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This work addresses the challenge of stabilizing column generation (CG) via

dual optimal inequalities (DOI). We present two novel classes of DOI for the general

context of set cover problems. We refer to these as Smooth DOI (S-DOI) and

Flexible DOI (F-DOI). S-DOI can be interpreted as allowing for the undercovering

of items at the cost of overcovering others and incurring an objective penalty. S-

DOI leverage the fact that dual values associated with items should change smoothly

over space. F-DOI can be interpreted as offering primal objective rewards for the

overcovering of items. We combine these DOI to produce a joint class of DOI called

Smooth-Flexible DOI (SF-DOI). We apply these DOI to three classical problems in

logistics and operations research: the Single Source Capacitated Facility Location

Problem, the Capacitated p-Median Problem, and the Capacitated Vehicle Routing

Problem. We prove that these DOI are valid and are guaranteed to not alter the



optimal solution of CG. We also present techniques for their use in the case of solving

CG with relaxed column restrictions.

This work also introduces a CG approach to Multi-Robot Routing (MRR).

MRR considers the problem of routing a fleet of robots in a warehouse to collec-

tively complete a set of tasks while prohibiting collisions. We present two distinct

formulations that tackle unique problem variants. The first we model as a set pack-

ing problem, while the second we model as a set cover problem. We show that the

pricing problem for both approaches amounts to an elementary resource constrained

shortest path problem (ERCSPP); an NP-hard problem commonly studied in other

CG problem contexts. We present an efficient implementation of our CG approach

that radically reduces the state size of the ERCSPP. Finally, we present a novel

heuristic algorithm for solving the ERCSPP and offer probabilistic guarantees for

its likelihood to deliver the optimal solution.
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Chapter 1: Introduction

1.1 Overview

Over the years, column generation (CG) [Lübbecke and Desrosiers, 2005] has

proven to be a critical tool in solving large scale linear programming (LP) problems.

Put within a branch and price framework [Barnhart et al., 1996], CG has had much

success in tackling challenging discrete optimization problems. CG has been applied

across a number of different fields including vehicle routing [Costa et al., 2019], crew

scheduling [Desrochers and Soumis, 1989], material cutting [Gilmore and Gomory,

1961], web search [Abrams et al., 2007], and computer vision [Yarkony et al., 2020].

CG is typically applied to problem formulations with an innumerable num-

ber of variables, working by considering only a subset of the variables, called the

restricted set, at any given time. The optimization problem is solved over the re-

stricted set, and new variables are fed into the set according to their associated

reduced costs. For minimization problems, the variable with lowest reduced cost is

sought. The process of searching for a variable with the lowest reduced cost value is

called pricing, which typically amounts to solving a discrete optimization problem.

When pricing determines that all variables not considered have nonnegative reduced

cost and would therefore fail to improve the current objective function value if in-

1



cluded in the restricted set, the current solution over the restricted set is provably

optimal over the whole set of variables.

A major drawback of CG is its potentially slow convergence on certain impor-

tant classes of problems. For particularly large problems, CG can take prohibitively

long to converge, continuously adding variables to the restricted set yet failing to

progress toward a solution. Much effort has been put into studying and addressing

this phenomenon, which we consider in this work.

One primary approach to accelerating CG convergence is dual stabilization.

Often in CG problems with slow convergence, the associated dual solutions can

oscillate significantly over the the iterations of CG. For CG to converge, the dual

solution must ultimately progress towards a dual optimal solution. Oscillations

hamper this process as they generally lead to dual values that fail to produce columns

that adequately progress CG toward a solution. Dual stabilization aims to limit

these oscillations and thus accelerate convergence. This is typically done through

trust region methods [Marsten et al., 1975], interior point methods [Gondzio et al.,

2013, Rousseau et al., 2007], smoothing methods [Pessoa et al., 2018, Wentges, 1997],

or dual optimal inequalities (DOI) [Ben Amor et al., 2006]. DOI are a primary focus

of this work. DOI restrict the feasible dual space such that at least one dual optimal

solution remains in the feasible space. This restriction limits the dual space that

can be explored and consequently limits the dual oscillations during CG.

This work addresses dual stabilization with the introduction of two novel DOI

for minimum weight set cover problems commonly seen in operations research. The

first class of DOI we present are called Smooth DOI (S-DOI). S-DOI leverage the

2



fact that for certain problems, we expect that dual variables in the final solution

change smoothly over space. This is seen in problems where cost terms associated

with elements are tied to some notion of position. In such problems, we expect

elements in close proximity to have similar dual values. This work provably bounds

the deviation between certain dual values. This translates in the primal to allowing

the undercovering of certain elements at the cost of overcovering others and incurring

an objective penalty. We show that when these bounds are small, as is the case with

elements in close proximity, S-DOI provide remarkable speedup to CG convergence.

We show that this effect scales considerably on larger problems.

The second class of DOI we present are called Flexible DOI (F-DOI). F-DOI

were first introduced by Lokhande et al. [2019] in the context of set packing prob-

lems, specifically for the application of entity resolution. We adapt F-DOI for the

context of set cover problems and formulate them for common problems in oper-

ations research. F-DOI offer rewards for overcovering items, placing strict bounds

on the dual values. The rewards for overcovering items is calculated as the lowest

possible cost decrease for the removal of that item. We prove that incorporating

F-DOI do not alter the final solution of CG. We show that, on certain problems,

F-DOI can drastically reduce the number of iterations required for CG to converge.

This comes at notable computational cost in solving the primal, however on many

significantly large problems, the F-DOI are shown to have an overall improved speed

of convergence. We also employ both DOI jointly, producing Smooth-Flexible DOI

(SF-DOI).

We apply each set of DOI to applications in logistics and operations research in-
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cluding the Single Source Capacitated Facility Location Problem (SSCFLP) [Aikens,

1985], the Capacitated p-Median Problem (CpMP) [Brandeau and Chiu, 1989], and

the Capacitated Vehicle Routing Problem (CVRP) [Dantzig and Ramser, 1959].

We adapt our DOI to the case of problems with relaxed column restrictions.

Specifically we look at the case where a problem permits the inclusion of repeat

elements (customers) in a given column. Our principal application of interest for

this is the ng-route relaxation [Baldacci et al., 2008] of the CVRP. ng-routes are

routes that can contain repeat elements (customers) so long as the ordered track

of elements in between a repeated elements travels outside that element’s assigned

neighborhood. This contrasts with elementary routes which require that any element

(customer) be included at most once.

We show that although our DOI are not technically valid for such problems,

we can employ an effective implementation of our DOI that sequentially deactivates

DOI components as they are shown to interfere with CG progressing toward the true

solution. We call this implementation relaxed-DOI. We show that this approach pro-

vides significant speedups in convergence for the ng-route relaxation of the CVRP.

We also provide a construction of the F-DOI that can produce optimal solutions

while guaranteeing that all artificial DOI variables be inactive at termination.

Next we leverage our CG toolkit to address the problem of Multi-Robot Rout-

ing (MRR). In MRR, we tackle two distinct formulations, each of which addresses

the problem of assigning a fleet of robots in a warehouse to tasks while ensuring

that no robots collide with one another. One method models MRR as a set packing

problem while the other models MRR as a set cover problem. MRR closely relates

4



to the problem of Multi-Agent Pathfinding (MAPF) [Felner et al., 2017, Standley,

2010, Stern et al., 2019, Yu and LaValle, 2016], which handles the challenge routing

a fleet of agents from their start locations to their destinations while prohibiting

collisions. Expanding on the MAPF problem, the Multi-Agent Pickup and Delivery

(MAPD) problem [Grenouilleau et al., 2019, Liu et al., 2019, Ma et al., 2017] was

developed. MAPD addresses the problem of routing a fleet of agents to deliver a set

of items to specified locations. Our set covering approach to MRR generalizes the

MAPD problem.

We show that in our CG approach to MRR, the pricing problem amounts

to an elementary resource constrained shortest path problem (ERCSPP) [Irnich

and Desaulniers, 2005], a problem that is well studied in the CG literature due to

its appearance in vehicle routing. We develop a novel heuristic pricing algorithm

to tackle the ERCSPP. Our technique relies on developing random orderings of

elements and solving the ERCSPP multiple times over several random orderings.

We offer probabilistic guarantees as to how likely it is that our approach produces

the optimum solution to the ERCSPP. We show the significant speedup offered by

our heuristic in solving MRR.

1.2 Contributions

This work presents the following contributions. We introduce S-DOI, F-DOI,

and SF-DOI for the general context of set cover problems. We prove their validity

and present constructions for each set of DOI on the following problems: the SS-
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CFLP, the CpMP, and the CVRP. We run computational experiments evaluating

our proposed DOI on each of these problem applications. DOI have previously been

proposed for stock cutting [Ben Amor et al., 2006], bin packing [Gschwind and Ir-

nich, 2016], computer vision Yarkony et al. [2020], and entity resolution [Lokhande

et al., 2019], however none have been proposed for the problems considered in this

work.

We adapt our DOI for problems with relaxed column restrictions, referring to

this implementation as relaxed-DOI. We also present a valid adaptation for the F-

DOI for the ng-route relaxation. We test the relaxed-DOI on the ng-route relaxation

of the CVRP.

We formulate two CG approaches to the problem of MRR. MRR is modeled

after the problems of MAPF and MAPD. Current scalable approaches to these

problems are often highly suboptimal. For our approach to MRR, we provide an

efficient pricing mechanism that significantly reduces the state space of the pricing

problem, and we further reduce the state space by adapting the work of Boland

et al. [2006] to avoid the consideration of all time components. We present valid

DOI for one of our approaches to MRR and run experiments to evaluate their

effectiveness. We present a new heuristic pricing algorithm for solving an ERCSPP

and run experiments to evaluate its performance. We run experiments to study our

approaches to MRR and compare against established MAPF and MAPD models.
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1.3 Organization

This work is organized as follows. In Chapter 2 we present the necessary

background relevant to our work on CG and stabilization. We present CG and

review previous work on dual stabilization techniques.

In Chapter 3 we present the S-DOI, F-DOI, and SF-DOI. We prove their

validity and offer constructions for them on the SSCFLP and the CpMP. We run

experiments on both problems and compare their performance against nonstabilized

CG and CG used with smoothing.

In Chapter 4 we construct and test our DOI on the CVRP. We then present

an approach to apply our DOI on problems with relaxed column restrictions and

test our techniques on the ng-route relaxation to the CVRP.

In, in Chapter 5 we present the MRR problem. We detail two distinct ap-

proaches, both employing CG. We describe the resultant pricing problems and

present an efficient pricing scheme that can be adapted to both approaches. We

introduce a heuristic solver for the ERCSPP. We run experiments and conclude

with some analysis. Finally, in Chapter 6 we wrap up with some conclusions and a

discussion on future research.
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Chapter 2: Background

2.1 Introduction

In this chapter we present the necessary background on column generation

(CG) from the perspective of a minimum weight set cover (MWSC) formulation.

We discuss previous work on CG stabilization as well as present the concept of dual

optimal inequalities (DOI). This chapter is organized as follows. In Section 2.2 we

present CG. In Section 2.3 we present methods to produce lower bounds on our

optimal solution. Finally, in Section 2.4 we discuss the previous literature on CG

stabilization.

2.2 Column Generation

CG is a versatile technique for solving large scale linear programs with possibly

innumerable numbers of variables. CG precludes the need to enumerate all variables

by only considering a subset of the variables at any given time. We present CG in

the context of solving a MWSC problem. Consider the problem where we have a set

of elements N representing items that all must be covered collectively by a group

of objects, each object covering a subset of N . We refer to each such object as a
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column l ∈ Ω, where Ω is the set of all valid columns in the context of the problem.

Columns represent a subset, or occasionally an ordered subset, of elements ofN , and

the inclusion of any given column in the set covering solution incurs an associated

cost. Let cl be the positive valued cost of including column l in the solution and θl

be a binary decision variable indicating whether column l is in the solution or not.

Finally, let aul ∈ {0, 1} be a binary constant whose value equals 1 if column l ∈ Ω

covers item u ∈ N and 0 otherwise. We have the following discrete optimization

problem.

min
θ

∑
l∈Ω

clθl (2.1)

subject to

∑
l∈Ω

aulθl ≥ 1 u ∈ N (2.2)

θl ∈ {0, 1} l ∈ Ω. (2.3)

Our objective function that we wish to minimize is represented by (2.1). The

constraints (2.2) enforce that every item is covered in the solution at least once. Our

domain constraints (2.3) ensure that our solution is integer. We wish to address this

problem using CG, however CG can only solve linear programs (LP) whose solution

space must be represented by a convex region. The standard approach is to use

CG to solve the LP-relaxation of (2.1)-(2.3) and employ a branching scheme such

as branch and price [Barnhart et al., 1996] to restrict the solution space until an

integer solution is found. If we relax the binary constraint on θl we get the following
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LP relaxation.

min
θ

∑
l∈Ω

clθl (2.4)

subject to

∑
l∈Ω

aulθl ≥ 1 u ∈ N (2.5)

θl ≥ 0 l ∈ Ω. (2.6)

Remark 2.2.1. Note that we use a cover constraint in (2.5) as opposed to a partition

constraint (referring to an equality constraint) which is also commonly used. We do

so with the expectation that items still will not get covered more than once. We

assume that for all sets of items l ∈ Ω, the cost of a column increases monotonically

with the addition of new elements to the set. This means it will always be cheaper

to cover an item no more than once in the final solution. As well, formulating (2.5)

as a set cover constrains the associated dual variables to be positive.

The optimization problem in (2.4)-(2.6) has the associated dual:

max
α

∑
u∈N

αu (2.7)
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subject to

∑
u∈N

aulαu ≤ cl l ∈ Ω (2.8)

αu ≥ 0 u ∈ N (2.9)

We denote (αu)u∈N as the dual variables associated with constraints (2.5).

For problems of our interest, Ω may be prohibitively large to enumerate all of its

elements, admitting the opportunity for CG to be used. To intuit how CG works,

first note that in a linear programming problem such as (2.4)-(2.6), the solution

cannot have more positive decision variables than the size of the solution’s basis,

where the basis refers to the feasible solution basis as defined by the simplex method

[Nelder and Mead, 1965]. Furthermore, the basis can be no larger than the number

of independent constraints. CG leverages this fact, only considering a subset of the

variables at any given time, assuming the rest to be set to 0.

To present CG, we consider a subset ΩR ⊆ Ω called the restricted set. We

present the following LP called the restricted master problem (RMP).

min
θ

∑
l∈Ω

clθl (2.10)

subject to

∑
l∈Ω

aulθl ≥ 1 u ∈ N (2.11)

θl ≥ 0 l ∈ ΩR. (2.12)
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This formulation is identical to the LP from (2.4)-(2.9), save for the set of

available decision variables defined by (2.12), where the set of columns considered is

now limited to ΩR rather than Ω. The dual problem of (2.10)-(2.12) only contains

a subset of the constraints from (2.8), therefore the dual solution to (2.10)-(2.12)

may very well be infeasible to (2.7)-(2.9). Our objective is to find the most violated

constraint in (2.8) and add its associated column to the RMP. We define the reduced

cost c̄l for a column l as:

c̄l = cl −
∑
u∈N

αuaul (2.13)

A negative reduced cost implies a violated dual constraint in (2.8). If the

minimum reduced cost is greater than 0 (c̄min ≥ 0), then the solution to (2.10)-

(2.12) optimally solves (2.4)-(2.6). Otherwise, we can add the column l associated

with the lowest reduced cost to ΩR and re-solve the RMP.

Note that the reduced cost c̄l represents the marginal change to the objective

function per unit increase of θl if the associated column enters the basis as described

by the simplex method. Finding all reduced costs to be nonnegative implies that

no improvement to the objective can be made, thus guaranteeing optimally.

CG works as follows. Initialize ΩR with some feasible set of columns. Solve

the RMP. Using the dual variables obtained from solving the RMP, determine the

lowest reduced cost c̄min over l ∈ Ω\ΩR. If c̄min ≥ 0 the solution to the RMP solves

the full problem, otherwise add the column associated with c̄min to ΩR and repeat

again from solving the RMP.
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Algorithm 1 Column Generation

Initialize ΩR

repeat
solve RMP(ΩR) =⇒ (α)
solve subproblem(α) =⇒ (l̂,c̄min)
if c̄min ≥ 0 then

Exit
else c̄min < 0

ΩR ⇐= ΩR ∪ l̂
end if

In CG, the linear program in the RMP is called the primal problem or the

master problem while the search for the lowest reduced cost column is called the

subproblem or pricing. During pricing it is prohibitively expensive to enumerate

all possible reduced costs. Typically when employing CG, the subproblem contains

some structure, allowing it to be solved more efficiently. Often the subproblem

amounts to solving a knapsack problem [Martello et al., 1999], or in the case of ve-

hicle routing, an elementary resource constrained shortest path problem (ERCSPP)

[Irnich and Desaulniers, 2005]. We present an algorithm for CG in Algorithm 1 and

a visualization of CG is shown in Figure 2.1.

CG applied to (2.4)-(2.6) can be used to solve the integer linear program

(2.1)-(2.3) when put within a branching framework referred to as branch and price

[Barahona and Jensen, 1998]. In branch and price, branching is applied to enforce

restrictions on the columns in Ω. CG is used to solve each linear relaxation in the

branching tree. For many problems, CG formulations often lead to tighter linear

relaxations, expediting the search for integer solutions.

It should be noted that during pricing one need not always find the lowest

reduced cost column to return to the primal. Any negative reduced cost column
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Figure 2.1: Visualization of the CG algorithm. The primal RMP is solved and
delivers the dual variables (α) to pricing algorithm. The pricing problem is solved
and deliver the optimal negative reduced cost column found (l). If no negative
reduced cost column is found, the optimum has been reached and CG is concluded.

further constrains the dual solution to the RMP and has the potential to improve

the current objective function. So long as a negative reduced cost column is found,

CG can continue on to the next iteration with that column. This presents the

opportunity to employ heuristic pricing, solving the pricing problem efficiently but

not necessarily exactly. Since solving the pricing problem exactly can often be

expensive, one can employ an efficient heuristic to retrieve negative reduced cost

columns. However, in order to ultimately ensure optimality, the pricing problem

must be solved exactly in the final iteration of CG to confirm no negative reduced

cost column exists. Also note that CG can often be accelerated by returning multiple

columns during each round of pricing. The objective here would be to return as many

columns that would help, but not overburden the primal problem.
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2.3 Lower bound

In this section we define the lower bound associated with a given solution

through each iteration of CG. Note that the solution to (2.10)-(2.12) must be greater

than or equal to (2.4)-(2.6) through CG. Therefore, the solution to the RMP provides

a monotonically decreasing upper bound on the solution to (2.4)-(2.6) throughout

the process.

To define a lower bound, consider the Lagrangian relaxation of (2.4)-(2.6):

min
θ≥0∑

l∈Ω θl≤|N|

∑
l∈Ω

clθl +
∑
u∈N

αu(1−
∑
l∈Ω

aulθl) (2.14)

We include a constraint on the cumulative sum over θ since we know from

Remark 2.2.1 that it is always cheaper to cover less items and if each active column

in the worst case only covers a single item, then we could only have at most |N | in

cumulative activity from θ. For a fixed α = α̂, (2.14) defines a lower bound on the

optimal value of (2.4)-(2.6). We can reformulate (2.14) and get the following.

(2.14) = min
θ≥0∑

l∈Ω θl≤|N|

∑
u∈N

α̂u +
∑
l∈Ω

θl(cl −
∑
l∈Ω

aulα̂u) (2.15)

= min
θ≥0∑

l∈Ω θl≤|N|

∑
u∈N

α̂u +
∑
l∈Ω

θlc̄l (2.16)

=
∑
u∈N

α̂u + |N |c̄min (2.17)

Through each round of CG we obtain α̂ as the dual solution to the RMP. Using
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that along with the solution to the pricing problem c̄min, we obtain a lower bound

on the optimal solution to (2.4)-(2.6). Additionally, for certain applications we can

use (2.16) as the foundation for a tighter lower bound specific to that problem. The

lower bound delivered by (2.17) often does not increase monotonically through the

iterations of CG, however one can always employ the best lower bound obtained

over the course of CG to provide a valid bound on the objective.

2.4 Review of Stabilization Techniques

It is well established that, for sufficiently large problems, CG can suffer from

critical convergence issues [Lübbecke and Desrosiers, 2005]. Early in CG, it is com-

mon that dual values can oscillate significantly while poor initial columns and pos-

sible artificial variables used to initialize the primal dominate the dual solution’s

behavior. This is called the heading-in effect [Vanderbeck, 2005]. Toward the end

of CG, it is common to see many rounds of CG with many dual updates without

improvement to the primal before convergence. This is called the tailing off effect

[Desrosiers and Lübbecke, 2005]. As well we can see during CG that columns are

continuously added to the primal with only very marginal improvements to the

objective over many iterations. This is called the plateau effect [Vanderbeck, 2005].

It has been observed that denser columns, in the range of 8-11 elements per

column, can lead to more stability issues [Elhallaoui et al., 2005]. A number of

techniques centered around dual stabilization have been approached to tackle con-

vergence issues. These mainly fall into four broad categories: trust region methods,
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smoothing methods, interior point methods, and dual optimal inequalities (DOI),

each of which we discuss in the following subsections.

2.4.1 Trust Region Methods

Trust region methods rely on enforcing restrictions to the dual space when

solving CG and iteratively adjusting the region as CG progresses. Seminal work

in these methods came from [Marsten et al., 1975], which introduced the boxstep

method. The boxstep method works by restricting the values that the dual variables

can occupy. CG is solved and a new box is formed around the new dual solution for

the next iteration. Through each step, the dual solution is restricted from moving

too far from the previous solution. Expanding on this concept, Du Merle et al.

[1999b] and Du Merle et al. [1999a] employed a box step method that allows for a

dual solution to travel outside the established region but at the cost of an l1 penalty.

Frangioni [2002], Briant et al. [2008], and van Ackooij and Frangioni [2018] applied

what are called bundle methods. Bundle methods similarly apply penalties for

dual variables traveling outside a targeted region, but they apply nonlinear penalty

functions meeting specific convergence properties.

2.4.2 Interior point methods

Interior point methods leverage interior point optimization methods for solving

the primal to obtain distinct dual solutions that can be averaged. The averaged dual

solution would likely be more balanced and have a lower l2 norm. Rousseau et al.
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[2007] used interior point methods to repeatedly solve the primal and construct

multiple dual solutions at a given iteration. They then fed the average of these dual

solution into the pricing subproblem. Gondzio et al. [2013] leverage interior point

methods to avoid solving the primal to full optimality. Rather they introduce their

primal-dual column generation method, which computes a feasible set of vectors

whose associated dual vector is then used for pricing.

2.4.3 Smoothing methods

Smoothing methods restrict the movement of dual solution through successive

iterations by taking a convex combination of an established center dual solution

and new dual solutions obtained through specific rounds of CG. The dual center

is updated selectively when particularly good solutions are found (i.e. producing

high lower bounds). Wentges [1997] proposed what is called weighted dantzig-wolfe

decomposition that applies this technique, using primarily weighted dual variables

for pricing at every iteration. With a center dual value α0 established and a current

dual solution obtained through the current round of CG α, the weighted dual vector

ᾱ = λα0 + (1−λ)α for some λ ∈ [0, 1] is inputted for pricing. Whenever ᾱ produces

a higher lower bound than that established by α0, set α0 ← ᾱ. Pessoa et al. [2018]

expanded on this technique, presented dynamic strategies for updating the weighting

scheme defined by λ and provided conditions guaranteeing stable convergence.
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2.4.4 Dual Optimal Inequalities

The work of Ben Amor et al. [2006] introduced dual optimal inequalities (DOI)

as a tool to stabilize CG by restricting the dual space with problem specific cuts.

These cuts decrease the feasible search space of the dual and thus accelerate CG.

Cuts in the dual space translate to extra variables in the primal. Therefore, the

problem can be seen as a relaxation of the RMP. These added inequalities are called

dual optimal inequalities if they do not cut off any dual optimal solutions to the

master problem. This implies that at termination of CG, no added artificial variables

associated to the dual inequalities would be active and the solution to the adjusted

problem is provably equivalent to the solution to the original problem.

Ben Amor et al. [2006] also introduced the concept of deep dual optimal in-

equalities. Deep dual optimal inequalities work similarly to dual optimal inequalities

except that they are only required to leave at least one dual optimal solution in the

remaining feasible space. Ben Amor et al. [2006] proved that the solution at termina-

tion of CG on problems employing deep dual optimal inequalities is provably equal

to the solution to the original problem. For the remainder of this work we will not

distinguish between deep dual optimal inequalities and dual optimal inequalities,

but will rather address them both as DOI.

DOI exploit problem specific characteristics such as symmetries. DOI have

been established to the problem of cutting stock, where the objective is to cut stocks

of certain lengths to meet specific size demands. DOI for cutting stock leverage the

fact that stock items of equivalent size are indistinguishable and can be swapped,
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and therefore their associated dual values can be assumed to be equivalent. This

results in eliminating any dual oscillations that would otherwise be associated with

differing dual values between stocks. Gschwind and Irnich [2016] proposed new DOI

to more complex problems including bin packing with conflicts and vector packing.

Recently, DOI have made made headway in stabilizing CG approaches in com-

puter vision. Yarkony et al. [2020] details CG approaches to multi-object tracking

[Leal-Taixe et al., 2012, Wang et al., 2017c], multi-person pose estimation [Wang

et al., 2017a,b,d], multi-cell segmentation [Zhang et al., 2017], and image segmenta-

tion [Yarkony and Fowlkes, 2015, Yarkony et al., 2012, Zhang et al., 2014]. Yarkony

et al. [2020] introduces DOI for set packing approaches in these areas. They present

invariant DOI that bound the dual value of items to the upper bound of removing

that item from any column. The authors further expand on this concept to present

varying DOI, which provide tighter cuts dependent on the columns currently repre-

sented in the RMP.

Lokhande et al. [2019] introduced Flexible DOI (F-DOI) for set packing prob-

lems with specific application to entity resolution. In this context, F-DOI further

improve on varying DOI by considering that removal costs for items depend on spe-

cific columns where they appear. These DOI applied in a set packing contexts can

be seen as allowing a relaxation of the packing constraint at an objective cost. Our

work leverages the techniques established here for set cover problems where the DOI

provide rewards for the overcovering of items.
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Chapter 3: Smooth and Flexible Dual Optimal Inequalities

3.1 Introduction

In this chapter we present the Smooth DOI (S-DOI), Flexible DOI (F-DOI),

and Smooth-Flexible DOI (SF-DOI) for the general context of set cover problems.

