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Resum

Davant de convincents observacions experimentals que ens diuen que el model estàndard és

incomplet, és just i necessari considerar la manera d’anar més enllà. Dos exemples d’aquestes

observacions són la quantitat de matèria fosca i l’asimetria bariònica observades a l’univers,

fet que ens permet afirmar que l’univers no pot ser copsat només amb el model estàndard i

la relativitat general. Aixı́ doncs, poden existir noves partı́cules que interactuı̈n amb el model

estàndard, tant si tenen fases CP per explicar l’asimetria bariònica, com si reuneixen les condi-

cions suficients per ser candidates a matèria fosca.

Aquestes partı́cules podrien ser descobertes en futurs experiments, ja sigui a través de la

seva producció directa als col·lisionadors a escales d’energia entre 1 i 10 TeV (ATLAS i CMS

al LHC), o de forma indirecta a baixes energies per mitjà de processos de sabor (LHCb, Belle

II, Bes III i NA62). Els processos de sabor permeten explorar efectes de nova fı́sica molt més

enllà del lı́mit cinemàtic dels col·lisionadors, però en general no permeten identificar la seva

font concreta, encara que ens permeten posar els fonaments per saber per on hem de començar

a construir models de nova fı́sica.

De fet, estem vivint en temps molt interessants en el camp de la fı́sica de sabor perquè re-

centment s’han observat tensions respecte el model estàndard en tests de universalitat de sabor

del leptó als col·lisionadors, proporcionant indicis experimentals a baixes energies de possibles

efectes d’una nova teoria a altes energies. Aquestes tensions són conegudes com les anomalies

de sabor, i per aquesta raó, en aquesta tesi ens centrem en l’estudi de l’impacte de les anomalies

de sabor (o anomalies B) dins del sector de sabor del model estàndard de fı́sica de partı́cules.

Després d’una breu introducció sobre els objectius i la motivació d’aquest treball, al Capı́tol 2

introduı̈m el model estàndard de fı́sica de partı́cules, tot explicant les tensions rellevants de la

teoria amb els experiments tant en els decaı̈ments de b → sµ+µ− com b → cτν, comentem

breument les possibles solucions que involucren nova fı́sica, aixı́ com els seus principals avan-

tatges i inconvenients.
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Primer de tot ens centrem en un model amb nous escalars i fermions pesats, on només tenim

en compte acoblaments tipus esquerra amb les partı́cules del model estàndard. Considerem dos

possibles models: el primer, amb un nou escalar i dos fermions vectorials, mentre que el segon

conté dos escalars i un fermió vectorial. L’objectiu d’aquest model és explicar les tensions en les

dades de b → sµ+µ− juntament amb el moment magnètic anòmal del muó aµ, ambdós induı̈ts

a nivell d’un bucle en sengles models. Llistem els lligams rellevants i mostrem que els models

són capaços de resoldre les anomalies a 2σ, baldament es necessita un acoblament gran dels

muons. En el cas de b→ sµ+µ−, lligams severs provinents de les oscil·lacions Bs −Bs poden

ser alleujats si els nous fermions són de tipus Majorana. Aquesta part correspon al Capı́tol 3.

Posteriorment, ja que no es pot explicar aµ només amb acoblaments tipus esquerra, al

Capı́tol 4 construı̈m un model amb nous escalars i fermions, permetent la presència de acobla-

ments tipus dreta, i llistem els coeficients de Wilson rellevants per b→ sµ+µ− aixı́ com també

els observables que actuen com a lligams per qualsevol nombre de noves partı́cules. Per tal

d’il·lustrar aquest model genèric, presentem un model de quarta generació de quarks i leptons

del model estàndard, i utilitzem tots els observables calculats de forma genèrica per aquest.

Amb aquest model podem explicar les tensions amb l’experiment de b→ sµ+µ− i de aµ, sorte-

jant tots els lligams amb la forçosa presència tant d’acoblaments tipus esquerra com tipus dreta.

El segon tipus de model que explorem al Capı́tol 5 és una extensió del model estàndard amb

leptoquarks escalars. En aquest cas, calculem les contribucions dels decaı̈ments Z → `` and

W → `ν per cada leptoquark escalar amb l’aproximació més enllà del logaritme, i mostrem

que els termes finits suposen un 20% del total de la contribució per masses del leptoquark de

m∆ < 1.5 TeV. A més a més mostrem el seu impacte fenomenològic en un model amb un singlet

S1 i un triplet S3. A part d’això, també comentem que l’oscil·lació Bs−Bs s’ha d’implementar

amb cura ja que és un dels lligams més importants, i també ho il·lustrem el seu paper clau en el

model amb S1 + S3. Per acabar construı̈m tres models diferents amb S1iS3, i fem un ajust del

model a les dades experimentals actuals després de la conferència de Moriond 2019.

Finalment realitzem un escrutini del procés b→ s`` en el marc d’un model de dos doblets de

Higgs. Calculem tots els coeficients de Wilson rellevants i efectuem una comparació de la teoria

a altes energies i a baixes energies, mostrant que és necessari mantenir els moments externs

diferents de zero pels operadors escalar i pseudoescalar. Realitzem una anàlisi fenomenològica

del model amb Br(Bs → µ+µ−) i Br(B → Kµ+µ−) a q2 alt, on tenim controlades les incerteses

hadròniques. Aquesta part la desenvolupem al Capı́tol 6.
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Abstract

With compelling experimental evidence that the Standard Model is incomplete, it is necessary

to consider how it should be extended. Two examples of such evidences are the amount of

dark matter and baryon asymmetry observed in the Universe, which point towards a Universe

that cannot be understood solely in terms of the Standard Model and General Relativity. Thus,

new particles interacting with the Standard Model ones may exist which carry out CP phases to

explain the baryon asymmetry or gather the required conditions to be dark matter candidates.

These new particles could be discovered in future particle experiments, either as directly

produced at colliders at the energy scales between 1 to 10 TeV (ATLAS and CMS at LHC), or

indirectly observed at low energies via flavor processes (LHCb, Belle II, Bes III, and NA62).

Flavor processes can probe new physics effects well beyond the colliders kinematical limit, but

typically cannot identify their specific source although they set guide-lines in order to build new

physics models.

Actually, we are living interesting times in flavor physics because recently lepton flavor

universality tests in colliders have reported tensions with the Standard Model, providing an

experimental hint at low energies of the effect of a new high energy theory. These tensions are

known as flavor anomalies and that is why in this thesis we focus on the study of the impact

of the flavor anomalies (or B-anomalies) on the flavor sector of the Standard Model of particle

physics. In Chapter 2 we first introduce the Standard Model of particle physics and list the

relevant tensions of the theory with the experiments in the b → sµ+µ− and b → cτν decays,

commenting in a brief manner the possible solutions involving new physics, as well as the main

advantages and inconveniences of each new physics scenario.

We first focus in a model with new heavy scalars and fermions were we only account for

left-handed couplings to the Standard Model particles. We consider two possible models: one

with an additional scalar and two vector-like fermions and another with two additional scalars

and one vector-like fermion. The purpose of this model is to solve the tensions in b → sµ+µ−
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data, together with the anomalous magnetic moment of the muon aµ, which are induced at loop-

level in both models. We list the relevant constraints and show that the models are able to solve

the anomalies at 2σ level, albeit a relatively large coupling of the muons is required. In the case

of b → sµ+µ−, stringent constraints arising from Bs − Bs mixing can be relaxed if the new

fermions are considered Majorana particles. This part is explained in Chapter 3.

Then, since we cannot explain aµ with only left-handed couplings, in Chapter 4 we construct

a model with new scalars and fermions allowing also for right-handed couplings, were we list

the relevant Wilson coefficients of b → sµ+µ− as well as the relevant observables acting as

constraints for any number of new scalars and fermions. In order to illustrate this generic

approach we supplement the Standard Model with a fourth generation of quarks and leptons,

using all the computed observables for this concrete model. With this model we can explain

b → sµ+µ− data and aµ avoiding all the constraints if we have the presence of both left- and

right-handed couplings.

The second kind of model that we explore is an extension of the Standard Model with

scalar leptoquarks, and it can be found in Chapter 5. In this case, we compute the Z → ``

and W → `ν contributions for each one of the scalar leptoquarks at next-to-leading-logarithm

approximation, and show that the finite terms can account for 20% of the total contribution

for leptoquark masses of m∆ < 1.5 TeV. We also show their phenomenological relevance in

a model with a singlet S1 and a triplet S3, where our computation pushes the fit towards a

better explanation of data. Besides, we comment on the fact that the Bs − Bs mixing has to be

implemented carefully as it is one of the main constraints that was missing in earlier studies of

these kind of models, and we also illustrate its key role in the S1 + S3 model, since it spoils the

pure left-handed scenario with 2018 data. At the end we construct three different models with

S1 and S3, and show that it is possible fit them to the present data after Moriond conference

2019, since the new value for RD(∗) is closer to the Standard Model.

Finally, we scrutinize the b→ s`` process in the framework of a two Higgs doublet model.

We compute all the relevant Wilson coefficients performing the matching of the full theory with

the low energy theory showing that it is necessary to keep the external momenta for the scalar

and pseudo-scalar operators. This is the first time computation of a proper matching including

all the relevant operators. We perform a phenomenological analysis of the model with the

Br(Bs → µ+µ−) and Br(B → Kµ+µ−) at high q2, where we have control of the hadronic

uncertainties. This scenario is developed in Chapter 6.
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Chapter 1

Introduction: Aim and Motivation

The Standard Model (SM) of particle physics is, without any doubt, one of the greatest theories

in science. No other theory has been tested with such a precision, scrutinized so intensely that

even the loop corrections have been experimentally verified to unprecedented accuracy, and no

other theory has such a predictive power. Among all of the successes the recent Higgs boson

discovery by ATLAS [1] and CMS [2] at CERN signified the closure of the SM particle content.

However, the SM is not the final theory of nature. The first clear phenomenon that SM can-

not explain is gravity, as it only encompasses electromagnetic, weak and strong interactions. We

know for certain that our Universe exhibits gravitational interaction, and the recent observation

of gravitational waves implies that there has to be a connection of gravity and quantum physics

which goes beyond the scope of the SM.

Another proof that the SM is not complete is that it cannot account for the presence of dark

matter and dark energy. During the last century, cosmology and astrophysics, via very different

experimental inputs, starting from imprints in the cosmic microwave background radiation to

the large scale structures, galaxy clusters, dwarf-spheroidal galaxies and even in our own Milky

Way, have shown that approximately 85% of the matter that interacts gravitationally is not

predicted by the SM, nor interacts via known strong, weak or electromagnetic interactions.

That is why it is called dark matter and its particle nature remains unknown. Moreover, the

Universe is in continuous accelerated expansion related to the vacuum energy, the amount of

which the SM cannot explain with current observations. The energy needed for the universe

to expand is called dark energy, and to explain this phenomena one has to go beyond the SM

(BSM).

An additional issue that cannot be explained within the SM is the asymmetry between parti-
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Chapter 1. Introduction: Aim and Motivation

cles and anti-particles in the Universe. At some point of the history of the universe, the number

of particles became larger than the number of antiparticles in such a way that the universe that

we see is made of baryonic matter. This predominance of matter is quantified through the

baryon-to-photon ratio ηB ' 6× 10−10 via cosmological observations. The SM indeed predicts

the CP violating processes that set such an asymmetry via the Cabibbo-Kobayashi-Maskawa

(CKM) matrix phase and the quantum chromodynamics (QCD) vacuum angle, but again, the

amount of CP violation is too small to reproduce the actual quantity of matter observed in the

Universe. Hence, there must exist new sources of CP violation beyond the SM that can explain

this asymmetry.

However, the most clear signal that the SM has to be extended in what the particle physics

is concerned is that neutrinos have been reported to be massive experimentally. While the

SM predicts only left-handed massless neutrinos, the experimental observation of oscillations

among different types of neutrinos proves that they should have mass, suggesting that there

should be some kind of new physics (NP) related to the existence of right-handed neutrinos,

or any kind of physics BSM that provides mass to the neutrinos. Besides, the mechanism that

gives mass to neutrinos remains unknown, and the models attempting to solve this problem

predict these particles to be of Dirac type or Majorana, as the nature of the neutrino as a Dirac

or Majorana fermion is yet to be discovered.

The neutrinos are also a key piece in another theoretical problem of the SM which is often

referred to as the flavor puzzle. This issue refers to the pattern of the fermion masses (quarks

and leptons) in the SM that have different types of a quantum number called flavor, which rely

among very different energy scales. As an example, the top quark has a mass of order 105

MeV while the lightest quark, the up quark, is of order of MeV. Something similar occurs in the

leptons where the tau lepton is much heavier than the electron or the neutrinos. The origin of

the apparent mass hierarchy is unclear and it is not explained by the SM, as it takes the fermion

masses (related to the so called Yukawa couplings) as an external input of the theory. Since

this fact is quite problematic, many theoretical physicists have struggled to find a model of NP

which could explain the masses of the fermions and their values, as well as the mixing among

different families of quarks (via CKM matrix) and leptons (via Pontecorvo–Maki–Nakagawa-

Sakata (PMNS) matrix). We also do not understand why there are three families of fermions.

These flavor puzzles have been studied since many years assuming the principle of so called

minimal flavor violation (MFV) [3, 4, 5, 6, 7] which assumes that all of the CP violating effects

and mixing comes from the Yukawa terms of the SM. In the past decade, however, a series of
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measurements in the flavor sector (including lepton flavor universality (LFU) tests) related to

the B-meson decays, carried out in the LHCb [8, 9, 10, 11] and Belle [12, 13] experiments,

reported tensions with respect to the SM predictions, setting for the first time a strong hint of

lepton flavor universality violation (LFUV), thus questioning the reliability of MFV. This set of

observables that do not agree with the SM predictions are known as the flavor anomalies and

their possible theoretical explanation via NP models is one of the main goals of this thesis.

In general, the effects of NP can be experimentally explored via direct and/or indirect

searches. In direct searches a new particle needs to be produced in an accelerator, and hence it

can be detected by a peak or by an excess in various spectra, due to the mass of the new particle.

This is how the W and Z have been detected, as well as the Higgs boson in the first run of the

LHC in ATLAS and CMS. The indirect searches consist in looking for a deviation of a certain

observable in an established theory such as the SM, which predicts a certain value for a given

observable, and if a discrepancy between theory and experiment is observed, it can be attributed

to the effects of BSM physics. This has already been done in the past with the Fermi theory of

weak interactions [14], where in order to explain the observed neutron to proton decay, the W

boson was predicted (but not directly observed) to be the mediator of that decay, with a larger

mass than the neutron and the proton. Similiarly the observation of B0 − B0 mixing at low

energy scales (1∼5 GeV) was a clear indication of a very large top quark mass (Λ ∼ 170 GeV),

long before Tevatron was able to reach the tt̄-production threshold. In order to construct new

interactions we perform an operator product expansion (OPE) [15] in powers of the NP scale

1/Λ. For example, if we consider the SM an effective theory we could make an expansion as

Leff = LSM +
∑
i

ci
Λ2
Oi (1.1)

where the ci are the effective coefficients or Wilson coefficients and Oi are the operators of

mass dimension six. The following terms in the expansion are operators of higher dimensions

further suppressed by an extra 1/Λ2 term. The leading NP effects are expected to come from

terms proportional to 1/Λ2. The great advantage of the effective theory is that one can deduce

the effective coefficients ci/Λ2 from experiment, and then look for a NP model capable of

explaining their value. In our case we will make use of a low-energy effective field theory

below the electroweak (EW) scale which is formed by 4-fermion operators. This means that

the heavier degrees of freedom such as the top quark and the massive gauge bosons will be

integrated out. An example of an amplitude of a certain process involving NP contributions
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Chapter 1. Introduction: Aim and Motivation

obtained from Leff in (1.1) would read

A =
cSM

v2
+
cNP

Λ2
, (1.2)

where the first term encodes the SM contribution from LSM with v = 246 GeV, while the

second term accounts for the NP effects at energies E � Λ, where the ci coefficients are

represented with a single NP coupling cNP . It is thus appealing to find observables in the SM

wich are forbidden at tree-level or CKM-suppressed, ensuring that cSM ∼ 0, such as flavor-

changing neutral current (FCNC) transitions between quarks and leptons or meson mixing.

These low energy observables can then probe, via quantum effects, NP scales up to v/
√
cSM.

As an illustration, theBs−Bs oscillation in the SM is proportional to
√
cSM ∼ |Vts|/4π ∼ 10−3,

which means that assuming the NP contribution with cNP ' 1, one could probe up to Λ ∼ 103

TeV. That strategy is the one followed in this thesis to describe the flavor anomalies.

This work is structured as follows: We first remind the reader of the general aspects of the

SM and explain the flavor anomalies in both the b → s and in b → c transitions. Interpreting

flavor anomalies in terms of NP is discussed in the next chapters. The possible explanation of

some of them via the addition of new heavy scalars and vector-like fermions is elaborated in

Chapters 3 and 4, and in terms of scalar leptoquarks (LQs) in Chapter 5. Chapter 6 is related to

the study of b → sµ+µ− decays in one of the most famous extensions of the SM, the so called

two Higgs doublet model (2HDM).
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Chapter 2

Standard Model and Flavor Anomalies

As mentioned in the introduction, from 2013 to this day, the measurements of the exclusive

b → sµ+µ− processes at LHCb and Belle revealed tensions by several standard deviations

between the SM predictions and the experimental results. Angular analyses of B → K(∗)µ+µ−

and Bs → φµ+µ− [16, 17], as well as the LFU tests RK(∗) = Br(B → K(∗)µ+µ−)/Br(B →
K(∗)e+e−), indicated important departures from the SM [8, 10, 11, 18]. Combined global fits

to the available b→ sµ+µ− data [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] suggest

that these tensions might have their common origin in NP. i.e. physics BSM. Furthermore,

from 2012, in the exclusive b → cτν channels, the measured observables RD(∗) = Br(B →
D(∗)τν)/Br(B → D(∗)`ν) have been reported to be larger than predicted in the SM [33, 12, 34,

35, 36]. These measurements are in tension with the SM and are often referred to as the Flavor

Anomalies or B-anomalies, since the b quark decays are involved in all of them.

These anomalies can be classified in two groups: the b→ s anomalies, which are mediated

by the FCNC and loop suppressed in the SM, and the b → c anomalies, which are revealed in

the charged current processes and occur at tree-level in the SM. The aim of this chapter is to

introduce the SM of particle physics and summarize its features, taking special attention in the

flavor sector. In the second part we explain the two types of flavor anomalies, and discuss their

theoretical impact.

5



Chapter 2. Standard Model and Flavor Anomalies

2.1 Standard Model

The SM of particle physics is a gauge theory based in the interactions generated by the SM

gauge symmetry group

GSM = SU(3)c × SU(2)L × U(1)Y , (2.1)

where the SU(3)c group accounts for strong interactions and the c stands for color, the SU(2)L×
U(1)Y accounts for EW interactions, with the L standing for left-handedness and the Y for hy-

percharge. At lower energies, the SU(2)L ×U(1)Y symmetry is broken to U(1)em which is the

abelian group that describes the electromagnetic interaction.

2.1.1 Gauge Sector and Electroweak Symmetry Breaking

In the SM each interaction requires the existence of a spin-1 gauge field, which is often referred

to as the interaction carrier or the gauge boson mediator. For SU(3)c there are 8 gauge bosons

called gluons which account for the strong interactions and are massless, while the strength of

this interaction is encoded in the gauge coupling gs. The SU(2)L × U(1)Y requires 4 massless

gauge bosons, with the couplings g and g′ respectively. Since this group is broken due to the

Higgs mechanism [37] (also known as Brout-Englert-Higgs Mechanism), we end up with three

massive gauge bosons W± and Z, mediating the weak interactions, and the massless gauge

boson mediating the electromagnetic interaction, the photon.

The physical process that gives mass to some gauge bosons is called the EW symmetry

breaking and the key piece for that to occur is the spin 0 scalar particle Higgs boson. The Higgs

boson is a colorless SU(2)L doublet and has a hypercharge of Y = 1/2.

The Lagrangian of the SM gauge sector is written as

Lgauge = −1

4
Tr(F i

µνF
i,µν) , (2.2)

and encodes the kinetic term as well as the self-interactions of the gauge bosons where F i
µν

stands for the field strength tensor. The interactions of the gauge bosons are defined with the

covariant derivative

Dµ = ∂µ + igs
λa
2
Ga
µ + ig

σi
2
W i
µ + ig′Y Bµ , (2.3)

where the first term accounts for the kinetic term, the second term accounts for SU(3)c inter-

actions, with Ga
µ denoting the 8 gluon fields (a = 1, . . . , 8) and λa are the Gell-Mann matrices

6



2.1. Standard Model

acting in the color space. The last two terms stem for the EW interactions with the W i
µ being

the three gauge bosons of SU(2)L and σi the Pauli matrices (i = 1, 2, 3), while the Bµ is the

U(1)Y gauge boson with Y being the hypercharge of the field in which the covariant derivative

is applied. The field strength tensor F i
µν in Eq.2.2 can be defined then through the covariant

derivative

F i
µν =

i

gi
[Dµ, Dν ] , (2.4)

with gi = {gs, g, g′}. In particular, for each interaction this tensor reads

Bµν = ∂µBν − ∂νBµ for U(1)Y , (2.5)

W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijW
j
µW

k
ν for SU(2)L and (2.6)

Gi
µν = ∂µG

i
ν − ∂νGi

µ + gsfabcG
b
µW

c
ν for SU(3)c . (2.7)

In order to define the massive gauge boson Zµ and the massless photon Aµ after EW symmetry

breaking, we implement the rotation

Aµ = sin θWW
3
µ + cos θWBµ

Zµ = cos θWW
3
µ − sin θWBµ , (2.8)

with the Weinberg angle defined as tan θW = g′/g, and we also redefine the W boson to its

mass basis W±
µ = (W 1

µ ∓W 2
µ)/
√

2. This simple rotations do not give mass to the gauge fields,

thus in order for the Z and the W to acquire mass, let us define the Higgs Lagrangian with the

complex scalar field φ

LHiggs = (Dµφ)†(Dµφ) + µ2φ†φ− λ

4
(φ†φ)2 (2.9)

with φ = (φ+, φ0) being the components under SU(2)L. Since µ and λ are defined positive the

Higgs acquires a vacuum expectation value (vev) that can be parametrized as

〈φ〉 = (0, v/
√

2) (2.10)

where v = 246 GeV sets the EW scale. This parametrization of the vev allows to redefine the

Higgs field as

φ = (φ+, v/
√

2 + h) (2.11)
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Chapter 2. Standard Model and Flavor Anomalies

with 〈φ+〉 = 〈h〉 = 0. The vev is the responsible for the gauge bosons to acquire mass. Indeed

after an appropiate rotation of the gauge fields defined in (2.8), the mass terms for the gauge

bosons read

Lgauge mass =
1

4
v2g2W+

µ W
−µ +

1

2
v2(g2 + g′2)ZµZ

µ + h.c , (2.12)

where the mass terms of the Lagrangian are mW = gv/2 and mZ =
√
g2 + g′2 v/2, whereas

photon field Aµ does not acquire mass.

2.1.2 Fermion Sector and Flavor Physics

The fermion content of the SM consists of three types of quarks of spin 1/2

Qi
L = (uL, dL)i = (3, 2, 1/6) diR = (3, 1,−1/3) uiR = (3, 1, 2/3) , (2.13)

and also three types of leptons of spin 1/2 (considering non-interacting right-handed neutrinos)

LiL = (νL, eL)i = (1, 2,−1/2) eiR = (1, 1,−1) , (2.14)

where the numbers in the parenthesis stem for the representation of the field under (SU(3)c,

SU(2)L, U(1)Y ), while the i label is the family or generation index (often referred to as flavor

index), and in the SM i = 1, 2, 31. Before the EW symmetry breaking, the fermions of the SM

are massless and the Lagrangian encoding the kinetic terms and interactions reads

Lfermion = i
∑

fermions

ψ̄i /D ψi , (2.15)

where the sum includes all the quarks and leptons with flavor ”i” and /D = Dµγ
µ, with γµ being

the Dirac matrices. From this Lagrangian we can define a global symmetry such as

GF = U(3)QL × U(3)uL × U(3)dR × U(3)LL × U(3)eR (2.16)

since we have 3 identical copies of each fermion. This is the flavor symmetry of the SM, which

we know that it is broken since the experiments have measured remarkable differences among

fermion masses. This breaking is induced by the Yukawa terms arising from the interaction of

1The flavor quantum number gives also names for the quarks or leptons in diferent generations: di = {d, s, b},
ui = {u, c, t} and ei = {e, µ, τ}
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2.1. Standard Model

the fermions with the Higgs field

LYukawa = (Yd)ij Q̄
i
Lφ d

j
R + (Yu)ij Q̄

i
Lφu

j
R + (Ye)ij L̄

i
Lφ e

j
R + h.c. , (2.17)

where the Yu,d,e Yukawa couplings are matrices 3x3 in the flavor space. Here we can rotate all

the fields in order to diagonalize the Yukawas using unitary transformations U such as

ψL → UψLψL ψR → UψRψR , (2.18)

and for each yukawa matrix

Yd → UdLydU
†
dR

Yu → UuLyuU
†
uR

Ye → UeLyeU
†
eR

(2.19)

where each y is a diagonal matrix. Introducing these rotations to the Yukawa Lagrangian and

setting, without loss of generality, UQL = UdL and ULL = UνL we have

LYukawa = (yd)ij Q̄
i
Lφ d

j
R + (U †dLUuLyu)ij Q̄

i
Lφu

j
R + (U †νLUeLye)ij L̄

i
Lφ e

j
R + h.c. , (2.20)

where we can define V †CKM ≡ U †dLUuL which is the Cabbibo-Kobayashi-Maskawa matrix2.

Then, after the Higgs acquires its vev, the mass terms of the fermions are generated after one

single rotation of the upper SU(2)L component of quarks uL → V †CKMuL
3

LEWSB
Yukawa =

yd√
2
d̄LdR +

yu√
2
ūLuR +

ye√
2
ēLeR + h.c. , (2.21)

where the masses are now diagonal matrices defined as m{u,d,e} = y{u,d,e}v/
√

2. The rotation

implemented in Eq. 2.21 has a phyiscal impact in the gauge part only in the W interaction with

the fermions also known as charged currents (CC)

LCC =
ig√

2
VCKMW

µūLγµdL + h.c. (2.22)

whereas the interaction of fermions with the Z boson or neutral currents remains flavor diago-

nal. All in all, the SM flavor sector is completely unconstrained and is described by 6 quark + 3

2If we were considering right-handed neutrinos we would also have an analogous matrix UPMNS ≡ U†νLUeL ,
which is the Pontecorvo–Maki–Nakagawa–Sakata matrix.

3The same rotation applies in the up component of the lepton doublets if we have right-handed neutrinos.
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Chapter 2. Standard Model and Flavor Anomalies

lepton masses + 4 CKM parameters = 13 parameters without PMNS and neutrino masses. The

goal of flavor physicists is to find a symmetry realized at high scale that make us understand the

structure of the flavor sector. We can summarize the SM fermion content in the following table

SU(3) SU(2)L U(1)Y

QL 3 2 1/6

uR 3 1 2/3

dR 3 1 −1/3

LL 1 2 −1/2

eR 1 1 −1

(2.23)

2.2 Flavor Anomalies

As we stated in the introduction of this Chapter, some tensions in flavor observables have been

reported by many experiments referred as flavor anomalies or B-anomalies. Our purpose in

this section is to describe these anomalies by dividing them in two types b → s and b → c

anomalies. We explore their scope and define proper effective Hamiltonians in order to account

for possible NP scenarions.

2.2.1 b→ s Anomalies

b → s transitions can only be generated through loop diagrams in the SM. The corresponding

loop suppression makes all the related observables very useful in order to probe for new particles

exchanged in the loops therefore to test for possible presence of NP. With the purpose of testing

LFU, the community proposed to measure RK(∗) [38]

R
[q21 ,q

2
2 ]

K(∗) ≡
Br(B → K(∗)µ+µ−)

Br(B → K(∗)e+e−)
(2.24)

where the two partial branching ratios are integrated between the dilepton invariant masses

q2
1 and q2

2 , with q2 = (pB − pK(∗))2. In the SM, RK(∗) is very close to one, and since it is

constructed as a ratio of branching fractions in the low q2-region, the theoretical error due to

non-perturbative QCD is very reduced because of the cancelation of hadronic form factors.

LHCb measured RK in Run 1 [8] and in Run 2 combined with more Run 1 data [11] obtaining
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2.2. Flavor Anomalies

on average

R
[1,6]
K = 0.846+0.060

−0.054(stat)+0.016
−0.014(syst) , (2.25)

where the first uncertainty accounts for the statistics and the second refers to systematic error

and the invariant dilepton mass is in GeV2. This is to be compared with the theoretical estimate

RSM
K = 1.000(1) [38, 39] where most of the error bar stems from the QED corrections. This

measurement has therefore a 2.5σ discrepancy with respect to the SM, starting an intriguing

tension on b→ s LFU tests.

LHCb also measured RK∗ in two different bins in Run 1 [10]

R
[0.045,1.1]
K∗ = 0.660+0.110

−0.070(stat)± 0.024(syst) ,

R
[1.1,6.0]
K∗ = 0.685+0.113

−0.069(stat)± 0.047(syst) , (2.26)

which amounts to an average tension of above 2.4σ and 2.5σ with respect to the SM, respec-

tively. On the other hand, Belle collaboration [40, 41] reported other measurements of RK∗

where the central value is closer to the SM, but with considerably larger error bars that do not

affect the tension observed by LHCb.

Interestingly, there are some observables such as Br(B → K∗µ+µ−) and Br(B → φµ+µ−)

which also have been reported to have a tension of ∼ 2σ with respect to the SM [16, 17].

These observables are more difficult and involved to compute in the SM because one has to

take care of non-perturbative QCD effects and a careful treatment of the hadronic form factors

is required. In procesess such as B → K∗µ+µ−, the K∗ meson usually also decays to Kπ

mesons, becoming a 4-body decay. This fact allows for scrutinizing B → K∗µ+µ− decay

with not only its branching fraction but also the full angluar distribution, allowing to define

new observables such as P1, P2, P3 or P5′ which have mild hadronic uncertainties[42, 43, 44],

making them very useful to probe for NP. Concretely, the angular observable P ′5 has also been

measured [9, 40] with a discrepancy of ∼ 3σ with respect to the SM.

There is also the parity conserving process Bs → µ+µ− for which the branching fraction

is also very clean from theoretical error and because of that it becomes a key observable when

performing experimental fits. The world average of the branching fraction is [45]

Br(Bs → µ+µ−)
exp

= (3.1± 0.6)10−9 , (2.27)
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b

s

t

W
ℓ

ℓ

γ, Z

W

Figure 2.1: Standard Model contribution to b→ s`` via loop level.

while the current SM averaged branching fraction is [46]

Br(Bs → µ+µ−)
SM

= (3.57± 0.17)10−9 . (2.28)

Also very recently, LHCb collaboration was able to perform the analysis of the baryonic decay

Λ0
b → pK−`` which also involves a b → sµ+µ− transition [47], with the difference that the

process involves Λb-baryons instead of B-mesons. They reported

R−1
pK =

Br(Λ0
b → pK−e+e−)

Br(Λ0
b → pK−µ+µ−)

(2.29)

measured in the q2 = [0.1, 6] GeV2 bin. The prediction in the SM for this observable is

R−1
pK ∼ 1, while they find the ratio to be R−1

pK = 1.17+0.18
−0.16 ± 0.07, which is compatible with

the SM, although the central value points towards the same direction of the other b → sµ+µ−

anomalies. Nonetheless, the theoretical error is huge due to the lack of knowledge of the Λ∗

baryon resonances entering in the invariant mass m(pK).

2.2.2 Effective Theory Description of b→ s``

With all the experimental results one may interpret data as a hint of the presence of BSM

physics. To that effect, it is very useful to construct an effective theory in a model independent

way, using 4-fermion vertices as depicted in Fig. 2.1 which encode all the relevant information

on the b→ s`` transitions. The most general Hamiltonian containing the 4-fermion dimension

6 operators reads

H``
eff = −4GF√

2
VtbV

∗
ts

∑
i

(
CiOi + C ′iO′i

)
+ h.c. , (2.30)
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whereGF is the Fermi constant that sets de strength of weak interactions, VtbV ∗ts being the CKM

matrix factor that appears in the SM contribution, with

O9 =
αEM

4π
(s̄γµPLb)(¯̀γµ`) , O10 =

αEM

4π
(s̄γµPLb)(¯̀γµγ5`) ,

OS =
αEM

4π
(s̄PRb)(¯̀̀ ) , OP =

αEM

4π
(s̄PRb)(¯̀γ5`) ,

OT =
αEM

4π
(s̄σµνb)(¯̀σµνPR`) , (2.31)

where ` = e, µ, τ are the three lepton flavors and αEM the fine structure constant. Besides, One

has to take into account the electromagnetic and the gluonic penguin operators

O7 =
e

16π2
mbs̄σ

µνPRbFµν , O8 =
gs

16π2
mbs̄ασ

µνPRT
a
αβbβG

a
µν . (2.32)

Here, Fµν and Ga
µν are the field strength tensors of the photon and the gluon field, respectively,

and mb is the mass of the bottom quark. The primed operators are obtained by interchanging

L and R. The Ci effective vertices are known as Wilson coefficients and encode all the short

distance (high energy) information about the 4-fermion interaction. To consider NP scenarios,

it is very useful to define

Ci = CSM
i + CNP

i (2.33)

with the exception of the coefficients that are already zero in the SM, for which we omit the NP

label. Fitting all of the b → s`` data results in constraining the Wilson coefficients and gives

a theoretical direction on which kind of NP scenario we need to consider. In that respect, the

one dimensional fits (fits to one parameter) are the most stringent for considering different NP

scenarios. Fits in [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] contain more than 40

such observables, and their results provide useful hints to possible NP scenarios. Currently a

combined discrepancy of more than 4σ with respect to the SM is reported by all groups. The

1-dimensional fits of Ref. [28] prefer the following two scenarios

1. CµNP
9 = −1.03± 0.16 ,

2. CµNP
9 = −CµNP

10 = −0.50± 0.09
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b
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W
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ℓ

Figure 2.2: Standard Model contribution to b→ cτντ via tree level.

The best fit is achieved when NP is coupled to the muon sector4,5, although some LFU con-

tribution to NP is also allowed. The second scenario is very attractive under the theoretical

point of view because it is generated by left handed vector currents, which usually relates to

a simpler and more elegant explanation than other scenarios involving right and left handed

currents. Note, however, that the multi-dimensional fits suggest the presence of a little vector

right-handed contribution (C ′µNP
9 , C ′µNP

10 ), specially if one takes all the observables. In the

models presented in this thesis, we will work assuming the second scenario CµNP
9 = −CµNP

10 ,

although we allow for small right-handed couplings in Chap.4.

2.2.3 b→ c Anomalies

In 2012 BaBar experiment reported on a deviation with respect to the SM in the charged current

processes b→ cτν [33], following on the observables RD and RD∗

RD(∗) ≡ Br(B → D(∗)τ−ν̄τ )

Br(B → D(∗)l−ν̄l)
, (l = e, µ) . (2.34)

In the same way as RK(∗) , these observables have little theoretical uncertainties from the fact

that they are constructed with ratios. They are build to test LFU in charged currents which occur

at tree-level in the SM as we can see in the diagram in Fig. 2.2. The values found by BaBar

were respectively [33]

RD = 0.440± 0.058(stat)± 0.042(syst) ,

RD∗ = 0.332± 0.024(stat)± 0.018(syst) . (2.35)

4We will refer to CµNP
9(10) as C NP

9(10) or simply C9(10) in some chapters in order to ease the notation, as we will
only generate effects to the muon in general. In any other case it will be specified.

5In Refs. [27] and [28], they also suggest the interesting possibility for LFU NP affecting all the leptons plus a
LFUV part affecting the muons. In this thesis we only consider LFUV NP.
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2.2. Flavor Anomalies

Intriguingly, in 2016 the Belle Collaboration [12] also found some discrepancy in these observ-

ables with respect to their SM value. In 2019 Belle presented another measurement which was

still in tension with the SM [13], although the world average discrepancy was a bit reduced. All

in all, combining all of the currently available experimental results for RD(∗) we obtain

RD = 0.340± 0.027(stat)± 0.013(syst) ,

RD∗ = 0.295± 0.011(stat)± 0.008(syst) . (2.36)

In the SM, these processes are carried out via a W boson exchange. Contrary to RK(∗) , the

value of RD(∗) is not 1 in the SM because the tau lepton is much heavier than the electron or the

muon. The results in the SM are [48]

RSM
D = 0.299± 0.003 ,

RSM
D∗ = 0.258± 0.005 . (2.37)

After comparing these numbers with the ones given in Eq. (2.36), we see that these observables

present a tension with the SM of 3.1σ 6. Moreover, LHCb reported a new measurement related

to b→ c`ν decays which is [49]

RJ/ψ ≡
Br(Bc → J/ψτ−ν̄τ )

Br(Bc → J/ψµ−ν̄µ)
= 0.71± 0.17± 0.18 , (2.38)

which is also larger than predicted in the SM RJ/ψ = 0.283± 0.048 computed in Ref [50].

