
A new geometrical perspective on Bohr-equivalence of exponential
polynomials1

J.M. Sepulcre and T. Vidal

Department of Mathematics, University of Alicante, 03080-Alicante, Spain.
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of Bochner’s property referring to these functions, through this new geometrical
perspective.
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1 Introduction

In this paper we are going to handle the so-called exponential polynomials with
real frequencies and complex constant coefficients, which are concrete subclasses
of exponential sums of the form

P1(s)eλ1s + . . .+ Pj(s)e
λjs + . . . , s ∈ C,

where the λj ’s are complex numbers and the Pj(s)’s are polynomials in s. More
specifically, given n ∈ N and Λ = {λ1, . . . , λn} an arbitrary finite set of distinct
real numbers, we will consider the class of functions, say PΛ, consisting of
exponential sums P : C 7→ C of the form

P (s) =
n∑
j=1

aje
λjs, aj ∈ C \ {0}, λj ∈ Λ, (1.1)

where Λ will be called a set of exponents or frequencies, and each aj will be
called a coefficient of P (s). In the extensive literature about the properties of
exponential polynomials, we can find many interesting results and connections
with other theories. In particular, the study of their zeros is a topic which ap-
pears in the first third of the twentieth century in relation with the development
of differential equation theory (see for example [12]).

These classes of exponential polynomials represent a particular case of almost-
periodic functions, which leads us to other applications in different areas of
mathematics. The concept of almost periodicity was first studied by H. Bohr
and later generalized by V. Stepanov, H. Weyl and A.S. Besicovitch, among oth-
ers. Under the topology of uniform convergence, given ε > 0, Bohr’s definition
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involves the existence of a relatively dense set of vertical translates which differ
less than ε from the given function. In this context, S. Bochner interpreted the
almost periodicity of a function in terms of the relative compactness of the fam-
ily of its translates. So, in later literature, some authors defined almost periodic
functions in this way (e.g. see [2, 4, 5]).

By analogy with Bohr’s theory, we will consider in this paper an equivalence
relation ∼ on the classes of exponential polynomials in the class PΛ (see Defini-
tion 18 and compare with [9, Definition 3]) which is certainly based on that of
Bohr concerning general Dirichlet series (for which the set of exponents forms
a strictly increasing sequence of positive numbers tending to infinity). Bohr
used it in that case in order to get so-called Bohr’s equivalence theorem, which
shows that equivalent Dirichlet series take the same values in certain sets in the
complex plane (e.g. see [1, 11] and the recent paper [10]).

On the other hand, from a physical point of view, a crystal is a solid where
the atoms (molecules or ions) constitute a periodic arrangement, forming a
crystal lattice that extends in all directions. Moreover, a quasicrystal consists of
arrays of atoms that are ordered but not strictly periodic. In this sense, various
notions of almost periodicity were studied for example in [7] in connection with
quasicrystals.

In connection with this physical point of view, in the first part of this paper
we will follow the ideas involved in a crystal-like structure. In fact, given a grid
pattern in Rn generated by repeating unit cells, we will consider a segmentation
process of a prefixed line in Rn, identified by a point v and a vector λ, from the
reduction to its equivalent modulus in the origin cell (see Definition 2). This
new set will be denoted as Lv,λ and we will prove that its closure provides a
finite set of affine subspaces (see Proposition 9). Furthermore, we will analyze
the strong connection between the sets Lv,λ and Lw,λ when w is chosen in the
closure of Lv,λ (see Proposition 13).

In Section 4, we will present some functions which, by evaluating them on
certain lines in Rn, generate the images of exponential polynomials in the classes
PΛ. We will see that these generating functions are periodic in each of its
coordinates, which leads to an interesting perspective which is related to that of
crystal structures. Through this geometrical point of view, i.e. in terms of the
associated sets Lv,λ, we will characterize in Section 5 the equivalence relation
∼ on the class PΛ (see Theorem 24), and we will give an alternative proof of
Bohr’s equivalence theorem restricted to the classes of exponential polynomials
in PΛ (see Proposition 21).

In the last section, we will use this geometric approach to give an alternative
proof of the fact that, with the norm of the uniform convergence, every class
of equivalent exponential polynomials is compact (see Proposition 27, which is
a particular case of [9, Proposition 2] improving Bochner’s property). This ap-
proach was a central driver behind the development of [9, Proposition 2], but it
is explicitly shown in this paper. As a consequence of it, on the one hand, it will
be shown that every sequence of the set of vertical translates of an exponential
polynomial has a subsequence that converges uniformly to an equivalent expo-
nential polynomial (see Corollary 28 and compare with [9, Theorem 4]) and,
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on the other hand, we will prove that, given two arbitrary equivalent exponen-
tial polynomials, one of them can be approximated by vertical traslations of
the other (see Corollary 29 and compare with [9, Corollary 5]). Moreover, the
results of this last section can be easily extended to other topologies.

2 Segmentation process of a line

In this preliminary part, which is provided here as a means for the reader to
readily justify the subsequent assertions, we will consider a crystal grid pattern
which is generated in the Euclidean space Rn from repeating origin cells.

Definition 1 Given n ∈ N, let M = {m1, . . . ,mn} be an arbitrary set of n
integer numbers and let Cm1,...,mn ⊂ Rn denote the Cartesian product

[2m1π, 2(m1 + 1)π)× · · · × [2mnπ, 2(mn + 1)π).

We will say that each Cm1,...,mn is a cell in Rn, or simply cell. Moreover, if
m1 = . . . = mn = 0, then C = C0,...,0 will be called the origin cell in Rn, or
simply origin cell.

