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Chapter 1: Introduction

In the first chapter, we introduce brief research history and results regarding

nilmanifolds that the author have worked during the graduate studies.

1.1 Deviation of ergodic averages in parabolic dynamics

A dynamical system (X,T ) or (X,ϕt) is typically defined by a transforma-

tion (discrete) or flow (continuous) on some phase space X. A dynamical system

is divided in three categories (hyperbolic, elliptic and parabolic) according to the

speed of divergence of close orbits. We say that a flow is called parabolic if the rate

of divergence of nearby orbits is at most polynomial in time t. While there is a

well-developed theory of hyperbolic and elliptic systems, there is not much general

known theory which describes the typical behavior of parabolic flows. A basic fea-

ture in dynamical system (or a conservative system) may have is ergodicity, which

means that from the probabilistic point of view the dynamics cannot be decomposed

into invariant pieces. More precisely, if flow ϕt is ergodic, by definition of Birkhoff,

for almost every x ∈ X,

1

T

∫ T

0

f ◦ φtX(x)dt −→
∫
X

fdµ, T →∞. (1.1)
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It is also called the orbit of x ∈ X is equidistributed if (1.1) holds.

A fundamental problem in smooth ergodic theory is to establish quantitative

estimates (called effective equidistribution) on the asymptotic behavior of ergodic

integrals of smooth functions.

Theorem A. Let flow ϕt be ergodic (uniquely) ergodic flow on X. For almost all

(all) x ∈ X, f ∈ C∞(X) and for fixed T > 0, there exists α ∈ (0, 1) such that

∣∣∣∣ 1

T

∫ T

0

f ◦ φtX(x)dt−
∫
X

fdµ

∣∣∣∣ ≤ CT−α ‖f‖ .

A lemma proved by M. Ratner states that polynomial decay of correlations

implies polynomial speed of convergence of ergodic averages for horocycle flow on a

compact surface of constant negative curvature for the large set of x ∈ X.

This result was improved by M. Burger [Bur90] for all x ∈ X if X is the unit

cotangent bundle of a compact Riemannian surface of constant negative curvature.

However, until the ’90s not much was known about asymptotic behavior of other

parabolic flows except some polynomial bounds in the horocycle flows.

In the mid ’90s, there was a breakthrough in parabolic systems. The first dis-

covery in this direction was achieved by Anton Zorich [Zor97]. A. Zorich discovered,

by computer experiments on interval exchange transformations, new power laws for

the ergodic integrals of generic non-exact Hamiltonian flows on higher genus surfaces.

In Zorich’s later work and in a joint paper authored by M. Kontsevich [KZ97], they

were able to explain conjecturally most of the discoveries by relating them to the er-

godic theory of Teichmüller flows on moduli spaces of Abelian differentials. (Zorich
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found that classes of return orbits on homology groups exhibit unbounded polyno-

mial deviations with Lyapunov exponents, and later, in joint work with M. Kont-

sevich, they conjectured this phenomenon extends to ergodic integrals of smooth

functions.)

Around this time, Giovanni Forni solved cohomological equations [For97] for

area-preserving flows in dynamical approach and discovered that Zorich’s phenom-

ena are highly related to the obstructions of solving cohomological equations. Later,

Kontsevitch-Zorich’s conjecture was answered in his work [For02]: the deviation of

ergodic averages was explained with the power of Lyapunov exponent of KZ-cocycle.

(Cf. Zorich’s survey [Zor].) Subsequently, L.Flaminio and G.Forni proved the sim-

ilar phenomena in renormalizable parabolic systems could be explained: Horocycle

flows on compact surfaces of constant negative curvature [FF03] and Heisenberg

nilflows [FF06] via methods for representation theory.

1.1.1 Cohomological equations and renormalization

In this section, we will briefly see how the cohomological equation is related

to deviation of ergodic averages.

Definition 1.1. LetM be a compact manifold and define φtX(x) be the flow generated

by the vector field X for x ∈M . Cohomological equation for flow is LXu = f where

LX is Lie derivative.

We call f coboundary if there exists a function u satisfying LXu = f and call u

transfer function. To solve the equation for u given f , we confront clear obstructions

3



in cohomological equation. If distribution D is X-invariant, then LXD = D(LX)

and it is necessary to set D(f) = 0. As a toy model, irrational rotations on torus,

there exists a unique obstruction (measure) and we solve the cohomological equa-

tions Xu = f with Diophantine conditions. Then, it is easily computed by Fourier

analysis ∣∣∣∣ 1

T

∫ T

0

f ◦ φXt (x)dt−
∫
M

fdµ

∣∣∣∣ ≤ Cf . (1.2)

Back to Zorich’s conjecture, Forni’s observation was from splitting ergodic

averages by invariant distributions (D) and its remainders (R). We identify a curve

with a current γ = D+R, where γT (f) = 1
T

∫ T
0
f ◦φXt (x)dt and decompose as a sum

of distributional obstructions (Invariant distributions) and its remainder. However,

in general, there exist countably many obstructions and it requires extra estimations

for invariant distributions. Let us restate theorem A.

Theorem B. A smooth flow ϕXt on a finite dimensional manifold M has deviation

spectrum λ1 > · · · > λi > · · · > 0 with multiplicities m1, · · · ,mi ∈ Z+ if there exists

a system {Dij ∈ Z+, 1 ≤ j ≤ mi} of linearly independent X-invariant distributions

such that, for almost all (or all) x ∈M and f ∈ C∞(X) and T > 0,

∫ T

0

f ◦ ϕXt (x)dt =
∑
i∈N

mi∑
j

Cij(x, T )Dij(f)T λj +R(x, T )(f).

Proof of theorem B is based on renormalization dynamics. Renormalization

flow is defined on a moduli space by the family of flows ΦXτ , deforming under the

action of the group diffeomorphism induced by automorphisms τ of the Lie algebra.
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If the automorphism or frame τ is recurrent in the moduli space, then ΦXτ is called

a renormalization flow. Roughly speaking, under such renormalization, it is possible

to decompose ergodic averages in a self-similar way, and this enables one to control

the behavior of recurrent orbits by deviation exponents as shown in Theorem B.

1.1.2 Beyond renormalization

What if parabolic systems do not allow the existence of renormalizable flows?

General higher step nilflows are such examples. These flows are non-renormalizable

due to the absence of recurrence on the moduli space, i.e we can not apply the

methods in [FF06]. Instead, there was the first breakthrough in this direction for

Quasi-abelian nilpotent Lie algebras (see [FF14]). Roughly speaking, their new

approach called scaling method introduces how to choose scaling of the vector fields,

which behaves like renormalization flow but we only approximate the estimate the

deviation of ergodic averages by the size of scaled invariant distributions.

One of our goals in chapter 3 of this thesis is to explain how to extend this

scaling methods to a class of general higher step nilmanifolds. We seek the classi-

fications of higher step nilmanifolds that scaling methods can be applied. In our

work, we introduce new condition of Lie algebras called transversality. This condi-

tion describes the general condition which admits displacement of the return orbit.

This condition contains filiform and triangular nilmanifolds, however, our method

is not applicable for any nilmanifolds due to lack of dimensions for return orbits on

transverse nilmanifolds. Still, it presents a guidance for other non-renormalizable

5



parabolic flows.

1.2 Deviation of ergodic averages of nilflows and Weyl sums

Finally, we have collected all the essential ingredients to introduce our first

result of this thesis. By a generalization of by B. Green and T. Tao, all orbits of

Diophantine flows on any nilmanifold become equidistributed at polynomial speed.

Theorem C ( [GT12]). If the projected linear toral flow has a Diophantine fre-

quency, then there exist a constant C > 0 and an exponent δ ∈ (0, 1) such that, for

all Lipschitz function f on M and for all (x, T ) ∈M × R+ we have

∣∣∣∣ 1

T

∫ T

0

f ◦ φtX(x)dt

∣∣∣∣ ≤ CT−δ ‖f‖Lip

Their approach is an extension of Weyl’s method, and it is expected to have

exponential term δ(' 1/2k−1), but it is far from optimal. Again, as introduced in

the previous section, G. Forni and L. Flaminio’s method in invariant distribution

was extended to nilflows to obtain the theorem A with a specific exponent.

• In [FF06], Heisenberg nilflows have exponent δ = 1/2 + ε. (Optimal)

• In [FF14], higher step Quasi-abelian (Filiform) has δ which decays quadrati-

cally (for almost all point x ∈M).

Given a real polynomial P (x) = akx
k + · · ·+ a1x+ a0, Weyl sums are defined

as WN :=
∑N−1

n=1 e
2πiP (n). In particular, with choice of test function f , by the use of

6



first return map of nilflows to transverse sections

N−1∑
n=1

e2πiP (n) =

∫ N

0

f ◦ φtX(x)dt+O(1).

The study of Weyl sums has a long history that goes back to foundational

works of Hardy, Littlewood, and Weyl. For quadratic polynomial P , by Fiedler-

Körner-Zurkat [FJK77], the known bound is optimal. In higher polynomial, T.D

Wooley’s result [Woo16] proves (quadratic) polynomial type for all coefficients.1 We

also refer [BDG16] for proving Vinogradov’s mean value theorem new approach from

decoupling argument.

1.2.1 Comments on higher step nilflows.

Our results stated in this part are contained in chapter 3 of this thesis.

On general nilmanifolds, the renormalization of the flow fails due to a lack of

enough Lie algebra automorphism. Instead, based on the theory of unitary represen-

tations for the nilpotent Lie group (Kirillov theory), it is possible to choose a proper

scaling operator on the space of invariant distributions. The choice of scaling factor

relies on the notion of degree, which is an order of polynomial in irreducible repre-

sentations. Compared to the earlier work Flaminio-Forni’s work on Quasi-abelian

case [FF14], the main novelty of our results lies in our generalization of the scaling

method to solve rescaled cohomological equation.
1Many problems in analytic number theory and its connections with dynamical system has been

widely studied. In the sense of Weyl sum, the result of Flaminio-Forni is comparable to that of
Wooley, but we still do not know if the bound of triangular is optimal or it can be improved since
its structure is not comparable with well-known exponential sum.

7



The transversality condition enables the measure estimate for the return orbit.

This condition is sufficient, and in principle, there are no obstructions to a gener-

alisation to arbitrary nilflows with Diophantine frequencies and all points x ∈ M ,

except that this would require new approaches to estimation other than a Borel-

Cantelli type argument. On the other hand, the necessity of the condition explains

that the total number of elements in the basis cannot grow too fast as the step size

gets larger: it grows almost linear in the number of steps and generators.

We can view these phenomena in the following way: if the growth of the

number of elements in lower steps (generated by basis) is too large, then it lacks

the dimensions to count the measure of return orbit on a transverse manifold. For

instance, we observe this phenomenon in free nilpotent Lie algebras. Even a small

number of generators create a large number of elements in the lower level under small

steps of commutations, which behave in a completely different way than strictly

triangular and Quasi-abelian.

Question 1. Can we prove similar type of (with higher degree) polynomial upper

bound for any nilmanifold?

Further remarks and questions. One related result technique is applied to

the bounds of twisted horocycle flows [FFT16], work of Flaminio-Forni-Tanis which

improves the result of Tanis-Vishe [TV15]. This rescaling method was applied to

obtain the rescaled cohomological equations.

Theorem D (Twisted ergodic integrals of flows). For all zero average functions f

8



and for all (x, T ) ∈M × R+, there exists a function P such that we have

∣∣∣∣ 1

T

∫ T

0

e2πιλtf ◦ φXt (x)dt−
∫
M

fdµ

∣∣∣∣ ≤ Cf (λ)P (λ)T−α ‖f‖s . (1.3)

It is proved by Avila and Forni [AF07] that typical translation flow is weakly

mixing. Regarding its quantitative bound, Bufetov-Solomyak [BS18] proved an up-

per bound of twisted translation flows on genus 2 and prove spectral results. Their

method is based on quantifying Veech’s criterion [Vee84] and an argument so called

Erdös - Kahane argument. Independently, Forni [For19] introduce the deviations of

ergodic averages of twisted flows by developing the new idea of twisted cohomology,

which motivates the improvement for higher genus case [BS19]. Later, very recent

work of Treviño [Tre20] extends it to higher rank setting for self-similar tilings by

adapting methods of Forni and Venkatesh [For19,Ven10].

* Twisted ergodic integrals of nilflows are ergodic integrals of product nilflows,

hence they are covered by results on deviation of ergodic averages of nilflows. Thus,

we can cast the following questions.

Question 2. What is the spectral type of mixing time-changes of nilflows?

Question 3. Can we prove quantitative weakly mixing for higher rank actions on

Heisneberg nilmanifolds?

9



1.3 Deviation of ergodic averages - Bufetov’s perspective

In this section, we introduce the concept of Bufetov functionals in parabolic

dynamics and its applications to quantitative bound of time changes of higher rank

abelian actions.

1.3.1 Limit theorem in higher rank actions on nilmanifolds.

Our results stated in this part are contained in chapter 4 of this thesis.

We recall that the Central Limit Theorem (CLT) holds for a flow (ϕt) on a

probability space (M,µ) for a zero average function f ∈ L2(M,µ) if in the sense of

probability distributions

1√
T

∫ T

0

f ◦ φtX(x)dt→ N(0, σf )

where N(0, σf ) is a Gaussian (normal) distribution on the real line of mean zero

and variance σf > 0. The main result in this section is that the failure of CLT for

several parabolic flows. Namely, the growth of the variance may follow a power-law

with a exponent and limit distributions are always compactly supported.

Firstly, the asymptotic behavior and limiting distribution of ergodic averages

of translation flow was studied by Alexander Bufetov in the series of works [Buf09,

Buf10,Buf14]. He constructed finitely-additive Hölder measure that are known as

Bufetov functionals. Deviation of ergodic averages can be proved in the sense of

these measures, and it turned out that there is a duality between these functionals
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and invariant distributions of translation flow which plays a key role in the work of

G. Forni.

Here are the list of dualities between invariant distributions and Bufetov func-

tionals for parabolic flows/actions.

• Translation flow (Bufetov, [Buf14]) ⇐= (Forni, [For02])

• Interval exchange transformation (Klimenko, [Kli19]) ⇐= (Bufetov, [Buf14])

• Self-similar tiling (Bufetov-Solomyak [BS13])

• Horocycle flow (Bufetov-Forni, [BF14]) ⇐= (Flaminio-Forni, [FF03])

• Heisenberg nilflow (Forni-Kanigowski, [FK17]) ⇐= (Flaminio-Forni, [FF06])

• Higher rank actions (K, [Kim20b]) ⇐= (Cosentino-Flaminio, [CF15])

The construction of such functional was used to derive results on probabilistic

behavior of ergodic averages of parabolic flows as stated above. Especially, it is not

surprising that related result of limit distributions appeared by connections between

Heisenberg group and theta series in several contexts. For Heisenberg flows, the

first return map is obtained as a skew-translation, and its limit theorem of theta

sums was studied by J. Griffin and J. Marklof [GM14] and generalized by Cellarosi-

Marklof [CM16]. In analogy with higher rank actions, as an application of our result,

we obtain a limit theorem for theta series on Siegel half spaces, introduced in the

works of Götze and Gordin [GG04] and Marklof [Mar99].

Further remarks and questions. It is not known if it is possible to construct

the Bufetov functionals on higher step nilmanifolds. On nilmanifolds with step s > 2,
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the moduli space is trivial and there is no known renormalization flows on any higher

step nilmanifolds.

Question 4. Can we construct Bufetov functional on higher step nilflows?

1.3.2 Mixing of time changes of flows on nilmanifolds.

We have seen examples of parabolic flows such as horocycle, translation, and

nilflows flows, but one can build new parabolic flows by perturbation. A time-change

flow φVt of a flow φXt on M is defined as φVt (x) := φXτ(x,t)(x) for all (x, t) ∈ M × R,

where τ is a cocycle over φVt . This means that the flow moves along the same

orbits at different speeds. If time change is measurably conjugated to original flow,

then it is called trivial and time-changes are described by solutions of cohomological

equations.

One interesting question is proving mixing2 for (time-changes) parabolic flows.

Historically, as a first example, mixing of all time changes of horocycle flow under

mild differentiability conditions is proved by Marcus by shearing [Mar77]. Shearing

means short segment transversal to the flow get sheared in the direction of the

flow direction (or a direction which commutes with flow) by push-forward of flow.

