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ABSTRACT Along the last decades, Robotics research has taken a major turn from laboratories to factories
and ordinary real-world environments. Consequently, new issues to be overcome have arisen, specially when
autonomous, dexterous robots are in place. In this paper, we present this evolution in the case of robot vision
for manipulation through several robot developments, by analysing their challenges and proposed solutions.
This overview highlights the need of using different techniques depending on the task at hand and the scenario
to work in.

INDEX TERMS Robotics, computer vision, applications.

I. INTRODUCTION
Robotics research has evolved from industry to everyday
scenarios. This evolution has required to adapt the robot
developments from restricted, controlled and well-known
settings to dynamic, unknown and populated environments.
Therefore, robots must be endowed with different abilities to
be able to autonomously perform meaningful tasks such as
navigating in populated environments, localisation, recogni-
tion of different targets, manipulation, human–robot interac-
tion, reasoning, co-working with people, etc. This requires
the development of the necessary sensory-motor skills to
engage and integrate all the aspects of intelligent process-
ing from perception to action, but without culminating in
time-consumption processes.

For that, it is necessary to overcome several issues arising
for each task or scenario type such that the robot is capable
of operating in a flexible manner, without constraining the
environment, and in a reasonable time.

This paper presents an overview of our trip from robots
sealed in workstations in factories to those working in peo-
ple’s living spaces. This progressive way is described by
means of several developments, that pertain to robot vision
for manipulation, with their respective challenges and pro-
vided solutions. Our purpose is not to carry out a global
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comparative analysis of vision techniques for robot tasks, but
rather to present a number of different application scenarios
and specific robot tasks, putting in perspective the challenges
to be tackled, our proposed solutions, and the lessons learnt.
So, Section II describes a vision system for industrial robots
aimed to guarantee the safety of all the surrounding ele-
ments whether it is performing its own tasks or carrying
out a collaborative task with a human, including a compar-
ative analysis with other approaches. Going a step further,
Section III shows two robot applications in semi-structured
environments. In particular, a librarian robot and a robot for a
warehouse are presented. Then, Section IV analyses twomain
aspects for autonomous robots in real scenarios: detection and
recovery from manipulation errors; and object detection and
recognition. Next, Section V discusses the scientific advances
of the proposed solutions, while pointing out their limitations,
lessons learnt, and possible improvements. Finally, some con-
clusions are presented in Section VI.

II. HUMAN-ROBOT COLLABORATION IN
INDUSTRIAL SETTINGS
Although the industrial robots were initially isolated,
the human collaboration was soon required. However,
the used safety systems like cages or laser fencing, became
inappropriate for those collaborative tasks since they stop
the robot activity when a person is close. This fact resulted
in the need to develop new technologies guaranteeing the
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FIGURE 1. Difference between a catadioptric image (left) and a fisheye
image (right).

performance of robot tasks in a safety way (i.e. avoiding any
collision with people and other robots).

Keeping in mind the robot autonomy and flexibility, vision
systems could fit given the amount of data they can pro-
vide. Nevertheless, this challenge poses several issues to be
overcome:
• how to efficiently cover the whole robot work-space
• how to overlook minor dynamic factors such as the
blinking of computer screens, mirror images on glasses,
sensor noise or non-uniform attenuation

• how to deal with changes in illumination due to both
shadows or other events like switching on/off a light or
opening/closing a window

• how to detect people when they stop for a moment
• how to accurately locate all the surrounding elements
with respect to the robot

• how to properly track all the surrounding elements
With the purpose of covering all the embracing robot

space, some devices were studied. So, traditional cameras
were discarded because they have a limited field of view
and the computational cost of the feature correspondence
algorithms is too high when the images from several cameras
or those generated from a rotating camera, are combined
and processed. Something similar happens with range images
and they also required mechanisms to deal with missing
depth information and the adjustment of several parame-
ters to properly establish the correspondence between sev-
eral visual sensors [1]. Alternatively, a camera combined
with mirrors (i.e. catadioptric cameras) could be considered
[2], [3]. However, their images exhibit a dead area in the
centre, what results in an important loss of valuable infor-
mation (see Figure 1). Thus, dioptric (fisheye) devices are
employed [4]. Unlike catadioptric cameras, a fisheye lens
is used together with a traditional camera in these devices
and this fact avoids dead areas in the captured images as
illustrated in Figure 1. Given that a 185-degree field of view
is provided, two fisheye cameras placed at both sides of the
robot, pointing upwards, are enough to cover the whole robot
work-space.

