoTDots analysis. Then, on the right panel, the tool

returns the modified app that permits logging of all the forensically-relevant data.

161

7.3.3 IoTDots Analyzer (ITA)

The ITD stores logs obtained from smart apps at runtime, which permits that the

information from events and actions in a smart environment can be later utilized for

forensic purposes. For successfully extracting information from the logs, we implement

an ITA that performs the following actions on the ITD data.

Labeling. This step classifies and stamps the data in the ITD. Once collected, the

data is used to feed machine learning models to complete the analysis. Here, IoT-

Dots labels the ITD data based on timing information, the specific device generating

the data, the specific exfiltraiting app, and the location of devices and controlling

apps. For IoTDots, labeling constitutes an essential pre-processing step towards

the classification process that extracts forensic information from the data.

Detection. Labeling prepares the ITD data for classification. For simple smart

environments, data provenance and cross-app analysis using the labelled data may

provide information with forensic content. However, more complex scenarios (i.e.,

higher number of devices or scenarios that include tampered devices) may require

deeper analysis on the collected data. IoTDots is capable of not only labeling

the logs based on forensic criteria (i.e., timestamp, location, device info), but also

analyzing the data to infer user activity and detect forensic behavior of users, smart

apps, and devices. For this purpose, the ITA applies machine learning techniques on

the ITD-labeled data to classify and extract legitimate and red-flagged forensic logs.

Specifically, IoTDots utilizes Markov-Chain-based detection mechanisms which we

describe in details in Section 7.4.

Device Cooperation. IoTDots infers tampered devices based on the analysis

of collected logs from multiple devices. For this, the Markov Chain model analyses

the state of all the devices in the smart environment at any given time and detects

malicious or unexpected states by comparing data from similar devices sharing the

162

same context (e.g., similar locations). We call this process device cooperation. During

device cooperation analysis, if one device is compromised or tampered, the informa-

tion collected from other trusted devices inside the environment is used to detect the

one reporting fake or unexpected data. For instance, consider a smart light which

function is controlled by a motion sensor. During normal operations, if the sensor

detects any motion, the light is turned on. However, in the event of a compromised

state of the smart light, the light may not operate appropriately nor follow the motion

sensor states. In this case, a third device (e.g., a smart thermostat that also includes

a presence sensor) can act as an authority to decide which device is misreporting

states. If both the motion sensor and the thermostat achieves similar states, then

the smart light can be considered as tampered. On the other hand, if the smart light

successfully follows the smart thermostat actions, then the motion sensor is flagged

as tampered. In summary, our classification model relies on third-party entities to

resolve conflicts between device states inside the smart environment. However, for the

cases where compromised devices are majority, device cooperation losses effectiveness.

For instance, going back to the previous example, if both the motion sensor and the

smart light are tampered, it would be hard to define which device is hampering the

normal operation of the system.

Multi-class Approach. In this chapter, we utilize a multi-class classification ap-

proach to infer forensic activities and behaviors. The ITA classifies a log as legitimate

if, as a result of the detection process, IoTDots infers a regular user activity from

the log. On the contrary, red-flagged logs may help to infer events and actions related

to anomalous or unauthorized user activities (e.g., careless device replacement or re-

location, changes on user-defined inputs, unauthorized changes on setup topologies,

or misplace or disable of any part of the smart setup). Also, red-flagged logs can

be used by the ITA to infer malicious behavior of users. For instance, these logs

163

may detect users carelessly or maliciously accessing to restricted areas of the smart

environment after work hours, malicious apps forcing the smart setup to behave dif-

ferently than expected, or tampered devices that maliciously report false states to

the smart environment. Domains like IoT, with multiple apps, devices, sensors, and

users, requires a multi-classifier approach rather than binary classification (i.e., be-

nign/malicious). Additionally, any industry standard or government guidelines (e.g.,

NIST) expect multi-level outcome in lieu of simple benign/malicious decisions from

a forensic analysis.

Algorithm 7 details the processes performed by the ITA to analyze the forensics

data. In Line 1, the iotLogs variable is initialized with the content of the ITD.

Additionally, the initialization step includes updating the variable policy with the

security policies that were valid for the smart environment by the time that the

logs were acquired. Then, in Line 5 the IoTDots’s logs are organized and labeled

based on the timing information, the type of devices that generated the logs, and the

location information of the devices. With this information, a Markov Chain-based

machine learning model is applied on the data to (1) detect user actions in the smart

environment (Line 9) and (2) detect behaviour of users and smart apps, which are

correlated with the security policies in policy (Line 10). Finally, if a forensic violation

is detected, the flag anomaly is set to TRUE.

7.4 Forensic Evidence Detection in IoTDots

In this section, we describe the analysis techniques used to identify activities and

behaviors in a smart environment from the collected forensic data. Particularly, we

implement a Markov Chain-based detection technique in IoTDots.

164

Algorithm 7: Steps in the IoTDots-Analyzer (ITA).

1: iotdLogs← ITD
2: policy ← smart environment security policies
3: anomaly ← FALSE

Labeling:
4: for each Log in iotdLogs do
5: label Log by Time, Device, Location
6: MLdata← labels
7: end for

Detection:
8: for data in MLdata do
9: Evaluates user activity userAct

10: ML← MLanalyzer(userAct, policy)
11: if Anomaly detected in ML then
12: anomaly ← TRUE
13: end if
14: end for

7.4.1 IoTDots Data Characterization

As noted earlier, IoTDots collects data from a smart environment in an ITD that in-

cludes timing information, sensor information, device state, location, and log’s times-

tamp. For a specific time slot t, the collected data can be represented by:

Data array, Et = {T, S,D,M,L, t}, (7.1)

Where T represents the timing features, S represents the set of sensors’ features, D is

the set of device features, M are the features extracted from the controlling devices

(smartphone/tablet), L is the set of location features of the controlling devices, and t

represents the IoTDots log’s timestamp information. We describe the characteristics

of these features below.

Timing Features (T). A smart environment consists of several sensors and devices

that change their states based on different user activities and controlling commands.

In this context, some devices perform instantaneous tasks (e.g., switching lights on

and off based on motion) while some devices perform a task over a period (e.g.,

165

changing temperature over time). IoTDots considers this timing information as a

feature to infer the overall state of the smart environment at a specific time.

Sensor Features (S). Sensors in a smart environment work as a trigger to differ-

ent actions. A smart environment may contain several different sensors (e.g., motion

sensor, temperature sensor, presence sensor) attached to multiple devices. These sen-

sors sense the changes in devices’ proximity and help the devices to take autonomous

decisions such as switching lights on motion or triggering fire alarm after smoke is

detected. Depending on the nature of the sensors, sensor data can be both logical

(active/inactive) or numerical values. For IoTDots, we collect both numerical val-

ues and logical states of the sensors and create the state of the smart environment at

a specific time. We represent the change in both logical states and a numerical value

of a sensor as a binary input (1 if active/change and 0 otherwise) to create a forensic

data matrix to train the detection algorithm.

Device Features (D). A smart environment supports different devices that may

be or may be not connected to a smart hub (Chapter 2.6), to different sensors, or

other devices. These devices can perform multiple tasks as standalone (e.g., smart

thermostat) or as ad-hoc entities (e.g., automatic door controlled by smart lock,

camera, and presence sensor). For different user activities and input commands, these

devices change their states (active/inactive) autonomously. IoTDots considers the

device state data as part of its analysis.

Controller Device Features (M) In a smart environment, users can use smart-

phones or tablets to control devices from the associated smart apps (Chapter 2.6).

IoTDots collects the control command generated from controller devices to under-

stand the smart environment settings and the user intended operations in the smart

environment at any moment.

166

Location Features (L). The smart environment allows controlling the connected

devices from both inside and outside of the location. Location information of a given

command to the devices has very high forensic value and is critical to infer illegal

activities either from insiders or outsiders. IoTDots considers the location of both

the controller and the smart devices as a feature to understand activities occurring

in the smart environment.

Timestamp (t). Finally, our model includes specific timestamps in all the data

collected by IoTDots. The timestamps provide accurate information about the

exact date and time of occurrence of the events. Since IoTDots considers malicious

apps and tampered devices, timing information collected from the smart environment

cannot be completely trusted. Additionally, the use of timestamps prevents from reply

attacks from malicious insiders or outsiders.

7.4.2 Analytical Model used in IoTDots

ITA collects the information above and creates a binary state array (1 for active

status and 0 for inactive status) to represent the state of the smart environment at

any specific time t. Thus, we represent the state of the smart environment as a n-bit

binary number, where n is the number of features extracted from the logs. The total

number of possible states of a smart environment with n number of features (sensors’

states, devices’ states, controller devices, and locations) would be m = 2n. IoTDots

utilizes the timed binary state of the smart environment to train a Markov Chain

classification model to detect forensically-valuable behavior from users, smart apps,

and devices. The Markov Chain model benefits from two main assumptions: (1) the

occurrence probability of a specific state si only depends only on the previous state

si−1 and (2) the transition between two consecutive states is independent of time and

does not depend on any previous condition. Based on these assumptions, we illustrate

167

the Markov Chain model by the following equation [SAU17].

P (Xt+1 = x|X1 = x1, X2 = x2..., Xt = xt) =

P (Xt+1 = x|Xt = xt),

when, P (X1 = x1, X2 = x2..., Xt = xt) > 0,

(7.2)

where Xt and Xt+1 denotes state of the smart environment at time t and t + 1,

respectively. Lets assume the smart environment has the state i at time t and j at

time t+ 1. If Pij illustrates the transition probability between state i to j, the state

transition matrix for m number of states of a smart environment can be represented

by the following matrix.

P =

P11 P12 P13 P1m

P21 P22 P23 P2m

.

.

Pm1 Pm2 Pm3 Pmm

, (7.3)

To calculate each element of the transition matrix, lets assume the smart environment

has X0, X1, . . . , XT states at a given time t = 0, 1, . . . , T . Then, each element of the

transition matrix can be represented by the following equation [SAU17]:

Pij =
Nij

Ni

, (7.4)

where Nij is the total number of transition from Xt to Xt+1 over a certain period.

From the state transition matrix, Markov Chain model calculates the probability of

occurring a state or sequence of states. To predict the probability of occurring a state,

lets assume the initial probability distribution of the Markov Chain model as follows:

Q =

[
q1 q2 q3 qm

]
, (7.5)

168

where, qm is the probability that the model is in state m at time 0. The probability

of observing a sequence of states can be calculated by the following equation:

P (X1, X2, . . . , XT) = qx1

T∏
2

PXt−1Xt. (7.6)

7.4.3 Data Binarization in IoTDots

Due to the nature of the IoTDots-collected data, the acquired logs are not always

Markov Chain-ready. In some cases, one needs to implement a binarizer that converts

numeric data (e.g., sensor readings) into binary values that can be directly interpreted

by the Markov Chain model. Table 7.3 summarizes the use of the binarizer for differ-

ent types of data in IoTDots. We found that, for the types of devices and sensors

utilized in our evaluation, only a few cases of sensor readings require binarization.

In these specific cases, IoTDots utilizes user-defined inputs in the smart apps to

define threshold values that automatically convert numeric readings into binary val-

ues. For instance, for a temperature sensor, IoTDots logs the sensor value for every

device state change. Then, during analysis, these values are compared against the

temperature value that the user set at install time.

IoTDots Logs Data Type
Requires
Binarizer

Comments

Location Binary –
Device Binary –

Sensor states Binary –
Sensor values Numeric user-defined inputs

Controller Binary –

Table 7.3: IoTDots implements a binarizer to transform multi-class numeric logs to
binary numeric values. Logs of type Location refers to the Location Modes “Office”
or “Other”.

For sensor readings over the threshold, IoTDots feeds a value 1 to the Markov

Chain model for that specific variable. On the other hand, for sensor readings below

169

the user-defined threshold, IoTDots feeds a value 0 to the Markov Chain model.

The use of user-defined inputs to implement the binarizer provides information to the

IoTDots framework that may help to determine if the devices were compromised or

were behaving unexpectedly during the forensic incident.

7.5 Performance Evaluation

We evaluate the efficacy of IoTDots to detect a diverse set of forensic incidents

including anomalous user activities and behaviors from users, smart apps and devices.

Specifically, we aim to answer the following research questions:

• RQ1: Forensic Activities. How does IoTDots perform in detecting regular

activities in the smart environment? (Section 7.5.3).

• RQ2: Forensic Behavior from Users. How does IoTDots perform in

detecting unauthorized and malicious behaviors from users? (Section 7.5.4).

• RQ3: Forensic Behavior from Devices and Apps. How does IoTDots

perform in detecting unauthorized and malicious behaviors from devices and

apps? (Section 7.5.5).

• RQ4: Overhead. What is the overhead introduced by IoTDots? (Sec-

tion 7.5.6).