Given n ∈ N, note that the sides of each cell have length 2π and the set of
all the cells in Rn generates a grid pattern in Rn. Moreover, if we take

pm1,...,mn = (2m1π, . . . , 2mnπ), mj ∈ Z, (2.1)

then each cell Cm1,...,mn is of the form

Cm1,...,mn = C0,...,0 + pm1,...,mn .

As we will show later, it is worth noting that C0,...,0 is the basic cell which
we have chosen to implement a certain segmentation process. Specifically, given
a line defined by a point v and a vector λ in Rn, we will use the reduction map
taking each element of Rn to its equivalent modulus in the period [0, 2π). In
this sense, the set Lv,λ that we next define is obtained from this process and it
will play a very important role in our paper.

Definition 2 Given n ∈ N, consider a line Av,λ in Rn given by {x ∈ Rn :
x = v + tλ, t ∈ R}, where v ∈ Rn is a point of the line and λ = (λ1, . . . , λn)
is a vector parallel to the line. Let R : Rn 7→ [0, 2π) × · · ·n) × [0, 2π) be the
reduction map taking each element (y1, . . . , yn) ∈ Rn to its equivalent modulus
in the period [0, 2π). The set of points Lv,λ = R(Av,λ), which is in the origin
cell of Rn, will be called the segmentation of the line Av,λ or the reduction of
the line Av,λ to its equivalent modulus in the origin cell.

Equivalently, Lv,λ can be defined as the set of points in the origin cell
C = [0, 2π)× · · ·n) × [0, 2π) of the type:

Lv,λ = {x ∈ C : x = pm1,...,mn + v + tλ

for some pm1,...,mn of form (2.1) and t ∈ R}.
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Remark 3 Note that, without loss of generality, the point v = (v1, v2, . . . , vn)
can be chosen so that each vk ∈ [0, 2π). In fact, it is clear that Lv,λ = Lv+p,λ,
with p = (2m1π, 2m2π, . . . , 2mnπ), mk ∈ Z, for each k = 1, . . . , n. Moreover,
if we take a point w ∈ Lv,λ, then Lv,λ = Lw,λ.

Example 4 Consider n = 2, λ1 = log 2, λ2 = log 3 and v1 = v2 = 0.
Then Av,λ is the line given by y = log 3

log 2x and an approximation to the set

Lv,λ = R(Av,λ) is represented in Figure 1.

Figure 1: Representation of the set Av,λ, the cells Cm1,m2 and the set Lv,λ of Example 4.

Remark 5 Definitions 1 and 2 can be generalized in the following way. Fixed
n ∈ N, c > 0 and a line Av,λ = {x ∈ Rn : x = v + tλ, t ∈ R} ⊂ Rn, we
can consider Rc : Rn 7→

[
0, 2π

c

)
× · · ·n) ×

[
0, 2π

c

)
the reduction map taking each

element (y1, . . . , yn) ∈ Rn to its equivalent modulus in the period
[
0, 2π

c

)
. Then

the set of points Lcv,λ = Rc(Av,λ) will be called the reduction of the line Av,λ to

its equivalent modulus in the origin cell of length 2π
c . Equivalently, if we take

pc,m1,...,mn =

(
2m1π

c
, . . . ,

2mnπ

c

)
, mj ∈ Z, (2.2)
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then

Lcv,λ := {x ∈ [0,
2π

c
)× · · ·n) × [0,

2π

c
) : x = pc,m1,...,mn + v +

t

c
λ

for some pc,m1,...,mn of the form (2.2) and t ∈ R}.

Moreover, the image of the sets Lcv,λ are invariant except for the scale factor
(see for example Figure 2).

Figure 2: The representation of the set L2π
v,λ in comparison with the set Lπv,λ, with v = (0, 0)

and λ = (log 2, log 3).

3 The density of the sets Lv,λ

We next study the closure of the sets Lv,λ of Definition 2 associated with
a line Av,λ, with λ = (λ1, . . . , λn). Under Q-linear independence of the set
{λ1, . . . , λn}, we first prove that the set Lv,λ almost fills up the closure of the
origin cell for any point v in Rn, which means that the origin cell is densified
by the set Lv,λ which is a union of parallel segments.

Proposition 6 Let {λ1, . . . , λn} be a set of n ≥ 1 real numbers which are
linearly independent over the rationals, and let v ∈ Rn. Then

Lv,λ = [0, 2π]× · · ·n) × [0, 2π],

where λ = (λ1, . . . , λn).

Proof. Given n ∈ N, consider λ = (λ1, . . . , λn) and v ∈ Rn. Take ε > 0
and (d1, . . . , dn) ∈ (0, 2π) × · · ·n) × (0, 2π). We will show the existence of a
point (x1, . . . , xn) ∈ Lv,λ such that |xl − dl| < ε for each l = 1, . . . , n. Since
the elements of {λ1, . . . , λn} are linearly independent over the rationals, by
Kronecker’s theorem [6, p.382], there exist a real number t and integer numbers
m1, . . . ,mn such that∣∣∣∣t λl2π

−ml −
dl − vl

2π

∣∣∣∣ < ε for each l = 1, . . . , n,
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which means that

vl + tλl − 2mlπ = dl + ηl, l = 1, . . . , n

for some ηl such that |ηl| < ε. Hence |xl−dl| < ε, with xl := vl+tλl−2mlπ. Note
that, by choosing ε sufficiently small (0 < ε < min{dl, 2π − dl : l = 1, . . . , n}),
we get xl ∈ [0, 2π) for each l = 1, . . . , n. Hence x = (x1, . . . , xn) ∈ Lv,λ ⊂ C.
Consequently, we have proved that (0, 2π)×· · ·n)×(0, 2π) ⊂ Lv,λ and, by taking
into account Lv,λ ⊂ C, we conclude that

Lv,λ = [0, 2π]× · · ·n) × [0, 2π].