The next issue is how to properly detect and track both
the human collaborators and the moving elements around the
robot. For that, motion is considered as a primary cue since
it provides a stimulus to perceive the surrounding elements
within images, just as the primate brain does [5]. In addition,

motion may lead to some extra information meaningful for
detection and recognition such as the element’s shape, speed
or trajectory.

A wide research has been done along this line (see
[6]–[10] for a deep analysis). However, taking into account
the above-mentioned factors and the lack of constraints about
the targets, we have designed a two-stage adaptive back-
ground model allowing the robot to monitor all the activity
around it and adapting to that activity while safely perform-
ing its tasks. So, the first stage builds an initial statistical
background model with no constraints on the environment
and activity (i.e. there is no need of a background free of
target elements). For that, it takes advantage of difference
techniques such that a combination of them is in charge of
controlling these factors and removing this information from
the backgroundmodel under construction. Thus, as illustrated
in Figure 2, firstly, a simple combination of difference tech-
niques classifies the pixels as background or targets based
on their motion between frames and, then, two consecutive
morphological operations are used to erase isolated points
or lines. This data is the input to the module to build the
statistical background model only updating the information
of the pixels classified as background. In addition, global
changes in illumination are also detected from the output of
the difference approach such that a change in two thirds of
the image is considered a change in illumination. This fact
results in a re-initialization of the process and, consequently,
the background model. Note that the applied thresholds in the
difference approach are automatically set for each pixel from
pixel neighbourhood information based on the first taken
frame. After several experiments, this stage has set to last
100 frames as maximum (4 seconds at a rate of 25 fps).

Once the statistical background model (i.e. a simple Gaus-
sian model) has been built, the second stage starts. In this
case, two different tasks are performed. On the one hand,
it continuously monitors the activity around the robot such
that it can perform its manipulation tasks without causing
any damage. On the other hand, an identification and tracking
process takes place when a collaborative task is expected.

Regarding the work-space monitoring task, as previously,
it implies an image analysis at two levels. So, the frame
level allows the robot to detect when a global change in
illumination takes place. On the contrary, the pixel level is
used to properly detect the presence of any person or other
moving robot within the scene. For that, the first step is
to apply the difference approach considered in the previous
stage. This raw classification is now refined by means of the
background model as follows:{

255 if |it (x)− µt (x)| > (kx ∗ σt (x))
0 otherwise

(1)

where it (x) corresponds to the value of pixel x at time t;
µt (x) and σt (x) respectively refer to the mean and stan-
dard deviation of the background Gaussian model for each
pixel x at time t , while kt is a factor between 0.0 and 3.0
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FIGURE 2. Workflow of our approach to detect the robot surrounding elements.

experimentally set for each pixel since it represents the pixel
fluctuation being higher at the image borders. Note that both
kt and σt (x) require an initial non-zero value for a proper
performance. So, when no information is available for a pixel,
a predetermined value is set. These variables are updated
together with the background model from those pixels clas-
sified as background as follows:
µt (x)=

{
(1−α)µt−1(x)+αit (x) if background
µt−1(x) otherwise

σt (x) =

{
(1−α) σt (x)+α (it (x)−µt)2 if background
σt (x) otherwise

(2)

The α corresponds to the model learning rate and its value
is updated in each frame as α = 1.0/N being N the number
of frames used so far. Given that the higher N is, the lower α
is, a high amount of frames can lead to a bad adaptation of the
background model. As a solution, a new background model
is built after 200 frames.

Different experiments were carried out in order to evalu-
ate the approach performance. Firstly, the performance was

deeply analysed by using Wallflower [11], a well-known
dataset for video surveillance systems. This open source
dataset is composed of seven image sequences covering pos-
sible critical situations for motion detection: bootstrapping,
where all the frames contain foreground elements; camou-
flage, where a person is walking in front of a monitor that has
rolling interference bars (similar to the person’s clothing) on
the screen; time of day, where a scene is observed along a day
suffering from gradual illumination changes; light switch,
where the lights of a room are continuously switched on and
off; waving trees, where a person is walking in an outdoor
scene with a swaying tree; foreground aperture, where a
person with uniformly colour shirt wakes up and begins to
move slowly; and moved object, where a person enters into
a room, makes a phone call and leaves, so that the phone and
the chair are left in a different position.

