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Abstract

The full harvesting of both singlet and triplet excitons can pave

the way towards more efficient molecular light-emission mechanisms

(i.e., TADF or Thermally Activated Delayed Fluorescence) beyond

the spin statistics limit. This TADF mechanism benefits from low

(but typically positive) singlet-triplet energy gaps or ∆EST . Recent

research has suggested the possibility of inverting the order of the

energy of lowest singlet and triplet excited-states, thus opening new

pathways to foster light emission without any energy barrier through

triplet to singlet conversion, which is systematically investigated here

by means of theoretical methods. To this end, we have selected a

set of heteroatom-substituted triangle-shaped molecules (or triangu-

lenes) for which ∆EST < 0 is predicted. We successfully rationalize

the origin of that energy inversion, and the reasons for which theo-

retical methods might produce qualitatively inconsistent predictions

depending on how they treat n-tuple excitations (e.g., the large con-

tribution of double excitations for all the ground- and excited-states

involved). Unfortunately, the TD-DFT method is unable to deal with

the physical effects driving this behaviour, which prompted us to the

use here of more sophisticated ab initio methods such as SA-CASSCF,

SC-NEVPT2, SCS-CC2, and SCS-ADC(2).

Key words: OLEDs; TADF; Singlet-triplet energy gap; TD-DFT; SA-
CASSCF, SC-NEVPT2, SCS-CC2.
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1 Introduction

Thermally-Activated Delayed Fluorescence (TADF) has become over the

recent years the most popular (and promising) photophysical strategy to

improve the efficiency of Organic Light-Emitting Diodes (OLEDs).1–7 In

an OLED, the injected charge carriers recombine in a 1:3 ratio of (light-

emitting) singlet (S1) and (dark) triplet (T1) excited states. This ratio is

limiting the Internal Quantum Efficiency (IQE) of fluorescent OLEDs to

25 %. In TADF emitters, on the other hand, the positive but small energy

gap (∆EST ) beween the lowest singlet and triplet excited states, makes

available the upconversion channel of triplet excitons through a Reverse In-

terSystem Crossing (RISC) mechanism, allowing thus IQE to ideally reach

a value of 100 %. The current mechanistic picture of the RISC process

involves a spin-vibronic model8,9 where Reverse Internal Conversion (RIC)

takes place from T1 to Tn, from which conversion to S1 is driven by Spin-

Orbit Coupling (SOC). According to El-Sayed rules, the direct conversion

from T1 to S1 is thought to be impossible because of the large Charge-

Transfer (CT) character of both excited states leading to vanishing SOC.

However, recent studies have highlighted the fact that S1 and T1 have ac-

tually a mixed CT-Locally Excited (LE) character dynamically tuned by

intramolecular vibrations resulting in non-negligible SOC.10,11 Even though

the nature of the mechanism is still under debate, there is no question that

minimizing the ∆EST is an important factor in order to allow for efficient

RISC.

From a materials design perspective, the first generation of TADF molec-

ular emitters were initially based on a combination of Donor (D) and Ac-

ceptor (A) fragments to create excited-states bearing a strong Intramolecu-
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lar Charge-Transfer (ICT) character, which is known to lead to low ∆EST

values12,13 but at the expense also of low or vanishing values of oscillator

strength values (f). In this respect, theoretical calculations have recently

contributed to fully understand, and thus engineer, this mechanism at the

molecular scale.14,15 Despite these advancements, some of the longstanding

issues still under investigation are: (i) the need of the greatest color purity

according to the standards of the International Commission on Illumination,

which is limited by the broad emission spectra usually associated to these

compounds; and (ii) how to maximize the emission intensity, normally low

due to the oscillator strength values (f) reported, independently of the rel-

atively low ∆EST value. Therefore, many candidate molecules have been

designed and/or investigated along the last years; however, this scenario

has drastically evolved after the discovery in 2016 by Hatakeyama et al. of

a new class of TADF emitters, the so-called Multi-Resonant TADF (MR-

TADF) emitters, matching exactly these desired features: relatively low

(high) ∆EST (f) values together with narrow emission spectra (i.e., reduced

emission linewidth) and small Stokes shifts,16–18 defying the guidelines pro-

vided by theoretical methods. This new class of molecules could constitute

the tipping point for the TADF technology to fully reach the OLED market.

This intriguing molecular behaviour is essentially driven by short-range

reorganization of the electron density, taking place upon electronic excita-

tion of these multi-resonant structures, as disclosed by highly correlated

quantum-chemical calculations19 and promoted by the existence of pseudo-

local D-A coupled interactions. This effect has been observed through a

controlled heterosubstitution pattern (e.g., with B, N or O atoms) of poly-

cylic conjugated hydrocarbons. In this regard, this chemical strategy has led
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to the synthesis of a relatively large set of triangle-shaped (also called trian-

gulenes) forms.20 Note also recent advances for the supramolecular packing

of heteroatom-containing triangle-shaped nanographenes21,22 or the forma-

tion of extended 2D and 3D structures based on N-rich triangulenes,23,24

which shows the versatility of these compounds paving also the way towards

other challenging technological applications (e.g., photocatalysis25). More

strinkingly, we underline the recent report in heptazine, an aza-substituted

triangulene also called tri-s-triazine, of a negative ∆EST , i.e. inverted S1

and T1 states, through a combination of quantum-chemical calculations and

optical spectroscopy.26 We note that Time-Dependent Density Functional

Theory (TD-DFT) calculations were not able to reproduce that negative

∆EST . Furthermore, another recent and interesting study reported a a

negative ∆EST for cyclazine (dubbed 2T-a in Figure 1) arising from the

significant contributions of double excitations and potentially higher-order

excitations to the S1 and T1 excited-state wavefunctions.27 The resulting

S1 and T1 excited states present a di-radicaloid character.28 Unfortunately,

both cyclazine and heptazine still exhibit very small oscillator strengths,

and are thus not qualified for light-emission applications.