For a better analysis, we obtained Institutional Review Board (IRB) approval to

test IoTDots in real scenarios. We implemented a smart office environment with

specific security rules enforced in the system (e.g., time-restricted location access

for users and restricted device re-configuration) where real users perform regular

activities. Further, we consider a group of users that carelessly violate the security

rules of the environment by performing anomalous activities such as accessing office

170

locations at an unauthorized time or changing the configuration/topology of the smart

environment. Finally, we consider specific forensic behavior like poisoning data from

a specific number of devices using malicious apps. As detailed in Section 7.3, our

framework first detect the forensically-valuable user activities to classify them as

regular or anomalous based on the security policies in place. In parallel, IoTDots

detects forensic behaviors. We built a Markov Chain-based detection method for this

purpose and trained our model with data collected by IoTDots from the real-life

smart office setup. Also, we evaluated the general overhead introduced by IoTDots

to the smart devices and the cloud-based servers.

7.5.1 IoTDots Implementation

The initial version of IoTDots implements solutions for Samsung SmartThings plat-

form. With this, we focus on a smart platform that (1) defines the highest amount

of different smart devices and apps in the market [FJP16]; (2) it is open source, so

the apps’ source code is freely available online; and (3) it makes extensive API’s

documentation available to developers [Smah].

Training Environment Setup

For training purposes, we built a real-life smart office environment with 22 different

smart devices and popular smart home apps available in the SmartThings App Market

(Table 7.4). Then, we designed several forensically-valuable activities that the users

typically perform in most smart settings. The set of considered activities included

the following scenarios:

• Time-dependent access: We allowed a single user to access all the office

locations during office hours to observe his/her movements and activity patterns

inside the smart environment.

171

• Restricted access: We repeated the same activities performed during time-

depended access, but this time while enforcing restricted access policies for

specific places in the smart environment, again for one single user.

• Multi-user environment: We combined the two previous scenarios with mul-

tiple users interacting with the smart setting. In the multi-user scenario, we

again considered time-dependent and restricted access to emulate the real-life

smart office setup.

• Reconfiguration rule: We considered a smart office environment as a con-

trolled environment where reconfiguration of the smart environment is possible

only in a timely and supervised manner. Any reconfiguration outside specific

pre-defined time slots is considered anomalous. We provided time-specific rules

to collect data while re-configuring the smart environment.

Data Collection

For data collection, we used the ITM to automatically instrument the SmartThing

apps and insert forensic logs. Then, while utilizing the apps, IoTDots-collected

data was sent to the ITD. For this phase, we explicitly considered scenarios where 10

different authorized users interacted with a smart environment consisting of 22 smart

devices and sensors (Table 7.4) during a period of seven days. Our dataset comprises

84209 forensically-valuable incidents that include different regular user activities only.

For these, we asked the users to perform their daily tasks inside the smart office setup.

On the other hand, for the anomalous activities, we asked the users (considered now

as an unauthorized user for this specific experiment) to implicitly violate the security

policies defined for the smart environment in specific ways as described in Section 7.2

(Table 7.2). In total, we collected forensic data from 30 different experiments resulting

in over 4500 instances from the five different anomalous activities.

172

Device
Type

Model Total

Smart Home Hub Samsung SamrtThings Hub 1
Smart Light Philips Hue Light Bulb 5

Smart Lock
Yale B1L Lock with
Z-Wave Push Button
Deadbolt

2

Fire Alarm
First Alert 2-in-1
Z-Wave Smoke Detector and
Carbon Monoxide Alarm

1

Smart Monitoring System
Arlo by NETGEAR
Security System

2

Smart Thermostat Ecobee 4 Smart Thermostat 1
Motion Sensor
Light Sensor
Temperature Sensor

Fibaro FGMS-001 ZW5 Motion
Sensor with Z-Wave Plus Multi-
sensor

6

Door Sensor Samsung Multipurpose Sensor 4

Table 7.4: List of smart devices and sensors used during the data collection stage in
IoTDots’s evaluation.

We also collected data related to forensically-relevant behavior from the users,

smart apps, and devices. Forensic behavior from users’ actions considered a user

that tries to modify, tamper, or remove the devices from the smart environment.

This behavior matches Behavior-1 from our threat model (Section 7.2) and intends

to explicitly change the original configuration and prevent IoTDots from sending

incriminating logs to the ITD. We allowed the users to tamper (e.g., disable, relocate)

and remove smart devices to simulate this scenario and collect data for IoTDots. On

the other hand, for forensic behavior from the smart apps, we installed the modified

version of malicious smart apps collected from the IoTBench [IoT] and ContextIoT

[Con17] projects. For Behavior-2, we created two different apps for a smart lock that

leak the access code to an unauthorized person. For Behavior-3, we built an app that

injects forged data in a fire alarm and triggers the alarm maliciously. For Behavior-

4, we developed an app that can power down the smart thermostat after setting a

173

specific input temperature. Finally, for Behavior-5, we created an app through which

a specific light pattern can trigger the smart camera. To collect the behavior-related

data, we performed the attack scenarios multiple times. We also considered multi-

attacker scenarios where multiple attackers perform different attacks at once. In total,

for these malicious scenarios, we collected 50 different forensic datasets comprised into

7500 different data instances. Table 7.5 summarizes the distribution of the datasets

during the collection process based on the three different experiments.

Type of Experiment Dataset Size % of Total

Regular 84209 87.5
Anomalous 4500 4.7

Forensic Behavior 7500 7.8
Total 96209 100

Table 7.5: Distribution of IoTDots evaluation data among three different types of
experiments.

Finally, we used 75% of both user activity data (regular and anomalous) to train

the Markov Chain model and then combined the remaining 25% of the data along

with the behavior-related data to test the performance of the ITA.

7.5.2 Performance Metrics

We chose six different performance metrics to evaluate the effectiveness of IoTDots

in a smart environment: True Positive rate or Recall rate (TPR), False Negative rate

(FNR), True Negative rate or Specificity (TNR), False Positive rate (FPR), Accuracy,

and F-score. To define these metrics, we use following four terms:

• True Positive (TP): True positive refers to the total number of correctly iden-

tified benign activities.

• True Negative (TN): True negative specifies the number of correctly detected

malicious activities.

174

• False Positive (FP): False positive defines the number of instances when a

malicious activity is mistaken as benign activities.

• False Negative (FN): False negative states the number of benign activities that

are mistaken as malicious activities.

Then, the performance metrics can be calculated as follows:

TP rate (Recall Rate) =
TP

TP + FN
, (7.7)

TN rate (Precision rate) =
TN

TN + FP
, (7.8)

FP rate =
FP

TN + FP
, (7.9)

FN rate =
FN

TP + FN
, (7.10)

Accuracy =
TP + TN

TP + TN + FP + FN
, (7.11)

F − score =
2 ∗Recall rate ∗ Precision rate
Recall rate+ Precision rate

. (7.12)

7.5.3 Forensic Activity Detection from Users

The state of the interconnected devices inside the smart environment depends on the

on-going user activities. For example, while a user moves from one place to another,

several devices and sensors become active. The changes in device states can be an

instantaneous event (a specific event at a specific time such as switching on a light)

or a combination of subsequent events over a certain period (motion from one place

to another).

Table 7.6 shows the evaluation results of IoTDots for user activity inference.

One can observe that, for time-independent activities (i.e., Activity-1 and Activity-

2), IoTDots achieved accuracy (i.e., ACC) and F-score values of over 98% and 96%,

respectively. True Positive Rate (TPR) and True Negative Rate (TNR) are also high

175

User
Activity

TPR FNR TNR FPR ACC
F-

Score

Activity-1 0.9926 0.0074 0.9562 0.0438 0.9907 0.9740
Activity-2 0.9904 0.0096 0.9438 0.0562 0.9880 0.9665
Activity-3 0.9860 0.0140 0.8623 0.1377 0.9739 0.9197
Activity-4 0.9721 0.0279 0.8614 0.1386 0.9664 0.9133
Activity-5 0.9584 0.0416 0.8861 0.1139 0.9547 0.9208

Table 7.6: Performance evaluation of IoTDots for inferring forensically-valuable
user activities.

1 2 3 4 5 6 7 8 9 10

Number of Users

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Forensic Activity-1

Forensic Activity-2

Forensic Activity-3

Forensic Activity-4

Forensic Activity-5

Figure 7.3: Accuracy of IoTDots in inferring activities in multi-user scenarios.

(over 99% and 94%, respectively). On the other hand, for time-dependent activities

(i.e., Activity-3, Activity-4, and Activity-5), IoTDots achieved accuracy and F-

score values of over 95% and 91%, respectively. Since the time-dependent actions are

related to the user motion, different users may have different motion patterns which

increase the False Positive rate (FPR) and False Negative rate (FNR). In summary,

IoTDots obtained accuracy values of over 95% on average for detecting different

forensically-relevant user activities.

For the case of a multi-user smart environment, since users can perform different

tasks at once, this may directly impact the accuracy of the analysis. Figure 7.3

shows the accuracy of IoTDots in inferring user activities in multi-user scenarios.

176

2 4 6 8 10 12 14 16

Number of Tampered Devices

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Forensic Behavior-1

Accuracy:

Min = 93.24%

Max = 100%

No. of Tampered Devices:

Min = 1

Max = 16

Figure 7.4: Accuracy of IoTDots in detecting forensic behavior from users versus
the number of tampered devices.

As explained, one can observe how the accuracy values decreased with the number

of users. For time-independent activities (i.e., Activity-1 and Activity-2), IoTDots

achieved accuracy in the range of 98% to 95%. For time-dependent activities (i.e.,

Activity-3, Activity-4, and Activity-5), the accuracy of IoTDots varied from 96%

to 86% as the number of users increased.

7.5.4 Detection of Forensic Behavior from Users

Devices installed in a smart environment are vulnerable to tampering which can lead

to malicious events. In previous works that proposed the use of IoT data for forensic

investigations, trusted devices were always assumed as part of the analysis, resulting

in threat models that were vulnerable to insiders [WHBG18].

Figure 7.4 depicts the accuracy of IoTDots in detecting tampered or compro-

mised devices in a smart environment. For this, we installed 22 different devices (in-

cluding smart sensors) in a smart office environment. One can notice from Figure 7.4

that IoTDots can achieve near 100% of accuracy in cases with 2 tampered devices

in the environment. In general, the accuracy of IoTDots decreased as the num-

177

ber of tampered devices increased in the system. Finally, Figure 7.4 demonstrates

how device cooperation (Section 7.3.3) is affected by the number of compromised

devices. One can observe that the accuracy values significantly dropped when the

experiments considered more than 10 compromised devices (near 50% of the total

number of devices).

Behavioral
Model

TPR FNR TNR FPR ACC
F-

Score

Behavior-2 0.9612 0.0388 0.8652 0.1348 0.9533 0.9106
Behavior-3 0.9651 0.0349 0.9289 0.0711 0.9621 0.9466
Behavior-4 0.9730 0.0270 0.9317 0.0683 0.9696 0.9518
Behavior-5 0.9687 0.0313 0.9012 0.0988 0.9631 0.9336

Table 7.7: Performance evaluation of IoTDots in detecting forensic behaviors from
smart apps.

7.5.5 Detection of Forensic Behavior from Apps

IoT programming platforms offer customized apps to control smart devices. In recent

years, researchers have reported several malicious apps that can perform malicious

activities in a smart environment [FJP16, And, IoT, Con17]. In this section, we test

the efficacy of IoTDots in detecting behaviors in a smart environment caused by

malicious apps installed in the system. As noted earlier, we considered four differ-

ent scenarios to evaluate app behavior in IoTDots (Section 7.2). To evaluate these

scenarios, we installed malicious IoTDots-modified apps in a real-life smart environ-

ment (smart office). Table 7.7 shows the evaluation results of IoTDots in detecting

app’s behavior in the smart environment. One can observe that IoTDots achieved

high accuracy and F-score for all the cases above (over 95% and 91%, respectively).

In Figure 7.5, the accuracy of IoTDots is shown for different forensically-relevant

behaviors when the number of devices controlled by malicious apps increases in the

178

2 4 6 8 10 12 14 16

Number of Devices

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Forensic Behavior-2

Forensic Behavior-3

Forensic Behavior-4

Forensic Behavior-5

Figure 7.5: Accuracy of IoTDots in detecting forensic behavior from smart apps
versus different number of devices.

system. IoTDots achieved the highest accuracy value of 97% for Behavior-4 and the

lowest accuracy value of 95% for Behavior-2, for the case of only one device installed

in the system. As the number of devices increased, the accuracy decreased to 95% and

89% for Behavior-4 and Behavior-2, respectively. The accuracy of detecting Behavior-

3 and Behavior-5 varied between 96% to 94% and 96% to 92% with the number of

devices in the system, respectively.

7.5.6 System Overhead

Since most of the smart apps are cloud-based, we do not expect that IoTDots

imposes any overhead on the smart devices. However, it is necessary to evaluate the

impact of IoTDots on the computing resources of the IoT smart apps servers in

the cloud. To assess this, we selected two metrics which relate to (1) the amount of

physical storage occupied by the IoTDots-modified apps and (2) the latency of the

smart apps in their operations and responses, if compared to the original apps.

179

Physical Storage

Since server space is costly, we must evaluate how much more physical space the IoT-

Dots-modified apps require from the cloud servers if compared with the unmodified

smart apps. On average, the ITM added around 110 new lines of code to the original

smart apps source code, which represents an increase of around 5KB of physical mem-

ory space per app. Additionally, we evaluated the physical memory space that the

logs acquired from the smart environment during evaluation occupied in the ITD. We

acquired data from 3 different types of experiments: regular user activities, anoma-

lous activities, and forensic behavior from users and apps. In total, the datasets from

7 days of activities occupied a total size of 20.55 MB.