Each of these image sequences is provided together with
a hand-segmented ground truth image for evaluation. This
fact allows a quantitative performance comparison between
approaches. In particular, in this case, recall, precision and
accuracy measurements have been used. So, recall refers
to the ratio of the number of foreground pixels correctly
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TABLE 1. Quantitative comparison of several state-of-the-art approaches
for motion detection by using the Wallflower dataset [11].

identified to the number of foreground pixels in the ground
truth; precision represents the ratio of the number of fore-
ground pixels properly identified with respect to the number
of foreground pixels detected; and accuracy indicates how
well the segmentation process identifies or excludes the fore-
ground pixels. Table 1 presents a quantitative comparison
with state-of-the-art approaches that have provided results
using this dataset. Those approaches can be briefly sum-
marised as follows:
• Mixture of Gaussians (GMM) [12]. A pixel-wise mix-
ture of three Gaussians models the background such that
each Gaussian is weighted according to the frequency
with which it explains the observed background

• GMM + Effective Intensity Change (EIC) [13]. This
approach is based on GMM, although their learning
rate is dynamically set during the video analysis. For
that, a new parameter called Effective Intensity Change
occupancy (EIC), is introduced. This parameter extracts
background dynamics for each frame and is used to
estimate the new value of the learning rate at any
time

• Normalised block correlation [14]. In this approach,
images are split into blocks such that each block is
represented as its median and the standard deviation of
the block-wise normalised correlation over the training
images. For each incoming block, normalised correla-
tion values that deviate too much from the expected
deviations cause the block to be considered foreground

• Temporal Derivative [15]. In this case, the mini-
mum and maximum inter-frame change in intensity is
obtained for each pixel during the training phase. So,
any pixel that deviates from its minimum or maximum
by more than the maximum inter-frame change is con-
sidered foreground. They additionally enforced a mini-
mum inter-frame difference of 10 pixels after the regular
training phase

• Bayesian Decision [16]. This approach is based on pixel
value probability densities accumulated over time repre-
sented as normalised histograms. Thus, backgrounds are
determined by a straightforward maximum a posteriori
criterion

• Eigenbackground [17]. In this approach, the first step
is to collect images of motionless backgrounds. Then,

Principle Component Analysis (PCA) is used to deter-
mine means and variances over the entire sequence
(whole images represented as vectors). So, the incom-
ing images are projected onto the PCA subspace and
the differences between the projection and all the cur-
rent images greater than a threshold are considered
foreground

• Wallflower [11]. In this approach, the input images
are processed at three different spatial scales: pixel
level, which makes the preliminary classification
foreground-background and the adaptation to changing
backgrounds; region level, that refines the raw classifi-
cation of the pixel level based on inter-pixel relation-
ships; and frame level, designed for dealing with the
light switch problem

• Tracey LAB LP [18]. In this approach, the background
is represented by a set of codebook vectors locally mod-
elling the background intensities in the spatial-range
domain such that the image pixels not fitting that model
are classified as foreground. In addition, as in the
Wallflower algorithm, a frame-level analysis is used to
discriminate between global light changes, noise, and
objects of interest. Moreover, the foreground is also
represented by a set of codebook vectors in order to
obtain a more accurate foreground segmentation

• RECTGAUSS-Tex (RGT) [19]. In this approach,
the image processing is carried out at region level, where
the background is modelled at different scales by using
the colour histogram and a texture measurement. Thus,
motion is detected by comparing the corresponding rect-
angular regions from the coarsest scale to the finest
one such that the comparisons are done at a finer scale
only if some motion was detected at a coarser scale.
Furthermore, a Gaussian mixture background subtrac-
tion in combination with Minimum Difference of Pair
Assignments (MDPA) distance is used at the finest scale

• RECTGAUSS-Tex-Euclidean (RGT-Euc) [19]. This
is a modification of the previous approach such that
Euclidean distance is used instead of MDPA distance

• Joint Difference [20]. In this approach, motion is
detected by means of a hybrid technique that uses both
frame-by-frame difference and background subtraction.
This technique integrates a selective updating method of
the background model to tune background adaptation.
In addition, a shadow filter in the HSV colour space is
used to improve the motion detection

As shown in Table 1, the proposed approach overcomes
the performance of the state-of-the-art approaches, getting
results greater than 90% in all the considered measurements.
In particular, the obtained accuracy is over 97%, the highest
value, which means that the proposed approach is the one
with the lowest classification error. In a similar way, the good
results for recall and precision highlight its rigorous capacity
for foreground pixel classification.