This curve is asymptotically approximated by the flow trajectories and this allows

mixing by equidistribution of trajectories of flow. Later, its quantitative estimation

was obtained by Forni-Ulcigrai [FU12] on time-changes of horocycle flows, which

partially answers Katok-Thouvenot conjecture [KT06] about Lebesgue spectrum
2 φVt is mixing if µ(φVt (A) ∩ B) → µ(A)µ(B) for any A,B ⊂ M , as t → ∞. Equivalently, for

any f, g ∈ C0(M),
∫
M
f ◦ φVt · gdµ→

∫
M
fdµ

∫
M
gdµ.
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type. A recent result of B. Fayad, G. Forni, and A. Kanigowski [FFK16] answered

complete answer (countable multiplicity of Lebesgue spectrum of Kochergin flows

and time-changes of horocycle flows) to the conjecture.

This argument was also studied in the context of nilflows. Nilflows are never

mixing for the elliptic behavior on the base torus, but they are relatively mixing

with polynomial speed. Mixing property of time changes of Heisenberg nilflows was

firstly studied by Avila-Forni-Ulcigrai in [AFU11]. In this work, lack of parabolicity

in the toral factor was removed by a reparametrization of non-trivial time changes.

The result on nilmanifold was extended to higher step filiform nilmanifolds [Rav18,

AFRU19]. A recent further direction is to prove multiple mixing following famous

Rokhlin’s question.

Question 5 (Rokhlin). Does 2-mixing imply higher order mixing? i.e

µ(φXt2−t1(A1) ∩ φXt3−t2(A2) ∩ · · · ∩ φXtN+1−tN (AN))→
N∏
i=1

µ(Ai),

as ti+1 − ti →∞.

Recent results introduce new trends in strengthening mixing results: quanti-

fying mixing, multiple mixing, and spectral properties3. One of the key techniques

follows from Ratner’s property. This enables the estimates of quantitative shear-

ings, which measures the slow divergence of near orbits after translations. Proof of

this property answers Mobius disjointness (or AOP). For further information, we

leave the authors to check [FK20,KKPU19,FK16,FKPL18,FFKPL19,KPL20].
3It is recommended to refer general survey [KT06,KL20].
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Further remarks and questions. Beyond the class of time-changes, parabolic

flows can be constructed by twisting [Sim17]. New example of parabolic perturba-

tions of unipotent flows was constructed by Ravotti [Rav19]. A very recent result

of time-changes of unipotent flow (semisimple) on Lorentz group was introduced by

Tang [Tan20].

Question 6. Can time-changes of higher rank actions be mixing?

Current work in the progress of the author indicates that we do not know

the result of mixing can follow from classical shearing argument in abelian actions.

Although it is possible to calculate push-forwards of vector fields, we still do not

know how to apply equidistribution results. Here we finish the section by listing

other questions for nilflows by G. Forni.

Question 7. Does there exists a residual set of time changes of (Heisenberg) nil-

flows such that, for all Diophantine nilflows, mixing (non-trivial) time changes

have polynomial decay of (multiple) correlations ? Are mixing time-changes (poly-

nomially) mixing of higher order?

Question 8. Is any measurably non-trivial smooth time-change of a uniquely ergodic

parabolic nilflows weakly mixing or mixing?

Question 9. What is the largest class of smooth time changes of (Heisenberg) nil-

flows such that there is a dichotomy between trivial time changes and (weakly) mixing

time-changes ? How large is the set of mixing time-changes? Is it dense or generic

?
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The last question reminds us of the deviations of twisted integrals (1.3).

Question 10. What is the spectral type of mixing time-changes of nilflows?

1.4 Short notes on smooth conjugacy of nilflows

This section is devoted to my first major failure in the journey of research.

In section 1.1, we reviewed how the theory of solving cohomological equations

is applied in estimating asymptotic of ergodic averages. Besides, the study of coho-

mological equations is a relevant part of the theory of (smooth) dynamical systems

directly connected to basic questions such as the triviality of time-changes for flows

and the smooth conjugacy problem via linearization as well. In this section, we would

like to briefly introduce the main strategy and difficulties for proving the smooth

conjugacy of nilflows.

Problem 1. Can we prove local conjugacy of Heisenberg nilflows? I.e given nilflow

φVt , can we construct a diffeomorphism h ∈ Diff∞(M) and vector field W close

enough to V such that for all x ∈M ,

h ◦ φVt = φWt ◦ h. (1.4)

One well-known way of solving perturbation is to consider a linearized equation

and repeat iterated estimation, a modification of Newton’s rapidly converging itera-

tion method. In Zehnder’s paper [Zeh75], it is concerned with the solvability of the

equation F (f, u(f)) = 0, for u(f) whenever f is close to f0 where F (f0, u(f0)) = 0
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by (generalized) implicit function theorem. In general setting, (D2F )−1 may ex-

ist but unbounded (due to small-divisor). In such situations, the classical implicit

function theorem does not apply, but we can approximate inverse operator under

certain hypothesis of F . As a guiding principle, the paper presented the strategy,

in the framework of families of linear spaces, graded Frechet spaces, but it did not

specify the space about the topology and choice of proper norms, etc.

Heisenberg nilflow could be a good model to start since the Sobolev order

is 1/2 (see [FF06]). We start by defining functional F by linearizations of (1.4)

with additional counter terms which is necessary for vanishes of obstructions. This

main issue was due to existence of infintiely many but perturbed obstructions

in solving linearized equation F . In the iteration scheme, unfortunately, even very

small size of perturbation, diffeomorphism h that is close to identity, accumulation of

obstructions (counter term) grows too fast. That is, we could not construct choose

proper Frechet space with suitable norm that controls the growth of perturbed

obstructions.

Meanwhile, there were different approaches from Nikolaos Karaliolios around

the same time. His method was adapted from the normal-form version of the K.A.M.

theorem4 by J. Moser in [Mos90]. He aimed to extend his methods applied on

torus [Kar17,Kar18] to manifolds but it was not succesful either.
4 In dynamical systems, it is an important question whether dynamical properties (e.g ergodic-

ity) is preserved under small perturbations. It was firstly conjectured by Birkhoff and Hopf that a
typical conservative dynamical system should be ergodic. In the mid of 1950s’ after the important
works of Kolmogorov, Moser and Arnold, the conjecture proposed turned out to be false in
higher regularity. Nowadays, these results are known as KAM theorem and their idea suggests
conditions for the existence and persistence of some region in the manifold with positive measure
consisting of invariant tori.
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Further remarks and questions. On higher rank actions, on the contrary,

proving local conjugacy goes with different story. For parabolic actions, the rigidity

phenomenon referred as transversal local rigidity is well studied.

In higher rank setting, the issue regarding infinite obstructions could be re-

solved by the methods called higher rank trick. This enables to reduce the case

into all but finite obstructions. For general introduction, we recommend readers to

check [KN11].

Question 11. Can we prove transversal local rigidity of any nilmanifolds?

For higher action on nilmanifolds, there are results for step 2 nilmanifolds

[DK11]. Recent progress of Damjanovic and Tanis indicates local rigidity of higher

rank actions on Heisenberg nilmanifolds [DT20]. However, on higher step nilman-

ifolds, it is not known since we have not obtained tame splittings. We finish this

section with the following remark.

Question 12. Can we prove local conjugacy of any other parabolic flows?

In author’s knowledge, the problem of setting up a KAM-type approach with

Nash-Moser iteration for translation flows is harder. One good property of Heisen-

berg nilflows is that all invariant distributions have order 1/2 (essentially). This is

not true for translation flows because the order goes to∞. However, the nilflow case

is non-trivial as there are infinitely many obstructions. Unfortunately, the horocycle

is the hardest as it combines the two types of difficulties.
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1.5 Revisited deviation of ergodic averages - in the point of view of

Hyperbolic dynamics.

We have seen two different approaches toward deviation of ergodic averages

for parabolic dynamics in the previous section §1.1 and §1.3. Here we introduce the

last new approach that recently developed: transfer operator methods in parabolic

dynamics. A recent improvement in this direction is an adaptation of transfer oper-

ator techniques from hyperbolic dynamics. The method stems from the analysis of

the transfer operator, firstly treated by Giulietti and Liverani [GL19]. They set up

non-linear flows on a torus and prove asymptotics of ergodic averages in the sense

of invariant distributions with eigenvalues of transfer operators called Ruelle reso-

nances. Recent work of V. Baladi [Bal19] also proved that no deviation of ergodic

averages for Giulietti and Liverani’s flows.

Theorem E. We say that map T has the Ruelle spectrum (λi)i∈I with Jordan block

with dimension (Ni)i∈I on the space of functions C if, for any f, g ∈ C and for any

ε > 0, there is an asymptotic expansions

∫
f · g ◦ T ndµ =

∑
|λi|≥ε

∑
j≤Ni

λni n
jci,j(f, g) + o(εn)

Following Giulietti and Liverani’s approach, when the flow is renormalizable

by (partial) hyperbolic maps, it is proved under the following settings:

• A. Adam [Ada18] for horocycle flow on negative variable curvature.
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• F. Faure, E. Lanneau, and S. Gouëzel [FGL19] for translation flow.

• L. Simonelli and O. Butterley [BS20] for Heisenberg nilflows.

• G. Forni [For20b] reinterpreted Ruelle resonances by studying cohomological

equations (reverse way of all listed above)

Now, it is interesting to ask if we can find Ruelle resonances if flow is renor-

malizable continuously on its moduli space. i.e instead of map (transfer operator),

we consider flows with renormalization cocycles called transfer cocycle.

Question 13. Can we construct transfer cocycle that behaves renormalization trans-

lation flows?

This question is indeed reminiscent of Forni’s work [For02, For20a]. As dis-

cussed in section 1.1, the deviation of ergodic averages are determined by the Lya-

punov spectrum of KZ-cocycles. It is natural to ask if there is a correspondance with

Ruelle resonances for transfer cocycle and construct cocycles on inifnite dimensional

function space. It is suggestive to follow constructions of cocycle of A. Bluemen-

thal [Blu16], but it still remains to clarify relations with new anisotropic norm and

Hodge-norm used in Forni’s previous work. Likewise, it is also open whether we can

construct a corresponding transfer cocycle in the Heisenberg flow setting.

Question 14. Can we find asymptotics for the ergodic averages for recurrent for

Heisenberg nilflows with expansions of resonances of transfer operators defined on

an anisotropic space?
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Organization of this thesis.

This thesis contains the following works: Chapter 2 consists of backgrounds

about nilmanifolds. Chapter 3 is about the work ’Effective equidistribution for

generalized higher step nilflows’ [Kim20a]. Chapter 4 contains result of the author

about higher rank actions and limit theorem [Kim20b]. This research was partially

supported by the NSF grant DMS 1600687.

20



Chapter 2: Background

In this section, we introduce basic definitions that will be used in the rest of

chapters.

2.1 Structure on nilmanifolds

Let G be a connected and simply connected nilpotent Lie group with Lie

algebra g, and let Γ be a lattice in G. The quotient M = Γ\G is then a compact

nilmanifold on which G acts on the right by translations. Denote by µ = µM the

G-invariant probability measure on M .

Let g be a d-step nilpotent real Lie algebra (d ≥ 2) with a minimal set of

generators E1 := {η1, · · · , ηn} ⊂ g. For all j ∈ {1, · · · d}, let gj be the descending

central series of g:

g1 = g, g2 = [g, g], · · · , gj = [gj−1, g], · · · , gd ⊂ Z(g) (2.1)

where Z(g) is the center of g. Equivalently, the corresponding Lie subgroups G(j) =
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exp(gj) form the descending central series of G

G = G(1) ⊃ G(2) ⊃ G(d−1) · · · ⊃ G(d) = {eG}.

For all j, the group G(j+1) is a closed normal subgroup of G, and there are natural

epimorphisms π(j) : G→ G/G(j+1). Then, the group Γ(j+1) := G(j+1) ∩Γ is a lattice

in G(j+1). Simlarly, we write a series of lattice

Γ = Γ(1) ⊃ Γ(2) ⊃ Γ(d−1) · · · ⊃ Γ(d) = {eG}.

Moreover, π(j)(Γ) is a lattice in G/G(j+1) and M (j) := π(j)(G)/π(j)(Γ) is a nilmani-

fold. It follows that

π(j) : M = G/Γ→M (j)

whose fibers are the orbits of G(j+1) on G/Γ, homeomorphic to the nilmanifolds

G(j+1)/(G(j+1) ∩ Γ).

The group Gab = G/[G,G] is abelian, connected and simply connected, hence

isomorphic to Rn+1 and Γab = Γ/[Γ,Γ] is a lattice in Gab. We have a natural

projection pr1 : M → Tn+1, thus every nilmanifold M is a fiber bundle over a torus.

0→M (2) →M
pr1−−→ Tn+1 → 0. (2.2)

Similarly, at every step 0 ≤ i < d, the action of G(j) on M induces a free action of

the torus group, i.e M (i) is a bundle over M (i+1) with toral fiber.
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Another fibration arises from the canonical homomorphism G → G/G′ ≈

〈exp ξ〉 where G′ is generated by codimension 1 ideal. For θ ∈ T1, the fiber Ma
θ =

pr2
−1(θ) is local section of the nilflow on M .

0→Ma
θ →M

pr2−−→ T1 → 0. (2.3)

Let us recall the definition of Malcev basis.

Definition 2.1 (Malcev basis). A Malcev basis for g through the descending central

series gj and strongly based at Γ is a basis η(1)
1 , · · · η(1)

n1 , · · · , η
(d)
1 , · · · η(d)

nd of g satisfying

the following.

1. If we set Ej = {η(j)
1 , · · · η(j)

nj }, the elements of the set Ej ∪Ej+1∪· · ·∪Ed form

a basis of gj. Denote nj = dim(gj)− dim(gj+1) be the dimension of subspace

Ej.

2. For each j, choice of the elements in order η(j)
1 , · · · η(j)

nj , · · · η
(k)
1 ,· · · η(k)

nk spans

an ideal of gj;

3. The lattice Γ is generated by

Γ = {exp(η
(1)
1 ), · · · , exp(η(1)

n1
), · · · exp(η(k)

nk
)}.
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2.2 Nilflows

On nilmanifold M , the nilflow φtX generated by X ∈ n is the flow obtained by

the restriction of this action to the one-parameter subgroup (exp tX)t∈R of G, with

φtX(x) = x exp(tX), x ∈M, t ∈ R.

The projection X̄ of X is the generator of a linear flow ψX̄ := {ψtX}t∈R on Tn+1 ≈

Rn+1\Γ̄ defined by

ψtX̄(x1, · · · , xn+1) = (x1 + tv1, · · · , xn+1 + tvn+1).

Then, canonical projections pr1 : M → Tn+1 intertwines the flows φtX and ψt
X̄
. We

recall the following:

Theorem 2.2. [AHG+63] The followings are equivalent.

1. The nilflow (φtX) on M is ergodic.

2. The nilflow (φtX) on M is uniquely ergodic.

3. The nilflow (φtX) on M is minimal.

4. The projected flow (ψt
X̄

) on M = Gab/Γab ' Tn+1 is an irrational linear flow.
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2.3 Examples

Definition 2.3. Let g = h3 be a Lie algebra with its basis {X, Y, Z} satisfying fol-

lowing commutation relations [X, Y ] = Z. Then it is called Heisenberg Lie algebra.

In the matrix form, we write

X =


0 1 0

0 0 0

0 0 0

 , Y =


0 0 0

0 0 1

0 0 0

 , Z =


0 0 1

0 0 0

0 0 0


There exists higher dimensional analogy for Heisenberg Lie algebra.

Definition 2.4. Let g = h2d+1 be a Lie algebra with its basis {X1 · · ·Xd, Y1, · · ·Yd, Z}

satisfying following commutation relations [Xi, Yi] = Z. Then, it is called (2d + 1)

dimensional Heisenberg Lie algebra.

In the matrix form, we write

∑
1≤i≤d

(xiXi + yiYi) + zZ 7→



0 x1 x2 · · · xd z

0 0 · · · · · · · · · y1

...
... . . . . . . · · · y2

...
... 0 0 · · · ...

0 0 0 0 · · · yd


. (2.4)

Definition 2.5. Let gd be a (d+1)-dimensional Lie algebra spanned by {X, Y1, . . . , Yd}

with brackets given by [X, Yi] = Yi+1 for i < d and [X, Yd] = 0. gd is called Filiform
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(Quasi-abelian) Lie algebras.