We construct each set of DOI and prove their validity. We provide specifics to their

construction on two relevant problems in logistics and operations research: the Single

Source Capacitated Facility Location Problem (SSCFLP) and the Capacitated p-

Median Problem (CpMP). We present a third problem application, the Capacitated

Vehicle Routing Problem (CVRP), though we save the study of that problem for

Chapter 4. Much of the work presented in this chapter can be found in Haghani

et al. [2020b]. This chapter is organized as follows. In Sections 3.2, 3.3, and 3.4 we

present the S-DOI, F-DOI, and SF-DOI respectively. In Section 3.5 we address the

challenge of implementing pricing when incorporating added constraints from the

DOI. In Section 3.6 we discuss applications and present specific constructions of the

DOI for those problems. Finally, in Section 3.7 we show experiments and discuss

the effectiveness of each set of DOI.
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3.2 Smooth DOI

In this section we present the Smooth DOI (S-DOI). S-DOI are motivated by

the fact that given a problem whose items can be modeled by locations in some

metric space, we expect the dual variables for items to change smoothly over that

space. Our intuition here stems from the fact that dual variables can be interpreted

as shadow prices. Shadow prices are the marginal change to the objective function

obtained by incrementally relaxing the associated constraint. If two items are close

in space and share similar characteristics, we should expect that their shadow prices

also be similar.

Let N be the set of items that must be covered in a particular problem. For

two items u, v ∈ N , if item u can universally be substituted for item v, our objective

is to bound the difference in their associated dual variables αv − αu by the greatest

possible cost change observable from the substitution of v for u.

Let Nl ⊆ N be the subset of items that are covered by column l. Let us define

s = (s−, s+) = (u, v) ∈ N ×N , u 6= v as an ordered pair of items. Consider a route

l such that u ∈ Nl and v /∈ Nl. We define a swap operation for route l and a pair of

nodes s: l′ = Θ(l, s), where the resultant route l′ is identical to l except that node

u has been replaced by node v.

We now define the subset Ωs ⊆ Ω where Ωs = {l ∈ Ω|s− ∈ Nl ∧ s+ /∈ Nl}. Ωs

is the set of columns that contain s− but not s+. For a given s such that Ωs 6= ∅,

we define the penalty term ρs ∈ R according to the following.
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ρs ≥ max{cl′ − cl : l ∈ Ωs, l
′ = Θ(l, s)} (3.1)

We consider a set S such that if s1 = (u, v) ∈ S and s2 = (v, w) ∈ S,

then we must have s3 = (u,w) ∈ S and ρs1 + ρs2 ≥ ρs3 must hold. We denote

S−u = {s ∈ S : s− = u}, S+
v = {s ∈ S : s+ = v}. We present a stabilized version

of the optimization problem (2.4)-(2.6) incorporating the S-DOI. We include an

additional artificial variable ωs for every s ∈ S and get the following set cover

formulation.

min
θ,ω

∑
l∈Ω

clθl +
∑
s∈S

ρsωs (3.2)

subject to

∑
l∈Ω

aulθl +
∑
s∈S+

u

ωs −
∑
s∈S−u

ωs ≥ 1 u ∈ N (3.3)

θl ≥ 0 l ∈ Ω. (3.4)

ωs ≥ 0 s ∈ S. (3.5)

Our objective (3.2) now includes a penalty term that assigns a positive cost

when any ω is activated. Our cover constraint (3.3) is now amended to include ω

terms that can relax or tighten the cover constraint. The S-DOI can be interpretted

in the primal problem as allowing for the undercovering of items at the cost of

overcovering others and incurring an objective penalty.

Proposition 3.2.1. Problem (3.2)-(3.5) admits an optimal solution (θ∗, ω∗) such
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that ω∗s = 0 for every s ∈ S.

Proof. Let (θ∗, ω∗) be an optimal solution to problem (3.2)-(3.5). If multiple optima

exist, let (θ∗, ω∗) be the one attaining the lowest possible value of Σ(θ∗, ω∗) =
∑
{θ∗l :

l ∈ Ω} +
∑
{ω∗s : s ∈ S}. We prove by contradiction that no variable ω∗s can take

a strictly positive value. Let us assume that ω∗s > 0 for a certain s ∈ S and let us

consider the following three scenarios:

• There exists t ∈ S such that ω∗t > 0, s− = t+, s+ 6= t−.

Let r = (t−, s+). Because of the triangle inequality, r lies in S and ρr ≤ ρs+ρt.

Let ∆ = min{ω∗s , ω∗t }. We let ω′s ← ω∗s −∆, ω′t ← ω∗t −∆, ω′r ← ω∗r + ∆ and

ω′k ← ω∗k for all k ∈ S \ {s, t, r}. It is easy to see that (θ∗, ω′) is primal

feasible. The marginal contribution of replacing ω∗ by ω′ is ∆(ρr − ρs − ρt),

which is nonpositive. If negative (meaning that ∆(ρr − ρs − ρt) < 0) we

obtain a contradiction with the optimality of (θ∗, ω∗). If zero, on the other

hand, the operation provides an alternate optimal solution (θ∗, ω′) such that

Σ(θ∗, ω′) < Σ(θ∗, ω∗), which is also a contradiction.

• There exists t ∈ S such that ω∗t > 0, s− = t+, s+ = t−.

In this case we let ∆ = min{ω∗s , ω∗t } and let ω′s ← ω∗s −∆, ω′t ← ω∗t −∆, and

ω′k ← ω∗k for all k ∈ S \ {s, t}. It is easy to see that the solution (θ∗, ω′) is also

primal feasible and the marginal contribution of this operation is −∆(ρs+ρt).

The term (ρs + ρt) is nonnegative because of the following observation. From

the definition of Ω(·) we have that l ∈ Ωs, l
′ = Θ(l, s) ⇔ l′ ∈ Ωt, l = Θ(l′, t).

Then, for any such pair (l, l′) we have, from the conditions satisfied by ρ,
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that ρs + ρt ≥ (cl′ − cl) + (cl − cl′) ≥ 0. If ρs + ρt > 0, this operation

results in a contradiction with the optimality of (θ∗, ω∗). If zero, on the other

hand, the solution obtained is an alternate optimum and (θ∗, ω′) is such that

Σ(θ∗, ω′) < Σ(θ∗, ω∗), which is also a contradiction.

• For every t ∈ S such that s− = t+, ωt = 0.

Since the primal problem is feasible and no t ∈ S exists satisfying ω∗t > 0, s− =

t+, there must exist a column l ∈ Ω(s) such that θ∗l > 0. Let ∆ = min{ω∗s , θ∗l }

and let l′ = Θ(l, s). We construct new variables θ′, ω′ with all components

equal to those of (θ∗, ω∗) except for ω′s ← ω∗s −∆, θ′l ← θ∗l −∆, θ′l′ ← θ∗l′ + ∆.

This operation entails an increase in the objective of ∆(cl′ − cl− ρs) which by

definition of ρs is nonpositive. If negative, this would contradict the optimality

of (θ∗, ω∗). If zero, on the other hand, it would entail an alternate optimum

such that Σ(θ′, ω′) < Σ(θ∗, ω∗) which is also a contradiction.

3.3 Flexible DOI

In this section we present the Flexible DOI (F-DOI) for set cover problems.

In Section 3.3.1 we present the full version of the F-DOI. Since this implementation

can have scalability issues, we additionally present an efficient implementation in

Section 3.3.2.
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3.3.1 The General Case

Here we present the F-DOI for the context of set cover problems. F-DOI

bound dual variables by the potential cost change from removing an item from an

active column. In the primal, F-DOI can be interpreted as providing rebates for the

overcovering of items.

We will construct the DOI by bounding the minimum cost change we expect

see from the removal of any item from specific columns. For a given column l ∈ Ω,

we define the following rebate σul ≥ 0 for each item u ∈ N . Let Nl ⊆ N be

the subset of items that are covered by column l. For a given column l, for each

u ∈ N \Nl (i.e. for each item that the column does not cover), we set σul = 0. For

the remaining u ∈ Nl we must define σul such that the following is satisfied. Let

l′ ∈ Ω be a column constructed from removing a subset of items X ⊆ Nl from the

column l. We define the following remove operation Ξ, where l′ = Ξ(l,X ). For a

given column l, we must define {σul|u ∈ Nl} such that the following is satisfied for

every subset X ⊆ Nl. ∑
u∈X

σul ≤ cl − cl′ (3.6)

We categorically prefer each σul to be as large as possible. The larger the

value, the more constrained the dual space becomes. In order to ensure the validity

of the DOI, however, (3.6) must remain satisfied.

We define the set Λu = {σul|l ∈ ΩR}, which we index by σ̄, as the set of all σ

values associated with item u across all columns in ΩR. We introduce the artificial
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variable ξuσ̄ for every u ∈ N and every σ̄ ∈ Λu. Let βulσ̄ be a binary constant

that takes value 1 if σul = σ̄ and 0 otherwise. Incorporating the F-DOI, we get the

following formulation.

min
θ,ξ

∑
l∈Ω

clθl −
∑

u∈N ,σ̄∈Λu

σ̄ξuσ̄ (3.7)

subject to

∑
l∈Ω

aulθl −
∑
σ̄∈Λu

ξuσ̄ ≥ 1 u ∈ N (3.8)

ξuσ̄ −
∑
l∈Ω

βulσ̄θl ≤ 0 u ∈ N , σ̄ ∈ Λu (3.9)

θl ≥ 0 l ∈ Ω (3.10)

ξuσ̄ ≥ 0 u ∈ N , σ̄ ∈ Λu. (3.11)

In (3.7) we have a new term that provides a rebate if an artificial variable is

active. In (3.8) we allow for an artificial variable to become active if its associated

item is overcovered. In (3.9) we ensure that the artificial variables must each be

associated with an active column for them to take positive value, and their activity

level is limited by the activity level of the associated column. The F-DOI intuitively

provide rewards for the overcovering of items. The rewards are designed such that

no matter what ξ values are active in a particular solution, there will always be a

lower cost solution with no ξ values active. The following proposition formalizes

this result.
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Proposition 3.3.1. Problem (3.7)-(3.11) admits an optimal solution (θ∗, ξ∗) such

that ξ∗uσ̄ = 0 for every u ∈ N , σ̄ ∈ Λu.

Proof. Let (θ∗, ξ∗) be an optimal solution to problem (3.7)-(3.11). If multiple such

optima exist, let (θ∗, ξ∗) be the one that minimizes Σ(θ, ξ) =
∑
{θl : l ∈ Ω}+

∑
{ξuσ̄ :

u ∈ N , σ̄ ∈ Λu}. We prove by contradiction that if ξ∗uσ̄ > 0 for some u ∈ N , σ̄ ∈ Λu

then either (θ∗, ξ∗) cannot be optimum, or that an alternate optimum (θ′, ξ′) exists

such that Σ(θ′, ξ′) < Σ(θ∗, ξ∗).

Let ξ∗uσ̄ > 0 for some u ∈ N , σ̄ ∈ Λu. Constraints (3.9) ensure the existence of

at least one column l ∈ Ω such that βulσ̄ = 1 and θ∗l > 0. Let X = {u ∈ Nl|ξ∗uσul > 0}

be the subset of items covered by l that are associated with a strictly positive value

of ξ∗uσul . Let ∆ = min{minu∈X ξ
∗
uσul

, θ∗l }. Let l′ = Ξ(l,X ) be the column resulting

from removing all items in X from l. Now, let us consider a solution (θ′, ξ′) with all

entries equal to those of (θ∗, ξ∗) except for the entries ξ′uσul ← ξ∗uσul − ∆ for every

u ∈ X , θ′l ← θ∗l −∆, θ′l′ ← θ∗l′ + ∆. This operation entails a feasible solution with

a marginal contribution to the objective equal to ∆(cl′ − cl +
∑

u∈X σul). Either

this quantity is negative —which would contradict the optimality of (θ∗, ξ∗)— or

Σ(θ′, ξ′) < Σ(θ∗, ξ∗) which is also not possible.

3.3.2 The Efficient Implementation

The stabilized formulation defined in (3.7)-(3.11) can contain a prohibitively

large number of ξ variables and corresponding constraints over the set of all σ values.

We circumvent the enumeration of all σ values in the formulation by binning the
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values into sets and considering only the boundary values of each set.

We define a new set of values ΛR
u , which we index by σ̂, where we enforce that

the smallest value of ΛR
u is no larger than the smallest value of Λu. Our intent is to

generally have |ΛR
u | << |Λu| and associate each σul with the largest element σ̂ ∈ ΛR

u

subject to σul ≥ σ̂. Note that we can always redefine any reward element σul → σ′ul

and maintain the validity of the F-DOI so long as σ′ul ≤ σul.

We define a new binary constant β̂ulσ̂, which takes value 1 if σ̂ = max{σ̂′ ∈

ΛR
u : σ̂′ ≤ σul}. Using these new variables we get the following condensed and

efficient formulation incorporating the F-DOI.

min
θ,ξ

∑
l∈Ω

clθl −
∑

u∈N ,σ̂∈ΛRu

σ̂ξuσ̂ (3.12)

subject to

∑
l∈Ω

aulθl −
∑
σ̂∈ΛRu

ξuσ̂ ≥ 1 u ∈ N (3.13)

ξuσ̂ −
∑
l∈Ω

β̂ulσ̂θl ≤ 0 u ∈ N , σ̂ ∈ ΛR
u (3.14)

θl ≥ 0 l ∈ Ω (3.15)

ξuσ̂ ≥ 0 u ∈ N , σ̂ ∈ ΛR
u . (3.16)

The choice of ΛR
u should depend on the values of Λu. We prefer smaller differ-

ences between each σul and its associated σ̂ ∈ ΛR
u . A feasible choice for the values

in ΛR
u are the quantiles over the set Λu.
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3.4 Smooth-Flexible DOI

In this section we combine the S-DOI from Section 3.2 and the F-DOI from

Section 3.3 to produce a combined set of DOI we call Smooth-Flexible DOI (SF-

DOI). We carry over the variables introduced in Sections 3.2 and 3.3 and get the

following stabilized optimization problem.

min
θ,ω,ξ

∑
l∈Ω

clθl +
∑
s∈S

ρsωs −
∑

u∈N ,σ̄∈Λu

σ̄ξuσ̄ (3.17)

subject to

∑
l∈Ω

aulθl +
∑
s∈S+

u

ωs −
∑
s∈S−u

ωs −
∑
σ̄∈Λu

ξuσ̄ ≥ 1 u ∈ N (3.18)

ξuσ̄ −
∑
l∈Ω

βulσ̄θl ≤ 0 u ∈ N , σ̄ ∈ Λu (3.19)

θl ≥ 0 l ∈ Ω (3.20)

ωs ≥ 0 s ∈ S (3.21)

ξuσ̄ ≥ 0 u ∈ N , σ̄ ∈ Λu. (3.22)

The following proposition formalizes the validity of the SF-DOI by proving

that all artificial variables in (3.17)-(3.22) are not active at termination.

Proposition 3.4.1. Problem (3.17)-(3.22) admits an optimal solution (θ∗, ω∗, ξ∗)

such that ω∗s = 0 for every s ∈ S and that ξ∗uσ̄ = 0 for every u ∈ N , σ̄ ∈ Λu.

Proof. Let (θ∗, ω∗, ξ∗) be an optimal solution to problem (3.17)-(3.22). If multi-
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ple optima exist, let it be one that minimizes Σ(θ, ω, ξ) =
∑

l∈Ω θl +
∑

s∈S ωs +∑
u∈N ,σ̄∈Λu

ξuσ̄. The proof follows by applying the same arguments provided for the

proofs of correctness for the S-DOI and F-DOI in sequence. First we assume that

ω∗s > 0 for some s ∈ S to arrive at a contradiction. Then, assuming that ω∗s = 0 for

every s ∈ S, we assume that ξ∗uσ̄ > 0 for some u ∈ N , σ̄ ∈ Λu to arrive at another

contradiction.

Note that we can apply the same techniques described in Section 3.3.2 to

reduce the number of variables and constraints coming from the implementation of

the F-DOI.

3.5 Efficient pricing

In this section we consider the challenge of addressing pricing for (3.7)-(3.11).

We apply the work of Lokhande et al. [2020] to demonstrate that we can neglect

certain terms in the pricing problem to simplify our approach.

Let α and γ be vectors of dual variables associated with the constraints (3.8)

and constraints (3.9) respectively. For a column l ∈ Ω, its reduced cost c̄l is com-

puted as follows:

cl = cl −
∑
u∈N

aulαu +
∑

u∈N ,σ̄∈Λu

βulσ̄γuσ̄. (3.23)

Similar to what Lokhande et al. [2020] demonstrated in the context of set

packing, the dual variables γ can be ignored by the pricing algorithm without com-

promising the validity and correctness of CG. This allows us to apply pricing in an

unmodified fashion given the extra constraints present when applying the F-DOI.
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The following proposition formalizes this.

Proposition 3.5.1. Let (α∗, γ∗) be a feasible solution to the dual of the RMP of

(3.7)-(3.11) resulting from replacing the variable set Ω by a subset ΩR ⊆ Ω. If

min{cl−
∑

u∈N aulα
∗
u : l ∈ Ω} ≥ 0 then

∑
u∈N α

∗ = z∗, where z∗ is the optimal value

of problem (2.4)-(2.6).

Proof. Let α∗ ≥ 0 be such that cl −
∑

u∈N aulα
∗
u ≥ 0 for every l ∈ Ω, which implies

that α∗ is feasible for the dual of (2.4)-(2.6), therefore
∑

u∈N α
∗
u ≤ z∗. Because

ΩR ⊆ Ω it follows that
∑

u∈N α
∗
u ≥ z∗. Therefore

∑
u∈N α

∗
u ≤ z∗ ≤

∑
u∈N α

∗
u.

When performing pricing while ignoring the γ variables, we either obtain a neg-

ative reduced cost column or we determine no negative reduced cost columns exist.

If we obtain a negative reduced cost column, meaning we have cl−
∑

u∈N aulα
∗
u < 0

for some column l ∈ Ω, we know that the same column would have negative reduced

cost if calculated using (3.23) since γ ≤ 0. If we determine that no negative reduced

cost column exists while ignoring the γ variables, then we know by Proposition

3.3.1 that we are optimal and no active DOI variables. Note that this efficient pric-

ing scheme translates naturally to the case of employing the SF-DOI and solving

(3.17)-(3.22).

3.6 Applications

In this section we detail the implementation of each set of DOI to well-studied

problems in the operations research literature. We specifically study the Single
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Source Capacitated Facility Location Problem (SSCFLP) and the Capacitated p-

Median Problem (CpMP). For both problems we present the CG approach and

detail the construction of the proposed DOI on that problem. In Section 3.6.1 we

look at the SSCFLP and in Section 3.6.2 we look at the CpMP.

3.6.1 The Single Source Capacitated Facility Location Problem

The Single Source Capacitated Facility Location Problem (SSCFLP) considers

the problem of selecting a minimum cost set of locations to open facilities. We are

given a group of customers that must each be serviced by a facility. Each facility

can service a one or more customers at a specific costs, and the set of customers

serviced by any facility is limited by the facility’s capacity.

The SSCFLP is formally described as follows. We are given a set of customers

N and a set of potential facilities I. For each facility i ∈ I and customer u ∈ N ,

we have an assigned service cost ciu ≥ 0 representing the cost for facility i to

service customer u. Each facility i ∈ I has an associated fixed opening cost fi and

maximum capacity Ki. Also, each customer u ∈ N has an associated demand du.

Servicing a customer requires that a facility has enough excess capacity to service

that customer’s demand. The problem is to find the minimum cost set of facilities

I ′ ⊆ I that can be opened to service all customers such that the total demand

serviced by each facility does not exceed its assigned capacity. Facilities must be

opened to service any single customer, and opening a facility incurs an opening cost.

If we let xiu be a variable indicating that customer u is serviced by facility i
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and yi be a variable indicating that facility i is opened, then we have the following

SSCFLP formulation.

min
x,y

∑
i∈I

∑
u∈N

ciuxiu +
∑
i∈I

fiyi (3.24)

subject to

∑
i∈I

xiu = 1 u ∈ N (3.25)

∑
u∈N

duxiu ≤ Kiyi i ∈ I (3.26)

xiu, yj ∈ {0, 1} i ∈ I, u ∈ N , j ∈ I (3.27)

We call the formulation in (3.24)-(3.27) the compact formulation. (3.25) en-

sures that every customer is covered exactly once, (3.26) ensures that every fa-

cility that services a customer is considered opened and that the total demand

it services does not exceed its capacity. We can address SSCFLP using CG by

modeling the problem as a set cover problem. Let S ⊆ N represent a subset of

customers that can be serviced by a particular facility. We define a set of columns

Ω = {(i, S)|i ∈ I,
∑

u∈S du ≤ Ki} as the set of all possibly facility assignment plans.

The cost of assignment l = (i, S) is given by cl = fi +
∑

u∈S ciu. Let aul ∈ {0, 1} be

a binary constant taking value 1 if assignment l covers customer u and 0 otherwise.

Let bil be a binary variable taking value 1 if column l ∈ Ω uses facility i ∈ I. Fi-

nally, let θl be a binary decision variable that takes value 1 if assignment l is in our
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solution. We have the following set covering formulation for the SSCFLP.

min
θ

∑
l∈Ω

clθl (3.28)

subject to

∑
l∈Ω

aulθl ≥ 1 u ∈ N (3.29)

∑
l∈Ω

bilθl ≤ 1 i ∈ I (3.30)

θl ∈ {0, 1} l ∈ Ω. (3.31)

We call the formulation in (3.28)-(3.31) the wide formulation or the CG formu-

lation. (3.29) ensures that each customer gets serviced at least once. (3.30) ensures

that each facility is can be opened at most only once. Though the formulation per-

mits customers to be serviced more than once, we don’t expect it to happen since

servicing a customer more than once always implies a cheaper assignment where one

of the facilities that services that customer simply has that customer removed from

its set of customers to service. (3.30) ensures that each facility can be opened at

most once.

3.6.1.1 SSCFLP pricing

In this section we discuss the pricing problem for the CG approach to SSCFLP.

Let α represent the dual variables associated with constraint (3.29), where αu is as-
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sociated with the constraint indexed by u. Also let µ be the dual variable associated

with constraints (3.30), where µi is associated with the constraint indexed by i. Let

bil be a binary variable that takes value 1 if column l ∈ Ω uses facility i ∈ I and 0

otherwise. Pricing requires us to find the minimum reduced cost c̄.

c̄min = min
l∈Ω

cl −
∑
u∈N

aulαu −
∑
i∈I

bilµi (3.32)

This problem can be decomposed into a series of knapsack problems. Take the

following knapsack problem over each facility i ∈ I.

Γi = min
x∈{0,1}|N|

∑
u∈N

(ciu − αu)xu (3.33)

subject to

∑
u∈N

duxu ≤ Ki (3.34)

Pricing in (3.32) can be equivalently solved by the following.

min
i∈I

fi − µi + Γi (3.35)

3.6.1.2 Lower Bound

We can apply the theory in Section 2.3 to calculate the lower bound. Let Φ

be the objective value of the optimal solution to the LP-relaxation of (3.28)-(3.31).
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Let Φ̂ be the value of the objective of the RMP at the current iteration of CG. Let

θ̂ be the optimizers for the RMP at the current iteration of CG and let α̂ and µ̂ be

the associated dual variables. Working from a foundation provided by (2.16), we

can calculate ΦLB, the the lower bound of Φ, at each iteration of CG through the

following.

We adapt (2.14) for the SSCFLP and include the constraints (3.30).

min
θ≥0∑

l∈Ω bilθl≤1 ∀i∈I

∑
l∈Ω

clθl +
∑
u∈N

α̂u(1−
∑
l∈Ω

aulθl) +
∑
i∈I

µ̂i(
∑
l∈Ω

bilθl − 1) (3.36)

= min
θ≥0∑

l∈Ω bilθl≤1 ∀i∈I

∑
u∈N

α̂u −
∑
i∈I

µ̂i +
∑
l∈Ω

θl(cl −
∑
l∈Ω

aulα̂u +
∑
l∈Ω

bilµ̂i) (3.37)

= min
θ≥0∑

l∈Ω bilθl≤1 ∀i∈I

∑
u∈N

α̂u −
∑
i∈I

µ̂i +
∑
l∈Ω

θlc̄l (3.38)

Note that because of the constraint from (3.30), the following holds.

min
θ≥0∑

l∈Ω bilθl≤1 ∀i∈I

∑
l∈Ω

θlc̄l =
∑
i∈I

min{0,Γi − µi + fi} (3.39)

Therefore we can calculate our lower bound by the following.

ΦLB(θ̂, α̂, µ̂) =
∑
l∈Ω

clθ̂l +
∑
i∈I

min{0,Γi − µ̂i + fi} (3.40)

This lower bound can be calculated following each round of pricing and it is

guaranteed to bound Φ from below if pricing is solved as described in Section 3.6.1.1.
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3.6.1.3 DOI for SSCFLP

To apply the DOI described in Sections 3.2 (S-DOI), 3.3 (F-DOI), and 3.4

(SF-DOI), we define the S-DOI penalties ρ and the F-DOI rebates σ as:

ρuv ← max{civ − ciu : i ∈ I} u, v ∈ N , u 6= v, du ≥ dv (3.41)

σul ← ciu l = (i, S) ∈ Ω, u ∈ S. (3.42)

The S-DOI penalties represent the worst case replacement between two cus-

tomers across all facilities subject to the replacing customer having at most as much

capacity as the replaced customer. The F-DOI rebates represent the cost decrease

from removing a customer from a given column. The construction of the rebates is

simple since customer costs for a facility are not dependent on what other customers

are serviced by that facility.