Within this context, Figure 1 presents accordingly the molecular design

strategy followed in this work to continue with these research efforts. Briefly,

we will start from pristine [n]triangulene molecules of increasing size, with n

referring to the number of benzene units per side, that were recently synthe-

sized on surfaces using Scanning Tunneling Microscopy (STM) or Atomic-

Force Microscopy (AFM) techniques.29–32 We will systematically introduce

N and/or B susbtituents, which represents the most common strategy em-

ployed in the MR-TADF field to induce short-range reorganization of the
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excited-state density, while breaking the underlying Ovchinnikov’s rule,33

which relates the total spin number of the bipartite C network with the

total number of sites with α and β spins.34 We remind that this rule forces

the ground-state to be a doublet (S = 1/2, [2]triangulene or 2T), triplet

(S = 1, [3]triangulene or 3T), quartet (S = 3/2, [4]triangulene or 4T),

etc. for [n]triangulenes of increasing size35 which is not however the goal

searched here. Notwidthstanding this fact, invoking a simple yet intuitive

one-electron picture as a rule-of-thumb, the introduction of e.g. B and/or

N atoms breaks the (near-)degeneracy of the frontier molecular orbital of

pristine [n]triangulenes, still keeping a relatively low gap between occupied

and virtual orbitals. This strategy would allow to anticipate S1 and T1

states sufficiently close in energy, which needs to be confirmed beyond this

(simplified) one-electron picture invoked before.

The required methodology should allow to obtain all the energy magni-

tudes accurately and be therefore able to: (i) introduce a high fraction of

both dynamical and non-dynamical correlation energy, due to the possibility

of having few low-lying singlet and triplet excited-states close in energy; (ii)

deal with short- and long-range exchange and correlation interactions, due

to the many pseudo-local ICT interactions giving rise to the many-electron

ground- and excited-state wavefunctions; and (iii) being cost-effective as

well as size-extensive, to allow homogeneous results according to the sys-

tem size with errors not increasing with molecular size when going from

[2] to [4]triangulenes. We hereby further exploit recent methodological ad-

vances employing concomitantly sophisticated ab initio methods (vide infra)

together with more standard TD-DFT, to build robust structure-property

relationships independently of the method chosen initially, stimulating the
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design of new compounds with inverted singlet-triplet gaps.

2 Theoretical Methods

The lowest-energy (ground-state singlet, S0, unless otherwise noticed)

molecular geometries were optimized at the B97-3c level,36 without im-

posing symmetry or any other geometrical constraints, obtaining 3N − 6

real frequencies in all cases. Note that the method selected (i.e., B97-3c)

already includes a dispersion-like correction to effectively deal with intra-

molecular non-covalent interactions in search of the greatest accuracy. All

the reported excitation energies between ground- and lowest excited-state of

singlet (S1) and triplet (T1) multiplicity, S1 ← S0 and T1 ← S0 respectively,

are calculated at the ground-state optimized geometries and are thus verti-

cal excitation energies. The corresponding singlet-triplet energy difference

is calculated in the following as ∆EST = E(S1 ← S0)− E(T1 ← S0).

The Finite-Temperature Density-Functional Theory (FT-DFT) was ap-

plied for the S0 and T1 states (the S1 state is not available with this

method) at the TPSS/def2-TZVP level and with the default electronic (fic-

titious) temperature of 5000K,37,38 to obtain: (i) the orbital fractional oc-

cupation numbers (fi); (ii) the real-space distribution of the fractionally

occupied orbitals, giving rise to the fractionally occupied density (FOD)

ρFOD(r); and (iii) the integrated number of unpaired electrons, given by

NFOD =
∫
ρFOD(r)dr. The plots of the FOD density were generated with

the UCSF Chimera (version 1.12) package39 after proper use of the ’orca-

plot’ utility (density grid with a resolution of 120x120x120).
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The Time-Dependent DFT calculations (TD-DFT) employed the Tamm-

Dancoff approximation (TDA-DFT),40 the latter slightly improving the T1 ←

S0 energies for pronounced LE excitations as demonstrated before,13 and

used the PBE041 and M06-2X42 functionals with the def2-TZVP basis set.43

Note how these two functionals, both hybrids, differ significantly in their

exact-exchange weight, 25 % and 54 % respectively, to explore the depen-

dence (if any) of the results on it.

The (State-Averaged) Complete Active Space Self-Consistent Field (SA-

)CASSCF and (Strongly-Contracted) N-electron Valence second-order Per-

turbation Theory (SC-)NEVPT244–46 calculations used the hierarchical se-

quence of def2-nVP (n = S, TZ, QZ) basis sets. The results were judged

as converged (i.e., differences in excitation energies lower than 0.02 eV with

respect to the nearly-exact def2-QZVP basis set) with the sufficiently large

def2-TZVP basis set.

These multi-configurational calculations systematically fixed for all the

compounds a size-extensive active space, N electrons inM orbitals or (N,M),

including all occupied (virtual) orbitals with ground-state fractional occupa-

tion fi > 0.98 (fi < 0.02), as determined by the FT-DFT method: (6,6) for

2T, (8,8) for 3T, and (10,10) for 4T. We also fixed for consistency the same

number of roots (5) of each multiplicity (singlet and triplet) for calculating

the excitation energies at both CASSCF and NEVPT2 levels.