Latency

For this chapter, we define latency as the additional delay imposed by the IoTDots-

modified apps source code to the original execution time of the smart apps. In general,

the latency depends on (1) the number of times that the IoTDots sends logs to the

cloud and (2) the IoTDots logging function execution time. Regarding latency, the

worst case scenario occurred when an individual synchronous HTTPS request was called

every single time a IoTDots log was sent to the ITD. In that case, around 2.4s of

extra latency was added to the app execution every time the IoTDots communicates

with the ITD, which represented an important overhead to the app operation. To

reduce this latency, IoTDots adopted asynchronous HTTPS request to send data to

ITD. Since we evaluated apps from the Samsung Smartthings platform, we utilized

the beta version of the asynchttp v1 class [Smah] to asynchronously send the logs

to the database. Further, we reduced the latency overhead even more by avoiding

single HTTPS calls for every single log. For this, we utilized the AtomicState variable

in SmartThings to queue and map several logs together before communicating with

180

the ITD. Finally, with all these modifications, the average latency overhead imposed

by IoTDots decreased to around 30ms for every HTTPS call sent to the ITD (Figure

7.6).

https sync calls https async calls https async calls
0

500

1000

1500

2000

2500

A
v
er

ag
e

L
at

en
cy

 (
m

s)

+

AtomicState

25ms280ms

2400ms

Figure 7.6: Average latency imposed by IoTDots to smart apps’ execution times.
The minimum latency (25ms) is obtained after combining the asynchronous HTTPS

request with AtomicState queuing.

7.6 Summary and Benefits

There are several benefits associated with the use of IoTDots. Also, we highlight

some challenges and limitations.

• Forensic Framework for Smart Settings: Smart settings include a myriad

of different smart devices and sensors. They represent a new domain of relevant

data related to the users’, devices’, and apps’ activities that has high forensic

value. In this context, IoTDots emerges as a practical solution that collects,

stores, and processes smart environment data to instrument forensic analysis.

• Automatic App Analysis and Instrumentation: The ITM automatically

analyzes smart apps source code to identify and log forensically-relevant data.

Then, it sends the logs to a database for future analysis. The current version

181

of IoTDots performs automatic analysis and instrumentation for Samsung

SmartThings apps. A new version that supports other IoT programming plat-

forms is currently under development. Despite most IoT apps follow similar

architectural paradigms, differences in the programming languages and other

platform-specific features make the expansion of IoTDots a challenge (see

Applicability below).

• Deep Data Analysis: IoTDots-Analyzer incorporates data processing and

machine learning techniques to label the IoTDots-collected data and detect

forensically-valuable anomalous activity and behavior from users, smart apps,

and devices. The initial evaluation results showed excellent results on accu-

racy metrics for different cases of numbers of users and devices. However, the

analysis of new evaluation cases may be necessary. For instance, new devices

can be added to the analysis and different machine learning algorithms can be

considered.

• Effectiveness: Our evaluation results demonstrated the effectiveness of IoT-

Dots in detecting forensically-relevant activities and behavior from users and

smart apps. In general, our framework achieved over 95% accuracy for all the

anomalous activities and forensic behaviors included in the analysis. Addi-

tionally, IoTDots demonstrated very high effectiveness in detecting tampered

devices by using device cooperation.

• Applicability: One of the most important characteristics of IoT is the high

integration among different systems. Rather than platform-specific, current

smart environments integrate devices from different IoT platforms. To solve

this specific challenge, we implement the ITM to work over the IR of the smart

apps. With this, IoTDots can translate apps from different programming

182

platforms to a common representation which benefits the analysis and permits

the utilization of IoTDots in multi-platform environments.

• Scalability: The approach used in IoTDots can be easily generalized to any

IoT platform and smart settings. For the current version, IoTDots takes

advantage of open source platforms to enable simplicity. Nowadays, some of

the most important IoT platforms in the market are open source and make the

source code of their application available online through specific repositories

[Opea, Smag]. However, IoTDots can be also adapted to closed-source IoT

systems like HomeSeer [Homb] and HomeOS [Homa]. For this, the current

version of IoTDots may require additional modifications on the ITM to allow

source code analysis of the closed-source apps and the implementation of an

effective logging system. Additionally, smart settings from domains other than

smart offices (e.g., smart home scenarios) may require different attack vectors

in the adversary model.

• Privacy-aware Operations: IoTDots has access to potentially sensitive in-

formation from the smart environment. We apply well-known cloud-based data

protection schemes to protect the IoTDots logs and prevent compromising the

privacy of the users and the smart environment’s integrity. For instance, we use

encryption (i.e., HTTPS calls) to protect the data exchange between the IoT-

Dots-enabled apps and the ITD. We also use encryption to protect the data

at rest in the database (considering it may potentially be stored for long pe-

riods), restrictive access control configurations, and periodical backup policies.

Additionally, IoTDots does not acquire or process information that is directly

related or can contain sensitive information from the users (e.g., Protected Per-

sonal Information (PPI)) and that can compromise their privacy. Indeed, even

though it is possible, IoTDots does not perform any analysis intended to af-

183

fect the privacy of the users via, for instance, behavioral fingerprinting or user

profiling. As a future work, a complete privacy assessment on IoTDots may

be necessary to guarantee that user’s privacy is completely preserved.

• Usability: We utilized the obtained IRB to survey potential users regarding

IoTDots’s usability. We asked two specific questions related to (1) the will-

ingness of the users to implement security solutions like IoTDots into their

smart settings and (2) the willingness of the users to install instrumented apps

that enable security solutions like IoTDots. Out of 118 responses, 88.2% of

the users recognized that there is need of security solutions like IoTDots while

82.4% answered ”Yes” to the use of IoTDots-modified apps to enable such a

solution, while 14.3% expressed their willingness to do it if more information is

provided.

7.7 Conclusion

Devices and sensors deployed in a smart environment such as smart home or office

have access to data with high forensic value. Nonetheless, current smart app pro-

gramming platforms do not provide any digital forensic capability to keep track of

such data. Additionally, current forensic analysis solutions do not use information

from smart apps and/or smart devices to perform forensic investigations and do not

consider a comprehensive threat model. In this chapter, we introduce IoTDots, a

novel framework used to extract forensically-relevant logs from the smart environ-

ment and automatically analyze them later for forensic purposes. The framework has

two main components: IoTDots-Modifier and IoTDots-Analyzer. The Modifier

performs smart apps’ source code analysis, detects forensically-relevant data points

inside the smart app’s source code, and inserts specific logs at compile time. Then, at

runtime, the log data is sent to a remote IoTDots server. In the case of a forensic

184

investigation, the Analyzer applies data processing and machine learning techniques

to extract valuable and usable forensic information from the IoTDots logs. We

tested IoTDots in a realistic, smart office environment with a total of 22 devices

and sensors. Also, we considered 10 different cases of forensically-relevant activities

and behaviors, analyzing a total of 96209 forensic data. As per the evaluation results,

IoTDots achieves over 99% of accuracy in detecting user activities and over 96% ac-

curacy in detecting the behavior of users and smart apps in the smart environment.

Additionally, IoTDots performance yields no overhead to the smart devices and

very low overhead to the IoT cloud server resources. Finally, we made the IoTDots-

Modifier freely available online at https://IoTDots-modifier.appspot.com/.

185

CHAPTER 8

CONCLUDING REMARKS AND FUTURE WORK

In this dissertation, we introduced a bottom-up approach to provide comprehensive

on-device security and privacy mechanisms for resource-limited devices and their ap-

plications. These mechanisms tackled five main security and privacy challenges from

the CPS, IoT, and IIoT domains. First, we presented a host-based fingerprinting

solution for device identification that is complementary to other security services like

device authentication and access control. Also, we designed a kernel- and user-level

detection framework that used behavioral analysis to discover compromised resource-

limited devices. Further, we applied dynamic analysis to smart devices applications

to uncover security and privacy risks in real-time. Then, we implemented a solution

to enable digital forensics analysis on data extracted from interconnected resource-

limited devices that form a smart environment. Finally, we offered to researchers

from industry and academia a collection of benchmark solutions for the evaluation of

the described security mechanisms on different smart domains, including CPS, IoT,

and IIoT.

From bottom to top, the lower layer of the described security framework intro-

duced Stop-and-Frisk (S&F), a combination of techniques to identify different types

of resource-limited devices via host-based fingerprinting. With this, our layered frame-

work targeted the security issues related to spoofing or unauthorized devices that may

be used to gain access to critical CPS, IIoT, or IoT networks. S&F combined hard-

ware performance analysis, system and function call tracing techniques, and statisti-

cal analysis to create unique signatures of different devices-types using a challenge-

response fashion. Then, the signatures were used to identify types of unknown devices

present in the network. We evaluated our fingerprinting framework with a realistic

testbed that included CPS and IIoT devices of different classes. S&F achieved ex-

186

cellent identification rates while imposing minimal overhead to the resource-limited

devices.

Further, the second layer of our security framework applied behavioral analysis

at OS- and kernel-level to detect if devices in critical CPS and IIoT networks have

been compromised. We utilized a use case that embodies smart grid devices to eval-

uate our detection mechanisms against six types of compromised devices. These

compromised devices included systems with different combinations of computational

resources and attack payloads (i.e., threats). Specifically, the detection mechanisms

here introduced incorporated system and function call tracing techniques and statisti-

cal analysis to detect unexpected behaviors that can be deemed malicious. We tested

our detection approaches on a testbed that featured devices communicating using

the IEC61850 protocol, and performing realistic smart grid operations. Our evalua-

tion results demonstrated that behavioral analysis based on kernel and OS behavior

analysis can be effectively used to detect devices performing unauthorized operations

in CPS and IIoT networks. Also, such an analysis was performed while imposing

minimal overhead to the resource-limited CPS and IIoT devices.

The third analysis included in the multi-layered security framework implemented

a tool to performed dynamic analysis on IoT applications. With this analysis, we

aimed to uncover apps that represented a security or privacy risk for the users and

the critical smart systems. First, we analyzed and modified real IoT applications

to offer the users the opportunity of creating their own privacy profile, based on

specific privacy references. Also, we inserted additional code into the apps to collect

application data at runtime. We then used the data extracted from the apps to

perform application analysis in real time. First, we implemented an NLP model to

classify the app data into privacy labels that are easy to understand by the user.

Second, we verified if the recipients of the sensitive information were authorized or

187

acknowledged by the users of the IoT apps. Third, we certified that IoT applications

did not make the sensitive data available to passive eavesdroppers. Finally, the users

were informed about our findings in real time. In total, we analyzed 540 real IoT apps

to train the NLP model and evaluate its effectiveness. Our privacy tool classified IoT

strings to correct privacy preferences with an average accuracy of 94.25%, and flagged

35 apps that leak data. Finally, the tool imposed minimal overhead to an IoT apps

execution, introducing on average 105 ms additional latency.

Finally, we evaluated the security of resource-limited devices and their apps at

system level. With this analysis, we provided protection not only for individual de-

vices and apps but for the smart environment as a whole. Specifically, we designed

a novel forensic framework that extracted data from smart environments at runtime

and also provided mechanisms to infer relevant forensic activities and malicious be-

haviors occurring in the smart environment. First, we analyzed the IoT applications

to detect forensically-relevant points within the apps. Then, we instrumented the

apps to insert logs and extract the forensic data at runtime. Later, in the case of a

forensics investigation, we used Markov-Chain models to match the data extracted

from different sensors, devices, and IoT apps to events that potentially occurred in

the smart environment. We tested the introduced forensics framework on real smart

offices settings. Our evaluation results demonstrated very high accuracy in detecting

user activities and forensic behaviors of users, devices, and IoT apps. These results

were obtained while adding no overhead to the smart devices and very low overhead

to the IoT apps’ execution.

For every security layer included in our bottom-up framework, we designed and

implemented benchmark tools and solutions used to test and evaluate the security

mechanisms here introduced. These benchmarks offer evaluation mechanisms and

metrics for devices and apps at different levels: (1) hardware, (2) operating system-

188

s/kernel, (3) application, and (4) system. Therefore, the benchmarks here introduced

were meant to be highly effective, while imposing minimal overhead to the devices

and apps. Also, as devices and apps may have different application domains with

specific characteristics (e.g., CPS, IIoT, IoT), the benchmark solutions were designed

both scalable and flexible, so they can be easily adapted to target new security do-

mains. Finally, the collection of frameworks and tools discussed in this dissertation

were made freely available to other security researchers.

We present several key directions for future research.

• Throughout this dissertation, we performed hardware-, OS- and kernel-based

analysis on resource-limited devices that are representative of real CPS and

IIoT infrastructures. However, we believe that implementing these security

frameworks on real devices would carry new implementations challenges not

considered in this dissertation. These challenges are mainly related with the

extraction of system and function calls from devices running different types of

operating systems, including very-limited embedded OS for which several sys-

tem or function calls might not be available. To overcome these challenges,

the security tools here described must implement an adaptive approach so the

appropriate analysis is performed to guarantee high accuracy for every different

OS type. In some critical cases were the number of system and function calls

available for analysis is too limited, alternative approaches to perform behav-

ioral analysis must be explored.

