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Abstract: In recent years, several new technologies have enabled OLAP processing over Big Data
sources. Among these technologies, we highlight those that allow data pre-aggregation because of
their demonstrated performance in data querying. This is the case of Apache Kylin, a Hadoop based
technology that supports sub-second queries over fact tables with billions of rows combined with
ultra high cardinality dimensions. However, taking advantage of data pre-aggregation techniques
to designing analytic models for Big Data OLAP is not a trivial task. It requires very advanced
knowledge of the underlying technologies and user querying patterns. A wrong design of the OLAP
cube alters significantly several key performance metrics, including: (i) the analytic capabilities of
the cube (time and ability to provide an answer to a query), (ii) size of the OLAP cube, and (iii) time
required to build the OLAP cube. Therefore, in this paper we (i) propose a benchmark to aid Big
Data OLAP designers to choose the most suitable cube design for their goals, (ii) we identify and
describe the main requirements and trade-offs for effectively designing a Big Data OLAP cube taking
advantage of data pre-aggregation techniques, and (iii) we validate our benchmark in a case study.

Keywords: OLAP; big data; benchmarking; data warehousing

1. Introduction

Nowadays there is a large number of technologies that enables effective processing of Big Data,
i.e., huge data volumes (terabytes), from a diversity of data sources (relational and not relational
data) and that are increasingly acquired and processed in real-time. Among the Big Data applications
we can implement with these Big Data technologies, Business Intelligence (BI) applications are the
most demanded by enterprises. With BI applications we can extract useful insights from the data that
can be used for improving decisions processes. Due to this fact, BI systems are often very profitable
for organizations.

The main BI applications are report generation, dashboarding, and multidimensional views.
However, these applications often require very low query latency, from milliseconds to a few seconds
of execution in order to retrieve results from the analytic model. This low query latency is necessary
to support interactive BI applications, that promote the discovery of insights by decision makers
and data analysts. These kind of interactive BI applications are also known as On-Line Analytical
Processing (OLAP). In order to implement OLAP systems, we use the consolidated Data Warehousing
techniques [1] that are based on the division of the problem domain in facts (measures for analysis)
and dimensions (analysis contexts) around which the analysis of the data is structured.

Nonetheless, in Big Data scenarios where fact tables can have up to billions of rows, the relational
database management systems (RDBMS) are not capable of processing them, much less maintaining
sub-second query latency. For these cases, distributed storage and processing typically found in Big
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Data approaches are better suited. Due to this fact, in recent years, Big Data OLAP applications have
been gaining attention in the scientific community as it is demonstrated by a number of presented
approaches [2–8]. Among the different OLAP approaches that use Big Data technology for its
implementation, we can highlight those that enable data pre-aggregation or indexing to significantly
improve performance in data querying. This is the case of Apache Kylin [2,3] and Druid [6], two of the
most consolidated Big Data OLAP approaches. Both approaches are based on data pre-aggregation for
OLAP cube generation and, thanks to this approach, are able to handle fact tables with up to tens of
billions of rows, ultra high cardinality dimensions (more than 300,000 instances of dimensions) and
OLAP scenarios both in batch and (near) real-time. While Kylin allows the implementation of very rich
multidimensional (MD) analytical models composed of multiple tables (e.g., star or snowflake schemas),
Druid does not, as it requires that all data be combined and stored into a single table. However, because
the Druid architecture supports data indexing in addition to data pre-aggregation, it is faster than
Kylin in real-time scenarios and also for running queries that apply filtering. However, we can also
integrate [9] Kylin and Druid, using Druid as an alternative storage to HBase, the default storage for
Kylin cubes. As demonstrated in a real case [9], this integration allows for complex schemas and SQL
queries (Kylin), while improving the performance of these queries and data loading processes (Druid).
In addition to Kylin and Druid, there are other Big Data OLAP tools that support pre-aggregation
(e.g., Vertica, Clickhouse, Google Big Query) or indexing (e.g., Elasticsearch, Clickhouse), but are not
as efficient in query execution [4,7,8], or do not support very complex data models [5].

Despite the advances in Big Data OLAP technology applying data pre-aggregation, one of the
main problems when using any of the above approaches is how to effectively design and implement
the analytical data models, also called OLAP cubes. The OLAP cube design requires very advanced
knowledge of the underlying technologies. For example, in the case of Apache Kylin, we require
advanced knowledge about cube building engine and cube query engine, but also of the underlying
Hadoop technologies: Map Reduce, Hive, HBase and, recently added, Spark and Kafka. A wrong
cube design can affect some important design goals, such as OLAP cube size, building time or query
latency. Due to the importance of these variables, in this paper we propose a benchmark to aid Big
Data OLAP designers to choose the most suitable cube design for their goals, also taking advantage of
the data pre-aggregation techniques. Moreover, in order to demonstrate the utility of the proposed
benchmark, we applied it for Apache Kylin cube design, one of the most powerful and consolidated
Big Data OLAP approaches.

In the next section, we review the Big Data approaches for OLAP analytics and discuss various
previous benchmarking efforts, that have contributed to our current understanding of Big Data and
OLAP benchmarking. In Section 3, we present our proposed benchmark for Big Data OLAP systems
and cube design fundamentals for its application to Apache Kylin. Then, in Section 4, we execute the
benchmark for the Apache Kylin case. Next, in Section 5, we analyze the execution results. Using the
insights extracted from them, we propose a guideline for the effective design of the OLAP cubes.
Moreover, we discuss the applicability of our proposed benchmark to other Big Data OLAP approaches
and summarize the contributions of our proposal. We conclude in Section 6 after summarizing
future work.