3.6.2 The Capacitated p-Median Problem

In the Capacitated p-Median Problem (CpMP) the objective is to minimize

the cost of assigning a set of N elements (that we can represent as customers) to

a set of I nodes (that we can represent as facilities). We must do so obeying the

constraint that exactly p nodes are used in the assignment, where p is given. Each

node i ∈ I has an assigned capacity Ki and each element u ∈ N as an assigned

demand du. We can model the CpMP very similarly to that of the SSCFLP laid

out in Section 3.6.1 with the only notable differences being that we set all facility
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opening costs fi = 0 and we have an added constraint in the primal. Let xiu be

a binary decision variable that takes value 1 if node i ∈ I is assigned to element

u ∈ N and 0 otherwise. Also let yi be a binary decision variable indicating that

node i ∈ I is used in an assignment. The CpMP is represented by the following

optimization problem.

min
x,y

∑
i∈I

∑
u∈N

ciuxiu (3.43)

subject to

∑
i∈I

xiu = 1 u ∈ N (3.44)

∑
u∈N

duxiu ≤ Kiyi i ∈ I (3.45)

∑
i∈I

yi = p (3.46)

xiu ∈ {0, 1} i ∈ I, u ∈ N . (3.47)

yi ∈ {0, 1} i ∈ I. (3.48)

The formulation (3.43)-(3.48) resembles that of (3.24)-(3.27) except that the

objective function no longer has facility opening costs and there is an added con-

straint (3.46) ensuring that we open exactly p nodes or facilities. To apply CG

we reformulate the problem according to the following set cover approach. Let θl

and aul be defined similar to how they were defined in Section 3.6.1. θl is a binary

decision variable indicating that column l ∈ Ω is used in the solution and aul is a

binary variable indicating that column l ∈ Ω covers element u ∈ N .
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Let bil be a binary variable taking value 1 if column l ∈ Ω uses node/facility

i ∈ I. The set covering formulation we use to apply CG is represented as follows.

min
θ

∑
l∈Ω

clθl (3.49)

subject to

∑
l∈Ω

aulθl ≥ 1 u ∈ N (3.50)

∑
l∈Ω

bilθl ≤ 1 i ∈ I (3.51)

∑
l∈Ω

θl = p (3.52)

θl ∈ {0, 1} l ∈ Ω. (3.53)

Note the added constraint (3.52), differentiating (3.49)-(3.53) from the formu-

lation for the SSCFLP. The added constraint (3.52) enforces that we have exactly

p nodes (facilities) used in the solution. If we let η be the dual variable associated

with constraint (3.52), the pricing problem becomes the following.

c̄min = min
l∈Ω

cl −
∑
u∈N

aulαu −
∑
i∈I

bilµi − η (3.54)

This can be approached as a series of knapsack problems across all facilities

precisely as in Section 3.6.1.1. Take (3.33) as our knapsack problem for each facility.
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To get the minimum reduced cost over all facilities, we must solve the following:

min
i∈I

Γi − µi − η (3.55)

The DOI for CpMP are constructed precisely as has been done for the SSCFLP

in Section 3.6.1.3. The adapt the lower bound for the SSCFLP in (3.40) to get the

following lower bound for the CpMP.

ΦLB(θ̂, α̂, µ̂, η̂) =
∑
l∈Ω

clθ̂l +
∑
i∈I

min{0,Γi − µ̂i − η̂} (3.56)

3.7 Computational Experiments

In this section we present an empirical study of the DOI presented as applied

to the SSCFLP and the CpMP. In Section 3.7.1 we outline our experiments and

the stabilization schemes implemented. In Sections 3.7.2 and 3.7.3 we test on the

SSCFLP and the CpMP respectively.

3.7.1 Stabilization Strategies

In each experiment we evaluate the performance of the DOI according to the

speedup provided with respect to two variants of column generation:

1. a classical (non-stabilized) CG algorithm

2. a CG with smoothing dual stabilization [Pessoa et al., 2018]

We also incorporate smoothing with the S-DOI to study the compound effect of
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utilizing both stabilization schemes. For our smoothing implementation, we use a

dual center α0 and a scalar λ ∈ [0, 1] and perform pricing with α′ ← λα0 + (1−λ)α

instead of the duals α provided by the RMP. The parameters α0 and λ are initialized

to (0)|N | and 0.9, respectively. Following each round of pricing, if α′ produces a

lower bound greater than the associated lower bound calculated for α0, we update

α0 ← α′. When a misprice occurs (meaning that the subproblem is incapable

of finding any columns of negative reduced costs), the parameters are updated to

α0 ← α′, λ← (λ− 0.1) and pricing is repeated. After five consecutive misprices we

update α0 ← α. If pricing does eventually produce a negative reduced cost column,

we reset λ← 0.9 to its initial value.

Our baseline method, denoted std, does not include any type of stabilization.

Our experiments consider five different stabilization strategies: smoothing (denoted

sm), S-DOI (denoted sdoi), F-DOI (denoted fdoi), SF-DOI (denoted sfdoi) and

a combination of smoothing and S-DOI (denoted smsdoi). Speedup for each stabi-

lization scheme is calculated relative to std. Speedup is the ratio of the runtime of

std divided by the runtime of the stabilization scheme considered. Iteration count

speedup is the ratio of the number of iterations taken by std divided by the number

of iterations taken by the stabilization schemed considered.

3.7.2 SSCFLP

In our experiments we consider two classical benchmark datasets for the SS-

CFLP, the Holmberg et al. [1999] and the Yang et al. [2012] datasets. We addition-
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ally consider two synthetically generated datasets. Each algorithm is executed until

the linear relaxation is optimally solved. We aim to study the time it takes for CG

to converge to the optimal solution for each algorithm as well as the total number of

CG iterations required. The algorithms have been coded in MATLAB and we use

CPLEX as our general-purpose mixed integer programming (MIP) solver for solving

the RMP. Our machine is equipped with a 8-core AMD Ryzen 1700 CPU @3.0 GHz

and 32 GB of memory running Windows 10.

When employing the F-DOI we assign the values in ΛR
u as 20 evenly spaced

quantiles over the distribution of values in Λu. As more columns enter the RMP

this distribution changes. We update ΛR
u periodically to reflect this change and

more accurately represent the distribution. We update on iterations 1, 5, 25, 100,

200, 500 and every 500 iterations onward. When employing the S-DOI we save

computational time in solving the RMP by only including a subset of the DOI.

Specifically, we include only the DOI variables associated to the smallest 25% of ρs

values.

For pricing, each facility induces a 0-1 knapsack problem capable of producing

a negative reduced cost column. We solve the knapsack problem for each facility

and return the 20 columns with most negative reduced cost. If less than 20 columns

with negative reduced cost are found, we return all negative reduced cost columns. If

through a single round pricing no negative reduced cost columns are found after all

facilities have been cycled through, then pricing is terminated and CG is complete.

To solve the 0-1 knapsack problem, we use C code for the MINKNAP algorithm

[Pisinger, 1997] found at hjemmesider.diku.dk/~pisinger/codes.html. We ini-
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tialize the RMP by the following algorithm. For each facility, order the customers

from least cost to greatest cost. For a particular facility, starting from the lowest

cost customer in the established order, add customers into a column until the ca-

pacity limit for that facility is reached. Once the limit is reached, add that column

to column set and continue with a new column starting from the next customer in

line for that facility. Continue until all customers are included for that facility and

then repeat for each facility.

3.7.2.1 Results on the Holmberg et al. dataset

In our first set of experiments we test on problems from the SSCFLP bench-

mark dataset defined in Holmberg et al. [1999]. We focus on the 16 largest problems

(numerically indexed 56-71 in the original paper) where |N | = 200 and |I| = 30.

In those instances, the capacities and demands are assigned randomly such that the

ratio of total capacity over total demand (Ktotal/dtotal) ranges from 1.97 to 3.95. The

facility fixed costs are distributed over a range from 500 to 1500 and the assignment

costs are proportional to the Euclidean distance between a customer and a facility.

We execute each algorithm variant on all 16 problem instances in this dataset.

In Table 3.1 we report the CPU runtimes and associated speedups as compared to

std. In Table 3.2 we report the CG iteration counts of std along with the associated

iteration count speedups of each stabilization scheme.

In Figure 3.1 we report the following data. In the two top figures, we plot

average relative gap across all 16 problem instances as a function of the runtime

44



(left-most figure) and the number of iterations (right-most figure). The relative gap

is the difference between the optimal solution and the current upper bound relative

to the optimal solution:

(Φ̂− Φ)/Φ (3.57)

The two bottom figures show, for each problem instance, the runtimes (left-

most figure) and iteration counts (right-most figure) of each stabilization scheme

compared to that of std.

We see from the results that smsdoi provides the highest average speedup,

4.5, over the dataset. sm provides an average speedup up 4.2. All three DOI on

average provide a positive speedup over std CG, with sdoi performing the best

among them with an average speedup of 3.7. sdoi provides a positive speedup in

15 out of 16 instances while the fdoi and the sfdoi show more mixed results in a

case by case analysis. fdoi provide a positive speedup in 10 out of the 16 instances

while the sfdoi provide a positive speedup in 11 out of the 16 instances. All

three DOI categorically required fewer CG iterations to converge than std, however

employing these DOI comes at greater computational cost in solving the RMP.

This computational liability is enough to negate the benefit of the DOI in those

instances where the DOI provide no runtime benefit. sfdoi notably requires the

fewest iterations to converge on average but still, for the most part, is outperformed

by sdoi when judging for time. We note that employing the F-DOI largely comes at

a significantly greater computational cost than employing the S-DOI, which accounts

for the F-DOI’s lower performance benefit.
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Time (sec) Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

56 5.1 1.7 0.6 0.8 2.3 1.4
57 5.1 1.4 0.3 0.3 2.9 1.3
58 6.0 1.2 0.2 0.2 3.5 1.3
59 8.1 1.3 0.3 0.4 1.6 0.8
60 17.4 4.8 2.4 2.7 4.4 5.3
61 27.9 5.7 2.3 4.5 3.7 4.4
62 15.5 2.5 0.5 0.5 4.5 3.0
63 36.2 5.7 2.4 4.3 6.0 7.1
64 27.2 6.9 4.1 4.2 6.2 10.9
65 31.6 5.6 3.4 4.8 4.4 8.3
66 26.7 4.0 1.2 1.0 8.2 5.5
67 38.4 0.9 2.3 3.5 3.7 3.3
68 17.7 4.2 2.4 5.5 3.7 5.2
69 28.1 5.3 2.6 3.0 3.2 5.3
70 34.7 3.9 0.7 1.6 5.5 5.1
71 20.7 3.4 1.1 1.6 4.1 3.5

mean 21.6 3.7 1.7 2.4 4.2 4.5
median 23.7 3.9 1.7 2.1 3.9 4.7

Table 3.1: SSCFLP runtime results, Holmberg et al. dataset (|N | = 200)

Iterations Iteration Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

56 182 3.4 3.2 5.1 1.2 1.7
57 169 2.6 2.3 3.2 1.4 1.7
58 175 2.6 1.7 2.7 1.5 1.7
59 210 2.0 1.9 3.4 0.7 0.8
60 310 4.5 5.7 5.7 1.3 3.0
61 398 4.7 4.9 9.5 1.3 2.1
62 267 3.2 2.5 4.2 1.5 2.2
63 462 3.9 5.3 7.6 1.5 3.1
64 373 4.8 7.6 6.4 1.5 4.7
65 388 4.1 5.6 8.1 1.2 3.4
66 330 3.6 3.5 4.6 2.1 3.0
67 489 1.1 5.8 7.9 0.8 1.8
68 299 3.5 5.5 13.6 1.0 2.8
69 383 4.2 6.0 5.6 1.0 2.5
70 427 3.1 2.8 5.0 1.5 2.5
71 346 3.4 3.7 6.2 1.2 2.2

mean 325.5 3.4 4.2 6.2 1.3 2.5
median 338.0 3.5 4.3 5.6 1.3 2.3

Table 3.2: SSCFLP iteration count results, Holmberg et al. dataset (|N | = 200)
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Figure 3.1: SSCFLP results, Holmberg et al. dataset (|N | = 200), Aggregate plots.
Relative gaps are displayed as relative difference between upper and the maximum
lower bounds. (Top Left): Average relative gap over 16 problem instances as a
function of time. (Top Right): Average relative gap over 16 problem instances as
a function of iterations. (Bottom Left): Comparative run times between using
stabilization and using no stabilization for all 16 problem instances. (Bottom
Right): Comparative iterations required between using stabilization and using no
stabilization for all 16 problem instances.
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3.7.2.2 Results on the Yang et al. dataset

In our second set of experiments we use the benchmark dataset presented in

Yang et al. [2012]. This dataset contains a number of large instances. We focus

here on a subset of 10 instances where |N | = 200. Instances 1-5 have |I| = 30

while instances 6-10 have |I| = 60. Customer and facility locations are randomly

assigned on the unit square. Costs are set as the euclidean distance between a

particular customer and facility multiplied by 10 and then rounded. The ratio of

total capacity to total demand ranges from 1.8 to 3.5.

We report the same data as for the Holmberg et al. dataset. In Table 3.3 we

report the runtime results for each instance. In Table 3.4 we report the iteration

count results. In Figure 3.2 we report the average performance as a function of time

and iterations, just as in Figure 3.1. Here, although each set of DOI provide an

improvement in the iterations, fdoi and the sfdoi fail to improve upon the conver-

gence time and in fact manage to slow down convergence overall. The computational

cost here for fdoi is too high when compared to the iteration count benefit, leading

to a average speedup (or a slowdown rather) of 0.2. sdoi still managed to provide a

positive speedup in all instances, with an average speedup of 1.5. smsdoi provides

an average speedup of 2.9, falling just short of the average speedup of sm, which

was 3.0.
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Time (sec) Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

1 38.6 1.6 0.2 0.3 2.9 2.1
2 28.4 1.3 0.1 0.2 3.2 2.0
3 38.2 1.7 0.2 0.3 5.1 3.0
4 54.0 1.5 0.2 0.4 4.1 3.3
5 106.0 1.6 0.2 0.4 2.7 5.0
6 34.6 1.6 0.2 0.2 2.8 3.1
7 27.4 1.4 0.2 0.2 2.3 2.7
8 41.2 1.5 0.2 0.3 2.2 2.2
9 28.9 1.5 0.2 0.2 2.8 3.4
10 36.4 1.4 0.2 0.3 1.6 2.6

mean 43.4 1.5 0.2 0.3 3.0 2.9
median 37.3 1.5 0.2 0.3 2.8 2.8

Table 3.3: SSCFLP runtime results, Yang et al. dataset (|N | = 200)

Iterations Iteration Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

1 500 1.9 1.4 2.1 0.9 1.3
2 363 1.5 1.2 1.7 0.9 1.3
3 477 1.9 1.4 2.2 1.3 1.9
4 595 1.6 1.6 2.7 1.2 1.7
5 1070 1.5 1.3 1.8 1.1 2.4
6 353 1.8 1.3 2.1 1.5 2.1
7 290 1.6 1.2 1.9 1.3 1.9
8 398 1.6 1.4 2.2 1.2 1.4
9 307 1.7 1.2 2.1 1.3 2.3
10 408 1.5 1.4 2.3 0.9 1.9

mean 476.1 1.7 1.3 2.1 1.2 1.8
median 403 1.6 1.3 2.1 1.2 1.9

Table 3.4: SSCFLP iteration results, Yang et al. dataset (|N | = 200)
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Figure 3.2: SSCFLP results, Yang et al. dataset (|N | = 200), Aggregate plots.
Relative gaps are displayed as the relative difference between upper and maximum
lower bound. (Top Left): Average relative gap over 10 problem instances as a
function of time. (Top Right): Average relative gap over 10 problem instances as
a function of iterations. (Bottom Left): Comparative run times between using
stabilization and using no stabilization for all 10 problem instances. (Bottom
Right): Comparative iterations required between using stabilization and using no
stabilization for all 10 problem instances.
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3.7.2.3 DOI and their effect on problems with dense columns

We note that problems with denser columns in the final solution can lead to

slower convergence, allowing the DOI to provide more benefit. Facility capacities

provide a hard ceiling on the size of any potential column. We aim here to relax

this ceiling and see the effect on the performance of each set of DOI. Specifically, we

take the same problem instances from Holmberg et al. [1999] and Yang et al. [2012]

in the previous sections and boost each facility capacity by a factor of 2, 3, and 4.

For each facility we use K ′i = LKi as the facility capacity where Ki was the original

facility capacity and L is the increase factor.

The runtime speedup results for both datasets are shown in Table 3.5 and

the iteration count results are shown in Table 3.6. Here we see a general trend of

improvement in speedup as L increases. sdoi and smdoi show the most speedup at

higher capacities on Holmberg et al. while sm and smsdoi show the most speedup

on Yang et al.. Overall, smsdoi shows the best performance at high capacity levels

on both datasets, achieving an average speedup 32.8 and 30.6 at L = 4 on Holmberg

et al. and Yang et al. respectively.

fdoi and sfdoi show positive improvement as the capacity level is increased.

fdoi goes from an average speedup of 0.7 and 0.2 at L = 1 on Holmberg et al. and

Yang et al. datasets respectively to 3.6 and 2.5 at L = 4. sdoi also shows overall

improvement, going from an average speedup of 3.8 to 19.3 on Holmberg et al. and

from 1.6 to 4.1 on Yang et al.. We note that on most problem instances where sdoi

and fdoi both perform well, the sfdoi can often experience significant diminishing
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Time (sec) Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

H
ol

m
b

er
g

et
al

.

mean

L = 1 21.6 3.7 1.7 2.4 4.2 4.5
L = 2 72.7 10.4 6.2 11.1 7.7 15.5
L = 3 111.6 16.2 10.3 16.7 9.9 25.9
L = 4 137.8 18.8 13.1 22.1 11.4 32.8

median

L = 1 23.7 3.9 1.7 2.1 3.9 4.7
L = 2 58.3 10.7 6.1 9.7 7.7 15.8
L = 3 98.7 16.6 10.8 17.8 9.1 24.7
L = 4 123.1 19.3 13.1 20.8 11.0 34.9

Y
an

g
et

al
. mean

L = 1 43.4 1.5 0.2 0.3 3.0 2.9
L = 2 141.6 2.3 0.4 0.8 8.3 10.3
L = 3 545.6 3.6 2.1 4.6 16.5 23.8
L = 4 838.4 4.2 3.6 10.3 18.6 30.6

median

L = 1 37.3 1.5 0.2 0.3 2.8 2.8
L = 2 92.0 2.2 0.4 0.5 7.8 7.4
L = 3 262.1 3.0 0.9 1.6 10.9 10.9
L = 4 304.2 3.0 2.2 4.1 14.1 15.0

Table 3.5: SSCFLP runtime results for increased capacity. New capacity K ′i = LKi

for each facility

returns in employing both DOI. On certain problems, however, this stark pattern of

diminishing returns is not as prevalent and sfdoi can do notably better than both

other DOI separately. We find this occurs frequently on difficult problems where

standard CG takes particularly long to converge. Finally we note that although

sdoi appears to do comparatively worse on Yang et al. compared to sm than on

Holmberg et al., smsdoi still offers significant benefit on larger capacity values for

the same dataset, surpassing sm’s average speedup for capacity levels L ≥ 2.

3.7.2.4 Results on newly generated random instances

To assess our DOI further, we have generated two new datasets. The first

dataset has a specific construction where assignment costs are untruncated Eu-

clidean distances between facilities and customers. We refer to these problems as

the structured problems. We set |N | = 250 and |I| = 50 and generate 50 inde-
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Iterations Iteration Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

H
ol

m
b

er
g

et
al

.

mean

L = 1 325.5 3.4 4.2 6.2 1.3 2.5
L = 2 575.9 5.4 7.6 13.2 1.6 4.4
L = 3 717.4 6.8 10.0 15.9 1.8 5.8
L = 4 754.5 6.9 11.0 18.1 1.8 6.4

median

L = 1 338.0 3.5 4.3 5.6 1.3 2.3
L = 2 561.0 5.6 7.6 11.2 1.7 4.6
L = 3 683.5 7.1 10.2 16.2 1.8 5.8
L = 4 765.0 7.0 11.5 16.8 1.8 6.1

Y
an

g
et

al
. mean

L = 1 476.1 1.7 1.3 2.1 1.2 1.8
L = 2 868.6 1.9 2.1 3.2 2.0 3.9
L = 3 1259.8 2.1 3.5 4.8 2.7 4.1
L = 4 1376.8 2.0 4.6 6.6 2.8 4.3

median

L = 1 403 1.6 1.3 2.1 1.2 1.9
L = 2 725.5 1.9 1.8 2.5 2.0 3.2
L = 3 1075 2.1 2.6 4.1 2.5 .1
L = 4 1115 1.9 3.9 4.8 3.0 4.1

Table 3.6: SSCFLP iteration count results for increased capacity. New capacity
K ′i = LKi for each facility

pendent and identically distributed random instances. For each instance, customer

and facility locations are randomly generated uniformly on the 2-D unit plane. The

associated costs between facilities and customers are set as the euclidean distance

between their respective locations. Each facility is given an opening cost fi = 5 and

capacity Ki = 150. Each customer is assigned a random demand drawn uniformly

over {1, 2, 3, 4, 5}. Table 3.7 provides aggregate runtimes, Table 3.8 provides the

aggregate iteration counts, and Figure 3.3 shows the aggregate plots of the DOI

performance.

In the second class of random problem instances we abandon the structure

defined previously and instead assign costs between facilities and customers devoid of

any underlying structure. We refer to these problems as the unstructured problems.

Assignment costs are randomly generated over a uniform distribution on the interval

(0,1). We set |N | = 250 and |I| = 50 and generate 50 independent and identically
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Time (sec) Speedup
std sdoi fdoi sfdoi sm smsdoi

mean 2750.0 159.0 22.0 146.0 36.6 320.5
median 521.7 24.5 3.4 12.8 12.1 51.9

Table 3.7: SSCFLP average runtime over 50 structured problem instances.

Iterations Iteration Speedup
std sdoi fdoi sfdoi sm smsdoi

mean 1736.2 9.7 7.2 19.4 3.8 11.1
median 1212.5 6.6 4.9 10.6 3.2 8.0

Table 3.8: SSCFLP average iteration count over 50 structured problem instances.

distributed random instances. Each facility is given an opening cost fi = 5 and

capacity Ki = 150. Each customer is assigned a random demand drawn uniformly

over {1, 2, 3, 4, 5}. Runtime results are shown in Table 3.9, iteration counts results

are shown in Table 3.10, and aggregate plots are shown in Figure 3.4.

On the structured dataset, smsdoi performs the best with an average speedup

of 320.5. sdoi and fdoi also perform well with average speedups of 159.0 and

22.0 respectively. sfdoi had an average speedup of 146.0, however this is worse on

average than sdoi on its own. sm provides an average speedup of 36.6. We see from

the structured dataset the vast improvement achievable with the S-DOI on difficult

problems with an underlying structure behind the assignment costs. In fact, its

benefit works additively to that of smoothing, as is evidenced by smsdoi performing

markedly better than both sdoi and sm.

On the unstructured dataset we observe a limitation of the S-DOI. The S-DOI

Time (sec) Speedup
std sdoi fdoi sfdoi sm smsdoi

mean 59.0 0.9 1.5 0.9 7.3 2.8
median 59.1 0.9 1.5 0.9 7.3 2.8

Table 3.9: SSCFLP average runtime over 50 unstructured problem instances.
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Figure 3.3: SSCFLP aggregate plots, structured dataset. Relative gaps are displayed
as the relative difference between upper and maximum lower bound. (Top Left):
Average relative gap over 50 problem instances as a function of time. (Top Right):
Average relative gap over 50 problem instances as a function of iterations. (Bottom
Left): Comparative run times between using stabilization and using no stabilization
for all 50 problem instances. (Bottom Right): Comparative iterations required
between using stabilization and using no stabilization for all 50 problem instances.

Iterations Iteration Speedup
std sdoi fdoi sfdoi sm smsdoi

mean 353.28 1.1 3.9 3.9 2.2 2.3
median 354 1.1 3.8 3.9 2.2 2.3

Table 3.10: SSCFLP average iteration count over 50 unstructured problem instances.
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Figure 3.4: SSCFLP aggregate plots, unstructured dataset. Relative gaps are dis-
played as the relative difference between upper and maximum lower bound. (Top
Left): Average relative gap over 50 problem instances as a function of time. (Top
Right): Average relative gap over 50 problem instances as a function of itera-
tions. (Bottom Left): Comparative run times between using stabilization and
using no stabilization for all 50 problem instances. (Bottom Right): Comparative
iterations required between using stabilization and using no stabilization for all 50
problem instances.
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fail to provide any significant benefit. This is due to the poor correlation between

relative customer costs across facilities. This prevents the S-DOI from finding low

ρs values to effectively restrict the dual space. We note that the F-DOI do not

share this limitation as they perform relatively well on these problems, achieving

an average speedup of 1.5. Just as the S-DOI were more robust to problems with

lower facility capacities, we see here that the F-DOI are more robust to problems

with weaker underlying structure.

3.7.3 CpMP

In this section we continue the empirical study of the DOI on the CpMP

described in Section 3.6.2. We test on the same datasets used in Section 3.7.2,

however we set the facility opening cost for each facility to 0 and the facility count,

p, for each problem to the facility count of the solution of the linear relaxation of the

equivalent SSCFLP problem rounded up to the nearest integer. For the Holmberg

et al. and Yang et al. datasets we run the same capacity adjustment experiments

described in Section 3.7.2.3. For the CpMP experiments, we occasionally saw that

unstabilized CG took prohibitively long to converge. For those problems we cut

off opimization after 5000 iterations. For averages we put a “+” to indicate the

number provided serves as a lower bound and the actual runtime or speedup may

be significantly higher. The algorithms have been coded in MATLAB and we use

CPLEX as our general-purpose mixed integer programming solver. Our machine is

equipped with an 8-core AMD Ryzen 1700 CPU @3.0 GHz and 32 GB of memory

57



running Windows 10. All other implementation parameters are equivalent to those

described in Section 3.7.2.

3.7.3.1 Results on the Holmberg et al. and Yang et al. datasets

Runtime and iteration count results for the Holmberg et al. dataset are shown

in Tables 3.11 and 3.12 respectively. Aggregate plots for the Holmberg et al. dataset

are shown in Figure 3.5. We see that over the dataset, sdoi provides the greatest

speedup with an average speedup of 3.5. We see that sdoi provides a speedup in

all 16 instances, which cannot be said for any other stabilization scheme tested on

the Holmberg et al. dataset. sfdoi has the overall best improvement in the number

of iterations, providing an average iteration count speedup of 5.2. sm provides an

average runtime speedup of 1.6. fdoi provides an average iteration count speedup

of 3.4 but fails to provide any significant average runtime speedup.