We can represent gd in matrix form via the identification

a0X +
d∑
i=1

aiYi 7→



0 a0 0 0 . . . 0 ad

0 0 a0 0 . . . 0 ad−1

0 0 0 a0 . . . 0 ad−2

. . . a0

. . . 0 a1

. . . 0



.

Note the following important property:

[gd, Yj−1] ⊂ span{Yj, . . . , Yd}. (2.5)

Let Gd be the corresponding Lie group (given by exponentiating elements from

gd) and called quasi-abelian filiform Lie group. Notice that d = 1 corresponds to R2

and d = 2 corresponds to the Heisenberg group. Moreover, for all 1 ≤ i, j ≤ d, we

have [Yi, Yj] = 0. Note also that for d > 1, the center Z(Gd) is one dimensional and

spanned by Yd.

Definition 2.6. Let gd be a Lie algebra with basis {X(j)
i } for 1 ≤ i ≤ j, 1 ≤ j ≤ d.

By its identification with triangular matrix, gd contains d generators {X(1)
i }1≤i≤d
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and one dimensional center X(d)
1 . This Lie algebra gd is called Triangular.

∑
1≤i≤j,1≤j≤d

x
(j)
i X

(j)
i 7→



0 x
(1)
1 · · · · · · x

(d)
1

0 0 x
(1)
2 x

(j)
i

...

...
... . . . . . . ...

0 0 0 0 x
(1)
d

0 0 0 0 0


. (2.6)

Following matrix multiplication, it satisfies the commutation relations involved

with generators:

[X
(j)
i , X

(1)
i+j] = X

(j+1)
i = [X

(1)
i , X

(j)
i+1]. (2.7)

There are also other type of commutation relations that are not involved with gen-

erators, but we do not list them.
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Chapter 3: On effective equidistribution of higher step nilflows.

In this chapter, we prove an estimate of the rate of convergence of ergodic

averages for a class of nilflows on higher step of nilmanifolds under Diophantine

conditions on the frequencies of their toral projections. Our main results present a

special class of nilmanifolds satisfying the transversality condition (Definition 3.26).

This shows the speed of ergodic average of nilflows with Diophantine conditions

is polynomial for almost all points, as a function of step size and total number of

elements of Lie algebras.

3.1 Main theorem

Our main result is the bound on the speed of convergence of ergodic averages

along almost all orbits of Diophantine nilflows.

Let σ = (σ1, · · · , σn) ∈ (0, 1)n be such that σ1 + · · · + σn = 1. For any

α = (α1, · · · , αn) ∈ Rn, for any N ∈ N and every δ > 0, let

Rα(N, δ) = {r ∈ [−N,N ] ∩ Z | |rα|1 ≤ δσ1 , · · · , |rα|n ≤ δσn}.

Definition 3.1 (Diophantine). For every ν > 1, let Dn(Ȳ , σ, ν) ⊂ (R\Q)n be the
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subset defined as follows: the vector α ∈ Dn(Ȳ , σ, ν) if and only if there exists a

constant C(Ȳ , σ, α) > 0 such that, for all N ∈ N for all δ > 0,

#Rα(N, δ) ≤ C(Ȳ , σ, α) max{N1− 1
ν , Nδ}. (3.1)

If n = 1, then it can be verified that above condition D1(ν) contains the set

of Diophantine irrational numbers of exponent ν ≥ 1 by an argument based on

continued fraction. If n ≥ 2, then the set Dn(ν) contains the set of simultaneous

Diophantine vectors (see Lemma 3.42).

Theorem 3.2. Let (φtXα) be a nilflow on a k-step nilmanifold M on n + 1 gener-

ators such that the projected toral flow (φ̄tXα) is a linear flow with frequency vector

α := (1, α1, · · · , αn) ∈ R × Rn. Assume the Lie algebra satisfies the transversality

condition and α ∈ Dn(ν) for some 1 ≤ ν ≤ k
2
. Then, there exists a Sobolev norm

‖·‖ on the space C∞(M) of smooth function on M and for every ε > 0 there exists

a positive measurable function Kε ∈ Lp(M) for all p ∈ [1, 2), such that the following

bound holds. For every smooth zero-average function f ∈ C∞(M), for every T ≥ 1,

for almost all x ∈M ,

∣∣∣∣ 1

T

∫ T

0

f ◦ φtXα(x)dt

∣∣∣∣ ≤ Kε(x)T−
1

3Sn(k)
+ε ‖f‖

where Sn(k) := (n1 − 1)(k − 1) + n2(k − 2) + .... + nk−1 where ni is the dimension

of basis Ej in Malcev basis.

The above theorem is appreciated by its corollary on strictly triangular nil-
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manifold. Let N (k)
k denote a step k nilpotent Lie group on k generators. Up to

isomorphism, N (k)
k is the group of upper triangular unipotent matrices

[x1X1, · · ·xnXn, · · · y(j)
i Y

(j)
i · · · zZ] :=



1 x1 · · · · · · z

0 1 x2 y
(j)
i

...

...
... . . . . . . ...

0 0 0 1 xn

0 0 0 0 1


, xi, y

(j)
i , z ∈ R

(3.2)

with one dimensional center. This results proves that equidistribution at a polyno-

mial speed with exponent which decays cubically as a function of number of steps.

Corollary 3.3. Let (φtXα) be a nilflow on k-step strictly triangular nilmanifold M on

k generators such that the projected toral flow (φ̄tXα) is a linear flow with frequency

vector α := (1, α1, · · · , αk−1) ∈ R × Rk−1. Under the condition that α ∈ Dn(ν) for

some 1 ≤ ν ≤ k
2
, there exists a Sobolev norm ‖·‖ on the space C∞(M

(k)
k ) of smooth

function on M (k)
k and there exists a positive measurable function Kε ∈ Lp(M (k)

k ) for

all p ∈ [1, 2) and for every ε > 0, such that the following bound holds. For every

smooth zero-average function f ∈ C∞(M
(k)
k ), for almost all x ∈ M and for every

T ≥ 1, ∣∣∣∣ 1

T

∫ T

0

f ◦ φtXα(x)dt

∣∣∣∣ ≤ Kε(x)T
− 1

3(k−1)(k2+k−3)
+ε ‖f‖

We also establish the uniform bound for step-3 strictly triangular nilmanifold

case. The result holds for all points by estimating the width with counting close

return time directly under Roth-type Diophantine condition. The step-3 case (as
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well as filiform case, [For16]) is a good example to derive a simplified proof beyond

the renormalization method, in contrast to the Heisenberg case [FF06,CF15].

Theorem 3.4. Let (φtX) be a nilflow on 3-step nilmanifold M on 3 generators such

that the projected toral flow (φ̄tX) is a linear flow with frequency vector v := (1, α, β)

of Diophantine condition with exponent ν = 1 + ε for all ε > 0. For every s > 26,

there exists a constant Cs such that for every zero-average function f ∈ W s(M), for

all (x, T ) ∈M × R, we have

∣∣∣∣ 1

T

∫ T

0

f ◦ φtX(x)dt

∣∣∣∣ ≤ CsT
−1/12+ε ‖f‖s .

In section 3.8, we present exponential mixing of hyperbolic nilautomorphism

as a main application. Exponential mixing of ergodic automorphism and its ap-

plications to the Central Limit Theorem on compact nilmanifolds was proven by

R. Spatzier and A. Gorodnik [GS14]. Their approach was based on the result of

Green and Tao [GT12], and mixing follows from the equidistribution of the expo-

nential map called box map satisfying certain Diophantine conditions. Our result

also shows specific exponent of exponential mixing depending on the structure of

nilmanifolds, which follows from equidistribution results and renormalization argu-

ment of hyperbolic automorphism. However, they are limited to special class of

nilautomorphisms due to lack of hyperbolicity on the group of automorphisms on

general nilpotent Lie algebras. (Cf. triangular step 3 with 3 generators.)
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3.2 Structures

LetN be a connected and simply connected step k nilpotent Lie group. For any

nilpotent Lie algebra n, there exists a codimension 1 subalgebra I where n = Rξ⊕I.

Then I is an ideal and [n,n] ⊆ I. ( [Hum12], Chapter 3, p.12, [GC90], Lemma 1.1.8).

For convenience, we write dimension a = dim(I) = n1 + · · ·+ nk and set n = n1.

Definition 3.5. An adapted basis of the Lie algebra n is an ordered basis (X, Y ) :=

(X, Y1, · · ·Ya) of n such that X /∈ I and Y := (Y1, · · · , Ya) is an basis of I.

A strongly adapted basis (X, Y ) := (X, Y1, · · ·Ya) is an adapted basis such that

the following holds:

1. the system (X, Y1, · · ·Yn) is a system of generators of n, hence its projection

is a basis of the Abelianisation n/[n,n] of the Lie algebra n:

2. The system (Yn+1, · · ·Ya) is a basis of the ideal [n,n].

Notation. Consider the set of indices

J := {(i, j) | 1 ≤ i ≤ nj, 1 ≤ j ≤ k}

J+ := {(i, j) | 1 ≤ i ≤ n1, j = 1}

J− := {(i, j) | 1 ≤ i ≤ nj, j > 1}

J−2 := {(i, j) | 1 ≤ i ≤ nj, j > 2}.

Recall that n = Rξ ⊕ I. Let α := α
(j)
i ∈ RJ and X := Xα be the vector field
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on M defined

Xα := log[x−1 exp(
∑

(i,j)∈J

α
(j)
i η

(j)
i )], x = exp(ξ) (3.3)

and equivalently we write

Xα := −ξ +
∑

(i,j)∈J

α
(j)
i η

(j)
i . (3.4)

For θ ∈ T1 let Ma
θ = pr2

−1(θ) denote fiber over θ ∈ T1 of the fibration pr2. Trans-

verse section Ma
θ of the nilflow {φtXα}t∈R, s = (si)

a
i=1 ∈ Ra corresponds to

{Γ exp(θξ) exp(
a∑
i=1

siηi) | (si) ∈ Ra} = {Γ exp(ead(θξ)

a∑
i=1

siηi) exp(θξ) | (si) ∈ Ra}.

Lemma 3.6. The flow (φtXα)t∈R on M is isomorphic to the suspension of its first

return map Φα,θ : Ma
θ → Ma

θ . For every (i, j) ∈ J , there exists a polynomial

p
(j)
i,N(α, s) for s ∈ Ra such that return map Φα,θ is given by the following:

In the coordinate of s = (s
(j)
i ) for Γ exp(θξ) exp(

∑
(i,j)∈J s

(j)
i η

(j)
i ) ∈Ma

θ ,

Φα,θ(s) = Γ exp(θξ) exp(
∑

(i,j)∈J

(s
(j)
i + α

(j)
i )η

(j)
i

+ [
∑

(i,j)∈J

s
(j)
i η

(j)
i , Xα] +

∑
(i,j)∈J2−

p
(j)
i (α, s)η

(j)
i ) (3.5)
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and for r ∈ N,

Φr
α,θ(s) = Γ exp(θξ) exp(

∑
(i,j)∈J

(s
(j)
i + rα

(j)
i )η

(j)
i

+ [
∑

(i,j)∈J

s
(j)
i η

(j)
i , rXα] +

∑
(i,j)∈J2−

p
(j)
i,r (α, s)η

(j)
i ). (3.6)

Proof. By (3.3), we have

exp(
∑

(i,j)∈J

s
(j)
i η

(j)
i ) exp(Xα) = exp(

∑
(i,j)∈J

s
(j)
i η

(j)
i )x−1 exp(

∑
(i,j)∈J

α
(j)
i η

(j)
i )

= x−1 exp(ead(ξ)
∑

(i,j)∈J

s
(j)
i η

(j)
i ) exp(

∑
(i,j)∈J

α
(j)
i η

(j)
i ).

By Baker-Campbell-Hausdorff formula, there exist polynomial p(j)
i (α, s) with

exp(
∑

(i,j)∈J

s
(j)
i η

(j)
i ) exp(Xα) = x−1 exp(

∑
(i,j)∈J

(s
(j)
i + α

(j)
i )η

(j)
i

+ [
∑

(i,j)∈J

s
(j)
i η

(j)
i , Xα] +

∑
(i,j)∈J2−

p
(j)
i (α, s)η

(j)
i )

Since x ∈ Γ, we conclude

Γ exp(θξ) exp(
∑

(i,j)∈J

s
(j)
i η

(j)
i ) exp(Xα)

= Γ exp(θξ) exp(
∑

(i,j)∈J

(s
(j)
i + α

(j)
i )η

(j)
i + [

∑
(i,j)∈J

s
(j)
i η

(j)
i , Xα] +

∑
(i,j)∈J2−

p
(j)
i (α, s)η

(j)
i )

The formula implies that t = 1 is a return time of the restriction of the flow to

Ma
θ ⊂M . The formula for r ∈ N follows from induction.
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3.2.1 Kirillov theory and Classification

Kirillov’s theory yields the complete classification of irreducible unitary rep-

resentation of N . All the irreducible unitary representation of nilpotent Lie groups

are parametrized by the coadjoint orbits O ⊂ n∗. A polarizing (or maximal subor-

dinate) subalgebra for l is a maximal isotropic subspace m ⊂ n for the l which is

also a subalgebra of n. It is well known that for any l ∈ n∗ there exists a polarizing

subalgebra m for a nilpotent Lie algebra n. (See [GC90], Theorem 1.3.3) Let m be

polarizing subalgebra for a linear form l ∈ n∗. Then, the character χl,m : expm→ S1

is defined

χl,m(expY ) = e2πil(Y ).

To a pair Λ = (l,m), we associate the the unitary representation

πΛ = IndNexpm(χ)

where induced representation σ is defined by

σ(x)f(g) = f(g · x), x ∈ N, f ∈ Hπl,m .

These unitary representations are irreducible upto equivalence, and all unitary

irreducible representations are obtained in this way. It is known that l and l′ belong

to the same coadjoint orbit if and only if πl,m and πl′,m′ are unitarily equivalent and

πl,m is irreducible whenever m is maximal subordinate for l. For convenience, we
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abuse the notation: Λ ∈ O ⇐⇒ l ∈ O for Λ = (l,m) and πΛ ' πΛ′ if l and l′ are

in same coadjoint orbit.

Since the action of N on M preserves the measure µ, we obtain a unitary

representation π of N . The regular representation of L2(M) of N decomposes as a

countable direct sum (or direct integral) of irreducible, unitary representation Hπ,

which occur with at most finite multiplicity

L2(M,dµ) =
⊕
i∈N

Hπi . (3.7)

The derived representation π∗ of a unitary representation π of N on a Hilbert space

Hπ is the Lie algebra representation of n on Hπ defined as follows. For every X ∈ n,

π∗(X) = lim
t→0

(π(exp tX)− I)/t. (3.8)

We recall that a vector v ∈ Hπ is C∞-vectors in Hπ for representation π if the

function g ∈ N 7→ π(g)v ∈ Hπ is of class C∞ as a function on N with values in a

Hilbert space.

Lemma 3.7. [FF07, Lemma 3.4] As a topological vector space

C∞(Hπ) = S(R, C∞(H ′))

where S(R, C∞(H ′)) is Schwartz space.

Suppose that n = RX ⊕ I and N = R n N ′ with a normal subgroup N ′ of
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N . Let π′ be a unitary irreducible representation of N ′ on a Hilbert space H ′. Each

irreducible representation Hπ is unitarily equivalent to L2(R, H ′, dx), and derived

representation of π∗ of the induced representation π = IndNN ′(π′) has the following

description.

For f ∈ L2(R, H ′, dx), the group R acts by translations and its representation

is polynomial in the variable x.

(π∗(Y )f)(x) = ιPY (x)f(x) = ι

k∑
j=0

1

j!
(Λ ◦ adjXY )xjf(x). (3.9)

For any Y ∈ n, we define its degree dY ∈ N with respect to the representation

π∗(Y ) to be the degree of polynomial. Let (d1, · · · , da) be the degrees of the elements

(Y1, · · · , Ya) respectively. The degree of representation π is defined as the maximum

of the degrees of the elements of any basis.

3.3 The cohomological equation

In this section, we prove a priori Sobolev estimate on the Green’s operator for

the cohomological equationXu = f of nilflow with generatorX. We estimate bound

of Green’s operator on Sobolev norm and on scaling of invariant distributions.

3.3.1 Distributions and Sobolev space

Let L2(M) be the space of complex-valued, square integrable functions on M .

Given ordered basis F of n, the transverse Laplace-Beltrami operator is second-order
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differential operator defined by

∆F = −
a∑
i=1

Y 2
i , Yi ∈ I.