This set of deviations motivates phenomenologists to construct an effective theory for b →
cτν in order to assess the amount of the possible NP contribution to these channels.

2.2.4 Effective Theory Description of b→ c`ν`

With the same spirit as in the b → s`` effective theory, one may construct an effective theory

involving b → c`ν̄` decays. The most general Lorentz invariant parity-conserving effective

Hamiltonian for these transitions reads at the bottom scale

H`ν`
eff =

4GF√
2
Vcb

[
(1 + gVL)OVL + gVROVR + gSLOSL + gSROSR + gTOT

]
+ h.c. , (2.39)

6The discrepancy before the last Belle update in 2019 was of 3.8σ.
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where Vcb is the CKM factor and the 4-fermion operators governing these transitions are given

by

OVL = (c̄γµPLb)(¯̀γµPLν`) , OVR = (c̄γµPRb)(¯̀γµPLν`) ,

OSL = (c̄PLb)(¯̀PLν`) , OSR = (c̄PRb)(¯̀PLν`) ,

OT = (c̄σµνb)(¯̀σµνPLν`) , (2.40)

The couplings gi are Wilson coefficients which encode the contribution of NP for ` = e, µ or τ

since their SM values are gSM
i = 0, for all i = (VL, VR, SL, SR, T ), by construction. Assuming

that the NP is present only in the decay to τ , the one dimensional fits [51, 52, 53, 54, 31, 55, 56,

57, 58], allow for a V − A scenario beyond the SM with the presence of a single coupling gVL .

This feature is similar to the one in b → s anomalies where a left-handed scenario is actually

also preferred. Nonetheless there is also the possibility to obtain a good one dimensional fit

by imposing the combination gSL = ±4gT to the NP at the TeV scale, allowing for real or

imaginary couplings, which can be achieved via right-handed couplings, although this option is

slightly disfavoured in the light of the new Belle result.

2.2.5 Simple Models for the Anomalies

With all the experimental information given in the previous sections one may not claim a dis-

covery of NP since none of the mentioned observables deviates more than 5σ from the SM,

however the B-physics anomalies are probably the largest coherent set of deviations with re-

spect to the SM we have ever seen. For that reason, simplified models attempting to explain all

or some of those flavor anomalies soon appeared on the market.

Those simplified models can address other problems in physics such as the flavor structure

of the Yukawa couplings including the origin of massive neutrinos, try to explain dark matter

abundance, relate the QCD strong CP problem, or solve other tensions of current data with

respect to the SM predictions. This fact makes the work of the community worth the effort to

think of a model that explain the anomalies, even if they end up vanishing. In what follows we

list some of these models that arise from different theoretical motivations and some of which

try to accommodate all the anomalies and others just a subset of them.
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Leptoquarks

LQs are colored objects which can be scalar or vector bosons. They appear naturally in many

grand unified theories (GUTs), as well as in composite models. Since the RK(∗) and RD(∗)

anomalies indeed refer to the semi-leptonic decays, some involving quarks and leptons, LQs

are good candidates to solve the anomalies, and for that reason they draw the attention of the

flavor community from past years to present [59, 60, 61, 7, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 56, 82, 83, 84, 85, 86, 87, 88, 89] 7. Their contribution

to b → sµ+µ− is depicted in the left side of Fig. 2.3 where LQs have to couple to the second

generation of leptons and the 3rd and 2nd generation of down quarks. As for b → cτ ν̄ the LQ

contribution arises from the right diagram in Fig. 2.3, and in this case it has to couple to the

third generation of leptons, the third generation of down quarks and the second generation of

up quarks.

What concerns the b → s anomaly, one needs to generate CµNP
9 = −CµNP

10 which can be

achieved by LQ with left-handed couplings to the quarks and similar happens with the RD(∗)

anomaly. The problem arises when we try to solve both anomalies at the same time. In Ref. [56],

it has been shown that in order to address the anomalies, the only candidate considering one sin-

gle mediator is the U1 vector leptoquark, that can account for RD(∗) > RSM
D(∗) and RK(∗) < RSM

K(∗)

at the same time using only left-handed couplings while passing all constraints arising from

direct searches. This fact has triggered a lot of activity in designing a possible UV comple-

tion , given that U1 is a vector particle not associated to a gauge symmetry realised at O(TeV)

scales. Such examples are the so called PS3 model and the 4321 model [76, 84] which besides

B-anomalies try to address other problems related to flavor physics.

Scalar LQs are a very good alternative in constructing simple models since their scalar

nature makes possible to cancel all the divergences without any explicit UV completion. There

are plenty of works on solving one of the anomalies or just solving a part of them, since they are

not able to account for all the anomalies at the same time when considering one single mediator.

However, the abovementioned cancellation of the divergences has been exploited in order to

construct models with two scalar LQs which can account for the two types of flavor anomalies.

From that point of view there are two combinations of scalar LQs which can accommodate both

types of the B-anomalies:

7In general, LQs adress the anomalies at loop level although there are some cases where the b → sµ+µ−

anomaly is addressed via loop diagrams [90, 91]
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b

µ

LQ

µ

s b

τ
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c

Figure 2.3: Left: Leptoquark contribution to b → sµ+µ− via tree level. Right:Leptoquark
contribution to b→ cτντ via tree level.

• A model with S3 and R2 scalar LQs, with the structure of Yukawa couplings that can be

embedded in a SU(5) GUT scenario [56].

• The combination of S3 and S1 scalar LQs, which cannot be embeddded ina SU(5) GUT

scenario but it can accomodate the anomalous magnetic moment of the muon, (g − 2)µ,

depending on the structure of the Yukawa couplings [74, 80, 92].

Apart from explaining the anomalies, one can explore these models further to explain dark

matter canidates, neutrino masses and CP problems, specially in the UV complete theories

where many new particles need to arise.

Scalar and Fermionic Loop Models

There are many solutions which only focus in one type of anomaly. In this case the so called

scalar and fermionic loop models only try to account for b → sµ+µ− anomalies [93, 94, 95].

The proposal of these kind of models is to generate the contribution to b → sµ+µ− at the loop

level via box diagrams, as in Fig. 2.4, with at least 3 new particles: two scalars and one fermion

or viceversa. This fact resembles the SM behaviour where the FCNC contributions enter at loop

level. In general, these models require introducing a number of new particles extending the SM

and can account for solutions involving left-handed and right-handed couplings, to verify all the

experimental constraints at low and high energies.

As in the LQ case these models are also built to explain other problems such as the muon

anomalous magnetic moment, aµ = (g − 2)µ/2 with a possible chirality enhancement due to

the inclusion of right-handed couplings and some dark matter investigation has been carried out

with neutral scalars or fermions that can accommodate for direct searches limits and dark matter

abundances.
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b
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µ

ΨB
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Figure 2.4: Example of box diagram contributing to b → sµ+µ− at loop level within a generic
model with new scalars and fermions.

Two Higgs Doublet Models

When the Higgs boson was first detected in the LHC in 2012, the idea to extend the Higgs

sector with a 2HDM as embedded in the supersymmetric extensions of the SM, such as Minimal

Supersymmetric SM (MSSM) and next-to-MSSM (NMSSM), triggered a considerable activity

in the community to look for the particles that arise in the 2HDM models. When the flavor

anomalies appeared, this simple extension of the SM was considered by many model builders

with intentions to study the anomalies and predict or constrain the possible mass of other Higgs

particles mediating the interaction. It turns out, however, that with this model it is not possible

to accomodate RK(∗) < RSM
K(∗) at low q2 unless one allows for the presence of right-handed

neutrinos [96, 97, 98]. However, since there are many types of these models which are famous

due to Supersymmetry (SUSY), it is interesting to analyse the b→ sµ+µ− anatomy and explore

which are the constraints imposed to diverse kinds of 2HDM. Moreover, if the tension of RK(∗)

with respect to the Standard Model is reduced, there is the possibility that the branching ratio

of Bs → µ+µ− can be explained with pseudo-scalar operators, making the 2HDM a viable

and attractive scenario of BSM physics. The diagram structure contributing to the b → sµ+µ−

process are depicted on the left side of Fig. 2.5.

In these kind of models, the contribution to b → cτν can be achieved via the interaction of

a charged Higgs (H−) as in the right picture of Fig. 2.5 which can accommodate the anomaly

with both left and right handed couplings.

Z ′ and W ′

One simple way to extend the SM is to add vector bosons that act as mediators of the iteractions

that we want to address, in this case a Z ′ for the b→ sµ+µ− anomaly and a W ′ for the b→ cτν

19



Chapter 2. Standard Model and Flavor Anomalies

b

s

t

H±

µ

µ

νℓ

H±
b

c

H±

ντ

τ

Figure 2.5: Left: Example of box diagram contributing to b→ sµ+µ− at loop level in a 2HDM.
Right: Example of a tree-level diagram contributing to b → sτντ in a 2HDM. In both cases it
is a charged Higgs contribution.
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Figure 2.6: Z ′ contribution to b→ sµ+µ− at tree level and W ′ contribution to b→ sτντ also at
tree level.

process Fig. 2.6. The presence of the new gauge bosons requires the addition of a new gauge

symmetry which has to break into SU(3)c × SU(2)L × U(1)Y and hence the addition of new

scalars acquiring a vev at the NP scale [99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122].

There is also the possibility of only explaining theRK(∗) anomaly with the Z ′ which requires

only an extra U(1) symmetry, simplifying the scenario but paying the price of not being able to

explain RD(∗) . One remarkable feature of these models is that in principle the gauge coupling

to the SM fermions should not be flavor universal, and hence they should have different charge

under the new gauge group. This fact however can be avoided by the addition of a 4th family

of new heavy vector-like fermions which couple to the Z ′ boson, and at the same time couple

to the SM fermions, generating a b→ sµ+µ− contribution with LFU couplings.

These new Z ′ bosons are very constrained in direct detections due to their tree-level contri-

butions, this fact also makes Z ′ models very sensitive to many other indirect constraints.
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Chapter 3

Left-Handed Scalars and Fermions at One
Loop

As stated in the previous Chapter, the FCNCs in the SM arise at loop level. One can use this fact

to motivate building a NP model where the contribution to b→ sµ+µ− anomalies also appears

at loop level. We want to stress that in this chapter we do not aim to explain b → c anomaly,

i.e CC anomaly, since it is impossible to give a sizable effect at loop level, and therefore if this

anomaly is confirmed, one should assume that it comes from another NP source. Explanation

of the anomalies via loop effects, on the other hand, typically leads to correlated imprints on

other observables like the anomalous magnetic moment of the muon (aµ). It is thus appealing

to investigate the possibility of a simultaneous solution of the b → s anomalies and the long-

standing tension in (g−2)µ at the loop level, for example by lightZ ′ bosons [123, 124, 125, 126,

127, 128, 129, 130, 131, 132], leptoquarks [133, 134, 90] or new fermions and scalars [135,

136, 137, 138, 139, 140, 141, 142, 143, 93, 144].

In this chapter, we examine in detail the possibility proposed in Ref. [93] that the anomalies

in the b→ sµ+µ− data and (g − 2)µ are explained by loop effects involving heavy new scalars

and fermions that couple to the SM fermions via Yukawa-like interactions. In order to generate

the Wilson coefficient C9, the new particles must couple to the left-handed SM quark doublets

Q. We study the minimal setup in which the new particles do not couple to right-handed SM

fields, implying C9 = −C10 which is one of the favored patterns for the solution of the b →
sµ+µ− anomalies as pointed out in Sec. 3.2.1. We explore in more detail the phenomenological

consequences in a general class of models: We consider those representations which are realized

in the SM (singlet, fundamental and adjoint) and study also the case of the fermions (scalars)
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being Majorana particles (real scalars).

The chapter is organized as follows: In Sec. 3.1 we define the model and classify the var-

ious representations under the SM gauge group for the new particles. In Sec. 3.2 we give the

formulae for the Wilson coefficients and the observables relevant for our numerical analysis in

Sec. 3.3.

3.1 Setup

In the spirit of Ref. [93], we introduce new heavy scalars and vector-like fermions in such a way

that a one-loop box contribution to b→ sµ+µ− is generated (see Fig. 3.1) in analogy to FCNC

processes in the SM. We will assume that the new particles only couple to left-handed SM

fermions. This assumption minimizes the number of free parameters and is phenomenologically

well motivated because the resulting pattern C9 = −C10 is one of the scenarios that are suited

best for the description of b → sµ+µ− data. To draw the diagram on the left-hand side of

Fig. 3.1, we need a new scalar Φ that couples to both quarks and leptons, and two different

fermionic particles (with different color quantum numbers), one of them coupling to quarks and

one of them to leptons. Alternatively, exchanging the roles played by the scalars and fermions,

we get the diagram on the right-hand side of Fig. 3.1. Therefore, we construct the following

two distinct models:

1. One additional scalar Φ and two additional fermions ΨQ and Ψ` with interactions de-

scribed by the Lagrangian

La)
int = ΓQi Ψ̄QPLQiΦ + ΓLi Ψ̄`PLLiΦ + h.c. . (3.1)

2. Two additional scalars ΦQ and Φ` and one additional fermion Ψ with interactions de-

scribed by the Lagrangian

Lb)int = ΓQi Ψ̄PLQiΦQ + ΓLi Ψ̄PLLiΦ` + h.c.. (3.2)

In Eqs. (3.1) and (3.2), Qi and Li denote the left-handed quark and lepton doublets with family

index i. The box-diagrams contributing to b→ s`+`− and b→ sν̄ν for the model classes a) and

b) are shown in Fig. 3.1. Notice that these diagram structure is the one also depicted in Fig. 2.4

in Chapter 2. Analogous box diagrams induce Bs −Bs mixing (see upper row in Fig. 3.3).
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One-loop contributions to b → s`+`− can also be generated by the crossed box diagrams

shown in Fig. 3.2. Whereas the standard box contributions in Fig. 3.1 derive from the La-

grangian La)
int

(
Lb)int

)
with Φ (Ψ) coupling both to quarks and to leptons, crossed boxes are

induced by a variant La′)int (Lb′)int) of the Lagrangian where Φ (Ψ) couples to quarks and the

charge-conjugated field Φc (Ψc) to leptons. Therefore, in the case of a neutral scalar Φ = Φc

(Majorana fermion Ψ = Ψc) one has La)
int = La′)int (Lb)int = Lb′)int), and both crossed and uncrossed

boxes are present. In the other cases, it turns out that the primed Lagrangians lead to a very sim-

ilar phenomenology1 as the unprimed ones, and so we will only consider the two cases La)
int and

Lb)int in the following, including the possible situation of neutral scalars (Majorana fermions).

Through EWSB, the SM fermions acquire masses, giving rise to the chirality-flipping pro-

cess b → sγ and to non-zero contributions to the anomalous magnetic moment of the muon.

The corresponding diagrams are shown in Fig. 3.4. Note that we do not introduce any additional

source of chirality violation beyond the SM. In particular, the Higgs mechanism does not con-

tribute to the masses of the new heavy particles which are supposed to be exclusively generated

from explicit mass terms in the respective free-particle Lagrangian.

Moving from the weak to the mass eigenbasis of the quarks results in a rotation of the

couplings ΓQi in flavor space in Eqs. (3.1) and (3.2). This rotation is unphysical in our setup

where we consider the couplings ΓQi as independent free parameters. In the mass eigenbasis,

we denote the couplings to muons, bottom- and strange-quarks, as Γµ, Γb and Γs, respectively.

We further assume negligible couplings to the first fermion generation. This assumption allows

for an explanation of the RK(∗) anomaly and moreover weakens the bounds on the masses of

the new particles from direct searches.

Let us now discuss the possible representations for the new particles under the SM gauge

group. To this end, recall that the SM fermions carry the following gauge quantum numbers:

SU(3) SU(2)L U(1)Y

Q 3 2 1/6

u 3 1 2/3

d 3 1 −1/3

L 1 2 −1/2

e 1 1 −1

(3.3)

1Predictions for observables involving only quarks or only leptons are identical for the primed and unprimed
Lagrangians. For b→ s`+`− the impact on our phenomenological analysis consists in a sign change of the Wilson
coefficient C9 = −C10 which can, however, be absorbed by a redefinition of the product of couplings Γ∗sΓb.
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Figure 3.1: Box-diagrams contributing to b→ s`+`− and b→ sνν̄ in case a) and b).

In the case of the non-abelian groups we label the respective representations by their dimension.

Applying this notation, the fundamental representations of SU(3) and SU(2) are indicated by

3 and 2 in the table above, while the corresponding adjoint representations would be labeled as

8 and 3, and singlets are marked as 1.

In the SM, all particles transform under SU(2)L and SU(3) either as singlets, in the fun-

damental, or in the adjoint representation. We thus only consider these three possibilities also

for the transformation of the new heavy particles. The requirement of gauge invariance of the

Lagrangian in Eq. (3.1) or Eq. (3.2) further acts as a constraint on the allowed combinations

of representations for the three new particles. We end up with the following possibilities with

respect to SU(2) and SU(3):

SU (2) ΨQ,ΦQ Ψ`,Φ` Φ,Ψ

I 2 2 1

II 1 1 2

III 3 3 2

IV 2 2 3

V 3 1 2

V I 1 3 2

SU (3) ΨQ,ΦQ Ψ`,Φ` Φ,Ψ

A 3 1 1

B 1 3̄ 3

C 3 8 8

D 8 3̄ 3

(3.4)

The hypercharge Y can be freely chosen for one of the new particles. We define YΦ ≡ X for

the particle Φ in model class a) and YΨ = −X for the particle Ψ in model class b). The values

for the other two particles ΨQ,` respectively ΦQ,` are then fixed from charge conservation in the
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Lagrangian (3.1) or (3.2):

Y ΨQ,ΦQ Ψ`,Φ` Φ,Ψ

1/6 +X −1/2 +X −X
(3.5)

Motivated by the SM charges, we will assume X to be quantized2 in units of 1/6 with −1 ≤
X ≤ 1. After EW symmetry breaking, the electric charge Qem derives from the hypercharge

and the third component of SU(2) according to

Qem = T3 + Y . (3.6)

As we have found six possibilities (denoted by I, II, III, IV, V, V I) for the SU(2) representa-

tions, and four possibilities (denoted by A,B,C,D) for the SU(3) representations, there are in

total 24 scenarios for each model class a) and b). In addition, in each of these scenarios one can

freely choose the value of X .

The primed Lagrangian La′)int (Lb′)int) in principle allows for all SU(2) representations, but

only representation I and IV can give non-zero contributions to b→ sµ+µ− processes since the

corresponding group factors vanish for the other representations. Concerning SU(3) all options

A,B,C,D are permitted (with 3̄ → 3 for Ψ`,Φ` in the cases B and D). The hypercharge of

Ψ`,Φ` would change to 1/2−X . Therefore, the cases with SU(2) ∈ {I, IV }, SU(3) ∈ {A,C}
andX = 0 allow for Φ (Ψ) being a real scalar (a Majorana fermion) contributing to b→ sµ+µ−

and Bs − B̄s mixing. We will put a special emphasis on this situation in our numerical analysis

in Sec. 3.3 because the presence of additional crossed boxes in b → s`` and Bs − Bs (see

Fig. 3.2 and second row in Fig. 3.3) can lead to interesting phenomenological consequences.

3.2 Observables and Bounds on Wilson Coefficients

In the previous section we constructed two classes of NP models aiming at an explanation

of the b → sµ+µ− anomalies through one-loop box contributions. The relevant free model

parameters governing this transition are the couplings Γb, Γs and Γµ together with the masses of

the three new particles, mΦ, mΨQ , mΨ` in case a) and mΨ, mΦQ , mΦ` in case b). Unavoidably,

the Lagrangian in Eq. (3.1) (in Eq. (3.2)) also generates contributions to b→ sνν̄, b→ sγ and

Bs−Bs mixing, and in particular the latter sets an important constraint on the subspace spanned
2The assumption on the quantization of X has no impact on the phenomenological discussion.
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Figure 3.2: Crossed boxes contributing to b→ s`+`− and b→ sνν̄ in case a) (b)) if Φ (Ψ) is a
real scalar (Majorana fermion).

by the couplings Γb, Γs and the masses mΦ, mΨQ (mΨ, mΦQ). Furthermore, depending on the

coupling Γµ and the masses mΦ, mΨ` (mΨ, mΦ`), a contribution to the anomalous magnetic

moment (g − 2)µ of the muon emerges that could have the potential to solve the long-standing

anomaly in this observable. A complete phenomenological analysis must take into account

all these processes. In this section we thus provide the Wilson coefficients needed for their

theoretical description in the models under consideration and derive the experimental bounds

on them.

3.2.1 b→ sµ+µ−

In our models, the only relevant NP contributions to b → sµ+µ− transitions reside inside a

subset of the effective Hamiltonian in 2.30

Hµ+µ−

eff = −4GF√
2
VtbV

∗
ts (C9O9 + C10O10) , (3.7)

with

O9 =
αEM

4π
[s̄γνPLb] [µ̄γνµ] , O10 =

αEM

4π
[s̄γνPLb]

[
µ̄γνγ

5µ
]
, (3.8)

as defined in the previous chapter. These operators receive NP contributions from box diagrams,

photon- and Z-penguins. Since we do not introduce any additional source of SU(2) breaking

compared to the SM, Z-penguin diagrams are necessarily suppressed by m2
b/M

2
Z and we will

neglect them in the following.
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The box contributions are depicted in Fig. 3.1 for both case a) and b). If the new scalar Φ

(fermion Ψ) that couples both to quarks and leptons is in a real representation with respect to

all gauge transformations, i.e. if it is a singlet or in the adjoint representation with respect to

SU(2) and SU(3) and has hypercharge X = 0, one can consider the possibility that it is a real

scalar (Majorana fermion). In this case, also the crossed diagrams (shown in Fig. 3.2) exist and

have to be taken into account. In the models of class a) and b), we have

C
box, a)
9 = −Cbox, a)

10 = −N Γ∗sΓb|Γµ|2
32παEMm2

Φ

(
χη − χMηM

)
F (yQ, y`) ,

C
box, b)
9 = −Cbox, b)

10 = N Γ∗sΓb|Γµ|2
32παEMm2

Ψ

(
χηF (xQ, x`)− χMηMG (xQ, x`)

)
,

(3.9)

with yQ = m2
ΨQ
/m2

Φ, y` = m2
Ψ`
/m2

Φ and xQ = m2
ΦQ
/m2

Ψ, x` = m2
Φ`
/m2

Ψ, respectively. More-

over, we have introduced the abbreviation

N−1 =
4GF√

2
VtbV

∗
ts . (3.10)

The dimensionless loop functions are defined in Appendix C.1 in order to ease the notation of

this chapter. Here we only write their value in the limit of equal masses

F (1, 1) = −G(1, 1) =
1

3
. (3.11)

The SU(2)- and SU(3)-factors η, ηM and χ, χM are tabulated 3 in Tabs. 3.1, 3.2 and Tab. 3.3,

respectively. The term involving the G-function in Eq. (3.9) stems from the crossed box and

is only present if Φ (Ψ) is a real scalar (Majorana fermion). If Φ (Ψ) is a complex scalar

(Dirac fermion), χM and ηM are zero. We have cross-checked our formulae Eq. (3.9) against

Ref. [145] where results had been given for the gluino-squark and the chargino-squark box in

Supersymmetry, corresponding to our representations C-I and A-IV, respectively.

The photon penguin induces a contribution to C9, whereas it does not generate C10 because

3Note that for both the SU(3) and the SU(2) generators we use the canonical normalization [T b, T b] = δab/2,
and that we do not absorb a normalization factor into the couplings Γb,Γs,Γµ. This convention has to be kept in
mind when comparing for instance with SUSY results in the literature since Supersymmetry dictates the normal-
ization of the gluino-squark-quark coupling to be

√
2gsT

a
ij .
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SU (2) η ηM = ηM
BB̄

ηL ηM
L ηBB̄

I 1 1 1 1 1
II 1 − 0 − 1
III 5/16 − 1/4 − 5/16
IV 5/16 1/16 1/16 5/16 5/16
V 1/4 − 1/2 − 5/16
V I 1/4 − 1/2 − 1

Table 3.1: Table of the SU(2)-factors entering the Wilson coefficients for the processes involv-
ing box diagrams. Results are given for the six representations I-VI defined in Eq. (3.4).

SU (2) η7 η̃7 η8 ηaµ η̃aµ η3 η̃3

I −1
3

+X −X 1 −1 +X −X 1 0
II 1

6
+X −1

2
−X 1 −1

2
+X −1

2
−X 0 1

III −3
8

+ 3
4
X 1

8
− 3

4
X 3

4
−7

8
+ 3

4
X 1

8
− 3

4
X 1 −1

4

IV 1
4

+ 3
4
X −1

2
− 3

4
X 3

4
−1

4
+ 3

4
X −1

2
− 3

4
X −1

4
1

V −3
8

+ 3
4
X 1

8
− 3

4
X 3

4
−1

2
+X −1

2
−X 0 1

V I 1
6

+X −1
2
−X 1 −7

8
+ 3

4
X 1

8
− 3

4
X 1 −1

4

Table 3.2: Table of the SU(2)-factors entering the Wilson coefficients for the penguin diagram
processes. Results are given for the six representations I-VI defined in Eq. (3.4).

of the vector coupling of the photon to muons. For the cases a) and b), the C9 contribution reads

C
γ, a)
9 = N ΓsΓ

∗
b

2m2
Φ

χ7

[
η̃7F̃9(yQ)− η7G̃9(yQ)

]
, C

γ, b)
9 = N ΓsΓ

∗
b

2m2
Ψ

χ7 [η7F9(xQ)− η̃7G9(xQ)] ,

(3.12)

where F9, F̃9(x), G9 and G̃9 are defined also in Appendix C.1, where in the simplifying limit of

equal masses we have

F9(1) = − 1

24
, G9(1) =

1

8
. (3.13)

The terms proportional to F9 and F̃9 in Eq. (3.12) stem from the diagram where the photon is

emitted by the scalar Φ(Q), whereas the terms proportional to G9 and G̃9 stem from the diagram

where the photon is emitted by the fermion Ψ(Q). The SU(2)- and SU(3)-factors η7, η̃7 and

χ7 can again be read off from Tabs. 3.1,3.2 and 3.3. In the case where the new scalar and the

new fermion are singlets under SU(2), η7 and η̃7 are simply given by the charges of the new

particles, η̃7 = qΦ and η7 = qΨQ = −1/3 + qΦ for case a), η̃7 = qΨ and η7 = qΦQ = −1/3 + qΨ
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SU (3) χ = χ7 χM χBB̄ χM
BB̄

χ8 χ̃8 χaµ= χZ
A 1 1 1 1 1 0 1
B 1 − 1 − 0 1 3
C 4/3 4/3 11/18 1/9 −1/6 3/2 8
D 4/3 − 11/18 − 3/2 −1/6 3

Table 3.3: Table of the SU(3)-factors entering the Wilson coefficients for the various processes.
Results are given for the four representations A-D defined in Eq. (3.4).

for case b). For higher SU(2) representations, η7 and η̃7 in addition take care of summing the

contributions from each isospin component of the new particles. For the representations C-I

and A-IV, the results of Eq. (3.12) have again been checked against Ref. [145].

Unlike the box contribution, the photon penguin does not involve the muon coupling Γµ but

exclusively depends on the combination Γ∗sΓb/m
2
Φ(Ψ) constrained from b → sγ and Bs − Bs

mixing. We will explicitly demonstrate in Sec. 3.3 that the resulting bounds, together with the

requirement of perturbative couplings Γs and Γb, typically renderCγ
9 negligibly small. The same

statement applies to the Wilson coefficient C7 of the magnetic operator operator O7 (discussed

in Sec. 3.2.4) that contributes to b → s`+`− transitions in the effective theory via tree-level

photon exchange. Therefore, to a good approximation a solution of the b → sµ+µ− anomalies

must proceed in our model via the pattern C9 = Cbox
9 + Cγ

9 ' Cbox
9 ≡ −Cbox

10 = −C10 and

C7 � C9. The current bounds on the generic scenario C9 = −C10, obtained from the combined

fit to b→ sµ+µ− data, are taken from [28]

−0.59 ≤ C9 = −C10 ≤ −0.41 (at 1σ) ,

−0.68 ≤ C9 = −C10 ≤ −0.32 (at 2σ) . (3.14)

These ranges are consistent with the other ones determined in the literature.

3.2.2 b→ sνν̄

Following Ref. [146], we write the relevant effective Hamiltonian as

Hνiνj
eff = −4GF√

2
VtbV

∗
ts C

ij
LOijL , where OijL =

α

4π
[s̄γµPLb][ν̄iγµ

(
1− γ5

)
νj] . (3.15)
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Due to SU(2) invariance, b→ sνν̄ is linked to b→ s`+`−, implying

C
22, a)
L = −N Γ∗sΓb|Γµ|2

32παEMm2
Φ

(
χηL − χMηM

L

)
F (yQ, y`) , (3.16)

C
22, b)
L = N Γ∗sΓb|Γµ|2

32παEMm2
Ψ

(
χηLF (xQ, x`) + 2χMηM

L G (xQ, x`)
)
, (3.17)

with the functions F and G defined again in Appendix C.1 and ηL, ηM
L and χ, χM given in

Tabs. 3.1, 3.2 and 3.3.

Since the different neutrino flavors in the related decays B → K(∗)νν̄ are not distinguished

experimentally, the total branching ratio, normalized to its SM prediction, reads

Rνν̄
K(∗) =

3∑
i,j=1

∣∣CSM
L δij + Cij

L

∣∣2
3 |CSM

L |
2 , (3.18)

where CSM
L ≈ −1.47/ sin2 θW = −6.35 with θW being the weak mixing angle. The current

experimental limits for B → K(∗)νν̄ are [147] (at 90 % C.L.)

Rνν̄
K < 3.9 , Rνν̄

K∗ < 2.7 . (3.19)

While C22
L , given in Eq. (3.17), involves the muonic coupling Γµ, any other coefficient Cij

L

with (i, j) 6= (2, 2) would depend on the couplings Γe, Γτ of the new particles to electrons or

tauons. Since we do not want to make any assumptions on the size of these couplings, we will

implement the bound from B → K(∗)νν̄ according to

∣∣∣∣1 +
C22
L

CSM
L

∣∣∣∣2 ≤ 3∑
i,j=1

∣∣∣∣∣δij +
Cij
L

CSM
L

∣∣∣∣∣
2

≤ 12.9 (at 90% C.L.), (3.20)

leading to the following bound on C22
L :

− 16.5 ≤ C22
L ≤ 29.2 (at 90% C.L.). (3.21)

Since this constraint is more than an order of magnitude weaker than the bound in Eq. (3.14)

on the SU(2)-related coefficient C9 of b → sµ+µ−, we will not consider it in our numerical

analysis.
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b s̄

s̄ b s̄ b

b s̄

Φ

Φ

ΦΦΨQ ΨQ

ΨQ

ΨQ

b s̄

s̄ b

Φ

ΨQ ΨQ

s̄ b

b s̄ΨQ

ΨQ

Φ

Figure 3.3: Loop contributions to Bs − Bs mixing in the case a). The crossed diagrams only
exist if Φ is a real scalar. The case b) is obtained by the replacement Φ→ ΨQ and ΨQ → Φ.

3.2.3 Bs −Bs Mixing

Contributions to Bs − Bs mixing arise from box diagrams mediated in models of class a) by

the scalar Φ and the fermion ΨQ and in models of class b) by the scalar ΦQ and the fermion Ψ

(see Fig. 3.3). If Φ is a real scalar (or Ψ is a Majorana fermion), also the corresponding crossed

boxes have to be taken into account. Since the new particles only couple to left-handed SM

fermions, the effective Hamiltonian only involves one operator:

HBB̄
eff = CBB̄(s̄αγ

µPLbα) (s̄βγ
µPLbβ) , (3.22)

where α and β are color indices. The NP contribution to the Wilson coefficient reads at the TeV

scale

C
a)

BB̄
=

(ΓsΓ
∗
b)

2

128π2m2
Φ

(
χBB̄ηBB̄ − χM

BB̄η
M
BB̄

)
F (yQ, yQ) ,

C
b)

BB̄
=

(ΓsΓ
∗
b)

2

128π2m2
Ψ

(
χBB̄ηBB̄F (xQ, xQ) + 2χM

BB̄η
M
BB̄G (xQ, xQ)

)
,

(3.23)

31



Chapter 3. Left-Handed Scalars and Fermions at One Loop

with the loop functions F and G defined in Appendix C.1 and ηBB̄, ηM
BB̄

and χBB̄, χM
BB̄

given in

Tabs. 3.1, 3.2 and 3.3. For the representations C-I and A-IV, Eq. (3.23) agrees with the results

of Ref.[148] for the gluino-squark and the chargino-squark boxes.

To derive bounds on the Wilson coefficient CBB̄ at the bottom scale, we define the ratio

∆M exp
s

∆MSM
s

=
∣∣∣1 +

C
BB̄

(µb)

CSM
BB̄

(µb)

∣∣∣ , (3.24)

where in this case we compute the coefficients at the bottom scale µb as

CSM
BB̄(µb) =

G2
FM

2
W

4π2
λ2
tη(µb, µt)S0(xt) and CBB̄(µb) = η(µb, µTeV)CBB̄ , (3.25)

where λt = V ∗tsVtb is related to the CKM matrix, S0(m2
t/m

2
W ) = 2.46, and the η(µ1, µ2) encode

the running of the high scale µ2 down to the lower one µ1. We perform the computation at the

µb scale since we can wirte η(µb, µTeV) = η(µb, µt)η(µt, µTeV) which allows for a cancellation

of the running of the top to the bottom scale, giving

∆M exp
s

∆MSM
s

=
∣∣∣1 +

η(µt, µTeV)C
BB̄

G2
FM

2
W

4π2
λ2
tS0(xt)

∣∣∣ , (3.26)

thus we are only left with the running from the TeV to the top scale which can be computed at

leading order as

η(µt, µTeV) =

(
αs(1 TeV)

αs(µt)

)2/7

= 0.95 with 6 flavors. (3.27)

Here for the SM prediction ∆MSM
s , we use the results of Ref. [149], where they take into ac-

count the SM average from FLAG 2019 [48] for the hadronic matrix element f 2
Bs
BBs averaged

with the HPQCD collaboration computation of ∆MSM
s [150] and with another computation

using QCD sum rules [151]. With this value, we find

∆M exp
s

∆MSM
s

= 0.98± 0.02 , (3.28)

i.e. the experimental value ∆M exp
s is below the SM prediction ∆MSM

s by a bit less than 1σ. For
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b s̄ µ µ̄Φ(Q)

Φ(L)Ψ(Q)

Ψ(ℓ)

γ γ

Figure 3.4: Loop contributions to b→ sγ and the anomalous magnetic moment of the muon.

the bound on CBB̄ we finally get

CBB̄ ∈ [−0.6, 0.2]× 10−5 TeV−2 (at 2σ),

CBB̄ ∈ [−0.8, 0.4]× 10−5 TeV−2 (at 3σ) .
(3.29)

Note that the SU(2)L symmetry of the SM links the up-type couplings Γu to the down-type cou-

plings through a CKM rotation. Therefore, non-vanishing couplings to up-quarks are generated

in our model, namely

Γu = VusΓs + VubΓb and Γc = VcsΓs + VcbΓb . (3.30)

These couplings control the size of the contributions to D0 − D̄0 mixing. The corresponding

coefficient CDD̄ is obtained from CBB̄ by replacing Γs → Γu and Γb → Γc in Eq. (3.23).

Since a precise SM prediction for D0 − D̄0 is lacking, we constrain the NP contribution to

CDD̄ by the requirement that it does not generate a larger mass difference than the one measured

experimentally:
|CDD̄| < 2.7× 10−7 TeV−2 (at 2σ),

|CDD̄| < 3.4× 10−7 TeV−2 (at 3σ) .
(3.31)

To obtain these bounds, we used the recent results for the D0 − D̄0 system in Ref. [152] and

lattice inputs from Ref. [153].
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3.2.4 b→ sγ

In our models, b→ sγ is affected by NP contributions to the effective Hamiltonian

Hγ
eff = −4GF√

2
VtbV

∗
ts(C7O7 + C8O8) , (3.32)

with the operators defined in 2.32 as

O7 =
e

16π2
mbs̄σ

µνPRbFµν , O8 =
gs

16π2
mbs̄ασ

µνPRT
a
αβbβG

a
µν . (3.33)

While the operator O7 generates the process b → sγ at tree-level, the operator O8 contributes

via its QCD mixing into O7.