• We also performed application- and system-level analysis targeting specific IoT

programming platforms. However, different programming languages may gen-

erate new and different design and implementation challenges. Even though we

partially solved this problem by proposing the use of intermediate representa-

189

tion of code into our analysis, we believe that code analysis and instrumentation

for different languages need to be explored.

• Finally, even though we consider far-reaching threat models in every layer, we

also believe that new threats can be included and evaluated. For instance,

new forensic behaviors can be considered at system level as different smart

environments define new specific user activities and possible behaviors.

190

BIBLIOGRAPHY

[A. 15] A. Kanovsky, P. Spanik and M. Frivaldsky. Detection of Electronic Coun-
terfeit Components. In 2015 16th Int. Scientific Conf. on Electric Power
Engineering (EPE), pages 701 – 705, Kouty and Desnou, May 2015.
IEEE.

[ABC+18] H. Aksu, L. Babun, M. Conti, G. Tolomei, and A. S. Uluagac. Advertising
in the IoT Era: Vision and Challenges. IEEE Communications Magazine,
pages 1–7, 2018.

[And] Android-based Smart TVs Hit By Backdoor Spread Via Malicious
App, Ju Zhu. https://blog.trendmicro.com/trendlabs-security-
intelligence/android-based-smart-tvs-hit-by-backdoor-spread-via-
malicious-app/. [Online; accessed January-2020].

[Appa] Apple’s Home Kit. https://www.apple.com/ios/home/. [Online; ac-
cessed January-2020].

[Appb] Apple’s Home Kit Security and Privacy on iOS. https://www.

apple.com/business/docs/iOS_Security_Guide.pdf. [Online; ac-
cessed January-2020].

[Appc] Apple’s HomeKit Submission Guideline. https://developer.apple.

com/app-store/review/guidelines. [Online; accessed January-2020].

[ARF+14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps. ACM SIGPLAN
Notices, 2014.

[Asb09] Bjørn Egil Asbjørnslett. Assessing the Vulnerability of Supply Chains,
pages 15–33. Springer US, Boston, MA, 2009.

[Auta] AutoML. https://www.ml4aad.org/automl/. [Online; accessed 10-
February-2020].

[Autb] AutoML Natural Language Google. https://cloud.google.com/

natural-language/automl/docs/. google[Online; accessed 10-
February-2020].

191

https://www.apple.com/ios/home/
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://developer.apple.com/app-store/review/guidelines
https://developer.apple.com/app-store/review/guidelines
https://www.ml4aad.org/automl/
https://cloud.google.com/natural-language/automl/docs/
https://cloud.google.com/natural-language/automl/docs/

[AVJA15] J. D. Ansilla, N. Vasudevan, J. JayachandraBensam, and J. D. Anun-
ciya. Data security in smart grid with hardware implementation against
dos attacks. In 2015 International Conference on Circuits, Power and
Computing Technologies [ICCPCT-2015], pages 1–7, March 2015.

[AYSM17] M. A. B. Ahmadon, S. Yamaguchi, S. Saon, and A. K. Mahamad. On
service security analysis for event log of iot system based on data petri
net. In 2017 IEEE International Symposium on Consumer Electronics
(ISCE), pages 4–8, Nov 2017.

[Ayy18] V. Kishore Ayyadevara. Word2vec, pages 167–178. Apress, Berkeley, CA,
2018.

[AZZ+17] Mussab Alaa, AA Zaidan, BB Zaidan, Mohammed Talal, and Miss
Laiha Mat Kiah. A Review of Smart Home Applications based on Inter-
net of Things. Journal of Network and Computer Applications, 97:48–65,
2017.

[Bab18] Babun, Leonardo (Miami, FL, US), Aksu, Hidayet (Miami, FL, US),
Uluagac, Selcuk A. (Miami, FL, US). Detection of Counterfeit and Com-
promised Devices using System and Function Call Tracing Techniques.
https://www.osti.gov/biblio/1463864, July 2018.

[Bab19] Babun, Leonardo (Miami, FL, US), Aksu, Hidayet (Miami, FL, US),
Uluagac, Selcuk A. (Miami, FL, US). Method of resource-limited device
and device class identification using system and function call tracing tech-
niques, performance, and statistical analysis. https://patents.google.
com/patent/US10242193B1/en, March 2019.

[BAU17] L. Babun, H. Aksu, and A. S. Uluagac. Identifying Counterfeit Smart
Grid Devices: A Lightweight System Level Framework. In 2017 IEEE In-
ternational Conference on Communications (ICC), pages 1–6, May 2017.

[BAU19] Leonardo Babun, Hidayet Aksu, and A. Selcuk Uluagac. A System-Level
Behavioral Detection Framework for Compromised CPS Devices: Smart-
Grid Case. ACM Trans. Cyber-Phys. Syst., 4(2), November 2019.

[BCKP08] Sergey Bratus, Cory Cornelius, David Kotz, and Daniel Peebles. Active
Behavioral Fingerprinting of Wireless Devices. In Proceedings of the First
ACM Conference on Wireless Network Security, WiSec ’08, pages 56–61,
New York, NY, USA, 2008. ACM.

192

https://patents.google.com/patent/US10242193B1/en
https://patents.google.com/patent/US10242193B1/en

[BCMU19] Leonardo Babun, Z. Berkay Celik, Patrick McDaniel, and A. Selcuk
Uluagac. Real-time Analysis of Privacy-(un)aware IoT Applications.
https://arxiv.org/abs/1911.10461, 2019.

[BGK16] N. Boumkheld, M. Ghogho, and M. El Koutbi. Intrusion Detection Sys-
tem for the Detection of Blackhole Attacks in a Smart Grid. In 2016
4th International Symposium on Computational and Business Intelligence
(ISCBI), pages 108–111, Sept 2016.

[BGV18] François Bouchaud, Gilles Grimaud, and Thomas Vantroys. IoT Forensic:
Identification and Classification of Evidence in Criminal Investigations.
In Proceedings of the 13th International Conference on Availability, Re-
liability and Security, page 60. ACM, 2018.

[Blu13] Reverend Bill Blunden. The Rookit arsenal: Escape and Evasion in the
Dark Corners of the System. Cathleen Sether, Burlington, MA, 2nd
edition, 2013.

[BSAU18] Leonardo Babun, Amit Kumar Sikder, Abbas Acar, and A. Selcuk Ulu-
agac. IoTDots: A Digital Forensics Framework for Smart Environments.
https://arxiv.org/abs/1809.00745, 2018.

[C. 13] C. Kriger, S. Behardien and J. Retonda-Modiya. A Detailed Analysis of
the GOOSE Message Structure in an IEC 61850 Standard-Based Substa-
tion Automation System. Int. Journal Comp. Comm., 8(5):708–721, Oct.
2013.

[C+07] James Clause et al. Dytan: a Generic Dynamic Taint Analysis Frame-
work. In ACM Software Testing and Analysis, 2007.

[CBS+18] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu,
Gang Tan, Patrick McDaniel, and A. Selcuk Uluagac. Sensitive Informa-
tion Tracking in Commodity IoT. In 27th USENIX Security Symposium
(USENIX Security 18), Baltimore, MD, 2018. USENIX Association.

[CDS16] Sudhir Chitnis, Neha Deshpande, and Arvind Shaligram. An Investigative
Study for Smart Home Security: Issues, Challenges and Countermeasures.
Wireless Sensor Network, page 61, 2016.

[CFP+19] Z Berkay Celik, Earlence Fernandes, Eric Pauley, Gang Tan, and Patrick
McDaniel. Program Analysis of Commodity IoT Applications for Security

193

https://arxiv.org/abs/1911.10461
https://arxiv.org/abs/1809.00745

and Privacy: Challenges and Opportunities. ACM Computing Surveys
(CSUR), 2019.

[CGJ15] Henry Corrigan-Gibbs and Suman Jana. Recommendations for Random-
ness in the Operating System or, How to Keep Evil Children out of Your
Pool and Other Random Facts. In Proceedings of the 15th USENIX Con-
ference on Hot Topics in Operating Systems, HOTOS’15, pages 25–25,
Berkeley, CA, USA, 2015. USENIX Association.

[Ch.15] Ch. Wong and M. Wu. A Study on PUF Characteristics for Counterfeit
Detection. In 2015 IEEE Int. Conf. on Image Processing (ICIP), pages
1643 – 1647, Quebec City, QC, Sept. 2015. IEEE.

[CMT18] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. Soteria: Automated
IoT Safety and Security Analysis. In USENIX Annual Technical Confer-
ence (USENIX ATC), 2018.

[CMT+19] Z. B. Celik, P. McDaniel, G. Tan, L. Babun, and A. S. Uluagac. Verifying
Internet of Things Safety and Security in Physical Spaces. IEEE Security
Privacy, 17(5):30–37, Sep. 2019.

[Con] Control4. https://www.control4.com/blog/440/can-smart-home-
technology-reduce-home-insurance-rates. [Online; accessed August-2018].

[Con17] ContexIoT attacks for SmartThings programs using exist-
ing adversary techniques. https://sites.google.com/site/

iotcontextualintegrity/home, 2017. [Online; accessed 09-January-
2020].

[CPL17] Hyunji Chung, Jungheum Park, and Sangjin Lee. Digital Forensic Ap-
proaches for Amazon Alexa Ecosystem. Digital Investigation, 22:15–25,
2017.

[CPLK12] Hyunji Chung, Jungheum Park, Sangjin Lee, and Cheulhoon Kang. Digi-
tal Forensic Investigation of Cloud Storage Services. Digital investigation,
9(2):81–95, 2012.

[CPS18a] Y. Chen, C. M. Poskitt, and J. Sun. Learning from Mutants: Using Code
Mutation to Learn and Monitor Invariants of a Cyber-Physical System.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 648–660,
May 2018.

194

https://sites.google.com/site/iotcontextualintegrity/home
https://sites.google.com/site/iotcontextualintegrity/home

[CPS18b] Y. Chen, C. M. Poskitt, and J. Sun. Learning from Mutants: Using Code
Mutation to Learn and Monitor Invariants of a Cyber-Physical System.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 648–660,
May 2018.

[CTM19] Z. Berkay Celik, Gang Tan, and Patrick McDaniel. IoTGuard: Dynamic
Enforcement of Security and Safety Policy in Commodity IoT. In Network
and Distributed System Security Symposium (NDSS), 2019.

[D. 12] D. van Opstal, U.S. Resilience Project. Supply Chain Solutions
for Smart Grid Security: Building on Business Best Practices.
http://usresilienceproject.org/wp-content/uploads/2014/09/

report-Supply_Chain_Solutions_for_Smart_Grid_Security.pdf,
Sep 2012. [ONLINE-Accessed: January-2020].

[DBC14] Anupam Das, Nikita Borisov, and Matthew Caesar. Do You Hear What I
Hear?: Fingerprinting Smart Devices Through Embedded Acoustic Com-
ponents. In Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’14, pages 441–452, New York,
NY, USA, 2014. ACM.

[DBCM16] Anupam Das, Nikita Borisov, Edward Chou, and Muhammad Haris
Mughees. Smartphone Fingerprinting Via Motion Sensors: Analyzing
Feasiblity at Large-Scale and Studing Real Usage Patterns. CoRR,
abs/1605.08763, 2016.

[DBU20] Kyle Denney, Leonardo Babun, and A. Selcuk Uluagac. Usb-watch: a gen-
eralized hardware-assisted insider threat detection framework. J Hardw
Syst Secur, 2020.

[DEB+19] Kyle Denney, Enes Erdin, Leonardo Babun, Michael Vai, and Selcuk
Uluagac. Usb-watch: A dynamic hardware-assisted usb threat detection
framework. In Songqing Chen, Kim-Kwang Raymond Choo, Xinwen Fu,
Wenjing Lou, and Aziz Mohaisen, editors, Security and Privacy in Com-
munication Networks, pages 126–146, Cham, 2019. Springer International
Publishing.

[DJ17] Asish Kumar Dalai and Sanjay Kumar Jena. WDTF: A Technique for
Wireless Device Type Fingerprinting. Wireless Personal Communica-
tions, 97(2):1911–1928, Nov 2017.

195

http://usresilienceproject.org/wp-content/uploads/2014/09/report-Supply_Chain_Solutions_for_Smart_Grid_Security.pdf
http://usresilienceproject.org/wp-content/uploads/2014/09/report-Supply_Chain_Solutions_for_Smart_Grid_Security.pdf

[DS12] Y. Deng and S. Shukla. Vulnerabilities and Countermeasures - A Survey
on the Cyber Security Issues in the Transmission Subsystem of a Smart
Grid. Journal of Cyber Security and Mobility, 1:251–276, 2012.

[E. 01] E. Eskin, W. Lee and S. J, Stolfo. Modeling System Calls for Intrusion
Detection with Dynamic Window Sizes. In DARPA Information Surviv-
ability Conference & Exposition II, 2001. DISCEX ’01, pages 165–171,
Anaheim, CA, Jun. 2001. IEEE.

[EGH+14] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-
Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones. ACM Transaction on
Computer Systems, 2014.