For any σ ≥ 0, let | · |σ,F be the transverse Sobolev norm defined as follows: for all

functions f ∈ C∞(M), let

|f |σ,F :=
∥∥(I + ∆F)

σ
2 f
∥∥
L2(M).

Equivalently,

|f |σ,F = (‖f‖2
2 +

∑
1≤m≤σ

‖Yj1 · · ·Yjmf‖
2
2)

1
2 .

The completion of C∞(M) with respect to the norm |·|σ,F is denotedW σ(M,F)

and the distributional dual space (as a space of functional with values in H ′ ) to

W σ(M) is denoted

W−σ(M,F) := (W σ(M,F))′.

We denote C∞(Hπ) the space of C∞ vectors of the irreducible unitary repre-

sentation π. Following notation in (3.7), let W σ(Hπ) ⊂ Hπ be the Sobolev space

of vectors, endowed with the Hilbert space norm in the maximal domain of the

essential self-adjoint operator (I + π∗(∆F))
σ
2 . I.e, for every f ∈ C∞(Hπ) and σ > 0,

|f |σ,F :=

(∫
R

∥∥(1 + π∗(∆F))
σ
2 f(x)

∥∥2

H′
dx

)1/2

,

where π∗(∆F) is determined by derived representations.
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Definition 3.8. For any X ∈ n, the space of X-invariant distributions for the

representation π is defined as the space IX(Hπ) of all distributional solutions D ∈

D′(Hπ) of the equation π∗(X)D = XD = 0. Let

IσX(Hπ) := IX(Hπ) ∩W−σ(Hπ)

be the subspace of invariant distributions of order at most σ on R+.

3.3.2 A priori estimates

The distributional obstruction to the existence of solutions of the cohomolog-

ical equation

Xu = f, f ∈ C∞(Hπ)

in a irreducible unitary representationHπ is the normalizedX-invariant distribution.

Definition 3.9. For any X ∈ n, the space of X-invariant distributions for the

representation π is the space IX(Hπ) of all distributional solutions D ∈ D′(Hπ) of

the equation π∗(X)D = XD = 0. Let

IσX(Hπ) := IX(Hπ) ∩W−σ(Hπ)

be the subspace of invariant distributions of order at most σ ∈ R+.

By Lemma 3.5 of [FF07], each invariant distribution D has a Sobolev order

equal to 1/2, i.e D ∈ W−σ(Hπ) for any σ > 1/2.
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For all σ > 1, letKσ(Hπ) = {f ∈ W σ(Hπ) | D(f) = 0 ∈ C∞(Hπ), for any D ∈

W−σ(Hπ)} be the kernel of the X-invariant distribution on the Sobolev space

W σ(Hπ). The Green’s operator GX : C∞(Hπ)→ C∞(Hπ) with

GXf(t) =

∫ t

−∞
f(s)ds

is well-defined on the kernel of distribution K∞(Hπ) on C∞(Hπ). If f ∈ Kσ(Hπ),

then
∫
R f(t)dt = 0 ∈ C∞(H ′) and

GXf(t) =

∫ t

−∞
f(s)ds = −

∫ ∞
t

f(s)ds ∈ C∞(R, H ′).

Now we define generalized (complex-valued) invariant distribution on smooth

vector C∞(Hπ).

Lemma 3.10. The invariant distribution is generalized in the following sense. For

every f ∈ C∞(Hπ) ⊂ L2(R, H ′), there exists a functional ` : C∞(Hπ)→ C such that

D(f) =

∫
R
`(f(t))dt. (3.10)

Furthermore, ` ∈ W−s(Hπ) for s > 1/2 and

∫
R
`(f(t))dt = `

(∫
R
f(t)dt

)
. (3.11)

Proof. We construct a linear functional ` in (3.10) as follows. Let χ ∈ C∞0 (R) be a

smooth function with compact support with unit integral over R. Given an invariant
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distribution D ∈ IX(Hπ), let us define `(v) = D(fv) for fv = χv and v ∈ C∞(H ′).

Firstly, we prove that ` is well-defined. Let χ1 6= χ2 ∈ C∞0 (R) be functions

with compact support such that
∫
R χ1(t)dt =

∫
R χ2(t)dt = 1. Note that there exists

ψ ∈ C∞0 (R) such that χ1 − χ2 = ψ′ with ψ(t) =
∫ t
−∞(χ1(x)− χ2(x))dx.

Then, we have

χ1(t)v − χ2(t)v =
d

dt
(ψ(t)v) = π∗(X)(ψ(t)v) ∈ C∞(Hπ),

and χ1(t)v − χ2(t)v is a X-coboundary for every v ∈ C∞(H ′). Hence, D(χ1(t)v −

χ2(t)v) = 0, which implies that D(χ1(t)v) = D(χ2(t)v). Therefore, `(v) does not

depend on the choice of χ and the functional ` is well-defined.

Next, we verify that ` is a distribution on C∞(H ′). Assume that (vn)n∈R is a

sequence converging to v in C∞(H ′). Then,

|`(vn)− `(v)| = |D(χ(t)vn)−D(χ(t)v)| = |D(χ(t)(vn − v))|.

For s > 1/2,

|D(χ(t)(vn − v))| ≤ ‖D‖−s ‖χ(t)(vn − v)‖W s(H′)

In the representation, π∗(Yi) =
∑
pi(t) acts multiplication of polynomial pi(t) on

L2(R, H ′). By definition of Sobolev norm in representation, there exists a non-zero

constant C := C(χ, p1, · · · ps) = max
t∈R,j1+···jd=s

0≤ji≤s,1≤i≤d≤s

{χ(t)pj11 (t) · · · pjdd (t)} such that

‖χ(t)(vn − v)‖W s(Hπ) ≤ C ‖vn − v‖W s(H′) .
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Therefore, ` is continuous on C∞(H ′) and we prove the statement. Furthermore,

‖`‖−s := sup
‖v‖=1

|`(v)|
‖v‖H′

≤ C ‖D‖−s ,

and ` ∈ W−s(H ′).

To prove equality (3.11), for any f(t) ∈ C∞(Hπ), we observe f(t)−χ(t)
(∫

R f(t)dt
)

has zero averages. Since invariant distribution D is invariant under translation, we

obtain D(f − χ(t)
(∫

R f(x)dx
)
) = 0. Hence,

∫
`(f(t))dt = D(f) = D

(
χ(t)

∫
R
f(x)dx

)
= `

(∫
R
f(t)dt

)
.

Let O be any coadjoint orbit of maximal rank. For all (X, Y ) ∈ n× nk−1 and

Λ ∈ O, the skew-symmetric bilinear form

BΛ(X, Y ) = Λ([X, Y ]).

Let

δO(X, Y ) := |BΛ(X, Y )|, for any Λ ∈ O

δO(X) := max{δO(X, Y ) | Y ∈ nk−1 and ‖Y ‖ = 1}.
(3.12)

Here we quote known estimates:

Lemma 3.11 (Lemma 2.5, [FF07]). Let X ∈ n and Y ∈ nk−1 be any operator

such that Bl(X, Y ) 6= 0. There exists a codimension 1 ideal n′ ⊂ n with X /∈ n′
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and a unitary irreducible representation π with the following properties. The derived

representation π∗ of the Lie algebra n satisfies

π∗(X) =
d

dx
, π∗(Y ) = 2πιBl(X, Y )xIdH′ on L2(R, H ′, dx).

Theorem 3.12 (Theorem 3.6, [FF07]). Let δO > 0, and let π be an irreducible

representation of n on a Hilbert space Hπ. If f ∈ W s(Hπ), s > 1 and D(f) = 0

for all D ∈ IX(Hπ), then GXf ∈ W r(Hπ), for all r < (s − 1)/k and there exists a

constant C := C(X, k, r, s), such that

|GXf |r,F ≤ C max{1, δO(X)−(k−1)r−1)}|f |s,F .

3.3.3 Rescaling method

Definition 3.13. The deformation space of a k-step nilmanifold M is the space

T (M) of all adapted bases of the Lie algebra n of the group N .

The renormalization dynamics is defined as the action of diagonal subgroup of

the Lie group on the deformation space. Let ρ := (ρ1, · · · , ρa) ∈ (R+)a be any vector

with rescaling condition
∑a

i=1 ρi = 1. Then, there exist a one-parameter subgroup

{Aρt} of the Lie group of SL(a+ 1,R) defined as follows:

Aρt (X, · · · , Yi, · · · ) = (etX, · · · , e−ρitYi, · · · ). (3.13)

The renormalization group {Aρt} preserves the set of all generalized Jordan basis.
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However, it is not a group of automorphism of the Lie algebra. Therefore, the

dynamics induced by the renormalization group on the deformation space is trivial

(It has no recurrent orbits).

Definition 3.14. Given any adapted basis F = (X, Yi), rescaled basis F(t) =

(X(t), Yi(t)) = {etX, · · · , e−ρitYi, · · · } of F is a basis of Lie algebra n satisfying

(3.13).

Let (d1, · · · , di) be the degrees of the elements (Y1, · · · , Yi) respectively. For

any ρ = (ρ1, · · · , ρa) ∈ Ra, let

λF(ρ) := min
i:di 6=0

(
ρi
di

)
(3.14)

Definition 3.15. Scaling factor ρi is called Homogeneous if growth of scaling factor

ρi is proportional to degree of element Yi. That is, under homogeneous scaling,

λF(ρ) = ρi
di

for all i.

For all i = 1, · · · , a, denote

Λ
(j)
i (F) := (Λ ◦ adj(X))(Yi) (3.15)

be the coefficients appearing in (3.9) and set

|Λ(F)| := sup
(i,j):1≤i≤a,0≤j≤di

∣∣∣∣∣Λ(j)
i (F)

j!

∣∣∣∣∣ . (3.16)

Let U(n) be the enveloping algebras of n. The generator δ is the derivation on
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U(n′) obtained by extending the derivation ad(X) of n′ to U(n′). From nilpotency

of n it follows that for any L ∈ U(n′) there exists a first integer [L] such that

δ[L]+1L = 0.

Lemma 3.16. For each element L ∈ I with degree [L] = i, there exists Qj ∈ U(n)

such that π∗(L) =
∑i

j=0
1
j!
π∗(Qj)x

j and [Qj] = [L] + 1− j.

Proof. Firstly, we fix elements X and Y as stated in the Lemma 3.11. For conve-

nience, we normalize the constant of π∗(Y ) by 1. That is, there exist X, Y ∈ n such

that

π∗(X) =
d

dx
, π∗(Y ) = x.

Now, we will replace the expansion of π∗(L) :=
∑i

j=0
1
j!

Λ
(j)
L (F)xj by choosing ele-

ments Qi in enveloping algebra U(n).

For the coefficient of top degree, denote Qi = 1
i!
adiX(L) ∈ n. For degree i− 1,

we set Qi−1 = adi−1
X (L)−QiY ∈ U(n) such that

π∗(Qi−1) = π∗(adi−1
X (L))− π∗(Qi)π∗(Y ) = Λ

(i−1)
L (F).

Repeating this process up to degree 0, there exist ∃Ql ∈ U(n) such that for

0 < l < i

π∗(Ql) = π∗(adlX(L))− 1

l!

i∑
j=l+1

π∗(Qj)π∗(Y )j−l

and

π∗(Q0) = π∗(L)− 1

l!

i∑
l=1

π∗(Ql)π∗(Y )l = Λ
(j)
L (F).
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Recall that for two self-adjoint operators A and B, A ≥ B if

〈Au, u〉 ≥ 〈Bu, u〉, u ∈ H.

Also, A2 ≥ B2 ⇐⇒ ‖Au‖ ≥ ‖Bu‖ .

Lemma 3.17. For any r ≥ 1 and a ≥ 1, there exists C(a, r) > 0 such that

∆(t)2r ≤ C(a, r)
a∑
i=1

Yi(t)
4r. (3.17)

Proof. We prove it by induction. If r = 1,

∆(t)2 = (
∑
i=1

Yi(t)
2)2 =

∑
i=1

Yi(t)
4 +

∑
i 6=j

Yi(t)
2Yj(t)

2.

Note that

Yi(t)
2Yj(t)

2 + Yj(t)
2Yi(t)

2 ≤ Yi(t)
4 + Yj(t)

4.

Then,

∆(t)2 ≤ (a+ 1)
∑
i=1

Yi(t)
4.

Assume that the statement holds for large r. Then, there exists C1(a, r)

∆(t)2(r+1) ≤ C1(a, r)

(
a∑
i=1

Yi(t)
4r

)
∆(t)2

≤ C1(a, r)(a+ 1)

(
a∑
i=1

Yi(t)
4r

)∑
i=1

Yi(t)
4.
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Similarly, we have

Yi(t)
4rYj(t)

4 + Yj(t)
4Yi(t)

4r ≤ Yi(t)
4(r+1) + Yj(t)

4(r+1).

Therefore, setting C2(a, r) = C1(a, r)(a+ 1)(a+ 2),

∆(t)2(r+1) ≤ C2(a, r)
a∑
i=1

Yi(t)
4(r+1).

We finish the proof.

For cohomological equation X(t)u = f , denote its Green’s operator GX(t). The

following theorem states an estimate for rescaled version of theorem 3.12.

Theorem 3.18. Let s > 2r(k+1)+1/2. For any f ∈ Ks(M), there exists Cr,k,s > 0

such that the following holds: for all t ∈ R,

|GX(t)f |r,F(t) ≤ Cr,k,se
−(1−λF )t max{1, (2πδO)−2r(k+1)}|f |s,F(t).

Proof. Firstly, we prove the bound of Green’s operator with Sobolev norm with a

fixed operator Y (t). By Cauchy-Schwarz inequality,

∥∥Y (t)lGX(t)f
∥∥2

≤
∫ ∞

0

(
|2πδO(t)x|l

∫ ∞
x

e−t ‖f(s)‖H′ ds
)2

dx+

∫ 0

−∞

(
|2πδO(t)x|l

∫ x

−∞
e−t ‖f(s)‖H′ ds

)2

dx

≤
∫ ∞

0

|2πδO(t)x|2l
∫ ∞
x

e−2t ‖f(s)‖2
H′ dsdx+

∫ 0

−∞
|2πδO(t)x|2l

∫ x

−∞
e−2t ‖f(s)‖2

H′ dsdx.
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For all α > 1, we set

C2
α,l =

∫ ∞
0

(2πx)2l

(∫ ∞
x

(1 + (4π2s2))−l+αds

)
dx

+

∫ 0

−∞
(2πx)2l

(∫ x

−∞
(1 + (4π2s2))−l+αds

)
dx <∞.

(3.18)

By Hölder’s inequality and change of variables,

∥∥Y (t)lGX(t)f
∥∥ ≤ Cα,le

−(1−λF )t

(
1

2πδO

)l ∥∥∥(I − Y (t)2)
l+α

2 f
∥∥∥ . (3.19)

Now, let L(t) be a rescaled element of L ∈ F . By Lemma 3.16, there exists

Qi(t) ∈ U(n) such that

π∗(L(t)) =

[L]∑
j=0

1

j!
π∗(Qj(t))π∗(Y (t))j. (3.20)

Then, for Green’s operator GX(t), we obtain

π∗(L(t))GX(t)(f) =

[L]∑
j=0

1

j!
π∗(Qj(t))π∗(Y (t))jGX(t)(f)

=

[L]∑
j=0

1

j!
π∗(Y (t))jGX(t)(π∗(Qj(t))f).

(3.21)

Combining (3.19) and (3.21),

∥∥L(t)GX(t)(f)
∥∥ ≤ [L]∑

j=0

1

j!

∥∥Y (t)jGX(t)(Qj(t)f)
∥∥

≤
[L]∑
j=0

Cj,αe
−(1−λF )t

(
1

2πδO

)j+1 ∥∥∥(I − Y (t)2)
j+α

2 (Qj(t)f)
∥∥∥ .
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Note that by binomial formula, there exists Rj(t) ∈ U(n) such that

π∗(L(t))2r =

 [L]∑
j=0

1

j!
Y (t)jQj(t)

2r

:=

2r[L]∑
j=0

Y (t)jRj(t). (3.22)

Especially, Rj(t) is product of Q′is and [Rj(t)] = 2r([L] + 1)− j.

Specifically, here we assume that L(t) = (Yi(t))
4r. Then, by (3.22),

∥∥Yi(t)4rGX(t)(f)
∥∥ ≤ 4r[Yi]∑

j=0

Cj,αe
−(1−ρY )t

(
1

2πδO

)j+1 ∥∥∥(I − Y (t)2)
j+α

2 Rj(t)f
∥∥∥

≤ C(α, r)e−(1−ρY )t max{1, δO−4r[Yi]+1}|f |α+4r([Yi]+1),F(t).