2. Related Work

Big Data OLAP techniques [2–6] has become a rich field of study in recent years due to increase
of Big Data scenarios and limitations of using RDBMS for fact tables with up to tens of billions of rows.
One of the most consolidated and powerful technologies for OLAP with Big Data sources is Apache
Kylin [2,3]. It is based on the use of pre-aggregation techniques for reducing query latency over up to
billions of rows fact tables, generating a pre-aggregated data structure also called OLAP cube that can
be queried with Standard Query Language (SQL). However, in cases where we can tolerate a higher
querying latency or have a lower data volume in the fact table, Vertica, Clickhouse or Big Query [4,7,8]
are also a good choice. Like Kylin, these approaches implement a distributed and columnar approach
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and support pre-aggregation techniques. However, the pre-aggregations techniques that they allow are
less aggressive than those used by Kylin. This is because data pre-aggregation is not applied by default
to most of the data model, but rather the user has to consciously implement and use pre-aggregation
at table level. The OLAP cubes generated are usually much smaller than those generated using Kylin,
because it is not necessary to store all the possible aggregations and combinations between the facts
and the dimension columns. However, thanks the extensive application of data pre-aggregation in
the data model, the query execution performance in Kylin is much higher than the other approaches.
Another point to consider, is that approaches such as Vertica or Clickhouse require a deeper knowledge
of the underlying columnar approach, while Kylin generates the OLAP cube based on a simplified
metadata design, abstracting the user from the underlying column storage in Apache HBase. Other Big
Data OLAP approaches are Druid [6] and Elasticsearch [5]. Druid supports OLAP analytics over
real-time data just in milliseconds after it is acquired, thanks to a distributed architecture that combines
memory and disk. Elascticsearch is a consolidated search engine based on a distributed document
index. While Kylin cube building process take at least few minutes, in these approaches real-time data
are ready for OLAP queries just in millisecond. However, Druid and Elascticsearch have less flexibility
than Kylin or Vertica to implement complex analytics models, e.g., using dimensions composed by
more than one concept at different level of aggregation, a typical scenario in most OLAP applications.
For the above reasons, we consider Apache Kylin the most powerful and flexible Big Data OLAP
approach, thus we decided to use it (i) to analyze OLAP cube design process, and (ii) to implement
our proposed benchmark.

Regarding the benchmarking approaches for Big Data OLAP systems, in [10], the author proposes
a benchmark based on TPC-H Benchmark [11], a consolidated Data Warehousing systems benchmark.
The proposed benchmark is executed over Big Data OLAP architecture based on the use of Apache
Pig, a Hadoop tool that uses Map Reduce. Despite this approach contribution, we found that the
proposed benchmark architecture is not best suited for Big Data OLAP, due to the high latency of
Map Reduce processing. Moreover, TPC-H benchmark is only aimed to benchmark query latency
over a fixed schema design. We consider this provided schema could be optimal for one database
but not for all, especially in case of Big Data OLAP where the data structures supported differ a lot
between approaches. Another disadvantage of the TPC-H benchmark is that the proposed data model
is fully normalized (3FN), a standardized form for transactional systems and less suitable to implement
analytical systems due to its performance penalization.

For this reason, later benchmarks such as SSB [12], TPC-DS [13] and TPCx-BB [14] propose the use
of star or snowflake schemes, more suitable [1] for systems that support OLAP applications. In [15],
the authors apply the SSB benchmark on Apache Druid [6], where they test different implementations
of the data model proposed by SSB. Later in [16] the same authors apply SSB to compare Apache
Druid with the Apache Hive and Presto tools, selecting for each case the optimal and supported
implementation of the data model these systems from the results of their previous research [15,17].
This highlights the need for Big Data OLAP benchmarks that support the capability of benchmarking
on different implementations of the same data model, in order to find the best design and make the
comparison between Big Data OLAP systems more objective. However, despite the advantages of SSB
in these studies, those papers that apply the SSB benchmark do not consider the possibility that this
benchmark is not suited for Big Data or whether the data model is complete enough for this purpose.

Regarding TPC-DS benchmark [13], it is an evolution of TPC-H that proposes a much more
complete and suitable schema for analytical systems. Despite its advantages, this benchmark results
too complex and restrictive in its application, restricted as in other cases to the proposed data model.
Finally, the most recent of the benchmarks of the TPC family is TPCx-BB [14], also known as Big Bench.
Unlike TPC-H and TPC-DS, this benchmark adds support for different kinds of processing: OLAP,
raw data exploration (semi and unstructured) and machine learning processes. Thus TPCx-BB is
focused on benchmarking of general purpose Big Data systems, giving a reduced weight to OLAP
features, and making it impossible to fully implement in OLAP systems that do not support other
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types of Big Data processing. Therefore, despite its advantages, the TPCx-BB benchmark is not suitable
for benchmarking Big Data OLAP tools.

In [18], the author proposes another approach for performance analysis of general purpose Big
Data systems. In addition to analyzing the characteristics of the workload, i.e., data sources and
user queries, this proposal takes into account the infrastructure used to implement the benchmark,
identifying I/O, CPU and memory usage as key variables for benchmarking Big Data applications.
In spite of its advantages, the proposal does not consider aspects related to data model and
implementation, which we cover in this paper. Another different approach is [19], where a complete
benchmark is proposed for any Big Data analysis system, including several metrics and benchmark
execution over a real Big Data scenario of Marketing analytics. This benchmark could be applied to Big
Data OLAP systems. However, compared to our proposed benchmark, this research does not provide
details about the key performance metrics to monitor and guide the process, thus making harder to
use its results as a useful input for improving and selecting the most adequate Big Data OLAP designs.

3. Method

In this section, we present our proposed method for benchmarking Big Data OLAP systems.
The proposed benchmark consists of a set of benchmarking metrics, a data model and a set of 30 SQL
queries. In addition, for its application in Apache Kylin, we identify the key design considerations for
the OLAP cube and then implement the proposed benchmark.

3.1. Benchmarking Design Goals

Based on our experience developing traditional and Big Data OLAP systems, we have identified
the benchmarking goals for OLAP Big Data applications. These benchmarking goals can be extracted
from common requirements for OLAP Big Data applications. In our previous work [20] we identified
three kinds of non-functional requirements for Big Data applications:

• Opportunity: Time since data are acquired until we can query it.
• Query Latency: Time since data are queried until response is given by the query engine.
• Data Quality: Any aspect of data quality

These requirements depend on the task to support. In our case the main focus is On-Line
Analytical Processing (OLAP), i.e., sub-second analytic queries for data resume or aggregation over
data with Big Data features (Volume, Variety and Velocity). Although requirements identified in [20]
are not specific for OLAP applications, we can instantiate two of them, opportunity and query latency,
in order identify our benchmarking goals. Furthermore, Data Quality is an important requirement,
but is out of the scope for this research since it is mainly addressed during Extract, Transformation,
and Load (ETL) processes. Therefore, we assume data quality is ensured by the source previously to
build the OLAP cube.