Runtime and iteration count results for the Yang et al. dataset are shown

in Tables 3.13 and 3.14 respectively. Aggregate plots for the Yang et al. dataset

are shown in Figure 3.6. smsdoi provides the greatest average runtime speedup at

2.0. sdoi performs the next best with an average runtime speedup of 1.5. Again,

sdoi provides a positive speedup in all instances. sm provides an average runtime

speedup of 1.4 but median runtime speedup of only 1.1. Both fdoi and sfdoi fail

to provide a positive average runtime speedup.

Runtime and iteration count results for the increased capacity results for both

datasets are shown in Tables 3.15 and 3.16 respectively. On the Holmberg et al.
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dataset, we see that sdoi and sfdoi provide the highest average runtime speedups at

L = 4 with both achieving an average speedup of 14.9. fdoi and sm get good average

runtime speedups at L = 4 with speedups of 8.1 and 6.4 respectively. Overall, all

stabilization schemes do very well at higher capacity levels, but to varying degrees.

For the Yang et al. dataset, we see that sfdoi has the most improvement when

increasing the capacity levels and achieves the highest average runtime speedup

at L = 4, with a speedup of 103.6. This significantly outperforms the next best

stabilization scheme at L = 4, which is fdoi with a speedup of 59.5. smdoi achieves

a high average runtime speedup of 56.0 at L = 4, which is significantly higher than

sdoi or sm individually, which achieves speedups of 5.5 and 37.3 receptively.

Time (sec) Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

56 4.6 1.2 0.3 0.4 1.4 0.8
57 7.0 1.9 0.1 0.3 0.9 0.9
58 6.9 1.8 0.1 0.3 0.9 0.9
59 6.9 1.9 0.1 0.3 0.9 0.9
60 15.8 4.1 1.2 1.5 2.1 3.1
61 27.5 3.9 1.1 2.1 1.5 3.8
62 20.8 4.0 0.4 0.9 0.7 2.6
63 27.5 3.9 1.1 2.1 1.5 3.8
64 21.3 5.6 2.3 2.4 3.5 5.2
65 32.2 5.7 2.4 3.8 2.1 3.8
66 28.3 4.0 1.0 1.1 1.4 2.4
67 29.4 1.1 1.0 1.2 1.9 1.3
68 15.0 3.3 1.2 1.9 2.4 2.6
69 27.3 4.5 1.3 2.0 1.2 2.7
70 42.7 4.4 0.8 1.6 1.1 2.6
71 21.6 4.6 1.6 3.0 1.5 2.0

mean 20.9 3.5 1.0 1.6 1.6 2.5
median 21.5 4.0 1.1 1.6 1.5 2.6

Table 3.11: CpMP runtime results, Holmberg et al. dataset (|N | = 200)
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Iterations Iteration Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

56 171 3.0 2.5 3.5 0.7 1.2
57 187 3.3 1.5 4.0 0.4 1.0
58 187 3.3 1.5 4.0 0.4 1.0
59 187 3.3 1.5 4.0 0.4 1.0
60 278 3.9 3.2 3.7 0.6 1.8
61 369 3.2 3.8 5.6 0.5 1.9
62 304 3.8 2.4 4.8 0.4 1.5
63 369 3.2 3.8 5.6 0.5 1.9
64 321 4.6 5.5 5.2 0.9 2.7
65 375 4.2 5.4 9.4 0.6 1.6
66 369 3.6 3.4 4.4 0.5 1.3
67 372 1.6 3.8 4.5 0.6 0.8
68 272 3.2 3.7 5.9 0.7 1.6
69 338 3.5 4.1 4.2 0.4 1.3
70 481 3.2 3.3 6.6 0.5 1.2
71 319 3.9 4.8 8.2 0.5 1.1

mean 306.2 3.4 3.4 5.2 0.6 1.4
median 320.0 3.3 3.6 4.6 0.5 1.3

Table 3.12: CpMP iteration count results, Holmberg et al. dataset (|N | = 200)

Time (sec) Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

1 35.5 1.7 0.2 0.2 2.6 2.2
2 22.5 1.3 0.2 0.2 1.2 1.7
3 43.9 1.8 0.3 0.3 3.2 2.1
4 32.7 1.6 0.2 0.3 1.4 3.3
5 90.8 1.3 0.2 0.3 1.0 2.8
6 32.7 1.6 0.3 0.3 1.1 1.7
7 29.8 1.4 0.1 0.2 0.6 1.4
8 34.8 1.6 0.2 0.3 0.9 1.0
9 28.0 1.5 0.3 0.4 0.9 1.9
10 29.7 1.6 0.2 0.2 0.6 1.4

mean 38.0 1.5 0.2 0.3 1.4 2.0
median 32.7 1.6 0.2 0.3 1.1 1.8

Table 3.13: CpMP runtime results, Yang et al. dataset (|N | = 200)
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Figure 3.5: CpMP Holmberg et al. dataset (|N | = 200), Aggregate plots. Relative
gaps are displayed as relative difference between upper and the maximum lower
bounds. (Top Left): Average relative gap over 16 problem instances as a function of
time. (Top Right): Average relative gap over 16 problem instances as a function of
iterations. (Bottom Left): Comparative runtimes between using stabilization and
using no stabilization for all 16 problem instances. (Bottom Right): Comparative
iterations required between stabilization and using no stabilization for all 16 problem
instances.

Iterations Iteration Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

1 392 1.9 1.4 2.1 0.9 1.5
2 276 1.7 1.5 2.3 0.5 1.1
3 496 2.0 1.7 2.5 0.9 1.4
4 374 2.0 1.6 2.6 0.6 2.0
5 720 1.4 1.3 2.0 0.5 1.3
6 306 1.7 1.7 2.2 0.6 1.1
7 274 1.5 1.2 1.9 0.4 0.9
8 312 1.7 1.6 2.3 0.5 0.7
9 313 1.5 2.1 2.7 0.6 1.4
10 285 1.7 1.5 2.3 0.5 0.9

mean 374.8 1.7 1.6 2.3 0.6 1.2
median 312.5 1.7 1.5 2.3 0.6 1.2

Table 3.14: CpMP iteration results, Yang et al. dataset (|N | = 200)
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Figure 3.6: CpMP Yang et al. dataset (|N | = 200), Aggregate plots. Relative gaps
are displayed as the relative difference between upper and maximum lower bound.
(Top Left): Average relative gap over 10 problem instances as a function of time.
(Top Right): Average relative gap over 10 problem instances as a function of
iterations. (Bottom Left): Comparative runtimes between using stabilization and
using no stabilization for all 10 problem instances. (Bottom Right): Comparative
iterations required between using stabilization and using no stabilization for all 10
problem instances.
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Time (sec) Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

H
ol

m
b

er
g

et
al

.
mean

L = 1 20.9 3.5 1.0 1.6 1.6 2.5
L = 2 48.6 6.9 3.1 5.4 3.4 5.5
L = 3 92.7 11.9 6.2 12.7 5.7 10.4
L = 4 121.0 14.9 8.1 14.9 6.4 13.5

median

L = 1 21.5 4.0 1.1 1.6 1.5 2.6
L = 2 32.6 6.4 2.7 3.9 3.2 5.1
L = 3 68.9 11.3 4.4 6.3 4.7 7.7
L = 4 98.5 12.5 5.3 10.7 5.7 11.4

Y
an

g
et

al
. mean

L = 1 38.0 1.5 0.2 0.3 1.4 2.0
L = 2 249.2 2.6 1.7 3.0 1.1 5.8
L = 3 1190.7 3.5 11.1 37.4 4.5 19.7
L = 4 3682.1+ 5.5+ 59.5+ 103.6+ 37.3+ 56.0+

median

L = 1 32.7 1.6 0.2 0.3 1.1 1.8
L = 2 138.1 2.0 1.4 2.0 0.9 3.8
L = 3 523.5 3.3 3.4 7.3 1.3 8.4
L = 4 847.8 3.5 16.0 32.7 6.3 15.6

Table 3.15: CpMP runtime results for increased capacity. New capacity K ′i = LKi

for each facility

Iteration Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

H
ol

m
b

er
g

et
al

.

mean

L = 1 306.2 3.4 3.4 5.2 0.6 1.4
L = 2 435.7 4.4 5.5 9.1 0.8 2.0
L = 3 552.1 5.2 7.6 12.6 0.9 2.5
L = 4 620.0 5.7 8.2 14.5 1.0 2.8

median

L = 1 320.0 3.3 3.6 4.6 0.5 1.3
L = 2 377.0 4.7 5.4 8.3 0.7 1.8
L = 3 486.0 5.2 6.9 10.0 0.9 2.3
L = 4 560.5 5.7 7.1 12.6 1.0 2.6

Y
an

g
et

al
. mean

L = 1 374.8 1.7 1.6 2.3 0.6 1.2
L = 2 1003.0 1.9 3.7 5.1 0.6 1.5
L = 3 1744.7 2.2 7.2 13.5 0.9 2.0
L = 4 2226.4+ 2.1+ 11.1+ 15.0+ 1.9+ 2.6+

median

L = 1 312.5 1.7 1.5 2.3 0.6 1.2
L = 2 802.5 1.7 3.4 4.3 0.5 1.2
L = 3 1332.5 2.2 5.4 6.9 0.6 1.7
L = 4 1515.0 2.2 10.2 10.9 1.3 1.9

Table 3.16: CpMP iteration count results for increased capacity. New capacity
K ′i = LKi for each facility
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3.7.3.2 Results on newly generated random instances

CpMP runtime results on the structured and unstructured synthetic datasets

are shown in Tables 3.17 and 3.19 respectively. Aggregate plots for the structured

dataset are shown in Figure 3.7. Aggregate plots for the unstructured dataset are

shown in Figure 3.8. Their respective iteration count results are shown in Tables

3.18 and 3.20. On the structured problems, we see that sfdoi perform the best on

average with a runtime speedup of 393.8 while sdoi perform the best in the median

case with an median runtime speedup of 132.5. sm and fdoi have average runtime

speedups of 22.2 and 17.2 respectively. sdoi again fail to translate their performance

on the structured problem set to the unstructured dataset. sdoi achieves an average

runtime speedup of 329.2 on the structured dataset but fails to provide any speedup

on the unstructured dataset. In fact, fdoi is the only stabilization scheme that

provide a positive average or median runtime speedup on the unstructured dataset.

fdoi provides an average runtime speedup of 1.2 and a median runtime speedup of

1.3 on the unstructured dataset.

We note that throughout the CpMP experiments, sm usually provides high

runtime speedups, but this is apparently not drawn from a reduction in the iteration

counts. Iteration counts for sm are usually unimproved over stabilized CG on the

CpMP results shown here. Instead the improvement, which is often significant,

comes from a reduction in the runtime cost of solving the primal RMP through each

iteration.
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Time (sec) Speedup
std sdoi fdoi sfdoi sm smsdoi

mean 8239.5+ 329.2+ 17.2+ 393.8+ 22.2+ 298.7+
median 2212.3 132.5 5.9 69.5 6.6 76.7

Table 3.17: CpMP average runtime over 50 structured problem instances.

Iteration Iteration Speedup
std sdoi fdoi sfdoi sm smsdoi

mean 2389.1 13.9 8.3 36.1 1.1 5.4
median 1809.5 11.7 6.6 21.6 0.9 4.1

Table 3.18: CpMP average iteration count over 50 structured problem instances.

Time (sec) Speedup
std sdoi fdoi sfdoi sm smsdoi

mean 52.7 0.7 1.2 0.8 0.5 0.4
median 50.3 0.7 1.3 0.8 0.4 0.4

Table 3.19: CpMP average runtime over 50 unstructured problem instances.

Iteration Iteration Speedup
std sdoi fdoi sfdoi sm smsdoi

mean 311.6 1.1 4.1 4.2 0.3 0.4
median 307.5 1.1 4.2 4.3 0.3 0.3

Table 3.20: CpMP average iteration count over 50 unstructured problem instances.
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Figure 3.7: Structured dataset CpMP aggregate plots. Relative gaps are displayed
as the relative difference between upper and maximum lower bound. (Top Left):
Average relative gap over 50 problem instances as a function of time. (Top Right):
Average relative gap over 50 problem instances as a function of iterations. (Bottom
Left): Comparative runtimes between using stabilization and using no stabilization
for all 50 problem instances. (Bottom Right): Comparative iterations required
between using stabilization and using no stabilization for all 50 problem instances.
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Figure 3.8: Unstructured dataset CpMP aggregate plots. Relative gaps are displayed
as the relative difference between upper and maximum lower bound. (Top Left):
Average relative gap over 50 problem instances as a function of time. (Top Right):
Average relative gap over 50 problem instances as a function of iterations. (Bottom
Left): Comparative runtimes between using stabilization and using no stabilization
for all 50 problem instances. (Bottom Right): Comparative iterations required
between using stabilization and using no stabilization for all 50 problem instances.
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3.7.4 Discussion

The experiments in Sections 3.7.2 and 3.7.3 show the vast benefit in conver-

gence times provided by the DOI. S-DOI perform very well on most datasets and

especially well on large problems. F-DOI perform very well on many datasets too,

especially large problems for the CpMP. SF-DOI usually provide the greatest itera-

tion count speedup, but this can often come at a computational cost that precludes

it from having the best runtimes. We see that S-DOI often perform better than the

smoothing algorithm, however we also see that they can sometimes be used together

to provide even better speedups than they each would individually. This is most

clearly seen on the structured dataset of the SSCFLP.
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Chapter 4: Relaxed-DOI for the Capacitated Vehicle Routing Prob-

lem

4.1 Introduction

In this chapter we extend the application of the DOI presented in Chapter 3 to

a new class of CG problems. First we tackle the Capacitated Vehicle Routing Prob-

lem (CVRP). The CVRP addresses the problem of routing a fleet of homogeneous

vehicles to service a set of customers. The CVRP is particularly challenging because

its pricing problem amounts to solving an elementary resource constrained shortest

path problem (ERCSPP), which is NP-hard [Dror, 1994, Irnich and Desaulniers,

2005]. We provide a construction for the S-DOI and F-DOI on this problem and

follow up with experiments.

Next, we address a general class of CG problems where the set of valid columns

Ω is expanded to include columns l with repeat elements. Our primary application

for this approach is the ng-route relaxation of the CVRP. In the ng-route relaxation

of the CVRP, the route restrictions are relaxed to allow for repeat elements under

certain conditions. This is done to alleviate the computational difficulties that

come during pricing. The classical CVRP, which we also refer to as the elementary
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CVRP, requires us to solve an ERCSPP. ng-routes relax the elementarity condition,

allowing for customers to be revisited so long as a route has traveled outside of a

certain region before returning to that customer. As a result of this approach, the

corresponding pricing problem becomes more computationally tractable.

We show that the S-DOI, F-DOI, and SF-DOI presented in Chapter 3, though

possibly invalid for such problems, can still be leveraged to accelerate CG. The DOI

can be used within a framework that sequentially eliminates their associated artificial

variables until a valid optimum has been reached. We call this implementation

relaxed-DOI. In this chapter we also offer a construction of the F-DOI that is valid

for the ng-route relaxation to the CVRP. Much of the work presented in this chapter

can be found in Haghani et al. [2020a]. This chapter is organized as follows. In

Section 4.2 we provide an overview of the necessary background for the CVRP.

In Section 4.3 we formulate the CVRP, provide a construction of our DOI for the

problem, and run experiments. Finally, in Section 4.4 we consider the CG approach

with relaxed column restrictions, present our principal application of the ng-route

relaxation, and run experiments with the approach we describe.

4.2 Background

The CVRP, first introduced by Dantzig and Ramser [1959], handles the prob-

lem of routing a fleet of vehicles to service a set of customers at minimum cost.

Each customer has a certain demand that must be met, and each vehicle has a ca-

pacity limiting the amount of demand it can service on its trip. The first use of CG
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on this class of problems was done by Desrochers et al. [1992] which constructed a

set partitioning CG approach to the capacitated vehicle routing problem with time

windows (CVRPTW). The CVRPTW generalizes the CVRP by requiring that each

customer be serviced within that customer’s time window. CG approaches to vehi-

cle routing problems, such as the CVRP and CVRPTW, face the very challenging

elementary resource constrained shortest path problem (ERCSPP) during pricing,

which is NP-hard [Dror, 1994, Irnich and Desaulniers, 2005]. Elementarity requires

that each customer along a path be visited at most once.

The ERCSPP is typically solved to optimality using a dynamic program, how-

ever this is computationally intractable at scale. To alleviate some of this challenge,

Desrochers et al. [1992] proposed a relaxation of the elementarity condition leading

to the resulting resource constrained shortest path problem (RCSPP), which can be

solved in pseudo-polynomial time [Martinelli et al., 2014]. This approach was used

in tandem with 2-cycle elimination, which restricts cycles of length two. Irnich and

Desaulniers [2005] proposed a cycle elimination approach which prevents all cycles

of a given length. This algorithm shows a factorial growth in complexity with the

size of the forbidden cycles. Righini and Salani [2008] proposed a technique called

decremental state space relaxation (DSSR). This technique disregards elementarity

conditions and imposes them incrementally according to the cycles found in the

resultant solutions. This process is continued until all cycles have been eliminated

and elementarity is achieved. Baldacci et al. [2011] proposed the ng-route relax-

ation, which restricts cycles from occurring before a route has traveled sufficiently

far away from the customer that is revisited.
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4.3 The Capacitated Vehicle Routing Problem

The CVRP addresses the challenge of routing a fleet of vehicles to service

a set of customers at minimum cost. The CVRP is defined as follows. We are

given a set of nodes N representing customers. We define an associated superset

M = {0, 1, 2, ..., |N |, |N | + 1} which includes all the members of N along with a

starting depot, indexed 0, and an ending depot, indexed |N |+ 1. We are also given

a homogeneous fleet of vehicles V , which may or may not be limited in number.

Each customer u ∈ N has an associated demand du. Each vehicle in the fleet has

a set capacity Q constant across all vehicles. Vehicles can take routes that travel

between the nodes in M, but they must start from the starting depot and end at

the ending depot (note that it can be the case, and it is in fact common, that the

starting depot and the ending depot refer to the same node). Traversing between two

distinct elements u, v ∈ M incurs an assigned cost cuv. Vehicles service customers

by traveling to them on their route and servicing their demand. Vehicles cannot

service more cumulative demand along their route than their capacity allows. The

problem is to determine a minimum cost set of routes that services all customers.

We assume the traversal costs satisfy the triangle inequality. For the classical CVRP

we also assume that routes can visit each customer at most once. This quality is

called elementarity.

Let {xuvk}, where u, v ∈M and k ∈ V , be a set decision variable representing

arcs in a complete graph across the nodes inM. We set xuvk equal to 1 if vehicle k

travels directly from node u to node v in the solution and 0 otherwise. The CVRP
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can be modeled as an integer linear program by the following.

min
x

∑
k∈V

∑
u∈M

∑
v∈M

cuvxuvk (4.1)

subject to

∑
k∈V

∑
v∈M

xvuk = 1 u ∈ N (4.2)

∑
u∈N

du
∑
v∈M

xuvk ≤ Q k ∈ V (4.3)

∑
u∈N

xuhk −
∑
v∈N

xhvk = 0 h ∈ N , k ∈ V (4.4)

∑
u∈N

x0uk = 1 k ∈ V (4.5)

∑
u∈N

xu(|N |+1)k = 1 k ∈ V (4.6)

xuvk ∈ {0, 1} u, v ∈M, k ∈ V . (4.7)

Our objective function that we wish to minimize is defined by (4.1). (4.2)

ensures that each customer is serviced exactly once. (4.3) ensures that no vehicle

services more customers than its capacity allows. (4.4) ensures that our route is a

connected path on the graph. (4.5) and (4.6) ensure that each vehicle starts at the

start node and ends and the end node respectively.

To apply CG we model the CVRP as a set cover problem. We define a route l =

(v0 = 0, v1, ..., vn = |N |+1) as a sequence of nodes visited where
∑

dvi∈{v1,...,vn−1} ≤ Q

must be satisfied. Note that v = 0 and v = |N | + 1 correspond to the start node
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and the end node respectively, and both have a demand of 0. The cost associated

with route l is given by:

cl =
∑
{cvivi+1

: i = 0, 1 . . . n− 1} (4.8)

Let Ω represent the set of all valid routes. Let aul be a variable indicating

whether route l ∈ Ω covers item u ∈ N , where aul equals 1 if item u is covered

and 0 otherwise. Also let θl be a binary decision variable taking value 1 if route

l is in our solution and taking value 0 otherwise. We have the following set cover

formulation for the CVRP.

min
θ

∑
l∈Ω

clθl (4.9)

subject to

∑
l∈Ω

aulθl ≥ 1 u ∈ N (4.10)

θl ∈ {0, 1} l ∈ Ω. (4.11)

We apply CG to the linear relaxation of (4.9)-(4.11). We formulate the as-

sociated pricing problem in Section 4.3.1. To stabilize CG we apply our DOI. We

present their construction for the CVRP in Section 4.3.3.
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4.3.1 CVRP Pricing

Let α represent the dual variables associated with constraints (4.10), where

αu is specifically associated with the constraint indexed by u. Pricing in the CVRP

amounts to solving the following equation.

c̄min = min
l∈Ω

cl −
∑
u∈N

aulαu (4.12)

Let use define the following modified set of cost components.

ĉuv = cuv − αv, u ∈M, v ∈ N (4.13)

With the modified cost components, we can produce the following ERCSPP where

xuv for u, v ∈ M is a binary decision variable indicating the link between nodes u

and v is active in the solution.

min
x

∑
u∈M

∑
v∈M

ĉuvxuv (4.14)

subject to

∑
v∈M

xvu ≤ 1 u ∈ N (4.15)

∑
u∈N

du
∑
v∈M

xuv ≤ Q (4.16)

∑
u∈N

xuh −
∑
v∈N

xhv = 0 ∀h ∈ N (4.17)
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∑
u∈N

x0u = 1 (4.18)

∑
u∈N

xu(|N |+1) = 1 (4.19)

xuv ∈ {0, 1} ∀u, v ∈M (4.20)

(4.14) minimizes our objective function. (4.15) enforces elementarity. (4.16)

ensures that our route does not service more customers than a vehicle’s capacity

allows. (4.17) ensures that our route is a connected path on the graph. (4.18) and

(4.19) ensure that each vehicle starts at the start node and ends and the end node

respectively.

4.3.2 CVRP Lower Bound

We refer to (2.14) to construct the Lagrangian lower bound on the solution to

the CVRP. We specifically consider (2.17). The lower bound for the CVRP can be

calculated as follows.

ΦLB(θ̂, α̂) =
∑
l∈Ω

clθ̂l + |N |c̄min (4.21)

4.3.3 DOI for the CVRP

In this section we present a construction for both the S-DOI, Section 4.3.3.1,

and the F-DOI, Section 4.3.3.2.
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4.3.3.1 S-DOI

In this section we present the construction of the S-DOI for the CVRP. Recall

that ρ represents the worst cost replacement between two unique items in N . For

the CVRP we can put an upper bound on each ρ by the following equation:

ρuv ≤ cuv + cvu (4.22)

This says that each ρuv need not be any greater than the cost of traversing

from u to v and back. In practice though, we can construct a tighter restriction by

taking the worst case cost of replacing u with v over any feasible route in the graph

that includes node u but not node v. This is calculated as follows.

ρuv = max
i,j∈M\{u,v},i 6=j,di+dj≤Q−du

{civ + cvj − ciu − cuj} (4.23)

u, v ∈ N , u 6= v, du ≥ dv

This is the worst case replacement penalty for all nodes that could feasibly fit

the capacity constraint. Note that in order for ρuv to be included as a dual bound,

we require that dv ≤ du, otherwise a replacement might not always be feasible.

4.3.3.2 F-DOI

To apply the F-DOI we must construct the associated σul values that serve

as rebates for the overcovering of items. Note that we must do so ensuring that
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(3.6) is satisfied. Unlike for the SSCFLP and the CpMP, the CVRP presents a

more complicated challenge in this regard due to the fact that the cost change for a

removal of any item from a route is dependent on the adjacent items visited along

the route. As well, for any route containing an item, that item’s cost change for a

removal may vary depending on what other items are also removed from the route.

Considering this, we can construct the worst case bound for our σul values.

We introduce the following labeling for the elements in a route l.

l = {ul0, ul1, ul2, ..., ul|Nl|, u
l
|Nl|+1} (4.24)

The variable ul0 refers to the start depot, ul|Nl|+1 refers to the end depot, and uli

generally refers to the ith node visited after the vehicle leaves the depot. Let kl(u)

be the index of item u’s position in l. The worst case bound of σul for a given l ∈ Ω

is given by the following.

σul = min
(i,j):i<kl(u)<j

{
cvliu + cuvlj − cvlivlj

}
u ∈ Nl (4.25)

This calculates the worst case removal of u over all subsets of l with u remain-

ing. This bound can, however, be improved so long as (3.6) remains satisfied. To

do so, we collectively consider the assignment of all elements in {σul|u ∈ Nl} for a

given l ∈ Ω. We define the cost change for removing a set of contiguous items along

a route l by νlij, where i is the index of the first element removed and j ≥ i is the

78



index of the last element removed. νlij is formulated by the following.

νlij = cl′ − cl (4.26)

where

l′ = Ξ(l,X ) (4.27)

X = {uli, uli+1, ..., u
l
j} (4.28)

νlij can be directly calculated by:

νlij = culi−1u
l
i+j+1

−
i+j+1∑
n=i

culn−1u
l
n

(4.29)

Since we maintain that the triangle inequality holds for the CVRP, ν must be

nonpositive. From (3.6) we get the following inequality that must be consistent.