[Eur12] European Network and Information Security Agency (enisa).
Smart Grid Security. Annex II: Security Aspects of the
Smart Grid. https://www.enisa.europa.eu/topics/

critical-information-infrastructures-and-services/

smart-grids/smart-grids-and-smart-metering/ENISA_Annex%

20II%20-%20Security%20Aspects%20of%20Smart%20Grid.pdf, 2012.
[Online; accessed February-2020].

[FHDK16] A. Farraj, E. Hammad, A. A. Daoud, and D. Kundur. A Game-Theoretic
Analysis of Cyber Switching Attacks and Mitigation in Smart Grid Sys-
tems. IEEE Transactions on Smart Grid, 7(4):1846–1855, July 2016.

[FJP16] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security Analysis
of Emerging Smart Home Applications. In IEEE Security and Privacy
(SP), 2016.

[FKF+03] Henry Hanping Feng, Oleg M. Kolesnikov, Prahlad Fogla, Wenke Lee,
and Weibo Gong. Anomaly Detection Using Call Stack Information. In
Proceedings of the 2003 IEEE Symposium on Security and Privacy, SP
’03, pages 62–, Washington, DC, USA, 2003. IEEE Computer Society.

[FPR+16] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato,
Mauro Conti, and Atul Prakash. FlowFence: Practical Data Protection
for Emerging IoT Application Frameworks. In USENIX Security, 2016.

[FSL+16] David Formby, Preethi Srinivasan, Andrew Leonard, Jonathan Rogers,
and Raheem A. Beyah. Who’s in Control of Your Control System? Device

196

https://www.enisa.europa.eu/topics/critical-information-infrastructures-and-services/smart-grids/smart-grids-and-smart-metering/ENISA_Annex%20II%20-%20Security%20Aspects%20of%20Smart%20Grid.pdf
https://www.enisa.europa.eu/topics/critical-information-infrastructures-and-services/smart-grids/smart-grids-and-smart-metering/ENISA_Annex%20II%20-%20Security%20Aspects%20of%20Smart%20Grid.pdf
https://www.enisa.europa.eu/topics/critical-information-infrastructures-and-services/smart-grids/smart-grids-and-smart-metering/ENISA_Annex%20II%20-%20Security%20Aspects%20of%20Smart%20Grid.pdf
https://www.enisa.europa.eu/topics/critical-information-infrastructures-and-services/smart-grids/smart-grids-and-smart-metering/ENISA_Annex%20II%20-%20Security%20Aspects%20of%20Smart%20Grid.pdf

Fingerprinting for Cyber-Physical Systems. In 23nd Annual Network and
Distributed System Security Symposium, NDSS 2016, San Diego, Cali-
fornia, USA, February 21-24, 2016, 2016.

[Gar03] Tal Garfinkel. Traps and Pitfalls: Practical Problems in System Call
Interposition Based Security Tools. In In Proc. Network and Distributed
Systems Security Symposium, pages 163–176, 2003.

[GE11] P. J. Guo and D. Engler. CDE: Using System Call Interposition to Au-
tomatically Create Portable Software Packages. In Proceedings of the
2011 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’11, pages 21–21, Berkeley, CA, USA, 2011. USENIX Asso-
ciation.

[GFT13] Ujjwal Guin, Domenic Forte, and Mohammad Tehranipoor. Anti-
counterfeit Techniques: From Design to Resign. In Proceedings of the
2013 14th International Workshop on Microprocessor Test and Verifica-
tion, pages 89–94, Washington, DC, USA, 2013. IEEE Computer Society.

[GKGK16] I. Graja, S. Kallel, N. Guermouche, and A. H. Kacem. BPMN4CPS: A
BPMN Extension for Modeling Cyber-Physical Systems. In 2016 IEEE
25th International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), pages 152–157, June 2016.

[GKP+15] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen
Nguyen, and Martin C Rinard. Information Flow Analysis of Android
Applications in DroidSafe. In NDSS, 2015.

[GLL+13] B. Gu, X. Li, G. Li, A. C. Champion, Z. Chen, F. Qin, and D. Xuan.
D2Taint: Differentiated and Dynamic Information Flow Tracking on
Smartphones for Numerous Data Sources. In INFOCOM, 2013.

[Gooa] Google App Engine. https://cloud.google.com/appengine/. [Online;
accessed January-2020].

[Goob] Google Books NGrams. https://aws.amazon.com/datasets/

google-books-ngrams/. [Online; accessed January-2020].

[Gooc] Google Forms. https://www.google.com/forms/about/. [Online; ac-
cessed January-2020].

197

https://cloud.google.com/appengine/
https://aws.amazon.com/datasets/google-books-ngrams/
https://aws.amazon.com/datasets/google-books-ngrams/
https://www.google.com/forms/about/

[Gro] GroovyCodeVisitor: An Implementation of the Groovy Visitor Patterns.
http://docs.groovy-lang.org/docs. [Online; accessed January-2018].

[GTGZ14] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller.
Checking App Behavior Against App Descriptions. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014,
pages 1025–1035, New York, NY, USA, 2014. ACM.

[HB99] G. Hunt and D. Brubacher. Detours: Binary Interception of Win32 Func-
tions. In Proceedings of the 3rd Conference on USENIX Windows NT
Symposium - Volume 3, WINSYM’99, pages 14–14, Berkeley, CA, USA,
1999. USENIX Association.

[HCG17a] D. He, S. Chan, and M. Guizani. Cyber Security Analysis and Protection
of Wireless Sensor Networks for Smart Grid Monitoring. IEEE Wireless
Communications, 24(6):98–103, Dec 2017.

[HCG17b] D. He, S. Chan, and M. Guizani. Win-Win Security Approaches for
Smart Grid Communications Networks. IEEE Network, 31(6):122–128,
November 2017.

[HLM+16] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song,
and David Wagner. Smart Locks: Lessons for Securing Commodity In-
ternet of Things Devices. In ACM AsiaCCS, 2016.

[Homa] HomeOS, Microsoft. https://www.microsoft.com/en-us/research/

project/homeos-enabling-smarter-homes-for-everyone/. [Online;
accessed January-2020].

[Homb] HomeSeer. https://homeseer.com/. [Online; accessed January-2020].

[Hon14] Honeywell. RTU2020 Remote Terminal Unit Specifications. https:

//www.honeywellprocess.com/library/marketing/tech-specs/

SC03-300-101-RTU-2020.pdf, Oct 2014. [ONLINE; accessed January-
2020].

[HPK+14] J. Hao, R. J. Piechocki, D. Kaleshi, W. H. Chin, and Z. Fan. Optimal
Malicious Attack Construction and Robust Detection in Smart Grid Cy-
ber Security Analysis. In 2014 IEEE International Conference on Smart
Grid Communications (SmartGridComm), pages 836–841, Nov 2014.

198

http://docs.groovy-lang.org/docs
https://www.microsoft.com/en-us/research/project/homeos-enabling-smarter-homes-for-everyone/
https://www.microsoft.com/en-us/research/project/homeos-enabling-smarter-homes-for-everyone/
https://homeseer.com/
https://www.honeywellprocess.com/library/marketing/tech-specs/SC03-300-101-RTU-2020.pdf
https://www.honeywellprocess.com/library/marketing/tech-specs/SC03-300-101-RTU-2020.pdf
https://www.honeywellprocess.com/library/marketing/tech-specs/SC03-300-101-RTU-2020.pdf

[HSS17] Aaron Hansen, Jason Staggs, and Sujeet Shenoi. Security Analysis of
an Advanced Metering Infrastructure. International Journal of Critical
Infrastructure Protection, 18:3 – 19, 2017.

[HV17] Malek Harbawi and Asaf Varol. An Improved Digital Evidence Acqui-
sition Model for the Internet of Things forensics: A Theoretical Frame-
work. In Digital Forensic and Security (ISDFS), 2017 5th International
Symposium on, pages 1–6. IEEE, 2017.

[IEC03a] IEC 61850-1. Communication networks and systems in substations In-
troduction and overview. https://webstore.iec.ch/p-preview/info_
iec61850-1%7Bed1.0%7Den.pdf, 2003. [Online; accessed January-2020].

[IEC03b] IEC 61850-7-2. Communication networks and systems in substations
- Basic communication structure for substation and feeder equipment
Abstract Communication Service Interface (ACSI). https://webstore.
iec.ch/p-preview/info_iec61850-7-2%7Bed1.0%7Den.pdf, 2003.
[Online; accessed January-2020].

[IEC03c] IEC 61850-8-1. Communication networks and systems in substa-
tions - Specific Communication Service Mapping (SCSM) Mappings
to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-
3. https://webstore.iec.ch/p-preview/info_iec61850-8-1%7Bed1.
0%7Den.pdf, 2003. [Online; accessed January-2020].

[IEC03d] IEC61850-7-1. Communication networks and systems for power utility
automation - Part 7-1: Basic communication structure - Principles and
models. https://webstore.iec.ch/publication/6014, 2003. [Online;
accessed January-2020].

[IFT] IFTTT (if this, then that). https://ifttt.com/. [Online; accessed
August-2018].

[Int18] Interos Solutions, Inc. Supply chain vulnerabilities from china
in u.s. federal information and communications technology.
https://www.uscc.gov/sites/default/files/Research/Interos_

Supply%20Chain%20Vulnerabilities%20from%20China%20in%20U.S.

%20Federal%20ICT_final.pdf, 2018.

[IoT] IoTBench Repository, L. Babun, Z. Berkay Celik and A. Kumar Sikder.
https://github.com/IoTBench. [Online; accessed January-2020].

199

https://webstore.iec.ch/p-preview/info_iec61850-1%7Bed1.0%7Den.pdf
https://webstore.iec.ch/p-preview/info_iec61850-1%7Bed1.0%7Den.pdf
https://webstore.iec.ch/p-preview/info_iec61850-7-2%7Bed1.0%7Den.pdf
https://webstore.iec.ch/p-preview/info_iec61850-7-2%7Bed1.0%7Den.pdf
https://webstore.iec.ch/p-preview/info_iec61850-8-1%7Bed1.0%7Den.pdf
https://webstore.iec.ch/p-preview/info_iec61850-8-1%7Bed1.0%7Den.pdf
https://webstore.iec.ch/publication/6014
https://ifttt.com/
https://www.uscc.gov/sites/default/files/Research/Interos_Supply%20Chain%20Vulnerabilities%20from%20China%20in%20U.S.%20Federal%20ICT_final.pdf
https://www.uscc.gov/sites/default/files/Research/Interos_Supply%20Chain%20Vulnerabilities%20from%20China%20in%20U.S.%20Federal%20ICT_final.pdf
https://www.uscc.gov/sites/default/files/Research/Interos_Supply%20Chain%20Vulnerabilities%20from%20China%20in%20U.S.%20Federal%20ICT_final.pdf
https://github.com/IoTBench

[IoT17] IoTBench. https://github.com/IoTBench, 2017. [Online; accessed 09-
October-2018].

[Iri] Iris by Lowe’s, Lowe’s. https://www.irisbylowes.com/. [Online; ac-
cessed January-2020].

[ISTC13] D. M. E. Ingram, P. Schaub, R. R. Taylor, and D. A. Campbell. Per-
formance Analysis of IEC 61850 Sampled Value Process Bus Networks.
IEEE Transactions on Industrial Informatics, 9(3):1445–1454, Aug 2013.

[J. 16] J. Ellperin and A. Entous. Russian Operation Hacked a Vermont
Utility, Showing Risk to U.S. Electrical Grid Security, Officials
Say. https://www.washingtonpost.com/world/national-security/

russian-hackers-penetrated-us-electricity-grid-through-a-uti\

lity-in-vermont/2016/12/30/8fc90cc4-ceec-11e6-b8a2-8c2a61b0436f_

story.html, 2016. [Online; accessed January-2020].

[JCW+17] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence
Fernandes, Z Morley Mao, Atul Prakash, and Shanghai JiaoTong Unvier-
sity. ContexIoT: Towards Providing Contextual Integrity to Appified IoT
Platforms. In NDSS, 2017.

[JRSK17] P. Jafary, S. Repo, J. Seppl, and H. Koivisto. Security and Reliability
Analysis of a Use Case in Smart Grid Substation Automation Systems.
In 2017 IEEE International Conference on Industrial Technology (ICIT),
pages 615–620, March 2017.

[JS99] K. Jain and R. Sekar. User-Level Infrastructure for System Call Interpo-
sition: A Platform for Intrusion Detection and Confinement. In In Proc.
Network and Distributed Systems Security Symposium, 1999.

[K. 13] K. Huang, J. M. Carulli, and Y. Makris. Counterfeit Electronics: A
Rising Threat in the Semiconductor Manufacturing Industry. In ITC.
IEEE Computer Society, pages 1–4. IEEE, 2013.

[KAJM16] E. Kang, S. Adepu, D. Jackson, and A. P. Mathur. Model-Based Security
Analysis of a Water Treatment System. In 2016 IEEE/ACM 2nd Inter-
national Workshop on Software Engineering for Smart Cyber-Physical
Systems (SEsCPS), pages 22–28, May 2016.