In the cases a) and b) we find the Wilson coefficients

C
a)
7 = N ΓsΓ

∗
b

2m2
Φ

χ7

[
η̃7F̃7 (yQ)− η7F7 (yQ)

]
, C

a)
8 = N ΓsΓ

∗
b

2m2
Φ

η8

[
χ̃8F̃7 (yQ)− χ8F7 (yQ)

]
.

(3.34)

and

C
b)
7 = N ΓsΓ

∗
b

2m2
Ψ

χ7

[
η7F7 (xQ)− η̃7F̃7 (xQ)

]
, C

b)
8 = N ΓsΓ

∗
b

2m2
Ψ

η8

[
χ8F7 (xQ)− χ̃8F̃7 (xQ)

]
,

(3.35)

where the loop functions are given in Appendix C.1, taking the value F7(1) = F̃7(1) = 1/24 in

the limit of equal masses. For the SU(2)- and SU(3)-factors η7, η̃7, η8 and χ7, χ8, χ̃8 we refer

the reader to Tabs. 3.1, 3.2 and 3.3 as usual. As in the case of Cγ
9 , we identify η̃7, η7 with the

charges of the new particles if they are SU(2) singlets. Our results ofC7,8 for the representations

C-I and A-IV are in agreement with the ones of Refs.[154, 155] for the gluino-squark and the

chargino-squark contributions in Supersymmetry.

The most recent experimental result [45] and SM prediction [156, 157] for the branching

ratio of b→ sγ are given by

Br(b→ sγ)exp = (3.32± 0.15)× 10−4 ,

Br(b→ sγ)SM = (3.36± 0.23)× 10−4 .

In order to implement the constraint from b→ sγ on the NP coefficients C7, C8 (defined at the
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high scale µH = 1 TeV), we introduce the ratio 4

Rb→sγ =
Br(b→ sγ)exp

Br(b→ sγ)SM
− 1 = −2.87 [C7 + 0.19C8] = (−0.7± 8.2)× 10−2 ,(3.36)

where the combination C7 + 0.19C8 takes into account QCD effects [156, 157]. Adding the

statistical and the systematic experimental error in quadrature, and combining it linearly with

the theory error linearly, we find −0.17 ≤ Rb→sγ ≤ 0.16 at the 2σ level, being equivalent to

|C7 + 0.19C8| ≤ 0.06 (2σ) . (3.37)

3.2.5 Anomalous Magnetic Moment of the Muon

The anomalous magnetic moment of the muon, aµ ≡ (g−2)µ/2, also receives a NP contribution

in our setup. Using the effective Hamiltonian (see for example [158])

Haµ
eff = −aµ

e

4mµ

(µ̄σµνµ)Fµν , (3.38)

we find

∆aa)
µ =

m2
µ|Γµ|2

8π2m2
Φ

χaµ

[
η̃aµF̃7(y`)− ηaµF7(y`)

]
,

∆ab)µ =
m2
µ|Γµ|2

8π2m2
Ψ

χaµ

[
ηaµF7(x`)− η̃aµF̃7(x`)

]
.

(3.39)

The group factors ηaµ , η̃aµ and χaµ are again given in Tabs. 3.1, 3.2 and 3.3. If the new particles

are SU(2) singlets, we have η̃aµ = qΦ and ηaµ = qΨ` = −1 + qΦ for case a), and η̃aµ = qΨ

and ηaµ = qΦ` = −1 + qΨ for case b). Our result for ∆aµ has been cross-checked for the

representation A-IV by comparison with the chargino-squark and the neutralino-squark results

in Refs. [159, 160].

The experimental value of aexp
µ = (116 592 091 ± 54 ± 33) × 10−11 (where the first error

is statistical and the second systematic) is completely dominated by the Brookhaven experi-

ment E821 [161],but improvements by experiments at Fermilab [162] and J-PARC [163] (see

also [164]) are expected in the future. The SM prediction is given by [165, 166, 167, 168, 169,

170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,

4C7,8 in Eqs. (3.34,3.35) are given in the same sign convention as CSM
7,8 in Refs. [156, 157], where CSM

7 (µH) =

−0.197 and CSM
8 (µH) = −0.098 at leading order in QCD.
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188]5 aSM
µ = (116 591 821±59)×10−11, where almost the entire uncertainty is due to hadronic

effects. The difference between the SM prediction and the experimental value,

∆aµ = aexp
µ − aSM

µ = (270± 85)× 10−11, (3.40)

amounts to a 2.7σ deviation6.

The measurement of RK by LHCb hints towards lepton-flavor universality violation. In

global fits to the full set of b → s`+`− data this manifests itself as a preference for scenarios

with NP contributions |Ce
9 | � |Cµ

9 | [190, 191]. In our model this pattern transforms into

|Γe| � |Γµ|, and for simplicity we assume Γe = 0 in our phenomenological analysis. In the

presence of a non-zero Γe, the transition µ→ eγ is generated in a similar manner as aµ and the

measured branching ratio sets a constraint on the product ΓµΓ∗e.

The decay µ→ eγ is described by the effective Hamiltonian

Hµ→eγ
eff = −Cµ→eγmµ(ēσµνPRµ)Fµν , (3.41)

from which the branching ratio is obtained according to

Br (µ→ eγ) =
m5
µ

4π
τµ|Cµ→eγ|2, (3.42)

where τµ denotes the life-time of the muon. In our models, the Wilson coefficient Cµ→eγ is

directly related to the NP contribution to the anomalous magnetic moment of the muon as

Cµ→eγ =
e

m2
µ

Γ∗e
Γ∗µ

∆aµ. (3.43)

The experimental upper limit [192] is currently given by

Br (µ→ eγ)exp ≤ 4.2× 10−13, (3.44)

which translates into

m2
µ|Cµ→eγ| < 3.9× 10−15 (3.45)

5Here we do not take into account the very recent result of [189] where the value of the SM is compatible with
the experiment, since it carries another problems in EW precision observables.

6Less conservative estimates lead to discrepancies up to 3.6σ
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for the Wilson coefficient. The relation Eq. (3.43) between aµ and µ → eγ then implies that

a solution of anomaly in aµ requires a strong suppression of Γe with respect to Γµ. Already a

minimal shift ∆aµ = 61×10−11, as needed to reduce the tension from 2.7σ to 2.0σ, is consistent

with the bound from µ→ eγ only for |Γe/Γµ| < 2× 10−5.

3.2.6 Zµ+µ− Coupling

Exchanging the photon in the diagrams of Fig. 3.4 with theZ boson, effectiveZqiq̄j andZµ+µ−

vertices are generated. Note that our model does not break the SU(2)L symmetry of the SM and

that the Z boson acts like a U(1)Z gauge boson in neutral-current processes in the absence of

SU(2)L-breaking sources. For this reason the QED Ward identity holds for the NP corrections

to the Zqiq̄j and Zµ+µ− vertices and it follows that the vertex correction and the fermionic field

renormalization for on-shell fermions cancel in the limit q2 → 0 with q being the momentum

carried by the (off-shell) Z boson7. This implies that the NP contribution exhibits a q2/m2
Φ(Ψ)

suppression when the vertex is probed for q2 � m2
Φ(Ψ), rendering the Z-penguin contribution

irrelevant for B decays where q2 = O(m2
b). At LEP, however, the couplings of the Z boson

have been measured for q2 = M2
Z and the less severe suppression of the NP contribution at this

scale together with the high precision of the LEP data could lead to relevant constraints for the

model.

The LEP bounds are most important for the Zµ+µ− coupling because this coupling has been

determined most accurately and, moreover, the corrections involve the coupling Γµ which is re-

quired to be large to solve both the b→ sµ+µ− and the aµ anomalies. As mentioned above, the

Z boson behaves like a heavy photon in the Z penguin contribution and the corresponding for-

mula is thus related to the one of the photon penguin in Eq. (3.12). The correction proportional

to |Γµ|2 to the left-handed Zµ+µ− coupling is given by

δg
a)
Lµ

gSM
Lµ

(q2) =
1

32π2

(
1

1− 2s2
W

)
q2

m2
Ψ

|Γµ|2χZ
[
η̃ZF̃9(y`)− ηZG̃9(y`)

]
,

δg
b)
Lµ

gSM
Lµ

(q2) =
1

32π2

(
1

1− 2s2
W

)
q2

m2
Ψ

|Γµ|2χZ [ηZF9(x`)− η̃ZG9(x`)] ,

(3.46)

where ηZ = η3 +2s2
Wηaµ and η̃Z = η̃3 +2s2

W η̃aµ . The group factors χZ , η3, η̃3 are again given in

7The correction to the self-energy of the Z boson does not cancel but involves the weak gauge coupling and
not the potentially large new couplings Γb,s,µ.

37



Chapter 3. Left-Handed Scalars and Fermions at One Loop

Tabs. 3.1, 3.2 and 3.3, and we have introduced the abbreviation sW = sin θW with θW being the

weak mixing angle. For the representation A.I in case a) (A.II in case b)), our model generates

the same NP contribution to the Zµ+µ− coupling as the model considered in Ref. [63], and we

explicitly cross-checked our formulae Eq. (3.46) for this special case against the corresponding

formula in [63].

From the LEP measurement [193] gexp
Lµ(m2

Z) = −0.2689 ± 0.0011 we infer the following

bound at the 2σ level: ∣∣∣∣∣δgLµgSM
Lµ

(m2
Z)

∣∣∣∣∣ ≤ 0.8% (2σ). (3.47)

3.3 Phenomenological Analysis

The processes described in the previous section depend in our models on five independent free

parameters: the product of couplings Γ∗sΓb and the absolute value of the coupling |Γµ|, as well

as the three masses mΨ(Φ), mΦQ(ΨQ), mΦ`(Ψ`). The decay b → sγ and Bs − Bs mixing, both

exclusively related to the quark sector, are experimentally and theoretically very precise observ-

ables and thus set stringent constraints on the subspace spanned by Γ∗sΓb and mΨ(Φ), mΦQ(ΨQ).

In this section we will address the question whether these constraints still allow to choose |Γµ|
and mΦ`(Ψ`) in such way that a solution of the anomalies in b→ sµ+µ− and aµ is provided.

Since the loop functions that appear in the Wilson coefficients are smooth functions of the

squared mass ratios, the general phenomenological features can in a first approximation be

studied in the limit of equal masses mΨ(Φ) = mΦQ(ΨQ) = mΦ`(Ψ`), reducing the number of free

parameters from five to three. The corresponding analysis will be presented in Sec. 3.3.1. An

exception occurs if Ψ is a Majorana fermion: In this case we encounter negative interference

between the loop functions F and G in the coefficient CBB which can be used to avoid or to

weaken the stringent bound from Bs − Bs mixing in a setup with unequal masses of the new

particles. This possibility will be discussed in Sec. 3.3.2.

3.3.1 Degenerate Masses: mΨ(Φ) = mΦQ(ΨQ) = mΦ`(Ψ`)

Under the assumption of equal masses mΨ(Φ) = mΦQ(ΨQ) = mΦ`(Ψ`), both setups a) and b) give

identical results for all Wilson coefficients and we can discuss them together. We will denote

the common mass as mΨ in the following. As a benchmark point we will assume a mass of 1

TeV which is save with respect to direct LHC searches from Run I and current Run II data. The
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ξBB̄ I II III IV V V I
A 1 (0) 1 5

16
5
16

(
1
4

)
5
16

1
B 1 1 5

16
5
16

5
16

1
C 11

18

(
1
2

)
11
18

55
288

55
288

(
53
288

)
55
288

11
18

D 11
18

11
18

55
288

55
288

55
288

11
18

ξbox
9 I II III IV V V I
A 1 (0) 1 5

16
5
16

(
1
4

)
1
4

1
4

B 1 1 5
16

5
16

1
4

1
4

C 4
3

(0) 4
3

5
12

5
12

(
1
3

)
1
3

1
3

D 4
3

4
3

5
12

5
12

1
3

1
3

Table 3.4: Group factor for Bs − Bs mixing and Cbox
9 for the case equal masses. The number

in brackets are for the case of Majorana fermions or real scalars.

collider signature of our model is similar to the one of sbottom searches in the MSSM if the

fermion is not charged under QCD and electrically neutral. The corresponding mass limits at the

LHC with 13 TeV can reach up to 800 GeV from Atlas and CMS [194, 195]. Note further that

the limits strongly depend on the embedding of the set-up in a more complete theory and that the

bounds can be expected to be significantly weaker in our case since we assume approximately

degenerate mΨ(Φ) ≈ mΦQ(ΨQ) ≈ mΦ`(Ψ`)

It turns out that Bs−Bs mixing imposes very stringent constraints in the (Γ∗sΓb,mΨ)-plane.

This is caused by the fact that CBB̄ is positive and thus increases ∆Ms, pushing it even further

away from the experimental central value. At 2σ, we find

|Γ∗sΓb| ≤ 0.15
1√
ξBB̄

mΨ

1 TeV
, (3.48)

where the combinatorial factor ξBB̄ = χBB̄ηBB̄ − χM
BB̄
ηM
BB̄

, tabulated in Tab. 3.4, can weaken

the bound at most by a factor 1/
√

(ξBB̄)min ≈ 2.3. The constraint heavily affects the photon

penguin contributions toC7 andCγ
9 which depend on the same free parameters Γ∗sΓb andmΨ. In

the most favorable representation, and allowing for hypercharges X ∈ [−1,+1], we find these

contributions to be completely negligible:

|C7 + 0.19C8| ≤ 0.018
1 TeV

mΨ

, |Cγ
9 | ≤ 0.02

1 TeV

mΨ

. (3.49)

As discussed in Sec. 3.2.3, the CKM-induced couplings Γu,c (see Eq. (3.30)) lead to additional

constraints from D0 − D̄0 mixing. Since the impact of Γb entering through Γu and Γc from

Eq. (3.30) is suppressed by small CKM factors (O(λ3) and O(λ2), respectively), the constraint

from D0 − D̄0 mixing can be reduced in a scenario with |Γb| > |Γs|. The choice |Γb| ∼ 1 and

|Γs| ∼ 0.35 saturates the bound from Bs − B̄s mixing on the product Γ∗sΓb, while it leads to
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a suppression by a factor |Vus|2|Γs|2 ∼ 5 × 10−3 of CDD̄ with respect to CBB̄. The constraint

on CDD̄ given in Eq. (3.31) is then automatically fulfilled once the constraint on CBB̄ from

Eq. (3.31) is imposed.

In the case of the box contribution to b → sµ+µ−, the coupling Γµ enters as an additional

free parameter, limited to values Γµ . O(1) in order to ensure perturbativity. The 2σ-bound

from Bs −Bs mixing constrains Cbox
9 = −Cbox

10 to

|Cbox
9 | ≤ 0.05

ξbox
9√
ξBB̄
|Γµ|2

1 TeV

mΨ

, (3.50)

with the group factors ξbox
9 = χη − χMηM given in Tab. 3.4. Considering the maximum value

of the ratio ξbox
9 /
√
ξBB̄, namely 4

√
2/11 ' 1.7 for the representations C-I, C-II and D-I, D-II,

we find from Eq. (3.50) that a solution of the b → sµ+µ− anomalies at the 2σ-level requires a

rather large coupling

|Γµ| ≥ 2.1

√
mΨ

1 TeV
. (3.51)

Let us now turn to the anomalous magnetic moment of the muon. In the limit of equal masses,

the NP contribution is given by

∆aµ = ∓(5.8× 10−12) ξaµ |Γµ|2
(

1 TeV

mΨ

)2

, (3.52)

with ξaµ = χaµ(ηaµ − η̃aµ) in Tab. 3.5. The minus applies to case a) while the plus applies to

case b). In order to end up with a value for aµ that falls within the experimental 2σ range, a

positive NP contribution ∆aµ = 6.2 × 10−10 is needed to have constructive interference with

the SM. This in turn implies the need for a negative (positive) group factor ξaµ for case a)

(b)), which can be accomplished for all representations by choosing an appropriate hypercharge

X ∈ [−1,+1]. Selecting the representation C-II or C-V (C-I) and maximizing the effect in the

anomalous magnetic moment by setting X = 1 (X = −1), we find ξaµ = 16 (ξaµ = −24) and

that aµ can be brought into agreement with the experimental measurement at the 2σ-level for

|Γµ| ≥ 2.6(2.1)
mΨ

TeV
. (3.53)

We see that both the tensions in b → sµ+µ− data and in the anomalous magnetic moment of

the muon, aµ, can be reduced below the 2σ level for NP masses at the TeV scale and a coupling

40



3.3. Phenomenological Analysis

ξaµ I II III IV V V I
A 2X − 1 2X 3

2
X − 1 1

4
(6X + 1) 2X 3

2
X − 1

B 6X − 3 6X 9
2
X − 3 3

4
(6X + 1) 6X 9

2
X − 3

C 16X − 8 16X 12X − 8 12X + 2 16X 12X − 8
D 6X − 3 6X 9

2
X − 3 3

4
(6X + 1) 6X 9

2
X − 3

Table 3.5: Group factors for the various representations entering the anomalous magnetic mo-
ment of the muon.

|Γµ| ≥ 2.1. In light of this large value one might wonder, wether the LEP bounds on theZµ+µ−
coupling discussed in Sec. 3.2.6 could become relevant. Evaluation of Eq. (3.46) gives

δgLµ
gSM
Lµ

(m2
Z) = −0.0006% ξZ |Γµ|2

(
1 TeV

mΨ

)2

, (3.54)

with ξZ = χZ(η̃Z/3 + ηZ) in case a) and ξZ = χZ(ηZ/3 + η̃Z) in case b). For |X| ≤ 1, the

group factor maximally reaches ξZ ∼ 10 and the correction to the Zµ+µ− vertex thus stays two

orders of magnitude below the experimental sensitivity at LEP (see Eq. (3.47)) for masses of

the new particle at the TeV scale.

In order to decide, whether a coupling Γµ of size |Γµ| ≥ 2.1 is still viable, it is further

instructive to study the scale of the Landau pole of this coupling at the one-loop level. This

scale signals the break-down of the perturbative regime. Therefore, it provides an upper limit

on the UV cut-off beyond which the theory needs to be complemented with new degrees of

freedom if perturbativity shall be conserved. The Landau pole is obtained by evaluation of

the renormalization-group equations (RGEs), which were determined at two loop for Yukawa

couplings in a general quantum field theory e.g. in Refs. [196, 197, 144]. For Yukawa-like

couplings beyond the SM, the RGEs depend on the representations of the new particles under

the SM gauge group. We studied the issue of the Landau pole for our models by implementing

some of the possible scenarios in the public code SARAH [198] and found that the running is

dominated by O(Γ2
µ) corrections. For |Γµ| ≤ 2.4, the respective terms in the RGE lead to a

Landau pole at & 103 TeV.

In the case of b→ sµ+µ−, the requirement of a large coupling |Γµ| ≥ 2.1 is a consequence

of the tight constraint from Bs−Bs mixing, and we will discuss in the following the possibility

to relax this constraint by considering non-degenerate masses for the new particles.
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A-I

A-IV

C-I
C-IV

0.1 0.2 0.5 2 5 10
mΦQ/mΨ

-0.1

0.1

0.2

Figure 3.5: The function Hb)
(
mΦQ/mΨ

)
entering CBB̄ for the four Majorana representations

A-I, A-IV, C-I and C-IV. Note that representation C-IV only has a zero crossing for very small
values of mΦQ/mΨ outside the plot range.

3.3.2 Majorana Case with Non-degenerate Masses

In this section, we address the question whether the impact of the constraint from Bs − Bs

mixing can be reduced by considering a non-degenerate spectrum for the masses of the new

particles. In the model classes a) and b), the Wilson coefficient CBB̄ for Bs − Bs mixing is

proportional to the function

Ha)(mΨQ/mΦ) = (χBB̄ηBB̄ − χM
BB̄η

M
BB̄)F (yQ, yQ),

Hb)(mΦQ/mΨ) = χBB̄ηBB̄F (xQ, xQ) + 2χM
BB̄η

M
BB̄G (xQ, xQ), (3.55)

with yQ = m2
ΨQ
/m2

Φ and xQ = m2
ΦQ
/m2

Ψ. Note that both loop functions F and G have a

smooth behavior with respect to their arguments and never switch sign. Therefore, a reduc-

tion of the effect in Bs − Bs mixing by varying the mass ratio mΨQ/mΦ or mΦQ/mΨ is only

possible through a (partial) cancellation between the F - and G-term in the function H . Such

a cancellation can only occur in the model class b) with the additional condition of Ψ being

a Majorana fermion because in all other cases only one loop-function F is present. Among

the various representations, only four permit the Majorana option: A-I, A-IV, C-I and C-IV. In

Fig. 3.5 we show the function Hb)(mΦQ/mΨ) for these four representations in the Majorana

case. Each of the curves has a zero-crossing, given by mΦQ/mΨ = 1, 0.11, 0.13 for A-I, A-IV

and C-I, respectively, while it lies outside the plotted range for C-IV.

42



3.3. Phenomenological Analysis

1 2 3 4 5
1.0

1.5

2.0

2.5

3.0

mΦℓ /mΨ

Γ
μ
=
Γ
s
=
Γ
b


Figure 3.6: Allowed regions for the coupling strength to muon, bottom and strange quarks from
b→ sµ+µ− data as a function ofmΦ`/mΨ for case A-I in scenario b) withmΦQ = mΨ = 1 TeV.
Blue, red and yellow correspond to 1σ, 2σ and 3σ, respectively.

Obviously, choosing a mass configuration that corresponds to the zero of of the function H

completely avoids any constraint from ∆F = 2 processes. Let us study the consequences for

the representation A-I where this situation occurs formΨ = mΦQ . Note that the massmΦ` of the

scalar Φ` has to be split from the one of the other two particles in order to get a non-vanishing

contribution to Cbox
9 . Under the simplifying assumption |Γb| = |Γs| = |Γµ|, we show in Fig. 3.6

as a function of mΦ`/mΨ the generic coupling size needed to explain the b→ sµ+µ− data. We

see that the larger space available in Γ∗sΓb in the absence of the bound from Bs − Bs mixing,

allows to obtain a solution at the 2σ level for a generic coupling size of |Γb| = |Γs| = |Γµ| & 1.6

for a mass splitting mΦ`/mΨ & 2 and mΨ ∼ 1 TeV. The Majorana property of Ψ constrains the

photon penguin contribution because it fixes qΨ = 0 and qΦQ = −1/3, leading to

C7 = −Cγ
9 = −0.005V ∗tsVtb

(
1 TeV

mΨ

)2

. (3.56)

For |Γb|, |Γs| < 3 and mΨ = 1 TeV, we encounter values |C7| = |Cγ
9 | < 0.044, which are too

small to have a relevant impact.

In the case mΦQ/mΨ < 1, a negative NP contribution to ∆Ms is generated, as preferred by

current lattice data. An improvement in Bs − Bs mixing can be achieved simultaneously with
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a solution of the b → sµ+µ− anomalies if a small mass splitting 0.98 . mΦQ/mΨ . 1.0 is

introduced.
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Chapter 4

General Scenario with New Scalars and
Fermions at One Loop

In the previous chapter we focused on solving the b → sµ+µ− anomalies with a simple exten-

sion of the SM containing three fields and left-handed couplings only. However, while RK(∗)

is perfectly accomodated, the anomalous magnetic moment of the muon anomaly required very

large muon couplings since there are no chirality-changing sources which could enhance the

contribution to this observable.

Therefore, we extend in this chapter the analysis of Chapter 3 to include the possibility of

new sources of EW symmetry breaking within the NP sector. In doing so, we are giving the

possibility to have new fields coupling to the right-handed sector of the SM apart from left-

handed one. This new feature allows for an enhancement of the anomalous magnetic moment

of the muon and it can also fit at the same time b→ sµ+µ− data. In fact, while before Moriond

2019 scenarios with left-handed current were in general preferred, now including right-handed

contributions (both in quark and leptonic sectors) can even give a good fit to data [28, 29, 30,

31, 32].

At the same time we generalise the model by considering an arbitrary number of BSM fields

from which we compute the contribution to some of the observables mentioned in 3. We use

these general formulae to test a UV complete example of such a setup with new scalars and

fermions couplings to left- and right-handed SM fermions is a model with a vector-like 4th

generation. With respect to Ref. [199, 200], also aiming at an explanation of the b → s`+`−

anomalies, we add not only a 4th generation of leptons but also of quarks [201, 202, 203, 204]

to the SM.
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s µ

b µ

ΨBΨA

ΦN

ΦM

type a)

b µ

s µΨB

ΨA

ΦM ΦN

type b)

Figure 4.1: Box diagrams contributing to b → sµ+µ− transitions. The diagram on the left is
generated in models in which the fermions couples only to SM quarks or only to SM leptons,
which corresponds to type a). The diagram on the right refers to models with scalars connecting
b to s and µ to µ, i.e. type b).

This chapter is organised as follows: In Sec. 4.1 we define our generic setup, in which new

scalars and fermions couple to SM quarks and leptons via Yukawa-like interactions. There, we

also provide completely general expressions for the formulae of the relevant Wilson coefficients.

We review the corresponding observables together with the current experimental situation in

Sec. 4.2. Our generic approach of Sec. 4.1 is then applied to a specific UV complete model in

Sec. 4.3, which contains a vector-like fourth generation of fermions and a neutral scalar.

4.1 Generic Setup and Wilson Coefficients

In this section we define our generic setup and calculate completely general one-loop expres-

sions for contributions to b→ s processes and the anomalous magnetic moment of the muon.

As outlined in the introduction, in the spirit of the previous chapter, we add to the SM

particle content a NP sector with vector-like fermions ΨA and new scalars ΦM such that b →
sµ+µ− transitions can be generated via box diagrams, as depicted in Fig. 4.1. In this respect, we

generalize the previous analysis by including in addition couplings of new particles to SU(2)

singlet SM fermions. Moreover, we do not impose limitations on the number of fields added to

the SM and allow for couplings of the new sector to the SM Higgs.

In order to generate box diagrams as the ones shown in Fig. 4.1 it is necessary that either

the scalars ΦM,N or the fermions ΨA,B couple both to quarks and leptons, corresponding to case

a) and b), respectively. This means that in diagrams of type a) the amplitudes (before using

any Fierz identities) have the structure (s̄Γb)(µ̄Γµ), while in type b) amplitudes of the form
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(µ̄Γb)(s̄Γµ) are generated. Here, Γ denotes an arbitrary Dirac structure. Since semi-leptonic

operators are commonly given in the form (s̄Γb)(µ̄Γµ), Fierz identities must be used in case b)

in order to transform the expressions to this standard basis. We give the relevant Fierz identities

in Appendix B.

The Yukawa-like couplings of new scalars ΦM and fermions ΨA to bottom/strange quarks

and muons can be parameterized completely generically (below the EW symmetry breaking

scale) by the Lagrangian

Lint =

[
Ψ̄A

(
LbAMPLb+ LsAMPLs+ LµAMPLµ

)
ΦM

+Ψ̄A

(
Rb
AMPRb+Rs

AMPRs+Rµ
AMPRµ

)
ΦM

]
+ h.c. . (4.1)

Here ΨA and ΦM have to be understood as generic lists containing in principle an arbitrary num-

ber of fields, meaning that A and M also include implicitly SU(2) and color indices. There-

fore, the couplings Ls,bAM and Rs,b
AM are generic matrices in (A-M ) space with the restriction that

U(1)EM and SU(3) are respected1.

In the same spirit as in Chap 3, this Lagrangian will not only affect b → sµ+µ− transitions

but also unavoidably generate effects in Bs − B̄s mixing, b → sγ decays, the anomalous mag-

netic moment of the muon aµ as well as Z couplings and decays to SM fermions. Furthermore,

b→ sνν̄ processes and D0− D̄0 mixing can give relevant constraints once SU(2) invariance at

the NP scale is imposed. Therefore, all these processes have to be taken into account in a com-

plete phenomenological analysis. In order to perform such an analysis, the Wilson coefficients

of the relevant effective Hamiltonian must be known. We will calculate them in the following

subsections. Contrary to the previous Chapter, we compute the experimental bounds in another

section since formulae are now more involved.

1Here we only consider coupling to muons in order to explain the anomalies in b → s`+`−. The reason for
this is that in our setup sizable couplings to electrons would in general generate effects in µ → eγ, which would
contradict experimental bounds [192] by orders of magnitude.
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SU(3)
b→ s`¯̀ type a) b→ s`¯̀ type b)

χ
ΨA ΨB ΦM ΦN ΨA ΨB ΦM ΦN

I 3 1 1 1 1 1 3̄ 1 1
II 1 3̄ 3̄ 3̄ 3 3 1 3 1
III 3 8 8 8 8 8 3̄ 8 4/3
IV 8 3̄ 3̄ 3̄ 3 3 8 3 4/3
V 3̄ 3 3 3 3̄ 3̄ 3 3̄ 2

Table 4.1: Table of the possible SU(3) representations that can give an effect in b → s`+`−

or b → sνν transitions via box diagrams. χ denotes the resulting group factor appearing in
Eqs. (4.4)-(4.8) which also enters in b→ sνν transitions.

4.1.1 b→ sµ+µ− and b→ sγ Transitions

The dimension-6 operators governing b → sµ+µ− and b → sγ transitions are contained in the

effective Hamiltonian:

Hµµ
eff = −4GF√

2
VtbV

∗
ts

∑
i

(
CiOi + C ′iO′i

)
+ h.c. , (4.2)

where we focus only in the muon sector

O7 =
e

16π2
mbs̄σ

µνPRbFµν , O8 =
gs

16π2
mbs̄ασ

µνPRT
a
αβbβG

a
µν ,

O9 =
αEM

4π
(s̄γµPLb)(µ̄γ

µµ) , O10 =
αEM

4π
(s̄γµPLb)(µ̄γ

µγ5µ) ,

OS =
αEM

4π
(s̄PRb)(µ̄µ) , OP =

αEM

4π
(s̄PRb)(µ̄γ5µ) ,

OT =
αEM

4π
(s̄σµνb)(µ̄σ

µνPRµ) , (4.3)

with e being the electron charge, αEM the fine structure constant and gs the SU(3) gauge cou-

pling. The primed operators are obtained by interchanging L and R. NP contributions from box

diagrams will generate effects in C(′)
9,10, C(′)

S,P and O(′)
T , while on-shell photon (gluon) penguins

generate C(′)
7(8) and C(′)

9 , and Z-penguins C(′)
9,10.

The box diagrams in Fig. 4.1, result in the following Wilson coefficients (here and in the

remainder of the section, an implicit sum over all NP particles, i.e. A,B,M,N , is understood):

C
box, a)
9 = −N χLs∗ANL

b
AM

32παEMm2
ΦM

[Lµ∗BML
µ
BN +Rµ∗

BMR
µ
BN ]F (xAM , xBM , xNM) ,
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C
box, b)
9 = N χLs∗BML

b
AM

32παEMm2
ΦM

[
Lµ∗ANL

µ
BNF (xAM , xBM , xNM)

−Rµ∗
ANR

µ
BN

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM)

]
, (4.4)

C
box, a)
10 = N χLs∗ANL

b
AM

32παEMm2
ΦM

[Lµ∗BML
µ
BN −Rµ∗

BMR
µ
BN ]F (xAM , xBM , xNM) ,

C
box, b)
10 = −N χLs∗BML

b
AM

32παEMm2
ΦM

[
Lµ∗ANL

µ
BNF (xAM , xBM , xNM)

+Rµ∗
ANR

µ
BN

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM)

]
, (4.5)

C
box, a)
S = −N χLs∗ANR

b
AM

16παEMm2
ΦM

[Rµ∗
BML

µ
BN + Lµ∗BMR

µ
BN ]

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM) ,

C
box, b)
S = N χLs∗BMR

b
AM

16παEMm2
ΦM

[
Rµ∗
ANL

µ
BNF (xAM , xBM , xNM)

+Lµ∗ANR
µ
BN

mΨAmΨB

2m2
ΦM

G(xAM , xBM , xNM)

]
, (4.6)

C
box, a)
P = N χLs∗ANR

b
AM

16παEMm2
ΦM

[Rµ∗
BML

µ
BN − Lµ∗BMRµ

BN ]
mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM) ,

C
box, b)
P = N χLs∗BMR

b
AM

16παEMm2
ΦM

[
Rµ∗
ANL

µ
BNF (xAM , xBM , xNM)

−Lµ∗ANRµ
BN

mΨAmΨB

2m2
ΦM

G(xAM , xBM , xNM)

]
, (4.7)

C
box, b)
T = N χLs∗BMR

b
AML

µ∗
ANR

µ
BN

16παEMm2
ΦM

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM) , (4.8)

C ′box
9,S,T = Cbox

9,S,T (L↔ R) , C ′box
10,P = −Cbox

10,P (L↔ R) , (4.9)
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SU(3) ΨA ΦM χγ χg χ̃g
I 3 1 1 1 0
II 1 3̄ 1 0 1
III 3 8 4/3 -1/6 3/2
IV 8 3̄ 4/3 3/2 -1/6
V 3̄ 3 2 -1 1

Table 4.2: Table of the different SU(3) representations that can give non-zero effects via
photon- and gluon-penguin diagrams to b→ sµ+µ− transitions. χγ denotes the resulting group
factor for the former contribution, while χg and χ̃g represent the resulting group factors for the
latter.

where we have defined

xAM ≡ (mΨA/mΦM )2, xBM ≡ (mΨB/mΦM )2, xNM ≡ (mΦN/mΦM )2 , (4.10)

and

N−1 =
4GF√

2
VtbV

∗
ts . (4.11)

In the equations above, the labels A, B, M and N denote the particle (in case of several repre-

sentations) and also include SU(2) components, while the sum over SU(3) indices is encoded

in the group factors χ. The dimensionless loop functions F and G are defined in Appendix C.1.

Such box contributions are only possible if both color and electric charge are conserved.

While the Wilson coefficients of b → s`` operators are insensitive to the electric charge of the

particle in the box, concerning SU(3), the different possible representations of the new particles

lead to distinct group factors χ in Eqs. (4.4)-(4.8). These group factors are different for type a)

and b) and are given for all the possible representations in Tab. 4.1. Furthermore, crossed box

diagrams can be constructed in some particular cases. We give the corresponding expressions

for such in Appendix C.2.1 for the real scalar (or Majorana fermion) case and in Appendix C.3

for the crossed diagrams arising with complex scalars.

On-shell photon penguins diagrams in Fig. 4.2 affect C(′)
7 while off-shell ones enter Cγ(′)

9 :

C7 = N χγL
b
AM

2m2
ΦM

[
Ls∗AM

(
QΦM F̃7 (xAM)−QΨAF7 (xAM)

)
+Rs∗

AM

4mΨA

mb

(
QΦM G̃7 (xAM)−QΨAG7 (xAM)

)]
, (4.12)
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b (µ) s (µ)ΨA

ΦM

γ

Figure 4.2: Photon-penguin diagrams contributing to b→ sγ transitions and aµ.

Cγ
9 = N χγL

s∗
AML

b
AM

2m2
ΦM

[
QΦM F̃9(xAM)−QΨAG̃9(xAM)

]
, (4.13)

C ′7 = C7 (L↔ R) , Cγ′
9 = Cγ

9 (L↔ R) , (4.14)

where mb is the b quark mass. QΦM and QΨA are the electric charges of the NP fields ΦM and

ΨA, respectively. The conservation of electric charge imposes that QΦM +QΨA = Qd ≡ −1/3.

The color factors χγ , which depend on the SU(3) representations of the new particles in the

loop, are given in Tab. 4.2. The loop functions are defined in Appendix C.1. Note that the terms

proportional to F̃7, G̃7 and F̃9 in Eqs. (4.12)-(4.14) stem from the diagram where the photon

couples to the scalar ΦM , while the terms proportional to F7, G7 and G̃9 stem from the diagram

where the photon couples to the fermion ΨA.

Similarly, the gluon-penguin generates

C8 = N LbAM
2m2

ΦM

[
Ls∗AM

(
χgF̃7 (xAM)− χ̃gF7 (xAM)

)
+Rs∗

AM

4mΨA

mb

(
χgG̃7 (xAM)− χ̃gG7 (xAM)

)]
, (4.15)

C ′8 = C8 (L↔ R) , (4.16)

where the color factors χg and χ̃g for the different possible SU(3) representations are given in

Tab. 4.2.

The contribution of Z-penguins to C(′)
9,10 is given in Sec. 4.1.6 together with a discussion of

Z decays.
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4.1.2 b→ sνν̄

As stated at the beginning of this section, b → sνµν̄µ processes have to be taken into account

once SU(2) invariance at the NP scale is imposed. This implies that, in the generic description

in Eq. (4.1), one has to replace the left-handed muon fields with neutrinos. The box diagrams

generating b→ sνµν̄µ are therefore obtained from Fig. 4.1 by replacing muons with neutrinos.