0 ≥ νlij +

j∑
n=i

σulnl (4.30)

We seek to maximize
∑

u∈Nl σul since higher reward values lead to tighter

restrictions on the dual space. Accordingly, we can assign the reward values for a

given route l by the following linear program.
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max
σ≥0

∑
u∈Nl

σul (4.31)

0 ≥ νlij +

j∑
n=i

σulnl ∀{i ≥ 1, j ≥ i, j ≤ |Nl|}

The optimization problem described in (4.31) has |Nl| variables and |Nl| +(|Nl|
2

)
constraints. We note that it is generally preferred to have a more balanced

distribution of σul terms that are not dominated by extreme values. We choose to

enforce this by minimizing the `2 norm of the σul terms subject to the constraint

that we are close to the optimal value delivered delivered by (4.31). Given δ = .999,

we have the following optimization problem to determine the values for σ that we

ultimate use.

min
σ≥0

∑
u∈Nl

σulσul (4.32)

0 ≥ νlij +

j∑
n=i

σul ∀{i ≥ 1, j ≥ i, j ≤ |Nl|}

∑
u∈Nl

σul ≥ δ(4.31)

4.3.4 Experiments

In this section we run experiments to investigate the performance of our DOI

on the CVRP. We generate 50 random synthetic instances, each with 50 customers

and no restriction on the number of vehicles. Customers, as well as the starting and
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ending depots, are assigned uniform randomly to points on the unit plane. Traversal

costs between any two points are calculated as the Euclidean distances between the

points. Vehicle fixed costs are set to 5 and the vehicle capacity is set to 10. Each

customer is assigned a random demand uniform over the set {1, 2, 3, 4, 5}.

We solve pricing heuristically via a dynamic program [Irnich and Desaulniers,

2005]. The heuristic employs a standard labeling algorithm where states are defined

by the node position, the remaining capacity, the intermediate cost, and the travel

history. States are grouped together, however, by only their node position and

remaining capacity, and only the lowest reduced cost intermediate path is kept for

any grouped set of states. This accelerates convergence of the dynamic program,

but forgoes any guarantee of optimality.

We return the 40 lowest reduced cost columns found through each iteration.

If heuristic pricing fails to find a single negative reduced cost column, we call upon

an exact solver to determine if there is a negative reduced cost column to be found.

Specifically, we employ a greedy tree search algorithm that exhaustively searches the

solution space in a greedy manner, returning the first column found with a negative

reduced cost. If this algorithm fails to produce a negative reduced cost column, we

have reached optimality and conclude CG.

We test the S-DOI, F-DOI, and SF-DOI, and compare their convergence rates

to that of unstabilized CG. We also compare against an implementation of smoothing

as described in 3.7.1. Since we employ heuristic pricing, we do not necessarily

retrieve an accurate lower bound through each iteration. We decide to calculate an

approximation of the bound assuming as if the reduced cost column found through
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heuristic pricing is the minimum reduced cost column.

When implementing the F-DOI we use 20 quantiles. When implementing the

S-DOI, we include all valid inequalities available. Algorithms are coded in MATLAB

and CPLEX is used as our general purpose MIP-solver. Experiments are run on an

8-core AMD Ryzen 1700 CPU @3.0 GHz with 32 GB of memory running Windows

10. Aggregate plots are shown in Figure 4.1. Runtime results are shown in Table

4.1 and average iteration count results are shown in Table 4.2.

Figure 4.1: CVRP aggregate plots. Relative gaps are displayed as the relative dif-
ference between upper and maximum lower bound. (Top Left): Average relative
gap over 50 problem instances as a function of time. (Top Right): Average rel-
ative gap over 50 problem instances as a function of iterations. (Bottom Left):
Comparative run times between using stabilization and using no stabilization for all
50 problem instances. (Bottom Right): Comparative iterations required between
using stabilization and using no stabilization for all 50 problem instances.
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Time (sec) Speedup
std sdoi fdoi sfdoi sm smsdoi sdoi fdoi sfdoi sm smsdoi

mean 41.3 39.8 59.5 54.4 135.9 135.0 1.1 0.5 0.6 0.3 0.3
median 40.0 39.1 58.9 53.6 133.2 132.7 1.1 0.5 0.6 0.3 0.3

Table 4.1: CVRP average runtime over 50 synthetic problem instances.

Iterations Iteration Speedup
std sdoi fdoi sfdoi sm smsdoi sdoi fdoi sfdoi sm smsdoi

mean 26.0 19.6 26.2 19.9 26.0 19.6 1.3 1.0 1.3 1.0 1.3
median 26.0 19.6 26.1 19.8 26.0 19.6 1.3 1.0 1.3 1.0 1.3

Table 4.2: CVRP average iteration count over 50 synthetic problem instances.

We see from the results that the F-DOI fail to reliably reduce the number of

iterations required for CG to converge. The S-DOI, on the other hand, obtain an

iteration count speedup of 1.3, however when looking at runtimes, the S-DOI only

provide an average speedup of 1.1. Though the S-DOI appear to reliably reduce the

number of iterations, they do not necessarily reduce the number of calls to exact

pricing. Since the exact pricing algorithm is a significant source of time consumption,

the S-DOI have some of their benefits diminished in this context.

4.4 Relaxed-DOI for the Expanded Column Set

In this section we study how the S-DOI, F-DOI, and SF-DOI can be applied

to problems with an expanded column set where columns may violate elementarity.

Our principal application of interest is the ng-route relaxation of the CVRP. In

Section 4.4.1 we present the ng-route relaxation. In Section 4.4.2 we discuss how

our DOI relate to this problem. In Section 4.4.3 we present a modified version of

the F-DOI that is valid for the ng-route relaxation. Finally in Section 4.4.4 we show

experiments applying our DOI to the ng-route relaxation of the CVRP.
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4.4.1 The ng-Route Relaxation

The principal challenge in approaching the CVRP through CG is tackling the

pricing problem which is an ERCSPP. The ERCSPP is NP-hard [Dror, 1994, Irnich

and Desaulniers, 2005] and thus very difficult to solve to exactly. This motivates

the ng-route relaxation for the CVRP [Baldacci et al., 2011]. ng-routes partially

relax the elementarity condition on routes such that nodes can be revisited so long

as the route has traveled sufficiently far away from the node before a it is revisited.

Specifically, vehicles are assigned a memory along their route. The memory consists

of nodes that the vehicle has traveled to along its route up to that point. If an item

is in a vehicle’s memory, the vehicle cannot travel to that node in the following step.

Vehicles, however, can forget certain nodes in its memory at each step. They forget

having traversed any node outside of the ng-neighborhood of the node the vehicle is

currently at. Each node is given an ng-neighborhood. The neighborhood, typically

consisting of nodes in close proximity, defines the set of nodes that a vehicle must

“remember” having traversed to. If any nodes outside of this ng-neighborhood are

present in the vehicle’s memory, those nodes are forgotten and can be traveled to

again going forward. In essence, a node u ∈ N can be revisited so long as the vehicle

first travels to a node that does not have u in its ng-neighborhood.

Formally, each vehicle has a running memory U ⊆ N . This memory is adjusted

after every node visited. Each node u ∈ N has an associated ng-neighborhood

Nu ⊆ N . At the start of the route for any vehicle U = ∅. After a vehicle visits

node u, its memory is updates:
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U ⇐ (U ∩ Nu) ∪ {u} (4.33)

A vehicle cannot traverse from one node to another if the node it is traversing

to is in its memory at the time of the traversal. Generally speaking, the larger the

ng-neighborhood for each node, the more difficult the pricing problem. When the

ng-neighborhood for each node is equal to the entire set of nodes N , the problem

becomes equivalent to the ERCSPP. For a fixed neighborhood size for each node,

the ng-route shortest path problem is polynomial in the number of nodes [Martinelli

et al., 2014].

4.4.2 Relaxed-DOI for the ng-Route Relaxation

In this section we establish that the F-DOI, S-DOI, and SF-DOI are not valid

for the ng-route relaxation to the CVRP. Let Ω+ ⊇ Ω be the set all valid ng-routes.

For the F-DOI we provide a violating counterexample. Take the following

route l = {0, u, v, u, |N | + 1}, where u, v ∈ N and 0 and |N | + 1 represent the

starting and ending depots respectively. Assume that u /∈ Nv, making l a valid

ng-route. If an F-DOI artificial variable associated with node v is activated, we

essentially activate a new route:

l′ = Ξ(l, {v}) = {0, u, u, |N |+ 1} (4.34)

Notice that l′ /∈ Ω+ since it is not elementary and it does not satisfy the ng
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conditions.

For the S-DOI we provide an additional counter example. Take three nodes

u, v, v̂ ∈ N . Assume that dv = dv̂, u /∈ Nv, and u ∈ Nv̂. Since v and v̂ have matching

demands, each can validly be swapped for the other according to the construction

of the S-DOI. However, take a route l = {0, u, v, u, |N |+ 1}, if we swap v̂ for v, the

resulting route l′ = Θ(l, (v, v̂)) = {0, u, v̂, u, |N | + 1} is not a valid ng-route since

u ∈ Nv̂.

We see in these examples that it is possible for DOI eliminate all dual optimal

solutions [Gschwind and Irnich, 2016] and thus be considered technically invalid.

However, in such cases DOI may still have the potential to offer significant utility.

Though the DOI may not ensure convergence to the true solution, they can progress

CG at an accelerated rate and be later deactivated when necessary. We propose the

following approach to make use of DOI on the ng-route relaxation of the CVRP.

We employ the DOI as if they were valid. At termination we check if any artificial

variables are active. If none are active, we conclude CG and our solution is valid.

Otherwise, we remove the artificial variable, and thus the associated dual inequal-

ity, and restart CG with the current column set Ω+
R. This process is guaranteed

to terminate since there are a finite number of DOI. We call this implementation

relaxed-DOI.

We note that the use of DOI in this fashion has the potential to make the primal

unbounded. We account for this by removing artificial variables associated with

DOI when the optimization of the primal would set them to ∞. This phenomenon,

though, has not been observed in practice.
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4.4.3 Valid F-DOI Variant

In this section we present a novel variant of the F-DOI that is valid for the

ng-route relaxation for the CVRP. Recall that the F-DOI fail to remain valid for

the relaxed problem due to the fact that certain removals over columns in Ω+ result

in the representation of columns outside of the set, thus not representing a feasible

ng-route. To rectify this issue, we impose restrictions on certain σul values that

prohibit this phenomenon from occurring. We selectively set certain σul to 0 in order

to restrict certain removals from occuring. Each cycle in an ng-route must visit at

least one “forget” node. We refer to a “forget” node as a node that was traversed

along the cycle and does not have the revisited node in its ng-neighborhood. We

enforce at least one such node have their σul value set to 0 for a cycle.

We construct the DOI for an ng-route l ∈ Ω+ as follows. First construct σul for

each node as described in Section 4.3.3.2. We check for cycles in the route and label

the set of cycles for route l by Cl. For each cycle i ∈ Cl we look at the node u ∈ Nl

which is defines the start and of the cycle. By the definition of the ng-route, the

cycle must contain at least one “forget” node for u. We introduce a binary variable

evi that takes value 1 if node v ∈ Nl represents a forget node for cycle i ∈ Cl. We

want to select a set of nodes in Nl to set their respective rebates to 0 such that

each cycle has at least one of its “forget” nodes’ rebates set to zero. We do so

while minimizing the cumulative reduction in rebate values across the route. This

is motivated by our desire to have rebate values that are cumulatively as large as

possible to constrain the dual space as much as possible. The following formulation
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describes our approach.

min
x

∑
u∈Nl

xuσul (4.35)

subject to

∑
u∈Nl

euixu ≥ 1 i ∈ Cl (4.36)

xu ∈ {0, 1} u ∈ Nl (4.37)

In (4.35), we minimize the cumulative reduction in rebate values across the

route. In (4.36), we ensure that each cycle has at least one of its associated “forget”

nodes’ rebates set to 0.

4.4.4 Experiments

We test the performance of the relaxed-DOI on the ng-route relaxation of the

CVRP. We test on four benchmark CVRP datasets: A, B, P, and E. Sets A, B, and

P were introduced in [Augerat et al., 1995]. Set E was introduced in [Christofides

and Eilon, 1969]. We test on instances with at most 50 customers. Traversal costs

are calculated as the Euclidean distance between customer locations rounded to

the nearest integer. We solve the ng-route relaxation to the CVRP, where the ng-

neighborhood for each customer is set as its five nearest customers. Pricing amounts

to solving an ng-route shortest path problem, which we solve exactly through each

iterations using the dynamic program presented by Martinelli et al. [2014]. We

return the 20 most negative reduced cost columns found. Algorithms are coded in
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Figure 4.2: CVRP ng-relaxation, aggregate plots. Relative gaps are displayed as
relative difference between upper and the maximum lower bounds. (Top Left):
Average relative gap over all 46 problem instances as a function of time. (Top
Right): Average relative gap over all 46 problem instances as a function of iter-
ations. (Bottom Left): Comparative runtimes between using stabilization and
using no stabilization. (Bottom Right): Comparative iterations required between
using stabilization and using no stabilization.
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MATLAB and CPLEX is used as our general purpose MIP-solver. Experiments are

run on an 8-core AMD Ryzen 1700 CPU @3.0 GHz with 32 GB of memory running

Windows 10.

We test each set of DOI S-DOI, F-DOI, and SF-DOI and compare the rate of

convergence to CG variant employing no stabilization. We also compare against a

smoothing implementation and a smoothing with S-DOI implementation. We note

that we only present the relaxed-DOI variant of the F-DOI, as our experiments with

the valid F-DOI variant for the ng-route relaxation showed no notable difference in

performance.

Computational results on all 46 problem instances are detailed in Table 4.3.

Aggregate plots showing the average relative gap over all instances as a function of

iteration and time are shown in Figure 4.2. We see that S-DOI and SF-DOI both

offer average speedups of 1.2 over all problem instances. S-DOI provide a positive

speedup in 44 out of 46 instances, while SF-DOI provide a positive speedup in 41 out

of 46 instances. F-DOI did not produce an average speedup over all the instances.

Most of the speedup of the SF-DOI can be attributed to the S-DOI, however the

SF-DOI outperform the S-DOI in 21 out of 46 instances.

The process of removing active DOI at termination as described in Section

4.4.2 is observed to be a necessary component for convergence. S-DOI required

removal of active DOI in 2 out 46 instances, while the F-DOI and SF-DOI both

required removal of active DOI in 42 out of 46 instances. The phenomena of DOI

inducing unbounded RMP primal solutions was not observed in our experiments.
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Time (sec) Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

A-n32-k5 372.2 1.2 1.0 1.4 0.9 0.9
A-n33-k5 281.3 1.1 1.0 1.1 0.7 0.9
A-n33-k6 334.7 1.5 1.2 1.5 0.8 1.1
A-n34-k5 391.3 1.3 1.1 1.3 0.9 1.0
A-n36-k5 543.0 1.2 1.2 1.2 0.9 1.0
A-n37-k5 654.2 1.0 0.9 1.0 0.7 1.0
A-n37-k6 412.4 1.1 1.0 1.2 0.8 0.8
A-n38-k5 647.4 1.3 1.1 1.4 0.8 1.1
A-n39-k5 683.0 1.2 1.2 1.2 0.8 0.9
A-n39-k6 620.2 1.1 1.1 1.1 0.8 1.0
A-n44-k5 802.3 1.1 0.9 1.1 0.8 0.9
A-n45-k5 858.3 1.1 0.9 1.1 0.7 0.8
A-n45-k5 794.3 1.3 0.9 1.2 0.8 0.9
A-n46-k6 1034.7 1.2 1.1 1.2 0.8 1.0
A-n48-k5 938.2 1.0 0.9 1.0 0.7 0.9
B-n31-k5 346.5 1.2 1.0 1.2 0.8 1.2
B-n34-k5 428.1 1.2 0.8 1.0 0.6 0.8
B-n35-k5 525.5 1.3 1.0 1.2 0.7 0.9
B-n38-k6 751.0 1.2 1.0 1.3 0.9 1.0
B-n39-k5 908.7 1.1 1.2 1.1 0.9 1.2
B-n41-k6 716.2 1.5 0.9 1.3 0.8 1.2
B-n43-k6 1031.6 1.2 1.0 1.2 0.7 1.0
B-n44-k7 904.9 1.2 1.0 1.1 0.8 1.1
B-n45-k5 1797.9 1.2 0.9 1.2 0.7 0.9
B-n45-k6 980.2 1.1 0.9 1.2 0.6 0.9
B-n50-k7 1648.6 1.1 1.0 1.4 0.7 1.1
B-n50-k8 1312.6 1.3 1.2 1.1 0.8 0.9
B-n51-k7 1601.8 1.3 1.0 1.3 0.7 0.9
E-n22-k4 47.9 1.3 0.9 1.3 0.5 0.7
E-n23-k3 17463.8 1.4 2.0 1.8 0.8 1.4
E-n30-k3 1101.6 1.2 1.1 1.4 0.9 1.1
E-n33-k4 4586.9 1.1 1.0 1.1 0.8 0.8
E-n51-k5 3360.3 1.0 1.1 1.2 0.7 0.8
P-n16-k8 0.4 0.8 0.1 0.1 0.7 0.7
P-n19-k2 110.8 1.1 0.8 1.0 0.6 0.7
P-n20-k2 181.4 1.1 1.1 1.1 0.7 0.8
P-n21-k2 199.4 1.0 0.9 0.9 0.6 0.7
P-n22-k2 339.4 1.5 1.3 1.4 0.9 0.9
P-n22-k8 6.4 1.1 0.6 0.7 0.5 0.6
P-n23-k8 4.2 1.2 0.6 0.6 0.7 0.8
P-n40-k5 957.3 1.1 0.9 1.2 0.7 0.7
P-n45-k5 1785.9 1.1 1.0 1.2 0.7 0.8
P-n50-k7 434.3 1.1 1.0 1.1 0.6 0.8
P-n50-k8 1650.4 1.2 1.1 1.2 0.8 0.9
P-n50-k10 806.2 1.2 1.0 1.2 0.7 0.7
P-n51-k10 463.1 1.0 0.9 1.0 0.5 0.7

mean 1213.5 1.2 1.0 1.2 0.7 0.9
median 699.6 1.2 1.0 1.2 0.7 0.9

Table 4.3: CVRP ng-relaxation runtime results
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Iterations Iteration Speedup
Instance std sdoi fdoi sfdoi sm smsdoi

A-n32-k5 58 1.2 1.0 1.5 0.9 1.1
A-n33-k5 48 1.1 1.1 1.2 0.8 1.1
A-n33-k6 52 1.4 1.2 1.5 0.7 1.3
A-n34-k5 59 1.3 1.2 1.3 0.9 1.2
A-n36-k5 75 1.3 1.3 1.3 1.0 1.3
A-n37-k5 73 1.1 1.0 1.1 0.8 1.1
A-n37-k6 61 1.1 1.0 1.3 0.8 0.9
A-n38-k5 76 1.4 1.2 1.6 0.8 1.3
A-n39-k5 80 1.2 1.2 1.3 0.8 1.1
A-n39-k6 70 1.1 1.1 1.3 0.8 1.3
A-n44-k5 74 1.2 1.0 1.1 0.8 1.1
A-n45-k5 70 1.1 1.0 1.1 0.7 0.9
A-n45-k5 72 1.3 0.9 1.2 0.8 1.1
A-n46-k6 85 1.2 1.2 1.3 0.9 1.3
A-n48-k5 75 1.1 1.0 1.0 0.8 1.1
B-n31-k5 60 1.5 1.1 1.4 1.0 1.9
B-n34-k5 65 1.3 1.0 1.3 0.8 1.1
B-n35-k5 63 1.4 1.1 1.3 0.9 1.3
B-n38-k6 74 1.3 1.1 1.4 1.0 1.3
B-n39-k5 74 1.2 1.1 1.2 0.9 1.4
B-n41-k6 63 1.5 1.0 1.3 0.8 1.4
B-n43-k6 71 1.2 1.0 1.2 0.7 1.1
B-n44-k7 74 1.3 1.1 1.3 0.9 1.3
B-n45-k5 98 1.3 1.0 1.3 0.8 1.1
B-n45-k6 71 1.2 0.9 1.3 0.7 1.0
B-n50-k7 88 1.2 1.0 1.5 0.8 1.3
B-n50-k8 93 1.3 1.2 1.3 0.9 1.2
B-n51-k7 92 1.4 0.9 1.4 0.8 1.0
E-n22-k4 28 1.4 1.1 1.6 0.7 1.0
E-n23-k3 93 1.3 1.8 1.8 0.8 1.6
E-n30-k3 71 1.2 1.1 1.5 0.8 1.2
E-n33-k4 74 1.1 1.0 1.1 0.8 1.0
E-n51-k5 116 1.1 1.1 1.3 0.8 1.1
P-n16-k8 9 1.0 1.3 0.9 1.1 1.1
P-n19-k2 32 1.2 0.9 1.1 0.7 0.9
P-n20-k2 43 1.2 1.2 1.3 0.8 1.0
P-n21-k2 41 1.0 1.0 1.1 0.7 1.0
P-n22-k2 60 1.5 1.4 1.6 1.0 1.2
P-n22-k8 15 1.2 0.9 1.1 0.8 0.9
P-n23-k8 19 1.3 1.3 1.4 0.9 1.1
P-n40-k5 73 1.1 1.0 1.3 0.8 1.1
P-n45-k5 90 1.1 1.1 1.3 0.9 1.0
P-n50-k7 52 1.2 1.0 1.2 0.7 1.0
P-n50-k8 85 1.2 1.1 1.3 0.9 1.2
P-n50-k10 65 1.2 1.0 1.3 0.8 0.9
P-n51-k10 60 1.1 1.0 1.1 0.7 0.8

mean 66.1 1.2 1.1 1.3 0.8 1.2
median 71.0 1.2 1.1 1.3 0.8 1.1

Table 4.4: CVRP ng-relaxation iteration count results

92



Chapter 5: Multi-Robot Routing via Column Generation

5.1 Introduction

In this chapter we address the problem of Multi-Robot Routing (MRR). MRR

considers the challenge of routing a fleet of robots in a warehouse to perform a set of

tasks while obeying robot movement constraints and avoiding robot collisions. We

address two distinct problems falling under the label of MRR; one we formulate as

a weighted set packing problem, which we call the Set Packing (SP) approach, and

one we formulate as a set partition problem, which matches an established problem

called Multi-Agent Pickup and Delivery (MAPD) [Grenouilleau et al., 2019, Liu

et al., 2019, Ma et al., 2017], thus we refer to it as the MAPD approach.

In the SP approach, robots generally start at a launcher situated at a unique

location in the warehouse. Robots must end their routes at the launcher before an

established time limit. We also allow some robots to start at arbitrary locations

on the grid, permitting re-optimization with updated problem parameters during

the course of execution. The SP approach offers rewards for servicing items in a

warehouse. In this context, items have a given demand and are serviced when a

robot travels to the item’s location and services its entire demand. Robots have

a set capacity, limiting the amount of demand they can service along their route.
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When a robot returns to the launcher, its capacity is refreshed and it may re-enter

the warehouse floor to service more items. Costs are associated with robot travel

distances and robot deployment. The goal is to optimize the net profit.

In the MAPD approach, robots start at deployed locations across the ware-

house floor. They must service all items in the warehouse. Items are serviced when

a robot travels to the item’s location and delivers it to the item’s associated desti-

nation. Robots can only service a single item at any given time. Therefore there

are no capacities or demands. Costs are associated with robot travel distances and

robot deployment. The goal is to service all items at minimum cost.

In both formulations we allow for the inclusion of time windows for each item.

Each item can be given a time window that restricts precisely when an item is

allowed to be serviced. Both formulations permit re-optimization during the course

of execution when given new problem parameters such as additional robots or new

items to be serviced. Therefore, the problem can be considered “lifelong,” meaning

it can optimize for a continuously running warehouse where new item orders come

in indefinitely.

MRR emerges from the established work in Mutli-Agent Pathfinding (MAPF)

[Felner et al., 2017, Standley, 2010, Stern et al., 2019, Yu and LaValle, 2016]. In

MAPF we are given a set of agents. Each agent is assigned an initial position and

a destination. The problem is to route all agents to their destinations at minimum

cost such that there are no collisions. The cost considered is usually either a sum of

the total distances traveled across all agents, or the total time it takes for all agents

to have arrived at their respective destinations (the makespan).
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From the MAPF literature spawned MAPD [Grenouilleau et al., 2019, Liu

et al., 2019, Ma et al., 2017]. In MAPD, we have a set of agents, each with a

given start location. We are also given a set of tasks, each task has a corresponding

start location and end location. A task is completed when an agent travels to

a task’s start location and then to its end location. The objective is to route all

agents to collectively complete all tasks at minimum cost while avoiding all potential

collisions. The cost considered is typically the total sum of the distances traveled

or the makespan.

We address MRR using column generation (CG). We show that the pric-

ing problem amounts to an elementary resource constrained shortest path problem

(ERCSPP) [Irnich and Desaulniers, 2005] over a time extended graph. We provide

an efficient pricing scheme that significantly reduces the state space of the ERC-

SPP. We adapt the work of Boland et al. [2017] to further reduce the state space

by eliminating the need to enumerate all time steps. We present a novel heuristic

for solving the ERCSPP that drastically reduces the total runtime of the algorithm.

Finally, we run experiments to demonstrate the premium our algorithms offer in

accuracy when compared to established approaches in MAPF and MAPD.

Much of the work in this chapter has been presented in Haghani et al. [2020c].

This chapter is organized as follows. In Section 5.2 we look at the previous work

done in MAPF and MAPD. In Section 5.3, we formulate the MRR as an ILP, which

we attack using CG in Section 5.4. In Section 5.5, we solve the corresponding pricing

problem for the SP approach as an ERCSPP. In Section 5.6 we apply our pricing

techniques to the MAPD approach. In Sections 5.7 we show a technique to accelerate
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convergence by limiting the costly updates to our time extended graph. In Section

5.8 we present DOI for the SP approach. In Section 5.9 we discuss our exact method

for solving the ERCSPP, while in Section 5.10 we present a fast heuristic for solving

the ERCSPP. We consider the use of a fast heuristic for the pricing problem with

probabilistic guarantees. In Section 5.11, we run experiments for both approaches,

and finally, in Section 5.12 we conclude with some discussion.

5.2 Background

In this section we discuss some previous work done in MAPF and MAPD

relevant to the MRR problem. In Section 5.2.1 we discuss the previous work done

on MAPF. In Section 5.2.2 we discuss the some unique variants to MAPF that have

been approached. In Section 5.2.3 we discuss work that has been done on MAPD.