200

https://github.com/IoTBench
https://www.irisbylowes.com/
https://www.washingtonpost.com/world/national-security/russian-hackers-penetrated-us-electricity-grid-through-a-uti\lity-in-vermont/2016/12/30/8fc90cc4-ceec-11e6-b8a2-8c2a61b0436f_story.html
https://www.washingtonpost.com/world/national-security/russian-hackers-penetrated-us-electricity-grid-through-a-uti\lity-in-vermont/2016/12/30/8fc90cc4-ceec-11e6-b8a2-8c2a61b0436f_story.html
https://www.washingtonpost.com/world/national-security/russian-hackers-penetrated-us-electricity-grid-through-a-uti\lity-in-vermont/2016/12/30/8fc90cc4-ceec-11e6-b8a2-8c2a61b0436f_story.html
https://www.washingtonpost.com/world/national-security/russian-hackers-penetrated-us-electricity-grid-through-a-uti\lity-in-vermont/2016/12/30/8fc90cc4-ceec-11e6-b8a2-8c2a61b0436f_story.html

[Kas16] Kaspersky. BlackEnergy APT Attacks in Ukraine.
https://usa.kaspersky.com/resource-center/threats/blackenergy, 2016.
[Online; accessed January-2020].

[KBAU18] C. Kaygusuz, L. Babun, H. Aksu, and A. S. Uluagac. Detection of Com-
promised Smart Grid Devices with Machine Learning and Convolution
Techniques. In 2018 IEEE International Conference on Communications
(ICC), pages 1–6, May 2018.

[KBC05] T. Kohno, A. Broido, and K. C. Claffy. Remote Physical Device Fin-
gerprinting. IEEE Transactions on Dependable and Secure Computing,
2(2):93–108, April 2005.

[KBKK12] E. C. Kara, M. Berges, B. Krogh, and S. Kar. Using Smart Devices for
System-level Management and Control in the Smart Grid: A Reinforce-
ment Learning Framework. In 2012 IEEE Third International Confer-
ence on Smart Grid Communications (SmartGridComm), pages 85–90,
Nov 2012.

[KCB10] Ke Gao, C. Corbett, and R. Beyah. A Passive Approach to Wireless
Device Fingerprinting. In 2010 IEEE/IFIP International Conference on
Dependable Systems Networks (DSN), pages 383–392, June 2010.

[KHLF10] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke. Smart-grid Security
Issues. IEEE Security Privacy, 8(1):81–85, Jan 2010.

[Kos16] A. M. Kosek. Contextual Anomaly Detection for Cyber-physical Secu-
rity in Smart Grids based on an Artificial Neural Network Model. In
2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart
Grids (CPSR-SG), pages 1–6, April 2016.

[Kou12] G. Koutitas. Control of Flexible Smart Devices in the Smart Grid. IEEE
Transactions on Smart Grid, 3(3):1333–1343, Sept 2012.

[KPJ16] K. Khanna, B. K. Panigrahi, and A. Joshi. Feasibility and Mitigation of
False Data Injection Attacks in Smart Grid. In 2016 IEEE 6th Interna-
tional Conference on Power Systems (ICPS), pages 1–6, March 2016.

[KR16] Victor R Kebande and Indrakshi Ray. A Generic Digital Forensic Inves-
tigation Framework for Internet of Things (IoT). In Future Internet of
Things and Cloud (FiCloud), 2016 IEEE 4th International Conference
on, pages 356–362. IEEE, 2016.

201

[KSH16] M. Khan, B. N. Silva, and K. Han. Internet of Things Based Energy
Aware Smart Home Control System. IEEE Access, 4:7556–7566, 2016.

[Kus13] D. Kushner. The Real Story of Stuxnet. IEEE Spectrum, 50(3):48–53,
March 2013.

[KZ13] T. Kim and N. Zeldovich. Practical and Effective Sandboxing for Non-
root Users. In Proceedings of the 2013 USENIX Conference on Annual
Technical Conference, USENIX ATC’13, pages 139–144, Berkeley, CA,
USA, 2013. USENIX Association.

[L. 17] L. Babun, H. Aksu and A. S. Uluagac. Identifying Counterfeit Smart
Grid Devices: A Lightweight System Level Framework. In Proceedings
of the IEEE ICC Intern. Conf. on Communications, Paris, France, May
2017. IEEE.

[LBAU17] Juan Lopez, Leonardo Babun, Hidayet Aksu, and A. Selcuk Uluagac. A
Survey on Function and System Call Hooking Approaches. Journal of
Hardware and Systems Security, 1(2):114–136, Jun 2017.

[LFPF18] L. D. Lago, O. Ferrante, R. Passerone, and A. Ferrari. Dependability
Assessment of SOA-Based CPS With Contracts and Model-Based Fault
Injection. IEEE Transactions on Industrial Informatics, 14(1):360–369,
Jan 2018.

[LGGG07] M. LeMay, G. Gross, C. A. Gunter, and S. Garg. Unified Architecture for
Large-Scale Attested Metering. In 2007 40th Annual Hawaii International
Conference on System Sciences (HICSS’07), pages 115–115, Jan 2007.

[LL15] M. Li and H. J. Lin. Design and Implementation of Smart Home Control
Systems Based on Wireless Sensor Networks and Power Line Communi-
cations. IEEE Transactions on Industrial Electronics, 62(7):4430–4442,
July 2015.

[LM14] Quoc Le and Tomas Mikolov. Distributed Representations of Sentences
and Documents. In Proceedings of the 31st International Conference on
International Conference on Machine Learning - Volume 32, ICML’14,
2014.

[Log] Logs - MiCasaVerde. http://wiki.micasaverde.com/index.php/Logs.
[Online; accessed January-2020].

202

http://wiki.micasaverde.com/index.php/Logs

[LPBZ12] F. Lanze, A. Panchenko, B. Braatz, and A. Zinnen. Clock Skew Based
Remote Device Fingerprinting Demystified. In Global Communications
Conference (GLOBECOM), 2012 IEEE, pages 813–819, Dec 2012.

[M. 13] M. Q. Saeed, Z. Bilal and C. D. Walter. An NFC Based Consumer-level
Counterfeit Detection Framework. In 2013 Eleventh Annual Int. Conf.
on Privacy, Security and Trust (PST), pages 135–142, Tarragona, July
2013. IEEE.

[M. 16] M. Sillgith. Open Source Library for IEC 61850: Release 0.9. http://

libiec61850.com/libiec61850/, Feb 2016. [Online; accessed January-
2020].

[Mal17] Malware Found in Surveillance Cameras Sold Through
Amazon. https://www.techworm.net/2016/04/

malware-found-surveillance-cameras-sold-amazon.html, 2017.
[Online; accessed January-2020].

[MCCD13] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Ef-
ficient Estimation of Word Representations in Vector Space. CoRR,
abs/1301.3781, 2013.

[Met] Metaprogramming. http://docs.groovy-lang.org/docs/next/html/

documentation/core-metaprogramming.html. [Online; accessed
January-2020].

[MIT] MIT Technology Review: Why Insurance Companies Want to Subsidize
Your Smart Home. https://www.technologyreview.com/s/602532/

why-insurance-companies-want-to-subsidize-your-smart-home/.
[Online; accessed January-2020].

[MKLP12] Narcisa Andreea Milea, Siau Cheng Khoo, David Lo, and Cristian Pop.
NORT: Runtime Anomaly-based Monitoring of Malicious Behavior for
Windows. In Proceedings of the Second International Conference on
Runtime Verification, RV’11, pages 115–130, Berlin, Heidelberg, 2012.
Springer-Verlag.

[MMH+17] M. Miettinen, S. Marchal, I. Hafeez, T. Frassetto, N. Asokan, A. Sadeghi,
and S. Tarkoma. IoT Sentinel Demo: Automated Device-Type Iden-
tification for Security Enforcement in IoT. In 2017 IEEE 37th Inter-
national Conference on Distributed Computing Systems (ICDCS), pages
2511–2514, June 2017.

203

http://libiec61850.com/libiec61850/
http://libiec61850.com/libiec61850/
https://www.techworm.net/2016/04/malware-found-surveillance-cameras-sold-amazon.html
https://www.techworm.net/2016/04/malware-found-surveillance-cameras-sold-amazon.html
http://docs.groovy-lang.org/docs/next/html/documentation/core-metaprogramming.html
http://docs.groovy-lang.org/docs/next/html/documentation/core-metaprogramming.html
https://www.technologyreview.com/s/602532/why-insurance-companies-want-to-subsidize-your-smart-home/
https://www.technologyreview.com/s/602532/why-insurance-companies-want-to-subsidize-your-smart-home/

[MR16] C. Murguia and J. Ruths. CUSUM and Chi-squared Attack Detection of
Compromised Sensors. In 2016 IEEE Conference on Control Applications
(CCA), pages 474–480, Sep. 2016.

[N.] N. Iderhoff, ”NLP-Datasets”. https://github.com/niderhoff/

nlp-datasets/blob/master/README.md. [Online; accessed January-
2020].

[N. 14] N. Komninos, E. Philippou and A. Pitsillides. Survey in Smart Grid and
Smart Home Security: Issues, Challenges and Countermeasures. IEEE
Communications Surveys and Tutorials, 16:1933–1954, 2014.

[Nat18] National Cybersecurity & Communications Integration Center (NCCIC),
Department of Homeland Security. Russian Activity Against Criti-
cal Infrastructure. https://www.us-cert.gov/sites/default/files/

c3vp/Russian_Activity_Webinar_Slides.pdf, 2018. [Online; accessed
January-2020].

[NHO12] C. Neumann, O. Heen, and S. Onno. An Empirical Study of Passive
802.11 Device Fingerprinting. In 2012 32nd International Conference on
Distributed Computing Systems Workshops, pages 593–602, June 2012.

[NIS14] NIST Special Publication 1108r3. NIST Framework and
Roadmap for Smart Grid Interoperability Standards, Release 3.0.
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1108r3.pdf,
Sep 2014. [Online; accessed January-2020].

[NM15] A. Nourian and S. Madnick. A Systems Theoretic Approach to the Se-
curity Threats in Cyber Physical Systems Applied to Stuxnet. IEEE
Transactions on Dependable and Secure Computing, PP(99):1–1, 2015.

[NMM+18] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Minh Hoang
Dang, N. Asokan, and Ahmad-Reza Sadeghi. DÏoT: A Crowdsourced
Self-learning Approach for Detecting Compromised IoT Devices. CoRR,
abs/1804.07474, 2018.

[NSG+14] Sukhvir Notra, Muhammad Siddiqi, Hassan Habibi Gharakheili, Vijay
Sivaraman, and Roksana Boreli. An Experimental Study of Security and
Privacy Risks with Emerging Household Appliances. In Communications
and Network Security (CNS), 2014 IEEE Conference on, pages 79–84.
IEEE, 2014.

204

https://github.com/niderhoff/nlp-datasets/blob/master/README.md
https://github.com/niderhoff/nlp-datasets/blob/master/README.md
https://www.us-cert.gov/sites/default/files/c3vp/Russian_Activity_Webinar_Slides.pdf
https://www.us-cert.gov/sites/default/files/c3vp/Russian_Activity_Webinar_Slides.pdf

[OEV+16] M. Ozay, I. Esnaola, F. T. Yarman Vural, S. R. Kulkarni, and H. V.
Poor. Machine Learning Methods for Attack Detection in the Smart
Grid. IEEE Transactions on Neural Networks and Learning Systems,
27(8):1773–1786, Aug 2016.

[OJES13] Edewede Oriwoh, David Jazani, Gregory Epiphaniou, and Paul Sant.
Internet of Things Forensics: Challenges and Approaches. In Collabo-
rative Computing: Networking, Applications and Worksharing (Collabo-
ratecom), 2013 9th International Conference Conference on, pages 608–
615. IEEE, 2013.

[OKGP13] Temitope Oluwafemi, Tadayoshi Kohno, Sidhant Gupta, and Shwetak
Patel. Experimental Security Analyses of Non-Networked Compact Flu-
orescent Lamps: A Case Study of Home Automation Security. In USENIX
LASER, 2013.

[Opea] OpenHAB IoT App Market (Eclipse Market Place). http://docs.

openhab.org/eclipseiotmarket. [Online; accessed January-2020].

[Opeb] OpenHAB IoT App Submission Guideline.
https://marketplace.eclipse.org/content/

eclipse-marketplace-publishing-guidelines. [Online; accessed
January-2020].

[Opec] OpenHAB: Open Source Automation Software for Home. https://www.
openhab.org/. [Online; accessed January-2020].

[Oped] OpenHAB Privacy Statement. http://www.myopenhab.org/privacy.
[Online; accessed January-2020].

[PBL15] T. Park, S. Beack, and T. Lee. A Noise Robust Audio Fingerprint Ex-
traction Technique for Mobile Devices Using Gradient Histograms. In
Consumer Electronics - Berlin (ICCE-Berlin), 2015 IEEE 5th Interna-
tional Conference on, pages 287–290, Sept 2015.

[PCD+18] Xiang Pan, Yinzhi Cao, Xuechao Du, Boyuan He, Gan Fang, Rui Shao,
and Yan Chen. FlowCog: Context-aware Semantics Extraction and Anal-
ysis of Information Flow Leaks in Android Apps. In 27th USENIX Se-
curity Symposium (USENIX Security 18), pages 1669–1685, Baltimore,
MD, 2018. USENIX Association.