In addition to the aforementioned requirements, we have identified two additional non-functional
requirements directly related to them:

• Scalability: We can define the scalability as the ability to meet the opportunity and query latency
requirements, by improving hardware (vertical scaling) or increasing hosts (horizontal scaling).
Big Data OLAP systems are usually distinguished from traditional OLAP systems due to their
support for distributed processing and storage, i.e., they support horizontal scaling besides
vertical scaling.

• Maintainability: It can be defined as the capability to execute the data loading and updating
processes within the time required by the opportunity. Only a few Big Data OLAP systems
support row level updating, thus data reloads have to update larger data blocks or, in the worst
case, the entire data set, thus increasing the computation required and also the complexity of the
data loading processes.
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Due to their relationship with the requirements of opportunity and query latency, we have also
considered scalability and maintainability requirements to define the goals for benchmarking Big Data
OLAP systems. However, to properly evaluate the scalability of a Big Data OLAP system, it would be
necessary to set up a set of vertical and horizontal scaling tests that are out of the scope of this research.

We show our proposed benchmark goals and its related metrics in Table 1. In [20], opportunity is
defined as the time since data are acquired until we can query it. In a Big Data OLAP applications
this requirement is related with two processes: (i) data acquisition, and (ii) OLAP cube building.
Regarding the acquisition of data, the main requirement is the ability of the Big Data OLAP system
to capture the data at the required arrival speed. We can differentiate between real-time or batch
acquisition. In real-time OLAP system the data must be available for processing in a few seconds or
even minutes (near real-time) as they arrive. On the other hand, in batch data capturing processes
the data sources are historical data previously stored on our system. Moreover, we assume that this
historical data are maintained on a Data Warehouse using the techniques successfully used by the
industry over the years [1]. Once data are stored in memory or disk, the next step is processing it to
build an OLAP cube. As occurs in acquisition processes, cube building requirement about opportunity
can vary: real-time (milisecond, seconds), near real-time (few minutes) or batch (minutes, hours, daily,
weekly, etc.). This is really important since usually there is a time window restriction to load data
in the OLAP Cube, e.g., daily between 00:00 and 05:00 a.m., when the potential users use less the
analytics platform. Therefore, we identified OLAP Cube Building Time (measured in hours) as one of
our benchmarking metrics.

Table 1. The benchmarking goals its related key performance measures.

Goal Desc. Measure Desc.

Building Time

The time since data
is available in source

until the OLAP cube is
available for querying it

Time
Time in hours
for a full load

Building Success
If the OLAP cube
building process

finishes with success.

Ending
If cube building

proccess end

OOM Errors
Presence of Out Of

Memory errors during
cube building: (Yes, No)

Cube Size Size of the generated
cube on disk or memory

Cube Size Size in GB

Expansion Rate
Number of times

OLAP cube is
bigger than sources.

Query Latency
Time since data are queried

until response is given
by the query engine

Query Latency

Average time of query
latency over a set

of analytics queries
measured in seconds

% Queries > 3 s
Number of queries
resolved in more

than 3 s.

Model Coverage
Coverage of the aimed

analytical model by
the OLAP cube.

% Coverage

Percentage of queries
resulting OLAP cube

can answer over
a set of analytics queries.

Moreover there are scenarios where the volume of the big data repository used to build the
OLAP cube surpasses the capabilities of the Big Data cluster infrastructure. In these cases, the cube
building process can lead to Out of Memory (OOM) errors, causing it to fail. For example, in Kylin a
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high number of dimension tables and ultra high cardinality dimensions (UHC), could exponentially
increase the combinations between dimensions in order to generate and store the pre agreggation of
the result, i.e., the OLAP cube. This approach using data pre-aggregation improves query latency,
but needs a lots hardware resources, such as a very large data storage as well as high amounts of RAM
memory and computing power. Therefore, we identified Cube Building Success as another of our
benchmarking goals.

Furthermore, related to hardware resources is the size on disk occupied by resulting OLAP
Cube. Often cube building processes generate data structures bigger than the original data sources.
As we saw on Section 2, Big Data OLAP approaches [2,4–6] usually implement pre-aggregation,
pre-join and indexing techniques for cube building process with the aim of reduce query latency.
These pre-aggregated structures joined with non-preaggrated data usually occupy much more disk
space than data sources. For example, a Kylin OLAP cube with a lot of dimensions could size much
more than the Data Warehouse used as a source and stored on Hive (that also relies on HDFS).
Moreover, a very big OLAP Cube could penalize query latency due to the amount of data the OLAP
queries have to scan. In addition to cube size as logical measure of this benchmarking goal, we also
consider appropriated to measure the increased size from the data sources used to build the OLAP
cube. For example, in the case of Kylin, we measure the increased size from the Data Warehouse stored
on Apache Hive or the Kafka topic(s) sizes used as a sources. We called this measure Expansion Rate,
calculated as the number of times the resulting OLAP cube is bigger (or smaller) than the data source.

One of most important goals for our proposed benchmarking, is reducing Query Latency. As we
define in [20], query latency is the time since data are queried until response is given by the query
engine. Achieving an OLAP cube with a very low query latency is one of the most important OLAP
goals that we have identified. In OLAP applications users expect to perform interactive aggregation
(roll-up) and de-agreggation (drill-down to detail) queries and also applying filtering (slicing). In other
words, the main aim of OLAP cube design is to have sub-second latency. Big Data OLAP approaches
such as reviewed on Section 2 promise sub-second latency over billions of rows [4–6] and up to tens of
billions of rows [2,3]. However the reality is that resolving all queries under the sub-second latency
limit is hardly achievable, thus query latency may vary significantly across queries. Therefore, in order
to benchmark query latency, we identified two measures: (i) average latency time of the most usual
queries over analytic model, and (ii) the percentage of queries with a latency time over 3 s. Based on
our experience, queries resolved under three seconds are enough to maintain the user interactive,
even more taking in to account that we are querying a huge volume of data compared to traditional
OLAP systems. Moreover, in order to implement query latency measures, we must define a set of
analytical queries that reflect the nature of any OLAP model.