As a sanity check, we also performed Spin-Component-Scaled (SCS-)

second-order approximate Coupled Cluster singles and doubles, CC2,47,48

and Algebraic Diagrammatic Construction at second-order, ADC(2),49 cal-
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culations, both with the large def2-TZVP basis set. The SCS version of these

methods is based on an empirical correction scheme for scaling the same and

opposite spin-components separately, initially designed to improve the ac-

curacy of truncated (perturbative) methods50 but also extensively applied

to excited-state energies.51,52

In all the reported calculations the RIJ-COSX technique53 was always

used to reduce the associated computational cost, together with the corre-

sponding auxiliary basis sets (e.g. def2/JK).54 If these basis sets were not

specifically available, we used the ’AutoAux’ generation procedure for aux-

iliary basis sets.55 We also employed tighter threshold for convergence (i.e.

’TightSCF’), and ultrafine numerical integration grids (i.e. ’Grid6’, ’NoFi-

nalGrid’) in all DFT-based calculations.

Finally, the FT-DFT, TDA-DFT, CASSCF, and NEVPT2 calculations

were done with the ORCA 4.0 package.56 The SCS-CC2 and SCS-ADC(2)

calculations were done using the spin-adapted formulation of the linear re-

sponse theory as implemented in the TURBOMOLE 7.4 package.57

3 Results and discussion

3.1 Triangle-shaped heteroatom-substituted molecules: rad-

icaloids?

Polycylic conjugated hydrocarbons of varied (but not all) forms (e.g.,

long linear or cyclic acenes, zethrenes, rhomboenes or diamond-shaped nanographenes,

Clar’s goblet or other systems with zigzag edges, etc.) are known to be-

have as (poly)radicaloids,58–63 thus keeping orbital occupations and ener-

gies differing from non-radical compounds due to the existence of low-lying
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(open-shell) energy solutions of different spin multiplicity than that of the

closed-shell ground-state. If one allows a fractional orbital occupation (fi)

for those compounds, there exists a density of unpaired (or strongly corre-

lated) electrons defined as:

ρFOD(r) =
M∑
i

(δ1 − δ2fi) |φi(r)|
2, NFOD =

∫
ρFOD(r)dr (1)

where δ1 and δ2 are chosen to become (1, 1) if the single-particle energy level

(ǫi) associated with the orbital φi is lower than the energy of the Fermi level,

EF , or (0,−1) otherwise. NFOD represents thus the integrated number of

strongly correlated electrons and is equivalent to the widely used NU metrics

introduced by Head-Gordon,64 obtained from Natural Orbital Occupation

Numbers (NOONs) and extensively applied to characterize a radical-like

character of real-world compounds.65–69

Table 1 gathers the FT-DFT calculated NFOD values for all the con-

sidered compounds, and for both S0 and T1 states (note that S1 is not

directly available by applying the FT-DFT method). We can observe how

theNFOD values roughly increases from [2]triangulene (2T) to [4]triangulene

(4T), and for both states, with NFOD(T1) > NFOD(S0) specially true for

4T systems. The NFOD values thus span from monoradicaloid (NFOD ≈ 1)

to strong diradicaloid (NFOD > 1.5) character, passing through the inter-

mediate (moderate diradicaloids) values, in agreement with e.g. carbene

derivatives recently explored as building blocks for singlet fission processes.70

However, the values for heteroatom-substituted 2T-4T compouds are lower

than those expected for pristine 2T-4T triangulenes, thus indicating that

N-only or B-only substitution tends to decrease the radicaloid character

as it was indeed expected. A slightly higher radicaloid character could be

achieved by introducing both B and N atoms into the molecular backbone
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(e.g., compound 3T-c). Interestingly, we observe a lower NFOD(T1) value

compared to NFOD(S0) for this compound in strong contrast to what we

obtain for the other compounds.

The corresponding plots of the ρFOD(r) density can be found at the Sup-

porting Information (see Figure S1). First of all, we will inspect the case of

the higher radicaloid character of 3T-c, for which the FOD density recovers

a pattern very similar to the one of the bare triangulene: with major contri-

butions on the CH groups (a C atom connected to a H on the edge) of the

zigzag edges, while minimizing the FOD density in the central part of the

molecule. The NFOD value in this case is getting closer to the one of tri-

angulene (for which NFOD ≈ 2). Even if the size of the molecule increases,

the CH edges still concentrate the FOD density: their neighboring C atoms

have less and less contribution due to delocalization of the FOD density and

thus, despite the higher number of CH edges, the NFOD values for 4T do not

dramatically increase with respect to 3T values. To further test this hypoth-

esis, we also studied the case of 5T substituted with 4 N atoms, named as

5T-a and presented in Figure S2, leading to a NFOD value of 2.33 and with a

FOD density following the trend disclosed before. Actually, if we normalize

the NFOD values by dividing by the number of peripherical C atoms (i.e.,

those giving rise to the zigzag edges) we obtain values of 0.05-0.07 for the

set of 2T-3T systems, 0.06-0.07 for the N-substituted 4T-a to 4T-e systems,

0.07-0.08 for the B-substituted 4T-f to 4T-j systems, and 0.08 for the 5T-a

case taken as example.