The effective Hamiltonian describing this process reads (following the conventions of Ref. [146]

as in the previous chapter)

Hνµ
eff = −4GF√

2
VtbV

∗
ts (CLOL + CROR) + h.c. , (4.17)

where

OL(R) =
αEM

4π
[s̄γµPL(R)b][ν̄µγµ

(
1− γ5

)
νµ] . (4.18)

The resulting Wilson coefficients are:

C
a)
L = −N χLs∗ANL

b
AML

µ∗
BML

µ
BN

32παEMm2
ΦM

F (xAM , xBM , xNM) ,

C
b)
L = N χLs∗BNL

b
AML

µ∗
ANL

µ
BN

32παEMm2
ΦM

F (xAM , xBM , xNM) , (4.19)

C
a)
R = −N χRs∗

ANR
b
AML

µ∗
BML

µ
BN

32παEMm2
ΦM

F (xAM , xBM , xNM) ,

C
b)
R = N χRs∗

BNR
b
AML

µ∗
ANL

µ
BN

32παEMm2
ΦM

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM) , (4.20)

where the normalization factor N has been introduced in Eq. (4.11), and the loop functions

F (x, y, z) and G(x, y, z) are defined in Appendix C.1. The colour factor χ is the same as for

b→ sµ+µ− transitions and is given in Tab. 4.1 for the different representations.

4.1.3 ∆B = ∆S = 2 Processes

The presence of Lb,sAM and Rb,s
AM implies NP contributions to the Bs − B̄s mixing which, using

the conventions of Refs. [205, 206], is governed by

HBsB̄s
eff = Ci

5∑
i=1

Oi + C̃i

3∑
i=1

Õi + h.c. , (4.21)
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s b

b s

ΨBΨA

ΦN

ΦM b s

s bΨB

ΨA

ΦM ΦN

Figure 4.3: Box diagrams contributing to Bs − B̄s mixing. Both diagrams arise independently
of the nature of the mediator involved in b→ sµ+µ− transitions.

SU(3) ΨA ΨB ΦM ΦN χBB χ̃BB
I 3 3 1 1 1 0
II 1 1 3̄ 3̄ 0 1
III 3 3 8 8 1/36 7/12
IV 8 8 3̄ 3̄ 7/12 1/36
V 3 3 (1,8) (8,1) -1/6 1/2
VI (1,8) (8,1) 3̄ 3̄ 1/2 -1/6
VII 3̄ 3̄ 3 3 1 1

Table 4.3: Table of the different SU(3) representations that can give a non-zero effect via box
diagrams to Bs − B̄s mixing. χBB and χ̃BB denote the resulting group factors.

with

O1 = (s̄αγ
µPLbα) (s̄βγ

µPLbβ) , Õ1 = (s̄αγ
µPRbα) (s̄βγ

µPRbβ) ,

O2 = (s̄αPLbα) (s̄βPLbβ) , Õ2 = (s̄αPRbα) (s̄βPRbβ) ,

O3 = (s̄αPLbβ) (s̄βPLbα) , Õ3 = (s̄αPRbβ) (s̄βPRbα) ,

O4 = (s̄αPLbα) (s̄βPRbβ) ,

O5 = (s̄αPLbβ) (s̄βPRbα) .

(4.22)

The box diagrams contributing to these above operators are shown in Fig. 4.3. Using the

Lagrangian from Eq. (4.1), one obtains the following results for the coefficients:

C1 = (χBB + χ̃BB)
Ls∗ANL

b
AML

s∗
BML

b
BN

128π2m2
ΦM

F(xAM , xBM , xNM) , (4.23)

C2 = χBB
Rs∗
ANL

b
AMR

s∗
BML

b
BN

64π2m2
ΦM

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM) , (4.24)
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C3 = χ̃BB
Rs∗
ANL

b
AMR

s∗
BML

b
BN

64π2m2
ΦM

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM) , (4.25)

C4 = χBB
Rs∗
ANL

b
AML

s∗
BMR

b
BN

32π2m2
ΦM

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM)

−χ̃BB
Rs∗
ANR

b
AML

s∗
BML

b
BN

32π2m2
ΦM

F(xAM , xBM , xNM) , (4.26)

C5 = χ̃BB
Rs∗
ANL

b
AML

s∗
BMR

b
BN

32π2m2
ΦM

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM)

−χBB
Rs∗
ANR

b
AML

s∗
BML

b
BN

32π2m2
ΦM

F(xAM , xBM , xNM) , (4.27)

C̃1,2,3 = C1,2,3 (L↔ R) . (4.28)

The loop functions F (x, y, z) and G(x, y, z) are defined in Appendix C.1 and the colour factors

χBB and χ̃BB are given in Tab. 4.3 for the different allowed representations. Again, in the

presence of Majorana fermions or real scalars crossed diagrams can be constructed and the

resulting expressions are given in Appendix C.2.2.

4.1.4 D0 − D̄0 Mixing

NP contributions to theD0−D̄0 mixing can be obtained in complete generality (at the low scale)

from Eqs. (4.23)-(4.28) by making the substitutions s→ u, b→ c, introducing couplings Lu,cAM
and Ru,c

AM of new scalars and fermions to up-quarks in straightforward extension of Eq. (4.1).

In the context a UV complete model, SU(2) invariance imposes at the high scale that cou-

plings to left-handed up-type quarks are related to the couplings to left-handed down-type

quarks via CKM rotations. Therefore, working in the down-basis, the “minimal” effect gen-

erated in D0 − D̄0 is induced by the couplings

LuAM = V ∗usL
s
AM + V ∗ubL

b
AM , LcAM = V ∗csL

s
AM + V ∗cbL

b
AM . (4.29)
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SU(3) ΨA ΦM χaµ
I 1 1 1
II (3,3̄) (3,3̄) 3
III 8 8 8

Table 4.4: Table of the different SU(3) representations that can give a non-zero effect to aµ.
χaµ denotes the resulting group factor.

4.1.5 Anomalous Magnetic Moment of the Muon

The anomalous magnetic moment of the muon (aµ ≡ (g−2)µ/2) and its electric dipole moments

(dµ) we find from the diagrams in Fig. 4.2

∆aµ =
χaµm

2
µ

8π2m2
ΦM

[
(Lµ∗AML

µ
AM +Rµ∗

AMR
µ
AM)

(
QΦM F̃7 (xAM)−QΨAF7 (xAM)

)
(4.30)

+ (Lµ∗AMR
µ
AM +Rµ∗

AML
µ
AM)

2mΨA

mµ

(
QΦM G̃7 (xAM)−QΨAG7 (xAM)

)]
,

dµ =
χaµmΨA

8π2m2
ΦM

e (Lµ∗AMR
µ
AM −Rµ∗

AML
µ
AM)

(
QΦM G̃7 (xAM)−QΨAG7 (xAM)

)
, (4.31)

where mµ is the muon mass, χaµ is the colour factor given in Table 4.4, and QΦM and QΨA

are the electric charges of the NP fields ΦM and ΨA, respectively. Analogously to photon-

penguin contributions to b → s transitions, the conservation of electric charge imposes that

QΦM + QΨA = Qµ ≡ −1. Finally, the loop functions F7(x), F̃7(x), G7(x) and G̃7(x) are

defined in Appendix C.1.

4.1.6 Modified Z Couplings

Here, we study the effects of our new particles on modified Z couplings, i.e. on Zµ̄µ, Zb̄b, Zs̄s

and Zs̄b couplings, both for off- and on-shell Z bosons2. We define the form-factors governing

Zf̄f interactions as [208]

− g2

cW
f̄ ′γµ

[
gf
′f
L (q2)PL + gf

′f
R (q2)PR

]
f Zµ + h.c. , (4.32)

2Expressions for Z couplings in generic gauge theories can be found in Ref. [207].
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where f = {b, s, µ}, g2 is the SU(2) gauge coupling, θW the Weinberg angle and q is the Z

momentum. Moreover,

gf
′f
L(R)(q

2) = gSM
fL
δf ′f + ∆gf

′f
L(R)(q

2) (4.33)

with gSM
fL

= (T f3 − Qfs
2
W ) and gSM

fR
= −Qfs

2
W being the Z couplings to SM fermions at tree-

level. The relevant Feynman diagrams are shown in Fig. 4.4. We write the coupling of the Z

boson to the new scalars and fermions as

LZ = − g2

cW
Zµ

(
Ψ̄Aγ

µ
[
gΨ,L
AB PL + gΨ,R

AB PR

]
ΨB + gΦ

MN Φ†M i
↔
∂µ ΦN

)
+ h.c. , (4.34)

where we have introduced the notation a
↔
∂µb = a(∂µb) − (∂µa)b, and with generic couplings

gΨ,L,R
AB and gΦ

MN which can only be determined in a UV complete model in which also the

couplings of the new particles to the SM Higgs are known. Using the generic Lagrangian from

Eq. (4.1), one obtains the following results for the coefficients

∆gf
′f
L (q2) =

χZ L
f ′

BNL
f∗
AM

32π2[
2 gΨ,L

AB δMN
mΨAmΨB

m2
ΦM

GZ(xAM , xBM)− gΨ,R
AB δMNFZ(xAM , xBM ,mΦM )

+gΦ
MNδABHZ(xAM , xAN ,mΨA)− 1

2
(gSMfL + gSMf ′L )δABδMNIZ(xAM ,mΦM )

+ q2

(
gΨ,L
AB δMN

mΨAmΨB

m4
ΦM

G̃Z(xAM , xBM)− 2

3

gΨ,R
AB δMN

m2
ΦM

F̃Z(xAM , xBM)

−1

3

gΦ
MNδAB
m2

ΨA

H̃Z(xAM , xAN)
) ]

, (4.35)

∆gf
′f
R (q2) = ∆gf

′f
L (q2) (L↔ R) , (4.36)

where the loop functions are defined in Appendix C.1, and the colour factor χZ = χγ for

f, f ′ = b, s (see Table 4.2) and χZ = χaµ (see Table 4.4) for f = µ. Here we have set the

masses and momenta of the external fermions to 0 and expanded up to first order in q2 over the

NP scale. If one is considering data from Z decays, Eq. (4.35) has to be evaluated to q2 = m2
Z

while for processes with an off-shell Z (like b→ s`+`−) one has to set q2 = 0.

Note that in the absence of EW symmetry breaking in the NP sector, the contribution of

the self-energies cancel the one of the genuine vertex correction and Eq. (4.35) vanishes for
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Z

ΨA

ΨB

ΦM

fi

fj

Z

ΦM

ΦN

ΨA

fi

fj

Z

ΨA

ΦM

fi

fi

fj

Figure 4.4: Feynman diagrams modifying the Zf̄ifj vertex with fi = s, b, µ.

q2 = 0. Therefore, as noted above, gΨ,L
AB , gΨ,R

AB and gΦ
MN are only meaningful after EW symmetry

breaking and it is not possible to relate them purely to SU(2) × U(1) quantum numbers. In a

specific UV model with a known pattern of EW symmetry breaking, rotation matrices can be

used to relate the couplings before and after the breaking. Consequently, the cancellation of

UV divergences (present in some of the loop functions in Eq. (4.35)) is only manifest after

summation over SU(2) indices, due to a GIM-like cancellation originating from the unitarity of

the rotation matrices. We will give a concrete example of this in Sec. 4.3.

The form-factors in Eq. (4.32) includes Zs̄b couplings generating contributions to C(′)
9,10

C
(′)Z
9 = N πg2

αEMc2
Wm

2
Z

gsbL(R)(q
2 = 0)

(
1− 4s2

W

)
, (4.37)

C
(′)Z
10 = −N πg2

αEMc2
Wm

2
Z

gsbL(R)(q
2 = 0) . (4.38)

Note that these contributions are lepton flavor universal and therefore cannot account for RK

and RK∗ . However, a mixture of lepton flavor universal and violating contributions is phe-

nomenologically interesting [27], especially in the light of the recent Belle and LHCb measure-

ments [28]. In a similar fashion, Zs̄b couplings will also generate the following contributions

to b→ sνν̄ contained in CL(R)

C Z
L(R) = −N πg2

αEMc2
Wm

2
Z

gsbL(R)(q
2 = 0) . (4.39)

Finally, if SU(2) invariance at the NP scale is imposed, the new scalars and fermions couple also

the neutrinos. Hence, contributions to Z → νν̄ and W → µν̄ will arise as well. Concerning

Z → νν̄, gνL(q2 = m2
Z) can be straightforwardly extracted from Eq. (4.35) by appropriate
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replacements and the same is true concerning Wµν̄ couplings.

4.2 Experimental Constraints on Wilson Coefficients

In this section we review the experimental situation and the resulting constraints on the Wilson

coefficients calculated in the previous section.

4.2.1 b→ s Transitions

The semileptonic operators O(′)
9,10, O(′)

S,P and O(′)
T , together with magnetic operators O(′)

7 , con-

tribute to a plethora of b→ s`+`− observables. The corresponding measurements include total

branching ratios of Bs → `+`− [45], of the exclusive decays B → K∗γ [45], B → φγ [209],

the inclusive decayB → Xsγ [45], the angular analyses ofB → K(∗)`+`− [9, 210, 16, 41, 211,

212, 213] (proposed in Refs. [214, 43, 42]) and Bs → φ `+`− [17], and also the ratios RK [11]

and RK∗ [10, 18] measuring LFUV.

First of all, the contributions of scalar operators are helicity-enhanced in the Bs → µ+µ−

branching ratio with respect to the O10 contribution of the SM. This results in the bound [46]

Br(Bs → µ+µ−)exp

Br(Bs → µ+µ−)SM
− 1 =

∣∣∣∣1 +
C10 − C ′10

CSM
10

+
m2
Bs

2mµ(mb +ms)

CP − C ′P
CSM

10

∣∣∣∣2
+
m2
Bs

(m2
Bs
− 4m2

µ)

4m2
µ(mb +ms)2

∣∣∣∣CS − C ′SCSM
10

∣∣∣∣2 − 1 = −0.13± 0.20 ,(4.40)

which excludes sizable contributions to scalar operators (unless there is a purely scalar quark

current) and leads to

|C(′)
S,P | . 0.03 (2σ) , (4.41)

from the updated one-parameter fit of Ref. [215]. Therefore, we neglect the effects of scalar

operators in semi-leptonic B since they anyway cannot explain the corresponding anomalies.

Moreover, the inclusive b→ sγ decay strongly constrains the magnetic operators. From [156,
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157], in the limit of vanishing C ′7,8
3, we have

Br(b→ sγ)exp

Br(b→ sγ)SM
− 1 = −2.87 [C7 + 0.19C8] = (−0.7± 8.2)× 10−2 , (4.42)

leading to, as in Chap. 3,

|C7 + 0.19C8| . 0.06 (2σ) . (4.43)

Here, we used C7,8 at a matching scale of 1 TeV as input. Again, these constraints are so

stringent that the effect of C7,8 on the flavor anomalies can be mostly neglected.

On the other hand, vector operators can explain the b → s`+`− anomalies. We therefore

refer to global fits to constrain C(′)
9,10, where all the relevant observables have been taken into

account [19, 20, 21, 22, 23, 24, 25, 26]. The results of the most recent fits find at the 2σ level

−1.46 ≤ CNP
9 ≤ −0.78 , −0.09 ≤ CNP

10 ≤ 0.57 ,

−0.39 ≤ C ′9 ≤ 1.45 , −0.55 ≤ C ′10 ≤ 0.41 ,

according to Ref. [28] (which is compatible with Refs. [29, 30, 31, 32]).

As explained in Sec. 4.1.2, SU(2) invariance implies the presence of contributions to B →
K(∗)νν̄ decays as well. Since there is no experimental way to distinguish different neutrino

flavors in these decays, one measures the total branching ratio which we normalize to its SM

prediction [146]:

Rνν̄
K(∗) =

Brexp(B → K(∗)νν̄)

BrSM(B → K(∗)νν̄)
=

2(CSM
L )2 + (CSM

L + CL)2 − κ (CSM
L + CL)CR + C2

R

3(CSM
L )2

.

(4.44)

In the case of aK in the final state one has κ ≡ −2, while for theK∗ one gets κ = 1.34(4) [146].

The current experimental limits at 90% C.L. are [147]

Rνν̄
K < 3.9 , Rνν̄

K∗ < 2.7 . (4.45)

3Note that C ′7,8 are less constrained since they do not interfere with the SM. For a more detailed analysis
including primed operators see e.g. Ref. [216].
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4.2.2 Neutral Meson Mixing

The experimental constraint on the Wilson coefficients in Eqs. (4.23)-(4.28) comes from the

mass difference ∆Ms of neutral Bs mesons, see e.g. Ref. [205] (in the case of real Wilson

coefficients). To compare our results with experiments we make a slight different approach

compared to the previous chapter provided that now we are using not just the V − A left-

handed operator but the whole basis including right-handed couplings. The comparison with

the experimental value is very similar but now one has to take into account the new Wilson

coefficient such as

∆M exp
s

∆MSM
s

=

∣∣∣∣∣1 +
3∑

i,j=1

Ri(µb)
ηij(µb, µH)

CSM
1 (µb)

(
Cj + C̃j

)
+

5∑
i,j=4

Ri(µb)
ηij(µb, µH)

CSM
1 (µb)

Cj

∣∣∣∣∣
=

∣∣∣∣∣1 +
0.8 (C1 + C̃1)− 1.9 (C2 + C̃2) + 0.5 (C3 + C̃3) + 5.2C4 + 1.9C5

CSM
1 (µb)

∣∣∣∣∣ ,(4.46)

where Ri(µb) is related to the matrix element of the operators Qi in Eq. (4.22) at the scale µb
by the relation

Ri(µb) =
〈B̄s|Qi(µb)|Bs〉
〈B̄s|Q1(µb)|Bs〉

. (4.47)

The coefficients Ci and C̃i are the ones in Eqs. (4.23)-(4.28), computed at the NP scale µH . The

matrix in operator space ηij(µb, µH) encodes the QCD evolution from the high scale µH to µb,

which we calculated numerically for a reference scale µH = 1 TeV [217]. The matrix elements

in Eqs. (4.46)-(4.47) have been computed by aNf = 2+1 lattice simulation [218], which found

values consistent with the Nf = 2 calculation [153], the recent HPQCD computation [150] and

the recent sum rules results [151]. It is worth mentioning that FLAG 2019 [48] only provides

a lattice average for 〈B̄s|Q1(µb)|Bs〉, which is however dominated by the Nf = 2 + 1 results

from Ref. [218]. Therefore, we decided to employ the results from Ref. [218] in Eqs. (4.46)-

(4.47). The SM value for the Wilson coefficient is CSM
1 (µb) =

G2
FM

2
W

4π2
λ2
tη11(µb,mt)S0(xt) '

7.2× 10−11 GeV−2.

The experimental constraint therefore reads

∆M exp
s

∆MSM
s

= 0.91± 0.08 , (4.48)

computed with the values from Ref. [218] for 〈B̄s|Q1(µb)|Bs〉. This value shows a slight tension
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with the SM as first outlined in Refs. [219, 220]. The tension would be reduced if one considered

the results for the matrix element from Ref. [151]: however, in this case one should rely on a

separate computation for the decay constant, while in Ref. [218] both quantities are computed

together.

Analogously to the Bs system, D0 − D̄0 mixing is constrained by the mass difference of

neutral D0 mesons [152]:

∆M exp
D0

= (0.63+0.27
−0.29)× 10−11MeV . (4.49)

Unfortunately, a precise SM prediction is still lacking in this sector but one can constrain the

NP contribution by assuming that not more than the total mass difference is generated by it.

4.2.3 Anomalous Magnetic Moment of the Muon

From the experimental side, this quantity has been already measured quite precisely [221], but

as stated in the previous chapter further improvements by experiments at Fermilab [162] and

J-PARC [163] (see also [164]) are expected in the future. On the theory side, the SM prediction

has been improved continuously. The current tension between the two determinations accounts

to

∆aµ = aexp
µ − aSM

µ ∼ 270(85)× 10−11 . (4.50)

4.2.4 Z Decays

The main experimental measurements of Z couplings have been performed at LEP [193] (at the

Z pole).
ge, exp
V = −0.03817(47) , ge, exp

A =− 0.50111(35) ,

gµ, exp
V = −0.0367(23) , gµ, exp

A =− 0.50120(54) ,

gτ, exp
V = −0.0366(10) , ge, exp

A =− 0.50204(64) ,

(4.51)

where gV (A) = gL ± gR.
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4.3 4th Generation Model

In this section we propose a model with a vector-like 4th generation of fermions and a new

complex scalar. This will also allow us to apply and illustrate the generic findings of the previous

section to a UV complete model and study the effects in b→ s`+`− data and aµ.

4.3.1 Lagrangian

The Lagrangian for our 4th generation model is obtained from the SM one by adding a 4th

vector-like generation [199, 200] and a neutral scalar

L4th =
∑
i

(
ΓLqiΨ̄qPLqi + ΓL`iΨ̄`PL`i + ΓRuiΨ̄uPRui + ΓRdiΨ̄dPRdi + ΓReiΨ̄ePRei

)
Φ + h.c.

+
∑
C=L,R

(
λUCΨ̄qPC h̃Ψu + λDC Ψ̄qPChΨd + λECΨ̄`PChΨe

)
+ h.c.

+
∑

F=q,`,u,d,e

MF Ψ̄FΨF + κh†hΦ†Φ +m2
ΦΦ†Φ , (4.52)

where i is a family index and h the SM Higgs doublet. The charge assignments for the new

vector-like fermions Ψ = ΨL + ΨR with PL,RΨ = ΨL,R and the new scalar Φ are

SU(3) SU(2) U(1) U ′ (1)

Ψq 3 2 1/6 Z

Ψu 3 1 2/3 Z

Ψd 3 1 −1/3 Z

Ψ` 1 2 −1/2 Z

Ψe 1 1 −1 Z

Φ 1 1 0 −Z

. (4.53)

The SM fermions have the same SU(3)×SU(2)×U(1) charge assignments of the relative NP

fermion partner, and the higgs transforms as a (1, 2, 1/2). Here we assigned to the new particles

also charges under a new U(1) group in order to forbid mixing with the SM particles, giving

a similar effect as R-parity in the MSSM4. From Table 4.53 we see that concerning SU(3) we

4We did not assume a Z2 symmetry because this would allow the scalar Φ to be real and lead to crossed boxes
in b→ s`+`−, canceling the desired effect there.
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are dealing with cases I of our generic analysis in Tables 4.1-4.4. In particular, concerning

b→ sµ+µ−, this model would generate diagrams of type a) in Fig. 4.1.

After EW symmetry breaking, mass matrices for the new fermions are generated

L4th
mass =

(
Ψ̄q,1

Ψ̄u

)T

MUPL

(
Ψq,1

Ψu

)
+

(
Ψ̄q,2

Ψ̄d

)T

MDPL

(
Ψq,2

Ψd

)

+

(
Ψ̄`,2

Ψ̄e

)T

MEPL

(
Ψ`,2

Ψe

)
+ h.c. , (4.54)

where MU,D,E are non-diagonal mass matrices

MD(U) =

(
Mq

√
2vλ

D(U)
R√

2vλ
D(U)∗
L Md(u)

)
, ME =

(
M`

√
2vλER√

2vλE∗L Me

)
. (4.55)

Here the subscripts 1 and 2 denote the SU(2) component of the doublet. We diagonalize these

mass matrices by performing the field redefinitions

PL

(
Ψq,1

Ψu

)
I

→ WUL
IJ ΨUL

J , PL

(
Ψq,2

Ψd

)
I

→ WDL
IJ ΨDL

J , + L→ R

PLΨL,1 → ΨNL , PL

(
Ψ`,2

Ψe

)
I

→ WEL
IJ ΨEL

J , + L→ R (4.56)

leading to

(W FL†MFW
FR)IJ = mFI δIJ , with F = U,D,E . (4.57)

Therefore, after EW symmetry breaking we have the mass eigenstates Ψ
UL,R
I , Ψ

DL,R
I , Ψ

EL,R
I and

ΨNL,R , with I = {1, 2}. In particular, Ψ
UL,R
I and Ψ

DL,R
I (ΨEL,R

I and ΨNL,R) are SU(3) triplets

(singlets) with the same electric charges as up-type and down-type quarks (charged-leptons and

neutrinos), respectively.

The rotations introduced at Eq. (4.56) lead to the following Lagrangian for the interactions

in the broken phase

L4th
int =

(
LdiI Ψ̄D

I PLdi + LeiI Ψ̄E
I PLei +Rdi

I Ψ̄D
I PRdi +Rei

I Ψ̄E
I PRei

)
Φ

+
(
LuiI Ψ̄U

I PLui + LνiΨ̄NPLνi +Rui
I Ψ̄U

I PRui
)

Φ + h.c. (4.58)
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which resembles Eq. (4.1) for the special case of our 4th generation model. Thus identify

LdiI = ΓLqiW
DR
∗

1I , LeiI = ΓL`iW
ER
∗

1I , LuiI = ΓLqjV
∗
ijW

UR
∗

1I , Lνi = ΓL`i ,

Rdi
I = ΓRdiW

DL
∗

2I , Rei
I = ΓReiW

EL
∗

2I , Rui
I = ΓRuiW

UL
∗

2I . (4.59)

Here we worked in the down-basis for the SM quarks which means that CKM matrices Vij
appear in vertices involving up-type quarks. The first two columns of the above Lagrangian

involves couplings with down-type quarks and charged leptons and can be directly matched on

the Lagrangian in Eq. (4.1) for the case of only one scalar, i.e. ΦM ≡ Φ and ΨA ≡ {ΨD
I ,Ψ

E
I }.

The presence of LuiI (Lνi) resembles the fact, mentioned in Sec. 4.1, that left-handed couplings

to down-quarks (leptons) lead via SU(2) to couplings to left-handed up-quarks (neutrinos). In

addition couplings to right-handed up-quarks Rui
I appear in our model which are however not

relevant for our phenomenology.

4.3.2 Wilson Coefficients

With these conventions we can now easily derive the Wilson coefficients within our model

which can be directly obtained from the results of Sec. 4.1. In order to simplify the expressions,

we will assume MQ = Md ≡ mD and ML = Me ≡ mE and only take into account couplings

to b, s and µ in Eq. (4.52):

{ΓLs ,ΓLb ,ΓLµ ,ΓRs ,ΓRb ,ΓRµ } , (4.60)

Concerning SU(2) breaking effects the couplings λDL,R and λEL,R related to the down and charged

leptons sector, respectively, can be relevant. However, concerning λDL,R recall that from Sec-

tion 4.2.1 that experimental data suggests very small values for CS,P and C7,8. In our model

this can be achieved by assuming λDL,R = 05. In this limit the mass matrix MD in Eq. (4.55) is

diagonal and the corresponding rotation matrices WDR(L) in Eq. (4.57) are equal to the identity,

which implies

CS,P ∝ Ls∗AR
b
A ∝ WDR

1A W
DL
∗

2A = δ1Aδ2A = 0 . (4.61)

With this setup, we obtain the following non-vanishing couplings in the quark sector of the

5Note that the effect in scalar and magnetic operators can also be suppressed if ΓRb,s = 0 or very small. However,
we decided to focus on option with λDL,R being very small.
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Lagrangian in Eq. (4.58):

Ls1 = ΓLs , Lb1 = ΓLb , Rs
2 = ΓRs , Rb

2 = ΓRb ,

Lu1 = V ∗us ΓLs + V ∗ub ΓLb , Lc1 = V ∗cs ΓLs + V ∗cb ΓLb . (4.62)

with

ΓL ≡ Lb1L
s∗
1 , ΓR ≡ Rb

2R
s∗
2 , xD(E) ≡

m2
D(E)

m2
Φ

. (4.63)

The expressions of Wilson coefficients for b→ s processes simplify to:

• b→ sµ+µ− and b→ sγ (see Eqs. (4.4)-(4.16))

Cbox
9 = −N ΓL

32παEMm2
Φ

(
|ΓLµ |2 + |ΓRµ |2

)
F (xD, xE) , (4.64)

Cbox
10 = N ΓL

32παEMm2
Φ

(
|ΓLµ |2 − |ΓRµ |2

)
F (xD, xE) , (4.65)

Cγ
9 = N ΓL

6m2
Φ

G̃9 (xD) , C7 = N ΓL

6m2
Φ

F7 (xD) , C8 = −N ΓL

2m2
Φ

F7 (xD) , (4.66)

C ′box
9 = Cbox

9 (L↔ R) , C ′box
10 = −Cbox

10 (L↔ R) , (4.67)

C ′γ9 = Cγ
9 (L↔ R) , C ′7,8 = C7,8 (L↔ R) . (4.68)

• b→ sνν̄ (see Eqs. (4.19)-(4.20))

CL = −N ΓL|ΓLµ |2
32παEMm2

Φ

F (xD, xE) , CR = −N ΓR|ΓLµ |2
32παEMm2

Φ

F (xD, xE) . (4.69)

• Bs − B̄s (see Eqs. (4.23)-(4.28))

C1 =
|ΓL|2

128π2m2
Φ

F (xD) , C5 = − ΓLΓR

32π2m2
Φ

F (xD) , C̃1 =
|ΓR|2

128π2m2
Φ

F (xD) , (4.70)

where the (simplified) loop function are defined in Appendix C.1. In addition there are contri-

butions to the C1 analogue in D0− D̄0 mixing obtained by substituting Lb1 → Lc1 and Ls1 → Lu1

within ΓL.

In the charged-lepton sector SU(2) breaking effects (encoded in λEL,R) can give a sizable
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chiral enhancement of the NP effect in aµ (see Eq. (4.30)) such that the long-standing anomaly

in this channel can be addressed. In general one can parametrize the rotation matrices as

WEL,R =

(
cos(θL,R) − sin(θL,R)

sin(θL,R) cos(θL,R)

)
, (4.71)

leading to

Lµ1 = ΓLµ cos θL , Lµ2 = −ΓLµ sin θL , Lν = ΓLµ ,

Rµ
1 = ΓRµ sin θR , Rµ

2 = ΓRµ cos θR . (4.72)

In our analysis we will consider a simplified setup with λER = −λEL ≡ λE that maximizes the

effect in aµ (which at leading order in v is proportional to λER − λEL ). In this approximation we

have for

• aµ (see Eq. (4.30))

∆aµ =
m2
µ

8π2m2
Φ

[(
|ΓLµ |2 + |ΓRµ |2

)
F7 (xE) +

8√
2

v λE

mµ

ΓLµΓRµG7 (xE)

]
, (4.73)

where we have assumed real values for the couplings, implying a vanishing dµ. Let us stress that

the contributions proportional to vλE , coming from SU(2) breaking terms, is chirally enhanced

can give a sizable effect that can explain the aµ anomaly.

• Z → µ+µ− (see Eqs. (4.35)-(4.36))

∆gµL(m2
Z) = −|Γ

L
µ |2

32π2

[
m2
Z

m2
Φ

(
(1− 2s2

W )G̃9(xE) +
2

3

(
vλE

mE

)2

F9(xE)

)
+

(
vλE

mE

)2

FZ(xE)

]
,

(4.74)

∆gµR(m2
Z) =

|ΓRµ |2
32π2

[
m2
Z

m2
Φ

(
2s2

W G̃9(xE) +
2

3

(
vλE

mE

)2

F9(xE)

)
+

(
v λE

mE

)2

FZ(xE)

]
, (4.75)

where the simplified loop function FZ(xE) has been defined in Appendix C.1. The results for

Z → bb̄ couplings can be easily obtained by suitable substitutions. Note that in our approx-

imation of λDL,R = 0 the correction to the Zs̄b vertex vanishes at q2 = 0. Note that the UV
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divergences cancel as required, once for the couplings in Eq. (4.34) the relations

gΨ,L(R) = WEL(R) †

(
gΨL,2 0

0 gΨe

)
WEL(R) = WEL(R) †

(
gSM
µL

0

0 gSM
µR

)
WEL(R) , (4.76)

and gΦ = 0 are used. Thus the finiteness of the result can be traced by to the unitarity of the

matrices W .

4.3.3 Phenomenology

We are now ready to consider the phenomenology of our 4th generation model. For this purpose

we will perform a combined fit to all the relevant and available experimental data, as briefly

reviewed in Sec. 4.2. We perform this fit using the publicly available HEPfit package [222],

performing a Markov Chain Monte Carlo (MCMC) analysis employing the Bayesian Analysis

Toolkit (BAT) [223].

Let us first choose specific values for the masses of the scalar Φ and the fermions Ψ. As ob-

served in Ref. [95] a large splitting between the scalar mass and the vector-like lepton mass with

respect to the vector-like quark masses is welcome to suppress the relative effect in ∆Ms. Since

the vector-like quarks should not be too light anyway because of direct LHC searches [224,

225] we choose mΦ ' mE ' 450 GeV6 and mD = 3.15 TeV, corresponding to xE,L ' 1

and xD ' 50. These values are well beyond the reach of direct searches at LHC: Concerning

mE,L the bounds come from Drell-Yan production of the new fermions which are subsequently

decaying in the neutral scalar and SM leptons. Therefore, the collider signature is similar to the

one of MSSM slepton [226, 227]7.

Turning to the coupling of the new scalars and fermions to quarks and muons, we assume a

flatly distributed priors within the range |Γ| ≤ 1.5 such that perturbativity is respected. In the

rest of this section we will focus on one particular benchmark point, that we selected because

it lies within all the 1σ regions of the combined fit distributions for the NP couplings. The

benchmark values are

|ΓLµ | = 1.5 , |ΓRµ | = 1.4 , λE = 0.0015 , ΓL = −1.0 , ΓR = −0.12 (4.77)

6Nearly degenerate masses mΦ ' mE are also welcome in the light of the dark matter relic density since the
stable Φ is a suitable DM candidate. In fact, for mΦ = 450 GeV, 450 ≤ mE ≤ 520 GeV the model allows for an
efficient annihilation such that one does not over-shoot the matter density of the universe for order one Γ couplings.

7A detailed study recasting these MSSM analysis for our model has been performed in Refs. [228, 229], finding
mE & mΦ = 450 GeV as an allowed solution.
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Figure 4.5: Left panel: allowed region for the coupling strength to the muon |ΓLµ | from the
muon anomalous magnetic moment as a function of |ΓRµ |, assuming mφ = 450 GeV, xE=1 and
λE = 0.0015. The excluded region due to the requirement of perturbativity for |ΓL,Rµ | is given
in gray. Dark (light) green corresponds to 1σ (2σ) region. The red star marks the benchmark
point (1.5, 1.4). Right panel: same as the left panel, but assuming λE = 0.

assuming real values for all couplings. Note that the small value for λE is obtained from the fit

due to its correlation with |ΓRµ |. Higher values of λE would require lower values of |ΓRµ |, which

is disfavored by the current fit to b→ s`+`− data.

We observe that it is extremely important to allow for a right-handed coupling ΓRµ together

a mixing coupling λE in the muon sector such that aµ can be explained. This can be seen from

the fit in the (|ΓLµ |, |ΓRµ |)-plane from the left panel of Fig. 4.5. In the case with λE = 0.0015,

corresponding to the benchmark point reported in Eq. (4.77), one can see that it is possible to

explain the deviation in aµ by means of couplings of order unity. However, the situation changes

significantly if one did not allow the presence of a coupling of the vector-like leptons to the SM

Higgs. As shown in the right panel of Fig. 4.5, with λE = 0, it is not possible to obtain couplings

that are perturbative and capable to give a satisfactory explanation of the anomalous magnetic

moment of the muon at the same time. The presence of ΓRµ ameliorates the tension, but it is still

not sufficient by itself to address the anomaly.

Also in the quark sector right-handed couplings are needed to address the B anomalies
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Figure 4.6: Left panel: Allowed region for the coupling ΓL ≡ ΓLb ΓL∗s and ΓR ≡ ΓRb ΓR∗s from
Bs − B̄s mixing and b → sµ+µ− data for mφ = mE = 450 GeV, mD = 3.15 TeV, |ΓLµ | = 1.5
and |ΓRµ | = 1.4. The red star marks the values at our benchmark point (−1,−0.12). The dark
(light) purple regions is preferred at the 1σ (2σ) level. Right panel: same as the left panel, but
showing separately the allowed regions coming from Bs− B̄s mixing (in blue) and b→ sµ+µ−

data (in red). The upper branch allowed by Bs − B̄s mixing corresponds to the one shown on
the left.

without spoiling at the same time the measurement for ∆Ms. This is particularly evident by

looking at the left panel of Fig. 4.6, where the region allowed by both b → sµ+µ− transitions

and Bs − B̄s is shown. Indeed, if one performs a separate fit to b → sµ+µ− transitions and

∆Ms as shown in the right panel of Fig. 4.6, it is evident that the two channels are incompatible

as long as one assumes a vanishing coupling to right-handed bottom and strange quarks, i.e.

ΓR = 0.