Finally, in order to improve some of the previous benchmarking goals, we can divide our cube
design in two or more OLAP cubes. However, this technique can lead to scenarios where not all the
potential queries over the analytic model aimed can be executed. Therefore, we identified OLAP model
coverage as other of our benchmarking goals. Moreover, given a set of potential queries to be executed
by cube end-users, we can measure OLAP Model Coverage as the percentage of the total queries that
the OLAP cube (i.e., the implemented data model) is able to answer.

3.2. Proposed Data Model and Workload

In this section, we describe the data model and workload, two essential components of our
proposed benchmark. This data model source is an Apache Hive data warehouse that stores and
supports analytics over academic data generated last 15 years in a large university. The fact table
described in Table 2, has more than 1,500,000,000 rows with one measure of the academic performance:
Academic Credits Approved. Credits can be aggregated by the operations SUM, AVG, MAX and MIN
in combination with context of analysis, i.e., the dimensions tables described in Table 3: Academic
Year, Student, Gender, Degree and Subject. Moreover, Student is an example of Ultra High Cardinality
(UHC) Dimension since it has 500,000 different instances. Furthermore, there are 21,028 different
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Subjects, thus also Subject dimension has a High Cardinality (HC). The remaining dimensions are not
HC dimensions. Such cardinality numbers make this analytic model hardly implementable with a
traditional OLAP approach using an RDBMS, thus we consider this scenario more suited to be treated
with the reviewed Big Data OLAP approaches [2–8].

Table 2. Data Warehouse fact table used for benchmark execution.

Fact. Name Rows Measures (Facts) Aggregation Operators

F1 Academic Performance 1,500,000,000 Credits Approved SUM, AVG, MAX, MIN

Moreover, the logical data model is based on an Star Schema, one of the most used data schemas
for data warehousing [1] due to its demonstrated benefits in reducing query latency. In complex
dimensions tables data are de-normalized, i.e., allowing duplicates also as another technique to reduce
the number of joins that would involve distributing the information of the dimension in several tables
as other schemas such as Snowflake do. Therefore, we assume this data source schema design is a good
design, since we are focusing on benchmarking OLAP cubes, and this dataset is suitable to generate a
variety of them.

Table 3. Data Warehouse dimensions used for benchmark execution.

Dim. Name Rows High Cardinality
(rows > 1000) Dim. Columns Distinct

Values Rel. to SK Hierarchical Rel.

DI1 Student 500,000 Yes (UHC)
STUDENT_ID 500,000 1/1 ID_NUMBER_SUB3→

ID_NUMBERID_NUMBER 500,000 1/1
ID_NUMBER_SUB3 1000 1/1000

DI2 Subject 21,028 Yes (HC)

SUBJECT_ID 21,028 1/1
SUBJECT_TYPE→

SUBJECT
SUBJECT_DES 21,028 1/1

SUBJECT_TYPE_ID 17 1/17
SUBJECT_TYPE_DESC 17 1/17

DI3 Degree 678 No

DEGREE_PLAN_ID 678 1/1

KNOWLEDGE_AREA→
DEGREE→

DEGREE_PLAN

DEGREE_PLAN_DESC 678 1/1
DEGREE_ID 404 1/404

DEGREE_DESC 404 1/404
KNOWLEDGE_AREA_ID 6 1/6

KNOWLEDGE_AREA_DESC 6 1/6

DI4 Academic
Year 16 No ACADEMIC_YEAR_ID 16 1/1

ACADEMIC_YEAR_DESC 16 1/1

DI5 Gender 4 No GENDER_ID 4 1/4
GENDER_DESC 4 1/4

Moreover, in order to implement query latency measures, we must define a set of analytical
queries over the above proposed data model. These queries should reflect the nature of any OLAP
model.To address it, we propose to define a set of queries composed by three groups that implement
the following three common patterns we found in OLAP analytics:

1. High level Aggregation: Queries that involve dimensions with few instances, thus the data at
this level is very aggregated.

2. Drill Down: Queries that involve dimensions with a lot of instances. These queries shows more
detailed data than High Level Aggregation queries, thus computation needed during query
execution time will be higher. We exclude UHC dimensions (dimensions over 300,000 instances).

3. Drill Down UHC: They are as Drill Down queries but including UHC dimensions. Due to UHC
dimensions are less frequently used in analytics models, we propose to isolate this scenario.

Applying the above criteria, we have generated a set of 30 SQL queries for the proposed data
model. As an example the proposed queries, in Figure 1 we show a query that includes aggregation
and filtering operations on an UHC dimension column (Student).
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Figure 1. SQL implementation of query 25 that includes aggregation and filtering operations on an
UHC dimension column (Student).

3.3. The Apache Kylin Case

In order to validate our proposed benchmark, we have implemented it for Apache Kylin.
Thus, in this subsection, we first present the architecture of Apache Kylin and its cube design
fundamentals. Then, we use this knowledge to instantiate our proposed benchmark for Apache Kylin.

3.3.1. Cube Design for Apache Kylin

As we shown in Section 2, Apache Kylin [2,3] is one of the most powerful and consolidated
approaches to implement any kind of OLAP applications with Big Data. Kylin is the only approach that
allows OLAP with fact tables up to tens of billions of rows on the fact table, while other systems such
as Vertica do not allow as low query latency with those large volumes of data. Moreover, Kylin fully
supports the Star and Snowflake schemas, the de facto standard for designing Data Warehouses [1]
as the source for most OLAP applications. Other systems such as Druid or Elasticsearch have very
limited support for this type of Star or Snowflake data schemas. For all these reasons, we consider
Kylin is best suited to be used as the implementation in this paper of our proposed benchmark.