Remark 7 Regarding the proposition above, other stronger results such as
Kronecker-Weyl theorem (see for example [8, Appendix 8, Theorem 1]) can be
used in order to obtain the Lebesgue measure of Lv,λ.

Figure 3: Approximation to the set L0,λ with λ = (log 2, log 3, log 5).

Example 8 Let λ = (log 2, log 3, log 5). Proposition 6 shows that

Lv,λ = [0, 2π]× [0, 2π]× [0, 2π], for any v ∈ R3.

See also Figure 3, which presents an approximation to this set. An equivalent
image is obtained by choosing an arbitrary vector λ whose components are lin-
early independent over the rational numbers, but with the difference consisting
of that the segments are aligned with this new chosen vector.

Without the hypothesis of the linear independence over Q of the elements
{λ1, . . . , λn}, Proposition 6 can be generalized in the following way. Since the
case n = 1 is plain, from now on we will consider n ≥ 2.
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Proposition 9 Given a point v ∈ Rn and a vector λ = (λ1, . . . , λn), let k
be the dimension of the Q-vector space generated by {λ1, . . . , λn}. Then there
exists m ∈ N such that

Lv,λ =

 m⋃
j=1

Aj

 ∩ ([0, 2π]× · · ·n) × [0, 2π]
)
,

for some k-dimensional affine subspaces Aj in Rn, j = 1, . . . ,m.

Proof. Let k be the dimension of the Q-vector space generated by {λ1, . . . , λn}.
Consider {1, . . . , n} = I1∪I2, with I1∩I2 = ∅ and ]I1 = k, such that the elements
in {λj : j ∈ I1} are linearly independent over the rational numbers and

λj =
∑
l∈I1

rj,lλl, j ∈ I2,

for some rj,l ∈ Q, j ∈ I2, l ∈ I1. Take rj,l =
pj,l
qj,l

with pj,l, qj,l ∈ Z such that

gcd{pj,l, qj,l} = 1 if pj,l 6= 0, and take qj,l = 1 if pj,l = 0. Also, let qj denote
lcm{qj,l : l ∈ I1} for each j ∈ I2. Fixed v = (v1, v2, . . . , vn) ∈ Rn, note that if
x = v + tλ, with t ∈ R, it is clear that

xj = (vj −
∑
l∈I1

rj,lvl) +
∑
l∈I1

rj,lxl, j ∈ I2, (3.1)

which provide d-dimensional affine subspaces in Rk+1, for some d ≤ k. That
means that the points of the form x = v + tλ, t ∈ R, belong to these affine
subspaces. Now, since the points of Lv,λ ⊂ C are of the form given by
x = (2m1π, . . . , 2mnπ) +v + tλ for some t ∈ R and mj ∈ Z, each equation (3.1)
generates a finite amount of parallel affine subspaces in Rn, say Aj,1, . . . , Aj,ij ,

such that Lv,λ ⊂
⋃ij
l=1Aj,l. Indeed, for each l ∈ I1 take xl = vl + 2πelq, where

el ∈ Z and q := lcm{qj : j ∈ I2}. Then, by (3.1), we have for each j ∈ I2 that
xj = vj+2πdj for some dj ∈ Z, and consequently R(x1, . . . , xn) = R(v1, . . . , vn),
where R is the reduction map taking each element (y1, . . . , yn) ∈ Rn to its
equivalent modulus in the period [0, 2π). Also, since {λj : j ∈ I1} is linearly
independent over the rationals, Proposition 6 gives

Lv∗,λ∗ = [0, 2π]× · · ·k) × [0, 2π],

where λ∗ and v∗ are the subvectors of λ and v, respectively, determined by the
components I1. That is, the components xl, l ∈ I1, of (3.1) go through almost
all the values and thus the affine subspaces provided by (3.1) are k-dimensional
and they are almost filled up in the origin cell. Hence

Lv,λ =

⋃
j∈I2

 ij⋃
l=1

Aj,l

 ∩ ([0, 2π]× · · ·n) × [0, 2π]
)
.

7



Remark 10 Under the same conditions as Proposition 9, let V be the Q-vector
space generated by Λ = {λ1, . . . , λn}. If Λ = Λ1 ∪ Λ2, with Λ1 ∩ Λ2 = ∅ and
]Λ1 = k = dim(V ), then the affine subspaces Aj of Proposition 9 are uniquely
determined by the rational coefficients so that the elements in Λ2 can be expressed
as a Q-linear combination of the elements of Λ1 and their position with respect
to the elements of this set. In fact, this is clear from equations (3.1) which
determine Aj. Moreover, it is plain that the sets Lv,λ and Lw,λ are formed
from parallel affine subspaces for any v and w in Rn.

Remark 11 Propositions 6 and 9 can be easily generalized to the sets Lcv,λ,
with a prefixed c > 0, defined in Remark 5. In this case, the cells have length
2π
c .

The following results concern the strong connection between the sets Lv,λ

and Lw,λ when w is chosen in the closure of Lv,λ. As we will see later, this
connection will give rise to a certain characterization of the equivalence of ex-
ponential polynomials with the same sets of exponents.

Lemma 12 Given a point v ∈ Rn and a vector λ = (λ1, . . . , λn), consider
w ∈ Lv,λ. Then Lw,λ ⊂ Lv,λ.