The preference for non-zero couplings (i.e. BSM effects) is in general driven by ∆aµ, the

angular analyses of B → K∗µ+µ− and Bs → φµ+µ−, the branching fraction of Bs → µ+µ−

and the ratios RK and RK∗ . On the other hand, the experimental constraints coming from

b → sγ and B → K(∗)νν̄ and ∆Ms set bounds on ΓL,R and |ΓLµ | that are less stringent than

the ones obtained by the inclusion of the aforementioned channels involving b → s transitions

in our setup with λDL,R = 0. Analogously, the constraints from Z → µ+µ− are found to give

negligible constraints on |ΓL,Rµ |. Concerning D0 − D̄0 mixing, we recall that Eq. (4.62) implies
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a relation between ΓL ≡ Lb1L
s∗
1 and Lu,c1 . Exploiting the fact that only the product of Lb1L

s∗
1

enters b→ s`+`−, together with the suppression of the Lb1 in Lu,c1 by small CKM factors (O(λ3)

and O(λ2), respectively), it is possible arrange the contributions to ΓL in such a way that the

constraint imposed by D0 − D̄0 mixing is automatically satisfied.
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Chapter 5

Two Scalar Leptoquark Model

In this chapter we assess the flavor anomalies via scalar LQ. As we arleady mentioned in Chap-

ter 2, LQs are good candidates to solve the tension of flavor data with respect to the SM as

they can modify the SM prediction through a tree-level or one-loop diagrams, depending on the

structure of Yukawa couplings chosen to make the model consistent with the low- and high-

energy observables. In [87] the authors stress that using a single scalar LQ it is not sufficient

to solve both tensions in charged and neutral currents. Instead, considering a single mediator

solution the vector LQ U1 arises as a good candidate. However to render the loop corrections

finite in such a scenario one would need to specify the ultra-violet completion of the theory,

which in turn involves a number of new parameters (cf. Refs. [76, 82, 79, 84, 78, 81]). For that

reason and to keep the minimality of simple models, we focus on the extension of the SM via

two scalar LQs already proposed in Refs. [74, 80, 71, 56]. In these kind of models one has to

take into account many observables that act as constraints of the NP model. In the scalar LQ

extensions, there are many kinds of observables computed in [230], although a computation of

the leptonic decays of Z andW bosons is not available. In Ref [231], they stress the importance

of these observables and compute their contribution to the leading logarithm order, whereas in

this chapter we make the computation in the next-to-leading logarithm approximation, that is to

include the finite terms for each scalar LQ, and demonstrate its phenomenoligical relevance in

a particular model with S1 and S3 LQs, already in the literature [74].

Another observable that rules out many models is Bs − Bs mixing as we already saw in

Chaps. 3& 4. For illustration purposes, we evaluate the same S1 + S3 model of [74], and check

its viability once the Bs−Bs constraint is well implemented together with the EW observables.

Implementing the abovementioned constraints we evaluate three different scenarios after
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Moriond conference 2019, where a new value of RD and RK were presented.

5.1 Scalar Leptoquarks

In this Section we introduce the scalar LQ Lagrangians. We follow the notation of Ref. [230]

and specify LQs by their SM quantum numbers, (SU(3)c, SU(2)L)Y . In this way the electric

charge, Q = Y + I3, is the sum of the hypercharge (Y ) and the third component of the weak

isospin (I3). In the left-handed doublets, Qi = [(V †uL)i dL i]
T and Li = [(UνL)i `L i]

T , the

matrices V and U are respectively the CKM and the PMNS matrices. As the neutrino masses

are insignificant for phenomenology of this chapter we can set U = 1.

R2 = (3,2)7/6 : LR2 =−
(
yLR2

)
ij
ūRiR2iτ2Lj +

(
yRR2

)
ij
Q̄iR2`Rj + h.c. , (5.1)

R̃2 = (3,2)1/6 : LR̃2
=−

(
yL
R̃2

)
ij
d̄RiR̃2iτ2Lj +

(
yR
R̃2

)
ij
Q̄iR̃2νRj + h.c. , (5.2)

S1 =
(
3,1
)

1/3
: LS1 =

(
yLS1

)
ij
Q̄C
i iτ2S1Lj +

(
yRS1

)
ij
ūCRiS1`Rj

+
(
y′RS1

)
ij
d̄CRiS1νRj + h.c. ,

(5.3)

S3 =
(
3,3
)

1/3
: LS3 =

(
yLS3

)
ij
Q̄C
i iτ2(~τ · ~S3)Lj + h.c. , (5.4)

S̃1 =
(
3,1
)

4/3
: LS̃1

=
(
yR
S̃1

)
ij
d̄CRiS̃1`Rj + h.c. , (5.5)

S̄1 =
(
3,1
)
−2/3

: LS1
=
(
yRS̄1

)
ij
ūCRi S̄1νRj + h.c. , (5.6)

where, as usual, the fermion fields ψL,R = PL,Rψ with PL,R = (1 ∓ γ5)/2, and ψC stands for

a charge conjugated fermion, while τk denote the Pauli matrices. Note that we neglected the

LQ couplings to diquarks in Eqs. (5.3-5.6) which is necessary for stability of the proton [230].

yL,RLQ are the matrices of Yukawa couplings the components of which correspond to the quark

and lepton indices in the weak interaction eigenbasis. It is often useful to label the scalar

leptoquarks through its flavor number F = 3B + L, where B and L stand for the baryon and

the lepton number respectively. In that way R2 and R̃2 are F = 0 leptoquarks while S1, S3, S̃1

and S̄1 are |F | = 2 leptoquarks. For phenomenological considerations it is more convenient

to work in the mass eigenbasis. After absorbing the matrices of rotation to the mass eigenstate
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basis into the redefinition of Yukawa matrices (yL,RLQ ), and by accounting for the usual CKM

mixing matrix V , we can write

LR2 =−
(
yLR2

)
ij
ūiPL`j R

(5/3)
2 +

(
yLR2

)
ij
ūiPLνj R

(2/3)
2

+
(
V yRR2

)
ij
ūiPR`j R

(5/3)
2 +

(
yRR2

)
ij
d̄iPR`j R

(2/3)
2 + h.c. ,

(5.7)

LR̃2
=−

(
yL
R̃2

)
ij
d̄iPL`j R̃

(2/3)
2 +

(
yL
R̃2

)
ij
d̄iPLνj R̃

(−1/3)
2

+
(
V yR

R̃2

)
ij
ūiPRνj R̃

(2/3)
2 +

(
yR
R̃2

)
ij
d̄iPRνj R̃

(−1/3)
2 + h.c. ,

(5.8)

LS1 =−
(
yLS1

)
ij
d̄CPLν S1 +

(
V ∗yLS1

)
ij
ūCi PL`j S1

+
(
yRS1

)
ij
ūCi PR`j S1 +

(
y′RS1

)
ij
d̄Ci PRνj S1 + h.c. ,

(5.9)

LS3 =−
(
yLS3

)
ij
d̄Ci PLνj S

(1/3)
3 −

√
2
(
yLS3

)
ij
d̄Ci PL`j S

(4/3)
3

+
√

2
(
V ∗yLS3

)
ij
ūCi PLνj S

(−2/3)
3 −

(
V ∗yLS3

)
ij
ūCi PL`j S

(1/3)
3 + h.c. .

(5.10)

LS̃1
=
(
yR
S̃1

)
ij
d̄Ci PR`j S̃1 + h.c. , (5.11)

LS̄1
=
(
yRS̄1

)
ij
ūCi PRνj S̄1 + h.c. , (5.12)

where in the superscript of the non-singlet LQ field we note the component corresponding to

the specific electric charge eigenstate which we assume to be mass degenerate. We stress once

again that we set the PMNS matrix to U = 1.

5.2 Addressing Anomalies with a Single Scalar Leptoquark

The first and more logical approach in order to solve the flavor anomalies is to consider the

possibility that the NP contribution comes from a single LQ. In this section we show that it is

impossible to solve both RK(∗) and RD(∗) anomalies using only one scalar LQ. To do that, we

list again all the scalar LQs and justify their unavailability to fulfill the deviations respect to the

SM.

• R2

Due the second and fourth Yukawa terms of the R2 Lagrangian in (5.7), this LQ can
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generate a satisfactory contribution to RD(∗) with the gS = 4gT pattern of the effective

couplings, since both left and right-handed couplings are involved. However the tree-level

contribution to b→ sµ+µ− process generates C9 = C10 pattern, which is disfavoured by

data. This issue can be solved by suppressing the tree-level contribution with appropriate

choice of the Yukawas as in [91], but since this combination would require to suppress

right-handed couplings, it is in conflict with the possible RD(∗) solution.

• R̃2

In this scalar LQ scenario we generate C ′9 = −C ′10 contribution to b → sµ+µ− at tree-

level. While this combination is good to fulfillRK < RSM
K , as predicted by the SM, it also

predicts RK∗ > RSM
K∗ , which is contrary to the experiment. Concerning charged currents,

in Ref. [70] it is shown that it is possible to generate an contribution to RD(∗) by using

right-handed neutrinos. However, this contribution turns out to be too small since there is

no interference with the SM.

• S1

This LQ was the first proposed to accommodate both of the anomalies [90] since for

mS1 ∼ 1 TeV it can generate the desired combination of WC C ′9 = −C ′10 at loop-level in

b → sµ+µ−. It also generates contribution to RD(∗) at tree-level at the same mass scale,

reproducing its experimental value with left-handed couplings (gVL coefficient) or even

with right-handed couplings (gSL and gT coefficients). In Ref. [65] they show that these

scenario would lead to huge contributions to observables such as

R
µ/e
D =

Br(B → Dµν̄)

Br(B → Deν̄)
(5.13)

which is disfavoured by present data. Additionally, one could work with a heavier LQ, al-

though this requires to enlarge the couplings making them disfavoured by direct searches

as computed in Ref. [87]

• S3

This LQ couples to left-handed SM fermions. It can generate at tree-level C9 = −C10,

which allows to explain RK(∗) anomaly, and its contribution to RD(∗) is generated with

the effective coefficient gVL but with an opposite sign as expected by data. Notice that

the first and the last terms of (5.10) are the ones giving contribution to b → cτν. In

S1 Lagrangian 5.9, where we have the correct sign, the analogous terms generating left-
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handed RD(∗) contribution are the first with a minus sign, and the second with a plus

sign, while in S3 Lagrangian these terms appear both with a negative sign, generating the

opposite sign to gVL

• S̃1 & S̄1

These two last scalar LQs are not suitable candidates since they only relate one type of

quarks with one type of leptons. Plus they only couple to right-handed fermions.

The fact that any single scalar LQ explanation is possible, has focused the single LQ activity

in exploring vector LQ, and in particular the U1 LQ, mentioned in Chap. 2. What we do is to

explore the possibility of considering an extension of the SM with two scalar LQs. In the

following sections, we list and study the two main constraints that our models will face.

5.3 Leptoquark Contributions to Z → ``

5.3.1 Effective Field Theory Description

Leptoquarks contribute to theZ couplings to leptons via the loop diagrams illustrated in Fig. 5.1.

The effective Lagrangian describing the Z-boson interaction to generic fermions fi,j can be

written as

δLZeff =
g

cos θW

∑
f,i,j

f̄iγ
µ
[
gijfL PL + gijfR PR

]
fj Zµ (5.14)

where g is the SU(2)L gauge coupling, θW is the Weinberg angle, and

gijfL(R)
= δij g

SM
fL(R)

+ δgijfL(R)
, (5.15)

with gSM
fL

= If3 − Qf sin2 θW and gSM
fR

= −Qf sin2 θW . LQ loop contributions are described

by the effective coefficients δgijfL(R)
. The corresponding Z-boson branching fractions are then
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given by 1

Br(Z → fif̄j) =
mZλ

1/2
Z

6πv2ΓZ

[ (
|gijfL|

2 + |gijfR |
2
)(

1− m2
i +m2

j

2m2
Z

− (m2
i −m2

j)
2

2m4
Z

)

+ 6
mimj

m2
Z

Re
[
gijfL
(
gijfR
)∗] ]

,

(5.16)

where mi,j are the fermion masses and λZ ≡ [m2
Z − (mi −mj)

2][m2
Z − (mi +mj)

2]. 2 Contri-

butions to these rates are constrained by the measurement of both flavor conserving and flavor

violating Z decays at LEP [152]. In particular, LEP measured the effective couplings [193]

ge, exp
V = −0.03817(47) , ge, exp

A =− 0.50111(35) ,

gµ, exp
V = −0.0367(23) , gµ, exp

A =− 0.50120(54) ,

gτ, exp
V = −0.0366(10) , ge, exp

A =− 0.50204(64) ,

(5.17)

which as in the previous Chapter are related to the couplings in Eq. (5.14) via the relations

gijV (A) = gij`L ± g
ij
`R

. Note that for i = j we simplify the notation by dropping one superindex.

Another important observable is the effective number of neutrinos [193]

N exp
ν = 2.9840(82) , (5.18)

which will constraint the LQ couplings to neutrinos via [193]

Nν =
∑
i,j

[∣∣∣∣δij +
δgijνL
gSM
νL

∣∣∣∣2 +

∣∣∣∣δgijνRgSM
νL

∣∣∣∣2
]
, (5.19)

where i, j ∈ {e, µ, τ} and neutrino masses have been neglected.

5.3.2 One-loop Matching

We shall now provide an expressions for the couplings δgijL(R) for each of the leptoquark models

listed in Sec. 5.1. We focus our discussion onto the leptonic Z couplings since these are the
1For i 6= j the computation of the branching ratio has to be interpreted as the average

1
2

[
Br(Z → fif̄j) + Br(Z → fj f̄i)

]
2This expression also applies to the decays Z → νν if neutrinos are assumed to be Dirac particles. If lepton

number is violated, this expression should be modified. Both formulas, however, agree in the limit mi,j → 0. See
Ref. [232] for a similar discussion in the case of K → πνν̄ decays.
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Figure 5.1: Scalar LQ (∆) contributions at one-loop to Z → `i`j , Z → νiνj and W → `jνi .

most precisely determined by experiment. Our discussion can be adapted to the Z couplings to

quarks. Before presenting our results, we define our convention for the covariant derivative in

an analogous way as the one in Chap. 2

Dµ = ∂µ + ig′ Y Bµ + ig IkW k
µ + igs T

aGa
µ , (5.20)

where Y is the hypercharge, and T a and Ik are the relevant SU(3)c and SU(2)L generators,

respectively. After the EW symmetry breaking, this expression can be rewritten as

Dµ = ∂µ+i
g√
2

(I+W+
µ +I−W−

µ )+i
g

cos θW
(I3−Q sin2 θW )Zµ+ieQAµ+igs T

aGa
µ , (5.21)

where e = g sin θW = g′ cos θW , Q = Y + I3 and I± = (I1 ± i I2), as usual. To present our

results in a compact form, we consider a general Yukawa Lagrangian defined by

LF=0
yuk. = q̄i

[
lijPR + rijPL

]
`j ∆ + h.c. (5.22)

LF=2
yuk. = q̄ Ci

[
lijPR + rijPL

]
`j ∆ + h.c. (5.23)

where q and ` are generic quark and lepton flavors, lij and rij denote the generic Yukawa cou-

plings, and ∆ is a leptoquark mass eigenstate, which belongs to one of the SU(2)L multiplets

listed in Eq. (5.1)–(5.6). Our results will be presented in such a way that the expression for

a specific model can be obtained by simply comparing Eqs. (5.22,5.22), to the Yukawa La-

grangians listed in Sec. 5.1. In this way, one can determine lij and rij for each leptoquark

charge eigenstate contributing to Z → `` or Z → νν̄, which should then be summed up to give

the final expression.

Our computation is performed in two independent ways. We first neglect the light quark
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masses (i.e., for qu = u, c and qd = s, d, b) and expand in the external momenta before integra-

tion [233]

1

(k + p)2 −M2
=

1

k2 −M2

[
1− p2 + 2 (k · p)

k2 −M2
+

4 (k · p)2

(k2 −M2)2

]
+O

( p
M

)4

, (5.24)

where k is the loop momentum, p is a generic external momentum and M stands for the mass

of the particle running in the loop. With this method we obtain analytic expressions for the loop

functions, systematically accounting for the corrections of order O(mZ/m∆)n (with n > 0),

but avoiding the difficult computation of Passarino-Veltman functions with nonzero external

momenta. We then compare these expressions with the ones computed numerically by using

the Mathematica packages LoopTools [234] and Package-X [235]. We find an agreement better

than per-mil level between the results obtained numerically and analytically, for leptoquark

masses heavier than ≈ 900 GeV, as currently allowed by LHC searches [87].

We present now our analytic results in terms of the Yukawas lij and rij , and the quantum

numbers of SM fermions. As explained above, we separate the top quark contribution from the

light quarks (qu = u, c and qd = s, d, b), since the relevant scales are different in each case. The

final result for F = 0 leptoquarks to O(m2
Z/m

2
∆) reads

[
δgij`L(R)

]
F=0

=NC
wtjw

∗
ti

16π2

[(
guL(R)

− guR(L)

) xt(xt − 1− log xt)

(xt − 1)2
+
xZ
12
F
L(R)
F=0 (xt)

]
(5.25)

+ xZ NC

∑
k=u,c

wkjw
∗
ki

48π2

[
− guR(L)

(
log xZ − iπ −

1

6

)
+
g`L(R)

6

]
(5.26)

+ xZ NC

∑
k=d,s,b

wkjw
∗
ki

48π2

[
− gdR(L)

(
log xZ − iπ −

1

6

)
+
g`L(R)

6

]
, (5.27)

while for |F | = 2 leptoquarks we obtain,

[
δgij`L(R)

]
F=2

=NC
wtjw

∗
ti

16π2

[(
guL(R)

− guR(L)

) xt(xt − 1− log xt)

(xt − 1)2
+
xZ
12
F
L(R)
F=2 (xt)

]
(5.28)

+ xZ NC

∑
k=u,c

wkjw
∗
ki

48π2

[
guL(R)

(
log xZ − iπ −

1

6

)
+
g`L(R)

6

]
(5.29)
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+ xZ NC

∑
k=d,s,b

wkjw
∗
ki

48π2

[
gdL(R)

(
log xZ − iπ −

1

6

)
+
g`L(R)

6

]
, (5.30)

where xt = m2
t/m

2
∆, xZ = m2

Z/m
2
∆, NC = 3, with gfL = If3 − Qf sin2 θW and gfR =

−Qf sin2 θW (f = u, d, `), as before. In the above expressions, wki should be replaced by

rki or lki for δgLij or δgRij , respectively. These couplings are collected in Table 5.1 for each

leptoquark representation listed in Sec. 5.1. One of the novelties of our study is the inclusion

of the termsO(xZ log xt), which have never been considered before and which can induce non-

negligible corrections for LQ masses m∆ . 1.5 TeV. 3 These corrections are collected in the

functions FL(R)
0 and FL(R)

2 , which are given by

F
L(R)
F=0 (xt) =guR(L)

(xt − 1)(5x2
t − 7xt + 8)− 2(x3

t + 2) log xt
(xt − 1)4

(5.31)

+ guL(R)

(xt − 1)(x2
t − 5xt − 2) + 6xt log xt

(xt − 1)4
(5.32)

+ g`L(R)

(xt − 1)(−11x2
t + 7xt − 2) + 6x3

t log xt
3(xt − 1)4

, (5.33)

and

F
L(R)
F=2 (xt) =− guL(R)

(xt − 1)(5x2
t − 7xt + 8)− 2(x3

t + 2) log xt
(xt − 1)4

(5.34)

− guR(L)

(xt − 1)(x2
t − 5xt − 2) + 6xt log xt

(xt − 1)4
(5.35)

+ g`L(R)

(xt − 1)(−11x2
t + 7xt − 2) + 6x3

t log xt
3(xt − 1)4

. (5.36)

The phenomenological relevance of these terms and the other finite contributions we computed

for the first time will be illustrated in the following.

5.3.3 Relevance of the Finite Terms in Z → ``

We now discuss the relevance of the new contributions we computed, namely the O(xZ log xt)

terms and the finite terms in the matching. To this end, we compare our results to the formulas

given in Ref. [231], obtained in a effective field theory context by employing a renomalization-

3Note, in particular, that much lower masses are allowed by current LHC searches for leptoquarks, which
exclude masses of order ≈ 900 GeV for LQs with mostly couplings to the third generation, see e.g. Ref. [87].
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Decay wij q R2 R̃2 S1 S3 S̃1 S̄1

Z → ``

rij
qu −

(
yLR2

)
ij

0
(
V ∗yLS1

)
ij
−
(
V ∗yLS3

)
ij

0 0

qd 0 −
(
yL
R̃2

)
ij

0 −
√

2
(
yLS3

)
ij

0 0

lij
qu

(
V yRR2

)
ij

0
(
yRS1

)
ij

0 0 0

qd

(
yRR2

)
ij

0 0 0
(
yR
S̃1

)
ij

0

Z → νν

rij
qu

(
yLR2

)
ij

0 0
√

2
(
V ∗yLS3

)
ij

0 0

qd 0
(
yL
R̃2

)
ij

−
(
yLS1

)
ij

−
(
yLS3

)
ij

0 0

lij
qu 0

(
V yR

R̃2

)
ij

0 0 0
(
yR
S̄1

)
ij

qd 0
(
yR
R̃2

)
ij

(
y′RS1

)
ij

0 0 0

Table 5.1: Expressions for the coefficients wij in Eq. (5.25) and (5.28) obtained by the matching
of Eq. (5.22) and (5.23) onto the Yukawa Lagrangians listed in Sec. 5.1 for LQs with fermion
number F = 0 and |F | = 2, respectively.

group-equations approach to a leading-logarithmic approximation (LLA). The latter approach

only accounts for the terms xt log xt and xZ log xZ from the general expressions, where one

assumes that vEW ≈ mZ ≈ mt in the logarithms.

In Fig. 5.2, we show the ratio between the full and simplified formulas for Z → `−`+ and

for Z → νν̄ as a function of the LQ mass, for the different SU(2)L × U(1)Y representations.

For illustration, we have only considered Yukawa couplings to third generation fermions in

Eq. (5.1)–(5.6). We find that the new corrections we have computed can be as large as O(20%)

for values of LQ mass below 1.5 TeV, as allowed by the present limits from the direct searches

at the LHC [87]. Furthermore, we see that these relative corrections decrease with the LQ mass,

becoming less relevant for larger masses, in which case the LLA is satisfied to a good extent.

The conclusion of this exercise is that, given the present limits from LHC, one should consider

the full formulas to reliably assess the viability of any scenario with low-energy scalar LQ. We

will illustrate this feature in Sec. 5.4 with a concrete model for theB-anomalies, which presents

a tension with current data if the formulas from Ref. [231] are used, but which turns out to be

perfectly consistent when the full formulas are considered.
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Figure 5.2: Comparison of the full expressions given in Eq. (5.25) and (5.28) for Z → `+`− and
Z → νν̄ with the ones obtained by employing a RGE approach with a leading logarithmic ap-
proximation (LLA) [231]. We consider all LQ representations listed in Sec. 5.1 and we assume,
for illustration, that the LQs only have couplings to third generation fermions in Eq. (5.1)–(5.6).
The contributions from the new terms we have computed can be as large asO(20%), for masses
allowed by the direct searches at the LHC, being therefore non-negligible in phenomenological
analyses.

Before closing this Section we need to compare our results with previous computations

in the literature. We agree with the results from Ref. [90], where the light fermion and top-
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quark contributions have been computed for the S1 model. To that result we included terms of

O(xZ log xt), which amount to a O(10%) relative effect. We also agree with the results pre-

sented in Ref. [91], where the R2 contribution was computed for both light and heavy fermions.

Again, our result goes a step beyond in that we include also the O(xZ log xt) terms. Similarly,

if we neglect theO(xZ log xt) terms, we agree with the results of Ref. [69] where the top-quark

contribution was computed for S1 and R2 LQs. Note, however, that we disagree with their sign

of δgL(R) for the R2 LQ. Before moving on, we stress that the expressions given above can be

easily adapted to other scenarios of new physics containing scalar particles coupled to fermions,

such as the two-Higgs doublet models [236].

5.4 Leptoquark Contributions toW → `ν̄

5.4.1 Effective Field Theory Description

We now turn to the W couplings to leptons. Similar to the above discussion, the W interactions

can be generically written as

δLWeff =
g√
2

∑
i,j

¯̀
iγ
µ
[ (
δij + hij`L

)
PL + δhij`R PR

]
νjW

−
µ + h.c. , (5.37)

where hij`L,R describes the loop-level contributions illustrated in Fig. 5.1. In this expression,

we also consider the possibility of light right-handed neutrinos, which we assume to be Dirac

particles for simplicity. 4 The corresponding branching ratio can then be written as

Br(W → `iνj) =
m3
W

12πv2ΓW

(
|δij + δhij`L|

2 + |δhij`R |
2
)(

1− m2
i

2m2
W

− m4
i

2m4
W

)
, (5.38)

where mi ≡ m`i and neutrinos masses have been neglected. This expression should be com-

pared to the LEP measurements [152]

Br(W → τ ν̄)exp = 11.38(21)× 10−2 , (5.39)

Br(W → µν̄)exp = 10.63(15)× 10−2 , (5.40)

Br(W → eν̄)exp = 10.71(16)× 10−2 . (5.41)

4For W decays, the expression for Majorana neutrinos is a trivial extension of the results presented above (cf.
e.g. Ref. [232] for further discussion).
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In particular, the ratioRτ/µ
W = Br(W → τν)exp/Br(W → µν)exp = 1.07(3) is about 2.4σ above

the SM prediction, Rτ/µ, SM
W ≈ 0.999. It is very challenging to explain such a large deviation

in a new physics model, since these contributions would be correlated, via SU(2)L × U(1)Y

gauge invariance, with the tightly measured Z couplings to τ -leptons [237]. Alternatively, the

Wτν coupling can also be inferred from the τ -lepton decays. Current PDG average [152]

Br(τ → µνν̄)exp = 17.33(5)× 10−2 , (5.42)

in a good agreement with the SM prediction, Br(τ → µνν̄) = 17.29(3) × 10−2 [110]. Lepto-

quarks would also contribute to τ -decays via box-type diagrams. Since these contributions are

proportional to y4
LQ/m

2
∆ = m2

∆ × (yLQ/m∆)4, where yLQ denotes a generic LQ coupling, we

know these are subdominant contributions for low values ofm∆ and fixed values of yLQ/m∆, as

in the case of the B-anomalies. For completeness we provide the expression for Br(τ → µνν̄)

in Appendix D.

5.4.2 One-loop Matching

We now give the expressions for hij`L and hij`R for each LQ model listed in Sec. 5.1. From

Eq. (5.5) and (5.6), we see that the models S̃1 =
(
3,1
)

4/3
and S1 =

(
3,1
)
−2/3

do not contribute

to W → `ν̄, since these are singlets of SU(2)L which do not have couplings to both up- and

down-type quarks, neither to theW . For the scenarios with weak doublet leptoquarks, we obtain[
δhij`L

]
R2

= Nc
xW

288π2

[ (
yL†R2

)
it

(
yLR2

)
tj
GR2(xt) +

∑
k=u,c

(
yL†R2

)
ik

(
yLR2

)
kj

]
, (5.43)

[
δhij`L

]
R̃2

= Nc
xW

288π2

(
yL†
R̃2
yL
R̃2

)
ij
, (5.44)

where xW = m2
W/m

2
∆ and xt = m2

t/m
2
∆, as before, and the function GR2 is defined by

GR2(xt) =
−11x3

t + 6x3
t log xt + 18x2

t − 9xt + 2

2(xt − 1)4
, (5.45)

Note, in particular, that these contributions cannot be accounted for by the effetive field theory

computation with leading-logarithmic approximation [231]. For the two remaining scenarios,

we find
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Figure 5.3: Comparison of the full expressions given in Eq. (5.47) and (5.49) for W → `ν̄ with
the ones obtained by employing a RGE approach with a leading logarithmic approximation
(LLA) [231]. For illustration, we assume once again that the LQs only have couplings to the
third generation fermions in Eq. (5.1)–(5.6). We do not display the results for the R2 and R̃2

LQs, since the RGE approach cannot encapsulate the contributions from these states, which
have no logarithmic dependence. Furthermore, note that the LQs S̄1 and S̃1 do not contribute to
these decays to one-loop order.

[
δhij`L

]
S1

=NC

(
V ∗yLS1

)∗
ti

(
V ∗yLS1

)
tj

[
− xt(xt − 1 + (xt − 2) log xt)

64π2(xt − 1)2
+

xW
288π2

GS1(xt)

]
(5.46)

+NC
xW

144π2

∑
k=u,c

(
V ∗yLS1

)∗
ki

(
V ∗yLS1

)
kj

(−1− 3 log xW + 3πi) , (5.47)

and

[
δhij`L

]
S3

=NC

(
V ∗yLS3

)∗
ti

(
V ∗yLS3

)
tj

[
xt(xt − 1 + (xt − 2) log xt)

64π2(xt − 1)2
+

xW
288π2

GS3(xt)

]
(5.48)
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+NC
xW

144π2

∑
k=u,c

(
V ∗yLS3

)∗
ki

(
V ∗yLS3

)
kj

(1− 3 log xW + 3πi) , (5.49)

where we separate the top-quark contributions from the other light quarks. The functions GS1

and GS3 are given by

GS1(xt) =
6(xt − 1− log xt)

(xt − 1)2
, (5.50)

GS3(xt) =
6 [xt (x2

t + xt − 2) + 1] log xt + xt − 1[xt(xt(2xt − 23) + 25)− 10]

(xt − 1)4
. (5.51)

Finally, note that none of the scalar LQ particles contribute at one-loop order to hij`R .

5.4.3 Relevance of the Finite Terms inW → `ν

We should now comment on the phenomenological implications of the results presented above.

Similarly to the discussion of leptonicZ couplings in Sec. 5.3, we compared our full formulas to

the ones obtained within a leading logarithmic approximation [231]. These results are illustrated

in Fig. 5.3 for the models S1 and S3, where we considered couplings only to the third generation

fermions. For both scenarios, we find a negative correction coming from finite terms of order

O(5%), with a very mild dependence on the LQ mass m∆. For the other scenarios, namely

R2 and R̃2, we cannot perform such a comparison since the leading logarithmic approximation

of Eq. (5.43) and (5.44) would give a vanishing contribution. In this case, the finite terms are

essential to consider.

5.5 Illustration: S1 & S3 Explanation ofRK(∗) andRD(∗)

In this Section we illustrate our results in a specific scalar LQ model proposed to simultaneously

explain the b → s and b → c anomalies [71, 74, 80]. This model contains the LQs S1 =(
3,1
)

1/3
and S3 =

(
3,3
)

1/3
, with couplings only to left-handed fermions, namely

LYuk =
(
yLS1

)
ij
Q̄C
i iτ2S1Lj +

(
yLS3

)
ij
Q̄C
i iτ2(~τ · ~S3)Lj + h.c. . (5.52)

We adopt the same Yukawa pattern of Ref. [74, 80], namely
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Figure 5.4: Results of the low-energy fit considering the full expressions computed in this
section are depicted in the planeRD(∗)/RSM

D(∗) vs. CNP
9 = −CNP

10 by the green (yellow) regions to
1σ (2σ) accuracy. Leptoquark masses are fixed to mS1 = mS3 = 2 TeV and Yukawa couplings
are scanned over the ranges described in the text. In the same plot we show the 1σ results of
the fit by neglecting Z-pole constraints (blue line) and by including Z-poles observables with a
leading-log approximation (black dashed line) [231]. As discussed in the text, the inclusion of
finite terms reduces the tension between Rexp

D(∗) and Z-pole data.

yLS1
= gS1 ×

0 0 0

0 βS1
sµ βS1

sτ

0 βS1
bµ βS1

bτ

 , yLS3
= gS3 ×

0 0 0

0 βS3
sµ βS3

sτ

0 βS3
bµ βS3

bτ

 , (5.53)

where gS1(3)
describe the overall strength of LQ Yukawa interactions, while β

S1(3)

ij contain the

flavor structure. Couplings to the first generation are set to zero to avoid stringent bounds

from kaon physics observables and atomic parity violation. Following Ref. [74, 80], we further

assume that βS1
bτ = βS3

bτ = 1, and that βqµ ≡ βS1
qµ = βS3

qµ , with q = s, b. The sτ couplings are

considered to be in general different, as needed to explain current deviations. We are then left

with six couplings to be fixed by the data, namely gS1 , gS3 , βsµ, βbµ and β
S1(3)
sτ , as well as two
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masses mS1 and mS3 .

Several low-energy observables are sensitive to the couplings defined above. To illustrate

the impact of the expressions we computed, we consider the same experimental constraints of

Ref. [74]: (i) the LFU ratios RD(∗) and RK(∗) (via C9 = −C10 data fit), (ii) LFU tests in Rµ/e
D ,

(iii) limits on the branching fractions Br(B → K(∗)νν̄), and (iv) the decays Z → τ+τ− and

Z → νν̄ 5. Concerning the latter observables, we perform a fit by using the leading-log ap-

proximation (LLA) of Ref. [231], which is also considered in Ref. [74, 80], and by considering

our complete formulas, cf. Sec. 5.3. We consider the same range of parameters as in Ref. [74],

namely βsµ, β
S1(3)
sτ ∈ (−5Vcb, 5Vcb) and βbµ ∈ (−1, 1).

Our results are depicted in Fig. 5.4 in the plane RD(∗)/RSM
D(∗) vs. CNP

9 = −CNP
10 for LQ

masses mS1 = mS3 = 2 TeV. In the analysis considering the leading-log approximation,

we obtain a value χ2
min ≈ 8.0, which shows a mild tension between the observed deviations

RD(∗) and Z-pole data, as depicted by the 2σ contour (black dashed line). If, instead, one

considers the formulas computed in the previous section, the tension is milder as shown by the

green/yellow contours in Fig. 5.4, for which we obtain χ2
min ≈ 6.5. This example illustrates the

importance of the finite one-loop terms in the computation of Z → `` and Z → νν, which have

a non-negligible effect for the models aiming at explaining the B-physics anomalies. Finally,

it should be noted that similar conclusions have been reached in Refs. [78, 81] in which the

authors considered an ultraviolet complete scenario which includes vector LQ states.

5.6 On the Importance ofBs −Bs Mixing in S1 & S3

The oscillations or mixing of neutral mesons have played a crucial role in particle physics

history. Since these processes convert a particle to its anti-particle or viceversa they are suitable

to study matter anti-matter interaction, and thus explore CP violation effects that could explain

the amount of matter nowadays. They are labeled as ∆F = 2 processes, where F = S for

the strange quark in kaons and F = B for the bottom quark in B-meson oscillation. They are

loop-supressed in the SM, and thus they are good observables for testing the presence of NP.

Indeed, oscillations such as K0−K0
became also good test for the SM, allowing to predict the

existence of the charm quark as well as the GIM mechanism. The oscillations with ∆B = 2

B−B mixing and later on theBs−Bs mixing were produced in the so calledB factories, which

in the same spirit as the kaon mixing, were measured experimentally having a little excess in

5Analytic expressions for the observables that do not appear in this Chapter are displayed in the Appendix E
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Figure 5.5: In (Dark)Red, results of the (1)2σ low-energy fit considering the full Z−pole
expressions and including Bs − Bs mixing, which are depicted in the plane RD(∗)/RSM

D(∗)

vs. CNP
9 = −CNP

10 . Leptoquark masses are fixed to mS1 = mS3 = 2 TeV and Yukawa cou-
plings are scanned over the ranges described in the text. In the same plot we show the 1 and 2σ
results of the fit with the same colors described in Fig. 5.4.

∆Ms respect to the SM. This fact allowed to predict for the first time the mass of the top quark.

In models tested nowadays these observables impose huge constraints which have to be taken

into account.

In the previous section we showed that including Z-pole observables in the fit computed at

NLLA is quite relevant in order to improve the fit with respect to experimental data. However,

the purpose of this section is to show that including the B − B mixing constraint in the fit it

becomes impossible to explain the b → cτν anomalies with 2018 data. Indeed, in the previous

chapters we saw that this observable is quite constraining and reduces a lot the available param-

eter space for NP. For this reason, we first write down the most general Yukawa setup in a S1 &

S3 LQ scenario without couplings to the first generation.
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yLS1
=

0 0 0

0 yS1
sµ yS1

sτ

0 yS1
bµ yS1

bτ

 , yLS3
=

0 0 0

0 yS3
sµ yS3

sτ

0 yS3
bµ yS3

bτ

 , (5.54)

On the other hand, the effective Hamiltonian for B −B mixing reads as in Sec. 3.2.3

HNP
BB̄ = CBB̄(s̄αγ

µPLbα) (s̄βγ
µPLbβ) , (5.55)

where the WC is computed at the matching scale µLQ ∼ TeV. For this process in this model,

there are two box diagrams with the single presence of S1, 4 diagrams with the single presence

of S3, and 4 diagrams combining both S1 and S3. Once performed the matching one obtains

CNP
BB̄ =

1

128π2m2
S1

(yS1∗
sµ y

S1
bµ + yS1∗

sτ y
S1
bτ )2 +

5

128π2m2
S3

(yS3∗
sµ y

S3
bµ + yS3∗

sτ y
S3
bτ )2 (5.56)

+
1

32π2(m2
S1
−m2

S3
)
(yS1∗
sµ y

S3
bµ + yS1∗

sτ y
S3
bτ )(yS3∗

sµ y
S1
bµ + yS3∗

sτ y
S1
bτ ) log

(
mS1

mS3

)
,

which has to be compared with the experiment via

∆M exp
s

∆MSM
s

=
∣∣∣1 +

CNP
BB̄

(µb)

CSM
BB̄

(µb)

∣∣∣ , (5.57)

that was already discussed in Chap. 3 in Sec. 3.2.3. Obtaining the following bound:

∆M exp
s

∆MSM
s

= 0.98± 0.02 . (5.58)

Returning to the illustration of the previous section, if we adopt the Yukawa pattern of (5.54), we

can perform the same fit but now considering the Bs − Bs mixing. Interestingly, the minimum

obtained now with the χ2 minimization is χ2
min ' 13 which is higher than the value obtained

using Z−poles using the NLLA. In Fig. 5.5 we show in red the 1 and 2 σ regions of the fit

superposed to the fit obtained in the previous section. Indeed this new fit is not able to explain

RD(∗) anomaly (with 2018 data) even at 2σ level with a purely left-handed scenario. This feature

is also observed in other works of the literature such as in [71].