5.2.1 Classical MAPF

MAPF problems show up in a number of different application domains in-

cluding autonomated warehouse systems [Wurman et al., 2008], aviation [Pallottino

et al., 2007], traffic control [Dresner and Stone, 2008], aircraft towing [Morris et al.,

2016], and video games [Silver, 2005]. MAPF is known to be NP-hard in the number

of agents [Surynek, 2010, Yu and LaValle, 2013b], though feasible solutions can be

found in polynomial time [De Wilde et al., 2014, Kornhauser et al., 1984, Luna and

Bekris, 2011, Wilson, 1974]. MAPF algorithms can route agents in an individual-

istic (agent-based) manner [Bnaya et al., 2013] or in a centralized manner [Felner
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et al., 2017, Li et al., 2019]. The most common objective functions are the makespan

[Surynek, 2010] and the total distance traveled across all agents [Sharon et al., 2013,

2015, Standley, 2010].

MAPF has been approached through a number of different strategies, both

exact and heuristic, including approaches that are rule based [Botea and Surynek,

2015, De Wilde et al., 2014, Khorshid et al., 2011, Kornhauser et al., 1984, Luna

and Bekris, 2011, Sajid et al., 2012, Surynek, 2009], search based [Goldenberg et al.,

2012, 2013, 2014, Sharon et al., 2013, 2015, Silver, 2005, Standley, 2010, Wagner

and Choset, 2015], and reduction based [Erdem et al., 2013, Lam et al., 2019, Ryan,

2010, Surynek, 2012, Yu and LaValle, 2013a].

Rule based solvers categorize algorithms that generate routes for agents accord-

ing to specified rules. They are typically fast but significantly suboptimal [Felner

et al., 2017]. Search based solvers can be either heuristic or exact. They search

the solution space according to a defined algorithm. Many search based solvers are

based on A* [Hart et al., 1968]. These techniques typically combine the state space

for all agents into one expanded state space. A* is solved where only feasible tran-

sitions that avoid collisions are allowed. These methods are exact but suffer from

a exponential growth of the state space in the number of agents. Standley [2010]

introduced the Independence Detection (ID) framework to reduce the number of

agents considered at any point by dividing agents into independent groups. Groups

are independent if their solutions don’t have the potential to conflict. This is done

by first placing each agent into its own independent group. Solutions are found for

each group and groups are merged when conflicts between them are found.
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Wagner and Choset [2015] introduced M* and rM* which utilize A* and ID.

These algorithms reduce the state space generated by the search by originally only

generating a single child from each state where each agent takes its own optimal move

irrespective of potential conflicts with other agents. This is done until a conflict is

found. When conflicts are found, a more expansive branching is done to resolve the

issue.

Increasing Cost Tree Search (ICTS) [Sharon et al., 2013] is a two level algo-

rithm. At the high level, ICTS assembles and searches a tree where each node in

the tree is represented by a set of costs for each agent. At the parent node of the

tree, all costs are set to the individual shortest paths for each agent to reach their

destinations, regardless of route conflicts. A child node for any node is represented

by the same set of costs except one agent has their cost increased by one. At the

low level, the algorithm takes in a set of costs and attempts to find a feasible set of

paths that avoid collisions while having every agent’s cost constrained by the value

determined by the state. The algorithm descends down the tree in search of the

lowest cost set of paths that produces no collisions.

Conflict Based Search (CBS) [Sharon et al., 2015] is a popular search method

that incrementally adds constraints. The method works by searching a tree where

a node in the tree is defined by a set of constraints prohibiting certain agents from

traversing specific locations at certain times and the corresponding solution obtained

when all agents have their paths solved independently but consistent with the con-

straints. At the root node, no constraints are included. When a route conflict is

found, the node is given children that resolve the conflict by constricting one of the
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agents from occupying the conflicting location. A child node is produced for each

agent found in that specific conflict. The tree is searched until a feasible solution is

found.

Reduction based solvers work by matching the MAPF problem to some specific

structure admitting the use of other established techniques. Yu and LaValle [2013a]

modeled MAPF as a multicommoddity network flow problem on a time extended

graph. This permits the use of Integer Programming techniques to solve MAPF.

Erdem et al. [2013] employed Answer Set programming (ASP) for solving MAPF.

Lam et al. [2019] employed CG in a branch-cut-and-price algorithm to solve MAPF

optimally. They treated agent routes as variables in their extended formulation,

adding positional constraints as necessary when collision conflicts were found.

5.2.2 Other Variants

The MAPF problem is often defined with slightly different problem parame-

ters and objectives that lead to there being numerous variants of the problem [Stern

et al., 2019]. Variants can, for example, be defined by the objective function they

optimize or the constraints they impose on agent motion. One common variant is

to address MAPF on a weighted graph [Barták et al., 2018, Phillips and Likhachev,

2011, Walker et al., 2018, Yakovlev and Andreychuk, 2017]. As well, MAPF is of-

ten applied with different feasibility rules rules including ones that enforce solutions

with robustness [Atzmon et al., 2020, Ma et al., 2016, Wagner and Choset, 2017]

and ones that restrict agents to certain formations [Barel et al., 2017, Gilboa et al.,
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2006, Stump et al., 2011]. MAPF has been applied to problems where agents are

not assumed to be points in space but rather take up some defined area on a grid

[Li et al., 2019, Thomas et al., 2015, Walker et al., 2018, Yakovlev and Andrey-

chuk, 2017]. This problem is known as LA-MAPF. Anonymous MAPF [Kloder and

Hutchinson, 2006, Yu and LaValle, 2013a] is a MAPF variant where robots are not

assigned to specific destinations, but instead can travel to any of the set of available

destinations. This variant bridges the gap to MAPD.

5.2.3 MAPD

Multi-Agent Pickup and Delivery (MAPD) [Farinelli et al., 2020, Grenouilleau

et al., 2019, Liu et al., 2019, Ma et al., 2017] is a problem derived from MAPF where

agents are no longer assigned destinations. Rather, there are a set of tasks that must

be collectively completed by all the agents. A task is defined by a pickup location

and a delivery location. Completing a task requires that an agent travel to a task’s

pickup location and then travel to that task’s delivery location. This can be designed

with or without deadlines for tasks. MAPD is typically solved in a hierarchical

framework, assigning tasks by first ignoring the non-colliding requirement and then

planning collision-free paths based on the assigned tasks. Naturally, this approach

usually falls short of optimality as consideration of collisions can easily affect the

optimal task assignment.

Ma et al. [2017] addressed MAPD as a lifelong problem where orders for new

tasks continuously come in over time. They proposed a Token Passing (TP) scheme
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where a token is held by one agent at a time. The agent with the token surveys the

list of tasks and assigns itself to an available task with the shortest feasible path to

the task’s pickup location. They also introduced Token Passing with Task Swaps

(TPTS) where agents can also survey tasks that have already been assigned to other

agents. An agent take another agent’s task if the other agent has not yet reached

the task’s pickup location. The agent will swap tasks in such a case if it that task’s

pickup location is the shortest available to it and that distance is shorter than that

of the agent already assigned to that task.

Liu et al. [2019] proposed a hierarchical approach where tasks are assigned

to agents using a traveling salesman heuristic that incorporates the agents’ start

positions. Following that, paths are planned sequentially such that collisions are

avoided. Grenouilleau et al. [2019] tackled MAPD using a multi-label A* algo-

rithm (MLA*). This method expands on previous A* methods for pathfinding by

constraining paths to have an ordered set of goal locations.

5.3 The Multi-Robot Routing Problem

In this section we present the problem of Multi-Robot Routing (MRR). We

present both approaches, the SP approach and the MAPD approach. In Section

5.3.1 we describe the problem of MRR. In Section 5.3.2 we present the time extended

graph used to model the states and dynamics of the problem. In Section 5.3.3 we

formulate the problem. In Section 5.3.4 we describe specific robot route costs and

constraints.
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5.3.1 Description

Multi-Robot Routing (MRR) addresses the problem of optimally routing a

fleet of robots in a warehouse to complete a set of tasks while enforcing that robots

do not collide. The number of robots is fixed and a solution cannot utilize more

robots than there are available. Robots incur a cost for the time that they are

deployed on the warehouse floor and for the distance they travel on the floor. We

present two approaches, an approach that treats routing as a set packing problem

(the SP approach) and an approach that generalizes the MAPD problem (the MAPD

approach).

5.3.1.1 The SP Approach

In the SP approach, robots begin at a launcher and receive an objective reward

(i.e. negative cost) for servicing items. Items cannot be serviced more than once.

Each item has an associated demand and an associated time window. Each robot

has a capacity, which is homogeneous across the fleet of robots. To service an item,

a robot must travel to the item’s location within its time window. Servicing the

item consumes the robot’s capacity by the level of demand associated with that

item. Robots can service multiple items along their path, however they may not

service a cumulative demand that exceeds their capacity. Returning to the launcher,

however, refreshes the robots capacity. Once a robot’s capacity is refreshed, it can

return to the warehouse floor and service more items if time permits.

The problem has a set time limit. At the time limit, all robots must be back
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at the launcher. Though, in general, robots start optimization at the launcher, we

allow some robots to initialize on the robot floor with arbitrary levels of capacity

remaining. We call these robots extant robots. Incorporating extant robots per-

mits the use of re-optimization since the intermediate warehouse conditions along

the course of execution can represent the initial conditions of the new optimization

problem, along with any set of changes in the problem parameters that are desired.

Re-optimization with new parameters allows the model to be used to plan a contin-

uously running warehouse system. We call the complete path a specific robot takes

which necessarily ends at the launcher a route.

5.3.1.2 The MAPD Approach

The MAPD approach does not offer rewards for servicing items. Rather, the

servicing of all items is a requirement and is treated as an optimization constraint.

In this problem, items do not have demands and robots do not have capacities.

Items instead are serviced by being taken from their set location to their specified

destination. Each item has a specific time window. In order to be serviced, an item

must be picked up after the start of its time window and must be dropped of before

the end of its time window. Any robot can service any item, but a robot cannot

at any point be servicing two items simultaneously. This means that when a robot

travels to an item location to service it, it must travel to the item’s destination with

the item before it can begin to service another item. In this problem, there is no

starting launcher. All robots are initialized to distinct points on the warehouse floor.
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There are two conceptions of this problem. In the first, robots must end their route

at a specific location. When they reach that location they are no longer considered

to be deployed on the warehouse floor. In the second, we forego the warehouse

floor deployment cost and robots can finish their routes wherever on the warehouse

floor. This second problem matches the MAPD problem where the objective is to

minimize the total robot travel distances. For this problem, we use route to refer to

the path a robot takes through the course of the scenario.

5.3.2 The Time-Extended Graph

We represent robot positions and traversals through space and time using a

time extended graph based on a discretization of warehouse floor locations and a

discretization of time. Location traversals must occur over a time increment. How

the warehouse floor is discretized and what location traversals are permitted over

the discretization are specific to a particular implementation. From this point on we

shall refer to the unique physical locations on the discretized floor as locations and

we shall refer to location-time pairs as space-time positions or just positions. We

use T = {1, 2, ..., |T |} to denote the set of discrete time points, which we index by

t. We use P to denote the set of space-time positions which we index by p. Every

p ∈ P represents a pair of a location and a time t ∈ T . We define the following

function Ξ : P → T where Ξ(p) = t if space-time position p ∈ P is associated with

time t ∈ T . We use E to denote the set of valid traversals between two space-time

positions in P . We use G = (P , E) to denote the time-extended graph, where P
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serves as the nodes and E serves as the edges. Two space-time positions pi, pj ∈ P

are connected by a directed space-time edge e = (pi, pj) ∈ E IFF pi and pj each

refer to adjacent traversable locations across as single time step and the associated

time of pj directly follows the associated time of pi (i.e. Ξ(pi) = Ξ(pj) + 1).

Collisions between robots can occur in one of two ways:

1. Two robots occupy the same location at the same time.

2. Two robots traverse conflicting/crossing paths along the same time transition.

A visual portrayal of such potential collisions on a backdrop of a discretized

grid of locations is shown in Figure 5.1. It is apparent that the set of possible

collisions occurring from crossing traversals is dependent on the types of traversals

possible. The collision portrayed in the right-most image in Figure 5.1 requires that

robots be able to make diagonal traversals along location grid. This is specific to

the problem implementation.

Figure 5.1: Representation of potential robot collisions. (Left): Collision of type
(1) where two robots occupy the same position. (Middle): Collision of type (2)
where robots cross paths along a transition. (Right): Collision of type (2) where
robots cross paths along a transition
.

For the purposes of our implementations, we consider a euclidean discretization
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of a warehouse space. The discretized warehouse is treated as a 4-neighbor grid

where robots can travel in the four main compass directions between successive

time steps. A visualization of the possible traversals are shown in Figure 5.2. This

setup admits the possibility of collisions in the middle image of Figure 5.1 that must

be avoided. Locations are generally traversable, but some locations are labeled as

obstacles and cannot be traversed; we call these locations obstructed. Figure 5.3

shows a visualization of traversals on the grid along a the time extended graph.

Figure 5.2: Image representation of the possible robot traversals across a single time
step.

Figure 5.3: Image of traversals across the time extended graph. Three time slices
shown: t = 1, t = 2, and t = 3 from left to right.The blue arrows show traversals
from the middle position at t = 1 to the possible positions at t = 2. The orange
arrows show traversals from the middle position at t = 2 to the possible positions
at t = 3.

To track edge collisions we define edge relationships that group edges that

cannot simultaneously be traversed. We define the equivalence relation ∼ on E
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where ei ∼ ej if two robots traversing each edge will necessarily result in a collision

of type (2). In our specific implementation, ei ∼ ej if ei both represent traversals

between the same two locations but in opposite directions and both ei and ej are

associated with the same time transition t to t+1. We thus define the quotient space

Ē = E/ ∼, the set of edges that can be occupied by no more than a single route

in any solution. Table 5.1 lays out the relevant definitions for the time-extended

graph.

Element Variable Description

location - physical location in the discretized warehouse space

time t ∈ T time step along the course of optimization

position p ∈ P a location-time pairing

edge e ∈ E a directed link between two traversable positions
along a single time step

grouped edge ē ∈ Ē set of edges that only one route can occupy in a solution

Table 5.1: List of Time-Extended Graph Variables

5.3.3 Problem Formulation

In this section we formulate the problem of MRR as an Integer Linear Program

(ILP). Let Ω represent the set of feasible robot routes, which we index by l. Let

cl ∈ R denote the net profit of robot route l for the SP approach and the cost of

robot route l in the MAPD approach. We are minimizing so we prefer a negative

profit. We use θl ∈ {0, 1} to denote whether route l is active in the solution, where

θl = 1 indicates the route is in the solution. Let N denote the set of items available

to be serviced, which we index by u. Also, let R denote the set of extant robots (in

the MAPD approach, all robots are considered extant). Finally, let D denote the
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total number of robots in the fleet.

We describe routes using ail ∈ {0, 1} for i ∈ I = {N ∪ T ∪ P ∪ Ē ∪ R}. Each

ail is set according to the following rules:

• aul = 1 IFF route l services item u ∈ N .

• atl = 1 IFF route l is active (meaning moving or waiting) at time t ∈ T .

• apl = 1 IFF route l includes space-time position p ∈ P .

• aēl = 1 IFF route l includes traverses an edge belonging to ē ∈ Ē .

• arl = 1 IFF route l is associated with extant robot r ∈ R.

We write the SP formulation for MRR as follows.

min
θl∈{0,1} ∀l∈Ω

∑
l∈Ω

clθl (5.1)

subject to

∑
l∈Ω

aulθl ≤ 1 ∀u ∈ N (5.2)

∑
l∈Ω

atlθl ≤ D ∀t ∈ T (5.3)

∑
l∈Ω

arlθl = 1 ∀r ∈ R (5.4)

∑
l∈Ω

aplθl ≤ 1 ∀p ∈ P (5.5)

∑
l∈Ω

aēlθl ≤ 1 ∀ē ∈ Ē (5.6)
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In (5.1), we minimize the net profit (a more negative profit is preferable) of

the MRR solution. In (5.2), we enforce that no item is serviced more than once. In

(5.3), we enforce that no more than the available number of robots D is used at any

given time. In (5.4), we enforce that each extant robot is associated with exactly

one route. In (5.5), we enforce that no more than one robot can occupy a given

space-time position. In (5.6), we enforce that no more than one robot can move

along any space-time edge in Ē .

We write the MAPD formulation for MRR as follows.

min
θl∈{0,1} ∀l∈Ω

∑
l∈Ω

clθl (5.7)

subject to

∑
l∈Ω

aulθl ≥ 1 ∀u ∈ N (5.8)

∑
l∈Ω

arlθl = 1 ∀r ∈ R (5.9)

∑
l∈Ω

aplθl ≤ 1 ∀p ∈ P (5.10)

∑
l∈Ω

aēlθl ≤ 1 ∀ē ∈ Ē (5.11)

In (5.7), we minimize the cost of the MRR solution. In (5.8), we ensure that

all items are serviced. In (5.9), we enforce that each robot is associated with exactly

one route. In (5.10), we enforce that no more than one robot can occupy a given

space-time position. In (5.11), we enforce that no more than one robot is associated
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with a given ē ∈ Ē .

5.3.4 Robot Route Costs and Constraints

In this section we formally present the necessary conditions for feasible robot

routes. We also describe our cost terms and formulate the profit or cost cl for each

robot route. In Section 5.3.4.1 we discuss the SP approach and in Section 5.3.4.2

we discuss the MAPD approach.

5.3.4.1 SP Approach

In the SP approach, each item u ∈ N has an associated time window [t−u , t
+
u ].

In order for a robot to accumulate a reward for servicing item u, it must service item

u at some time t−u ≤ t ≤ t+u . Each item u has an associated demand du. Servicing

item u consumes exactly du units of capacity from a robot. A robot need not service

an item if it travels to the item’s location. Each robot at the launcher starts with

capacity K0. Extant robot r ∈ R starts with capacity Kr ≤ K0.

Let Nl be the set of items route l services. Let p0t represent the position in

P representing the launcher’s location at time t ∈ T . Also, let p0r represent the

position in P associated with the initial position of extant robot r ∈ R at time

t = 1. Finally, let put represent the position in P associated with the location of

item u ∈ N at time t ∈ T . A valid robot route must satisfy the following:

• The route must be represented by a connected path on the graph G.

• If the robot is not extant, the route’s associated path must start at some
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position {p0t|t ∈ T }.

• If the robot is extant (corresponding to index r ∈ R), the route’s associated

path must start at its associated intial position p0r.

• The route’s associated path must end at some position {p0t|t ∈ T }.

• To service item u ∈ N , the route’s associated path must traverse some node

{put|t−u ≤ t ≤ t+u }.

• A route cannot service any item more than once.

• If the robot is not extant,
∑

u∈Nl du ≤ K0.

• If the robot is extant (corresponding to index r ∈ R),
∑

u∈Nl du ≤ Kr.

We define the cost associated with a route with the following cost terms:

• φ1 ∈ R0+: cost of a robot being deployed on the warehouse floor for one time

step.

• φ2 ∈ R0+: cost of a robot traversing one unit of space over one time step.

• φu ∈ R−: reward for servicing item u.

Let Ēmove ⊂ Ē be a subset of edge classes associated with location changes.

Using the defined cost terms, we write the net profit of route l, cl, as follows. Note

that a more negative profit is desirable.

cl =
∑
u∈N

aulφu +
∑
t∈T

φ1atl +
∑

ē∈ ¯̄Emove

φ2aēl (5.12)
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5.3.4.2 MAPD Approach

In the MAPD approach, each item u ∈ N has an associated time window

[t−u , t
+
u ]. Each item u ∈ N is also associated with a pickup location and a drop off

location. Let pu−t represent the position in P associated with the pickup location

of item u ∈ N at time t ∈ T , and let pu+t represent the position in P associated

with the drop-off location of item u ∈ N at time t ∈ T . Each robot must end its

route at the launcher associated with a position in {p0t|t ∈ T }. If a route l services

item u, we set tlu− to represent the time it picks the item up and we set tlu+ to be

the time it drops the item off. A valid robot route must satisfy the following:

• The route must be represented by a connected path on graph G.

• The route’s associated path for robot r must start at its associated initial

position p0r.

• The route’s associated path must end at some position in {p0t|t ∈ T }.

• To service item u ∈ N , a route l’s associated path must traverse nodes pu−tl
u−

and pu+tl
u+

, and t−u ≤ tlu− < tlu+ ≤ t+u .

• A route cannot service any item more than once.

• For any two items ui, uj ∈ N that a route l services, we must have tl
u−i
< tl

u+
i

<

tl
u−j
< tl

u+
j

or tl
u−j
< tl

u+
j

< tl
u−i
< tl

u+
i

.

Using the defined cost terms defined in Section 5.3.4.1, we write the cost of
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route l, cl, as follows.

cl =
∑
t∈T

φ1atl +
∑

ē∈Ēmove

φ2aēl (5.13)

5.4 Column Generation for MRR

Note that Ω is too large to be enumerated in any practical setting. Therefore,

we opt for an approach employing CG to solve the LP-relaxation of (5.1)-(5.6) for

the SP approach and (5.7)-(5.11) for the MAPD approach. To define the pricing

problem we define the following dual variables.

For the SP approach, let {αi, i ∈ I = {N ∪ T ∪ P ∪ Ē ∪ R}} be the set of

dual variables for constraints (5.2)-(5.6). We label αu, u ∈ N for dual variables

associated with constraint set (5.2), where the αu specifically corresponds to the

constraint indexed by u ∈ N . We similarly label dual variables αt, αr, αp, αe for

t ∈ T , r ∈ R, p ∈ P , ē ∈ Ē , corresponding to constraints from (5.3), (5.4), (5.5), and

(5.6) respectively. Pricing for the SP approach requires us to solve:

min
l∈Ω

c̄l where c̄l = cl −
∑
i∈I

αiail (5.14)

For the MAPD approach, the set of dual variables becomes {αi, i ∈ I ′ =

{N ∪ P ∪ Ē ∪ R}} over constraints (5.8)-(5.11). Pricing for the MAPD approach
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becomes:

min
l∈Ω

c̄l where c̄l = cl −
∑
i∈I′

αiail (5.15)

5.5 Pricing for the SP Approach

In this section, we consider the problem of pricing, which we show is a ele-

mentary resource constrained shortest path problem (ERCSPP) [Righini and Salani,

2008]. We organize this section as follows. In Section 5.5.1, we formulate pricing

as an ERCSPP over a graph whose nodes correspond to space-time positions and

whose resources correspond to the items picked up. In Section 5.5.2, we accelerate

computation from Section 5.5.1 by coarsening the graph, leaving only positions of

significance such as item positions. In Section 5.5.3, we further accelerate compu-

tation by aggregating time windows while still achieving exact optimization during

pricing.

5.5.1 Basic Pricing

In this section we formulate pricing for the SP approach as an Integer Linear

Program (ILP) representing an ERCSPP. We establish a new weighted graph admit-

ting an injunction from the routes in Ω to the paths in the graph. For a given route

l ∈ Ω, the sum of the weights along the corresponding path on the weighted graph

is equal to the route’s reduced cost c̄l. Thus finding the lowest cost path on this

graph, subject to specific resource constraints, solves (5.14). The graph proposed is
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a modified form of the time-extended graph G = (P , E). Nodes are added to repre-

sent start/end positions, item services, and the use of an extant robot. Weights are

amended by the corresponding dual variables associated with a given node or edge.

We solve an ERCSPP over this graph where the resources are both the items to be

serviced and the item demands.

We now formally construct the graph. Consider the weighted graph G+ =

(P+, E+, κ), where P+ ⊃ P and E+ ⊃ E . We describe a path on G+ using x ∈

{0, 1}|E+|, where x(pi,pj) = 1 for (pi, pj) ∈ E+ indicates that edge (pi, pj) is utilized

by path x. We use xl to reference the path on G+ corresponding to route l ∈ Ω.

Each edge (pi, pj) has an associated weight κ(pi,pj).

P+ is comprised of nodes for each of the following components:

• each element p ∈ P

• each pairing of u ∈ N and t ∈ [t−u , t
+
u ], denoted p+

ut

• each r ∈ R, denoted p+
r

• a source node p+
+

• a sink node p+
−

The set P+ is a superset of the nodes in P . The nodes in P all refer to concrete

(space-time) positions on the warehouse floor. We have previously indexed some of

the notable positions with specific labels. In Table 5.2 we lay out the labels for

notable positions on P for reference.
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Node Description

p0t location of the launcher at time t ∈ T
p0r location of extant robot r at the initial time t = 1
put location of item u ∈ N at time t ∈ T

Table 5.2: Labeled Positions in P

We define the weights κ so as to ensure that c̄l =
∑

(pi,pj)∈E+ κ(pi,pj)x
l
(pi,pj)

for

all l ∈ Ω, i.e. each route’s reduced cost matches the cost of its associated path on

G+. Recall the function Ξ defined in Section 5.3.2, Ξ : P → T where Ξ(p) = t if

and only if (IFF) position p is associated with time t. We set κ values accordingly

in the following scenarios. Pairs of points for scenarios not addressed are assumed

to be disconnected.

• Case: (pi, pj) ∈ E+, pi ∈ P , pj ∈ P , where pi and pj are associated with the

same physical location and Ξ(pi) = Ξ(pj) + 1.

– κ(pi,pj) = φ1 − αpj − αΞ(pj)

– xl(pi,pj) = 1 IFF the robot performs a wait action (meaning it does not

move from its physical location) from pi to pj.

• Case: (pi, pj) ∈ E+, pi ∈ P , pj ∈ P , where pi and pj are associated with the

adjacent physical locations (i.e. traversable through a single time step) and

Ξ(pi) = Ξ(pj) + 1. e = (pi, pj) and e ∈ Ē .

– κ(pi,pj) = φ1 + φ2 − αpj − αe − αΞ(pj)

– xl(pi,pj) = 1 IFF the robot performs a move action (meaning it travels

from one physical location to another) from pi to pj.

• Case: (put, p
+
ut) ∈ E+, put ∈ P , p+

ut ∈ P+ \ P , t−u ≤ t ≤ t+u .
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– κ(put,p
+
ut)

= φu − αu

– xl
(put,p

+
ut)

= 1 IFF the robot is at the location of item u at time t and the

robot services item u at time t.

• Case: (p+
ut, pj) ∈ E+, p+

ut ∈ P+\P , pj ∈ P , where item u and pj are associated

with the same physical location and Ξ(pj) = t+ 1.

– κ(p+
ut,pj)

= φ1 − αpj − αΞ(pj)

– xl
(p+
ut,pj)

= 1 IFF route l performs a wait action after servicing item u in

the previous time step.