In addition, two fisheye cameras were mounted on a
mobile platform that was located at different positions in
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our laboratory. This set-up was used to detect and track
a group of individuals (going from 1 to 5 depending on
the timestamp) moving around the robotic system. With
regard to the obtained experimental results, all the individuals
were successfully detected wherever they were located with
respect to the robotic system (up to a distance of 20 metres).

The second task consists of identifying and tracking the
moving elements around the robot. However, it could be
difficult especially when they meet, form groups or cross-
over. So, it is necessary to define a target representation that
makes the data association robust and accurate. So, the first
step is to obtain that proper representation. In this sense,
research has taken a number of forms focusing on human
representation (e.g. [21], [22]). However, despite its good
results under some conditions, they present some drawbacks
such as the need to know a model a priori, only working on
a type of device, failing in case of elements with a rich vari-
ability, being computationally intensive, or requiring several
constraints on the environment like being uniform or static,
or on the elements like presenting similar colour histograms.
Therefore, the representation to develop should:

• identify an element among a broad range of elements as
well as when they leave and re-enter the scene

• be robust to partial occlusions
• be open to learn new elements
• be obtained from a minimum number of training images
• provide a response time insensitive to the number of
elements to be tracked and identified

Keeping inmind these goals, a new representation has been
designed. Basically, each element is represented by means of
a data structure composed of:

• an image pattern
• a feature array whose elements contain different kind
of information (detailed below) used to properly match
images of the same object in two consecutive frames

In regard to the image pattern, given that a fisheye camera
pointing upward is used, the first issue to be overcome is
the different orientation of the elements due to their position
within the image. Due to the impossibility of comparing two
consecutive images of a target in all the possible orientations,
a panoramic image is obtained. For that, a correspondence
between the fisheye image and the panoramic one is estab-
lished [23]. As shown in Figure 3, the fisheye image is
considered as a torus region that can be cut through Y-axis
in order to stretch to a rectangle such that each fisheye pixel
within a bounding rectangle is converted by using the centre
coordinates of the fisheye image (x0, y0), and the minimum
and maximum radius determined from the corners of the
bounding rectangle (Rmin, Rmax). Note that only the bounding
boxes of the detected elements are converted to panoramic
images due to computational reasons.

With respect to the feature array, it describes each ele-
ment as an identifier descriptor (ID), the coordinates of its
gravity centre to generate the followed trajectory, and the
number of frames that it has not been seen in the scene.

FIGURE 3. Graphical description of the transformation from a fisheye
camera to its corresponding panoramic image.

FIGURE 4. Some results of the tracking process with the robot head
cameras.

This representation is used to properly track each element
by following a modified nearest neighbour approach. In par-
ticular, spatial information is combined with the element
representation such that an element history together with a
feature- and pixel-similarity likelihoods have been defined.
This definition allows the robot to properly track the several
elements within the scene even if they leave and re-enter the
scene, meet or cross-over as shown in Figure 4.

The last task is to properly locate the target elements (i.e.
the person or robot to collaborate with) for both safety reasons
and collaboration. Since the overlapping area of the two fish-
eye cameras is too tight, the stereo system of the robot head
is used to locate the surrounding elements. That is, the robot
head is oriented in the direction of each detected element
to accurately estimate the distance to the robot. Note that a
traditional RGB stereo camera is used instead of a Microsoft
Kinect camera or a similar device since they are imprecise
in distances lower than 50 cm, what could be critical when a
collaborative task is performed. As deeper explained in [24],
the distance is estimated by means of a biologically-inspired
approach. Basically, this approach can be summarised as
follows (see Figure 5: the early vision area (V1/V2) is mod-
elled as a set of complex Gabor filters with a cosine-based
real part and a sine-based imaginary part. This processing
at multiple scales and orientations, results in a quantitative
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FIGURE 5. Workflow of our approach for estimating the surrounding
element depth.

stereo disparity estimation that leads to a quantitative depth
map. From this knowledge, an egocentric representation of
the element localisation within the scene is obtained by fol-
lowing a qualitative approach. Finally, a qualitative reasoning
method allows the system to infer new information and make
decisions more accurately.