Therefore, one could introduce a right-handed coupling to c-quark τ -lepton in order to en-
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hance the contribution to RD(∗) with scalar operators without spoiling any other observables

considering in the fit. Nonetheless there are many other observables such as τ → µγ which

would become a relevant constraint to take into account

5.7 S1 & S3 Status After Moriond 2019

After the Moriond conference in 2019, a new masurement of RK lowered the value of the best

fit CNP
9 = −CNP

10 but the discrepancy with respect to the SM remained the same because the

error bars shrank. On the other hand, the world average of RD(∗) was updated due to a new

measurement of BELLE experiment. As stated in Chapter 2, the tension with respect to the SM

was reduced, and therefore it gave the possibility to reassess the viability of the S1 & S3 left-

handed scenario. Here we present three models with different Yukawa patterns which became

viable after Moriond 2019 reports. In this case we set the mass of both LQs to 1.5 TeV to ensure

that we compare properly the 3 models. Moreover, for completion we use more observables in

the fits, apart from the ones mentioned above, which are listed in Appendix E. The first scenario

that we test is the one with the Yukawas in (5.54) which we used in 5.5 and 5.6 to illustrate the

importance of the Z−pole and the Bs − Bs observables. We can see in Scenario 1 of Fig. 5.6

that the experimental value for RD(∗) is now lower than in the previous plot, and this allows the

same model in the previous section to be 1σ compatible with data, even whenBs−Bs and more

observables are considered in the fit (see Appendix E for details on all the observables).

The second scenario is inspired in [71], where its structure allows for an exact cancellation

of the B → Kνν̄ observable, namely

yLS1
=

0 0 0

0 λsµ λsτ

0 λbµ λbτ

 , yLS3
=

0 0 0

0 λsµ λsτ

0 −λbµ −λbτ

 . (5.59)

Looking at Scenario 2 of Fig. 5.6 we see that this model can also accommodate new data, while

before the new results appeared it was not even compatible at 2σ level.

Finally, since muon couplings are basically included in order to generate contribution to

RK(∗) which is only affected by S3 at tree-level, in the third scenario we work with with vanish-

ing muon couplings for the S1 leptoquark and without setting any particular correlation between
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Figure 5.6: In (Dark)Red, results of the (1)2σ low-energy fit considering the full Z−pole
expressions and including Bs − Bs mixing, which are depicted in the plane RD(∗)/RSM

D(∗)

vs. CNP
9 = −CNP

10 . Leptoquark masses are fixed to mS1 = mS3 = 1.5 TeV and each best
fit point is depicted in yellow. The three plots are obtained by fiting each model to all the
observables of the tables in Appendix E

different couplings. The Yukawas in this case read

yLS1
=

0 0 0

0 0 yS1
sτ

0 0 yS1
bτ

 , yLS3
=

0 0 0

0 yS3
sµ yS3

sτ

0 yS3
bµ yS3

bτ

 , (5.60)
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where in Scenario 3 of Fig. 5.6 we see that data is also well accommodated at 1σ and we do not

need a new right-handed coupling to explain the anomalies.

In Appendix E we show the considered observables in every fit with their analytical expres-

sion, and write down the χ2 value for each observable. This allows us to disentangle which

observable can be important in the fit as well as which fit can handle more observables. In this

case, since the last scenario does not impose any particular hierarchy between the Yukawas, we

are able to explain the experimental values of 16 observables up to one sigma. Including the

flavor anomalies.
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Chapter 6

Two Higgs Doublet Model

Despite of the great success of the SM with the Higgs boson discovery at the LHC, the pending

question of hierarchy of scales remains open and a quest for physics BSM continues. One of

the minimalistic approaches to build a model of physics BSM is to extend the Higgs sector by

introducing an extra Higgs doublet. This extension of the SM is called 2HDM.

The new particles arising in the 2HDM are additional Higgs bosons which are being searched

in the LHC, specially the charged one. Including fermions in a 2HDM, results in a plethora of

new parameters whose number is tipically reduced by certain assumptions such as forbidding

FCNCs at tree level as in the SM and imposing a sotfly broken Z2 symmetry on the Higgs

doublets.

In this chapter, we do not aim to explain the anomalies, but rather to see the phenomenolog-

ical implications of a 2HDM in b→ sµ+µ− processes. Concretely we explore two observables

such as Br(Bs → µ+µ−)2HDM and Br(B → Kµ+µ−)2HDM
high−q2 which are very well measured ex-

perimentally and for which the theoretical control of the corresponding hadronic uncertainties is

established by the lattice QCD computations [48]. For other observables the theoretical uncer-

tainties are not as well assessed and one might run a risk of interpreting the unknown hadronic

uncertainties as signals of physics BSM. We should also emphasize that in our scenarios we

ignore the channels with electrons in the final state.

First we present the 2HDM and apply the general constraints, we then compute the effective

coefficients of the b → sµ+µ− processes arising from the 2HDM. In Sec 6.5 we explore in

detail the matching of the effective theory with the full theory and then we compare our Wilson

coefficient results with Ref [238]. Then we proceed to evaluate phenomenologically different

types of 2HDM with the abovementioned observables, and also including the possibility for
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τ -lepton decays.

6.1 General Constraints on 2HDM

In this Section we remind the reader of the basic ingredients of 2HDM, enumerate the parame-

ters of the model and list the main general constraints on the spectrum of scalars which are then

used to perform a scan of allowed parameters to obtain the allowed ranges of the Higgs masses

and couplings.

6.1.1 2HDM

We consider a general CP-conserving 2HDM with a softly broken Z2 symmetry. The most

general potential can then be written as

V (Φ1,Φ2) = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 +m2
12(Φ†1Φ2 + Φ†2Φ1) +

λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2

+ λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1 +
λ5

2

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
, (6.1)

where the term proportional to m2
12 accounts for the soft breaking of Z2. 1 The scalar doublets

Φa (a = 1, 2) can be parameterized as

Φa(x) =

(
φ+
a (x)

1√
2

[va + ρa(x) + iηa(x)]

)
, (6.2)

with v1,2 ≥ 0 being the vacuum expectation values satisfying vSM =
√
v2

1 + v2
2 , already known

from experiments, vSM = 246 GeV. In the following, for notational simplicity, we will drop the

argument of the Higgs fields. Two of the six fields are Goldstone bosons, while the remaining

ones are four massive scalars: two CP-even states (h,H), one CP-odd state (A), and one charged

1We remind the reader that the Z2 symmetry (Φ1 → ±Φ1, Φ2 → ∓Φ2) of the Lagrangian forbids transitions
Φ1 ↔ Φ2. Soft breaking of Z2 means that such transitions may occur only due to dimension-2 operators (terms
proportional to m2

12 in Eq. (6.1)) so that Z2 remains preserved at very short distances.
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Higgs (H±). These fields are defined as(
φ+

1

φ+
2

)
=

(
cos β − sin β

sin β cos β

)(
G+

H+

)
,

(
η1

η2

)
=

(
cos β − sin β

sin β cos β

)(
G0

A

)
, (6.3)

and (
ρ1

ρ2

)
=

(
cosα − sinα

sinα cosα

)(
H

h

)
, (6.4)

The mixing angles α and β satisfy

tan β =
v2

v1

, tan 2α =
2(−m2

12 + λ345v1v2)

m2
12(v2/v1 − v1/v2) + λ1v2

1 − λ2v2
2

, (6.5)

with λ345 ≡ λ3 + λ4 + λ5. The masses of the physical scalars can be written in terms of

parameters which appear in the potential as

m2
H = M2 sin2(α− β) +

(
λ1 cos2 α cos2 β + λ2 sin2 α sin2 β +

λ345

2
sin 2α sin 2β

)
v2,

(6.6)

m2
h = M2 cos2(α− β) +

(
λ1 sin2 α cos2 β + λ2 cos2 α sin2 β − λ345

2
sin 2α sin 2β

)
v2,

(6.7)

m2
A = M2 − λ5v

2, (6.8)

m2
H± = M2 − λ4 + λ5

2
v2, (6.9)

where the Z2 breaking term is now parameterized via M2 ≡ m2
12

sin β cos β
. In the Yukawa sector,

the Z2 symmetry becomes particularly important as it prevents the flavor changing processes

to appear at tree level. Furthermore it enforces that each type of the right-handed fermion

couples to a single Higgs doublet. Four choices are then possible and they are called Type I,

II, X (Lepton Specific) and Z (Flipped) 2HDM [236]. 2 To be more specific, we first write the

2The model that we call Type Z or Flipped 2HDM is sometimes referred to as Type Y.
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Model ζd ζu ζ`

Type I cot β cot β cot β

Type II − tan β cot β − tan β

Type X (lepton specific) cot β cot β − tan β

Type Z (flipped) − tan β cot β cot β

Table 6.1: Couplings ζf in various types of 2HDM.

Yukawa Lagrangian as

LY =−
√

2

v
H+
{
ū [ζd V mdPR − ζumuV PL] d+ ζ` ν̄m`PR`

}
− 1

v

∑
f,ϕ0

i∈{h,H,A}

ξ
ϕ0
i

f ϕ
0
i

[
f̄mfPRf

]
+ h.c., (6.10)

where u and d stand for the up- and down-type quark, ` is a lepton flavor, f stands for a generic

fermion, V for the CKM matrix, and PL,R = (1 ∓ γ5)/2. A specific choice of parameters ζf
corresponds to the above mentioned types of 2HDM, which we also summarize in Table 6.1.

Notice that the couplings ξϕ
0
i

f appearing in the neutral Lagrangian part can be mapped onto the

charged ones via

ξhf = sin(β − α) + cos(β − α)ζf ,

ξHf = cos(β − α)− sin(β − α)ζf ,

ξAu = −iζu, ξAd,` = iζd,`. (6.11)

6.1.2 General Constraints and Scan of Parameters

To perform a thorough scan of scalars in a general 2HDM we use the general constraints sum-

marized below.

• Stability:

To ensure that the scalar potential is bounded from below, the quartic couplings should

satisfy the relations [239]
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λ1,2 > 0, λ3 > −(λ1λ2)1/2, and λ3 + λ4 − |λ5| > −(λ1λ2)1/2. (6.12)

Furthermore, the stability of the EW vacuum implies that

m2
11 +

λ1v
2
1

2
+
λ3v

2
2

2
=
v2

v1

[
m2

12 − (λ4 + λ5)
v1v2

2

]
, (6.13)

m2
22 +

λ2v
2
2

2
+
λ3v

2
1

2
=
v1

v2

[
m2

12 − (λ4 + λ5)
v1v2

2

]
, (6.14)

which then allows us to express m2
11 and m2

22 in terms of the soft Z2 breaking term m2
12

and the quartic couplings λ1−5. These constraints should be combined with the necessary

and sufficient condition that the minimum developed at (v1, v2) is global [240]:

m2
12

(
m2

11 −m2
22

√
λ1/λ2

)(
tan β − 4

√
λ1/λ2

)
> 0. (6.15)

• Perturbative Unitarity:

An important constraint on the spectrum of scalars within 2HDM stems from the unitarity

requirement of the S-wave component of the scalar scattering amplitudes. That condition

implies the following inequalities [241, 242]

|a±|, |b±|, |c±|, |f±|, |e1,2|, |f1|, |p1| < 8π, (6.16)

where

a± =
3

2
(λ1 + λ2)±

√
9

4
(λ1 − λ2)2 + (2λ3 + λ4)2,

b± =
1

2
(λ1 + λ2)± 1

2

√
(λ1 − λ2)2 + 4λ2

4,

c± =
1

2
(λ1 + λ2)± 1

2

√
(λ1 − λ2)2 + 4λ2

5,

e1 = λ3 + 2λ4 − 3λ5, e2 = λ3 − λ5,

f+ = λ3 + 2λ4 + 3λ5, f− = λ3 + λ5,

f1 = λ3 + λ4, p1 = λ3 − λ4.

(6.17)
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• EW Precision Tests:

Finally, the additional scalars contribute to the gauge boson vacuum polarization. As a

result, the EW precision data provide important constraint. In particular the T parameter

bounds the mass splitting between mH and mH± in the scenario in which h is identified

with the SM-like Higgs, cf. Ref. [243] for example. The general expressions for the

parameters S, T and U in 2HDM can be found in Ref. [244]. To derive the bounds on

the scalar spectrum we consider the following values and the corresponding correlation

matrix [245],

∆SSM = 0.05± 0.11,

∆T SM = 0.09± 0.13,

∆USM = 0.01± 0.11,

corr =

 1 0.90 −0.59

0.90 1 −0.83

−0.59 −0.83 1

 . (6.18)

The χ2 function is then expressed as

χ2 =
∑
i,j

(Xi −XSM
i )(σ2)−1

ij (Xj −XSM
j ), (6.19)

where the vector of central values and uncertainties are denoted as X = (∆S,∆T,∆U)

and σ = (0.11, 0.13, 0.11), while the elements of the covariance matrix are obtained via

σ2
ij ≡ σicorrijσj .

As mentioned above, we identify the lightest CP-even state h with the SM-like scalar ob-

served at the LHC with mass mh = 125.10(14) GeV [152]. To forbid the dangerous decays

h→ AA which could over-saturate the total width of h (' ΓSM
h ), we assume that mA > mh/2.

Moreover, we impose the alignment condition | cos(β − α)| ≤ 0.3, in order to ensure that the

couplings of h to V = W,Z remain consistent with the values measured so far, which appear

to be in good agreement with the SM predictions [246, 247]. The constraints are then imposed

onto a set of randomly generated points in the intervals:

tan β ∈ (0.2, 50), α ∈
(
−π

2
,
π

2

)
,

∣∣M2
∣∣ ≤ (1.2 TeV)2,

mH± ∈ (mW , 1.2 TeV), mH ∈ (mh, 1.2 TeV), mA ∈ (mh/2, 1.2 TeV) .

(6.20)
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Figure 6.1: Results of the scan described in the text.

A scan of parameters consistent with the constraints listed above favors the moderate and small

values of tan β ∈ (0.2, 15]. In order to access large tan β values, and in addition to the free

scan, we perform a second scan with mH ≈ |M |, which helps us probing higher values of

tan β, and we then combine results of both scans. The combined results are shown in Fig. 6.1

in two planes, (tan β,mH±) and (mA,mH±). From the right panel of Fig. 6.1 we observe that

the additional scalars become mass degenerate in the decoupling region (M2 � v2), as it can

be easily deduced from Eqs. (6.6)–(6.9). We should also emphasize that the results of our scans

agree with what has been previously reported in the literature, cf. [248, 249, 250, 251].

In Sec. 6.7 we will confront the points allowed by our scan with the experimental measure-

ments of exclusive b→ s decays.

6.2 Effective Hamiltonian

The most general effective Hamiltonian describing the b→ s`` transitions, made of dimension

six operators, is given by Eq. 4.2

Heff = −4GF√
2
VtbV

∗
ts

∑
i

(
CiOi + C ′iO′i

)
+ h.c.. (6.21)

The dimension six operators appearing in this Hamiltonian are sufficient to match the one-loop

amplitude when the external fermion momenta are neglected. This, however, is not true if the

computation is made with external momenta different from zero which is, in general, necessary

when dealing with (pseudo-)scalar operators. For example, in order to get a correct expression
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for the Wilson coefficient CP one needs to consider the external momenta, which then leads to

CP ∝ m`mb/m
2
W , c.f. [238]. We therefore need to select all situations in which one can obtain

the terms of the form (m`mb/m
2
W )OP , such as

e2

(4π)2

m`

m2
W

(s̄/qPib)(¯̀Pj`), or
e2

(4π)2

mb

m2
W

(s̄Pib)(¯̀/qPj`), (6.22)

which can obviously be reduced to (m`mb/m
2
W )OP . As an example,

α

4π

m`

m2
W

(
s̄/qPLb

) (
¯̀γ5`

)
=

α

4π

m`mb

m2
W

(s̄PRb)
(
¯̀γ5`

)
− α

4π

m`ms

m2
W

(s̄PLb)
(
¯̀γ5`

)
=
m`mb

m2
W

OP −
m`ms

m2
W

O′P '
m`mb

m2
W

OP . (6.23)

A complication arises when encountering the operators with insertion of /pb + /ps in the leptonic

current, with the convention b(pb) → s(ps)`
−(p−)`+(p+), where we also use q = pb − ps =

p+ + p−. A way to deal with that, adopted in Ref. [238], consists in setting ps = 0, so that

/pb + /ps = /q + 2/ps = /q = /p+
+ /p−, and in this way one can again, like in the previous

example, use the equations of motion. That way to deal with the problem in hands, however,

leads to an incomplete expression for CP , for example. If, instead, one keeps all the momenta

non-zero, we get a complete result. At this point we just emphasize that the matching should

be performed by keeping all the external momenta different from zero and the contributions

stemming from dimension-seven operators can be neglected at the very end of computation.

We further elucidate this problem in Sec. 6.5 where we also propose a general framework for

the appropriate matching between the full and effective theories in a case in which the (pseudo-

)scalar bosons are explicitly taken into account. Before closing this section we could also argue

that a term (m`mb/m
2
W )OP could be obtained from the dimension-eight operators such as,

α

4π

1

m2
W

(
s̄(/p+

− /p−)Pib
)(

¯̀(/pb + /ps)Pj`
)
. (6.24)

Such terms, however, never appear in our calculations and we will limit our discussion to the

dimension-seven operators only.
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6.3 Wilson coefficients

After unambiguously matching the full with the effective theories we obtain the one-loop ex-

pressions for the Wilson coefficients generated by the additional scalar particles. We summarize

our results in this Section. For clarity we will write them as,

C7 = CNP ,γ
7 , (6.25)

C9 = CNP ,γ
9 + CNP, Z

9 , (6.26)

C10 = CNP, Z
10 , (6.27)

CP = CNP, box
P + CNP, Z

P + CNP, A
P (6.28)

CS = CNP, box
S + CNP, h

S + CNP, H
S (6.29)

where the superscripts denote the types of diagrams that contributes to a given Wilson coeffi-

cient, namely, the box diagrams, the γ, Z-penguins and the (pseudo-)scalar penguins. These co-

efficients should be added to the (effective) ones obtained in the SM:C7 = −0.304, C9 = 4.211,

C10 = −4.103, and CS,P ' 0 [252]. 3

Henceforth, we neglect the s-quark mass and give all our results in the unitary gauge. To

check the consistency of our formulas, we also performed the computation in the Feynman

gauge. In the remainder of this Section we present our resulting expressions for each of the

coefficients appearing in Eqs. (6.27)–(6.29). We use the standard notation,

xq =
m2
q

m2
W

, xH± =
m2
H±

m2
W

, xϕ0
i

=
m2
ϕ0
i

m2
W

, (6.30)

where q ∈ {b, t}, and ϕ0
i ∈ {h,H,A}.

6.3.1 γ-penguins in 2HDM

The γ–penguin diagrams induced by the charged Higgs are shown in Fig. 6.2. The off-shell and

on-shell contributions can be matched onto the Wilson coefficients C7 and C9, respectively, we

obtain,

3Special attention should be paid to the scalar penguin with the SM-like Higgs to avoid the double counting
since it also appears with modifications in aligned-2HDM.
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Figure 6.2: Photon penguin diagrams generated by the charged Higgs bosons.
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Figure 6.3: Z penguin diagrams generated by the additional scalars.

CNP,γ
7 =− |ζu|2

xt
72

[
7x2

H± − 5xH±xt − 8x2
t

(xH± − xt)3
+

6xH±xt(3xt − 2xH±)

(xH± − xt)4
log

(
xH±

xt

)]

− ζ∗uζd
xt
12

[
3xH± − 5xt
(xt − xH±)2

+
2xH±(3xt − 2xH±)

(xt − xH±)3
log

(
xt
xH±

)]
,

(6.31)

and

CNP,γ
9 = |ζu|2

xt
108

[
38x2

H± − 79xH±xt + 47x2
t

(xH± − xt)3
− 6(4x3

H± − 6x2
H±xt + 3x3

t )

(xH± − xt)4
log

(
xH±

xt

)]

+ ζ∗uζd
xtxb
108

[
−37x2

H± + 8xH±xt + 53x2
t

(xH± − xt)4
+

6(2x3
H± + 6x2

H±xt − 9xH±x
2
t − 3x3

t )

(xH± − xt)5
log

(
xH±

xt

)]
.

(6.32)

The dominant terms in both CNP,γ
7 and CNP,γ

9 come from the top quark contribution and are

proportional to |ζu|2. The terms proportional to ζ∗uζd are suppressed by m2
b , thus indeed sub-

dominant.
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Figure 6.4: Box diagrams generated by the additional scalars.

6.3.2 Z-penguins in 2HDM

The Z-penguin diagrams contribute significantly to the Wilson coefficients CP , C9 and C10

through the diagrams shown in Fig. 6.3. The leading order expressions for C9 and C10 read

CNP,Z
9 = CNP,Z

10 (−1 + 4 sin2 θW ), (6.33)

CNP,Z
10 = |ζu|2

x2
t

8 sin2 θW

[
1

xH± − xt
− xH±

(xH± − xt)2
log

(
xH±

xt

)]

+ ζ∗uζd
xtxb

16 sin2 θW

[
xH± + xt

(xH± − xt)2
− 2xtxH±

(xH± − xt)3
log

(
xH±

xt

)]
. (6.34)

Similarly, for CP we obtain,

CNP,Z
P = ζ∗uζd

√
xbx` xt

16 sin2 θW

[
xt − 3xH±

(xH± − xt)2
+

2x2
H±

(xH± − xt)3
log

(
xH±

xt

)]
(6.35)

+ |ζu|2
√
xbx` xt
216

{
38x2

H± + 54x2
H±xt − 79xH±xt − 108xH+x

2
t + 47x2

t + 54x3
t

(xH± − xt)3
(6.36)

− 6(4x3
H± + 9x3

H±xt − 6x2
H±xt − 18x2

H±x
2
t + 9xH±x

3
t + 3x3

t )

(xH± − xt)4
log

(
xH±

xt

)
(6.37)

− 3

2 sin2 θW

[
2x2

H± + 36x2
H±xt − 7xH±xt − 72xH±x

2
t + 11x2

t + 36x3
t

(xH± − xt)3
(6.38)

− 6xt(6x
3
H± − 12x2

H±xt + 6xH±x
2
t + x2

t

(xH± − xt)4
log

(
xH±

xt

)]}
. (6.39)
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Figure 6.5: Higgs penguin diagrams generated by the additional scalars.
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6.3.3 Charged Higgs Boxes in 2HDM

The box diagrams, peculiar for 2HDM, are drawn in Fig. 6.4. At low-energy they contribute to

the Wilson coefficients CS and CP as,

CNP,box
S =

√
x`xb xt

8(xH± − xt) sin2 θW

{
ζ`ζ
∗
u

(
xt

xt − 1
log xt −

xH±

xH± − 1
log xH±

)
+ ζuζ

∗
`

[
1− xH± − x2

t

(xH± − xt)(xt − 1)
log xt −

xH±(xt − 1)

(xH± − xt)(xH± − 1)
log xH±

]
+ 2ζdζ

∗
` log

(
xt
xH±

)}
,

(6.40)

and

CNP,box
P =

√
x`xb xt

8(xH± − xt) sin2 θW

{
ζ`ζ
∗
u

(
xt

xt − 1
log xt −

xH±

xH± − 1
log xH±

)
− ζuζ∗`

[
1− xH± − x2

t

(xH± − xt)(xt − 1)
log xt −

xH±(xt − 1)

(xH± − xt)(xH± − 1)
log xH±

]
− 2ζdζ

∗
` log

(
xt
xH±

)}
.

(6.41)

In addition to CNP, box
S,P , the tensor and (axial-)vector operators receive contributions but sup-

pressed by the lepton mass, i.e. by x` = m2
`/m

2
W . These coefficients are negligible even for

decays with τ ’s in the final state as it can be verified by using the expressions we provide in

Appendix F.2.

6.3.4 Scalar penguins in 2HDM

We now turn to the effective coefficients CNP, A
P , CNP, h

S and CNP, H
S , generated by the scalar

penguin diagrams shown in Fig. 6.5. We recall that the total ultraviolet divergence coming from

these diagrams is proportional to the factor (1 + ζuζd)(ζu − ζd), which vanishes due to the Z2

symmetry (cf. Table 6.1). 4

The penguins with the CP-odd Higgs give rise to,

4Notice that this is not true in general. For instance, in the aligned-2HDM the divergences are canceled by
contributions coming from the radiatively induced misalignment of the Yukawa matrices. The alignment is only
preserved at all scales in the context of Z2-symmetric models [238].
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CNP, A
P = −

√
x`xb

sin2 θW

ζ`xt
2xA

{
ζ3
uxt
2

[
1

xH± − xt
− xH±

(xH± − xt)2
log

(
xH±

xt

)]

+
ζu
4

[
− 3xH±xt − 6xH± − 2x2

t + 5xt
(xt − 1)(xH± − xt)

+
xH±(x2

H± − 7xH± + 6xt)

(xH± − xt)2(xH± − 1)
log xH±

− x2
H±(x2

t − 2xt + 4) + 3x2
t (2xt − 2xH± − 1)

(xH± − xt)2(xt − 1)2
log xt

]}
,

(6.42)

where we used that ζf ∈ R, and (1 + ζuζd)(ζu − ζd) = 0. Similarly, the penguins with the

CP-even Higgs lead to:

CNP, h
S =

√
x`xb

sin2 θW

xt
2xh

[sin(β − α) + cos(β − α)ζ`]

×
[
g1 sin(β − α) + g2 cos(β − α)− g0

2v2

m2
W

λhH+H−

]
,

CNP, H
S =

√
x`xb

sin2 θW

xt
2xH

[cos(β − α)− sin(β − α)ζ`]

×
[
g1 cos(β − α)− g2 sin(β − α)− g0

2v2

m2
W

λHH+H−

]
,

(6.43)

where λϕ
0
i

H+H− are the trilinear couplings defined in Appendix F.3. The functions g0,1,2 are given

in Appendix F.2 along with the amplitudes generated by each of the diagrams shown in Fig. 6.5.

6.4 Comparison with Other Computations

In this Section we compare our Wilson coefficients with the results obtained in previous studies.

Before doing so we should emphasize the novelties of this work:

(i) The result for C9 in a general 2HDM with a Z2 symmetry is new;

(ii) The subleading terms O(mb) to C9,10 have been neglected in the previous computations,

and they are included here;
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(iii) We provided an independent computation of the coefficients CS and CP , and elucidate

inconsistencies present in Ref. [238], cf. Sec. 6.5 where we propose a general prescription

for matching procedure when the external momenta are not neglected.

The effective coefficients CS and CP , in the context of Type II 2HDM, were first computed

in Refs. [253, 254, 255, 256, 257, 258]. In these papers tan β was assumed to be very large,

which considerably simplifies the computation because in that case only the box diagrams give

significant contributions. We agree with these results if we keep only the leading terms in

tan β in our expressions. Along the same lines, the leading order QCD corrections to the same

coefficients were included in Ref. [259].

Recently, the computation of CS and CP was extended to the context of a general aligned-

2HDM, which comprises all four types of 2HDM with Z2 symmetry discussed here but without

the usual assumption of large tan β [238]. We agree with their general results, except for the ex-

pression for CNP, Z
P which differs from the one reported in the present paper. The disagreement

comes from the fact that the authors of Ref. [238] worked with the assumption ps = 0, which

appears not to be fully appropriate. 5 By keeping ps 6= 0 one realizes that the computation of

Z-penguin leads to two independent terms, one proportional to pH = pb + ps and the other

to q = pb − ps. By using equations of motion, CP,S correctly receive contributions from the

terms proportional to q, but not from those proportional to pH . With ps = 0 only one invariant

appears, because pH ≡ q, and thus the resulting CP,S also receive spurious contributions from

pH .

Regarding the other Wilson coefficients, the first computations of C7 for a general 2HDM

have been performed in Ref. [145], then in Refs. [260, 261] and [262] where the leading and

subleading QCD corrections were included too. Our results are consistent with those, as well as

with the expression for C10 presented in Ref. [257] and more recently in Ref. [238]. The only

difference with respect to those results is that we include the subleading terms in mb.

6.5 Matching Procedure

In this section we discuss in more detail the matching of the one-loop amplitudes when the

nonzero external momenta are considered. We stress once again that keeping external momenta

5We should emphasize that we were able to reproduce the expression for CNP, Z
P reported in Ref. [238] by

taking ps = 0.
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non-zero is necessary to obtain the correct values for the Wilson coefficients CS,P . As we

mentioned in Sec. 6.2 the insertion of external momenta result in dimension-seven operators

which can be simplified by using equations of motion, except in the cases when the lepton

momenta are to be contracted with the quark current and/or the quark momenta to be contracted

with the lepton current. The amplitudes which need a special treatment, which give rise to the

terms ∝ m`mb/m
2
W , are:

A`ij =
α

4π

1

mW

(s̄(/p− − /p+
)Pib)(¯̀Pj`), Aqij =

α

4π

1

mW

(s̄Pib)(¯̀(/pb + /ps)Pj`),

AV `ij =
α

4π

1

mW

(s̄(/p− − /p+
)γµPib)(¯̀γµPj`), AV qij =

α

4π

1

mW

(s̄γµPib)(¯̀(/pb + /ps)γ
µPj`),

(6.44)

where i, j = L,R and s, b, ` are the fermion spinors. Note again that our convention is b(pb)→
s(ps)`

−(p−)`+(p+), and q = pb − ps = p+ + p−. In our calculation, specifically, the amplitude

Aqij appears in the computation of the Z-penguin diagrams, while we find A`ij and AV qij when

computing the box diagrams.

In order to keep our discussion general, we first extend the Hamiltonian (6.21) and include

the following operators

H′eff = −4GF√
2
VtbV

∗
ts

∑
i,j=L,R

(
CT `ij OT `ij + CT qij OT qij

)
+ h.c., (6.45)

where

OT `ij =
e2

(4π)2

1

mW

(s̄γµPib)∂
ν(¯̀σµνPj`),

OT qij = − e2

(4π)2

1

mW

∂ν(s̄σµνPib)(¯̀γµPj`),

(6.46)

with i, j = L,R. 6 We reiterate that even though these operators are suppressed by 1/mW ,

they are necessary to unambiguously match the loop induced amplitudes with the effective field

theory. The above choice of the basis of dimension-seven operators is convenient since they do

not contribute to Br(Bs → µ+µ−), while for the other decays their hadronic matrix elements

6Notice that we are not computing the QCD corrections to the Wilson coefficients and therefore, at this order,
we do not make distinction between the ordinary and the covariant SU(3)c derivative.
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are easy to calculate.

By using the Fierz rearrangement and by applying the field equations, the amplitudes (6.44)

are reduced to

A`LL ↔ −OT `LL +O9
m`

mW

, (6.47)

A`LR ↔ −OT `LR +O9
m`

mW

, (6.48)

AV `LL ↔ −OT qLL +

(
O′S −

OT −OT5

4

)
m`

mW

, (6.49)

AV `LR ↔ OT qLR +

(
O′S +

OT −OT5

4

)
m`

mW

, (6.50)

AqLL ↔ OT qLL +
O′9 −O′10

2

mb

mW

+
O9 −O10

2

ms

mW

, (6.51)

AqLR ↔ OT qLR +
O′9 +O′10

2

mb

mW

+
O9 +O10

2

ms

mW

, (6.52)

AV qLL ↔ OT `LL +
OS −OP

2

mb

mW

+

(
O′S −O′P −

OT −OT5

2

)
ms

2mW

, (6.53)

AV qLR ↔ −OT `LR +
O′S +O′P

2

ms

mW

+

(
OS +OP +

OT +OT5

2

)
mb

2mW

. (6.54)

To remain completely general, in the above equations we also kept the lepton mass and the mass

of s-quark different from zero. Clearly, for the appropriate matching of these amplitudes to the

effective theory, the operators appearing in Eq. (6.21) are not enough and the extended basis

given in Eq. (6.45) is necessary. Once the matching is performed, the operators from Eq. (6.21)

could be neglected since they are 1/mW suppressed with respect to the dominant (dimension

six) ones.

This delicate point can then be verified explicitly by computing the Wilson coefficients

CT qRL and CT qRR which come from the Z-penguin diagrams and the coefficients CT `LL = (CT `LR)∗

generated by the box diagrams. Their explicit expression is given in Appendix F.2.

Now, if one sets ps = 0 in AqRR of Eq. (6.44), then just like in Ref. [238] one could write

/pb + /ps = /pb = /q which, by means of equations of motion, yields

AqRR =
m`

mW

α

4π
(s̄PRb)

(
¯̀(PR − PL)`

)
=
√
x`OP , (6.55)
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which then in the actual computation gives a contribution to CP . With our procedure, we

understand that this contribution does not come from CP but actually from
√
x`C

T q
RL. In other

words, and by using our definition of operators and of the effective Hamiltonian, we find

AqRR =
√
x`OP + 2

α

4π
(s̄PRb)

(
¯̀/psPR`

)
. (6.56)

Had we set ps = 0 we would have missed the contribution of the dimension-seven operator.

We emphasize it, once again, thatAqRR is a non-trivial operator with derivative which cannot be

straightforwardly simplified by means of equations of motion.

Finally, after a comparison between ours and the result for CP presented in Ref. [238] we

find 7

C
Ref.[238]
P =

[
CP +

√
x`

2 sin2 θW
CT qRR

](this work)

. (6.57)

In other words, the Wilson coefficient CP of Ref. [238] contains the Wilson coefficient of the

operator OT qRR, the matrix element of which is not equal to the matrix element of the operator

OP but is, instead, suppressed by mW as we explicitly check in the next section. For that reason

the Wilson coefficient of Ref. [238] is not well defined unless the basis of dimension-seven

operators is explicitly specified.

6.6 Bs → µ+µ− andB → Kµ+µ− in 2HDM

In this Section we give the expressions for Br(Bs → µ+µ−) and Br(B → Kµ+µ−) to which

we also include the contributions of the operators given in Eq. (6.46). Those additional opera-

tors were necessary for the appropriate matching procedure between the full and the effective

theories. However, since they are suppressed by 1/mW they are expected to be negligible with

respect to the dominant operators entering the effective Hamiltonian (6.21). The purpose of this

exercise is to check whether or not the size of the matrix elements of the operators (6.46) is

indeed numerically insignificant for phenomenology.

7Notice also that the notation of Ref. [238] is such that their Wilson coefficient CP , which we can call C̃P , is
related to our’s via CP =

√
x`xbC̃P / sin2 θW .

110



6.6. Bs → µ+µ− and B → Kµ+µ− in 2HDM

6.6.1 Bs → µ+µ−

On the basis of Lorentz invariance and invariance of the strong interaction with respect to parity,

one can easily verify that Bs → µ+µ− is not affected by the operators OT qi,j and OT `i,j , with

i, j = L,R. The expression for the decay rate of this process remains the standard one

Br(Bs → `+`−)th = τBs
α2G2

FmBsβ`
16π3

|VtbV ∗ts|2 f 2
Bsm

2
`

[ ∣∣∣∣C10 − C ′10 +
m2
Bs

(CP − C ′P )

2m`(mb +ms)

∣∣∣∣2
+ |CS − C ′S|2

m2
Bs

(m2
Bs
− 4m2

`)

4m2
`(mb +ms)2

]
, (6.58)

where β` =
√

1− 4m2
`/m

2
Bs

. To compare Eq. (6.58) with the available experimental value, we

proceed analogously as in (4.40) of Chap. 4, using the averaged branching ratios from the fit in

Ref. [46].

As we mentioned before, the dimension-seven operators (6.46) were chosen in such a way

that they do not contribute the Bs → `+`− decay amplitude.