(3.23)

Therefore, combining with Lemma 3.17

∥∥π∗(∆(t)2r)GX(t)(f)
∥∥ ≤ C(a, r)

a∑
i=1

∥∥π∗(Yi(t)4r)GX(t)(f)
∥∥

≤ C(a, r, α)
a∑
i=1

e−(1−ρY )t max{1, δO−4r([Yi]+1)}|f |α+4r([Yi]+1),F(t)

≤ C(a, r, α)e−(1−ρY )t max{1, δO−4r(k+1)}|f |α+4r(k+1),F(t).

Since [∆r] ≤ 2kr, there exists C ′ = C ′(a, α, r, l, X) > 0 such that

|GX(t)f |2r,F(t) ≤ C ′e−(1−ρY )t max{1, (2πδO)−4r(k+1)}|f |4(k+1)r+α,F(t).

By interpolation, for all s > 2r(k + 1) + 1/2, there exists a constant Cr,s :=

Cr,s(k,X) > 0 such that
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|GX(t)f |r,F(t) ≤ Cr,se
−(1−ρY )t max{1, (2πδO)−2r(k+1)}|f |s,F(t).

3.3.4 Scaling of invariant distribution

In this section, we introduce the Lyapunov norm and compare bounds between

Sobolev dual norm and Sobolev Lyapunov norm of invariant distribution in every

irreducible, unitary representation.

For all t ∈ R and λ := λF(ρ) defined in (3.14), let the operator Ut : L2(R, H ′)→

L2(R, H ′) be the unitary operator defined as follows:

(Utf)(x) = e−
λ
2
tf(e−λtx). (3.24)

We consider the comparison of the norm estimate on the scaling of invariant

distributions

|D|−r,F(t) = sup
f∈W r

{|D(f)| : ‖f‖r,F(t) = 1}

in terms of |D|−r,F .

Theorem 3.19. For r ≥ 1 and s > r(k + 1), there exists a constant Cr,s > 0 such

that for all t ∈ R, the following bound holds:

‖Utf‖r,F(t) ≤ Cr,s‖f‖s,F .
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Proof. Assume the same hypothesis for L ∈ F and L(t) in the proof of Theorem

3.18. By Lemma 3.16, there exists (i− j + 1)th order Qj ∈ U(n) with

U−1
t L(t)Ut = xiQi + e−λtxi−1Qi−1 + e−2λtxi−2Qi−2 + · · ·+ e−iλtQo.

Then, there exists Cw > 0 such that

∥∥U−1
t L(t)Utf

∥∥ ≤ i∑
j=0

∥∥e−(i−j)λtxjQjf
∥∥

≤ Cw max
0≤j≤i

∥∥Y jQjf
∥∥

≤ Cw|f |[L]+1,F .

Since [L] ≤ k, by unitarity

|Utf |1,F(t) ≤ C1|f |k+1,F . (3.25)

Hence, for some s > r(k + 1),

|Utf |r,F(t) ≤ Cr,s|f |s,F . (3.26)

Theorem 3.20. For r ≥ 1, s > r(k + 1), there exists a constant Cr,s > 0 such that
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for all λ, the invariant distribution defined in (3.10) satisfies

|D|−s,F ≤ Cr,se
−λ

2
t|D|−r,F(t).

Proof. Recall the functional ` defined in the Lemma 3.10. For f ∈ C∞(Hπ),

D(Utf) =

∫
R
`(e−

λ
2
tf(e−λtx))dx

=

∫
R
e−

λ
2
t`(f(e−λtx))dx

= e
λ
2
t

∫
R
`(f(y))dy

= e
λ
2
tD(f).

Then by unitarity,

|D|−r,F(t) = sup
f 6=0

|D(f)|
|f |r,F(t)

= sup
f 6=0

|D(Utf)|
|Utf |r,F(t)

≥ sup
f 6=0

e
λ
2
t|D(f)|

Cr,s|f |s,F
= e

λ
2
t|D|−s,F

and

|D|−s,F ≤ Cs,re
−λ

2
t|D|−r,F(t).

Definition 3.21 (Lyapunov norm). For any basis F and all σ > 1/2, define Lya-

punov norm

‖D‖−σ,F := inf
τ≥0

e−
λF (ρ)

2
τ |D|−σ,F(τ). (3.27)

The following lemma is immediately from the definition of the norm.
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Lemma 3.22. For all t ≥ 0, we have

‖D‖−σ,F ≤ e−
λF (ρ)

2
t ‖D‖−σ,F(t) .

Proof. By definition of the norm,

‖D‖−σ,F = inf
τ≥0

e−
λF (ρ)

2
τ |D|−σ,F(τ)

= e−
λF (ρ)

2
t inf
τ+t≥0

e−
λF (ρ)

2
τ |D|−σ,F(t+τ) ≤ e−

λF (ρ)

2
t ‖D‖−σ,F(t) .

We conclude this section by introducing useful inequality that follows from the

theorem 3.20,

C−1
r,s |D|−s,F ≤ ‖D‖−r,F ≤ |D|−r,F . (3.28)

3.4 A Sobolev trace theorem

In this section, we prove a Sobolev trace theorem for nilpotent orbits. Ac-

cording to this theorem, uniform norm of an ergodic integral is bounded in terms of

the average width of the orbit segment times the transverse Sobolev norms of the

function, with respect to a given basis of the Lie algebra.
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3.4.1 Sobolev a priori bounds

Assume F(t) = (X(t), Y (t)) is rescaled basis. For any x ∈ M , let φx,t :

R× Ra →M be the local embedding defined by

φx,t(τ, s) = x exp(τX(t))
a∏
i=1

exp(siYi(t)), s = (si)
a
i=1

Lemma 3.23. For any x ∈M , t ≥ 0, and f ∈ C∞(M), we have

∂sif ◦ φx,t(τ, s) = Sif ◦ φx,t(τ, s), Si = Yi(t) +
a∑
l>i

ql(s, t)Yl(t) ∈ n

where q is polynomial in s of degree at most k − 1 and |ql(s, t)| ≤ |ql(s, 0)| for all

t ≥ 0.

Proof. Let s+ hi denote sequence with (s+ h)i = si + h and (s+ hi)j = sj, if i 6= j.

∂sif ◦ φx,t(τ, s) = lim
h→0

f ◦ φx,t(τ, s + hi)− f ◦ φx,t(τ, s)
h

and we plan to rewrite f ◦ φx,t(τ, s + hi) in suitable way to differentiate.
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For fixed i and j > i,

exp((si + h)Yi(t)) exp(sjYj(t))

= exp(siYi(t)) exp(hYi(t)) exp(sjYj(t))

= exp(siYi(t)) exp(ead(hYi(t))sjYj(t)) exp(hYi(t))

= exp(siYi(t)) exp(sjYj(t)) exp(
∞∑
n=1

1

n!
adnhYi(t)sjYj(t)) exp(hYi(t))

By Campbell-Hausdorff formula, we set

= exp(siYj(t)) exp(siYj(t)) exp(h(Yi(t) + [Yi(t), sjYj(t)]) +O(h2))

Choose j = i + 1 and observe that all the terms of h are on right side. Itera-

tively, we will repeat this process from j = i+ 1 to a until all the terms of h pushed

back. That is, we conclude

φx,t(τ, s + hi) = φx,t(τ, s) exp(h(Yi(t) + [Yi(t), si+1Yi+1(t)]

+ [[Yi(t), si+1Yi+1(t)], si+2Yi+2(t)] + · · ·+ [Yi(t), · · · ], saYa(t)] · · · ])

+O(h2)).

For convenience, we write coefficient function ql(s, t) in polynomial degree at most

k for s such that

φx,t(τ, s + hi) = φx,t(τ, s) exp(h(Yi(t) +
a∑
l>i

ql(s, t)Yl(t)) + o(h2)).
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It concludes the proof by choosing Si = Yi(t) +
∑a

l>i ql(s, t)Yl(t). Commutation in

rescaled elements [Yi(t), sjYj(t)] = sje
−ρtYk(t) also implies ql(s, t) include exponen-

tial term with negative exponent such that it decreases on t ≥ 0.

Let 4Ra be the Laplacian operator on Ra given by 4Ra = −
∑a

i=1
∂2

∂s2i
. Given

an open set O ⊂ Ra containing origin, let RO be the family of all a-dimensional

symmetric rectangles R ⊂ [−1
2
, 1

2
]a ∩O that are centered at origin. The inner width

of the set O ⊂ Ra is the positive number w(O) = sup{Leb(R) | R ∈ RO}, where

Leb is Lebesgue measure on R. The width function of a set Ω ⊂ R×Ra containing

the line R× {0} is the function wΩ : R→ [0, 1] defined as follows:

wΩ(τ) := w({s ∈ Ra | (τ, s) ∈ Ω}), ∀τ ∈ R

Consider the family Ox,t,T of open sets Ω ⊂ R× Ra satisfying two conditions:

[0, T ]× {0} ⊂ Ω ⊂ R× [−1

2
,
1

2
]a

and φx,t is injective on the open set Ω ⊂ Ra. The average width of the orbit segment

of rescaled nilflow {φx,t(τ, 0) | 0 ≤ t ≤ T}

wF(t)(x, T ) = sup
Ω∈Ox,t,T

(
1

T

∫ T

0

ds

wΩ(s)

)−1

. (3.29)

is positive number. The following lemma is derived from standard Sobolev embed-

ding theorem under rescaling argument.
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Lemma 3.24. [FF14, Lemma 3.7] Let I ⊂ R be an interval, and let Ω ⊂ R × Ra

be a Borel set containing the segment I × {0} ⊂ R× Ra. For every σ > a/2, there

is a constant Cs > 0 such that for all functions F ∈ C∞(Ω) and all τ ∈ I, we have

(∫
I

|F (τ, 0)|dτ
)2

≤ Cσ

(∫
I

dτ

wΩ(τ)

)∫
Ω

|(I −4Ra)
σ
2F (τ, s)|dτds.

For the rest of section, we prove generalized version of theorem 5.2 of [FFT16].

The following theorem indicates the bound of ergodic average of scaled nilflow φτX(t)

with width function on general nilmanifolds.

Theorem 3.25. For all σ > a/2, there is a constant Cσ > 0 such that the following

holds. ∣∣∣∣ 1

T

∫ T

0

f ◦ φτX(t)(x)dτ

∣∣∣∣ ≤ CσT
− 1

2wF(t)(x, T )−
1
2 |f |σ,F(t)

Proof. Recall that for any self-adjoint operators A and B,

(A+B)2 ≤ 2(A2 +B2).

Since |si| ≤ 1
2
and t ≥ 1, by Lemma 3.23, each qj is bounded in s and t. Then,

by essentially skew-adjointness of Yi(t), there exists a large C > 1 with

−S2
i = −(Yi(t) +

a∑
l>i

ql(s, t)Yl(t))
2

≤ −C
a∑
j=i

Yj(t)
2.
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Operators on both sides are essentially self-adjoint,

(I −
a∑
i=1

S2
i )

σ
2 ≤ C

σ
2 (I −

a∑
i=1

Yi(t)
2)

σ
2 .

Thus, there is a constant Cσ > 0 such that

∥∥(I −4Ra)
σ
2 f ◦ φx,t

∥∥2

L2(Ω)
≤ Cσ

∥∥(I −∆F(t))
σ
2 f
∥∥2

L2(M)
. (3.30)

By Lemma 3.24, we can see that for σ > a/2, setting F (τ, 0) = f ◦ φτX(t)(x)

∣∣∣∣ 1

T

∫ T

0

f ◦ φτX(t)(x)dt

∣∣∣∣2 =

(
1

T

∫ T

0

|F (τ, 0)dτ |2
)2

≤ Cσ
1

T

(
1

T

∫ T

0

ds

wΩ(s)

)∫
Ω

|(I −4Ra)
σ
2F (τ, s)|dτds

≤ CσT
−1wF(t)(x, T )−1

∥∥(I −∆F(t))
σ
2 f
∥∥2

L2(M)
.

3.5 Average width estimate

In this section we prove estimates on the average width of orbits of nilflows.

Let Xα be the vector field on M defined in (3.3). Recall the formula (3.4)

Xα := ξ +
∑

(i,j)∈J

α
(j)
i η

(j)
i .
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3.5.1 Almost periodic points

Let us introduce special type of condition for the Lie algebra n required for

width estimate.

Definition 3.26. The nilpotent Lie algebra n satisfies transversality condition if

there exists basis (Xα, Y ) of n such that

〈Gα〉+ Ran(adXα) + CI(Xα) = n (3.31)

where Gα = (Xα, Y
(1)) is a set of generator, Ran(adXα) = {Y ∈ I | Y = adXα(W ), W ∈

I} and CI(Xα) = {Y ∈ I | [Y,Xα] = 0} is centralizer.

It is clear that the set of generators are neither included in the range of adXα ,

nor in the centralizer CI(Xα). We will restrict n satisfying the condition (3.31) in

the rest of sections.

Remark 3.27. The transversality condition implies that displacement (or distance

between x and Φr
α,θ(x)), induced by return map Φα,θ, should intersect the set of

centralizer transversally. I.e the measure of the set of close return orbit in transverse

manifold Ma
θ should not be invariant under the action of flow. This condition is

crucial in estimating the almost periodic orbit (3.43) under rescaling of basis in the

Lemma 3.33.

Recall that Ma
θ denotes the fiber at θ ∈ T1 of the fibration pr2 : M → T1.

Φα,θ denote the first return map of nilflow {φtXα} to the transverse section Ma
θ and
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Φr
α,θ denote r-th iterate of the map Φα,θ. Let G denote nilpotent Lie group with its

lattice Γ definingMa
θ = Γ\G. G acts onMa

θ by right action and action of G extends

on Ma
θ ×Ma

θ .

Define a map ψ
(r)
α,θ : Ma

θ → Ma
θ × Ma

θ given by ψ
(r)
α,θ(x) = (x,Φr

α,θ(x)). By

its definition, the map Φr
α,θ commutes with the action of the centralizer CG =

exp(CI(Xα)) ⊂ G and its action on product Ma
θ ×Ma

θ commutes with ψ(r)
α,θ. That

is, for c ∈ CG and x = Γg,

ψ
(r)
α,θ(xc) = (xc,Φr

α,θ(xc)) = (xc,Φr
α,θ(x)c) = ψ

(r)
α,θ(x)c. (3.32)

Then quotient map is well-defined on

Ψ
(r)
α,θ := Ma

θ /CG −→Ma
θ ×Ma

θ /CG. (3.33)

Setting. (i) In Ma
θ ×Ma

θ , we set diagonal ∆ = {(x, x) | x ∈ Ma
θ } which is

isomorphic to Ma
θ by identifying (x, x) with x ∈ Ma

θ . Given (x, x) ∈ ∆, tangent

space of diagonal is T(x,x)∆ := {(v, v) | v ∈ TxMa
θ } and its normal space is defined

as (T(x,x)∆)⊥ = {(v,−v) | v ∈ TxM
a
θ } = T(x,x)∆

⊥. In total space Ma
θ ×Ma

θ , its

tangent space splits by

T(x,x)(M
a
θ ×Ma

θ ) = T(x,x)∆⊕ (T(x,x)∆)⊥.
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For any w1, w2 ∈ TxMa
θ ,

(w1, w2) = 1/2(w1 + w2, w1 + w2) + 1/2(w1 − w2,−(w1 − w2)). (3.34)

(ii) Given x = Γh1, y = Γh2 ∈ Ma
θ , define a set ∆(x,y) = {(xg, yg) | g ∈ G} ⊂

Ma
θ ×Ma

θ for (xg, yg) = (Γh1g,Γh2g) and ∆⊥(x,y) = {(xg, yg−1) | g ∈ G} that contains

(x, y). For ψ(r)
α,θ(x) = (x,Φr

α,θ(x)), its tangent space in Ma
θ ×Ma

θ is decomposed

T(x,Φrα,θ(x))(M
a
θ ×Ma

θ ) = T(x,Φrα,θ(x))∆(x,Φrα,θ(x)) ⊕ (T(x,Φrα,θ(x))∆(x,Φrα,θ(x)))
⊥.