Inspecting further the molecules with the lowest (2T-a) and highest (4T-

i) NFOD values for the S0 state, we can also inspect the diradical indices y0
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and y1, that is, the fractional orbital occupation of the Lowest Unoccupied

Molecular Orbitals, LUMO and LUMO+1 respectively, with limiting val-

ues y0 = 1 and y1 = 1 indicating a pure diradical and tetraradical nature,

respectively. For 2T-a (4T-i), we find values of y0 = 0.33 and y1 = 0.02

(y0 = 0.60 and y1 = 0.29), and thus indicating moderate diradicaloid (weak

tetraradicaloid) character from 2T to 4T compounds. It thus becomes clear

how the theoretical investigation of these systems would benefit (vide infra)

from a multi-configurational treatment employing e.g. CASSCF/NEVPT2

or from the use of other highly correlated methods.71

3.2 S1 ← S0, T1 ← S0, and ∆EST calculations

3.2.1 Application of TDA-DFT

We will first explore the performance of the widely employed TDA-DFT

method for these compounds, applying both the PBE0 and M06-2X func-

tionals. We can see in Table 2, with the exception of compound 3T-c and

discussing first the results with the PBE0 functional, how the S1 ← S0

(T1 ← S0) energies are comprised between 0.9–1.9 eV (0.7–1.5 eV) with the

T1 ← S0 excitation always appearing at lower energies than the S1 ← S0 as

it usually happens in common conjugated systems.72 This leads to always

positive ∆EST values between 0.1–0.7 eV. The case of 3T-c, for which the

lowest triplet state becomes actually the ground-state (similarly to the bare

triangulene and undesired from the materials design point of view) is con-

sistent with the lower NFOD value for T1 with respect to S0 as discussed

above. We will thus prefer to concentrate the discussion in the following in

2T-4T systems not mixing B and N substituents. Applying now the M06-2X

functional, largely differing in the exact-exchange weight (54 % vs. 25 % for

PBE0) and thus best suited in principle for describing CT-like excitations
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according to many benchmarks done before,73–75 we can now observe only

a small variation of the calculated values: S1 ← S0 (T1 ← S0) excitation

energies are comprised between 1.1–1.9 eV (0.9–1.5 eV) leading again to

(positive) ∆EST values between 0.1–0.6 eV.

3.2.2 Application of ab initio methods

We start comparing our results with those existing in literature for 2T-

a, see Table S1, for which a vanishing ∆EST value is also experimentally

found.76 Note how all the correlated ab initio methods tested here (SCS-

CC2, SCS-ADC(2), SA-CASSCF, and SC-NEVPT2) or in literature27,28 up

to now (i.e., RAS-SF, ADC(2), and EOM-CCSD) consistently led to similar

results predicting a ∆EST value between –0.1 and –0.2 eV. For the case of

2T-b, we are also aware of a previous RAS-SF result28 of ∆EST = −0.13

eV, also in good agreement with the trends found here.

The application of the SA-CASSCF, SC-NEVPT2, and SCS-CC2 meth-

ods to the whole set of compounds is presented next in Table 3 with several

remarkable differences with respect to previous TDA-DFT results. Interest-

ingly, and independently of any of the method selected, a negative singlet-

triplet energy difference ∆EST (roughly up to –0.3 eV) is predicted at all

levels for compounds 2T-a, 2T-b, 3T-a, 3T-b, 4T-c, 4T-d, 4T-e, 4T-f, 4T-i,

and 4T-j. Note that an inverted ∆EST is in agreement with previous (sim-

plified) models involving four spin-mixed diabatic states representing pure

charge transfer and local excitations,77 as well as with former findings in ex-

ciplex (dimer) systems.78 For 4T-a and 4T-h we obtain a very small ∆EST

around 0.0 eV, and only compounds 4T-b and 4T-g gave rise to ∆EST (pos-

itive) values around 0.3–0.4 eV.
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Furthermore, as a supplementary test, we also applied the SCS-ADC(2)

method to the set of 2T and 3T compounds, consistently finding negative

∆EST values for the same compounds than at the SCS-CC2 or NEVPT2

levels, and deviating less than 0.05 eV from the former results. Note also

that the performance of the SC-NEVPT2 method for double-excited states

was thoroughly assessed recently, with reported deviations below 0.1 eV

compared with pseudo-FCI results,79 and thus becoming an adequate cost-

effective method for this kind of systems.

Finally, the rigidity of the molecular backbone and the similar nature of

the S1 and T1 excited states of 2T-4T, as exemplified (vide infra) by their

difference density, is expected to not influence too much the ∆EST val-

ues upon excited-state optimizations. To test this hypothesis, we have also

estimated the adiabatic ∆EST values for 2T-a and 2T-b compounds, upon

optimizing at the SCS-CC2/def2-TZVP level the geometries of all the states

involved, with a negligible change of only −0.01 and −0.02 eV, respectively,

with respect to the vertical values. The reorganization energies (in eV) as-

sociated to the S1 (T1) states are 0.09 (0.08) and 0.12 (0.10) for 2T-a and

2T-b, respectively, and thus considerably low and similar for both S1 and

T1. The maximum change in bond lengths (in Å) are –0.013 (–0.012) and

–0.039 (–0.036) for 2T-a and 2T-b, respectively, which qualitatively agree

with the relative magnitude of reorganization energies.

3.2.3 Analysis of the results: NEVPT2 vs. TDA-DFT

We have also investigated if there is some correlation between the NFOD

values, and the S1 ← S0, T1 ← S0, and ∆EST values calculated by NEVPT2.
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The results from Figure S3 agree with those found before for a set of car-

bene derived diradicaloids,70 in the sense that the highest correlation was

found between NFOD and T1 ← S0 values. However, both S1 ← S0 and

T1 ← S0 start to highly correlate with NFOD for values of 0.8–1.0, namely

when a moderate radical-like character appears. These excitation energies

decrease when NFOD increases and, in this case, intra-valence band one-

electron transitions could occur so that S1 ← S0 and T1 ← S0 excitation

energies can be very low.