• Case: (p+
ut, pj) ∈ E+, p+

ut ∈ P+\P , pj ∈ P , where item u and pj are associated

with the adjacent physical locations (i.e. traversable through a single time

step) and Ξ(pj) = t+ 1. e = (put, pj) and e ∈ Ē .

– κ(p+
ut,pj)

= φ1 + φ2 − αpj − αΞ(pj) − αe

– xl
(p+
ut,pj)

= 1 IFF route l travels to position pj after servicing item u in

the previous time step.

• Case: (p+
+, p0t) ∈ E+.

– κ(p+
+,p0t)

= φ1 − αt − αp0t

– xl
(p+

+,p0t)
= 1 IFF route l enters the warehouse floor from the launcher at

time t. Route l does not correspond to an extant robot.

• Case: (p+
+, p

+
r ) ∈ E+.

– κ(p+
+,p

+
r ) = −αr
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– xl
(p+

+,p
+
r )

= 1 IFF route l is associated with extant robot r.

• Case: (p+
r , p0r) ∈ E+.

– κ(p+
r ,p0r)

= φ1 − αt=1 − αp0r

– x(p+
r ,p0r)

= 1 IFF route l is associated with extant robot r.

• Case: (p0t, p
+
−) ∈ E+.

– κ(p0t,p
+
−) = 0

– xl
(p0t,p

+
−)

= 1 IFF route l exits the warehouse floor at the launcher location

between time steps t and t+ 1.

Using κ defined above we express the solution to (5.14) as an ILP using decision

variables x(pi,pj) ∈ {0, 1} to determine a valid path.

min
x(pi,pj)∈{0,1} ∀(pi,pj)∈E+

∑
(pi,pj)∈E+

κ(pi,pj)x(pi,pj) (5.16)

∑
(p,pj)∈E+

x(p,pj) −
∑

(pj ,p)∈E+

x(pj ,p) = [p = p+
+]− [p = p+

−] ∀p ∈ P+ (5.17)

∑
u∈N

du
∑

t−u≤t≤t+u

∑
(p,put)∈E+

x(p,put) ≤ K0 +
∑
r∈R

(Kr −K0)x(p+,pr) (5.18)

∑
t−u≤t≤t+u

∑
(p,put)∈E+

x(p,put) ≤ 1 ∀u ∈ N (5.19)

In (5.16) we provide objective such that c̄ =
∑

(pi,pj)∈E+ κ(pi,pj)x(pi,pj). In (5.17)

we ensure that x describes a path from p+
+ to p+

− across space-time. In (5.18) we

ensure that the robot capacity is not violated. In (5.19) we ensure that each item
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is picked up at most once. Optimization in (5.16)-(5.19) is strongly NP-hard as

complexity grows exponentially with |N | [Desrochers et al., 1992].

5.5.2 Efficient Pricing: The Coarsened Graph

In this section we simplify the optimization problem in (5.16)-(5.19) by inde-

pendently solving for the optimal pathing between visited items, leaving the remain-

ing challenge of optimization to be the determination of which item-time pairs to

visit. Note that in any optimal path on (5.16)-(5.19), the path between any two item

positions (when they are serviced), p+
uiti and p+

ujtj , can be treated as an independent

problem whose solution is a shortest path. The solution to this independent prob-

lem remains constant regardless of the solution’s preceding and ensuing behavior.

If each such pairing of item positions is solved accordingly, the graph G+ can be

coarsened considerably, thus simplifying the ERCSPP.

We present the coarsened graph G2 = (P2, E2, κ2). The node set P2 is con-

structed as the set of nodes in P+ excluding those originally in P , P2 = P+ \P . For

each pair p2
i , p

2
j ∈ P2, there is an edge (p2

i , p
2
j) ∈ E2 IFF there exists a connected path

from p2
i to p2

j on G+. For any such edge (p2
i , p

2
j) ∈ E2, we set κ2

(p2
i ,p

2
j )

to be the total

cost of the shortest path between p2
i and p2

j on G+ intermediately traversing only

nodes in P . This produces a new ERCSPP from p+
+ to p+

− on G2. A visualization of

the construction of G2 from G+ is shown in Figure 5.4.
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Figure 5.4: Visualization of the graph coarsening. (Left): Uncoarsened graph.
Yellow nodes represent nodes in P2. (Middle): We calculate the shortest paths
between every pair of nodes in P2, but over the graph G+. (Right): The coarsened
graph G2 where each edge represents a shortest path over G+.

5.5.3 More Efficient Pricing: Avoiding Explicit Consideration of All

Times

Solving (5.16)-(5.19) over E2 requires the enumeration of all u× t pairs, where

u ∈ N , t ∈ [t−u , t
+
u ]. This quickly becomes prohibitively expensive on larger problems.

In this section we circumvent this enumeration by not considering elements of time as

individual components but instead aggregating time elements into grouped periods.

The edge cost between two nodes on the new graph is assigned as the lowest cost

shortest path over the set of paths on G2 connecting the aggregated nodes sets.

This has the potential to create an infeasibility, as the incoming time to a position

(corresponding to a range of times) need not match the outgoing time from that

position. The objective is to solve the ERCSPP admitting this possibility. When a

solution contains such an infeasibility, the time group associated with the mismatch

is split up and optimization is resolved. This continues until a feasible solution is

found, which is guaranteed since eventually each time element can exist in a group

by itself.
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For every u ∈ N , we construct T u, which is a set of subsets of [t−u , t
+
u ] that

defines a partition over the set [t−u , t
+
u ]. Initially we set T u to be the trivial partition

over [t−u , t
+
u ], i.e. T u = {[t−u , t+u ]}. We index T u by j such that T uj refers to the j’th

set in the partition. Each set in the partition T u defines a subset of the times when

item u ∈ N can be serviced.

We define the graph G3 = (P3, E3, κ3), where paths over G3 are represented by

the binary vector x3 ∈ {0, 1}|E3|. P3 consists of the following nodes.

• a source node p+
+

• a sink node p+
−

• p+
r for each r ∈ R

• p3
uτ for each u ∈ N , τ ∈ T u

Note that p+
+, p+

−, and p+
r are nodes in G2 as well. τ defines a set of times since

it is an element of the partition T u. Each node p3
uτ will be associated with the set

of nodes in P2. It specifically associates with the set of nodes {p2
ut|t ∈ τ}. A path

coming into or out of p3
uτ over G3 represents a path coming into or out of a node in

{p2
ut|t ∈ τ} over G2. We assign each κ3

(pi,pk) to be some minimum κ2 over the possible

paths in (P2, E2) associated with pi, pk ∈ P3. We define κ3 by the following set of
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equations.

κ3
(p,p3

uτ ) = min
t∈τ

κ2
pput∀p ∈ {p

+
+} ∪ {p+

r ∀r ∈ R} (5.20)

κ3
(p+

+,p
+
r )

= κ(p+
+,p

+
r ) (5.21)

κ3
(p3
uτp

+
−)

= min
t∈τ

κ2
putp

+
−

(5.22)

For any pair of unique items ui, uk and windows τi, τk we set

κ3
(puiτi ,pukτk ) = min

ti∈τi
tk∈τk

κ2
(puiti ,puktk ) (5.23)

Evaluating each of the κ3 terms amounts to solving a basic shortest path

problem (no resource constraints). Once G3 is constructed we can address pricing

by solving an ERCSPP over G3, which represents a much smaller ERCSPP than the

one described by (5.16)-(5.19). The solution may not, however, represent a feasible

path over G+. Regardless, it still provides a lower bound to (5.16)-(5.19). Ultimately

though, we wish to refine the partitions T u for u ∈ N in order to produce a feasible

path over G+.

The ERCSPP over G3 produces a feasible route when each node p3
uτ along the

optimizing path is associated with exactly one unique time, i.e. the incoming time

to p3
uτ must match the outgoing time.

In pursuit of a feasible route, we refine the partition T u when we get a mis-

match for a node p3
uτ present in the optimal path over G3. We iterate between

solving the ERCSPP over G3 and augmenting the T u partitions until we obtain a
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feasible route. This must ultimately occur since eventually T u would include only

sets with single time elements for all u ∈ N . This should, though, occur much

earlier in practice.

We describe the approach as follows.

arg min
t0∈τi
t1∈τk

κ2
(p2
uit0

,p2
ukt1

) (5.24)

We use tp3
uiτi

p3
ukτk

0 and tp3
uiτi

p3
ukτk

1 to denote the minimizers used to calculate

κ3
(p3
uiτi

,p3
ukτk

). The variable tp3
uiτi

p3
ukτk

0 is the time component minimizer for p3
uiτi

repre-

senting an outgoing time. The variable tp3
uiτi

p3
ukτk

1 is the time component minimizer

for p3
ukτk

representing an incoming time. These are the outgoing and incoming times

for the shortest path on G2 between a node in P2 associated with p3
uiτi

and a node

in P2 associated with p3
ukτk

.

Every node p3
uτ along the shortest path over G3 has an associated incoming

time and outgoing time. If these times do not match, we refine the partition T u by

splitting the set τ ∈ T u into at least two sets, requiring that the incoming time and

outgoing time are now in different sets.

We solve pricing by solving an ERCSPP over G3. Once we have a shortest path,

we check if there are any time mismatches along the optimal shortest path. If there

are none, then our shortest path represents a valid route and we conclude pricing.

Otherwise, we refine each partition associated with a time mismatch, reconstruct

the refined G3, and re-solve the ERCSPP. We continue until a valid route is found.
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5.6 Pricing for the MAPD Approach

In this section we address pricing for the MAPD approach. In Section 5.6.1

we construct our basic pricing algorithm. In Section 5.6.2 we address methods to

tackle pricing more efficiently.

5.6.1 Basic Pricing

In this section we formulate pricing for the MAPD approach. We adapt much

of the work presented in Section 5.5.1. Pricing for the MAPD model similarly

amounts to an ERCSPP where the resources are the items to be serviced.

Consider the weighted graph Ġ+ = (Ṗ+, Ė+, κ̇), where Ṗ+ ⊃ P and Ė+ ⊃ E .

We describe a path on Ġ+ using ẋ ∈ {0, 1}|Ė+|, where ẋ(pi,pj) = 1 for (pi, pj) ∈ Ė+

indicates that edge (pi, pj) is utilized by path ẋ. We use ẋl to reference the path

on Ġ+ corresponding to route l ∈ Ω. Each edge (pi, pj) has an associated weight

κ̇(pi,pj).

To describe the makeup of Ġ+, we define the following new references to ele-

ments in P . Let pu−t represent the position in P associated with the pickup location

of item u ∈ N at time t ∈ T . Let pu+t represent the position in P associated with

the drop-off location of item u ∈ N at time t ∈ T . Ṗ+ is comprised of nodes for

each of the following components:

• each element p ∈ P

• p+
u−t and p+

u+t for each pairing of u ∈ N and t ∈ [t−u , t
+
u ]

124



• each r ∈ R, denoted p+
r

• a source node p+
+

• a sink node p+
−

We define the weights κ̇ so as to ensure that c̄l =
∑

(pi,pj)∈Ė+ κ̇(pi,pj)ẋ
l
(pi,pj)

for

all l ∈ Ω, i.e. each route’s reduced cost matches the cost of its associated path on

Ġ+. We set set κ̇ values accordingly in the following scenarios. Pairs of points for

scenarios not addressed are assumed to be disconnected.

• Case: (pi, pj) ∈ Ė+, pi ∈ P , pj ∈ P , where pi and pj are associated with the

same physical location and Ξ(pi) = Ξ(pj) + 1

– κ̇(pi,pj) = φ1 − αpj

– ẋ(pi,pj) = 1 IFF the robot performs a wait action from pi to pj.

• Case: (pi, pj) ∈ Ė+, pi ∈ P , pj ∈ P , where pi and pj are associated with the

adjacent physical locations (i.e. traversable through a single time step) and

Ξ(pi) = Ξ(pj) + 1. e = (pi, pj) and e ∈ Ē .

– ˙κ(pi,pj) = φ1 + φ2 − αpj − αe

– ẋ(pi,pj) = 1 IFF the robot performs a move action from pi to pj.

• Case: (pu−t, p
+
u−t) ∈ Ė

+, pu−t ∈ P , p+
u−t ∈ Ṗ

+ \ P , t−u ≤ t ≤ t+u .

– κ̇(pu−t,p
+

u−t
) = −αu

– ẋ(pu−t,p
+

u−t
) = 1 IFF the robot is at the location of item u at time t and

the robot picks up item u at time t.
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• Case: (p+
u−t, pj) ∈ Ė

+, p+
u−t ∈ Ṗ

+ \ P , pj ∈ P , where item u and pj are

associated with the same physical location and Ξ(pj) = t + 1. e = (put, pj)

and e ∈ Ē .

– κ(p+

u−t
,pj)

= φ1 − αpj

– ẋ(p+

u−t
,pj)

= 1 IFF route l performs a wait action after servicing item u in

the previous time step.

• Case: (p+
u−t, pj) ∈ Ė

+, p+
u−t ∈ Ṗ

+ \ P , pj ∈ P , where item u and pj are

associated with the adjacent physical locations (i.e. traversable through a

single time step) and Ξ(pj) = t+ 1. e = (put, pj) and e ∈ Ē .

– κ(p+

u−t
,pj)

= φ1 + φ2 − αpj

– ẋ(p+

u−t
,pj)

= 1 IFF route l travels to position pj after servicing item u in

the previous time step.

• Case: (pu+t, p
+
u+t) ∈ Ė

+, pu+t ∈ P , p+
u+t ∈ Ṗ

+ \ P , t−u ≤ t ≤ t+u .

– κ̇(pu+t,p
+

u+t
) = 0

– ẋ(pu+t,p
+

u+t

= 1 IFF the robot is at the location of item u at time t and

the robot drops off item u at time t.

• Case: (p+
u+t, pj) ∈ Ė

+, p+
u+t ∈ Ṗ

+ \ P , pj ∈ P , where item u and pj are

associated with the same physical location and Ξ(pj) = t + 1. e = (put, pj)

and e ∈ Ē .

– κ̇(p+

u+t
,pj)

= φ1 − αpj
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– ẋ(p+

u+t
,pj)

= 1 IFF route l performs a wait action after servicing item u in

the previous time step.

• Case: (p+
u+t, pj) ∈ Ė

+, p+
u+t ∈ Ṗ

+ \ P , pj ∈ P , where item u and pj are

associated with the adjacent physical locations (i.e. traversable through a

single time step) and Ξ(pj) = t+ 1. e = (put, pj) and e ∈ Ē .

– κ̇(p+

u+t
,pj)

= φ1 + φ2 − αpj

– ẋ(p+

u+t
,pj)

= 1 IFF route l travels to position pj after servicing item u in

the previous time step.

• Case: (p+
+, p

+
r ) ∈ Ė+.

– κ̇(p+
+,p

+
r ) = −αr

– ẋ(p+
+,p

+
r ) = 1 IFF route l corresponds to extant robot r.

• Case: (p+
r , p0r) ∈ Ė+.

– κ̇(p+
r ,p0r)

= φ1 − αp0r

– ẋ(p+
r ,p0r)

= 1 IFF route l corresponds to extant robot r.

• Case: (p0t, p
+
−) ∈ Ė+.

– κ̇(p0t,p
+
−) = 0

– ẋ(p0t,p
+
−) = 1 IFF route l exits the warehouse floor at the launcher location

between time steps t and t+ 1.
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Using κ̇ defined above we express the solution to (5.15) as an ILP using decision

variables ẋ(pi,pj) ∈ {0, 1} where ẋ(pi,pj) takes value 1 if (pi, pj) ∈ Ė+ is utilized. We

additionally introduce a multidimensional flow variable yen for e ∈ Ė+, u ∈ N , which

represents the flow going through edge e. We have a flow channel for every u ∈ N .

We get the following ILP.

min
ẋ,y

∑
(pi,pj)∈Ė+

κ̇(pi,pj)ẋ(pi,pj) (5.25)

subject to

∑
(p,pj)∈Ė+

ẋ(p,pj) −
∑

(pj ,p)∈Ė+

ẋ(pj ,p) = [p = p+
+]− [p = p+

−] ∀p ∈ P+ (5.26)

∑
t−u≤t≤t+u

∑
(p,p+

u−t
)∈Ė+

ẋ(p,p+

u−t
) ≤ 1 ∀u ∈ N (5.27)

∑
u∈N

y(p+
+,p)u

= 0 ∀p ∈ P+ (5.28)

∑
u∈N

y(p,p+
−)u = 0 ∀p ∈ P+ (5.29)

∑
u∈N

yeu ≤ 1 ∀e ∈ E+ (5.30)

∑
(pi,p)∈Ė+

y(pi,p)u −
∑

(p,pj)∈Ė+

y(p,pj)u = 0 ∀u ∈ N , p ∈ P+ \ {p+
ut|t ∈ T } (5.31)

∑
(p,pj)∈Ė+

y(p,pj)u −
∑

(pi,p)∈Ė+

y(pi,p)u = 1 ∀u ∈ N , p ∈ {p+
u−t|t ∈ T } (5.32)

∑
(p,pj)∈Ė+

y(p,pj)u −
∑

(pi,p)∈Ė+

y(pi,p)u = −1 ∀u ∈ N , p ∈ {p+
u+t|t ∈ T } (5.33)

ẋ(pi,pj) ∈ {0, 1} ∀(pi, pj) ∈ Ė+ (5.34)
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y(pi,pj)u ≥ 0 ∀(pi, pj) ∈ Ė+, u ∈ N (5.35)

The flow variable y enforces that we do not service two items simultaneously

and that we finish servicing any item that is picked up. In (5.28) we enforce that we

start with 0 flow and in (5.29) we enforce that we end with 0 flow. In (5.30)-(5.33)

we ensure that we never exceed a single unit of flow and that we carry a unit of flow

for any item we pick up until it is dropped off. This optimization problem defines

an ERCSPP where the resources are the items that are serviced. In Section 5.6.2

we apply the techniques from Sections 5.5.2 and 5.5.3 to make (5.25)-(5.35) more

tractable.

5.6.2 MAPD Efficient Picing

In this section we adapt the techniques from Sections 5.5.2 and 5.5.3 to fa-

cilitate pricing for the MAPD approach. The techniques used for the SP approach

translate naturally to the MAPD approach. Looking at the pricing problem de-

fined by (5.25)-(5.35), we note that the path taken between any two elements in

Ṗ+ \ P , traversing only nodes in P , can be treated as independent problems. This

motivates a construction of the corresponding coarsened graph Ġ2 analogous to the

construction of G2 in Section 5.5.2.

To construct Ġ2, we follow the same process outlined in Section 5.5.2 for the

SP approach. We make note of the difference that each item in the MAPD approach

has a specific pickup and drop-off location and each item must be dropped off before
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another can be picked up. Considering this distinction, we calculate shortest paths

between the following:

• Each robot’s start position p+
0r and each item’s set of pickup positions p+

u−t

• Each item’s pickup position p+

u−i tj
to that same item’s drop-off position (at a

following time) p+

u+
i tk

• Each item’s drop-off position p+

u+
i ti

to a different item’s pickup position p+

u−j tj

• Each item’s drop-off position p+
u+t to the end hub p+

−

This generates a new graph Ġ2 = (Ṗ2, Ė2). An ERCSPP can be solved over

this graph where the resources are the items, i.e. each item can be visited at most

once.

We can further facilitate pricing for the MAPD approach by employing the

techniques described in Section 5.5.3 to aggregate time components. Adapting the

method for the MAPD approach, each item u ∈ N would be assigned two partitions

T u
−

and T u
+

. The partition T u
−

is defined for the for the pickup positions of node

u and the partition T u
+

is defined for for the drop-off positions of node u. The rest

of the process translates naturally from Section 5.5.3.

5.7 Partial Dual Updates for Faster Pricing

Solving the pricing problem is the principal bottleneck in the computational

efficiency of the our CG approach to MRR. A key task in pricing is the calculation

of the coarsened graphs defined in Sections 5.5.2, 5.5.3, and 5.6.2. We note that
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the associated coarsened graphs only change with respect to dual variables αē, αp,

and αt, not with respect to dual variables αn and αr. Furthermore, we might often

see only slight changes in the values of αē, αp, and αt that do not significantly alter

the character of the pricing solution. Given this fact, we choose to only update the

coarsened graph periodically, thus approximating the pricing process.

We solve for the current αn and αr delivered by the RMP, but use a previous

CG iteration’s αē, αp, and αt values that were used to construct the coarsened graph.

After columns are delivered, we evaluate the true reduced costs on the routes using

the current αē, αp, and αt. If none of the calculated reduced costs are negative (a

misprice), we update the coarsened graph with the current dual variables and re-

solve pricing. Regardless of whether we get a misprice or not, we periodically update

the coarsened graph every few iterations with the most up to date dual values. In

practice we do this every three to five CG iterations.

5.8 Dual Optimal Inequalities

In this section we present dual optimal inequalities (DOI) for the SP approach

to MRR. These DOI are motivated by the observation that a route delivered by the

pricing algorithm would only service a particular item if servicing the item provides

a negative marginal profit. When a route covers the position of an item u ∈ N ,

the net marginal profit of choosing to service that item is φu − αu. If this marginal

profit is positive, the item would not be serviced since an identical route that travels

the same path but simply neglects servicing item u would have lower reduced cost.
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Therefore, we know that for any item serviced along any minimum reduced cost

path, we must have the following:

φu − αu ≤ 0 ∀u ∈ N (5.36)

If we introduce new artificial variables ξu, u ∈ N , we get the following new

equations for the RMP.

min
θl≥0
ξ≥0

∑
l∈Ω

clθl −
∑
u∈N

ξuαu (5.37)

∑
l∈Ω

aulθl ≤ 1 + ξu ∀u ∈ N (5.38)

To formulate the full RMP incorporating these DOI, we would replace (5.1)

and (5.2) with (5.37) and (5.38) respectively.

5.9 Elementary Resource Constrained Shortest Path Solver

We solve the elementary resource constrained shortest path problem (ERC-

SPP) in pricing for the SP approach via an exponential time dynamic program

that iterates over the possible remaining capacity levels for a robot (starting at the

highest), enumerating all available routes corresponding to paths in (P3, E3) at each

capacity level, and then progressing down to the next highest remaining capacity

level. At each remaining capacity level we eliminate any strictly dominated routes

corresponding to the same demand consumption and the same position. We call a
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route strictly dominated by another if all of the following are satisfied: (1) it has

the same demand consumption and corresponding position in the node set P3 as

the other, (2) it has lower cumulative edge cost on (P3, E3) than the other, and (3)

it has a set of serviceable items available to it that is a subset of the other’s.

We start at the maximum robot capacity and enumerate all possible, single

visit traversals. We save a robot state for each such route. A robot state is defined

by its current corresponding position in the node set P3, the items serviced, the cost

incurred so far on (P3, E3), and the remaining capacity. We set Kp,h to be the cost

of a path at graph position p ∈ P3 with path history h, a set of all previously visited

graph positions. We set Cp,h to be the remaining capacity available for a robot at

corresponding graph position p with history h. A robot route with initial visit at

item u at corresponding graph position puj has the following remaining capacity and

cost.

Kpuj ,{p+} = κ3
p+puj

(5.39)

Cpuj ,{p+} = K0 − du (5.40)

We progress to the next highest remaining robot capacity level. For each

saved robot state at this remaining capacity, we enumerate all available single visit

traversals (including back to the launcher) and save a state for each route generated.

An item is available to be visited if that item has not yet been visited in the route

and visiting it would not exceed the remaining capacity. For a robot traveling from

corresponding graph position puiji with history h, to corresponding graph position

133



pukjk , we have the following update for the cost and remaining capacity.

Kpukjk ,h∪puiji = Kpuiji ,h + κ3
puijipukjk

(5.41)

Cpukjk ,h∪puiji = Cpuiji ,h − duk (5.42)

We eliminate all strictly dominated routes generated and continue on to the

next capacity level until we have exhausted all possible remaining capacity levels. At

the end we have series of routes drawn out, including the route with minimum cost on

(P3, E3). We can return any number of these that have a negative cost. Returning

more serves to reduce the number of CG iterations, but comes with a trade-off

of burdening the RMP with more, possibly unnecessary, columns. Ultimately, we

choose to return the twenty lowest reduced cost routes found.

5.10 Heuristic Pricing

In this section we present a heuristic pricing algorithm to accelerate CG.

Heuristic pricing algorithms can be beneficial in problems where exact pricing may

be too costly to use during each round of CG [Costa et al., 2019, Danna and Le Pape,

2005]. Instead, heuristic pricing is run through each iteration of CG. If heuristic

pricing fails to produce a negative reduced cost column, then the exact pricing algo-

rithm can be called upon to produce a negative reduced cost column or to guarantee

that CG has converged to the optimal solution. As well, if exact optimization is not

necessary for a particular problem, the exact pricing algorithm can be forgone alto-

gether and the problem can be approximately solved using only a heuristic pricing
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[Lokhande et al., 2020].

Our heuristic pricing algorithm leverages the fact that much of the difficulty

in solving the ERCSPP can be alleviated by restricting the order in which items

can be visited within any solution. This works by drastically constraining the state

space in a dynamic programming approach. Normally the state space would grow

considerably as all routes up to a certain point along a path could have different

potential paths available to it going forward. Enforcing an ordering collapses these

cases as all outgoing paths from an item position have the same items available to

it to visit (for the SP approach this would also depend on the remaining capacity).

Let us define the complete set of orderings on N by M, which we index by

m. We set mui,uj = 1 if item ui precedes item uj either directly or indirectly,

otherwise we set mui,uj = 0. Let Ωm ⊂ Ω denote the subset of routes consistent

with ordering m. Solving an ERCSPP on G3 while maintaining consistency with

ordering m amounts to enforcing the following relationship:

mui,uj = 0→ xpui,τi ,puj,τj = 0 (5.43)

∀ τi ∈ T ui , τj ∈ T uj , ui, uj ∈ N

We solve the pricing problem consistent with an ordering m ∈ M using a

polynomial-time dynamic program. We define a new edge set:

E3m = {(pui,τi , puj ,τj) ∈ E3|(mui,uj = 1)} (5.44)
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For the SP approach, let us define for any p ∈ P3, q ∈ {1, 2, ..., K0} a state

variable ρpk which holds the lowest cost path from p+
+ to p over E3m that consumes

exactly k units of capacity. We define ρpk recursively below.