Proof. Given w ∈ Lv,λ, by reductio ad absurdum suppose the existence of
x ∈ Lw,λ satisfying x /∈ Lv,λ. Without loss of generality, suppose xi 6= 0 for
each j = 1, . . . , n (recall that Lv,λ is formed from affine subspaces). Under these
conditions, on the one hand it is accomplished that x = w + t0λ + p, for some
t0 ∈ R and p = (2m1π, . . . , 2mnπ), mj ∈ Z, and on the other hand there exists
ε0 > 0 such that ‖x− z‖ ≥ ε0 for any z ∈ Lv,λ. Moreover, since w ∈ Lv,λ, we
can locate t1 ∈ R and q ∈ Zn such that w = v + t1λ + q + ε, for some ε ∈ Rn
such that

‖ε‖ < min{ε0, xi, 2π − xi : i = 1, . . . , n}. (3.2)

Thus x = v+(t0 + t1)λ+ε+p+q. Now, if we define z0 = v+(t0 + t1)λ+p+q,
by taking (3.2) into account, we have that z0 ∈ Lv,λ and ‖x− z0‖ = ‖ε‖ < ε0,
which represents a contradiction.

The lemma above (and its demonstration) is the key to prove the following
result.

Proposition 13 Given two points v ∈ Rn and w ∈ C, and a vector λ =
(λ1, . . . , λn), then Lw,λ = Lv,λ if and only if w ∈ Lv,λ.

Proof. Take Lw,λ = Lv,λ. Since w ∈ Lw,λ, it is accomplished that w ∈ Lw,λ =
Lv,λ. Conversely, let w ∈ Lv,λ. By Lemma 12, it is clear that Lw,λ ⊂ Lv,λ.
We next prove by reductio ad absurdum that Lv,λ ⊂ Lw,λ. So, take x ∈ Lv,λ

such that x /∈ Lw,λ. Without loss of generality, suppose xi 6= 0 and xi 6= 2π
for each i = 1, . . . , n (Lv,λ is formed from affine subspaces). Also, take d :=
min{xi2 ,

2π−xi
2 : i = 1, . . . , n}. Then there exists ε0 > 0 such that ‖x− z‖ ≥ ε0

8



for any z ∈ Lw,λ. Now, since x ∈ Lv,λ, we can write x = v + t0λ + p + ε for
some t0 ∈ R, p = (2m1π, . . . , 2mnπ), mj ∈ Z, and ε ∈ Rn such that

‖ε‖ < min{ε0

2
, d}. (3.3)

Moreover, since w ∈ Lv,λ, we can locate t1 ∈ R and q ∈ Zn such that
w = v + t1λ + q + τ for some τ ∈ Rn satisfying

‖τ‖ < min{ε0

2
, d}. (3.4)

Then x = w+(t0−t1)λ+ε−τ+p−q. So, if we define z0 = w+(t0−t1)λ+p−q,
by taking (3.3) and (3.4) into account, we have that z0 ∈ Lw,λ and ‖x− z0‖ =
‖ε− τ‖ < ε0, which is a contradiction. Thus the result holds.

4 The generator functions

In this section we are going to handle a class of functions which will generate
the images of every exponential polynomial P (s) of type (1.1). The number of
variables of these generator functions coincides with the number of coefficients
of the associated exponential polynomials.

Definition 14 Given n ∈ N, let B = {b1, . . . , bn} be a set of n non-negative
numbers. We define the generator function gB : Rn → C associated with B as

gB(x) :=

n∑
j=1

bje
ixj , x = (x1, . . . , xn) ∈ Rn.

Remark 15 Every evaluation of an exponential polynomial of the form
P (s) =

∑n
j=1 aje

λjs ∈ PΛ, where Λ = {λ1, λ2, . . . , λn} is a set of exponents,
can be obtained from the generator functions by evaluating them on certain lines.
Indeed, fixed σ0 ∈ R, take BP,σ0

= {|a1|eλ1σ0 , |a2|eλ2σ0 , . . . , |an|eλnσ0} and note
that

gBP,σ0 (arg a1 + tλ1, . . . , arg an + tλn) = P (σ0 + it) ∀t ∈ R.

It is clear that gB(x1, . . . , xn) is 2π-periodic in each coordinate xk, with
k = 1, . . . , n. In this sense, this property prompts a structure which is similar
to that of a crystal and connects these functions with the concepts introduced
in previous sections.

For the following lemma, take the notation

Img (P (σ0 + it)) = {s ∈ C : ∃t ∈ R such that s = P (σ0 + it)}

and
Img (gB(A)) = {s ∈ C : ∃x ∈ A such that s = gB(σ0,x)}

for the set of values in the complex plane taken on by an exponential polynomial
P (σ + it) ∈ PΛ and gB(A) for some σ = σ0 and A ⊂ Rn, respectively. Now
remark 15 inspires the following lemma.
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Lemma 16 Given n ∈ N and Λ = {λ1, . . . , λn} a set of n exponents, let P (s) =∑n
j=1 aje

λjs ∈ PΛ. Then

Img (P (σ0 + it)) = Img
(
gBP,σ0 (Lv,λ)

)
,

where σ0 is a real number, λ = (λ1, . . . , λn), v = (arg a1, . . . , arg an) and
BP,σ0

= {|a1|eλ1σ0 , . . . , |an|eλnσ0}.

Proof. Given λ = (λ1, . . . , λn), P (s) =
∑n
j=1 aje

λjs ∈ PΛ and σ0 ∈ R, let

BP,σ0
= {|a1|eλ1σ0 , . . . , |an|eλnσ0}. If x = v + t∗λ, with v = (arg a1, . . . , arg an)

and t∗ ∈ R, then by Remark 15 we have gBP,σ0 (x1, . . . , xn) = P (σ0+it∗). Hence,
by varying t∗, it is satisfied

Img (P (σ0 + it)) = Img
(
gBP,σ0 (Av,λ)

)
,

where Av,λ := {x ∈ Rn : x = v + tλ, t ∈ R}. Finally, since Lv,λ = R(Av,λ),
with R the reduction map taking each element (y1, . . . , yn) ∈ Rn to its equivalent
modulus in the period [0, 2π), we deduce from periodicity of each coordinate xk
that Img

(
gBP,σ0 (Av,λ)

)
= Img

(
gBP,σ0 (Lv,λ)

)
, and the result follows.