Another observation arises from the systematic (and large) overestima-

tion of the ∆EST values by TDA-DFT compared with respect to NEVPT2:

since ∆EST is just a difference between S1 ← S0 and T1 ← S0 excitation

energies, we have compared in Figure S4 the results obtained from both

methods. We can see an offset of around –0.3 eV (0.1 eV) for the case

of S1 ← S0 (T1 ← S0), which can translate into differences up to 0.4 eV

for the case of ∆EST values. Very interestingly, the reduction of ∆EST

in NEVPT2 is attributed to the stabilization of S1 with respect to T1 due

in part to Coulomb correlation interactions arising from contributions of

double- and higher-order excitations. This is stressing the failure of the

current implementation of TD(A)-DFT to account for electron correlation

effects in the excited-states of heteroatom-substituted triangle-shaped set of

compounds tackled here. Further analysis of this issue has been recently

tackled by the authors.80
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3.3 The role of high excitations extracted from the CASSCF

wavefunction

Continuing with the rationalization of these results, we inspect more in

detail the role played by n-tuple (n being double- or higher-) excitations for

the set of S0, S1, and T1 states of all the compounds, which is has been

also recognized before as a key factor for energy transitions of conjugated

polyenes and biochromophores81,82 but largely ignored in the TADF field

until recently. We based our analysis on the CAS wavefunction, which can

be expressed as a linear combination of simply-, doubly-, triply-substituted,

etc. Slater determinants, but with the excitation operator confined within

the subset of the selected (active) orbitals, as:

|ΨCAS〉 =
∑
µ

Cµ|Ψµ〉 = C0|Ψ0〉+
∑
i,a

Ca
i |Ψ

a
i 〉+

∑
ij,ab

Cab
ij |Ψ

ab
ij 〉+

∑
ijk,abc

Cabc
ijk |Ψ

abc
ijk〉+· · · ,

(2)

with Ca
i , C

ab
ij , C

abc
ijk , etc. the corresponding expansion coefficients and |Ψa

i 〉,

|Ψab
ij 〉, etc. the singly-substituted, doubly-substituted, etc. wavefunction.

Figure 2 presents the relative weight of the sum of the n-tuple (n ≥ 2)

coefficients with respect to the total value, that is, the quantity Σab...
ij... =

Cab
ij +Cabc

ijk
+···

C0+Ca
i +Cab

ij +Cabc
ijk

+···
, with the specific values presented in Table S2. First

of all, we can observe a general trend Σab...
ij... (S1) > Σab...

ij... (T1) > Σab...
ij... (S0),

with the exception of 3T-c for which a triplet ground state it was indeed

predicted. These moderately large values help to explain why conventional

(single-reference) TD(A)-DFT treatment fails for these excitation energies,

with spin-flip techniques possibly alleviating the failure.83–86 However, one

would need to overcome the adiabatic approximation in TD(A)-DFT and

deal with frequency-dependent exchange-correlation kernels (i.e., real-time

TD-DFT) to accurately treat at least for doubly excited states.87,88
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3.3.1 Oscillator strength values

Perusing the results of Tables 2-3, one can recognize that for some

molecules (e.g., 2T-a, 2T-b, 4T-e, and 4T-j) the oscillator strength values are

exactly zero at all the theoretical levels, which is detrimental for emission.

Since this quantity (and the associated emission intensity) is proportional

to the square of the transition dipole moment, f ∝ |〈ΨES |µ̂|ΨGS〉|
2 with

ΨES (ΨGS) the excited-state (ground-state) wavefunctions, we can rational-

ize these results according to molecular symmetry of the compounds: the

direct product Γ(ΨGS)⊗Γ(µ̂)⊗Γ(ΨES) should contain the totally symmetric

irreducible representation of the D3h point group to which these molecules

belong, otherwise f vanishes.

To continue with the qualitative analysis of f values, we resort for sim-

plicity to the (approximate) one-electron picture provided by the TDA-DFT

method. For instance, for the 2T-a case taken as example, a major contri-

bution (96 %) from the HOMO to LUMO transition (see Figure S5) gives

rise to the S1 ← S0 transition, with the orbitals involved of symmetry a′′1

and a′′2 respectively. Thus, approximating 〈ΨES |µ̂|ΨGS〉 ≈ 〈a
′′

2|µ̂|a
′′

1〉 one

finds that none of the involved direct products Γ(A′′

2)⊗ Γ(E′′, A′′

2)⊗ Γ(A′′

1)

contains the totally symmetric A′

1 irreducible representation, thus giving

rise to f = 0. On the other hand, for the set of molecules belonging to the

C2v point group, taken the case of 3T-a as an example of this symmetry,

the S1 ← S0 transition gets two major contribution from the HOMO to

LUMO+1 transition (72 %) and from the HOMO-1 to LUMO (24 %). The

symmetry of the HOMO-1, HOMO, LUMO, and LUMO+1 set of orbitals

is a2, b2, b2, and a2, respectively, thus involving now the direct products

Γ(B2) ⊗ Γ(A1, B1, B2) ⊗ Γ(A2) and Γ(A2) ⊗ Γ(A1, B1, B2) ⊗ Γ(B2), which
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contain this time the totally symmetric (A1) irreducible representation and

thus leads to a symmetry-allowed transition with f 6= 0 in this case. This

analysis suggest the possibility to tune the f values according to selected

substitution patterns with electroactive groups and/or the introduction of

defects.