For designing the OLAP cube, Apache Kylin provides a Web UI with step based design. However,
despite this aid, designing an OLAP cube with Kylin is not a trivial task. It requires very advanced
knowledge of the underlying Hadoop technologies which are part of the Kylin architecture as shown
in Figure 2. An example of this required knowledge, is that the user must choose between the two
cube building engines that Kylin supports, Map Reduce or Spark, and also provide their configuration.
Although Spark is faster than Map Reduce, it is not always recommended or even possible to make
use of Spark, since its use is limited to the available RAM memory in the nodes of the cluster.
Therefore, Spark could lead to Out Of Memory (OOM) errors that prevent building the OLAP cube
successfully, while Map Reduce is a more reliable but slower option. Moreover, the use of the default
configuration for the chosen engine is not recommended if we want to take advantage of the full power
of the system.

To define the OLAP cube, Kylin can use as data source (i), a Data Warehouse (DW) stored on
Hive [21] for batch applications, or (ii), a Kafka topic for real-time OLAP applications. Then the user
has to define a cube design including facts, dimensions and their mapping with the data sources along
with others parameters, such as dimensions optimizations, algorithm selection or the cube engine
used. Using this metadata, the cube building process takes advantage of the distributed processing of
Map Reduce [22] or Spark [23]. As a result of this process, an OLAP cube with the aggregated data are
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generated and stored on Hbase [24]. At this moment, data users can perform analytic queries over the
OLAP cube using the Standard Query Languaje (SQL).

Figure 2. Apache Kylin architecture.

As Kylin generates the OLAP cube using a design provided by the user, a wrong design
alters significantly several metrics such as the identified for our proposed benchmark in Section 3.1.
The design decisions affect the most the goals we have previously identified are those related with
dimensions, i.e., contexts of analysis. This is due to Kylin Cube implementation is based on the
applications of data pre-aggregation techniques, thus suffering of Curse of Dimensionality issue [25]:
The more dimensions, the greater will be the number of combinations between dimensions for which
pre-aggregation has to be generated. While this pre-aggregation usually improves query latency
over the generated cube, cube building success, time, and cube size metrics are heavily affected.
Moreover, a very big cube size could affect the time needed to scan the HBase table, thus increasing
query latency. In order to minimize Curse of Dimensionality effects, Kylin implements design
techniques that can reduce the number of combinations between dimensions. These design techniques
can be grouped in (i), Dimension Types, and (ii), Aggregation Groups.

The Dimension Type determines if the dimension data will be pre-aggregated with other
dimensions and facts on building process, otherwise dimension aggregations will be calculated
at query time. Kylin supports two dimensions types:

• Normal: A dimension that will be combinated with the other “Normal” dimensions and facts
in order to generate data pre-aggregation. These dimensions fully contribute to the Curse
of Dimensionality. For example, the measure Credits Approved, combined with the Degree
(Computer Science, Maths) and Academic Year (2016, 2017) dimensions, will be pre-aggregated
and stored on the OLAP cube for the combinations (Computer Science, 2016), (Computer Science,
2017), (Maths, 2016), (Maths,2017). This will reduce the aggregation needed during query
execution time, thus reducing query latency. However, “Normal” dimensions must be defined
carefully, as they lead to a combinatorial explosion between dimensions.

• Derived: Often dimensions are stored in tables separated from fact table, as in Star or Snowflake
schemas [1]. In these cases, the dimension table columns needed to determine the relationship
between this table and the fact table are called Surrogate Keys (SK) [1] and Kylin manage them as
“Normal” dimensions by default. However, the remaining columns of a dimension table can be
defined as “Normal” or “Derived” dimensions. If we define a dimension column as “Derived”,
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this dimension is not used for pre-aggregation, thus it has no effects on Curse of Dimensionality.
These dimensions will be obtained from the SK of the dimension table and aggregated with other
dimensions and facts during query execution time, therefore increasing query latency. However,
in what degree a “Derived” dimension could impacts query latency, depends of the cardinality
relationship between SK and its “Derived” dimension column, e.g., the cardinality relationship
between SUBJECT_ID (SK dimension) and SUBJECT_DES (subject description) is 1 to 1, thus in
execution time only is required mapping between these values, due to data are aggregated
at the same level in both dimensions. However, if we define SUBJECT_TYPE as “Derived”,
where the cardinality relationship with SUBJECT_ID is higher (1/16), more computation for data
aggregation will be required during execution time.

In some scenarios, we have a lot “Normal” dimensions, due to (i) the presence of many
different dimensions tables, having each one at least one SK treated as a “Normal” dimension,
or (ii) many dimension columns with a high cardinality relationship with SK columns, thus we
prefer define it as “Normal” dimensions to avoid a high computation requirements during
execution time. For these scenarios with many “Normal” dimensions, Kylin provides another
optimization called Aggregation Groups. This optimization allows to group “Normal” dimensions
that will be pre-aggregated together, enabling cube designers to apply one the following three
powerful optimizations to reduce combinations between “Normal” dimensions included on this
Aggregation Group:

• Mandatory Dimensions: If a “Normal” dimension is defined as “Mandatory”, all the
combinations and pre-aggregations without this dimensions are pruned, e.g., if we define Student,
Subject and Academic Year as “Normal” dimensions and also we mark Student as Mandatory,
all the combinations between these three dimensions will include the Student dimension.

• Dimension Hierarchies: We can define a hierarchical relationship for a group of “Normal”
dimensions. Then only combinations and pre-aggregation for these dimensions in defined
hierarchical order are computed during cube building, e.g., we can define the hierarchy
SUBJECT_TYPE_ID→ SUBJECT_ID. This means that only the combinations (SUBJECT_TYPE_ID)
and (SUBJECT_TYPE_ID, SUBJECT_ID) will be computed during cube building.

• Joint Dimensions: Sometimes we find dimensions that are queried together very often.
E.g., Id and description columns are usually queried together, such as SUBJECT_ID and
SUBJECT_DES in our data source, however Kylin considers them as two separated
dimensions. In this case, we can define a Joint group that includes these two dimensions.
Therefore, these dimensions will appear together in all possible combinations between the joint
group and remaining dimensions.

Therefore “Derived” Dimensions and Aggregation Groups are powerful tools to reduce Curse of
Dimensionality effects. Considering these optimizations and the complete architecture of Kylin,
we summarize in the following the design steps and principles to be applied for the OLAP
cube implementation:

1. Source system selection: If batch processing is required, we recommend using Apache Hive due
to its proved capabilities to store and maintain analytical data models for Big Data scenarios.
In case of a real-time scenario, we recommend using Kafka.