As a consequence of the lemma above and the continuity of the function
gB(x), the proof of the following result is clear.

Lemma 17 Given n ∈ N and Λ = {λ1, . . . , λn} a set of n exponents, let
P (s) =

∑n
j=1 aje

λjs ∈ PΛ. Then

Img (P (σ0 + it)) = Img
(
gBP,σ0 (Lv,λ)

)
,

where σ0 is a real number, λ = (λ1, . . . , λn), v = (arg a1, . . . , arg an) and
BP,σ0

= {|a1|eλ1σ0 , . . . , |an|eλnσ0}.

5 Equivalent exponential polynomials

We next introduce an equivalence relation on the classes PΛ, which will be our
most valuable tool from now on.

Definition 18 Given Λ = {λ1, λ2, . . . , λn} a set of exponents, let V be the Q-
vector space generated by Λ. Consider P1(s) =

∑n
j=1 aje

λjs and

P2(s) =
∑n
j=1 bje

λjs two exponential polynomials in the class PΛ. We will
say that P1 is equivalent to P2, and it will be denoted as P1 ∼ P2, if there exists
a Q-linear map ψ : V → R such that

bj = aje
iψ(λj), λj ∈ Λ.

It is immediate that ∼ is an equivalence relation (in fact, it coincides with
that of [9, Definition 3] for the case of the functions in the classes PΛ). The
reader can observe that this equivalence relation is based on that of Bohr (see
[1, p.173]) which was defined for general Dirichlet series and was characterized
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in terms of a completely multiplicative function [1, Theorem 8.12]. In fact,
although Apostol does not use the concept of vectorial space in his book [1],
it is plain that he considers the Q-vector space generated by the sequence of
exponents implicitly.

We next consider the following result which characterizes the notion of equiv-
alent functions in PΛ in terms of a basis of the Q-vector space generated by
{λ1, . . . , λn} (compare with the definition given in [1, p.173] and with [9, Propo-
sition 1]).

Lemma 19 Given Λ a set of exponents, consider P1(s) =
∑n
j=1 aje

λjs and

P2(s) =
∑n
j=1 bje

λjs two exponential polynomials in the class PΛ. Let g be the
vector of the elements of a basis of the Q-vector space generated by {λ1, . . . , λn}
and rj the vector of rational components that verify λj =< rj ,g > for each
j = 1, . . . , n. Then P1 is equivalent to P2 if and only if there exists some
x0 ∈ Rk such that bj = aje

<rj ,x0>i for every j = 1, . . . , n.

Proof. Let V be the Q-vector space generated by Λ and g = (g1, . . . , gk) the
vector of the elements of a basis of V . If P1 ∼ P2, by Definition 18 there exists
a Q-linear map ψ : V → R such that bj = aje

iψ(λj), j = 1, 2 . . . , n. Hence

bj = aje
i
∑k
l=1 rj,lψ(gl), j = 1, . . . , n or, equivalently,

bj = aje
i<rj ,x0>, j = 1, . . . , n

with x0 := (ψ(g1), . . . , ψ(gk)). Conversely, suppose the existence of a vector
x0 = (x0,1, . . . , x0,k) ∈ Rk such that bj = aje

<rj ,x0>i, j = 1, . . . , n. Then a
Q-linear map ψ : V → R can be defined from ψ(gl) := x0,l, l = 1, . . . , k. Hence

ψ(λj) =

k∑
l=1

rj,lψ(gl) =< rj ,x0 >, j = 1, . . . , n

and the result follows.

The next propositions provide us the connection between equivalent func-
tions in terms of the sets Lv,λ.

Proposition 20 Given Λ = {λ1, λ2, . . . , λn} a set of n ≥ 2 exponents, let
P1(s) =

∑n
j=1 aje

λjs and P2(s) =
∑n
j=1 bje

λjs be two exponential polyno-
mials in PΛ such that P1 ∼ P2. Consider v = (arg a1, arg a2, . . . , arg an),
w = (arg b1, arg b2, . . . , arg bn) and λ = (λ1, λ2, . . . , λn). Then Lv,λ = Lw,λ.

Proof. Let k be the cardinal of any basis of the Q-vector space generated by
{λ1, . . . , λn}. Suppose that {1, . . . , n} = I1 ∪ I2, with I1 ∩ I2 = ∅ and ]I1 = k,
where the set {λj : j ∈ I1} is linearly independent over the rational numbers
and λj =

∑
l∈I1 rj,lλl, j ∈ I2, for some rj,l ∈ Q, j ∈ I2, l ∈ I1. Note first

that, from the equivalence of P1(s) and P2(s), we deduce the existence of some
z ∈ Rk such that bj = aje