III. ROBOTS IN SEMI-STRUCTURED ENVIRONMENTS
Going a step further, semi-structured environments provide a
perfect starting point for autonomous service robots. In par-
ticular, two semi-structured environments have been consid-
ered: a library and a warehouse. As illustrated in Figure 6,
both environments present a strong topological structure
composed of strictly arranged shelves, while coexisting with
people and other robots. In addition, in both cases, the tasks
to be performed are similar: require an item, navigate to the
proper shelf, identify it, grasp it and deliver to the person
or robot who requests it. Nevertheless, the main difference
between them lies in the items to be recovered. So, while these

FIGURE 6. Semi-structured environments: a library (left) and a
warehouse (right).

are books in the case of the library, they are market products
in the warehouse. This fact results in an analysis of the visual
features to be detected to properly identify the required item
in each scenario.

A book can vary in size, thickness, colour, and title style on
the spine. These visual features make its recognition difficult
given the great amount of books in a library and recent tech-
niques like deep learning should learn each and every one of
them, what is high time-consuming. As an alternative, Radio
Frequency Identification (RFID) systems could be used as
in [25], [26]. However, all the books in the range of the
RFID reader will be recognised what makes it inappropriate
to identify just one book within the bookcase. As a solution,
a new vision approach has been designed.

In our particular case, the books are classified according
to the Library of Congress Classification (LCC). So, each
book is tagged with a book code or signature. This code is
composed of the class number and the book number, what
sets its arrangement within the library and can help the robot
locate a book in a bookcase. Thus, the arisen issues in this
case are:
• separate book by book
• extract each white tag containing the book code
• recognise the book code in a proper way
With the purpose of overcoming these issues, we have

developed and implemented a new vision approach based
on traditional computer vision techniques. This approach,
integrated in the UJI librarian robot [27], can be summarised
as follows (see Figure 7): the robot arm is located in front of
a shelf to take an image. Note that the position is determined
based on the detection of the shelf basis. Then, the image is
cropped keeping the bottom part since the tags are always
located at the bottom part of the book spine. Then, a threshold
together with Canny detector are used to detect edges. The
Hough transform allows the robot to properly detect the
vertical lines separating each book from the next one. The
last two steps are repeated in search of the horizontal lines
delimiting the book tags. The final step consists in combining
the horizontal and vertical lines to properly extract the book
tags.

Once the book tags are extracted, they are sent to anOptical
Character Recogniser (OCR) to read the book codes. As the
correct identification of the book code is crucial for the proper
book identification, an image from another point of view can
be required when the OCR fails in the recognition. If a pos-
itive match is provided, the robot manipulator is accurately
located to be able to safely extract the requested book.
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FIGURE 7. Our vision approach to separate book by book and extract
each tag with the book code.

For its part, the warehouse problem requires the learning of
more visual features since market products not only can vary
in size, thickness and colour, but also in shape, material, and
opacity. Given the challenging nature of this task, Amazon
launched the Amazon Picking Challenge in 2015. The goal of
this robot research project (2015-2017) was to automate the
pick-and-place task in a warehouse. For that, two tests were
designed:

1) Pick test: 32 items are placed in a storage system and
the designed robot system must be able to pick 10 of
those items and put in their correct box in 15 minutes

2) Stow test: the designed robot system must pick items
(one by one) from a tote with 20 items, and place them
in their corresponding location in the storage system in
less than 15 minutes

Note that the participating teams were provided with
40 items to train and test their robotic designs. However,
during the competition, they were given with new products
to be learnt in a short period of time. This fact makes the
task more complex and results in a need to reinforce some
approaches to speed up the learning process, although this
additional step could be avoided in real settings.