2. OLAP cube definition: First the user must identify the tables and the relationship between
them over the data model stored in the source system chosen. Secondly, to reduce the effects
of the dimensionality curse [25], it is very important to determine the optimal type for each
dimension column. Finally, for those dimensions defined as “Normal”, we have to create one
or more aggregation groups and apply to them the possible optimizations allowed. To this
end, we recommend conducting a previous study of end-users querying patterns, to achieve a
trade-off between pre-aggregation stored in the OLAP cube and the aggregation required during
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query execution time. Therefore, for our benchmark implementation, we have to study the set of
30 SQL queries proposed to identify such querying patterns.

3.3.2. Benchmark Implementation

In order to effectively implement our proposed benchmark, we chose Apache Kylin [2,3] Big
Data OLAP approach, due its power to cope with up to tens of billions of rows fact table, ultra high
cardinality dimensions and support for both batch and real-time OLAP scenarios. Moreover, using the
previously stated design principles for Kylin cube design, in this section we propose eight different
OLAP cube designs using as a data source the academic data model. Then, we use our proposed
approach to benchmark these eight cube designs. We analyze the results obtained in order to extract
useful insights that help us to improve the OLAP cube design processes for Apache Kylin.

These eight OLAP cube designs proposed are shown in Table 4. All of them cover all the analytic
model described on Section 3.2, each with design 5 dimension tables. This means each one has
five SK columns that are treated by Kylin as Normal Dimensions, as we explained in Section 3.3.1.
However, from these SK columns, we can define the remaining columns as “Derived” or as “Normal”
dimensions. Moreover, we have identified the cardinality relationship between the SK dimension
column and the remaining dimension columns, as one parameter to control the effects of defining
“Derived” dimensions. In order to test the trade-off between defining more or less dimension as
Derived, the designs D1, D2 y D3 has different number of Normal and Derived dimensions according
to the value of cardinality between SK and Normals dimensions proposed (Max Sk Rel Derived): 1/1,
1/10 and 1/n (all as “Derived”).

Table 4. Cube Designs for Benchmark Execution.

Design
Total

Normal
Dim.

Defined
Normal

Dim.

Max Sk
Rel

Derived *

Derived
Dim. Hierarchies Mandatory Joint

D1 12 7 1/1 5 0 0 0

D2 10 5 1/10 7 0 0 0

D3 5 0 1/n 12 0 0 0

D4 12 7 1/1 5 0 0 3 of 2 Dim.

D5 12 7 1/1 5
1 of 2 Dim. (1 UHC)
1 of 3 Dim. (2 HC)

1 of 4 Dim.
0 0

D6 12 7 1/1 5
2 of 2 Dim. (1 UHC)

1 of 4 Dim. 1 Dim. (HC) 0

D7 11 6 1/10 7
1 of 2 Dim. (1 UHC)
1 of 3 Dim. (2 HC)

1 of 4 Dim.
0 0

D8 10 5 1/10 7
1 of 2 Dim. (1 UHC)
1 of 3 Dim. (2 HC)

1 of 4 Dim.
0 0

* Maximum cardinality of all pairs (SK Dimension, Derived Dimension), understanding cardinality as the
relationship between between an SK dimension and the dimension derived from this SK.

In designs D4 to D8, we aim to evaluate the use of the Aggregations Groups optimizations.
Thus, we define one aggregation group with different subgroups of Hierarchies, Mandatory and Joint
dimensions. Using design D1 (Max SK Rel = 1/1) as a base, we defined D4, D5 and D6. In D4 we
define three joint groups of two dimensions such as (SUBJECT_TYPE_ID , SUBJECT_TYPE_DES)
due to description columns are very often queried together with ID columns. Design D5 is intended
to evaluate the use of Hierarchies of dimensions in Aggregation Groups. Therefore, we defined
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three hierarchies, one of them over Student (UHC) dimension, e.g., we defined the hierarchy
ID_NUMBER_SUB3→ ID_NUMBER where ID_NUMBER_SUB3 are the three first characters of an
Student ID_NUMBER, thus ID_NUMBER_SUB3 can be used to resume data stored by the dimension
ID_NUMBER. Then, in order to test Mandatory optimizations, in D6 we defined ID_NUMBER as
mandatory, that will reduce query latency for queries that use ID_NUMBER while increasing latency
for queries that do not use this dimension.

On the other hand, D7 and D8 OLAP cubes are designed using design D2 as a base. D7 and
D8 designs are aimed to evaluate the combination of a balanced definition of “Derived” dimensions
(Max SK Rel = 1/10) in conjunction with defining hierarchies described in Table 3 over the remaining
“Normal” dimensions. Differences between these designs are about dimension types and hierarchy
defined over Student UHC dimension columns. Therefore, D7 and D8 are two alternative design that
applies derived dimensions in 1/10 MAX. SK Rel and hierarchies optimization.

As in D3 all not SK dimensions are defined as “Derived”, we cannot apply any of the Aggregation
Groups optimizations due to the fact that they are only applicable to “Normal” dimensions.

Finally, in order to test Query Latency and % Queries > 3 s measures, we have used the proposed
set of 30 different SQL queries described in Section 3.2. These queries are classified and distributed in
the three groups proposed: High Level Aggregation, Drill Down and Drill Down UHC queries.

4. Results

To execute the proposed design we have used Kylin 2.6 installed on a Hadoop cluster.
This Hadoop cluster uses Elastic Map Reduce 5.30 (EMR) Hadoop distribution and Amazon AWS
cloud infrastructure, composed of four m4.xlarge nodes each one with 8 vCores and 16 GB RAM.
We have also installed Kylin on an additional m4.xlarge machine, which makes use of the EMR cluster
for cube building (Map Reduce with YARN) and storage (HBase and HDFS). We consider this cluster
is enough powerful to cope with the data model and workload described on Section 3.2.

Moreover, we have used Kylin default “By Cube Layer” cube building algorithm and Map Reduce
cube engine. Benchmarking Kylin algorithms (there are two) and cube engine (Map Reduce vs. Spark)
are out of the scope of this paper, so we fixed it to the standard values.