3.4 Difference density plots at the SCS-CC2 level as a fur-

ther analysis tool

The difference density plots were computed from the (relaxed) real-space

electron densities of the excited (both S1 and T1) and ground states, cal-

culated at the SCS-CC2/def2-TZVP level, that is the function ∆ρ(r) =

ρS1
(r)−ρS0

(r) or ∆ρ = ρT1
(r)−ρS0

(r), respectively, and are shown in Figure

3 (Figure S6) for the whole set of 2T-3T (4T) compounds. These plots have

revealed before as a useful tool to understand the low ∆EST values obtained

for MR-TADF (B,N)-substituted triangulene-like molecules.19,20 Here, we

observe difference densities with neighbouring atomic sites displaying an in-

crease and decrease in density characteristic of short-range charge-transfer,

as we observed for MR-TADF compounds upon excitation to S1 and T1.

Interestingly, the systems with negative ∆EST values (i.e., we remind that

values between –0.2 and –0.3 eV were found at the SCS-CC2/def2-TZVP

levels for 2T-a, 2T-b, 4T-e, and 4T-j systems) also show delocalized ∆ρ(r)

plots with a considerable reshuffling of the electronic density upon excita-

tion, yielding spatially alternating hole-rich and electron-rich regions. As

corollary, the difference density plots presented for the 3T compounds (see

Figure 3) appear more localized, which results in an increase of ∆EST .

We can also integrate the ∆ρ(r) real-space plots to estimate the cor-
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responding Charge-Transfer (CT) delocalization volume; i.e.,
∫
|∆ρ(r)|dr.

Previous studies with other synthesized TADF emitters, bearing triangulene-

derived cores such as DABNA and TABNA systems, showed that CT delo-

calization helps in decreasing the singlet-triplet energy.19 We thus represent

in Figure S7 the relationships between the calculated ∆EST and
∫
|∆ρ(r)|dr

values. We note that: (i) there is a qualitative trend for the 2T and 4T fam-

ily of compounds, that is, the compounds with the lowest ∆EST have the

largest CT delocalization volumes; (ii) for these 2T and 4T systems, the

calculated CT delocalization volumes are larger than previous estimates for

closely related (i.e., DABNA) systems;19 (iii) the exceptions are the 3T com-

pounds (3T-a and 3T-b) for which the difference density plots (see Figure

3) were mostly concentrated on a half of the molecule, due to the specific

position of the heteroatoms, and contrarily to 2T and 4T systems for which

an almost complete delocalization over the molecular backbone was found.

4 Conclusions

We have systematically studied how the introduction of heteroatoms

(e.g., B and/or N) into a triangulene-like aromatic molecular backbone

could disclose new potential TADF emitters, leading to an improved per-

formance thanks to the combination of low singlet-triplet excited-state en-

ergy difference and non-vanishing oscillator strength values. These sys-

tems are shown to behave as radicaloids, and are thus prone to strong

correlation effects requiring a description of excited-states going beyond

TD(A)-DFT and indeed including high-order excitations. Moreover, the

detailed comparison of TD(A)-DFT with highly correlated methods such as

SA-CASSCF, SC-NEVPT2, SCS-CC2, and SCS-ADC(2) helps identifying
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structure-properties relationships. In particular, the ∆EST values computed

are rationalized based on difference density plots exhibiting the typical pat-

terns from short-range charge-transfer excitations. Without resorting to

these sophisticated ab initio methods, the use of only TD(A)-DFT as a the-

oretical tool could mask the complex and subtle underlying physical effects

driving the final (and important) results achieved here: a negative value be-

tween the energy of the S1 and T1 excited-states, ∆EST , can be reached by a

careful molecular design. The results pave the way towards a new family of

molecules for which ∆EST < 0 can foster the efficiency of the whole device

and shows how theoretical predictions, together with the collaboration with

experimental groups, could help to achieve this goal.

Supplementary Material

The Supplementary Material contains in this order: (i) FOD density

plots (isocontour values of σ = 0.005 e/bohr3) obtained from the FT-

TPSS/def2-TZVP method; (ii) chemical structure and FOD density plot

(isocontour values of σ = 0.005 e/bohr3) of the 5T-a system studied as

example; (iii) benchmarking of the S1 ← S0, T1 ← S0, and ∆EST results

for the case of 2T-a; (iv) relationships between S1 ← S0, T1 ← S0, and

∆EST , calculated at the NEVPT2/def2-TZVP level, and NFOD values; (v)

relationships between S1 ← S0 and T1 ← S0 calculated electronic excita-

tion energies by TDA-DFT (PBE0) and NEVPT2 methods; (vi) frontier

molecular orbital plots involved in the S1 ← S0 and T1 ← S0 excitations,

calculated at the HF/def2-TZVP level; (vii) specific Σab...
ij... values from the

CASSCF/def2-TZVP method; (viii) difference density plots associated to

the S1 ← S0 and T1 ← S0 excitations at the SCS-CC2/def2-TZVP level;
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(ix) relationships between ∆EST and the CT delocalization volume, all cal-

culated at the SCS-CC2/def2-TZVP level; and (x) zero-field splitting and

triplet exciton size calculated at the ωB97X-D/IGLO-II level.