Keeping in mind all the visual features to be considered,
deep learning techniques could fit. In particular, Convolu-
tional Neural Networks (CNNs) have been proven a good per-
formance in object classification tasks. Thus, this approach,
inspired in the human visual cortex, uses multiple layers
to provide a classification tag from an input image. One
of the most popular approaches is the Residual Network
(ResNet) [28]. This architecture is mainly based on the VGG
network [29] by reformulating the layers as learning residual
functions. Given its good generalization performance, it was
part of our implementation for the Amazon Picking Chal-
lenge in 2017 [30] (see Figure 8). However, the learning
of a new object is too time consuming. Therefore, in the
context of the competition (and when it is required a quick
learning stage), an alternative technique should be used for
new objects, as previously pointed out. In our particular case,
as most of the objects were textured, the Scale-Invariant
Feature Transform (SIFT) was used [31]. This approach
shares many features with neuron responses in primate vision
such that a 4-stage filtering process provides a feature object
description. This keypoint descriptor is then used to properly

FIGURE 8. Sample of ResNet performance in a sponge detection.

match two images of the same object by identifying its nearest
neighbour.

IV. ROBOTS IN THE REAL WORLD
The last level of this evolution corresponds to assistive robots
such that they are able to autonomously assist humans in
their daily lives. In this case, real-life scenarios are consid-
ered. As a consequence, there are no constraints about the
environment. This fact raises new challenges in the tasks to
be accomplished by the robots. In this context, the ability to
autonomously manipulate objects is of critical importance.
For that reason, the detect-approach-grasp loop for object
manipulation requires a robust recovery stage, especially
when the held object slides. Although some devices have
been developed for that purpose (e.g. tactile sensors, contact
switches, or proprioception sensors), the robot gripper’s dex-
terity and functionality can be considerably limited. In addi-
tion, neural network approaches were discarded due to the
need for prior learning of both the robot gripper and the
grasped object, what considerably restricts the robot tasks and
the objects to interact with.

As a solution, a novel vision approach was presented
in [32]. As illustrated in Figure 9, simple visual features
such as colour, depth and edges are combined for object
manipulation supervision such that a contact between a robot
gripper and any grasped object could be detected. More pre-
cisely, the process starts with the capture of an RGB-D image.
Then, the RGB image is converted into an Lab image that is
colour-segmented based on the Lab coordinates correspond-
ing to the robot gripper. On the other hand, the depth infor-
mation is in charge of detecting the contact points between
the robot gripper and the held object. For that, an edge
detection based on depth difference is performed. Under the
assumption that the robot gripper always emerges from the
bottom of the image, an edge refinement takes place. The
resulting edge image is combined with the colour-segmented
one such that the contact points can be accurately
extracted.

On the other hand, the proper object detection and recog-
nition also plays a main role. Nevertheless, unlike the ware-
house case, there is no knowledge about all the objects to
interact with in the real world. In fact, a learning process must
be added to successfully deal with new objects. This learning
process used to involve a human-robot interaction where the
user must provide the robot with the identification tag for an
object. The next step is to obtain the corresponding object
representation for its further recognition. In this context, deep
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FIGURE 9. Workflow of our approach for error detection in manipulation tasks.

learning techniques are discarded due to its time-consuming
learning stage. Furthermore, the necessary data for the proper
object recognition in a real scenario could not be always
available by requiring more than one learning process for the
same object.

As a solution and based on neurological findings, a novel
approach was presented in [33]. For that, three primary
cues are considered: colour, motion and shape. Aimed to
invariability in front of illumination changes and surface
orientation, the l1l2l3 colour space was chosen. The same
approach for motion detection described in Section II is used
to properly perceive moving elements. Regarding the shape,
a biological approach based on Gabor filters is considered.
As object shape changes depending on the point of view,
different representations are required. Nevertheless, after an
extensive experimental analysis, it was concluded that four
views of an object could be enough: top, bottom, sideways
and perspective. Therefore, an 8-Gabor shape representation
for each view is generated. With this data, an object can
be accurately recognised in cluttered scenarios. In addition,
the time to learn a new object is short due to the simplicity of
its representation.

So, the whole object recognition approach, illustrated
in Figure 10, can be described as follows: when a robot is
looking for an object, a visual scrutiny is performed. So, for
each taken image, two processes take place. On the one hand,
the RGB image is converted to the l1l2l3 colour space and,
based on the l1l2l3 coordinates of the target object, an image
segmentation is performed. On the other hand, the gray-scale
version of the taken image is obtained. From that, two images
are obtained: the result of applying the motion detection
approach and the shape-based segmentation. Note that the
background model could not cover the whole image since it
is built during the visual scrutiny where the robot cameras
are continuously moving. The three segmented images are
combined based on the object likelihoods for each considered
cue. It is worth mentioning that this probabilistic combination
varies for each object since the type of object determines what
visual features are more distinctive.