<rj ,z>i, j = 1, 2, . . . , n and hence there exist mj ∈ Z
such that

arg bj = arg aj+ < rj , z > +2πmj , j = 1, 2, . . . , n,

11



or equivalently
wj = vj + yj + 2πmj , j = 1, 2, . . . , n,

where yj :=< rj , z >. By Proposition 9, there exist m1,m2 ∈ N such that

Lv,λ =

m1⋃
j=1

Aj

 ∩ ([0, 2π]× · · ·n) × [0, 2π]
)

and

Lv+y,λ =

m2⋃
j=1

Bj

 ∩ ([0, 2π]× · · ·n) × [0, 2π]
)
,

for some d-dimensional affine subspaces Aj , Bj in Rn, where d ≤ k. Moreover,
the subspaces Aj , j = 1, . . . ,m1 are determined by equations (3.1), which are

xj = (vj −
∑
l∈I1

rj,lvl) +
∑
l∈I1

rj,lxl, j ∈ I2, (5.1)

and analogously the subspaces Bj , j = 1, . . . ,m2 are determined by equations

xj = (vj + yj −
∑
l∈I1

rj,l(vl + yl)) +
∑
l∈I1

rj,lxl, j ∈ I2. (5.2)

However, we next show that (5.1) and (5.2) are equal. Indeed, note first that, if
j ∈ I2, we have rj,l = 0 for each l ∈ I1 (the numbers {λj : j ∈ I2} are rationally
dependent). Secondly, if l ∈ I1, then rl,i = 1 for i = l and rl,i = 0 for i 6= l.
Hence

yj =< rj , z >=

n∑
l=1

rj,lzl =
∑
l∈I1

rj,lzl, j ∈ I2,

yl =< rl, z >=

n∑
i=1

rl,izi = zl, l ∈ I1,

and then ∑
l∈I1

rj,lyl =
∑
l∈I1

rj,lzl, j ∈ I2.

Consequently,

vj −
∑
l∈I1

rj,lvl = vj + yj −
∑
l∈I1

rj,l(vl + yl), j ∈ I2

and thus (5.1) and (5.2) are equal, which yields that Lv,λ = Lv+y,λ. Finally,
since Lv+y,λ = Lw,λ, we conclude that Lv,λ = Lw,λ.

It is worth noting the connection between Bohr’s equivalence theorem [1,
p.178] and part ii) of our next result (compare also with the results of the
recent paper [10]).
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Proposition 21 Given Λ = {λ1, λ2, . . . , λn} a set of n ≥ 2 exponents, let
P1(s) =

∑n
j=1 aje

λjs and P2(s) =
∑n
j=1 bje

λjs be two equivalent exponential
polynomials in PΛ. Consider the vectors v = (arg a1, arg a2, . . . , arg an), w =
(arg b1, arg b2, . . . , arg bn), and the point λ = (λ1, λ2, . . . , λn). Given σ0 ∈ R,
take the sets BP1,σ0

= {|a1|eλ1σ0 , |a2|eλ2σ0 , . . . , |an|eλnσ0} and
BP2,σ0 = {|b1|eλ1σ0 , |b2|eλ2σ0 , . . . , |bn|eλnσ0}. Then it is accomplished that

i) Img (P2(σ0 + it)) = Img
(
gBP1,σ0

(Lw,λ)
)
.

ii) Img (P1(σ0 + it)) = Img (P2(σ0 + it)).

iii) Img
(
gBP1,σ0

(Lv,λ)
)

= Img
(
gBP1,σ0

(Lw,λ)
)

= Img
(
gBP2,σ0

(Lw,λ)
)
.

Proof. Note first that, from the equivalence of P1(s) and P2(s), we can assure
the existence of some z ∈ Rk satisfying bj = aje

<rj ,z>i, j = 1, 2, . . . , n and
hence there exist mj ∈ Z such that

arg bj = arg aj+ < rj , z > +2πmj , j = 1, 2, . . . , n,

or equivalently
wj = vj + yj + 2πmj , j = 1, 2, . . . , n, (5.3)

where yj :=< rj , z >.
i) Given σ0 ∈ R, take BP1,σ0

= {|a1|eλ1σ0 , |a2|eλ2σ0 , . . . , |an|eλnσ0}. Observe
that

Img (P1(σ0 + it)) = Img
(
gBP1,σ0

(Lv,λ)
)
, (5.4)

follows from Lemma 16. On the other hand, we have

gBP1,σ0
(tλ1 + v1 + y1, tλ2 + v2 + y2, . . . , tλk + vk + yk, . . .) =

=

n∑
j=1

|aj |eλjσ0ei(tλj+vj+yj) =

n∑
j=1

aje
λj(σ0+it)eiyj =

=

n∑
j=1

bje
λj(σ0+it) = P2(σ0 + it) ∀t ∈ R.

Hence, as in Lemma 16, we have Img (P2(σ0 + it)) = Img
(
gBP1,σ0

(Lv+y,λ)
)
.

Now, by (5.3) and remark 3, note that Lv+y,λ = Lw,λ and hence
Img (P2(σ0 + it)) = Img

(
gBP1,σ0

(Lw,λ)
)
.

ii) We deduce from Lemma 17, (5.4) and point i) that

Img (P1(σ0 + it)) = Img
(
gBP1,σ0

(Lv,λ)
)

=

= Img
(
gBP1,σ0

(Lw,µ)
)

= Img (P2(σ0 + it)).

iii) It follows from i) and ii).

As might be suspected from Proposition 6, two arbitrary points in Rn provide
two equivalent exponential polynomials when the set Λ is linearly independent
over the rationals. Indeed, it is also a consequence of the following result.
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Proposition 22 Let Λ = {λ1, λ2, . . . , λn} be a set of n ≥ 2 real numbers
which are linearly independent over the rationals and P1(s) =

∑n
j=1 aje

λjs,

P2(s) =
∑n
j=1 bje

λjs be two exponential polynomials in PΛ. Then P1 ∼ P2 if
and only if |aj | = |bj | for each j = 1, 2, . . . , n.