6.6.2 B → Kµ+µ−

In contrast to Bs → `+`−, the decay B → K`+`− receives contributions from the operators

of the extended basis (6.46). To write the decay amplitude in a compact form, it is convenient

to use the formalism of helicity amplitudes (HA’s) Ref. [110]. Using this process described in

Ref. [110] but adding the dimension 7 operators, we obtain

d

dq2
Br(B → K`+`−)th =

2(q2 −m2
`)

3

[
|AL0 |2 + |AR0 |2

]
+ 2m2

` |At|2 +
q2 − 4m2

`

2
|AS|2

+
q2 + 2m2

`

3

[
|ALt0 − AL0t|2 + |ARt0 − AR0t|2

]
+ 4m2

`Re
[
AL∗0 AR0

]
+

8(q2 − 4m2
`)

3
|AT5|2 +

4 (q2 − 4m2
`)

3
Re
[
A∗T5(ALt0 − AL0t)− (L↔ R)

]
+ 4m2

`Re
[
AL∗0t

(
AR0t − ARt0

)
− AL∗t0

(
AR0t − ARt0

)]
− 2m`

√
q2 Im

[(
AL0 + AR0

)∗ (
ALt0 − AL0t + (L↔ R)

)]
,

(6.59)
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and the explicit expressions for the helicity amplitudes are the q2-dependent functions which

read:

A
L(R)
0 (q2) = NK

λ
1/2
B

2
√
q2

[
f+(q2) [(C9 + C ′9)∓ (C10 + C ′10)] + fT (q2)

2mb

mB +mK

(C7 + C ′7)

− fT (q2)
q2

mW (mB +mK)

[
CT qL,L(R) + CT qR,L(R)

] ]
, (6.60)

At(q
2) = −NKf0(q2)

m2
B −m2

K√
q2

[
C10 + C ′10 +

q2 (CP + C ′P )

2m`(mb −ms)

]
, (6.61)

AS(q2) = NKf0(q2)
m2
B −m2

K

mb −ms

(CS + C ′S) , (6.62)

A
L(R)
0t (q2) = iNKλ1/2

B

[
fT (q2)

CT
mB +mK

+ f+(q2)
CT `L,L(R) + CT `R,L(R)

2mW

]
, (6.63)

A
L(R)
t0 (q2) = −iNKfT (q2)

CTλ
1/2
B

mB +mK

, (6.64)

AT5(q2) ≡ A
L(R)
+− = iNKfT (q2)

CT5λ
1/2
B

mB +mK

, (6.65)

where the normalization factor also accounts for the remaining phase space, namely,

∣∣NK(q2)
∣∣2 = τBd

α2
emG

2
F |VtbV ∗ts|2

512π5m3
B

λ
1/2
q

q2
λ

1/2
B . (6.66)

For shortness, in the above formulas, we used λq = λ(
√
q2,m`,m`) and λB = λ(mB,mK ,

√
q2),

where λ(a, b, c) ≡ [a2 − (b − c)2][a2 − (b + c)2]. The kinematic conventions and the form

factor definitions are collected in Appendix F. In the limit in which the derivative operators

vanish we retrieve the usual expression for differential branching fraction [110]. The choice

of dimension-seven operators (6.46) is convenient also because their matrix elements are pro-

portional to the original hadronic matrix elements multiplied by iqµ. As it can be seen from

the above expressions the coefficients CT `i,j and CT qi,j enters the above formulas with the explicit

1/mW -suppression factor. In other words, with the above formulas and by using the Wilson

coefficients presented in the previous Sections, we see that the derivative operators (6.46) are

112



6.7. Phenomenology and Discussion

indeed irrelevant for phenomenology. Their presence is therefore essential for the unambigu-

ous matching procedure in the computation of Wilson coefficients but they do not alter the

phenomenological analysis even at the sub-percent level.

6.7 Phenomenology and Discussion

In this Section we use our results for Wilson coefficients and compare the experimental data

for the exclusive b → s`+`− modes with various types of 2HDM. We decided to focus on

Br(Bs → µ+µ−)exp = (3.1 ± 0.6) × 10−9 [45], and Br(B → Kµ+µ−)exp
high q2 = (8.5 ± 0.3 ±

0.4) × 10−8 [263], where “high q2” means that the decay rate has been integrated over the in-

terval q2 ∈ [15, 22] GeV2. The reason for opting for these decay modes is that the relevant

hadronic uncertainties are under good theoretical control. The hadronic quantity entering the

Bs → µ+µ− decay amplitude is the decay constant, fBs . It has been abundantly computed

by means of numerical simulations of QCD on the lattice and its value is nowadays one of the

most accurately computed hadronic quantities as far as B(s)-mesons are concerned [48]. The

hadronic form factors entering the B → Kµ+µ− decay amplitude have been directly com-

puted in lattice QCD only in the region of large q2’s [264, 265], which explains why we use

Br(B → Kµ+µ−)exp
high q2 to do phenomenology. Furthermore, since the bin corresponding to

q2 ∈ [15, 22] GeV2 is rather wide and away from the very narrow charmonium resonances, the

assumption of quark-hadron duality is likely to be valid [266]. By using the recent lattice QCD

results for the form factors provided by HPQCD [264] and MILC Collaborations [265], the SM

results are

Br(B → Kµ+µ−)high q2 =

{
(10.0± 0.5)× 10−8

∣∣∣∣
HPQCD

, (10.7± 0.5)× 10−8

∣∣∣∣
MILC

}
,

(6.67)

both being about 2σ larger than the experimental value measured at LHCb. 8 Since the cur-

rent disagreement between theory and experiment needs to be corroborated by more data,

we decided to impose all the constraints to 3σ accuracy. We will then discuss the impact of

Br(B → Kµ+µ−)exp
high q2 on 2HDM if the current discrepancy remains, i.e. by requiring the

2HDM to compensate the disagreement between theory (SM) and experiment at the level of 2σ

8In the following we will average the results obtained by using the two sets of form factors obtained in lattice
QCD.
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Model Type I Type II Type X Type Z

tan β > 1.0 > 0.9 > 1.0 > 0.9

Table 6.2: Allowed values of low tan β (at 99% CL) for the different 2HDMs. See text for
details.

and more. Notice also that the measured Br(Bs → µ+µ−)exp is slightly smaller than predicted,

Br(Bs → µ+µ−)SM = (3.57± 0.17)× 10−9[46].

We now use the results of our scan from Sec. 6.1.2, require the 3σ agreement between

experiment and theory, which means that we add the generic 2HDM Wilson coefficients derived

in the previous Section to the SM values. The result, in the plane (tan β,mH±), is shown in

Fig. 6.6 for each type of 2HDM discussed in Sec. 6.1. We learn that both Br(Bs → µ+µ−)

and Br(B → Kµ+µ−)high q2 exclude the low tan β . 1 region regardless of the type of 2HDM

considered. The limit of exclusion of low tan β coming from Br(B → Kµ+µ−)high q2 is slightly

larger than the one arising from Br(Bs → µ+µ−). The limit on low tan β obtained in this way

for each of our four models is given in Tab. 6.2.

Besides excluding tan β . 1, it may appear as a surprise that the large tan β are not ex-

cluded by these data. The reason for that is the fact that the (pseudo-)scalar Wilson coefficient,

with respect to the dominant (axial-)vector one, comes with a term proportional to (mBs/mW )2

which suppresses the large tan β values. This feature can be easily verified in the Type II model

for which the coefficients CS,P , in the large tan β limit. This is why only a small number of

points have been eliminated from our scan of Type II model at large tan β but relatively light

mH± .

Since the SM value is in slight tension with Br(B → Kµ+µ−)exp
high q2 at the 2.1σ level, we

can now check which of the models discussed in this paper can be made consistent with the

experimental data if any disagreement beyond 2σ between theory (SM) and experiment is to be

attributed to 2HDM. It turns out that two such models are Type II and Type Z 2HDM, which

we illustrate in Fig. 6.7. For the other two scenarios (Type I and Type X) the NP contributions

are either too small or already in conflict with Br(Bs → µ+µ−)exp. From Figs. 6.7 and 6.8

we see that in order to explain the discrepancy one needs a relatively light charged scalar: (i)

mH± . 735 GeV and tan β > 2.3 in the Type II scenario, and (ii) mH± . 380 GeV and

tan β > 3.5 for the Type Z scenario. Since the masses of the additional scalars are correlated,

we see that mH and mA become bounded as well, cf. Fig. 6.8. In the case of Type II and
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Figure 6.6: Results of the scan given in Fig. 6.1 after imposing the constraints coming from
Br(Bs → µ+µ−)exp and Br(B → Kµ+µ−)exp

high q2 to 3σ accuracy. Blue points are allowed by all
observables, while gray points are excluded by Br(Bs → µ+µ−), and the red ones are excluded
by Br(B → Kµ+µ−)high q2 .

Type Z 2HDM an additional bound on the charged Higgs has been recently derived from the

inclusive mode Br(B → Xsγ). After comparing the experimental spectra with theoretical

expressions in which the higher order QCD corrections have been included, the lower bound

mH± > 570 GeV (95% CL) was obtained in Ref. [267] (c.f. also Ref.[157]). This bound

is superposed on our results in Figs. 6.7 and 6.8, which then also eliminates Type Z 2HDM.

Furthermore, we can say that the requirement of agreement between theory and experiment to

2σ, for the quantities discussed in this Section, reduces the available space of parameters for

Type II 2HDM to mH± ∈ (570, 735) GeV, and tan β ∈ (16, 35), while the available range of

values for the mass of the CP-odd Higgs becomes mA ∈ (145, 865) GeV.

In what follows we will assume that the 2σ disagreement of the measure Br(B → Kµ+µ−)exp
high q2

with respect to the SM prediction indeed remains as such in the future and discuss the conse-

115



Chapter 6. Two Higgs Doublet Model

Figure 6.7: Results of the scan in Fig. 6.1 after imposing the b→ s constraints to 2σ accuracy.
The hatched area is excluded by Br(B → Xsγ) at 95% [267]. See Fig. 6.6 for the color code.

Figure 6.8: Same as in Fig. 6.7 but in the (mA,mH±) plane.

quences on the decays Br(Bs → τ+τ−) and Br(B → Kτ+τ−)high q2 if the Type II 2HDM is

used to explain the disagreement. From Eq. (6.58) we can see that

Br(Bs → τ+τ−)

Br(Bs → τ+τ−)SM
=

Br(Bs → µ+µ−)

Br(Bs → µ+µ−)SM
− |C

ττ
S |2

|CSM
10 |2

m2
Bs

(mb +ms)2
, (6.68)

where the only remaining m` dependence comes from the last numerator in the factor multi-

plying |CS − C ′S|2 in Eq. (6.58). In Fig. 6.9 we illustrate the validity of the above equality.

Notice that a tiny departure from equality comes from the large tan β values which enhance the

CS contribution. In other words, the current experimental result Br(Bs → µ+µ−)exp, which

is slightly lower than the one predicted in the SM, is expected to lead to Br(Bs → τ+τ−)exp

compatible or slightly lower than predicted in the SM. The cancellation of the lepton mass in
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Figure 6.9: We show the branching fractions of the decay to τ -leptons with respect to their
SM predictions, as obtained in the Type II 2HDM, consistent with experimental results for the
decays to muons in the final state.

Br(Bs → `+`−)2HDM, discussed above, does not occur in Br(B → K`+`−)2HDM
high−q2 . As a result

we obtain,

Br(B → Kτ+τ−)Type II

Br(B → Kτ+τ−)SM
.

Br(B → Kµ+µ−)Type II

Br(B → Kµ+µ−)SM
, (6.69)

where we omitted the subscript “high-q2” to avoid a too heavy notation. Illustration is provided

in Fig. 6.9. We can rephrase this observation with an equivalent statement:

Br(B → Kτ+τ−)Type II

Br(B → Kµ+µ−)Type II
<

Br(B → Kτ+τ−)SM

Br(B → Kµ+µ−)SM
. (6.70)

To be fully explicit, we obtain

Br(B → Kτ+τ−)

Br(B → Kµ+µ−)

∣∣∣∣
high−q2

∈ (1.12, 1.14)SM, (1.0, 1.1)Type II. (6.71)
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Chapter 7

Summary and Conclusions

Nowadays, in order to look for the effects of new physics, i.e. physics beyond the Standard

Model, one searches for disagreements between the results predicted by the accurate theoretical

expressions derived in the Standard Model and those precisely measured in the experiments.

Thanks to the LHC and various flavor physics experiments this can be done in two ways: (a)

through direct searches of new particles at the high energy and high luminosity experiments at

LHC, and (b) through indirect searches in the low energy flavor physics experiments. Obviously

both ways are complementary to each other. Recent LHC results concerning the exclusive b→
s`` modes exhibited several interesting discrepancies which spurred a great deal of theoretical

activity in looking for the effects of new physics in various observables, of which the most

intriguing one is the ratio of the mode with µ+µ− in the final state with respect to the one in

which, instead of muons, one has e+e− in the final state. More specifically, it has been observed

that Rexp
K < RSM

K , Rexp
K∗ < RSM

K∗ and Rexp
pK < RSM

pK (see text for definitions). Although none of

these measurements exhibits a deviation larger than 5σ, all of them point towards the violation

of the lepton flavor universality, which came as a big surprise.

In this thesis we explored the (b) option and examined various new physics scenarios that

could accommodate the above-mentioned B-physics anomalies and which are consistent with

the whole plethora of experimental flavor physics data. We first described both the b → s``

and the b → c`ν̄ processes by means of an effective field theory in which the most general

new physics couplings are considered. The constraints on those couplings (Wilson coefficients)

are deduced from fit to a large number of observables. With these constraints in hands we

then proceeded to build a specific model/theory of physics beyond the Standard Model. In that

respect, one sees that our model building is fully data driven.
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In Chapter 3 we have studied the impact of extending the Standard Model by introducing

new heavy scalars and fermions on b → sµ+µ− processes. In particular, we considered (i) a

model with two extra fermions (ΨQ and Ψ`) and one extra scalar (scalar Φ), and (ii) a model with

two additional scalars (ΦQ and Φ`) and one additional fermion Ψ. Both models are consistent

with Cµ
9 = −Cµ

10, relation between the Wilson coefficients which seems to be preferred by the

data.

Considering representations up to the adjoint one under the SM gauge group, we classified

all possible combinations of representations for the new particles that are allowed by charge

conservation in the new Yukawa-type vertices. In this setup we calculated the new physics

contributions to b → sµ+µ− processes, Bs − Bs mixing, b → sγ, b → sνν̄, in addition to

the anomalous magnetic moment of the muon aµ. We found that the constraint from Bs − Bs

mixing is very stringent due to the new lattice data favoring destructive interference with the

SM, which in our case translates to a requirement for a large value of the Yukawa-like coupling

of the new physics particles to muon, |Γµ| & 2.1, for the masses of new particles O(1 TeV).

The Bs−Bs constraint can be avoided in a model with two scalars if Ψ is a Majorana fermion.

In such a case we show that, for mΦq ≤ mΨ, the contribution to the Bs −Bs mixing amplitude

can be zero. Notice that aµ, the anomalous magnetic moment of the muon, depends only on Γµ

and the 2σ agreement between theory and experiment can be achieved for |Γµ| & 2, with the

new heavy particles being O(1 TeV).

In Chapter 4 we generalized the analysis of Chapter 3 by allowing the non-zero couplings

of the new particles to right-handed SM fermion as and calculated the general expressions for

the Wilson coefficients governing b→ s processes (b→ s`+`−, b→ sνν̄, b→ sγ and Bs− B̄s

mixing). Moreover, we computed the contributions to aµ as well as to the accurately measured

Br(Z → µ+µ−), which is also included in our analysis.

Furthermore, we proposed a viable UV complete model which, besides a scalar (Φ) contains

two vector-like fermions of 4th generation, namely ΨE and ΨD. From the phenomenological

analysis we show that a good description of the experimental flavor physics b→ s data, consis-

tent with results of the direct searches at the LHC, can be made for e.g. mE ≈ mΦ ' 0.5 TeV,

and mD ' 3 TeV. Interestingly, Φ can also be viewed as a viable candidate for the Dark Matter

particle. Indeed, we showed that if mΨE ∼ mΦ one gets the amount of relic density consistent

with the limits of the direct Dark Matter searches.

In Chapter 5 we discussed another family of new physics scenarios in which the Standard

Model is extended by including one or two light [O(1 TeV)] leptoquark states. In these scenar-
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ios one can explain both types of B-anomalies, b→ s`` and b→ c`ν̄. One of the main require-

ments in specifying such a model is to provide consistency with the measured Br(Z → ``) and

Br(Z → νν̄). Such processes are loop induced and have not been fully included in the previous

analyses. We computed the contribution of all of the possible scalar leptoquarks propagating

in the loops, by admitting the most generic structure of the Yukawa couplings. In doing so we

did not limit ourselves to the computation of the leading logarithms (O(xt log xt)). Instead, we

also computed the finite terms in addition to the terms O(xZ(W ) log xt). We find that these new

contributions are sizeable and their inclusion in the phenomenological analyses is mandatory.

Instead, the contributions to W → `ν arising from the loops involving scalar leptoquarks are

tiny.

We illustrate the importance of including the Z-pole observables on a specific model in

which the new physics comes from two light scalar leptoquarks, S1 and S3, and how using the

NNLA can lead to a compatible explanation of data. We also showed that one of the most

important constraints in such models comes from the observed frequency of oscillations in the

Bs − Bs system. We provide the expression coming from the loop diagrams and derive the

Wilson coefficient to the Bs − Bs mixing in this scenario. Including this constrain, that S1+S3

model was unable to explain RD(∗) experimental value before a new measurement of Belle

lowered its value in Moriond Conference 2019. The same occurred with the other two S1+S3

models with different Yukawa structure proposed in Chapter 5

In Chapter 6 we computed the leading order Wilson coefficients relevant to the exclusive

b→ s`+`− decays in the framework of 2HDM with a softly broken Z2 symmetry. Most of these

Wilson coefficients have been computed previously but in the limit of large tan β, which we

have extended to a generic setup. We also included O(mb) corrections, which were neglected

in the previous computations. Regarding the (pseudo-)scalar Wilson coefficients, we elucidated

the issue of unambiguous matching of the one-loop amplitudes between the full and effective

theories which requires extending the basis of operators in the effective theory by including two

types of operators suppressed by 1/mW (altogether, eight new operators). We pointed out that

for the appropriate identification of the Z-penguin contribution to the Wilson coefficient CP it

is necessary to keep all external momenta different from zero.

After having computed the full set of Wilson coefficients we were able to make a phe-

nomenological analysis by focusing on Br(Bs → µ+µ−) and Br(B → Kµ+µ−)high−q2 , the

quantities which are measured at LHC and for which the hadronic uncertainties are under

good theoretical control (computed in LQCD). After carefully scanning the parameter space
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of 2HDM with a softly broken Z2 symmetry, we tested various types of 2HDM against the

experimental data and found that to 3σ the values of low tan β . 1 are excluded for all

types of 2HDM’s. We also discussed the repercussions of the current results on the decays

Br(Bs → τ+τ−) and Br(B → Kτ+τ−)high−q2 . Notice that 2HDM models can be used to

describe Rexp

D(∗) > RSM
D(∗) , but not to describe Rexp

K(∗) < RSM
K(∗) . Therefore, even if the B-anomalies

do not resist the test of time and appear to be merely statistical fluctuations, the current mea-

surements will be a very important in relaxing the Z2 symmetry requirement on the Yukawa

couplings and to constrain the Yukawa couplings in a more model-independent way. The mech-

anism to generate such Yukawa couplings is beyond the scope of this thesis and is one of the

directions that can be pursued in the future.

The research and results presented in this thesis demonstrate that we entered the era in which

the high precision experimental data are giving main directions to our model building efforts.

With the new results, in the years to come, from many ongoing experiments will make the

model building efforts more and more restrictive, which will further help us solving the most

fundamental question of the origin of flavor.
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Appendix A

Matching of a b→ sµ+µ− Transition

In this Appendix, we show an example of the matching procedure for a b → sµ+µ− process

between a full theory and an effective theory. In this case, we propose a full theory with new

heavy scalars and fermions (ΦQ,Φ`,Ψ) coupling to the SM b, s quarks and muons, similar to

the model b) in Chap. 3. With that in mind, we write the full theory Lagrangian as

Lfull = ΓsΨ̄PLsΦQ + ΓbΨ̄PLbΦQ + ΓµΨ̄PLµΦ` + h.c. , (A.1)

where we choose the same representation A-I of Chap 3 with QΨ 6= 0 in order to avoid crossed

diagrams. Then, the only Feynman diagram that contributes to b → sµ+µ− in this model is

depicted in Fig. A.1.

In a similar way, the Hamiltonian1 governing the b→ sµ+µ− left-handed interactions in the

effective theory is

Heff = C9O9 + C10O10 + h.c. , (A.2)

with C9 and C10 being the Wilson coefficients and here we define the operators without normal-

ization factors for simplicity as

O9 = (s̄γµPLb)(µ̄γµµ) and O10 = (s̄γµPLb)(µ̄γµγ5µ) , (A.3)

which establish the operator basis needed for this process.

Once specified the full and the effective theory, we have to define the external momentum

1Usually in effective theories, especially in the flavor sector, one uses Hamiltonian instead of Lagrangian for
historical reasons. However the relation between them in this case is justH = −L
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s̄ µ+(p4)

b µ−(p3)

ΦℓΦQ

Ψ

Ψ

Full Theory Effective Theory
.

b(p1)

s̄(p2)

µ−(p3)

µ+(p4)

Figure A.1: Feynman diagrams contributing to b → sµ+µ− in the full theory (left) and in the
effective theory (right).

for each particle in the process, namely b(p1)→ s(p2)µ+(p4)µ−(p3), and we are ready to match

the two amplitudes describing the same process that arise from two different theories.

We first compute the amplitude for the effective theory. Notice that since there is only one

vertex in the right picture of Fig. A.1, it is straightforward to write down the amplitude from the

Lagrangian (A.2) as

Aeff = −i〈µ−(p3)µ+(p4)|Heff |b(p1)s(p2)〉 = −i(C9〈O9〉+ C10〈O10〉) , (A.4)

where

〈O9〉 = 〈µ−(p3)µ+(p4)|O9|b(p1)s(p2)〉 = [s̄(p2)γµPLb(p1)][µ̄(p3)γµµ(p4)] , (A.5)

〈O10〉 = 〈µ−(p3)µ+(p4)|O10|b(p1)s(p2)〉 = [s̄(p2)γµPLb(p1)][µ̄(p3)γµγ5µ(p4)] . (A.6)

Notice that the expected value or matrix element of the operators results in spinors which we

distinguish from the operators by labeling the momenta and using brackets instead of parenthe-

ses. What follows now is to compare this effective amplitude with the one obtained with the

full theory.

In order to compute the amplitude for the b(p1) → s(p2)µ+(p4)µ−(p3) process in the full

theory we use the Lagrangian in (A.1), yielding the diagram in Fig. A.1. As we said, we assume

that the particles in the loop are much heavier compared to the ones in the external legs, hence

we neglect the external momenta. Applying the full Lagrangian in the four vertices (x1,x2,x3
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and x4) of the loop, the amplitude Afull reads

Afull =
i4

4!
〈µ−(p3)µ+(p4)|T {Lfull(x1)Lfull(x2)Lfull(x3)Lfull(x4)}|b(p1)s(p2)〉

= −iΓ
∗
sΓb|Γµ|2

64π2m2
Ψ

F (xQ, x`)[µ̄(p3)γµPLb(p1)][s̄(p3)γµPLµ(p4)] , (A.7)

where F (xQ, x`) is defined in the Appendix C.1, and xQ = m2
ΦQ
/m2

Ψ, x` = m2
Φ`
/m2

Ψ, Notice

again that we end up with spinors. In order to get the spinor in the correct order so we can

compare it with the effective theory, we apply the Fierz transformation for spinors, which are

the same as for the operators but with an overall minus sign. We have

Afull = i
Γ∗sΓb|Γµ|2
64π2m2

Ψ

F (xQ, x`)[s̄(p2)γµPLb(p1)][µ̄(p3)γµPLµ(p4)]

= i
Γ∗sΓb|Γµ|2
128π2m2

Ψ

F (xQ, x`)(〈O9〉 − 〈O10〉) , (A.8)

where in the last line we used that PL = (1 − γ5)/2 and identified the 〈O9〉 and 〈O10〉 matrix

elements.

Finally, equating the two amplitudes Aeff = Afull we obtain

−i(C9〈O9〉+ C10〈O10〉) = i
Γ∗sΓb|Γµ|2
128π2m2

Ψ

F (xQ, x`)(〈O9〉 − 〈O10〉) (A.9)

where O9 and O10 are independent operators, thus we can obtain C9 and C10 by equating the

〈O10〉 and 〈O10〉 coefficents in the right-hand side and the left-hand side of (A.9). Obtaining

C9 = −Γ∗sΓb|Γµ|2
128π2m2

Ψ

F (xQ, x`) and C10 =
Γ∗sΓb|Γµ|2
128π2m2

Ψ

F (xQ, x`) (A.10)

with C9 = −C10, as expected because we were only dealing with left-handed couplings to the

SM fermions. In this matching we integrated out the heavy degrees of freedom ΦQ, Φ` and Ψ.

In other words, we have encoded the physics of the full theory in the Wilson coefficients of the

effective theory at a certain energy scale. Now we could use renormalization-group equations in

order to run the Wilson coefficients to another scale, although in this particular case they would

remain the same since we only have left-handed vector operators.
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Appendix B

Fierz Identities

Here we list the Fierz identities for spinors used in the computations. With i, j, k and l repre-

senting Dirac indices here we find

(γµPL,R)ij (γµPL,R)kl = − (γµPL,R)il (γµPL,R)kj (B.1)

(γµPL,R)ij (γµPR,L)kl = 2 (PR,L)il (PL,R)kj (B.2)

(PL,R)ij (PL,R)kl =
1

2
(PL,R)il (PL,R)kj +

1

8
(σµν)il (σµνPL,R)kj (B.3)

(PL,R)ij (PR,L)kl =
1

2
(γµPR,L)il (γµPL,R)kj (B.4)

(σµν)ij (σµνPL,R)kl = 6 (γµPL,R)il (γµPL,R)kj −
1

2
(σµν)il (σµνPL,R)kj , (B.5)

where PL,R = (1∓ γ5) /2 and σµν = i
2

[γµ, γν ]. When dealing with diagrams with crossed

fermion lines, one needs Fierz identities involving charge conjugation matrices. Here, exchang-

ing the second and the third Dirac index we find

(γµPL,RC)ij (CγµPL,R)kl = −2 (PR,L)ik (PL,R)jl (B.6)

(γµPL,RC)ij (CγµPR,L)kl = − (γµPL,R)ik (γµPR,L)jl (B.7)

(PL,RC)ij (CPL,R)kl =
1

2
(PL,R)ik (PL,R)jl −

1

8
(σµν)ik (σµνPL,R)jl (B.8)

(PL,RC)ij (CPR,L)kl = −1

2
(γµPR,L)ik (γµPR,L)jl , (B.9)

with the charge conjugation matrix defined as C = iγ0γ2. If we were dealing with fields, every

identity would get a minus sign due to the Dirac algebra.
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Appendix C

New Scalars and Fermions

In this appendix we list the complementary information that has been used or mentioned in

Chapters 3&4

C.1 Loop Functions

Here we list the dimensionless loop functions introduced in Sections 4.1 and 4.3. The loop

functions appearing in box diagrams that involve four different masses are defined as

F (x, y, z) =
x2 log(x)

(x− 1)(x− y)(x− z)
+

y2 log(y)

(y − 1)(y − x)(y − z)
+

z2 log(z)

(z − 1)(z − x)(z − y)
,

(C.1)

G(x, y, z) = 2

(
x log(x)

(x− 1)(x− y)(x− z)
+

y log(y)

(y − 1)(y − x)(y − z)
+

z log(z)

(z − 1)(z − x)(z − y)

)
,

(C.2)

which in the equal mass limit read

F (1, 1, 1) = −G(1, 1, 1) =
1

3
. (C.3)

In the presence of only three different masses in the loop, one gets the functions

F (x, y) ≡ F (x, y, 1) =
1

(1− x)(1− y)
+

x2 log(x)

(1− x)2(x− y)
+

y2 log(y)

(1− y)2(y − x)
, (C.4)
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Appendix C. New Scalars and Fermions

G(x, y) ≡ G(x, y, 1) = 2

(
1

(1− x)(1− y)
+

x log(x)

(1− x)2(x− y)
+

y log(y)

(1− y)2(y − x)

)
, (C.5)

while, in the presence of only two different masses in the loop, one gets

F (x) ≡ F (x, x) =
x+ 1

(x− 1)2
− 2x log(x)

(x− 1)3
,

G(x) ≡ G(x, x) =
2

(x− 1)2
− (x+ 1) log(x)

(x− 1)3
.

(C.6)

The loop functions appearing in photon- and gluon-penguin diagrams and the Z-penguin dia-

grams of Chap. 3 are defined as

F7(x) =
x3 − 6x2 + 3x+ 2 + 6x log x

12(x− 1)4
, F̃7(x) = x−1F7(x−1) , (C.7)

G7(x) =
x2 − 4x+ 3 + 2 log x

8(x− 1)3
, G̃7(x) =

x2 − 2x log x− 1

8(x− 1)3
,

(C.8)

F9(x) =
−2x3 + 9x2 − 18x+ 11 + 6 log x

36(x− 1)4
, F̃9(x) = x−1F9(x−1) , (C.9)

G9(x) =
−16x3 + 45x2 − 36x+ 7 + 6(2x− 3)x2 log x

36(x− 1)4
, G̃9(x) = x−1G9(x−1) , (C.10)

which in the equal mass limit read

F7(1) = F̃7(1) =
G7(1)

2
= G̃7(1) = −F9(1) = −F̃9(1) =

G9(1)

3
=
G̃9(1)

3
=

1

24
. (C.11)

Finally, the loop functions for the calculation of Z-penguins of Chap. 4 are defined as

GZ(x, y) = xFV (x, y) + x↔ y ,

FZ(x, y,m) ≡ FZ(x, y)− divε =
(
x2FV (x, y) + x↔ y

)
− divε ,

HZ(x, y,m) ≡ HZ(x, y) + divε = (yFV (x, y) + x↔ y) + 1 + divε ,

IZ(x,m) ≡ IZ(x) + divε =
x

x− 1
− x2FV (x, 1) + divε ,

G̃Z(x, y) = xKV (x, y) + x↔ y ,

F̃Z(x, y) =

(
x2KV (x, y)− x2

x− yFV (x, y)

)
+ x↔ y ,
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C.2. Crossed Diagrams

H̃Z(x, y) =

(
x2y

(y − 1)(x− y)2
− x2y2(3x− y − 2) log(x)

(x− 1)2(x− y)3

)
+ x↔ y , (C.12)

where we have defined divε = ∆ε − log

(
m2

µ2

)
and

FV (x, y) =
log(x)

(x− 1)(x− y)
, KV (x, y) =

(x2 + xy − 2y) log(x)

(x− 1)2(x− y)3
− 1

(x− 1)(x− y)2
.

(C.13)

It is interesting to notice that the following relations hold between particular limits of the pen-

guin induced functions:

HZ

(
m2

n2
,
m2

n2
,m

)
= IZ

(
m2

n2
, n

)
,

− m2

n2
GZ

(
m2

n2
,
m2

n2

)
+

1

2
FZ

(
m2

n2
,
m2

n2
, n

)
+

1

4
HZ

(
m2

n2
,
m2

n2
,m

)
+

1

4
IZ

(
m2

n2
, n

)
= 0 ,

1

2
x G̃Z(x, x)− 1

3
F̃Z(x, x) = G̃9(x) ,

1

6
F̃Z(x, x) = F9(x) . (C.14)

1

6x
H̃Z(x, x) = F̃9(x) . (C.15)

Moreover, it is useful to define the limit

FZ(x) ≡ FZ(x, x) =
x

x− 1
+

(x− 2)x log x

(x− 1)2
. (C.16)

Finally, the equal mass limits read

GZ(1, 1) =
FZ(1, 1)

3
= −HZ(1, 1) = −IZ(1) = 6G̃Z(1, 1) = −2F̃Z(1, 1) = −2H̃Z(1, 1) =

1

2
.

(C.17)

C.2 Crossed Diagrams

If the NP fields have the appropriate quantum numbers they can be either real scalars or Majo-

rana fermions. If this is the case, crossed diagrams as shown in Fig. C.1 can be constructed and
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s µ

b µ

ΨBΨA

ΦN

type a)

ΦM

b µ

s µ

ΨA

ΦM ΦN

type b)

ΨB

Figure C.1: Crossed box diagrams contributing to b→ sµ+µ− transitions. The diagram on the
left appears in models with real scalars, while the one on the right can be constructed in models
with Majorana fermions.

SU(3), type a) ΨA ΨB ΦM ΦN SU(3), type b) ΨA ΨB ΦM ΦN χ
I 3 1 1 1 I 1 1 3 1 1

III 3 8 8 8 III 8 8 3 8 4/3

Table C.1: Table of SU(3)-factors entering the box induced Wilson coefficients involved in
b → s transitions for real scalars, type a), and Majorana fermions, type b). The numbers of
each representation refer to the ones in Table 4.1.

contribute to b → sµ+µ− transitions in addition to the ones shown in Fig. 4.1. Similarly, there

are contributions from crossed boxes to Bs − B̄s mixing (in addition to the ones in Fig. 4.3)

arising due to the diagrams in Fig. C.2.

C.2.1 b→ sµ+µ−

In b → sµ+µ− the possible representations that give rise to additional crossed diagrams with

real scalars or Majorana fermions are listed in Tab. C.1. For type a) the only possibility is

to have real scalars, while for type b) one can only have crossed diagrams in the presence of

Majorana fermions.

The contribution to the Wilson coefficients stemming from the diagrams in Fig. C.1a) cor-

responds to the ones listed for a)-type in Eqs. (4.4)-(4.7), after inverting M ↔ N in the muon

couplings and changing F (xAM , xBM , xNM) → −F (xAM , xBM , xNM). For case b) (see right

diagram in Fig. C.1) the Wilson coefficients are given by

C
box b)
9 = −N χLs∗BML

b
AM

32παEMm2
ΦM

[
Lµ∗BNL

µ
AN

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM)
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C.2. Crossed Diagrams

SU(3) ΨA ΨB ΦM ΦN χMBB χ̃MBB
I 3 3 1 1 1 0 Real Φ
II 1 1 3 3 0 1 Majorana Ψ
III 3 3 8 8 5/18 -1/6 Real Φ
IV 8 8 3 3 -1/6 5/18 Majorana Ψ
V 3 3 (1,8) (8,1) 1/6 -1/2 Real Φ
VI (1,8) (8,1) 3 3 -1/2 1/6 Majorana Ψ

Table C.2: Table of SU(3)-factors entering the box induced Wilson coefficients involved in
Bs − B̄s mixing for real scalars and Majorana fermions.

−Rµ∗
BNR

µ
ANF (xAM , xBM , xNM)

]
, (C.18)

C
box b)
10 = N χLs∗BML

b
AM

32παEMm2
ΦM

[
Lµ∗BNL

µ
AN

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM)

+Rµ∗
BNR

µ
ANF (xAM , xBM , xNM)

]
, (C.19)

C
box b)
S = N χLs∗BML

b
AM

16παEMm2
ΦM

[
Rµ∗
BNL

µ
ANF (xAM , xBM , xNM)

+Lµ∗BNR
µ
AN

mΨAmΨB

2m2
ΦM

G(xAM , xBM , xNM)

]
, (C.20)

C
box b)
P = N χLs∗BML

b
AM

16παEMm2
ΦM

[
Rµ∗
BNL

µ
ANF (xAM , xBM , xNM)

−Lµ∗BNRµ
AN

mΨAmΨB

2m2
ΦM

G(xAM , xBM , xNM)

]
, (C.21)

C
box b)
T = −N χLs∗BMR

b
AML

µ∗
BNR

µ
AN

16παEMm2
ΦM

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM) , (C.22)

C ′box
9,S = Cbox

9,S (L↔ R) , C ′box
P,10 = −Cbox

P,10 (L↔ R) , (C.23)

C.2.2 Meson Mixing

For Bs mixing we can either have real scalars or Majorana fermions. In Tab. C.2 we list

the possible representations of the diagrams in Fig. C.2 writing explicitly if we have a real

scalar contribution (diagrams on the left side of the figure) or a Majorana fermion (diagrams
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s b

b s

ΨBΨA

ΦN

ΦM

b s

s s

ΨA

ΦM ΦN

ΨB

Real Φ MajoranaΨ

s b

b b

ΨB

ΨA

ΦN

ΦM

b s

s b

ΨA

ΦM

ΦN

ΨB

Figure C.2: Box diagrams contributing to Bs − B̄s mixing. The diagram on the left is relative
to models with real scalars, while the one on the right refers to models with Majorana fermions.

on the right). The Wilson coefficients for real scalar crossed diagrams correspond to the ones

listed in Eqs. (4.4)-(4.7), after inverting M ↔ N in two of the four couplings and changing

F (xAM , xBM , xNM) → −F (xAM , xBM , xNM), whereas matching to the generic Lagrangian

from Eq. (4.1) with the crossed fermion contributions, one obtains the following results for the

coefficients:

C1 = (χMBB + χ̃MBB)
Ls∗ANL

b
BML

s∗
AML

b
BN

128π2m2
ΦM

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM) , (C.24)

C2,3 = −(χMBB + χ̃MBB)
Rs∗
ANL

b
BMR

s∗
AML

b
BN

64π2m2
ΦM

mΨAmΨB

m2
ΦM

G(xAM , xBM , xNM) , (C.25)

C4 =
LbAMR

b
AN

32π2m2
ΦM

[
χMBBL

s∗
BMR

s∗
BN − χ̃MBBRs∗

BML
s∗
BN

]
F(xAM , xBM , xNM) , (C.26)

C5 =
LbAMR

b
AN

32π2m2
ΦM

[
χ̃MBBL

s∗
BMR

s∗
BN − χMBBRs∗

BML
s∗
BN

]
F(xAM , xBM , xNM) , (C.27)

C̃i = Ci (L→ R) , for i = {1, 2, 3} , (C.28)
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C.3. Crossed Diagrams with Complex Scalars

s µ

b µ

ΨB

ΨA

ΦN

ΦM

Figure C.3: Crossed box diagrams contributing to b→ sµ+µ− transitions. The diagram appears
when a complex scalar couples to b, s quarks and its conjugate couples to the muons.