FIGURE 10. Workflow of our approach for object recognition in real
scenarios.

V. DISCUSSION
The trip along robotics research and applications described
in this paper highlights the fact that different scenarios result
in different requirements for robot tasks, especially in terms
of constraints about the targets and/or the environment. So,
the issues to be overcome for each proposed scenario have
been increased in number and difficulty.

Thus, in the case of industrial settings (a structured envi-
ronment), most of the environmental conditions are under
control. This fact leads to a problem simplification focused
on the targets to work with. In particular, in this paper,
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a human-robot collaboration task has been analysed. For that,
the main goal was to design a system able to recognise and
localise people within the robot work-space so that the person
to interact with is identified and tracked, while the surveil-
lance of the space around the robot guarantees the safety of
all the remaining surrounding elements such as other per-
sons or robots. With that purpose, a vision system has been
presented. This system was designed taken into account the
following requirements: the coverage of all the surrounding
robot space; a robust detection of all the surrounding elements
(i.e. people and other robots) based on motion detection by
considering that those elements can stop, group, leave and
re-enter the scene at any time; the avoidance of false positives
due to minor dynamic factors such as illumination changes
or blinking screens, so that the industrial activity does not
stop unnecessarily; and the tracking of those elements, as well
as their 3D localisation, with the aim to guarantee the safety
of all of them during the robot task performance. Despite its
good experimental results, the proposed approach has some
limitations to be addressed. This approach has been designed
for static robots. So, several stops would be required to apply
this vision system to mobile robot platforms. In addition,
qualitative depth estimation provides a region-based location
what could lead to needlessly stop the activity when a person
or robot is in the limit of the safe area.

Regarding semi-structured environments, two different
applications have been presented. First, a librarian robot
aimed to identify a book within a bookcase. In this case,
based on the book cataloguing in the libraries, the issues
to deal with are: the difference in visual appearance of the
books; the identification of the vertical edges of all the books
on the considered bookshelf, allowing the vision system to
properly separate each book; the recognition of the tags
attached to each book for its cataloguing; and the reading
of the alphanumeric code in order to identify the searched
book. In addition, other factors like changes in illumination,
shadows and other environmental conditions were taken into
account to get a purposeful application. From this starting
point, a series of traditional Computer Vision techniques were
combined to achieve the final application goal. In this case,
the main limitation lies in the text recogniser (i.e. OCR) since
an open source software was used and the error rate could be
too high under certain conditions.

Second, a warehouse application has been presented.
Although the basic problem is similar, the challenges to be
tackled differ considerably since, for instance, the market
products to be distinguished vary in their visual features
much more than books in a library. In addition, illumina-
tion conditions can be poor due to the shelf design which,
together with other environmental conditions, can consid-
erably influence the recognition process. In this case, deep
learning techniques were used to tackle these issues; ResNet,
in particular. Note that, as the system knows a priori the
market products stored in the warehouse, the data required
for its proper learning can be generated. Nevertheless, this
learning process is the bottleneck of the approach, since the

data required for the learning must be generated for each new
market product, and a training phase takes place each time
a new product is introduced, a process that can be very time
consuming.

When talking about the real world, a wide range of robot
applications can be proposed. In this paper, two of them
have been analysed. The first one refers to an application for
robot grasping supervision, aimed to error recovery when the
grasped object is slipped or lost. It is important to highlight
that, given that no constraints about the robot gripper or
grasped object are established, the complexity of the problem
has been considerably increased. In addition, deformable
objects and robot grippers were also considered. This fact
is critical for the resulting application, since state-of-the-art
grippers may undergo different deformations to better adapt
to a particular object. In consequence, deep learning tech-
niques were discarded because all the possible deformations
cannot bemodelled a priori for its learning. From this starting
point, colour, edges and depth cues are combined to suc-
cessfully detect grasping errors. A number of experiments
(described inmore detail in [32]) with different robot grippers
interacting with a variety of objects demonstrate the good
performance of the proposed approach by obtaining an accu-
racy of 97.5 %. Nevertheless, small or thin objects can lead
to a failure. Therefore, the approach should be improved to
properly deal with this kind of objects without constraining
the robot’s autonomy.