ρp−k = min
(p̄,p−)∈E3m

κ3
p̄p− + ρp̄k ∀k ∈ {0, 1...K0} (5.45)

ρpk = min
(p̄,p)∈E3m

κ3
p̄p + ρp̄(k−du) ∀p ∈ {pi ∈ P3|pi → item u}, k ∈ {0, 1...K0 − du}

ρp+
+K0

= 0

ρp+
r Kr

= κp+
+p

+
r

The total number of states in (5.45) is K0|P3|, thus the algorithm scales poly-

nomially in |N |, |T |, and K0. To translate (5.45) for the MAPD approach, we simply

forgo the capacity consumption and also require that each position corresponding

to a pickup location for an item must connect to a position corresponding to that

item’s drop-off location.

Since each execution of (5.45) is fast we solve pricing using multiple different

random orderings, retaining the solution with lowest reduced cost. We can use the

results from different ordering to return multiple negative reduced cost columns back

to the RMP.

Given that we produce orderings uniformly, we offer bounds for the probability

that our heuristic solver for the SP approach produces the lowest reduced cost path
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when run multiple times. Take the minimum demand over all items:

dmin = min
u∈N

du

The maximum number of items any route can feasibly service is bK0/dminc. For an

ordering to produce the lowest reduced cost path, it need only be consistent with

the subset of items present in the lowest reduced cost path. Therefore we establish

that if we generate b random ordering, we obtain the lowest reduced cost path with

probability

ϕ ≥ 1− (1− 1

bK0/dminc!
)b (5.46)

It should be noted that with the consideration of time windows and item dis-

tances, we might find that some orderings are more likely than others. In fact, time

windows may establish that some orderings can be neglected altogether. When

accounting for these conditions and producing orderings accordingly, the probabil-

ity of producing the lowest reduced cost path given b random orderings may be

significantly higher than the bound provided by (5.46).

5.11 Experiments

In this section we run experiments to study both our approaches to MRR. We

test on instances where item locations and time windows are generated randomly.

We test on both randomly generated maps and standard maps drawn from the

MAPF literature [Stern et al., 2019].
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We generate instances by randomly assigning items to locations around the

map. Extant robots also have their initial positions randomly assigned. We set

the launcher point to be a central position on the map. For randomly generated

maps, we generate problems by starting with an open, square grid and randomly

positioning a set number of obstacles throughout the grid space.

If during pricing we require an exact solution to the ERCSPP, we do so using

the exponential time dynamic program outlined in Section 5.9. Similar to heuris-

tic pricing, the algorithm is capable of returning multiple negative reduced cost

columns, the optimal one being among them. We set the maximum number of

columns delivered when using either heuristic or exact pricing to 20 unless other-

wise specified.

In each of our experiments, we update αp, αe, αt (for the SP approach), and

the associated graph components every three CG iterations, unless we are unable to

find a negative reduced cost column in a given iteration, in which case we update

all dual variables and rerun pricing. If at any point pricing fails to find a negative

reduced cost column while all dual variables are up to date, then we have finished

optimization and we conclude CG. To ensure feasibility for the initial round of CG for

the SP approach, we initialize the RMP with a prohibitively high cost dummy route

lr,init for each r ∈ R, where all anlr,init , atlr,init , aplr,init , aelr,init = 0 but arlr,init = 1.

These dummy routes represent an extant robot route and thus guarantee that (5.4)

is satisfied. They ensure feasibility, but are not active at termination of CG due

to their prohibitively high cost. We do similarly for the MAPD approach, except

we also cover each item with a high cost dummy variable. Experiments are run in
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MATLAB and CPLEX is used as our general purpose MIP solver.

In both the SP approach and the MAPD approach, whenever we require an

integer solution for comparison of solution costs, we generate them through the

following process. We solve CG over the LP-relaxation and take the complete set of

columns obtained over all the iterations ΩR. We take ΩR and solve the corresponding

Integer Linear Program (ILP) over that set of columns. The solution to this ILP is

our integer solution.

A sample problem for the SP approach with its solution routes is shown in

Figure 5.5. Each plot in the Figure 5.5 shows a snapshot in time of the same

instance’s solution. A snapshot shows each robot’s route from the initial time up to

the time of the snapshot.

In Section 5.11.1 we run experiments on the SP approach. In Section 5.11.2

we run experiments on the MAPD approach.

5.11.1 SP Approach

In this section we run various experiments to study the SP approach to MRR.

In Section 5.11.1.1 we perform optimization on a set of random instances and look

at the distribution of results. We focus on relative gap which we calculate as the

gap between the objective value of the integer solution we obtain (which is not

necessarily the optimal) relative to the objective value to the optimal solution to

the LP-relaxation.

In Section 5.11.1.2 we study the added value of our model comparing it to a
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Figure 5.5: Sample robot route result for a single instance over 3 snapshots in
time. Each track is a robot route up through that time step. Traversable cells,
obstacles, the starting/ending launcher, item locations, and extant robot locations
are all noted in the legend. (Top Left): t = 8 snapshot (Top Right): t = 16
snapshot (Bottom Left): t = 24 snapshot (Bottom Right): t = 30 (end
time) snapshot
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modified version employing MAPF. In Section 5.11.1.3 we study the speedup ob-

tained by employing our heuristic pricing algorithm. In Section 5.11.1.4 we measure

the speedup obtained by employing the DOI presented in Section 5.8. Finally, in

Section 5.11.1.5 we take a close look at the time consumption of each of the com-

ponents of the algorithm.

5.11.1.1 Synthetic Maps

We run the SP approach on random instances of various values of |N |. We

vary |N | over the set of values {10, 15, 20, 25, 30, 35}. We set the number of total

robots D = 5. We set the number of extant robots |R| = 2. Each instance has a

randomly generated map of size 25x25 with 30 random obstacles. We set φ1 to 1, φ2

to 1, and the reward for servicing any item, φu, to -50. We set |T | = 75 total time

steps and item time windows are 25 time units wide and assigned uniformly over the

available time range. Each robot has a capacity of 6 and item demands are assigned

uniformly over the set {1, 2, 3}. For each item count, we run 10 random instances.

For each item count, we record averages of the following values: the IP objective

obtained, the objective of the LP solution, the relative gap, the total runtime, and

the total number of iterations required. We display those averages for each item

count in Table 5.3. We provide a histogram of the relative gaps over all 60 instances

in Figure 5.6.

We see that the relative gap remains low, below 0.07, over all problem sizes.

Its peak average value over the problem sizes tested occurs at |N | = 15, achieving
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Figure 5.6: Histogram of Relative Gap over 60 instances.

D ip obj lp obj rel gap times iters
10 -30.1 -30.25 0.008 36.8582 8.8
15 -55.5 -57.45 0.062 55.977 11.8
20 -121.1 -124.5071 0.030 110.937 17.4
25 -177 -180.125 0.020 223.6278 23.3
30 -193.4 -197.4 0.019 368.913 26.4
35 -272 -277.4 0.020 1858.4 33.9

Table 5.3: SP approach results on random instances.

a value of 0.062. The relative gap did not monotonically increase with the problem

size, as it dips back down to at or below 0.02 for |N | ≥ 25. We see an approximately

linear increase in the number of iterations required for CG to converge for the

increasing problem size, starting at 8.8 iterations on average for |N | = 10 up to 33.9

iterations on average for |N | = 35. The histogram of the relative gaps shows that

although certain problems can have large relative gaps of almost .20, most problems

have very small relative gaps, under .02.

The time required to converge takes a very steep increase with the problem
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size, starting at 36.9 seconds at |N | = 10 and rising all the way to 1858.4 seconds

for |N | = 35. Considering the more linear increase in the iteration count, this time

consumption is primarily due to the increased cost of the exact pricer, which is an

exponential time algorithm. We see that although much of the algorithm increases

in time consumption in a stable manner, the time consumption of the exact pricer

explodes for larger problems.

5.11.1.2 Comparison with MAPF

We compare our algorithm to a modified version that incorporates MAPF. This

version initially ignores robot collision constraints but ultimately considers them af-

ter a set of serviceable items are assigned to specific robots. The modified algorithm

works as follows. We solve a given problem instance using our CG algorithm, but

we neglect the collision constraints, meaning αp = 0, αē = 0,∀p ∈ P , ē ∈ Ē . This

closely resembles a vehicle routing problem [Desrochers et al., 1992] and delivers

us a set of robot routes, including the items serviced by each robot, however this

could include collisions. We then take the disjoint set of item groups serviced and

feed them to a MAPF solver [Li et al., 2020]. The MAPF solver assigns an adject

to each item group. The MAPF solver delivers a set of non-colliding robot routes,

each attempting to service the set of items assigned to it. If the MAPF solver fails

to provide a valid route for a particular agent (i.e., it cannot make it back to the

launcher in time) that route is neglected in the algorithm’s final solution.

To obtain an integer solution for our CG method, both to deliver the set
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of robot routes to the MAPF solver and to obtain a feasible result for our full CG

approach, we solve the corresponding ILP over the column set ΩR, which is obtained

by solving the linear relaxation optimally using CG.

We compare the resulting objective values from our full CG approach to this

modified approach. We solve 25 instances on the 32x32 grid maze-32-32-2 [Stern

et al., 2019]. Each problem instances has 60 items, 8 total robots, 2 extant robot, and

150 total time steps. We set φ1 to 1, φ2 to 1, and the reward for servicing any item,

φu, to -100. Each robot, including the extant ones, has a capacity of 6, while each

item has a random capacity consumption uniformly distributed over the set {1,2,3}.

In each round of pricing we return the 50 lowest reduced cost columns found. Each

item’s time window is randomly set uniformly over the available times and can be

up to 50 time periods wide. We compare our final results with time windows to

the MAPF algorithm’s results without them. The objective value results for both

approaches are show in Table 5.4. A side by side plot of the objective values are

shown in Figure 5.7.

CG modified CG + MAPF Difference (CG - MAPF)
mean -2230.1 -1555.5 -674.6

median -2202.0 -1535.0 -685.0

Table 5.4: Objective value results for both algorithms over 25 random instances.
Our full approach is labeled CG. We compare against modified CG + MAPF.

We see an average objective difference of -921 and a median difference of -782

from the modified algorithm to our full algorithm. We note from looking at Figure

5.7 that each of the 25 instances show drastic improvements for our algorithm. These

instances largely include robot routes for which the MAPF algorithm was unable to
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Figure 5.7: Objective values for both MRR and MAPF approaches over each prob-
lem instance. Our full CG approach is shown in blue. It is compared against the
modified column CG + MAPF approach shown in orange.

find a complete route within the time constraint given the potential collisions with

other robots. With such problems we see it is critical to employ our full algorithm

that jointly considers routing and assignment.

Runtime results, iteration counts, and objective values for our full CG ap-

proach on the 25 problem instances are shown in Table 5.5. We look at the dis-

tribution of the times and numbers of iterations required for CG to converge, the

LP objective of the CG solution, and the corresponding relative gaps. The relative

gap is defined as the the absolute difference between our integer solution (the up-

per bound) and the lower bound (the LP objective solution) divided by the lower

bound. We normalize so as to efficiently compare the gap obtained (upper bound

- lower bound) across varying problem instances. We see that our approach again

delivers small relative gaps, .05, over these problem instances. This still comes at a
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Time (sec) Iterations LP Objective Integral Objective Relative Gap
mean 17577.5 65.9 -2347.6 -2230.1 .05

median 6526.1 67 -2289.8 -2202.0 .05

Table 5.5: Results of the full CG approach over 25 problem instances

significant cost in runtime, driven by the computational cost of the exact pricer.

5.11.1.3 Heuristic Pricing speedup

We run experiments to measure the speedup offered by our heuristic pricing

solver. We compare two approaches. In the first approach, we employ heuristic

pricing at each iteration but ultimately employ exact pricing if heuristic pricing

fails to deliver a negative reduced cost column in a particular iteration. In this

scenario, exact pricing must be employed at least once in order to ultimately en-

sure optimally. In the second approach, we employ exact pricing at each iteration

and if the algorithm fails to deliver a negative reduced cost column, we conclude

optimization assuming we are sufficiently close to the optimum. We solve random

problem instances with randomly generated grids. Each experiment is run on a

25x25 grid with 50 random obstacles, 5 total robots, 2 extant robots, and 75 time

steps. Robots have a capacity of 6 while each item has a uniform random demand

in the set {1, 2, 3}. φn is set to -100 while φ1 and φ2 are both set to 1. Each item’s

time window is randomly set uniformly over the available times and can be up to

25 time periods wide. We return the lowest 25 reduced cost columns found when

employing heuristic or exact pricing. We run this problem setup for different item

counts ranging from 10 to 30 in increments of 5. For each item count, we run 10

random instances and record the average runtime over the 10 instances. Numerical
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results are shown in Table 5.6 and a corresponding plot is shown in Figure 5.8.

D EP HP speedup
10 56.1 25.5 2.1
15 192.2 55.7 3.4
20 826.8 114.4 6.8
25 2605.9 211.8 10.7
30 4989.0 346.1 13.1

Table 5.6: Average runtime results in seconds over problems with various numbers
of items when using exact pricing (EP) and when using heuristic pricing (HP). Each
item count includes average runtimes over 10 random instances.

Figure 5.8: Average runtime results over problems with various numbers of items.
Each item count includes average runtimes over 10 random instances.

It can be observed that employing heuristic pricing offers a positive average

speedup for all item counts. This speedup starts small for 10 items, but grows

considerably as the number of items is increased. We see that the real value in the

heuristic pricing solver is its scalability in comparison to exact pricing.
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5.11.1.4 DOI Speedup

In this section we study the benefits gained by employing the DOI proposed

in Section 5.8. We test on randomly generated maps. We vary |N | over the set of

values {10, 15, 20, 25, 30, 35}. We set the number of total robots D = 5. We set the

number of extant robots |R| = 2. Each instance has a randomly generated map

of size 25x25 with 30 random obstacles. For each item count we run 10 random

instances. For each problem instance, we run once with the DOI and once without

the DOI. We aggregate results and compare the average runtimes and iterations

required at every problem size (item count). In Figure 5.10 we show a bar graph of

the average iteration count at each item count when both using the DOI and not

using the DOI. Figure 5.9 shows a similar graph but for runtimes.

Figure 5.9: Average runtime results over problems with various numbers of items.
Each item count includes average runtimes over 10 random instances.

We see from Figure 5.10 that for small problem sizes there is no iteration
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Figure 5.10: Average iteration count results over problems with various numbers of
items. Each item count includes average runtimes over 10 random instances.

count benefit but as the problem grows larger we start to see a slight benefit in the

iteration count of about 15%. We expect that this trend will continue and be more

stark for problems with greater than 35 items as well. Looking at Figure 5.9 we

see a slight benefit in the runtime as well for problems with at least 25 items. This

benefit, however, is not large enough to outweigh the large growth in runtime from

the increase in item count. It appears that we still see an explosion in the runtime

for larger problems when employing the heuristic pricer. It is important to note

that although we reduce the number of iterations required for CG to converge, we

may not necessarily reduce the number of calls to the exact pricer, which inevitably

will be at least one.
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5.11.1.5 Time Consumption

In this section we study the time consumption of specific components of our

algorithm. Specifically, we compare the time consumption of the heuristic pricer,

the exact pricer, and the construction of the coarsened graph. We test on random

problems on synthetically generated maps. We vary |N | over the set of values

{10, 15, 20, 25, 30, 35}. We set the number of total robots D = 5. We set the

number of extant robots |R| = 2. Each instances has a randomly generated map

of size 25x25 with 30 random obstacles. For each item count we run 10 random

instances. A bar graph of the average time consumption of each component over

the 10 instances for each item count is shown in Figure 5.11.

Figure 5.11: Total runtime of each component averaged over 10 instances at each
item count.

We see that for lower item counts, |N | ≤ 35, the construction of the coarsened

graph takes the most amount of time, however the difference is not particularly
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significant. By |N | = 30 the exact pricer takes the most time out of all components.

By |N | = 35 the exact pricer eclipses all other sources of time consumption. We

note as well that the heuristic pricer takes notably less time than the construction

of the coarsened graph. This should be acknowledged in the context that there are

many more calls to the heuristic pricer than the construction of the coarsened graph.

There are also many more calls to the heuristic pricer than the exact pricer, which

is often only called once.

5.11.2 MAPD Approach

In this section we run experiments on the MAPD approach to MRR. We

run experiments on randomly generated maps. We employ the heuristic pricing

algorithm outlined in Section 5.10. We forego using any exact pricing algorithm,

meaning that when heuristic pricing fails to deliver a negative reduced cost column,

we conclude CG. We obtain an integer solution to our problem by solving an ILP

over the column set delivered by CG.

We compare the total cost of our solution along with its makespan to that

of the Token Passing (TP) approach to MAPD discussed in Section 5.2.3. We run

experiments on 30x30 grids with 200 randomly placed obstacles. We set |R| = 5

and |T | = 200. We do not employ any time windows. We run 10 random instances

at three different item counts: 10, 15, and 20. We set φ2 = 1 and φ1 = 0, therefore

the cost of a solution is equivalent to the total distance traveled. Results for each

instance are shown in Table 5.7. A sample set of routes over a single problem
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instance, specifically instance 1 at |N | = 10, is shown in Figures 5.12 and 5.13. The

left column in both figures refers to tracks generated by our CG approach while the

right column in both figures refers to tracks from the TP algorithm. Each row is

select slice of 15 time increments spanning both figures and going up to t = 123.

The difference in tracks can be be observed.

We see from the results in Table 5.7 that our CG algorithm generally outper-

forms the TP algorithm when considering the total cost or travel distance. Our CG

algorithm had a lower total cost on all 30 problem instances with an average cost

of 513.1. The TP algorithm had an average cost of 572.0. We see though, for a ma-

jority of instances, the TP algorithm had a lower makespan. The average makespan

for the TP algorithm was 143.0 while the average makespan for our CG algorithm

was 161.6. This is due to the fact that our CG algorithm is not, as constructed,

designed to optimize for the makespan. It is designed to optimize the total cost,

however the CG algorithm can enforce a particular makespan by adjusting |T | (if it

can produce a feasible solution).

5.12 Discussion

Our experiments in Section 5.11 show that our CG approach to MRR is ca-

pable of delivering high quality solutions. Both the SP approach and the MAPD

approach successfully produce non-colliding routes for robots that efficiently service

their tasks. When looking at the time consumption of the the algorithms, it is

clear that the exact pricing algorithm is the primary time consumer. Employing
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Figure 5.12: Sample MAPD robot routes for a single instance. Left column→CG,
right column→TP. Each row is a 15 time increment slice starting with t = [1, 15] at
the top and finishing with t = [45, 60] at the bottom.
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Figure 5.13: Sample MAPD robot routes for a single instance (continued from Figure
5.12. Left column→CG, right column→TP. Each row is a 15 time increment slice
starting with t = [60, 75] at the top and finishing with t = [105, 123] at the bottom.
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Instance
Travel Cost Makespan
CG TP CG TP

|N
|=

10

1 402 420 110 123
2 291 323 158 99
3 396 428 121 97
4 386 448 147 109
5 366 390 128 102
6 398 472 103 134
7 371 415 106 97
8 473 527 140 142
9 350 430 183 120
10 314 358 114 88

|N
|=

15

1 614 682 199 160
2 469 483 175 109
3 608 656 188 163
4 450 504 110 132
5 553 591 200 135
6 477 533 143 152
7 436 526 174 122
8 523 647 183 148
9 524 616 183 145
10 450 524 129 127

|N
|=

20

1 618 676 171 170
2 578 632 163 170
3 770 816 199 205
4 621 739 184 170
5 570 666 177 186
6 650 700 179 171
7 716 788 192 199
8 626 690 195 153
9 687 769 200 189
10 707 711 194 172

mean 513.1 572.0 161.6 143.0
median 500.0 562.0 174.5 143.5

Table 5.7: Travel cost and makespan results for the MAPD approach.
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the heuristic pricing algorithm dramatically reduces the overall runtime. We see,

however, that the construction of the coarsened graph still occupies a significant

amount of time. Future research can study how to alleviate some of this burden.
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Chapter 6: Conclusion

In this chapter we discuss the contributions presented in this work, offer some

discussion and analysis, and wrap up with potential directions for future research.

In Section 6.1 we summarize and discuss the contributions and results presented

throughout this work, and in Section 6.2 we present some potential areas for future

research.

6.1 Summary and Discussion

This work presented novel dual optimal inequalities (DOI) for stabilizing col-

umn generation (CG). In Chapter 3 we introduced Smooth DOI (S-DOI). S-DOI

can be interpretted in the primal as allowing for the undercovering of items at the

cost of overcovering other items and incurring a penalty. S-DOI place a bound on

how far certain dual variables can deviate from one another. This allowed deviation

is the worst case cost of replacing the item associated with one dual variable with

the item associated with the other dual variable. We proved that S-DOI are valid,

meaning they are guaranteed to not be active at termination of CG.

We also presented Flexible DOI (F-DOI) in Chapter 3 for the context of set

cover problems. F-DOI offer rewards in the objective function for the overcovering
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of items. They can be interpreted as allowing for the representation of subsets of any

column in the restricted set. Combining S-DOI and F-DOI we get Smooth-Flexible

DOI (SF-DOI). SF-DOI incorporate both DOI and they are, as well, provably valid.

We tested each DOI on the following three optimization problems: the Sin-

gle Source Capacitated Facility Location Problem (SSCFLP), the Capacitated p-

Median Problem (CpMP), and the Capacitated Vehicle Routing Problem (CVRP).

We covered the SSCFLP and the CpMP in Chapter 3 and the CVRP in Chapter 4.

We evaluated the DOI on how well they accelerate convergence of CG. We compared

against unstabilized CG and CG with smoothing. As well, we combined the use of

S-DOI with smoothing and compared the results.

We saw that S-DOI do remarkably well on the SSCFLP and CpMP. F-DOI and

SF-DOI also do well on a number of instances of both problems. S-DOI combined

with smoothing did incredibly well on particularly large problems, often doing much

better than each stabilization scheme used individually. For the CVRP, we saw more

modest results, particularly when employing heuristic pricing. Though each set of

DOI can reduce the number of iterations required for CG to converge, they did

not often reduce the number of calls to exact pricing, which is the principal time

consumer for the problem. Over our experiments, we noticed that S-DOI work much

more effectively when the underlying cost structure of the problem is tied to some

notion of distance.

In Chapter 4 we considered the case where a column set for a CG problem has

been expanded to allow columns that contain repeat elements. We showed that for

such problems, S-DOI, F-DOI, and SF-DOI are technically invalid, meaning that
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the artificial variables associated with their implementation are not guaranteed to

be inactive at termination. We presented a strategy to use the DOI in this context.

The strategy comprised of implementing the DOI as normal, but deactivating any

DOI that are active at termination. CG is then continued with the current column

set until convergence. This process is continued until an optimum is reached where

no DOI are active at termination.

We considered the ng-route relaxation of the CVRP as the primary application

of this approach. We tested each set of DOI and evaluated their performance in

accelerating convergence of CG. We saw that the S-DOI performed the best in this

regard.

In Chapter 5 we addressed the problem of Multi-Robot Routing (MRR). MRR

considers the problem of routing a fleet of robots to perform a set of tasks while

avoiding collisions. We presented two distinct formulation, one that models MRR

as a set packing problem and one that models MRR as a set cover problem. We

showed that the pricing algorithm for both formulations is an elementary resource

constrained shortest path problem (ERCSPP).

We provided methods to efficiently handle pricing that precluded the need

to consider all graph components when solving the ERCSPP. We presented DOI

for the set packing approach to MRR. We also introduced a heuristic to handle

the ERCSPP. We ran experiments that showed the effectiveness of our approach,

particularly when compared to established methods in the Multi-Agent Pathfinding

literature.
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6.2 Future Research

The DOI presented in this work provide a powerful tool for accelerating CG

on difficult problems. Their implementation can be extended to new applications,

particularly ones whose problems exhibit considerable convergence issues. A par-

ticularly relevant problem would be the Capacitated Vehicle Routing Problem with

Time Windows (CVRPTW). The DOI can be adapted for this context or used in

the relaxed manner described in Chapter 4.

The DOI can also be studied when used in the presence of subset row inequal-

ities [Jepsen et al., 2008]. Subset row inequalities present valid inequalities that

tighten the linear relaxation. The DOI can also be used within a full branch and

price framework [Barnhart et al., 1996].

MRR presents a number of avenues of interesting research. The CG implemen-

tations presented in Chapter 5 can be adapted for the use of large agents, meaning

agents that take up more than a single location on a grid. The CG approach to MRR

is well suited to handle this, as only the pricing algorithm needs to be adapted. The

CG approach to MRR can also be put within a branch-cut-and-price framework,

aiming to achieve optimality while avoiding the enumeration of all constraints. Fi-

nally, the MRR problem can be expanded to include new problem components such

as robot travel lanes.
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Olivier Briant, Claude Lemaréchal, Philippe Meurdesoif, S. Michel, Nancy Perrot,
and François Vanderbeck. Comparison of bundle and classical column generation.
Math. Program., 113(2):299–344, 2008. doi: 10.1007/s10107-006-0079-z.

Nicos Christofides and Samuel Eilon. An algorithm for the vehicle-dispatching prob-
lem. Journal of the Operational Research Society, 20(3):309–318, 1969.

Luciano Costa, Claudio Contardo, and Guy Desaulniers. Exact branch-price-and-
cut algorithms for vehicle routing. Transportation Science, Forthcoming, 2019.

Emilie Danna and Claude Le Pape. Branch-and-price heuristics: A case study on
the vehicle routing problem with time windows. In Column generation, pages
99–129. Springer, 2005.

George B Dantzig and John H Ramser. The truck dispatching problem. Management
science, 6(1):80–91, 1959.

Boris De Wilde, Adriaan W Ter Mors, and Cees Witteveen. Push and rotate:
a complete multi-agent pathfinding algorithm. Journal of Artificial Intelligence
Research, 51:443–492, 2014.

Martin Desrochers and François Soumis. A column generation approach to the
urban transit crew scheduling problem. Transportation science, 23(1):1–13, 1989.

Martin Desrochers, Jacques Desrosiers, and Marius Solomon. A new optimization al-
gorithm for the vehicle routing problem with time windows. Operations Research,
40(2):342–354, 1992.

162
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