Then tangent space of diagonal is T(x,Φrα,θ(x))∆(x,Φrα,θ(x)) = {(v, dxΦr
α,θ(v)) | v ∈

TxM
a
θ } and its normal space is identified as

(T(x,Φrα,θ(x))∆(x,Φrα,θ(x)))
⊥ = T(x,Φrα,θ(x))∆

⊥
(x,Φrα,θ(x)).

By identification in (3.34), for w1 = v and w2 = −dxΦr
α,θ(v), we write

(T(x,Φrα,θ(x))∆(x,Φrα,θ(x)))
⊥ =

{(1/2(v − dxΦr
α,θ(v)),−1/2(v − dxΦr

α,θ(v)) | v ∈ TxMa
θ }. (3.35)

(iii) Now define orthogonal projection π : Ma
θ ×Ma

θ → Ma
θ ×Ma

θ along the

direction of diagonal. That is, for (x, y) ∈ Ma
θ ×Ma

θ , there exists (x′, y′) such that
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π(x, y) = (x′, y′) ∈ ∆(x,y) ∩∆⊥(x,x). Then,

Tπ(x,y)∆π(x,y) = T(x,y)∆(x,y), Tπ(x,y)∆
⊥
π(x,y) = T(x,y)∆

⊥
(x,y). (3.36)

Define a map F (r) : Ma
θ → Ma

θ ×Ma
θ given by F (r) = π ◦ ψ(r)

α,θ. In the local

coordinate, by identification (3.35) and (3.36),

dxF
(r)(v) = (1/2(v − dxΦr

α,θ(v)),−1/2(v − dxΦr
α,θ(v)), v ∈ TxMa

θ . (3.37)

By (4.3) and definition of F (r), we have F (r)(xc) = F (r)(x)c for c ∈ CG. Then for all

r ∈ Z, F (r) induces a quotient map F̃ (r) : Ma
θ /CG → Ma

θ ×Ma
θ /CG. From (3.37),

the range of differential DF̃ (r) is determined by I −DΦr
α,θ.

In the next lemma, we verify the range of differential map DF̃ (r).

Lemma 3.28. For all r ∈ Z\{0}, range of I −DΦr
α,θ on I/CI(Xα) coincides with

Ran(adXα) and Jacobian of F̃ (r) is non-zero constant.

Proof. Recall that Φr
α,θ is r-th return map on Ma

θ . We find differential in the direc-

tion of each Y j
i for fixed i and j. For x ∈M , set a curve γxi,j(t) = x exp(tY

(j)
i ) exp(rXα).

Note that

exp(tY
(j)
i ) exp(rXα) = exp(rXα) exp(−rXα) exp(tY

(j)
i ) exp(rXα)

= exp(rXα) exp(e−r(adXα )(tY
(j)
i ))
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and

d

dt
γxi,j(t) |t=0= e−r(adXα )(Y

(j)
i ).

By definition,
∂Φrα,θ

∂s
(j)
i

(x) =
d

dt
(γxi,j(t)) |t=0 and we have I−DΦr

α,θ = I−
∑

(i,j)∈J
∂Φrα,θ

∂s
(j)
i

.

Then,

(I−DΦr
α,θ)(

∑
(i,j)∈J

s
(j)
i Y

(j)
i ) = [r(adXα)(

∞∑
k=0

(−1)k

(k + 1)!
(adXα)k)](

∑
(i,j)∈J

s
(j)
i Y

(j)
i ). (3.38)

Therefore, range of I −DΦr
α,θ is contained in Ran(adXα).

Conversely, 1−e−adXα

adXα
=
∑∞

k=0
(−1)k

(k+1)!
(adXα)k is invertible and

I −DΦr
α,θ

(
1− e−adXα

adXα
)−1(

∑
(i,j)∈J

s
(j)
i Y

(j)
i )

 = r(adXα)(
∑

(i,j)∈J

s
(j)
i Y

(j)
i ). (3.39)

Therefore, we conclude that range of I −DΦr
α,θ is Ran(adXα).

If
∑

(i,j)∈J s
(j)
i Y

(j)
i ∈ CI(Xα), then (I−DΦr

α,θ)(
∑

(i,j)∈J s
(j)
i Y

(j)
i ) = 0 and kernel

of I − DΦr
α,θ is CI(Xα). I.e, I − DΦr

α,θ is bijective on I/CI(Xα). Thus, by (3.38)

Jacobian of I −DΦr
α,θ is non-zero constant and it concludes the statement.

Setting (continued). (iv) Set submanifold S ⊂ Ma
θ ×Ma

θ that consists of

diagonal ∆ and coordinates of generators in normal (transverese) directions. Denote

its quotient SC = S/CG ⊂ Ma
θ ×Ma

θ /CG. Then, following Lemma 4.25, we obtain

transversality of F̃ (r) to SC . For every p ∈ (F̃ (r))−1(SC), the transversality holds on

tangent space:
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TF̃ (r)(p)SC +DF̃ (r)(TpM
a
θ /CG) = TF̃ (r)(p)(M

a
θ ×Ma

θ /CG). (3.40)

(v) Denote Lebesgue measure La+1(= volM) on nilmanifoldM and conditional

measure Laθ(= volMa
θ
) on transverse manifold Ma

θ . On quotient space Ma
θ,C :=

Ma
θ /CGθ , we write measure Lcθ(= volMa

θ /CG
). Similarly, we set conditional measure

µaθ(= volMa
θ×M

a
θ
) on product manifold and µcθ(= volMa

θ×M
a
θ /CG

) on its quotient space.

Denote image of F (r) by Ma
θ,r := F (r)(Ma

θ ) ⊂ Ma
θ × Ma

θ and Ma
θ,r,C :=

F̃ (r)(Ma
θ,C). We write its conditional Lebesgue measure µaθ,r := µaθ |Ma

θ,r
and µcθ,r :=

µcθ|Ma
θ,r,c

respectively.

For any open set USC ⊂Ma
θ×Ma

θ /CG, we write push-forward measure (F̃ (r))∗Lcθ

(F̃ (r))∗Lcθ(USC ∩Ma
θ,r,C) = Lcθ((F̃ (r))−1(USC ∩Ma

θ,r,C))

=

∫
USC

∑
x∈(F̃ (r))−1({z}),z∈USC

1

Jac(F̃ (r)(x))
dvolMa

θ,r,c
(z).

By compactness of Ma
θ (or Ma

θ /CG), it is finite. By Lemma 4.25, Jacobian of F̃ (r)

is constant and (F̃ (r))∗Lcθ = µcθ,r is Lebesgue.

By invariance of action of centralizer, for any neighborhood US ∈ Ma
θ ×Ma

θ

with USC = US/CG,

µcθ,r(USC ∩Ma
θ,r,C) = µaθ,r(US ∩Ma

θ,r) (3.41)
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T

T

Ma
θ ×Ma

θ

∆
F (r)(x)

x

Figure 3.1: Illustration of displacement F (r) in product Ma
θ ×Ma

θ and comparison
with uniform expanding map.

and by definition of conditional measure,

µaθ,r(US ∩Ma
θ,r) = µaθ(US). (3.42)

Let d be a distance function in Ma
θ ×Ma

θ and we abuse notation d for induced

distance on Ma
θ ×Ma

θ /CG. Set Uδ = {z ∈ Ma
θ ×Ma

θ | d(z,S) < δ} be a δ-tubular

neighborhood of S and Uδ,C = {z ∈Ma
θ ×Ma

θ /CG | d(z,SC) < δ} be its quotient.

Define almost-periodic set (set of r-th close return) on the diagonal

AP r(Uδ) := {x ∈Ma
θ | d(F (r)(x),S) < δ}. (3.43)

Since F (r) commutes with CG, AP r(Uδ)/CG = {x ∈ Ma
θ /CG | d(F̃ (r)(x),SC) < δ}

and Laθ(AP r(Uδ)) = Lcθ(AP r(Uδ)/CG).

The following volume estimate of almost-periodic set holds.

Lemma 3.29. Let Uδ,C be any tubular neighborhood of SC in Ma
θ ×Ma

θ /CG. For
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all r ∈ Z\{0}, the conditional measure volMa
θ
of AP r(Uδ) is given as follows:

Laθ(AP r(Uδ)) = µcθ,r(Uδ,C ∩Ma
θ,r,C).

Proof. By previous setting (v), it suffices to prove Lcθ(AP r(Uδ)/CG) = µcθ,r(Uδ ∩

Ma
θ,r,C). Note that (F̃ (r))−1(AP r(Uδ)/CG) = {x ∈ Ma

θ /CG | d(z,SC) < δ} if z =

F̃ r(x) for some x ∈Ma
θ /CG, otherwise it is an empty set.

Then, (F̃ (r))−1(AP r(Uδ)/CG) = (Uδ,C ∩Ma
θ,r,C). Thus, by definition of push-

forward measure, the equality holds.

Recall that F̃ (r) : Ma
θ,C → Ma

θ,r,C has non-zero constant Jacobian if r 6= 0 by

Lemma 4.25 and it is a local diffeomorphism. Thus, by transversality of F̃ (r), in a

small tubular neighborhood U , F̃ (r) is covering.

Lemma 3.30. For any z ∈ U ∩Ma
θ,r,C, there exist finite number of pre-images of

F̃ (r).

Proof. If we suppose that (F̃ (r))−1(z) contains infinitely many different points, then

since the manifold Ma
θ is compact (and Ma

θ,C is compact), there exists a sequence

of pairwise different points xi ∈ (F̃ (r))−1(z), which converges to x0. We have

(F̃ (r))(x0) = z and by inverse function theorem, the point x0 has a neighborhood U ′

in which F̃ (r) is a homeomorphism. In particular, U ′\{x0} ∩ (F̃ (r))−1(z) = ∅, which

leads a contradiction.

Set Nr(z) = #{x ∈Ma
θ,C | F̃ (r)(x) = z} the number of pre-images of F̃ (r). The
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number Nr(z) is independent of choice of z ∈ U ∩Ma
θ,r,C since Jacobian is constant

and degree of map is invariant (see [DFN12, §3]).

Now we introduce the volume estimate of δ-neighborhood Uδ,C .

Proposition 3.31. The following volume estimate holds: for any r 6= 0, there exists

C := C(Ma
θ ) > 0 such that

µcθ,r(Uδ,C ∩Ma
θ,r,C) < Cδ.

Proof. Let U ⊂ Ma
θ ×Ma

θ /CG be a tubular neighborhood of SC that contains Uδ,C

with the following condition:

volMa
θ×M

a
θ /CG

(Uδ,C) = δvolMa
θ×M

a
θ /CG

(U). (3.44)

If U ∩Ma
θ,r,C = ∅, then there is nothing to prove since Uδ,C ∩Ma

θ,r,C = ∅. Assume

z ∈ U ∩Ma
θ,r,C and let {Jk}k≥1 be connected components of (F̃ (r))−1(U ∩Ma

θ,r,C).

We firstly claim that F̃ (r)|Jk is injective.

Given z ∈ U ∩Ma
θ,r,C , assume that there exist x1 6= x2 ∈ Jk for some k such

that z = F̃ (r)|Jk(x1) = F̃ (r)|Jk(x2). Let γ : [0, 1] → Jk be a path that connects

γ(0) = x1 and γ(1) = x2. Set the lift of path γ̃ = F̃ (r)|Jk ◦ γ : [0, 1] → U . Then

γ̃(0) = γ̃(1) = z and γ̃ is a loop in U . Since U is simply connected, γ̃ is contractible

and there exists a homotopy of path gs : [0, 1] → U such that g0 = γ̃ is homotopic

to a constant loop g1 = c by fixing two end points F̃ (r)|Jk(x1) = F̃ (r)|Jk(x2) = z for

s ∈ [0, 1] .
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Note that F̃ (r)|−1
Jk
◦ gs is a lift of homotopy gs, and lift of g0 is γ = F̃ (r)|−1

Jk
(γ̃)

with fixed end points x1 and x2. By continuity of homotopy, gs also keeps the same

end points x1 and x2 fixed for all s ∈ [0, 1]. Since g1 is constant loop and its lift

should be a single point, γ is homotopic to a constant. Since end points of γ is fixed,

it has to be a constant but it leads a contradiction. Therefore, we have x1 = x2.

Set F̃ (r)
k = F̃ (r)|Jk . Then by injectivity of F̃ (r)

k , we obtain

(F̃ (r))−1(U) = (F̃ (r))−1(U ∩Ma
θ,r,C) =

Nr⋃
k=1

Jk.

Furthermore, we obtain the following equality:

volMa
θ /CG

(Jk) =
volMa

θ,r,C
(U ∩Ma

θ,r,C)

Jac(F̃
(r)
k )

=
volMa

θ,r,C
(U ∩Ma

θ,r,C)

Jac(F̃ (r))
. (3.45)

Since volume of Ma
θ /CG is a finite,

Nr

(volMa
θ×M

a
θ /CG

(U)

Jac(F̃ (r))

)
= Nr

(volMa
θ,r,C

(U ∩Ma
θ,r,C)

Jac(F̃ (r))

)
(3.46)

=
Nr∑
k=1

volMa
θ /CG

(Jk) <∞. (3.47)

Assume that (F̃ (r))−1(Uδ,C) =
⋃Nr
k=1(F̃

(r)
k )−1(Uδ,C). Then by (3.45) and defini-
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tion of conditional measure,

volMa
θ /CG

((F̃ (r))−1(Uδ,C)) =
Nr∑
k=1

volMa
θ /CG

((F̃
(r)
k )−1(Uδ,C))

= Nr

(volMa
θ,r,C

(Uδ,C ∩Ma
θ,r,C)

Jac(F̃ (r))

)
= Nr

(volMa
θ×M

a
θ /CG

(Uδ,C)

Jac(F̃ (r))

)
.

By previous last equality with condition (3.44),

volMa
θ /CG

((F̃ (r))−1(Uδ,C)) = Nr

(δvolMa
θ×M

a
θ /CG

(U)

Jac(F̃ (r))

)
. (3.48)

Therefore, combining (3.46) and (3.48), there exists C > 0 such that

µcθ,r(Uδ,C) = (F̃ (r))∗volMa
θ /CG

(Uδ,C) = volMa
θ /CG

((F̃ (r))−1(Uδ,C)) < Cδ.

Definition 3.32. For any basis Y = {Y1, · · ·Ya} of codimension 1 ideal I of n, let

I be the supremum of all constant I ′ ∈ (0, 1
2
) such that for any x ∈M the map

φYx : (s1, · · · , sa) 7→ x exp(
a∑
i=1

siYi) ∈M (3.49)

is local embedding (injective) on the domain

{s ∈ Ra | |si| < I ′ for all i = 1, · · · , a}.
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For any x, x′ ∈ M , set local distance d∗ (measured locally in the Lie algebra)

on transvere section Ma
θ along Yi direction by dYi(x, x

′) = |si| if there is s :=

(s1, · · · , sa) ∈ [−I/2, I/2]a such that

x′ = x exp(
a∑
i=1

siYi),

otherwise dYi(x, x′) = I.

Recall the projection map pr1 : M → Tn+1 onto the base torus. On transverse

manifold, for all θ ∈ T1, let prθ : Ma
θ → Tn be the restriction to Ma

θ . Then,

dYi(prθ(Φ
r
α,θ(x)), prθ(x)) = rαi, 1 ≤ i ≤ n.

We note distance dYi(Φr
α,θ(x), x) on the generators does not depend on choice of x.

For any L ≥ 1, r ∈ Z, x ∈ Ma
θ and given scaling factor ρ = (ρ1, · · · , ρa) ∈

[0, 1)a, we define

εr,L := max
1≤i≤n

min{I, LρidYi(Φr
α,θ(x), x)}

δr,L(x) := max
n≤i≤a

min{I, LρidYi(Φr
α,θ(x), x)}.

(3.50)

The condition εr,L < ε < I and δ′ < δr,L(x) < δ < I are equivalent to saying

Φr
α,θ(x) = x exp(

a∑
i=1

siYi) (3.51)
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for some vectors s := (s1, · · · , sa) ∈ [−I/2, I/2]a such that

|si| < εL−ρi , for all i ∈ {1, · · · , n}

|si| < δL−ρi , for all i ∈ {n+ 1, · · · , a}

|sj| > δ′L−ρj , for some j ∈ {n+ 1, · · · , a}.

For every r ∈ Z\{0} and j ≥ 0, let AP r
j,L ⊂M be sets defined as follows

AP r
j,L =


∅ if εr,L > I

2
;

(δr,L)−1
(
(2−(j+1)I, 2−jI]

)
otherwise.

(3.52)

In the next lemma, Lebesgue measure of almost-periodic points set AP r
j,L on

M is estimated by the volume of δ-neighborhood Uδ.