205

http://docs.openhab.org/eclipseiotmarket
http://docs.openhab.org/eclipseiotmarket
https://marketplace.eclipse.org/content/eclipse-marketplace-publishing-guidelines
https://marketplace.eclipse.org/content/eclipse-marketplace-publishing-guidelines
https://www.openhab.org/
https://www.openhab.org/
http://www.myopenhab.org/privacy

[PNR15] Sundresan Perumal, Norita Md Norwawi, and Valliappan Raman. In-
ternet of Things (IoT) Digital Forensic Investigation Model: Top-down
Forensic Approach Methodology. In Digital Information Processing and
Communications (ICDIPC), 2015 Fifth International Conference on,
pages 19–23. IEEE, 2015.

[PX17] M. Pendleton and S. Xu. A Dataset Generator for Next Generation
System Call Host Intrusion Detection Systems. In MILCOM 2017 - 2017
IEEE Military Communications Conference (MILCOM), pages 231–236,
Oct 2017.

[PXY+13] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie.
WHYPER: Towards Automating Risk Assessment of Mobile Applica-
tions. In 22nd USENIX Security Symposium (USENIX Security 13),
pages 527–542, Washington, D.C., 2013. USENIX.

[QRZ+14] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu,
and Zhong Chen. AutoCog: Measuring the Description-to-permission Fi-
delity in Android Applications. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, pages
1354–1365, New York, NY, USA, 2014. ACM.

[R.] R. E Faith and M. Kerrisk. The Linux Man-pages Project: ptrace. http:
//man7.org/linux/man-pages/man2/ptrace.2.html. [Online; accessed
January-2020].

[RB15] D. B. Rawat and Ch. Bajracharya. Cyber Security for Smart Grid Sys-
tems: Status, Challenges and Perspectives. In Proceedings of the IEEE
Southeast Conf, pages 1–6, Fort Lauderdale, FL, USA, 2015. IEEE.

[RBAU19] Luis Puche Rondon, Leonardo Babun, Kemal Akkaya, and A. Selcuk
Uluagac. Hdmi-walk: Attacking hdmi distribution networks via consumer
electronic control protocol. In Proceedings of the 35th Annual Computer
Security Applications Conference, ACSAC 19, pages 650–659, New York,
NY, USA, 2019. Association for Computing Machinery.

[Reu16] Reuters. U.S. firm blames Russian ’Sandworm’ hackers for Ukraine
outage. https://www.reuters.com/article/us-ukraine-cybersecurity-
sandworm/u-s-firm-blames-russian-sandworm-hackers-for-ukraine-
outage-idUSKBN0UM00N20160108, 2016. [Online; accessed January-
2020].

206

http://man7.org/linux/man-pages/man2/ptrace.2.html
http://man7.org/linux/man-pages/man2/ptrace.2.html

[RFP16] Amir Rahmati, Earlence Fernandes, and Atul Prakash. Applying the
Opacified Computation Model to Enforce Information Flow Policies in
IoT Applications. In IEEE Cybersecurity Development (SecDev), 2016.

[Ros01] Sheldon M. Ross. Probability Models for Computer Science. Academic
Press, Inc., Orlando, FL, USA, 1st edition, 2001.

[RUB15] S. V. Radhakrishnan, A. S. Uluagac, and R. Beyah. GTID: A Technique
for Physical Device and Device Type Fingerprinting. IEEE Transactions
on Dependable and Secure Computing, 12(5):519–532, Sept 2015.

[S. 10] S. Fries, H. J. Hof and M. G. Seewald. Security of the Smart Grid -
Enhancing IEC 62351 to Improve Security in Energy Automation Control.
Int. Journal on Advances in Security, 3, 2010.

[SaI] SaINT Project, L. Babun, Z. Berkay Celik and A. Kumar Sikder. http:
//saint-project.appspot.com/. [Online; accessed January-2020].

[Sam] Samsung SmartThings. https://www.smartthings.com/. [Online; ac-
cessed January-2020].

[SAU17] Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac. 6thSense:
A Context-aware Sensor-based Attack Detector for Smart Devices. In
USENIX Security, 2017.

[SBAU19] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu, and A. Selcuk Ulu-
agac. Aegis: A Context-Aware Security Framework for Smart Home
Systems. In Proceedings of the 35th Annual Computer Security Appli-
cations Conference, ACSAC 19, page 2841, New York, NY, USA, 2019.
Association for Computing Machinery.

[SBDB01] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A Fast Automaton-
Based Method for Detecting Anomalous Program Behaviors. In Proceed-
ings of the 2001 IEEE Symposium on Security and Privacy, SP ’01, pages
144–, Washington, DC, USA, 2001. IEEE Computer Society.

[SC11] B. Sikdar and J. H. Chow. Defending Synchrophasor Data Networks
Against Traffic Analysis Attacks. IEEE Transactions on Smart Grid,
2:819–826, 2011.

[SGLL13] Y. Sun, X. Guan, T. Liu, and Y. Liu. A Cyber-physical Monitoring
System for Attack Detection in Smart Grid. In 2013 IEEE Conference

207

http://saint-project.appspot.com/
http://saint-project.appspot.com/
https://www.smartthings.com/

on Computer Communications Workshops (INFOCOM WKSHPS), pages
33–34, April 2013.

[SHS12] Swati Sharma, Alefiya Hussain, and Huzur Saran. Experience with Het-
erogenous Clock-skew Based Device Fingerprinting. In Proceedings of
the 2012 Workshop on Learning from Authoritative Security Experiment
Results, LASER ’12, pages 9–18, New York, NY, USA, 2012. ACM.

[Sim] Simple Event Logger, Kevin LaFramboise. https://github.

com/krlaframboise/SmartThings/blob/\master/smartapps/

krlaframboise/simple-event-logger.src/simple-event-logger.

groovy. [Online; accessed January-2020].

[SKK+18] P. Sundaravadivel, K. Kesavan, L. Kesavan, S. P. Mohanty, and
E. Kougianos. Smart-Log: A Deep-Learning Based Automated Nutri-
tion Monitoring System in the IoT. IEEE Transactions on Consumer
Electronics, 64(3):390–398, Aug 2018.

[Smaa] SmartThings Classic Documentation: Classes and JARs.
https://docs.smartthings.com/en/latest/getting-started/

groovy-for-smartthings.html#allowed-classes. [Online; accessed
January-2020].

[Smab] SmartThings Code Review Guidelines and Best Practices. http://docs.
smartthings.com/en/latest/code-review-guidelines.html. [On-
line; accessed January-2020].

[Smac] SmartThings Community Forum for Third-party Apps. https://

community.smartthings.com/. [Online; accessed January-2020].

[Smad] SmartThings Groovy IDE. https://graph.api.smartthings.com/.
[Online; accessed January-2020].

[Smae] SmartThings Logging, Matt J Frank. https://github.

com/krlaframboise/SmartThings/blob/\master/smartapps/

krlaframboise/simple-event-logger.src/simple-event-logger.

groovy. [Online; accessed January-2020].

[Smaf] SmartThings Official API Documentation, Samsung. http://docs.

smartthings.com/en/latest/ref-docs/reference.html. [Online; ac-
cessed January-2020].

208

https://github.com/krlaframboise/SmartThings/blob/\master/smartapps/krlaframboise/simple-event-logger.src/simple-event-logger.groovy
https://github.com/krlaframboise/SmartThings/blob/\master/smartapps/krlaframboise/simple-event-logger.src/simple-event-logger.groovy
https://github.com/krlaframboise/SmartThings/blob/\master/smartapps/krlaframboise/simple-event-logger.src/simple-event-logger.groovy
https://github.com/krlaframboise/SmartThings/blob/\master/smartapps/krlaframboise/simple-event-logger.src/simple-event-logger.groovy
https://docs.smartthings.com/en/latest/getting-started/groovy-for-smartthings.html#allowed-classes
https://docs.smartthings.com/en/latest/getting-started/groovy-for-smartthings.html#allowed-classes
http://docs.smartthings.com/en/latest/code-review-guidelines.html
http://docs.smartthings.com/en/latest/code-review-guidelines.html
https://community.smartthings.com/
https://community.smartthings.com/
https://graph.api.smartthings.com/
https://github.com/krlaframboise/SmartThings/blob/\master/smartapps/krlaframboise/simple-event-logger.src/simple-event-logger.groovy
https://github.com/krlaframboise/SmartThings/blob/\master/smartapps/krlaframboise/simple-event-logger.src/simple-event-logger.groovy
https://github.com/krlaframboise/SmartThings/blob/\master/smartapps/krlaframboise/simple-event-logger.src/simple-event-logger.groovy
https://github.com/krlaframboise/SmartThings/blob/\master/smartapps/krlaframboise/simple-event-logger.src/simple-event-logger.groovy
http://docs.smartthings.com/en/latest/ref-docs/reference.html
http://docs.smartthings.com/en/latest/ref-docs/reference.html

[Smag] SmartThings Official App Repository. https://github.com/

SmartThingsCommunity. [Online; accessed January-2020].

[Smah] SmartThings Official Developer Documentation, Samsung. [Online; ac-
cessed January-2020].

[Smai] SmartThings Official Logging, Samsung. http://docs.smartthings.

com/en/latest/tools-and-ide/logging.html. [Online; accessed
January-2020].

[Smaj] SmartThings Web-service App Overview. http://docs.smartthings.

com/en/latest/smartapp-web-services-developers-guide/

overview.html. [Online; accessed January-2020].

[SPJ15] Jan Spooren, Davy Preuveneers, and Wouter Joosen. Mobile Device Fin-
gerprinting Considered Harmful for Risk-based Authentication. In Pro-
ceedings of the Eighth European Workshop on System Security, EuroSec
’15, pages 6:1–6:6, New York, NY, USA, 2015. ACM.

[SS16a] A. Sanjab and W. Saad. Data Injection Attacks on Smart Grids With
Multiple Adversaries: A Game-Theoretic Perspective. IEEE Transactions
on Smart Grid, 7(4):2038–2049, July 2016.

[SS16b] H. Sedjelmaci and S. M. Senouci. Smart grid security: A new approach
to detect intruders in a smart grid neighborhood area network. In 2016
International Conference on Wireless Networks and Mobile Communica-
tions (WINCOM), pages 6–11, Oct 2016.

[SSG+16] Anibal Sanjab, Walid Saad, Ismail Güvenç, Arif I. Sarwat, and Saroj
Biswas. Smart Grid Security: Threats, Challenges, and Solutions. http:
//arxiv.org/abs/1606.06992, 2016.

[SSIPD] Samsung SmartThings Supported IoT Products (Devices). https://www.
smartthings.com/products. [Online; accessed January-2020].

[ST17] Biljana L Risteska Stojkoska and Kire V Trivodaliev. A Review of In-
ternet of Things for Smart Home: Challenges and Solutions. Journal of
Cleaner Production, 140:1454–1464, 2017.

[Sym18] Symantec. Sandworm Windows Zero-day Vulnera-
bility Being Actively Exploited in Targeted Attacks.

209

https://github.com/SmartThingsCommunity
https://github.com/SmartThingsCommunity
http://docs.smartthings.com/en/latest/tools-and-ide/logging.html
http://docs.smartthings.com/en/latest/tools-and-ide/logging.html
http://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/overview.html
http://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/overview.html
http://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/overview.html
http://arxiv.org/abs/1606.06992
http://arxiv.org/abs/1606.06992
https://www.smartthings.com/products
https://www.smartthings.com/products

https://www.symantec.com/connect/blogs/sandworm-windows-zero-
day-vulnerability-being-actively-exploited-targeted-attacks, 2018. [On-
line; accessed January-2020].

[TAA15] K. Tazi, F. Abdi, and M. F. Abbou. Review on Cyber-physical Security
of the Smart Grid: Attacks and Defense Mechanisms. In 2015 3rd Inter-
national Renewable and Sustainable Energy Conference (IRSEC), pages
1–6, Dec 2015.

[TDS+19] V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and M. Gu-
rusamy. DEFT: A Distributed IoT Fingerprinting Technique. IEEE In-
ternet of Things Journal, 6(1):940–952, Feb 2019.

[The10] The Smart Grid Interoperability Panel - Cyber Security Working Group.
Introduction to NISTIR 7628: Guidelines for Smart Grid Cyber Secu-
rity. http://www.nist.gov/smartgrid/upload/nistir-7628_total.

pdf, Sept 2010. [Online; accessed January-2020].

[TZL+17] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xi-
anzheng Guo, and Patrick Tague. SmartAuth: User-Centered Authoriza-
tion for the Internet of Things. In 26th USENIX Security Symposium
(USENIX Security 17), pages 361–378, Vancouver, BC, 2017. USENIX
Association.

[U. 14] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor and Y.
Makris. Counterfeit Integrated Circuits: A Rising Threat in the Global
Semiconductor Supply Chain. Proceedings of the IEEE, 102(8):1207 –
1228, July 2014.

[URC+13] A. S. Uluagac, S. V. Radhakrishnan, C. Corbett, A. Baca, and R. Beyah.
A Passive Technique for Fingerprinting Wireless Devices with Wired-side
Observations. In Communications and Network Security (CNS), 2013
IEEE Conference on, pages 305–313, Oct 2013.