Benchmarking results are showed in Table 5. Success, OOM Errors, Cube Size and Expansion
Rate are benchmark metrics related to cube building process, therefore we used information provided
by Kylin and its underlying hadoop tools to fill these values. Over the generated OLAP cube,
we benchmarked average query latency in seconds, as a result of executing the above described
set of 30 queries. % of queries with latency over 3 s and % of model coverage are also obtained from
queries execution results.

Table 5. Results of Benchmark Execution.

Design Success OOM
Errors

OLAP
Cube

Size (Gb)

Expansion
Rate

% of
Coverage

Building
Time

(hours)

Query
Latency

(AVG seg)

% Queries
> 3 seg

D1 Failure Yes - - - - - -
D2 Success No 63.07 40.43× 100% 8.59 12.91 51.52%
D3 Success No 2.31 1.48× 100% 1.38 11.34 42.42%
D4 Success No 68.07 43.63× 100% 9.10 5.08 24.24%
D5 Success No 23.39 14.99× 100% 4.26 4.79 24.24%
D6 Success No 34.29 21.98× 100% 4.43 15.07 57.58%
D7 Success No 23.31 14.94× 100% 3.76 4.05 21.21%
D8 Success No 16.55 10.61× 100% 2.85 5.09 30.30%

Moreover, as a result of queries execution, in Figure 3 we show average query latency in seconds
grouped by query type and cube design and, in Figure 4, we show the % of queries resolved in less
than 3 s.
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Figure 3. Query latency results grouped by OLAP cube design and query type.

Figure 4. Percentage of queries resolved in less than 3 s.

5. Discussion

After the execution of our proposed benchmarking, we analyzed the results in order to extract
useful insights to improve the OLAP cube design processes for Apache Kylin. Based on these findings,
together with the analyzed principles for cube design, we have proposed a guideline to find the
optimal cube design for Apache Kylin.

In Table 5, we can see that D1 cube could not be built successfully. The high number of
“Normal” dimensions and the non-application of any of the Aggregation Group optimizations
makes the number of combinations too high (212) for computing this cube using a Hadoop cluster.
This process requires a lot of memory, thus Out of Memory (OOM) errors can take place in this scenario.
However, the remaining designs were built successfully, since they only used design D1 as a basis.
In order to generate remaining designs over D1, we increased the number of “Derived” dimensions in
designs D3, D4, D7, D8, and we applied Aggregation Group optimizations in D4, D5 and D6 cubes.

If we compare designs D3 and D2, we observe the high impact of defining all D3 dimensions
columns as “Derived” has on benchmarking variables. The OLAP cube size is just 1.48 times bigger
than the DW used as source (described on Section 3.2) while D2 cube size (where only some dimensions
are defined as “Derived”) is 40.43 times the DW source size. Moreover, building time is dramatically
reduced in D3 compared with D2 time. Surprisingly, although the computation for aggregation needed
in query execution by D3 cube is much bigger than for D2 cube, the Query Latency is a little smaller in
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D3, about 1 s on average. This could be explained due to the huge Size of cube D3, query execution
could need a lot of time to scan all the HBase table where the OLAP cube is stored.

Designs D4, D5 and D6 are based on D1 design but applying Aggregation Groups optimizations
over “Normal” dimensions. If we compare this three design, we observe D5 has a smaller expansion
rate (14.99×) due to the definition of 3 hierarchies over 9 “Normal” dimensions. Moreover this design
has the second smallest query latency of all benchmarked designs, and a reasonable building time of
4.26 h. For design D6, we removed 3 dimensions of the hierarchies used in D5, in order to add one
mandatory dimension. The query latency is 15.07 s, the highest result of the benchmark, while the
rest of variables are a little bigger than D5. Due to the fact that only a little subset of the queries use
the mandatory dimension defined in D6 (ID_NUMBER), query latency will be better for these queries
and worse for the remaining. Finally, D4 design define two groups of two joint dimensions instead of
the three hierarchies defined on D5 and D6 because Kylin currently do not allow to apply Joint and
Hierarchy optimizations over the same dimensions. D4 expansion rate and building time are over 50%
higher than D5 and D6 cubes, while Query Latency is good and close to the value of D5.

If we perform a further analysis of the query latency, we realize that the design D6 has the worst
results in % of queries resolved in less than 3 s. Moreover, D6 obtain the worst results in Drill Down
with UHC queries. As we define as a Mandatory Subject dimension, the queries that involves Student
UHC dimension and do not include Subject dimensions, require a high computation to resolve the
aggregation. This demonstrates the importance of analyze query patterns before to apply Aggregation
Groups optimizations and how the execution of the benchmark can help us to realize of this fact.

Designs D7 and D8 are based on the D2 design with more derived dimensions
(MAX SK REL = 1/10) than D1 (MAX SK REL = 1/1), but defining three hierarchies for nine “Normal”
dimensions like D5 design. The difference between this design is definition of ID_NUMBER as
“Normal” dimension in D7 and as “Derived” on D8. The benchmark results shows that D7 design
achieves the best average query latency of benchmark execution, just 4.05 s and only 21.21% of the
all queries set responded over 3 s. Compared with the other designs this is one of most balanced,
achieving an Expansion Rate of 14.94× and 3.76 h of building time. D8 has slightly better results for
Expansion Rate and Building Time, however query latency average is over 1 s worse.

We conclude that best balanced designs are D3 and D7. D3 obtains the best values for variables
related to cube building and size, especially for cube building time. This process takes less than two
hours, thus an acceptable value for a BI OLAP system with a daily window load. However its 11.34 s
of query latency is a little high for an OLAP system, where 42.42% of the queries are executed over
3 s. Although, in some BI scenarios the 3.76 h of building time could be high, D7 cube latency is
just 4.05 s, with only a 21.21% queries executed over 3 s, thus this design is very suited for OLAP
production environments.