Lemma 3.33. For all r ∈ Z\{0}, j ∈ N, L ≥ 1, the (a + 1) dimensional Lebesgue

measure of the set AP r
j,L can be estimated as follows: there exists C > 0 such that

La+1(AP r
j,L) ≤ CIa−n

2j(a−n)
L−

∑a
i=n+1 ρi .

Proof. Without loss of generality, we assume that AP r
j,L 6= ∅.

By Tonelli’s theorem,

La+1(AP r
j,L) =

∫ 1

0

Laθ(AP r
j,L ∩Ma

θ )dθ. (3.53)

Recall the definition AP r(Uδ) in (3.43). Choose δ = Ia−n

2j(a−n)L
−

∑a
i=n+1 ρi and set
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UL,jδ := Uδ. Then we claim that AP r
j,L ∩Ma

θ ⊂ AP r(UL,jδ ).

For all r > 0 and θ ∈ T1, if x ∈ AP r
j,L ∩Ma

θ then dYi(Φr
α,θ(x), x) ≤ 2−jIL−ρi

for all i = n+ 1, · · · , a.

By identification of x ∈Ma
θ to (x, x) in diagonal ∆ ⊂Ma

θ ×Ma
θ , local distance

dYi(Φ
r
α,θ(x), x) is identified by the distance function d in the productMa

θ×Ma
θ . Thus,

x ∈ AP r
j,L ∩Ma

θ implies that d(F (r)(x),S) < δ. That is, AP r
j,L ∩Ma

θ ⊂ AP r(UL,jδ ).

By Lemma 3.29, the volume estimate follows

Laθ(AP r
j,L ∩Ma

θ ) ≤ Laθ(AP r(UL,jδ )) = µcθ,r(U
L,j
δ,C ∩M

a
θ,r,C).

Finally, by Proposition 3.31,

µcθ,r(U
L,j
δ,C ∩M

a
θ,r,C) ≤ CIa−n

2j(a−n)
L−

∑a
i=n+1 ρi .

Thus, proof follows from formula (3.53).

3.5.2 Expected width bounds.

We prove a bound on the average width of a orbit on nilmanifold with respect

to scaled basis. This section follows in the same way of [FF14, §5.2]. For comple-

tion of the proof, we repeat the similar arguments in nilmanifolds under transverse

conditions.
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For L ≥ 1, r ∈ Z\{0}, let us consider the function

hr,L =
∞∑
j=1

min{2j(a−n), (
2

εr,l
)n}χAP rj,L . (3.54)

Define cut-off function Jr,L ∈ N by the formula:

Jr,L := max{j ∈ N | 2j(a−n) ≤ (
2

εr,l
)n}. (3.55)

The function hr,L is

hr,L =

Jr,L∑
j=1

2j(a−n)χAP rj,L +
∑
j>Jr,L

(
2

εr,l
)nχAP rj,L . (3.56)

For every L ≥ 1, let F (L)
α be the rescaled strongly adapted basis

F (L)
α = (X(L)

α , Y
(L)

1 , · · · , Y (L)
a ) = (LXα, L

−ρ1Y1, · · · , L−ρaYa). (3.57)

For (x, T ) ∈ M × R, let wF(L)
α

(x, T ) denote the average width of the orbit

segment

γT
X

(L)
α

(x) := {φt
X

(L)
α

(x) | 0 ≤ t ≤ T}.

We prove a bound for the average width of the orbit arc in terms of the

following function

HT
L := 1 +

[TL]∑
|r|=1

hr,L. (3.58)

Definition 3.34. For t ∈ [0, T ], we define a set of points Ω(t) ⊂ {t}×Ra as follows:
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Case 1. If φt
X

(L)
α

(x) /∈
⋃[TL]
|r|=1

⋃
j>0AP

r
j,L, let Ω(t) be the set of all points

(t, s1, · · · , sa) such that

|si| < I/4, i ∈ {1, · · · , a}.

If φt
X

(L)
α

(x) ∈
⋃[TL]
|r|=1

⋃
j>0AP

r
j,L, then we consider two subcases.

Case 2-1. if φt
X

(L)
α

(x) ∈
⋃[TL]
|r|=1

⋃
j>Jr,L

AP r
j,L, let Ω(t) be the set of all points

(t, s) such that

|si| <
1

4
min

1≤|r|≤[TL]
min
j>Jr,L

{εr,L : φt
X

(L)
α

(x) ∈ AP r
j,L}, for i ∈ {1, · · · , n}

|si| <
I

4
for i ∈ {n+ 1, · · · , a}

Case 2-2. if φt
X

(L)
α

(x) ∈
⋃[TL]
|r|=1

⋃
j≤Jr,L AP

r
j,L\

⋃[TL]
|r|=1

⋃
j>Jr,L

AP r
j,L, let l be the

largest integer such that

φt
X

(L)
α

(x) ∈
[TL]⋃
|r|=1

⋃
l≤j≤Jr,L

AP r
j,L\

[TL]⋃
|r|=1

⋃
j>Jr,L

AP r
j,L,

and let Ω(t) be the set of all points (t, s) such that

|si| <
I

4
, for i ∈ {1, · · · , n}

|si| <
I

4

1

2l+1
, for i ∈ {n+ 1, · · · , a}.
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We set

Ω :=
⋃

t∈[0,T ]

Ω(t) ⊂ [0, T ]× [−I/4, I/4]a ⊂ [0, T ]× Ra.

Lemma 3.35. The restriction to Ω of the map

(t, s) ∈ Ω 7→ x exp(tX(L)
α ) exp(

a∑
i=1

siY
(L)
i ) (3.59)

is injective.

Proof. For every t ∈ [0, T ], we define a set Ω(t) ⊂ {t} × Ra as follows:

Ω :=
⋃

t∈[0,T ]

Ω(t) ⊂ Ra.

Then we set

φt
X

(L)
α

(x) exp(
a∑
i=1

siY
(L)
i ) = φt

′

X
(L)
α

(x) exp(
a∑
i=1

s′iY
(L)
i ). (3.60)

Let us assume t′ ≥ t. By considering the projection on the base torus, we have

the following identity:

(t, s1, · · · , sn) mod Zn+1 = pr1(φt
X

(L)
α

(x))

= pr1(φt
′

X
(L)
α

(x)) = (t′, s′1, · · · , s′n) mod Zn+1, (3.61)

which implies t ≡ t′ modulo Z. As φtLXα = φt
X

(L)
α

, the number r0 = t′ − t is a non
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negative integer satisfying r0 ≤ TL; hence r0 ≤ [TL].

If r0 = 0, then t′ = t and s′i = si. Then injectivity is obtained by definition of

I. Assume that r0 6= 0. Let p, q ∈Ma
θ and then we have

p := φt
X

(L)
α

(x), q := φt
′

X
(L)
α

(x) =⇒ q = Φr0
α,θ(p).

From identity (3.60) we have

q = p exp(
a∑
i=1

siY
(L)
i ) exp(−

a∑
i=1

s′iY
(L)
i )

= p exp(
a∑
i=1

(s′i − si + Pi(si, s
′
i))L

−ρiYi)

(3.62)

where Pi is polynomial expression following from Baker-Cambell-Hausdorff formula.

Note that Pi = 0 if i = 1, · · · , n and |Pi| ≤
∑∞

l=1 1/2|sls′l|l for i > n. Since

|si|, |s′i| ≤ I
4
� 1,

q = p exp(
a∑
i=1

(s′i − si + εi)L
−ρiYi), for some εi ∈ [0, Iε)

where Iε =
∑

l=1( I
4
)l = I

4−I < I/3. Thus for all i ∈ {1, · · · , a},

LρidYi(p,Φ
r0
α,θ(p)) = Lρi |(s′i − si + εi)L

−ρi | ≤ |s′i|+ |si|+ |εi|

and

εr0,L = max
1≤i≤n

LρidYi(p,Φ
r0
α,θ(p)) ≤ max

1≤i≤n
|si|+ |s′i|+ |εi| ≤

5

6
I.
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For the same reason, from formula (3.62) we also obtain that

δr0,L(p) = δ−r0,L(q) < I/2.

By defining j0 ∈ N as the unique non-negative integer such that

I

2j0+1
≤ δr0,L(p) ≤ I

2j0

and by the definition 3.32, we have p ∈ AP r0
j0,L

and q ∈ AP−r0j0,L
.

If j0 > Jr0,L = J−r0,L, then p, q ∈
⋃[TL]
|r|=1

⋃
j≥Jr,L . It follows that the sets Ω(t)

and Ω(t′) are both defined on case 2-1. Hence,

εr0,L ≤ max
1≤i≤n

|si|+ |s′i|+ |εi| ≤
5

6
εr0,L

which is a contradiction.

If the map in formula (3.59) fails injective at points (t, s) and (t′, s′) with t ≥ t′,

then there are integers r0 ∈ [1, TL], j0 ∈ [1, J(|r0|)] and θ ∈ T1 such that the points

p and q satisfy

q = Φr0
α,θ(p), p, q /∈

[TL]⋃
|r|=1

⋃
j>Jr,L

AP r
j,L.

In this case, the sets Ω(t) and Ω(t′) are both defined according to case (2-2).

Let l1 and l2 as the largest integers such that

p ∈
[TL]⋃
|r|=1

⋃
l1≤j≤Jr,L

AP r
j,L and q ∈

[TL]⋃
|r|=1

⋃
l2≤j≤Jr,L

AP r
j,L.
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On case (2-2), we have

|si| <
I

4

I

2l1+1
, |s′i| <

I

4

I

2l2+1
, for all i ∈ {n+ 1, · · · , a},

which also leads contradiction because l1, l2 > j0 deduce the contradiction

I

2j0+1
≤ δr0,L(p) ≤ max

i≥n+1
|si|+ |s′i|+ |εi| <

I

2l1+1
+

I

2l2+1
≤ I

2

1

2j0+1
.

Hence, the injectivity is proved.

We reprove the Lemma 5.5 in [FF14] in the general settings (under transver-

sality conditions) combining with Lemma 3.35.

Lemma 3.36. For all x ∈M and for all T, L ≥ 1 we have

1

wF(L)
α

(x, T )
≤
(

2

I(Y )

)a
1

T

∫ T

0

HT
L ◦ φtX(L)

α
(x)dt.

Proof. The width function wΩ of the set Ω is given by the following:

wΩ(t) =



( I
2
)a case 1

( I
2
)a(

min{εr,L}
2

)n case 2-1

( I
2
)a2−(a−n)(l+1) case 2-2,

(3.63)
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and it implies that

1

wΩ(t)
≤



(2
I
)a−n case 1

(2
I
)a−n

[TL]∑
|r|=1

∑
j>Jr,L

2nχAP rj,L(φt
X

(L)
α

(x))

(εr,L)n
case 2-1

(2
I
)a

[TL]∑
|r|=1

∑
j>Jr,L

2(j+1)(a−n)χAP rj,L(φt
X

(L)
α

(x)) case 2-2.

(3.64)

By the definition of the function HT
L in formula (3.58), we have

1

wΩ(t)
≤
(

2

I

)a
HT
L ◦ φtX(L)

α
(x), for all t ∈ [0, T ]. (3.65)

From the definition (3.29) of the average width of the orbit segment {x exp (tX
(L)
α ) |

0 ≤ t ≤ T}, we have the estimate

1

wF(L)
α

(x, T )
≤ 1

T

∫ T

0

dt

wΩ(t)
≤
(

2

I

)a
1

T

∫ T

0

HT
L ◦ φtX(L)

α
(x)dt.

Lemma 3.37. For all r ∈ Z\{0} and for all L ≥ 1, the following estimate holds:

∣∣∣∣∫
M

hr,L(x)dx

∣∣∣∣ ≤ CI(Y )a−n(1 + Jr,L)L−
∑a
i=n+1 ρi

Proof. It follows from the Lemma 3.33 that for r 6= 0 and for all j ≥ 0, the Lebesgue
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measure of the set AP r
j,L satisfies the following bound:

La+1(AP r
j,L) ≤ CIa−n

2j(a−n)
L−

∑a
i=n+1 ρi . (3.66)

From the formula (3.56), it follows that

∫
M

hr,L(x)dx ≤ 1 +

Jr,L∑
j=1

2j(a−n)La+1(AP r
j,L)

+
∑
j>Jr,L

2nLa+1(AP r
j,L)

(εr,L)n
.

By estimate in the formula (3.66), we immediately have that

Jr,L∑
j=1

2j(a−n)La+1(AP r
j,L) ≤ CIa−nJr,LL

−
∑a
i=n+1 ρi .

By the definition of the cut-off in formula (3.55) we have the bound

2n−(Jr,L+1)(a−n)

(εr,L)n
≤ 1,

and by an estimate on a geometric sum

∑
j>Jr,L

2nLa+1(AP r
j,L)

(εr,L)n
≤ 2n−(Jr,L+1)(a−n)

(εr,L)n
CIa−nL−

∑a
i=n+1 ρi

≤ CIa−nL−
∑a
i=n+1 ρi .
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3.5.3 Diophantine estimation

In this section we review the concept of simultaneous Diophantine condition.

The bounds on the expected average width is estimated under Diophantine condi-

tions.

Definition 3.38. For any basis Ȳ := {Ȳ1, · · · , Ȳn} ⊂ Rn, let Ī := Ī(Ȳ ) be the

supremum of all constants Ī ′ > 0 such that the map

(s1, · · · , sn)→ exp(
n∑
i=1

siȲi) ∈ Tn

is a local embedding on the domain {s ∈ Rn | |si| < Ī ′ for all i = 1, · · · , n}.

For any θ ∈ Rn, let [θ] ∈ Tn its projection onto the torus Tn := Rn/Zn and let

|θ|1 = |s1|, · · · , |θ|i = |si|, · · · , |θ|n = |sn|,

if there is s := (s1, · · · , sn) ∈ [−Ī/2, Ī/2]n such that

[θ] = exp(
n∑
i=1

siȲi) ∈ Tn;

otherwise we set |θ|1 = · · · = |θ|n = Ī.

Definition 3.39. A vector α ∈ Rn\Qn is simultaneously Diophantine of exponent
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ν ≥ 1, say α ∈ DCn,ν if there exists a constant c(α) > 0 such that, for all r ∈ N\{0},

min
i
‖rαi‖ = d(rα,Zn) = ‖rα‖ ≥ c(α)

r
ν
n

.

Definition 3.40. Let σ = (σ1, · · · , σn) ∈ (0, 1)n be such that σ1 + · · ·+ σn = 1. For

any α = (α1, · · · , αn) ∈ Rn, for any N ∈ N and every δ > 0, let

Rα(N, δ) = {r ∈ [−N,N ] ∩ Z | |rα|1 ≤ δσ1 , · · · , |rα|n ≤ δσn}.

For every ν > 1, let Dn(Ȳ , σ, ν) ⊂ (R\Q)n be the subset defined as follows:

the vector α ∈ Dn(Ȳ , σ, ν) if and only if there exists a constant C(Ȳ , σ, α) > 0 such

that, for all N ∈ N for all δ > 0,

#Rα(N, δ) ≤ C(Ȳ , σ, α) max{N1− 1
ν , Nδ}. (3.67)

The Diophantine condition implies a standard simultaneous Diophantine con-

dition. We quote following Lemmas proved in [FF14, Lemma 5.9, 5.12].

Lemma 3.41. Let α ∈ Dn. For all r ∈ Z\{0}, we have

max{|rα|1, · · · , |rα|n} ≥ min{ Ī
2

4
,

1

[1 + C(Ȳ , σ, α)]2ν
} 1

|r|ν
.

Lemma 3.42. For all bases Ȳ ⊂ Rn, for all σ = (σ1, · · · , σn) ∈ (0, 1)n such that

σ1 + · · ·+ σn = 1 and let m(σ) = min{σ1, · · ·σn} and M(σ) = max{σ1, · · ·σn}. For
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all ν ≥ 1, the inclusion

DCn,ν ⊂ Dn(Ȳ , σ, ν)

holds under the assumption that

µ ≤ min{ν, [M(σ)

ν
+ 1− 1

n
]−1, [

1

ν
+ (1− 2

n
)(1− m(σ)

M(σ)
)]−1}.

The set Dn(Ȳ , σ, ν) has full measure if

1

ν
< min{[M(σ)n]−1, 1− (1− 2

n
)(1− m(σ)

M(σ)
)}. (3.68)

In dimension one, the vector space has unique basis up to scaling. The follow-

ing result is immediate.