[U.S10] U.S. Food & Drug Administration. Class II Special Controls Guidance
Document: Tissue Adhesive with Adjunct Wound Closure Device In-
tended for the Topical Approximation of Skin - Guidance for Industry
and FDA Staff. https://www.fda.gov/MedicalDevices/ucm233027.htm,
Nov 2010. [Online; accessed January-2020].

210

http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf
http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf

[U.S18] U.S. Food & Drug Administration. Classify Your Medical Device.
https://www.fda.gov/medicaldevices/deviceregulationandguidance/
overview/classifyyourdevice/, Aug 2018. [Online; accessed January-2020].

[VBC14] J. Valente, C. Barreto, and A. A. Crdenas. Cyber-Physical Systems Attes-
tation. In 2014 IEEE International Conference on Distributed Computing
in Sensor Systems, pages 354–357, May 2014.

[WD16] Steve Watson and Ali Dehghantanha. Digital Forensics: the Missing
Piece of the Internet of Things Promise. Computer Fraud & Security,
2016(6):5–8, 2016.

[WDY+19] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A.
Gunter. Charting the Atack Surface of Trigger-Action IoT Platforms. In
Proceedings of 26th ACM Conference on Computer and Communications
Security, 2019.

[WHBG18] Qi Wang, Wajih Ul Hassan, Adam J. Bates, and Carl Gunter. Fear and
Logging in the Internet of Things. In Network and Distributed Systems
Symposium (NDSS), Feb 2018.

[Wik] Wikipedia. https://dumps.wikimedia.org/wikidatawiki/entities/.
[Online; accessed January-2020].

[Win] Wink. https://www.wink.com/. [Online; accessed January-2020].

[WL13] W. Wang and Z. Lu. Survey Cyber Security in the Smart Grid: Survey
and Challenges. Computer Networks, 57(5):1344–1371, April 2013.

[X. 12] X. Li, I. Lille, X. Liang, R. Lu, X. Shen, X. Lin and H. Zhu. Securing
Smart Grid: Cyber Attacks, Countermeasures and Challenges. IEEE
Comm. magazine, 50:38–45, 2012.

[XWP14] Teng Xu, James B Wendt, and Miodrag Potkonjak. Security of IoT
Systems: Design Challenges and Opportunities. In IEEE Computer-Aided
Design, 2014.

[XZSH16] Q. Xu, R. Zheng, W. Saad, and Z. Han. Device Fingerprinting in Wireless
Networks: Challenges and Opportunities. IEEE Communications Surveys
Tutorials, 18(1):94–104, Firstquarter 2016.

211

https://dumps.wikimedia.org/wikidatawiki/entities/
https://www.wink.com/

[Y. 12] Y. Yan, Y. Qian, H. Sharif and D. Tipper. A Survey on Cyber Security
for Smart Grid Communications. IEEE Communications Surveys and
Tutorials, 14:998–1010, 2012.

[Y. 16] Y. Obeng, C. Nolan and D. Brown. Hardware Security Through Chain
Assurance. In Design, Automation and Test in Europe Conf. and Exhi-
bition (DATE), pages 1535 – 1537, Dresden, March 2016. IEEE.

[YCW+14] L. Yang, P. A. Crossley, A. Wen, R. Chatfield, and J. Wright. Design and
Performance Testing of a Multivendor IEC61850 #x2013;9-2 Process Bus
Based Protection Scheme. IEEE Transactions on Smart Grid, 5(3):1159–
1164, May 2014.

[YMA+16] Q. Yang, Rui Min, D. An, W. Yu, and X. Yang. Towards Optimal PMU
Placement Against Data Integrity Attacks in Smart Grid. In 2016 Annual
Conference on Information Science and Systems (CISS), pages 54–58,
March 2016.

[ZDLZ14] Zhe Zhou, Wenrui Diao, Xiangyu Liu, and Kehuan Zhang. Acoustic
Fingerprinting Revisited: Generate Stable Device ID Stealthily with In-
audible Sound. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages 429–440, New
York, NY, USA, 2014. ACM.

[ZH15] Shams Zawoad and Ragib Hasan. FaIoT: Towards Building a Forensics
Aware Eco System for the Internet of Things. In Services Computing
(SCC), 2015 IEEE International Conference on, pages 279–284. IEEE,
2015.

[ZJS+11] David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and
David Wetherall. TaintEraser: Protecting Sensitive Data Leaks Using
Application-level Taint Tracking. SIGOPS Operating Systems Review,
2011.

[ZM16] Y. Zhou and Z. Miao. Cyber Attacks, Detection and Protection in
Smart Grid State Estimation. In 2016 North American Power Symposium
(NAPS), pages 1–6, Sept 2016.

[ZM17] L. Zhou and Y. Makris. Hardware-based On-line Intrusion Detection
via System Call Routine Fingerprinting. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, pages 1546–1551, March
2017.

212

[ZMR17] Eric Zeng, Shrirang Mare, and Franziska Roesner. End User Security &
Privacy Concerns with Smart Homes. In USENIX SOUPS, 2017.

213

VITA

LEONARDO BABUN

2004 B.S., Telecomm. and Electronics Engineering
Universidad de Oriente
Santiago de Cuba, Cuba

2013 - 2015 M.S., Electrical Engineering
Florida International University
Miami, Florida

2017 NSF Cybercorps Scholarship for Service
Florida International University
Miami, Florida

2018 Cybersecurity Researcher
Department of Homeland Security (DHS)
Arlington, Virginia

2019 Cybersecurity Researcher
Johns Hopkins APL
Laurel, Maryland

2016 - 2020 M.S., Computer Engineering
Florida International University
Miami, Florida

2016 - 2020 Doctoral Degree
Florida International University
Miami, Florida

SELECTED PUBLICATIONS, PATENTS, AND INVENTION DISCLOSURES

L. Babun, H. Aksu, L. Ryan, E. Bentley, K. Akkaya, and A. S. Uluagac, ”Z-IoT: Pas-
sive Device-class Fingerprinting of Zigbee and Z-wave IoT Devices”, IEEE ICC, 2020.

L. Babun, H. Aksu, A. S. Uluagac, A System-level Behavioral Detection Framework
for Compromised CPS Devices: Smart-Grid Case, ACM TCPS, 2019.

B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel, and A. S. Ulu-
agac, Information Tracking in Commodity IoT, Usenix Security Symposium, 2018.

A. K. Sikder, L. Babun, and A.S. Uluagac, AEGIS: A Context-aware Security Frame-
work for Smart Home Systems, ACSAC, 2019.

214

L. Puche, L. Babun, and A. S. Uluagac, HDMI-Walk: attacking HDMI configura-
tion networks via CEC one step at a time, ACSAC, 2019.

J. Myers, L. Babun, E. Yao, S. Helble, and P. Allen, MAD-IOT: Memory Anomaly
Detection for the Internet of Things, Workshop on Impact of Artificial Intelligence
on IoT, IEEE GLOBECOM, 2019.

F. Naseem, L. Babun, C. Kaygusuz, J. Moquin, C. Farnell, M. Alan, and A. S.
Uluagac, CSPoweR-Watch: A Cyber-resilient Residential Power Management Sys-
tem, IEEE GreenCom, 2019.

K. Denney, E. Erdin, L. Babun, and A. S. Uluagac, USB-based Insider Threat Pre-
vention through Hardware-Assisted Anomaly Detection, EAI SecureComm, 2019.

L. Babun, Z. B. Celik, A. S. Uluagac, G. Tang, and P. McDaniel, Verifying IoT
Safety and Security in Physical Spaces, IEEE S&P Magazine, 2019.

L. Babun, H. Aksu, M. Conti, G. Tolomei, and A. S. Uluagac, Advertising in the
IoT Era: Vision and Challenges, IEEE COMMAG, 2018.

J. Lopez, L. Babun, H. Aksu, and A. S. Uluagac, A Survey on Function and System
Call Hooking Approaches, Springer HASS, 2017.

L. Babun, H. Aksu, and A. S. Uluagac, Identifying Counterfeit Smart Grid Devices:
A Lightweight System Level Framework, IEEE ICC, 2017.

L. Babun, H. Aksu, A. S. Uluagac, A Method of Resource-Limited Device and De-
vice Class Identification using System and Function Call Tracing Techniques, Per-
formance, and Statistical Analysis, U.S. Patent and Trademarks Office (U.S. Patent
10,242,193).

L. Babun, H. Aksu, A. S. Uluagac, Detection of Counterfeit and Compromised Devices
using System and Function Call Tracing Techniques, U.S. Patent and Trademarks Of-
fice (U.S. Patent 10,027,697).

C. Kaygusuz, L. Babun, H. Aksu, A. S. Uluagac, A Method for the Detection of Com-
promised Computing Devices with Machine Learning and Convolution Techniques, in-
vention disclosure submitted to Florida International University, 2018.

L. Babun, A. K. Sikder, Abbas Acar, and A. S. Uluagac, A Method for Automatic
Evaluation and Modification of Smart Applications to Enable Comprehensive Forensic
Analysis for Smart Settings, invention disclosure submitted to Florida International
University, 2018.

215

	On-device Security and Privacy Mechanisms for Resource-limited Devices: A Bottom-up Approach
	Recommended Citation

	INTRODUCTION
	Research Purposes
	Research Problem
	Significance of the Study
	Organization of the Dissertation

	PRELIMINARIES
	Overview of Cyber-Physical Systems
	CPS Device-class Identification
	System-level Smart Grid Substation Architecture
	Behavioral Analysis of Smart Grid Devices
	Genuine Smart Grid Devices
	Compromised Smart Grid Devices
	Behavioral Analysis of Smart Grid Devices
	Classes of Smart Grid Devices
	Open-source Design Approach
	Extracting Operations from Smart Grid Devices

	Resource-limited App Taint Sources and Sinks
	Sources of Sensitive Information in IoT Apps
	Functions to Leak Information in IoT Apps

	IoT Application Context
	Generic Smart Environment Architecture
	Smart App Structure

	LITERATURE REVIEW
	Identification of Resource-limited Devices
	Device-class Fingerprinting
	Device-host Fingerprinting
	Behavioral-based Device Fingerprinting

	Detecting Compromised Resource-limited Devices in CPS
	Security Challenges of Cyber-physical Systems
	Detection of Compromised Resource-limited Devices
	Call Tracing Techniques for Security Applications

	Resource-limited Device Application Analysis
	Static Analysis of IoT Applications
	Dynamic Analysis of IoT Applications

	Digital Forensics on Resource-limited Device Data
	Forensic Data Collection from the Smart Environment
	Smart Data Logging

	HOST-BASED RESOURCE-LIMITED DEVICE CLASS IDENTIFICATION
	Introduction
	Differences from Existing Works.

	Threat Model and Use Case
	Problem Scope

	Overview of S&F
	Device Feature Acquisition
	Challenge-Response Approach
	Parametric Call List (PCL)
	Device Performance Index (DPI)

	Device Signature Generation
	Ground Truth Devices - Learning Phase
	Signature Correlation and Decision - Prediction Phase
	Performance Evaluation
	Testbed Implementation
	Performance Metrics

	Performance of S&F during the Learning Phase
	Performance of S&F during the Prediction Phase
	Overhead Introduced by S&F
	Summary and Benefits
	Conclusion

	DETECTION OF COMPROMISED RESOURCE-LIMITED DEVICES
	Introduction
	Differences from Existing Works

	Adversary Model
	Overview of the Detection Framework
	Probability of Detecting a Compromised Device
	Learning Process
	Detection Process
	Decision Process

	Performance Analysis and Discussion
	Evaluation with a Realistic Smart Grid Testbed
	Detection Performance
	Performance Metrics
	System Overhead
	Benefits and Features

	Conclusion

	SECURITY AND PRIVACY ANALYSIS OF RESOURCE-LIMITED DEVICE APPLICATIONS
	Introduction
	Differences from Existing Works

	IoT Privacy Survey
	Survey Results
	Summary of Findings
	Example IoT Privacy Survey Questions

	Problem Statement and Threat Model
	Approach Overview
	Understanding Leakage in IoT Apps
	Terminology Used

	IoTWatcH
	Code Instrumentor
	IoTWatcH Analyzer
	Response to App Data Leaks
	IoTWatcH API

	 IoTWatcH's Implementation Details
	Performance Evaluation
	Evaluation Metrics
	Assigning Privacy Labels
	Performance of IoT String Classification
	Analysis of Data Leaks in IoT Apps
	Overhead Analysis

	Discussion
	Conclusion

	FORENSICS ANALYSIS OF RESOURCE-LIMITED DEVICE DATA
	Introduction
	Differences from Existing Works

	Problem and Threat Model
	Problem Definition
	Assumptions and Definitions
	Threat Model

	IoTDots
	Forensically-valuable features in IoTDots
	IoTDots Modifier (ITM)
	IoTDots Analyzer (ITA)

	Forensic Evidence Detection in IoTDots
	IoTDots Data Characterization
	Analytical Model used in IoTDots
	Data Binarization in IoTDots

	Performance Evaluation
	IoTDots Implementation
	Performance Metrics
	Forensic Activity Detection from Users
	Detection of Forensic Behavior from Users
	Detection of Forensic Behavior from Apps
	System Overhead

	Summary and Benefits
	Conclusion

	CONCLUDING REMARKS AND FUTURE WORK
	Bibliography
	VITA