Acknowledgements

J.C.S.G. acknowledges financial support from the “Ministerio de Ciencia

e Innovación” of Spain (Grant No. PID2019-106114GB-I00). Computational

resources were also provided by the “Consortium des Équipements de Calcul

Intensif” (CÉCI), funded by the “Fonds de la Recherche Scientifiques de Bel-

gique” (F.R.S.-FNRS) under Grant No. 2.5020.11. J.S.-R. ackowledges the

University of Alicante for the Grant No. AII2019-19. G.R. is grateful of the

funding provided by the University of Namur. The authors would also like to

thank D. Beljonne and A. Pershin (from the University of Mons, Belgium),

E. Zysman-Colman and D. Hall (from the University of St. Andrews, U.K.),

and L. Muccioli (from the University of Bologna, Italy) for stimulating dis-

cussions along the years around multi-resonant TADF systems. J.C.S.G.

also acknowledges discussion with R. Ortiz and J. Fernández-Rossier about

triangulene systems and their radical nature.

Author contributions

J.S.-R. and G.R. contributed equally to this work.

References

[1] Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.;

Adachi, C. Efficient up-conversion of triplet excitons into a singlet state

21



and its application for organic light emitting diodes. Applied Physics

Letters 2011, 98, 42.

[2] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly

efficient organic light-emitting diodes from delayed fluorescence. Nature

2012, 492, 234–238.

[3] Yang, X.; Xu, X.; Zhou, G. Recent advances of the emitters for high

performance deep-blue organic light-emitting diodes. Journal of Mate-

rials Chemistry C 2015, 3, 913–944.

[4] Wong, M. Y.; Zysman-Colman, E. Purely organic thermally activated

delayed fluorescence materials for organic light-emitting diodes. Ad-

vanced Materials 2017, 29, 1605444.

[5] Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.;

Aldred, M. P. Recent advances in organic thermally activated delayed

fluorescence materials. Chemical Society Reviews 2017, 46, 915–1016.

[6] Wong, M. Y. et al. Deep-blue oxadiazole-containing thermally activated

delayed fluorescence emitters for organic light-emitting diodes. ACS

Applied Materials & Interfaces 2018, 10, 33360–33372.

[7] Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. All-organic thermally ac-

tivated delayed fluorescence materials for organic light-emitting diodes.

Nature Reviews Materials 2018, 3, 18020.

[8] Etherington, M. K.; Gibson, J.; Higginbotham, H. F.; Penfold, T. J.;

Monkman, A. P. Revealing the spin–vibronic coupling mechanism

of thermally activated delayed fluorescence. Nature Communications

2016, 7, 1–7.

22



[9] Gibson, J.; Monkman, A. P.; Penfold, T. J. The importance of vibronic

coupling for efficient reverse intersystem crossing in thermally activated

delayed fluorescence molecules. ChemPhysChem 2016, 17, 2956–2961.

[10] Olivier, Y.; Moral, M.; Muccioli, L.; Sancho-Garćıa, J.-C. Dynamic na-
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[72] Köhler, A.; Beljonne, D. The singlet–triplet exchange energy in conju-

gated polymers. Advanced Functional Materials 2004, 14, 11–18.

[73] Jacquemin, D.; Perpete, E. A.; Ciofini, I.; Adamo, C.; Valero, R.;

Zhao, Y.; Truhlar, D. G. On the performances of the M06 family of

density functionals for electronic excitation energies. Journal of Chem-

ical Theory and Computation 2010, 6, 2071–2085.

[74] Meo, F. D.; Trouillas, P.; Adamo, C.; Sancho-Garcia, J.-C. Application

of recent double-hybrid density functionals to low-lying singlet-singlet

excitation energies of large organic compounds. The Journal of Chem-

ical Physics 2013, 139, 164104.

[75] Laurent, A. D.; Jacquemin, D. TD-DFT benchmarks: a review. Inter-

national Journal of Quantum Chemistry 2013, 113, 2019–2039.

[76] Leupin, W.; Wirz, J. Low-lying electronically excited states of

cycl[3.3.3]azine, a bridged 12π-perimeter. Journal of the American

Chemical Society 1980, 102, 6068–6075.

[77] de Silva, P.; Kim, C. A.; Zhu, T.; Van Voorhis, T. Extracting De-

sign Principles for Efficient Thermally Activated Delayed Fluorescence

(TADF) from a Simple Four-State Model. Chemistry of Materials 2019,

31, 6995–7006.

[78] Difley, S.; Beljonne, D.; Van Voorhis, T. On the singlet- triplet splitting

of geminate electron- hole pairs in organic semiconductors. Journal of

the American Chemical Society 2008, 130, 3420–3427.

32



[79] Loos, P.-F.; Boggio-Pasqua, M.; Scemama, A.; Caffarel, M.;

Jacquemin, D. Reference energies for double excitations. Journal of

Chemical Theory and Computation 2019, 15, 1939–1956.

[80] Ricci, G.; San-Fabián, E.; Olivier, Y.; Sancho-Garćıa, J.-C. Singlet–
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Table 1: NFOD values obtained for S0

and T1 states.

Compound NFOD(S0) NFOD(T1)

2T-a 0.75 0.72

2T-b 0.86 0.75

3T-a 0.95 2.10

3T-b 1.08 2.14

3T-c 1.73 0.73

4T-a 1.39 2.34

4T-b 1.70 2.37

4T-c 1.61 2.34

4T-d 1.77 2.33

4T-e 1.40 2.29

4T-f 1.75 2.59

4T-g 1.86 2.56

4T-h 1.83 2.44

4T-i 1.99 2.49

4T-j 1.64 2.29
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Table 2: Excitation energies (in eV) calculated at the TDA-DFT levels. The oscilla-
tor strength values for the S1 ← S0 transition is reported between parentheses. All
calculations are done with the def2-TZVP basis set.