SU(3) ΨA ΨB ΦM ΦN χ
I (1,3) (3,1) (3̄,1) (1,3̄) 1
II (8,3) (3,8) (3̄,8) (8,3̄) 4/3
III 3̄ 3̄ 3 3 2

Table C.3: Table of SU(3)-factors entering the box induced Wilson coefficients involved in
b→ s transitions for crossed diagrams with complex scalars.

The corresponding contributions to D0 − D0 mixing are obtained from Eqs. (4.22)-(4.28) via

the replacements s→ u and b→ c.

C.3 Crossed Diagrams with Complex Scalars

There is also the possibility that a complex scalar couples to the down-type quarks whereas its

hermitian conjugated version couples to muons. This means that the Lagrangian in Eq. (4.1)

takes a slightly different form, namely

Lint =

[
Ψ̄A

(
LbAMPLb+ LsAMPLs+Rb

AMPRb+Rs
AMPRs

)
ΦM

+Ψ̄A (LµAMPL +Rµ
AMPRµ) Φ†M

]
+ h.c. . (C.29)

Also this Lagrangian generates a contribution to b→ sµ+µ− via the diagram shown in Fig. C.3.

The possible representations under the SU(3) of the new scalars and fermions in the loop are

listed in Tab. C.3. The corresponding Wilson Coefficients can be obtained from the ones calcu-

lated for the type b) diagrams in Eqs. (4.4)-(4.7) by exchanging M ↔ N in the couplings R,L
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and replacing F (xAM , xBM , xNM)→ −F (xAM , xBM , xNM).
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Appendix D

`i→ `jνiν̄j with Scalar Leptoquarks

In this Appendix we collect the complete expression for `i → `jνiν̄j , with i, j ∈ {e, µ, τ},
and m`i > m`j . The most general dimension six effective Lagrangian describing these decays

without taking into account right-handed neutrinos can be written as

δLτeff = − 2

v2

[(
1 + δC ij

LL

)
(ν̄iγ

µPL`i)(¯̀
jγµPLνj) + δC ij

LR(ν̄iPR`i)(¯̀
jPLνj)

]
+ h.c. , (D.1)

where δCij
LL and δCij

LR are the Wilson coefficients. For simplicity, we have considered only the

lepton flavor conserving couplings since the LFV ones would not interfere with the SM. The

relevant decay rate then reads,

Γ(`i → `jνiν̄j)

Γ(`i → `jνiν̄j)SM
= 1 +

∣∣1 + δCij
LL

∣∣2 +
1

4

∣∣δCij
LR

∣∣2 +
2m`i

m`j

Re

[
(1 + δCij

LL)δC ij
LR

]
, (D.2)

normalized with respect to the SM value, Γ(`i → `jνiν̄j)
SM = G2

Fm
5
`i
/(192π3), after neglecting

the terms O(m2
`j
/m2

`i
). LQs contributes to the effective Wilson coefficients in Eq. (D.2) at the

one-loop level via two types of diagrams: (i) W -penguins and (ii) box diagrams. The former

ones can be expressed in terms of the Wτν effective vertices defined in Eq. (5.37). In the limit

of small transferred momenta (i.e. m2
`i
/m2

W � 1) we find

[
δCij

LL

]W−penguin

= δhii`L(xW = 0) + δhjj`L(xW = 0) + . . . , (D.3)

where δhijL are the effective coefficients reported in Sec. 5.4, in which xW should be set to zero.

In practice we truncate the series and neglect all the terms represented by ‘dots’ in Eq. (D.3).
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ℓi

νi

q

∆

ℓj

νj

q

∆ ℓi

νi

∆

q

ℓj

νj

∆

q

Figure D.1: Box diagrams contributing to `i → `jνiν̄j .

The box diagram contributions are schematically illustrated in Fig. D.1. For the LQ doublets,

we find [
δCij

LL

]box

R2

=
Ncv

2

128π2m2
R2

(
yL †R2
· yLR2

)
jj

(
yL †R2
· yLR2

)
ii
, (D.4)

[
δC ij

LR

]box

R2

= − Ncv
2

64π2m2
R2

(
yR †R2
· yRR2

)
ji

(
yL †R2
· yLR2

)
ij
, (D.5)

and [
δC ij

LL

]box

R̃2

= − Ncv
2

128π2m2
R̃2

(
yL †
R̃2
· yL

R̃2

)
jj
·
(
yL †
R̃2
· yL

R̃2

)
ii
, (D.6)

where y†LQ · yLQ denotes a matrix product. The coefficient δCLR is not generated by R̃2 because

this LQ does not couple to the right-handed leptons in Eq. (5.2). Also note that none of these box

contributions can be captured by an EFT computation to leading logarithms. For the remaining

LQ models, we find

[
δC ij

LL

]box

S1

= +
Ncv

2

128m2
S1

(
yL †S1

yLS1

)
ji

(
yL†S1

yLS1

)
ij
,[

δCij
LR

]box

S1

= − Ncv
2

64π2m2
S1

(
yR †S1
· yRS1

)
ji

(
yL †S1
· yLS1

)
ij
.

(D.7)

and[
δC ij

LL

]box

S3

=
Ncv

2

128m2
S3

(
yL †S3
· yLS3

)
ji

(
yL †S3
· yLS3

)
ij

+
Ncv

2

32m2
S3

(
yL †S3
· yLS3

)
jj

(
yL †S3
· yLS3

)
ii
.

(D.8)
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These contributions should be added to the ones, presented in Eq. (D.3).
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Appendix E

S1 & S3 Observables

In this section we list the analytic expression of the observables appearing in the fits that are

not shown in Chapter 5. The general Yukawa structure for S1 and S3 LQs is the same, without

couplings to the first generation of quarks and leptons

yLS1
=

0 0 0

0 yS1
sµ yS1

sτ

0 yS1
bµ yS1

bτ

 , yLS3
=

0 0 0

0 yS3
sµ yS3

sτ

0 yS3
bµ yS3

bτ

 . (E.1)

For each observable, we display the effective Hamiltonian or Lagrangian with effective coef-

ficients, and we write these coefficients as functions of the Yukawas. All the form factors to

compute the meson decays with B,Bs, D and Ds have been obtained from Ref. [48]. The

form factors of vector mesons are taken from Ref [268], while the experimental values used are

specified in each section

E.1 b→ cτν

These charged current transition is governed by the Hamiltonian in (2.39). Considering only

the third generation operators, the only contribution from the LQs is at tree-level to the gVL
coefficient in our setup.

gVL =
1

4
√

2GFVcb

[
(Vcsy

S1∗
sτ + Vcby

S1∗
bτ )yS1

bτ

m2
S1

− (Vcsy
S3∗
sτ + Vcby

S3∗
bτ )yS3

bτ

m2
S3

]
(E.2)
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Appendix E. S1 & S3 Observables

Assuming that the relevant contribution only comes from the τ leptons we can write [269]

RD(∗)

RSM
D(∗)

= |1 + gVL |2 . (E.3)

where before Moriond the experimental value was

Rexp old
D = 0.407± 0.046 and Rexp old

D∗ = 0.306± 0.015 , (E.4)

while after it became

Rexp
D = 0.334± 0.029 and Rexp

D∗ = 0.297± 0.014 . (E.5)

E.2 b→ sµ+µ−

The effective Hamiltonian governing this transition is the same as in (4.2) with the pattern

of CNP
9 = −CNP

10 in the muon since we only have left-handed couplings. In this case the

leading contribution comes from a S3 leptoquark exchanged at tree-level in the t−channel. The

coefficient is

CNP
9 = −CNP

10 =
π√

2GFV ∗tsVtbαem

yS3∗
sµ y

S3
bµ

m2
S3

, (E.6)

and we use the value in [28].

E.3 b→ sνν

The effective Hamiltonian of this transition was also mentioned in Chapters 3 and 4. The

effective coefficients involve the two LQs at tree level

Cµµ
L =

π

2
√

2GFV ∗tsVtbαem

(
yS1∗
sµ y

S1
bµ

m2
S1

+
yS3∗
sµ y

S3
bµ

m2
S3

)
, (E.7)

Cµτ
L =

π

2
√

2GFV ∗tsVtbαem

(
yS1∗
sτ y

S1
bµ

m2
S1

+
yS3∗
sτ y

S3
bµ

m2
S3

)
, (E.8)

Cτµ
L =

π

2
√

2GFV ∗tsVtbαem

(
yS1∗
sµ y

S1
bτ

m2
S1

+
yS3∗
sµ y

S3
bτ

m2
S3

)
, (E.9)
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E.4. b→ c`ν with ` = µ, e

Cττ
L =

π

2
√

2GFV ∗tsVtbαem

(
yS1∗
sτ y

S1
bτ

m2
S1

+
yS3∗
sτ y

S3
bτ

m2
S3

)
, (E.10)

The related observable is described in other chapters and we adopt the same experimental value

as in Chaps. 3 and 4.

E.4 b→ c`ν with ` = µ, e

The observable related to this process is Rµ/e
D and the Hamiltonian related to this process is the

same as in the τ sector but with muons. Since we do not have NP related to electrons, we write

the effective coefficient contribution of this process as

gµVL =
1

4
√

2GFVcb

[
(Vcsy

S1∗
sµ + Vcby

S1∗
bµ )yS1

bµ

m2
S1

−
(Vcsy

S3∗
sµ + Vcby

S3∗
bµ )yS3

bµ

m2
S3

]
, (E.11)

then the observable reads the same as for RD(∗) .

R
µ/e
D = R

µ/eSM
D |1 + gµVL|

2 . (E.12)

ObtainingRµ/e exp
D = 0.995±0.044 from the branching rations in [270]. This observable ensures

that the couplings of the muons are smaller respect to the tau ones.

E.5 τ decays

Here we list the τ decays that we use as constraints. They are LFV decays therefore they are

not predicted by the SM.

τ → µγ

This decay is a good constraint in order to assess LFV in NP models. The Hamiltonian of this

decay is very similar to the one of b → sγ as it occurs also at loop-level, but instead of quarks

we have a muon and a tau:

Hτ→µγ
eff = mτσL(µ̄σµνPLτ)Fµν . (E.13)
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Since it is an electromagnetic interaction we split the results by the electric charge eigenstates.

At leading order we have

σ∆1/3

L = −
∑

∆=S1,S3

Nc

192π2m2
∆

∑
q=u,c,t

(Vqby
∆
bµ + Vqsy

∆∗
sµ )(V ∗qby

∆
bτ + V ∗qsy

∆
sτ ) ,

σ∆4/3

L = − Nc

48π2m2
S3

(yS3∗
bµ y

S3
bτ + yS3∗

sµ y
S3
sτ ) ,

σL = σ∆1/3

L + σ∆4/3

L . (E.14)

with the branching ratio

Br(τ → µγ) = ττ
(m2

τ −m2
µ)3

4m3
τ

|σL|2 , (E.15)

where ττ is the life-time of the τ . The experimental bound on this observable states that Br(τ →
µγ) < 4.4× 10−8, taking this data from [152].

τ → µφ

This observable is also a LFV test for a NP model. This time, it is a tree-level induced process

where φ is a vector meson made of a strange and anti-strange quark. In our model the branching

ratio is

Br(τ → µφ) = ττf
2
φ

m4
φ(m2

τ −m2
φ)

4m3
τ

(
m4
τ

m4
φ

+
m2
τ

m2
φ

− 1

)∣∣∣∣∣yS3∗
sµ y

S3
sτ

m2
S3

∣∣∣∣∣
2

, (E.16)

where fφ is the form factor defined in Ref. [268], while the experimental prediction is taken

from [152] and it is Br(τ → µφ) < 8.4× 10−8 at 90% C.L.

E.6 K → `ν` with ` = e, µ and τ → Kντ

The effective vertex of this observable in our model concerns only the muon and the tau, since

we do not have NP in the electron. The Hamiltonian for the decay involving the muon reads

Husµνµ
eff = −2

√
2GFVus(1 + g

usµνµ
VL

)(s̄γµPLu)(µ̄γµPLνµ) + h.c. , (E.17)
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E.7. Ds → `ν` with ` = µ, τ

where in our S1 + S3 model we have

g
usµνµ
VL

=
1

4
√

2GFVus

[
(Vusy

S1∗
sµ + Vuby

S1∗
bµ )yS1

sµ

m2
S1

−
(Vusy

S3∗
sµ + Vuby

S3∗
bµ )yS3

bµ

m2
S3

]
. (E.18)

We can construct the ratio of branching fractions defining

r
e/µ
K =

Br(K → eνe)

Br(K → µνµ)
(E.19)

with
r
e/µ
K

(r
e/µ
K )SM

=
1

|1 + g
usµνµ
VL

|2 . (E.20)

We can also construct the Hamiltonian for the τ decay in a similar way

Husτντ
eff = −2

√
2GFVus(1 + gusτντVL

)(s̄γµPLu)(τ̄ γµPLντ ) + h.c. , (E.21)

with

gusτντVL
=

1

4
√

2GFVus

[
(Vusy

S1∗
sτ + Vuby

S1∗
bτ )yS1

sτ

m2
S1

− (Vusy
S3∗
sτ + Vuby

S3∗
bτ )yS3

bτ

m2
S3

]
. (E.22)

Constructing the ratio between the tau and the muon we have

r
τ/µ
K

(r
τ/µ
K )SM

=
|1 + gusτντVL

|2
|1 + g

usµνµ
VL

|2 . (E.23)

We use the experimental values from Ref. [152] obtaining

r
e/µ
K

(r
e/µ
K )SM

= 1.004± 0.004 and
r
τ/µ
K

(r
τ/µ
K )SM

= 0.972± 0.015 (E.24)

E.7 Ds → `ν` with ` = µ, τ

Analogously to other charged meson decays to leptons, we can construct the effective Hamilto-

nian as

Hcs`ν`
eff = −2

√
2GFVcs(1 + gcs`ν`VL

)(s̄γµPLc)(¯̀γµPLν`) + h.c. , (E.25)
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with

gcs`ν`VL
=

1

4
√

2GFVcs

[
(Vcsy

S1∗
s` + Vcby

S1∗
b` )yS1

s`

m2
S1

− (Vcsy
S3∗
s` + Vcby

S3∗
b` )yS3

b`

m2
S3

]
, (E.26)

for both tau and muon. For the experimental value we use the branching ratios in [152]finding

Br(Ds → µνµ)exp = (0.550± 0.023)10−2 and Br(Ds → τντ )
exp = (5.48± 0.23)10−2.

E.8 B → τντ

In this B decay, we proceed in the same manner as other meson decays but with b and u quarks.

The relevant effective Hamiltonian is

Hub`ν`
eff = −2

√
2GFVcs(1 + gubτντVL

)(b̄γµPLu)(τ̄ γµPLντ ) + h.c. , (E.27)

with

gubτντVL
=

1

4
√

2GFVub

[
(Vusy

S1∗
sτ + Vuby

S1∗
bτ )yS1

sτ

m2
S1

− (Vusy
S3∗
sτ + Vuby

S3∗
bτ )yS3

bτ

m2
S3

]
, (E.28)

and using the experimental value from the PDG [152] Br(B → τντ )
exp = (1.06± 0.19)10−4.

E.9 B → Kµτ

This decay is very similar to the one giving RK but in this case we can explore the possibility

of LFV. The effective Hamiltonian is

Heff = Cµτ
9 Oµτ9 + Cτµ

9 Oτµ9 + Cµτ
10Oµτ10 + Cτµ

10Oτµ10 + h.c. , (E.29)

where

O``′9 =
αEM

4π
(s̄γµPLb)(¯̀γµ`′) , O10 =

αEM

4π
(s̄γµPLb)(¯̀γµγ5`

′) . (E.30)
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E.10. χ2 Tables

The leading contribution to this process in our model is obtained via S3 exchange at tree-level,

with the C9 = −C10 pattern, having different couplings for µτ and τµ combination

Cµτ
9 =

π√
2GFV ∗tsVtbαem

yS3∗
sτ y

S3
bµ

m2
S3

Cτµ
9 =

π√
2GFV ∗tsVtbαem

yS3∗
sµ y

S3
bτ

m2
S3

, (E.31)

We use the branching fraction as observable with

Br(B → Kµτ) = 10−9(a9|Cµτ
9 + Cτµ

9 |+ a10|Cµτ
10 + Cτµ

10 |2) (E.32)

where we take a9 = 9.6 and a10 = 10 from Ref. [110]. The experimental value we take it to be

Br(B → Kµτ) < 4.8× 10−5 [152].

E.10 χ2 Tables

In this section we list the tables with the χ2 value for each observable. The χ2 for an observable

X with an error σ is defined as1

χ2 =
(Xth −Xexp)2

σ2
th + σ2

exp

. (E.33)

In the following tables we list 16 observables. The first table has the numbers assuming the

Yukawas in Eq. 5.53, the second table refers to the Yukawas in Eq. 5.59, and the last table is

obtained using the ones in Eq. 5.60. The last column in each table indicates the χ2 value for

each observable in the SM, while in the intermediate columns we list the χ2 value for each

observable in the best fit point, where in each column the fit is performed with the numbers

without the mark
⊗

only. In this way, we can assess if a certain value of any observable is

spoiled (respect to its experimental value) if it is included or not in the fit.

1For upper-bounded experimental values we assume Xexp = 0 and we take σexp as the value of the upper-
bound.
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Scenario 1 Eq. 5.53 SM values
RD(∗) 0.02 3.06 3.11 15.1
b→ sµµ 0.00 0.00 0.01 16.0
∆Ms

⊗
101 0.84 0.94 0.38

Z → µµ 0.01 0.00 0.00 0.01
Z → ττ 0.41 0.60 0.55 0.47
Z → νν 4.29 4.15 4.09 3.81
b→ sνν 0.12 0.81 0.79 0.14

R
µ/e
D 0.00 0.01 0.02 0.00

τ → µγ
⊗

0.00
⊗

0.00 0.00 0.00
τ → µφ

⊗
0.07

⊗
0.00 0.00 0.00

r
e/µ
K

⊗
1.20

⊗
1.21 1.22 1.20

r
τ/µ
K

⊗
3.42

⊗
3.38 3.29 3.54

Ds → µν
⊗

0.38
⊗

0.38 0.38 0.38
Ds → τν

⊗
1.18

⊗
1.20 1.21 1.17

B+ → τν
⊗

0.00
⊗

0.00 0.00 0.24
B → Kµτ

⊗
0.00

⊗
0.00 0.00 0.00

TOTAL 112 15.6 15.6 42.4

Table E.1: χ2 values for each observables in different left-handed fits with the Yukawa pattern
in (5.53) and SM.The

⊗
mark indicates which observable is not considered in the fit. To obtain

the plot in Fig. 5.6 we include all the observables in the fit.
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Scenario 2 Eq. 5.59 SM values
RD(*) 5.03 5.04 5.03 15.1
b→ sµµ 0.00 0.00 0.00 16.0
∆Ms 1.15 1.14 1.15 0.38
Z → µµ

⊗
0.01 0.01 0.01 0.01

Z → ττ
⊗

0.41 0.45 0.43 0.47
Z → νν

⊗
4.00 3.89 3.94 3.81

b→ sνν 0.20 0.20 0.21 0.14

R
µ/e
D

⊗
0.00

⊗
0.00 0.00 0.00

τ → µγ 0.00 0.00 0.00 0.00
τ → µφ

⊗
0.01

⊗
5.86 0.02 0.00

r
e/µ
K

⊗
1.20

⊗
1.20 1.20 1.20

r
τ/µ
K

⊗
3.55

⊗
3.55 3.55 3.54

Ds → µν
⊗

0.38
⊗

0.38 0.38 0.38
Ds → τν

⊗
1.17

⊗
1.17 1.17 1.17

B+ → τν
⊗

0.02
⊗

0.02 0.02 0.24
B → Kµτ 0.00 0.00 0.00 0.00
TOTAL 17.11 22.88 17.03 42.43

Table E.2: χ2 values for each observables in different left-handed fits with the Yukawa pattern
in (5.59) and SM.The

⊗
mark indicates which observable is not considered in the fit. To obtain

the plot in Fig. 5.6 we include all the observables in the fit.
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Scenario 3 Eq. 5.60 SM values
RD(*) 2.40 1.74 0.02 1.57 15.1
b→ sµµ 0.01 0.01 0.01 0.00 16.0
∆Ms 0.68 0.54

⊗
100 0.81 0.38

Z → µµ 0.01
⊗

0.01 0.01 0.01 0.01
Z → ττ 0.95

⊗
2.26 0.42 0.74 0.47

Z → νν 3.93
⊗

4.03 3.90 3.82 3.81
b→ sνν 0.88 0.79 0.32

⊗
10.7 0.14

R
µ/e
D 0.00 0.00 0.00

⊗
0.00 0.00

τ → µγ 0.00 0.00 0.00
⊗

2.08 0.00
τ → µφ 0.21 0.22 0.22

⊗
105 0.00

r
e/µ
K 1.19 1.19 1.19

⊗
42.9 1.20

r
τ/µ
K 0.92 0.82 0.65

⊗
12.9 3.54

Ds → µν 0.38 0.38 0.38
⊗

1.73 0.38
Ds → τν 1.93 1.98 2.07

⊗
1.45 1.17

B+ → τν 0.00 0.00 0.00
⊗

0.00 0.24
B → Kµτ 0.02 0.02 0.05

⊗
0.73 0.00

TOTAL 13.51 13.98 109 105 42.43

Table E.3: χ2 values for each observables in different left-handed fits with the Yukawa pattern
in (5.60) and SM.The

⊗
mark indicates which observable is not considered in the fit. To obtain

the plot in Fig. 5.6 we include all the observables in the fit.
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Appendix F

Two Higgs Doublet Model

F.1 Hadronic Matrix Elements

For completeness we give the definitions of the decay constant (fBs) and of the form factors

[f+,0,T (q2)], quantities which parametrize the hadronic matrix elements relevant to the processes

discussed in this paper:

〈0|b̄γµγ5s|Bs(p)〉 = ipµfBs ,

〈K̄(k)|s̄γµb|B̄(p)〉 =
[
(p+ k)µ −

m2
B −m2

K

q2
qµ

]
f+(q2) +

m2
B −m2

K

q2
qµf0(q2),

〈K̄(k)|s̄b|B̄(p)〉 =
1

mb −ms

qµ〈K̄(k)|s̄γµb|B̄(p)〉 =
m2
B −m2

K

mb −ms

f0(q2),

〈K̄(k)|s̄σµνb|B̄(p)〉 = −i(pµkν − pνkµ)
2fT (q2, µ)

mB +mK

, (F.1)

where for B → K`+`− the kinematically accessible q2 values lie in the interval 4m2
` ≤ q2 ≤

(mB −mK)2. Notice that we do not write explicitly the scale dependence of the quark masses,

nor of the scalar and tensor densities and of the form factor fT (q2). In the actual computations

the MS values of these quantities are taken at µ = mb.

F.2 Scalar penguins and Auxiliary Functions

In this Appendix we give the expressions for the Wilson coefficients generated by each diagram

shown in Fig. 6.5. We also give the expressions for the auxiliary functions (fi and gi) used in
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Chap. 6.

The penguins arising from coupling to ϕ0
i ∈ {h,H,A} contribute to the effective coefficient

CS,P and can be generically written as

C
NP,ϕ0

i
S =

√
xbx`

sin2 θW

18∑
k=1

m2
t

mϕ0
i

Re
(
ξ
ϕ0
i

`

)
Ĉk,ϕ0

i , (F.2)

C
NP,ϕ0

i
P =

√
xbx`

sin2 θW

18∑
k=1

m2
t

mϕ0
i

i Im
(
ξ
ϕ0
i

`

)
Ĉk,ϕ0

i , (F.3)

where Ĉk,ϕ0
i is a common coefficient generated by the diagram k, with k = 1, . . . , 18. Since,

in our framework, ζh` , ζ
H
` ∈ R and ζA` ∈ i × R, it is clear that the CP-even scalars h and H

contribute only to CS , whereas the CP-odd Higgs A contributes only to CP , as expected from

the assumption of CP conservation. We obtain in the unitary gauge,

Ĉ1,ϕ0
i =

ξ
ϕ0
i

u

4

{
ζdζ
∗
u

xt
xH± − xt

[
1− xH±

xH± − xt
log

(
xH±

xt

)]
(F.4)

+ |ζu|2
xt

2(xH± − xt)2

[
3xt − xH±

2
+
xH±(xH± − 2xt)

xH± − xt
log

(
xH±

xt

)]}

+
ξ
ϕ0
i ∗

u

4

{
ζdζ
∗
u

[
Λ− xt

xH± − xt
− x2

H±

(xH± − xt)2
log xH± +

xt(2xH± − xt)
(xH± − xt)2

log xt

]

+ |ζu|2
xt

2(xH± − xt)2

[
3xH± − xt

2
− x2

H±

xH± − xt
log

(
xH±

xt

)]}
,

Ĉ2,ϕ0
i = −εϕ0

i

sin2 θWλ
ϕ0
i

H+H−

4πα(xH± − xt)

{
ζdζ
∗
u

[
xt

xH± − xt
log

(
xH±

xt

)
− 1

]
(F.5)

+ |ζu|2
[

x2
t

2(xH± − xt)2
log

(
xH±

xt

)
+

xH± − 3xt
4(xH± − xt)

]}
,

Ĉ3,ϕ0
i =

ξ
ϕ0
i

d

4
ζdζ
∗
u

[
− Λ +

xH±

xH± − xt
log xH± −

xt
xH± − xt

log xt

]
, (F.6)
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Ĉ4,ϕ0
i = 0, (F.7)

Ĉ5,ϕ0
i =

1

4

{
ξ
ϕ0
i ∗

u

[
Λ− 5x2

t − 13xt − 2

4(xt − 1)2
− 2x3

t − 6x2
t + 9xt − 2

2(xt − 1)3
log xt

]
(F.8)

+ ξ
ϕ0
i

u

[
Λ

2
− 2x2

t − xt − 7

4(xt − 1)2
− x3

t − 3x2
t + 3xt + 2

2(xt − 1)2
log xt

]}
,

Ĉ6,ϕ0
i = εϕ0

i

λ
ϕ0
i

W+W−

8

[
− 3Λ +

x2
t − 2xt − 11

2(xt − 1)2
+

3xt(x
2
t − 3xt + 4)

(xt − 1)3
log xt

]
, (F.9)

Ĉ7,ϕ0
i = Ĉ8,ϕ0

i = 0, (F.10)

Ĉ9,ϕ0
i =

λ
ϕ0
i

H+W−

8
ζ∗u

[
1

2
− Λ +

xH±(xH± + 2) log xH±

(xH± − 1)(xH± − xt)
− xt(xt + 2) log xt

(xt − 1)(xH± − xt)

]
, (F.11)

Ĉ10,ϕ0
i =

λ
ϕ0
i ∗
H+W−

4

{
− ζu

2

[
xt(xH±xt − 4xH± + 3xt)

(xt − 1)(xH± − xt)2
log xt −

xH±(xH±xt − 3xH± + 2xt)

(xt − 1)(xH± − xt)2
log xH±

+
xH±

xH± − xt

]
+ ζd

[
− Λ +

xH± log xH±

xH± − xt
− xt log xt
xH± − xt

]}
, (F.12)

where the couplings λϕ
0
i

W+W− and λ
ϕ0
i

H±W∓ are defined below Eq. (F.34) and Eq. (F.36), re-

spectively. The coefficient εϕ0
i

= −1 for ϕ0
i = A, and +1 otherwise. Moreover, Λ =

−2µD−4

D−4
− γE + log 4π − log

(
m2
W

µ2

)
+ 1 contains an ultraviolet divergence which cancels out

after summing up all the diagrams. The diagrams (9.11)–(9.18) do not contribute in our com-

putation, owing to the fact that we work in the unitary gauge. To make sure that our resulting

(total) expressions are gauge independent we performed the computation in the Feynman gauge

too. In comparison with Ref. [238], we only disagree with one of the signs in the expression for

Ĉ5,ϕ0
i , which we believe is a typo.

The auxiliary functions g0,1,2 used in Eq. (6.43) are defined by

g0 =
1

4(xH± − xt)

{
ζdζ
∗
u

[
xt

xH± − xt
log

(
xH±

xt

)
− 1

]
(F.13)

+ |ζu|2
[

x2
t

2(xH± − xt)2
log

(
xH±

xt

)
+

xH± − 3xt
4(xH± − xt)

]}
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g1 = −3

4
+ ζdζ

∗
u

xt
xH± − xt

[
1− xH±

xH± − xt
log

(
xH±

xt

)]
(F.14)

+ |ζu|2
xt

2(xH± − xt)2

[
xH± + xt

2
− xH±xt
xH± − xt

log

(
xH±

xt

)]
,

g2 = ζd(ζdζ
∗
u + 1)f1(xt, xH±) + ζd (ζ∗u)2 f2(xt, xH±) + ζd |ζu|2 f3(xt, xH±)

+ ζu |ζu|2 f4(xt, xH±)− ζ∗u |ζu|2 f5(xt, xH±) + ζuf6(xt, xH±)− ζ∗uf7(xt, xH±), (F.15)

with

f1(xt, xH±) =
1

2(xH± − xt)
[−xH± + xt + xH± log xH± − xt log xt], (F.16)

f2(xt, xH±) =
1

2(xH± − xt)

[
xt −

xH±xt
xH± − xt

log

(
xH±

xt

)]
, (F.17)

f3(xt, xH±) =
1

2(xH± − xt)

[
xH± −

x2
H± log xH±

xH± − xt
+
xt(2xH± − xt) log xt

xH± − xt

]
, (F.18)

f4(xt, xH±) =
1

4(xH± − xt)2

[
xt(3xH± − xt)

2
− x2

H±xt
xH± − xt

log

(
xH±

xt

)]
, (F.19)

f5(xt, xH±) =
1

4(xH± − xt)2

[
xt(xH± − 3xt)

2
− xH±xt(xH± − 2xt)

xH+ − xt
log

(
xH±

xt

)]
, (F.20)

f6(xt, xH±) =
1

2(xH± − xt)

[
xt(x

2
t − 3xH±xt + 9xH± − 5xt − 2)

4(xt − 1)2
(F.21)

+
xH±(xH±xt − 3xH± + 2xt) log xH±

2(xH± − 1)(xH± − xt)

+
x2
H±(−2x3

t + 6x2
t − 9xt + 2)

2(xt − 1)3(xH± − xt)
log xt

+
3xH±x

2
t (x

2
t − 2xt + 3)− x2

t (2x
3
t − 3x2

t + 3xt + 1)

2(xt − 1)3(xH± − xt)
log xt

]
, (F.22)

f7(xt, xH±) =
1

2(xH± − xt)

[
(x2

t + xt − 8)(xH± − xt)
4(xt − 1)2

− xH±(xH± + 2)

2(xH± − 1)
log xH± (F.23)

+
xH±(x3

t − 3x2
t + 3xt + 2) + 3(xt − 2)x2

t

2(xt − 1)3
log xt

]
.
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F.2. Scalar penguins and Auxiliary Functions

Notice that in the above expressions we assumed the couplings ζf ∈ C in order to keep our

formulas as general as possible, although in the body of the paper we consistently used ζf ∈ R.

Wilson Coefficients for the Derivative Operators

In this subsection we present the explicit expressions for the Wilson coefficients relevant to the

derivative operators given in Eq. (6.46). From the Z-penguins we obtain,

CT qRR = |ζu|2
√
xbxt
72

{
3(x2

H± − 5xH±xt − 2x2
t )

(xH± − xt)3
+

18xH±x
2
t

(xH± − xt)4
log

(
xH±

xt

)
(F.24)

− 2 sin2 θW

[
7x2

H± − 5xH±xt − 8x2
t

(xH± − xt)3
− 6xH±xt(2xH± − 3xt)

(xH± − xt)4
log

(
xH±

xt

)]}
(F.25)

+ ζ∗uζd

√
xbxt
24

{
3(xH± − 3xt)

(xH± − xt)2
− 6xH±(xH± − 2xt)

xH± − xt
log

(
xH±

xt

)
(F.26)

+ 4 sin2 θW

[
5xt − 3xH±

(xH± − xt)2
+

2xH±(2xH± − 3xt)

(xH± − xt)3
log

(
xH±

xt

)]}
, (F.27)

and CT qRL = CT qRR

(
1− 1

2 sin2 θW

)
.

Similarly, from the box diagrams we get

CT `LL =− ζuζ∗`
√
x`xt

4(xH± − xt) sin2 θW

[
− 1

(xH± − 1)
+

xH±(1− xH±) log xt
(xH± − xt)(xt − 1)(xH± − 1)

(F.28)

− xH±(xt + 1− 2xH±) log xH±

(xH± − xt)(xH± − 1)2

]
, (F.29)

and CT `LL = (CT `LR)∗.

Wilson Coefficients Suppressed by m`

In addition to the Wilson coefficients given in Section 6.1, in the computation of the box dia-

grams one gets contributions suppressed by the lepton mass. For completeness, we give these
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contributions here. We obtain:

CNP, box
T (5) = ζ∗uζ`

√
xbx`xt

32(xH± − xt) sin2 θW
× (F.30)[

xt log xt
(xt − 1)(xH± − xt)

− xH± log xH±

(xH± − 1)(xH± − xt)
+
xt − log xt − 1

(xt − 1)2

]
, (F.31)

and

CNP, box
9 =

x`xt
16 sin2 θW

{
|ζu|2|ζ`|2

[
− 1

xH± − xt
+

xt
(xH± − xt)2

log

(
xH±

xt

)]
(F.32)

+ 2Re[ζuζ
∗
` ]

[
(xt + 2) log xt

(xH± − xt)(xt − 1)
− (xH± + 2) log xH±

(xH± − xt)(xH± − 1)

]}
+ 2
√
x` Re

(
CT `LL

)
,

CNP, box
10 =

x`xt
16 sin2 θW

{
|ζu|2|ζ`|2

[
− 1

xH± − xt
+

xt
(xH± − xt)2

log

(
xH±

xt

)]
(F.33)

+ 2Re[ζuζ
∗
` ]

[
(xt − 2) log xt

(xH± − xt)(xt − 1)
− (xH± − 2) log xH±

(xH± − xt)(xH± − 1)

]}
.

F.3 Feynman Rules

In this section we collect the Feynman rules used in our computation. For the couplings between

the gauge bosons and the scalars we have

W+

ϕ0
i

W−

igmWλ
ϕ0
i

W+W− g
µν , (F.34)

where λhW+W− = sin(β − α), λHW+W− = cos(β − α) and λAW+W− = 0. Similarly, we also have

H−

γ

H+

p−

p+

ie(p− − p+)µ, (F.35)
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H±
ϕ0
i

W∓

pH±

pϕ0
i

± ig

2
λ
ϕ0
i

H±W∓(pH± + pϕ0
i
)µ, (F.36)

where λhH±W∓ = cos(β − α), λHH±W∓ = − sin(β − α), and λAH±W∓ = ∓i, depending on the

charges of the initial particles. For the trilinear scalar interactions, we have

H+

ϕ0
i

H−

ivλ
ϕ0
i

H+H− (F.37)

where the trilinear couplings read

λhH+H− = −m
2
h[3 cos(α + β) + cos(α− 3β)] + 4 sin(2β) sin(β − α)m2

H± − 4M2 cos(α + β)

2v2 sin(2β)
,

λHH+H− = −m
2
H [3 sin(α + β) + sin(α− 3β)] + 4 sin(2β) cos(β − α)m2

H± − 4M2 sin(α + β)

2v2 sin(2β)
,

λAH+H− = 0. (F.38)

These results agree with the ones given in Refs. [238, 271] after the appropriate change of basis

and/or conventions. 1

1Notice that our λ is −λ of Ref. [238].
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