Proof. If P1 ∼ P2, then Lemma 19 assures the existence of x0 ∈ Rn such
that bj = aje

i<rj ,x0> for each j = 1, . . . , n, which proves |aj | = |bj | for
each j = 1, 2, . . . , n. Conversely, if |aj | = |bj | for each j = 1, 2, . . . , n, then
there exists a vector θ = (θ1, θ2, . . . , θn) ∈ [0, 2π]n such that bj = aje

iθj for
each j = 1, 2, . . . , n. Since Λ is linearly independent over the rationals, take
g = (λ1, λ2, . . . , λn) as the vector of the elements of a basis of the Q-vector space
generated by Λ, then the vectors rj of rational components so that< rj ,g >= λj
verify rj,l = 0 if j 6= l and rj,l = 1 if j = l. Hence bj = aje

iθj = aje
i<rj ,θ> for

each j = 1, 2, . . . , n, which means that P1 ∼ P2.

Remark 23 As a consequence of the result above, if λ = (λ1, λ2, . . . , λn),
v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) are in Rn, with Λ = {λ1, λ2, . . . , λn}
a set of n real numbers which are linearly independent over the rationals, then
Lv,λ and Lw,λ provide two exponential polynomials which are equivalent in PΛ.
Indeed, without loss of generality, suppose that vj , wj ∈ [0, 2π) and take

P1(s) =

n∑
j=1

aje
λjs ∈ PΛ, P2(s) =

n∑
j=1

bje
λjs ∈ PΛ,

with aj , bj ∈ C such that |aj | = |bj |, arg aj = vj and arg bj = wj for each j.
Then P1 ∼ P2 and, fixed σ0 ∈ R, we have

Img (P1(σ0 + it)) = Img
(
gBP1,σ0

(Lv,λ)
)

and
Img (P2(σ0 + it)) = Img

(
gBP1,σ0

(Lw,λ)
)
,

where BP1,σ0 = {|a1|eλ1σ0 , |a2|eλ2σ0 , . . . , |an|eλnσ0}.

It is plain that, in general, the remark above is not true when the elements
of Λ are not linearly independent over the rationals. In that case, in geometrical
terms, we pointed in Remark 10 that the sets Lv,λ and Lw,λ provide parallel
affine subspaces for any v and w in Rn with n the number of elements of Λ.

In this respect, without the restriction of Q-linear independence of the fre-
quencies, we next prove that the converse of Proposition 20 is also true.

Theorem 24 Given Λ = {λ1, λ2, . . . , λn} is a set of n ≥ 2 exponents, let
P1(s) =

∑n
j=1 aje

λjs and P2(s) =
∑n
j=1 bje

λjs be two exponential polyno-
mials in PΛ with |aj | = |bj | for each j = 1, 2, . . . , n. Consider the vectors
v = (arg a1, arg a2, . . . , arg an), w = (arg b1, arg b2, . . . , arg bn), and the point
λ = (λ1, λ2, . . . , λn). Then P1 ∼ P2 if and only if Lv,λ = Lw,λ.
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Proof. Let k be the cardinal of any basis of the Q-vector space generated by
Λ. Suppose that {1, . . . , n} = I1 ∪ I2, with I1 ∩ I2 = ∅ and ]I1 = k, where
the set {λj : j ∈ I1} is linearly independent over the rational numbers and
λj =

∑
l∈I1 rj,lλl, j ∈ I2 for some rj,l ∈ Q, j ∈ I2 and l ∈ I1. The direct

implication is proved in Proposition 20. Now, suppose that Lv,λ = Lw,λ, then
we deduce from Proposition 9 that there exists m ∈ N such that

Lv,λ = Lw,λ =

 m⋃
j=1

Aj

 ∩ ([0, 2π]× · · ·n) × [0, 2π]
)
,

for some d-dimensional affine subspaces Aj in Rn, j = 1, 2, . . . ,m, where d ≤ k.
Moreover, the subspaces Aj , j = 1, . . . ,m are determined by equations (3.1),
which are

xj = (vj −
∑
l∈I1

rj,lvl) +
∑
l∈I1

rj,lxl, j ∈ I2,

and they generate the same subspaces as those of the equations

xj = (wj −
∑
l∈I1

rj,lwl) +
∑
l∈I1

rj,lxl, j ∈ I2,

Hence wj − vj =
∑
l∈I1 rj,l(wl − vl) + 2πpj , for some pj ∈ Z, j ∈ I2. Recall

that if j ∈ I2, we have rj,i = 0 for each i ∈ I2 (the numbers {λj : j ∈ I2} are
rationally dependent). Moreover, if j ∈ I1, then rj,i = 1 for i = j and rj,i = 0
for i 6= j. Thus we have

wj − vj =< rj ,w − v > +2πpj , j = 1, . . . , n, (5.5)

where pj := 0 for each j ∈ I1. Now, we deduce from (5.5) that

bj = |bj |eiwj = |bj |ei(vj+<rj ,w−v>+2πpj) = aje
<rj ,w−v>i, j = 1, . . . , n,

which means that P2 is equivalent to P1.

Example 25 Consider

f1(s) = es log 2 + es log 3 + es(
log 2

2 + log 3
2 )

and
f2(s) = −es log 2 − es log 3 + es(

log 2
2 + log 3

2 ).

It is not difficult to prove that f1 ∼ f2. Moreover, by Theorem 24, it is equiv-
alent to the equality Lv,λ = Lw,λ, where v = (0, 0, 0), w = (π, π, 0) and

λ = (log 2, log 3, log 2
2 + log 3

2 ). Figure 4 presents an approximation to the sets
Lv,λ and Lw,λ.