TD-PBE0 TD-M06-2X

Compound S1 ← S0 T1 ← S0 ∆EST S1 ← S0 T1 ← S0 ∆EST

2T-a 1.30 (0.000) 1.08 0.22 1.31 (0.000) 1.12 0.20

2T-b 1.08 (0.000) 0.88 0.20 1.05 (0.000) 0.87 0.18

3T-a 1.86 (0.012) 1.49 0.37 1.88 (0.014) 1.54 0.34

3T-b 1.76 (0.015) 1.35 0.41 1.75 (0.018) 1.34 0.41

3T-c 0.42 (0.027) –0.22 – 0.45 (0.032) –0.19 –

4T-a 1.50 (0.008) 1.26 0.24 1.82 (0.002) 1.51 0.31

4T-b 1.58 (0.114) 0.98 0.60 1.84 (0.000) 1.16 0.68

4T-c 1.25 (0.006) 1.05 0.20 1.24 (0.010) 1.01 0.23

4T-d 1.11 (0.007) 0.89 0.22 1.36 (0.008) 1.11 0.25

4T-e 1.36 (0.000) 1.24 0.12 1.52 (0.000) 1.39 0.13

4T-f 1.28 (0.000) 1.07 0.21 1.47 (0.005) 1.13 0.34

4T-g 1.60 (0.000) 0.91 0.69 1.66 (0.000) 1.04 0.61

4T-h 1.02 (0.007) 0.83 0.19 1.23 (0.010) 1.01 0.22

4T-i 0.90 (0.003) 0.71 0.19 1.10 (0.002) 0.92 0.18

4T-j 1.07 (0.000) 0.97 0.10 1.16 (0.000) 1.05 0.11
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Table 3: Excitation energies (in eV) calculated at ab initio levels. The oscillator strength values for the S1 ← S0

transition is reported between parentheses. All calculations are done with the def2-TZVP basis set.

SA-CASSCF SC-NEVPT2 SCS-CC2

Compound S1 ← S0 T1 ← S0 ∆EST S1 ← S0 T1 ← S0 ∆EST S1 ← S0 T1 ← S0 ∆EST

2T-a 0.83 (0.000) 0.94 –0.11 1.11 (0.000) 1.26 –0.15 1.11 (0.000) 1.33 –0.22

2T-b 0.46 (0.000) 0.60 –0.14 0.72 (0.000) 1.00 –0.28 0.89 (0.000) 1.17 –0.28

3T-a 1.86 (0.046) 1.91 –0.04 1.45 (0.033) 1.51 –0.06 1.69 (0.015) 1.78 –0.09

3T-b 1.29 (0.070) 1.59 –0.30 1.63 (0.069) 1.46 –0.18 1.56 (0.019) 1.69 –0.13

3T-c 0.12 (0.003) 0.72 –0.60 0.10 (0.003) –0.21 – 0.29 (0.011) –0.00 –

4T-a 1.36 (0.002) 1.25 0.12 1.26 (0.002) 1.20 0.06 1.43 (0.011) 1.39 0.04

4T-b 1.51 (0.000) 1.31 0.20 1.24 (0.202) 0.95 0.29 1.44 (0.144) 1.14 0.30

4T-c 1.16 (0.012) 1.22 –0.06 0.92 (0.009) 0.93 –0.01 1.15 (0.007) 1.16 –0.01

4T-d 0.96 (0.007) 1.04 –0.08 0.76 (0.005) 0.78 –0.02 0.94 (0.009) 0.99 –0.05

4T-e 1.40 (0.000) 1.51 –0.11 0.83 (0.000) 1.09 –0.26 1.23 (0.000) 1.51 –0.28

4T-f 0.83 (0.000) 0.91 –0.08 1.19 (0.000) 1.20 –0.01 1.20 (0.000) 1.25 –0.05

4T-g 1.07 (0.000) 0.95 0.12 1.46 (0.146) 1.05 0.41 1.52 (0.174) 1.14 0.38

4T-h 0.87 (0.024) 0.79 0.08 0.89 (0.024) 0.86 0.03 0.94 (0.006) 0.97 –0.03

4T-i 0.36 (0.001) 0.49 –0.13 0.76 (0.003) 0.78 –0.02 0.76 (0.003) 0.84 –0.08

4T-j 0.84 (0.000) 1.00 –0.16 0.65 (0.000) 0.94 –0.29 0.92 (0.000) 1.25 –0.33
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Figure 1: Sketch of the molecular design strategy followed together with the notation used along the study: 2T, 3T, and 4T
refer to [2]triangulene, [3]triangulene, and [4]triangulene, respectively, with S the spin total quantum number. The introduc-
tion of one, two, or three substituents, respectively, breaks the bipartite sublattice imbalance typical of finite nanographenes,
and thus alters the electronic structure of the compounds.
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Figure 2: Contributions of double- and higher-excitations to the CAS
wavefunction of the involved S0, S1, and T1 states, calculated at the
CASSCF/def2-TZVP level.
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Figure 3: Difference density plots (σ = 0.002 e/bohr3 unless for 2T for which
a value of 0.003 e/bohr3 is used instead) associated to the S1 ← S0 (left)
T1 ← S0 (right) excitations, calculated at the SCS-CC2/def2-TZVP level.
Red (blue) color indicates decreased (increased) electron density between
the ground and excited states. From top to bottom: 2T-a, 2T-b, 3T-a,
3T-b, and 3T-c.

40



Figure 4: For Tables of Contents Only
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