The execution of our benchmark has provided us results that demonstrate that to achieve a good
OLAP cube design with Kylin we have to: (i) find a trade-off between the number of “Normal” and
“Derived” dimensions, i.e., the trade-off between the amount of data pre-aggregated during cube
building (thus stored on cube) and the aggregation needed on query execution time, and (ii) define the
Aggregation Groups and its optimizations over “Normal” dimensions accordingly to the analytics
data model aimed to implement and end-user query patterns. Based on these findings, together with
the analyzed principles for cube design, we have proposed the following guideline for the optimal
cube design for Apache Kylin:

1. Identify query patterns: We must collect the query requirements from existing queries or user
requirements. The aim is to identify the following elements among others: Tables, relations
between these tables, most used columns, aggregations on columns, columns that are queried
together, hierarchical relations or columns used as filters.

2. Define the OLAP cube: Using the information collected about querying patterns.
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Table and column selection: Include only those tables and columns that will be used. If the
cube contains too many dimension columns, we should consider create multiples cubes to
reduce its complexity.
Dimension type selection: We recommend defining as “Normal” only those dimension
columns that occur frequently in the identified query patterns and their performance would
be low if we defined them as a “Derived” dimensions. Based on our insights, we can
establish that this low performance is often given for cardinality ratios greater than 1/10
with respect to the SK column of the dimension table to this column belongs.
Aggregation groups definition: We have to group the columns with dimensions defined
as “normal” into aggregation groups that respond to query patterns: Columns queried
together, with a hierarchical relationship or those used in all queries (e.g., a date column).
Declaring these patterns will reduce the effects of the curse of dimensionality problem and
therefore reduce the size and building time of the resulting cube.

3. Apply the benchmark: Apply our proposed benchmark to evaluate the cube design.

Building the OLAP cube: In case the cube cannot be built due to OOM errors, go back to
step 2 to review the cube design criteria to generate a new one.
Benchmark execution: In case there are no existing queries, we must design a set of SQL
queries based on user requirements. Then, execute this query set and measure query latency
and coverage of the model.

4. Evaluate results and refine cube design: If the implemented cube does not meet the values
required for the goals listed in Table 1, return to step 2 to refine the cube design. Even if the
requirements are met, in order to find the most optimal cube, we recommend generating and
benchmarking one or more alternative cube designs, based on those design decisions that raised
some doubts.

Another important point of discussion is the applicability of our proposed benchmark. In addition
to the Kylin implementation presented, we consider that the proposed benchmark is also applicable
to other Big Data OLAP systems, especially those that support data pre-aggregation such as
Apache Druid.

However, since Druid does not support the definition of star or snowflake models, we have to
conduct some minor changes to implement on it the proposed data model. Thus, Druid requires the
entire data model to be stored in a single table. This can be done by applying a technique known
as data denormalization. Similarly, the 30 proposed SQL queries can be adapted to be executed on
this single table. Alternatively, we can apply the supported integration [9] between Kylin and Druid.
In that case, no adaptation would be required to apply our proposed benchmark.

On the other hand, for the OLAP cube implementation, we will have to apply the specific design
principles of Apache Druid [6] for data pre-aggregation such as define segment and query granularities
or applying rollup features for the data ingestion process.

Finally, we summarize and highlight the advantages of our proposed benchmark over other
existing approaches:

• It not only allows to compare OLAP systems [11–14] but also allows OLAP cube designers to
compare different OLAP cube designs on a chosen Big Data OLAP technology.

• It can be applied to any OLAP system, but it is specially recommended to be applied on Big Data
OLAP systems, because it addresses the specific requirements of Big Data scenarios unlike other
proposals [12]. Based on the analysis of these specific requirements, we propose a complete set of
benchmarking metrics in contrast to other reviewed approaches [15,16,18,19].

• In addition, unlike other benchmark proposals for Big Data systems [14], our benchmark considers
the specifics of the systems that allow for data pre-aggregation to support OLAP scenarios. This is
the case of Apache Kylin, where no other cases of benchmark application can be found in
the literature.
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• Finally, based on the insights extracted from results of the benchmark application for Apache
Kylin, we have proposed a guideline to help users find the optimal cube design for Apache Kylin.

6. Conclusions and Future Work

In this paper, we have proposed a new benchmark for Big Data OLAP, aimed at benchmarking
OLAP cubes designed by taking advantage of data pre-aggregation techniques provided by any of the
current Big Data OLAP appoaches [2–8]. As a result of our research in state-of-the-art technologies,
and our experience implementing Big Data OLAP systems, we identified the main goals related to a
successful OLAP cube design. In order to create a benchmark from these goals, we translated them
into measures, thus being able to quantify their level of satisfaction for each benchmarked cube design.

In order to show the application of our benchmark, we required to create a specific implementation
for a particular technology. We chose Apache Kylin [2,3] as our sample Big Data OLAP approach from
the range of candidate technologies due to three reasons: (i) its ability to cope with up to tens of billions
row-sized fact tables, (ii) the capability to deal with ultra high cardinality dimensions, and (iii) its
support for both batch and real-time OLAP scenarios.

Moreover, we have identified the principles for the design of Kylin cubes and then executed our
proposed benchmark across eight different Kylin cube designs. Based on the results, we proposed a
guideline to aid OLAP cube designers find the most optimal cube designs for their particular scenarios.

Among the design goals proposed, we included OLAP cube building time. However, we must
notice that our benchmark focuses only on the cube building time related to the OLAP engine itself.
It is not aimed at including into the equation other measures covering the total amount of time taken
since data are acquired, such as time required for data transformation, cleaning, etc. Given that a Big
Data pipeline is often composed of many processes, all of them can be a limiting factor, and contribute
to the overall time required to build the cube. Moreover, since there is a tradition for incremental
loads after the first one, our benchmark metrics could be complemented or even combined with other
benchmarks aimed at optimizing the Big Data pipeline. This would provide Big Data system designers
an overall view of the suitability of their architected solution.

As part of our future work, we are planning on implementing and comparing the results obtained
across several Big Data OLAP approaches [2–6,8], such as Druid (standalone or integrated with Kylin)
or Clickhouse. On the other hand, we will study the specifics of Big Data cloud services such as
Google Big Query [7] or Azure Synapse with the aim to implement our benchmark on these systems.
Furthermore, for these cloud approaches, we propose to carry out vertical and horizontal scalability
tests to study their effects on the OLAP cube performance.
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