Corollary 26 Given λ = (λ1, λ2, . . . , λn) the vector of a set Λ of n ≥ 2 ex-
ponents, let P1(s) =

∑n
j=1 aje

λjs and P2(s) =
∑n
j=1 bje

λjs be two exponen-
tial polynomials in PΛ such that |aj | = |bj | for every j = 1, . . . , n. Consider
v = (arg a1, arg a2, . . . , arg an) and w = (arg b1, arg b2, . . . , arg bn). Then P1(s)
and P2(s) are equivalent if and only if w ∈ Lv,λ.

Proof. The result follows easily from Proposition 13 and Theorem 24.
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Figure 4: Approximation to the sets Lv,λ (red) and Lw,λ (green) of Example 25.

6 Applications to the convergence of exponen-
tial polynomials

From now on, we will consider that the classes of exponential polynomials PΛ

are endowed with the topology of uniform convergence on every reduced vertical
strip of C.

As it was said in the introduction, Bochner’s property consisting of the rela-
tive compactness of the set {f(t+τ)}, τ ∈ R, associated with an almost periodic
function f , is a characteristic feature of almost periodicity in the sense of Bohr.
In this respect, this section aims to prove from our geometrical approach that
every sequence of translates of an exponential polynomial has a subsequence
that converges uniformly to an exponential polynomial which is equivalent to
it. With this purpose, based on this approach, we next give an alternative proof
of [9, Proposition 2].

Proposition 27 Let Λ be a set of n ≥ 2 exponents and G an equivalence class
in PΛ/ ∼. Then G is sequentially compact.

Proof. Given Λ = {λ1, λ2, . . . , λn}, let {Pl}l≥1 be a sequence in an equiva-
lence class G in PΛ/ ∼. Take λ = (λ1, λ2, . . . , λn), Pl(s) =

∑n
j=1 al,je

λjs and
vl = (arg al,1, . . . , arg al,n), l = 1, 2 . . .. By Proposition 21, we have that
Lvl,λ = Lvm,λ for any l,m ≥ 1. Furthermore |al,j | = |am,j | for any l,m ∈ N
and j = 1, . . . , n. Also, note that {vl}l≥1 is a sequence of points included in
the origin cell C (each one of them in Lvl,λ) and hence it has a limit point, say
w ∈ Lv1,λ. By abuse of language, let {vl}l≥1 denote a subsequence converging
to w; that is, given ε > 0, there exists l0 such that ‖vl −w‖ < ε for any l ≥ l0,
which yields

|vl,j −wj | < ε for each l ≥ l0 and j = 1, . . . , n. (6.1)
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Now, by taking into account Proposition 13, we have Lv1,λ = Lw,λ. Con-
sequently, by Theorem 24, we conclude that Q(s) :=

∑n
j=1 |a1,j |eiwjeλjs is

equivalent to P1 and hence is included in G. We next prove that there exists a
subsequence in {Pl}l≥1 convergent to Q(s) with the topology of uniform con-
vergence on C. Indeed, By (6.1), there exist real numbers θl,j , with |θl,j | < ε,
such that for each l ≥ l0 it is accomplished∣∣eiwj − ei arg al,j

∣∣ =
∣∣∣ei(arg al,j+θl,j) − ei arg al,j

∣∣∣ =
∣∣eiθl,j − 1

∣∣ ≤ |θl,j | < ε.

Now, fixed a reduced vertical strip U ⊂ C and s = σ + it, for each l ≥ l0 we
have

|Q(s)− Pl(s)| =

∣∣∣∣∣∣
n∑
j=1

|a1,j |eiwjeλjs −
n∑
j=1

|al,j |ei arg al,jeλjs

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
n∑
j=1

|a1,j |eλjs
(
eiwj − ei arg al,j

)∣∣∣∣∣∣ ≤
≤

n∑
j=1

|a1,j |eλjσ
∣∣eiwj − ei arg al,j

∣∣ < ε

n∑
j=1

|a1,j |eλjσ.

Thus the result follows.

As exponential polynomials in PΛ are regarded as members of a metric
space, we recall that sequential compactness is the same as compactness (in the
topology induced by the metric), and it implies being closed.

Now, since the vertical translates of an exponential polynomial P (s) are in
the same equivalence class as P (s), the following important corollary is imme-
diate (compare with [9, Theorem 4]).

Corollary 28 Given Λ a set of exponents and P ∈ PΛ, then the family of its
vertical translates {P (s+it)}, t ∈ R, has a subsequence that converges uniformly
to an equivalent function.

Finally, another important consequence of Proposition 27 is given in the
following result (compare with [9, Corollary 5]).

Corollary 29 Let Λ be a set of n ≥ 2 exponents and G an equivalence class in
PΛ/ ∼. Given two arbitrary exponential polynomials P (s) and Q(s) in G, there
exists a sequence of vertical translations of P (s) converging unifomly to Q(s).

Proof. Given λ = (λ1, λ2, . . . , λn), take P (s) =
∑n
j=1 aje

λjs, Q(s) =
∑n
j=1 bje

λjs,
v = (arg a1, . . . , arg an) and w = (arg b1, . . . , arg bn). By Proposition 21, we
have that Lv,λ = Lw,λ. Hence w ∈ Lv,λ and thus there exists a sequence
{vl}l≥1 ⊂ Lv,λ converging to w. Now we just need to introduce this sequence
in the proof of Proposition 27 to get the result
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More generally, consider the classes of exponential polynomials PΛ endowed
with a certain topology on every reduced strip U of C induced by a metric ‖ ·‖G
satisfying ‖

∑n
j=1 aje

λjs‖G ≤
∑n
j=1 |aj |eλjσ for any σ ∈ U . Then it is easy to

see that the proof of Proposition 27 works for this topology and, hence, the
results of this section can be extended to this case. The topology of uniform
convergence on every reduced vertical strip of C is an specific example, but
many other different examples can be found (for instance, by virtue of [3, p.
73]).
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