The last presented application is object detection for robot
manipulation. As in the previous application, no constraints
about the object and robot manipulator are specified. This fact
led us to discard deep learning techniques; the main reason
is the time-consuming learning stage, since each new object
to interact with would result in another training stage that,
in turn, would require a large amount of object data in differ-
ent orientations, positions, and scales to be properly learnt.
In fact, this is one of the issues to be addressed: the imple-
mentation of an object representation that is easy and quick to
learn. Another important issue is the recovery of the object’s
shape since this is an essential information for properly grasp-
ing it. In this sense, deep learning techniques like YOLO
(YouOnly LookOnce) or ResNet (Residual Network), are not
adequate, since they only provide a bounding box enclosing
each detected object; this bounding box may include a lot of
redundant space, as shown in [34]. Moreover, partial occlu-
sions are represented by overlapping the bounding boxes and,
consequently, another computer vision technique is required
to detect the occluded part (if it is the case) and recover the
object’s shape. Again, environmental factors must be also
taken into account to be successful in the goal task. Keeping
all these issues in mind, a biologically-inspired approach was
proposed. In particular, colour, motion and shape cues are
combined. As extensively described in [33], three different
experiments were carried out for semi-structured scenes, real
scenarios, and image repository. In all these experiments,
the object detection was successful, achieving an accuracy
of 96.1 % when the image repository was used. This result
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substantially improves the performance of other state-of-
the-art classification approaches.

In a nutshell, the lessons learnt after this trip could be
summarised as follows:
• The type of scenario and the task to be performed consid-
erably affect the required solution due to the restrictions
on the environmental conditions and/or the elements to
interact with

• There is no a unique solution for all the robotic tasks
since each robot task sets out different issues and
requirements

• Deep learning techniques are not always applicable to
object recognition despite its good experimental results.
The main reasons are:
– the lack of enough data for properly training the

neural network
– the huge amount of existing objects when

real-world scenarios are considered
– the continuous changes in the shape of deformable

objects
– the need of accurately identify a specific object

within an object class, since neural networks are
aimed to generalise the object visual features to
properly classify it into its corresponding class

• Illumination together with other dynamical environmen-
tal factors can considerably influence the recognition
tasks, making them fail miserably

• Neurobiological findings may help in the design of
purposeful solutions

VI. CONCLUSION
The Robotics evolution to autonomous service robots from
the industry has required a continuous research to properly
deal with themultiple arisen issues. In fact, each new scenario
or task to be performed set out a series of challenges to be
faced up with.

This paper presents an overview of these requirements
through several developments going from the industry to
the real world. So, this trip starts with industrial settings
where a robot is endowed with a vision system to guarantee
the safety of all the surrounding elements while robot tasks
are performed, specially when they are collaborative. It also
includes a human tracking and recognition module. In this
case, issues such as how to cover the whole robot work-space,
how to detect people even when they stop, or how to deal with
background minor dynamic factors, were overcome.

Moving to semi-structured environments, the conditions
are less restricted and controlled. This fact led to deal with
other challenging situations. In particular, we have studied
two different scenarios: a library and a warehouse. Given the
similarity between them in terms of topological distribution,
we have focused on the proper recognition of the items to be
recovered and reinstated in the shelves. Regarding the library,
the requested item will be always a book, although it can vary
in colour, size and title text style. Thus, a vision system to
distinguish book by book by looking for vertical divisions

is designed. Then, the correct book is recognised based on its
LCC code, attached to each book, used for book classification
in the library under study. A richer recognition system is
provided when a robot works in a warehouse since the market
products can vary in a wide range of visual features. In this
case, deep learning techniques have been used, although tra-
ditional computer vision methods must be integrated when an
item needs to be learnt in a short period of time.

Finally, when real scenarios are considered, robots must
be endowed with those sensory motor skills to work in an
autonomous and reliable way. So, two main tasks have been
considered: the detection of an error during object manip-
ulation for a quick and safe recovery; and object recogni-
tion in cluttered scenes. In both cases, traditional approaches
together with sensor fusion have been combined to success-
fully achieve the goal.

This overview brings to light the increase in complex-
ity in the designed approaches whenever the environmental
restrictions are less limited and controlled. In addition, these
approaches also change depending on the goal task or the con-
sidered type of scenario, as it is the case of object recognition.
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