Lemma 3.43. For all ν ≥ 1 the following identity holds:

DC1,ν = D1(ν).

Let Fα := (Xα, Y ) be a basis and let Ȳ = {Ȳ1, · · · , Ȳn} ∈ R denote the

projection of the basis of codimension 1 ideal I onto the Abelianized Lie algebra

n̄ := n/[n,n] ≈ Rn. For ρ = (ρ1, · · · , ρa) ∈ [0, 1)a, we write a vector of scaling

exponents

ρ̄ = (ρ1, · · · , ρn), |ρ̄| = ρ1 + · · ·+ ρn.

Let α1 = (α
(1)
1 , · · · , α(1)

n ) ∈ Dn(E, ρ̄/|ρ̄|, ν). For brevity, let C(Ȳ , ρ̄/|ρ̄|, α1)
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denote the constant in the Diophantine condition introduced in Definition 3.40 and

let

C(α1) = 1 + C(Ȳ , ρ̄/|ρ̄|, α). (3.69)

We prove the upper bound on the cut-off function in the formula (3.55). Let

I = I(Y ) and Ī = Ī(Ȳ ) be the positive constant introduced in the Definition 3.32

and 3.38. We observe that I ≤ Ī since the basis Ȳ is the projection of the basis

Y ⊂ n′ and the canonical projection commutes with exponential map. Then the

following logarithmic upper bound holds.

Lemma 3.44. For every ρ ∈ [0, 1)a, for every ν ≤ 1/|ρ̄| and for every α ∈

Dn(Ȳ , ρ̄/|ρ̄|, α), there exists a constant K > 0 such that, for all T ≥ 1 and for

all r ∈ Z\{0}, the following bound holds:

Jr,L ≤ K{1 + log+[I(Y )−1] + logC(α1)}(1 + log |r|).

Proof. By Lemma 3.41 and by the definition of εr,L in formula (3.50), it follows that,

for all T > 0, L ≥ 1 and for all r ∈ Z\{0}, we have

εr,L ≥ max
1≤i≤n

min{I, |rα1|i} ≥ min{I, Ī
2

4
,

1

[1 + C(α1)]2ν
} 1

|r|ν
.

It follows by the above bound and by the definition of the cut-off function

(3.55),

Jr,L ≤
n

a− n
(3 log 2 + 3 log+(1/I) + 2ν log[1 + C(α1)] + ν log |r|),
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Assume that there exists ν ∈ 1/|ρ̄| such that α1 ∈ Dn(E, ρ̄/|ρ̄|, ν). For brevity,

we introduce the following notation:

H(Y, ρ, α) = 1 + I(Y )a−nC(α1){1 + log+[I(Y )−1] + logC(α1)}. (3.70)

Theorem 3.45. For every ρ ∈ [0, 1)a, for every ν ≤ 1/|ρ̄| such that α1 = α
(1)
i ∈

Dn(Ȳ , ρ̄, ν) there exists a constant K ′ > 0 such that, for all T > 0 and for all L ≥ 1,

the following bounds holds:

∣∣∣∣∫
M

HT
L (x)dx

∣∣∣∣ ≤ K ′H(Y, ρ, α)(1 + T )(1 + log+ T + logL)L1−
∑a
i=1 ρi .

Proof. By the definition of HT
L in the formula (3.58), the statement follows from the

Lemma 3.37 and Lemma 3.44. In fact, for all r ∈ Z\{0} and all j ≥ 0, by definition

(3.52) the set AP r
j,L is nonempty only if εr,L < I

2
. Since ν ≤ 1/|ρ̄|, it follows from

the definition of the Diophantine class Dn

#{r ∈ [−TL, TL] ∩ Z\{0} | AP r
j,L 6= ∅} ≤ C(E, σ, α)(1 + T )L1−|ρ̄|.

Hence, the statement follows from the Lemma 3.37 and 3.44.

85



3.5.4 Width estimates along orbit segments

We introduce a definition of good points, that is, points on the nilmanifold

for which we can prove bounds on the width of sufficiently many orbit segments to

derive by our method bounds on ergodic averages.

Definition 3.46. For any increasing sequence (Ti) of positive real numbers, let

hi ∈ [1, 2] denote the ratio log Ti/[log Ti] for every Ti ≥ 1. Let’s say Ni = [log Ti]

and Tj,i = ejhi for integer j ∈ [0, Ni].

Let ζ > 0 and w > 0. A point x ∈ M is (w, Ti, ζ)-good for the basis Fα if

having set yi = φTiXα(x), for all i ∈ N and for all 0 ≤ j ≤ Ni, we have

wF(Tj,i)(x, 1) ≥ w/T ζi , wF(Tj,i)(yi, 1) ≥ w/T ζi .

Lemma 3.47. Let ζ > 0 be fixed and let (Ti) be an increasing sequence of positive

real numbers satisfying the condition

Σ((Ti), ζ) :=
∑
i∈N

(log Ti)
2(Ti)

−ζ <∞. (3.71)

Let ρ ∈ [0, 1) with
∑
ρi = 1. Then the Lebesgue measure of the complement of the

set G(w, (Ti), ζ) of (w, (Ti), ζ)−good points is bounded above. That is, ∃K > 0 such

that

meas(G(w, (Ti), ζ)c) ≤ KΣ((Ti), ζ)[1/I(Y )]aH(Y, ρ, α)w
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Proof. For all i ∈ N and for all j = 0, · · · , Ni, let

Sj,i = {z ∈M : wFα(Tj,i)(z, 1) < T ζi /w}.

By definition we have

G(w, (Ti), ζ)c =
⋃
i∈N

Ni⋃
j=0

(Sj,i ∪ φ−TiXα
(Sj,i)). (3.72)

By Lemma 3.36 for all z ∈ Sj,i we have

(I/2)aT ζi /w <

∫ 1

0

H1
Tj,i
◦ φτXα(z)dτ =

1

Tj,i

∫ Tj,i

0

H1
Tj,i
◦ φτXα(z)dτ.

It follows that

Sj,i ⊂ S(j, i) :=

{
z ∈M : sup

J>0

1

J

∫ J

0

H1
Tj,i
◦ φτXα(z)dτ > (I/2)aT ζi /w

}
.

By the maximal ergodic theorem, the Lebesgue measure meas[Sj,i] of the set

S(j, i) satisfies the inequality

meas[Sj,i] ≤ (2/I)a(w/T ζi )

∫
M

H1
Tj,i
zdz.

Let H = H(Y, ρ, ν) denote the constant defined in the formula (3.70). By theorem

3.45, since by hypothesis ν ≤ 1/|ρ̄| and α ∈ Dn(ρ̄/|ρ̄|, ν), there exists a constant
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K ′(a, n, ν) > 0 such that the following bound holds:

∣∣∣∣∫
M

H1
Tj,i

(z)dz

∣∣∣∣ ≤ K ′H(1 + log Tj,i).

Hence, by the definition of the Tj,i, we have

Ni ≤ log Ti ≤ Ni + 1, log Tj,i ≤ 2j. (3.73)

Thus, for some constant K ′′, we have

meas[Sj,i] ≤ K ′′(2/I)aHw(1 + j)T−ζi .

By (3.73), for some constant K ′′′ > 0,

meas(

Ni⋃
j=0

Sj,i ∪ φ−TiXα
(Sj,i)) ≤ K ′′′(2/I)aHw(log Ti)

2T−ζi .

By sub-additivity of the Lebesgue measure, we derive the bound

meas(
⋃
i∈N

Ni⋃
j=0

Sj,i ∪ φ−TiXα
(Sj,i)) ≤ K ′′′Σ((Ti), ζ)Hw.

By formula (3.72), the above estimate concludes the proof.

3.6 Bounds on ergodic average

We shall introduce assumptions on coadjoint orbits O ⊂ n∗.
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Definition 3.48. A linear form Λ ∈ O is integral if the coefficients Λ(η
(m)
i ), (i,m) ∈

J are integer multiples of 2π. Denote M̂ the set of coadjoint orbits of O of integral

linear forms Λ.

There exist coadjoint orbits O ⊂ n∗ that correspond to unitary representations

which do not factor through the quotient N/ expnk, nk ⊂ Z(n). Such coadjoint

orbits and unitary representation are called maximal. (See [FF07, Lemma 2.3])

Definition 3.49. Given a coadjoint orbit O ∈ M̂0 and a linear functional Λ ∈ O,

let us denote Fα,Λ the completed basis Fα,Λ = (Xα, YΛ). For all t ∈ R, we write

scaled basis Fα,Λ(t) by

Fα,Λ(t) = (Xα(t), YΛ(t)) = Aρt (Xα, YΛ).

Let M̂0 be subset of all coadjoint orbits of forms Λ such that Λ(η
(m)
i ) 6= 0

for m = k. This space has maximal rank and Λ(η
(m)
i ) 6= 0,∀(i,m) ∈ J . For any

O ∈ M̂0, let HO denote the primary subspace of L2(M) which is a direct sum of

sub-representations equivalent to IndNN ′(Λ). For adapted basis F , set

W r(HO,F) = HO ∩W r(M,F).
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3.6.1 Coboundary estimates for rescaled basis

Recall definition of degree of Y (m)
i and

d
(m)
i =


k −m, for all 1 ≤ m ≤ k − 1

0 m = k.

For any linear functional Λ, the degree of the representation πΛ only depends on its

coadjoint orbits. We denote scaling vector ρ ∈ (R+)J such that

∑
(i,j)∈J

ρ
(j)
i = 1 and ρ

(j)
i = 0

for any Y (j)
i with deg(Y ) = 0.

Assume that the number of basis of n with degree k −m is nm. Define

Sn(k) := (n1 − 1)(k − 1) + n2(k − 2) + ....+ nk−1 (3.74)

and

δ(ρ) := min
1≤m≤k−1
1≤i,j≤nm

{ρ(m)
i − ρ(m+1)

j , ρ
(m)
i − ρ(m+1)

i }. (3.75)

Lemma 3.50. We have that δ(ρ) ≤ λ(ρ). The above inequalities are strict unless

one has homogeneous scaling

ρ
(j)
i =

dj
Sn

for j ≤ k − 1.
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Lemma 3.51. There exists a constant C > 0 such that, for all r ∈ R+ and for any

function f ∈ W r(HO), we have

∑
(m,i)∈J

|[Xα(t), Y
(m)
i (t)]f |r,Fα,Λ(t) ≤ Cet(1−δ(ρ))|f |r+1,Fα,Λ(t).

Proof. For all (m, i) ∈ J , we have

[Xα(t), Y
(m)
i (t)] =

∑
l≥1

c
(m+1)
l et(1−ρ

(m)
i +ρ

(m+1)
l )Y

(m+1)
l (t).

We note that c(j)
l = 0 for j = k and for some l, which is determined by commutation

relation. Setting C = max(i,j)∈J+{|c(j)
i |},

∑
(m,i)∈J

|[Xα(t), Y
(m)
i (t)]f |r,Fα,Λ(t) ≤ Cet(1−δ(ρ))

∑
(m,i)∈J+

|Y (m)
i (t)f |r,Fα,Λ(t).

For x ∈M , let γx be the Birkhoff average operator γTx (f) = 1
T

∫ T
0
f ◦φtXα(x)dt

and consider the decomposition of the restriction of the linear functional γx to

W r
0 (HO,Fα,Λ(t)) as an orthogonal sum γx = D(t) + R(t) ∈ W−r

0 (HO,Fα,Λ(t)) of

Xα-invariant distribution D(t) and an orthogonal complement R(t).

Theorem 3.52. Let r > 2(k+ 1)(a/2 + 1) + 1/2. For g ∈ W r(HO,Fα,Λ(t)) and for
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all t ≥ 0, there exists a constant C(1)
r such that

|R(t)(g)| ≤ C(1)
r e(1−δ(ρ)−(1−λ))t max{1, (2πδO)−kr−1}

× T−1
(
wFα,Λ(t)(x, 1)−

1
2 + wFα,Λ(t)(φ

T
Xα(x), 1)−

1
2

)
|g|r,Fα,Λ(t). (3.76)

Proof. Fix t ≥ 0 and setD = D(t), R = R(t) for convenience. Let g ∈ W r
α,Λ(HO,F(t)).

We write g = gD +gR, where gR is the kernel of Xα-invariant distributions and gD is

orthogonal to gR in W r. Then, gR is a coboundary and R(gD) = 0. Let f = G
Xα(t)
Xα,Λ

.

From |D(gR)| = 0,

|R(g)| = |R(gD + gR)| = |R(gR)| = |γx(gR)−D(gR)| = |γx(gR)|. (3.77)

By the Gottschalk-Hedlund argument,

|γx(gR)| =
∣∣∣∣ 1

T

∫ T

0

g ◦ φsXα(x)ds

∣∣∣∣
=

1

T

∣∣f ◦ φTXα(x)− f(x)
∣∣

≤ 1

T
(|f(x)|+ |f ◦ φTXα(x)|)

(3.78)

By Theorem 3.25 and Lemma 3.51, for any τ > a/2 + 1, there exists a positive

constant Cr such that for any z ∈M

|f(z)| ≤ Cr

wFα,Λ(t)(z, 1)
1
2

(
Ce(1−δ(ρ))t|f |τ,Fα,Λ(t) + |g|τ−1,Fα,Λ(t)

)
. (3.79)
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By Theorem 3.18, if r > 2(k + 1)τ + 1/2, then

|f |τ,Fα,Λ(t) ≤ Cr,k,τe
−(1−λ)t max{1, (2πδO)−kr−1}|gR|r,Fα,Λ(t).

By orthogonality, we have |gR|r,Fα,Λ(t) ≤ |g|r,Fα,Λ(t).

Corollary 3.53. For every r > 2(k + 1)(a/2 + 1) + 1/2, there is a constant C(2)
r

such that the following holds for every O ∈ Î0 and every x ∈M . Then,

|R|−r,Fα,Λ ≤ C(2)
r [1/I(YΛ)]a/2 max{1, δ−(k−1)r−1

O }(1 + ‖Λ‖Fα,Λ)r−1T−1.

Proof. For all x ∈M , we have wFα,Λ(x, 1) ≥
(
I(YΛ)

2

)a
. It follows from Theorem 3.52

applied to the orthogonal decomposition of γx = D(0) +R(0).

3.6.2 Bounds on ergodic averages in an irreducible subrepresentation.

In this section, we derive the bounds on ergodic averages of nilflows for function

in a single irreducible sub-representation. For brevity, let us set

Cr(O) = max{1, (2πδO)−kr−1}. (3.80)

Proposition 3.54. Let r > 2(k + 1)(a/2 + 1) + 1/2. Let (Ti) be an increasing

sequence of positive real numbers ≥ 1 and let 0 < w < I(Y )a. Let ζ > 0. There

exists a constant Cr(ρ) such that for every G(w, (Ti), ζ)-good points x ∈ M and all
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f ∈ W r(HO,F), we have

∣∣∣∣ 1

Ti

∫ Ti

0

f ◦ φtXα(x)dt

∣∣∣∣ ≤ Cr(ρ)Cr(O)w−1/2Ti
−δ(ρ)+ζ+λ/2|f |r,Fα . (3.81)

Proof. By group action of scaling (3.13), a sequence of frame is chosen F(tj) = A
tj
ρ F

with other scaling factors ρitj on elements of Lie algebras Yi. Then, as j increases

from 0 to N , the scaling parameter tj becomes larger, while the scaled length of

the arc becomes shorter approaching to 1. Let φsXj(x) denote the flow of the scaled

vector field etjX = X(tj).

For each j = 0, · · · , N , let γ = Dj + Rj be the orthogonal decomposition

of γ in the Hilbert space W−r(Hπ,F(tj)) into Xα-invariant distribution Dj and

an orthogonal complement Rj. For convenience, we denote by | · |r,j and ‖·‖r,j

respectively, the transversal Sobolev norm | · |r,F(tj) and Lyapunov Sobolev norm

‖·‖r,F(tj)
relative to the rescaled basis F(tj).

Let us set Ni = [log Ti] and tj,i := Tj,i = log T
j/Ni
i for integer j ∈ [0, Ni]. We

observe Ni < log Ti < Ni + 1. For simplicity, we will omit index i ∈ N and set

T = Ti, N = Ni for a while within the proof and lemmas of this subsection.

Our goal is the estimate |γ|−r,Fα = |γ|−r,0 (the norm of distribution of unscaled

basis). By triangle inequality and Corollary 3.53,

|γ|−r,0 ≤ |D0|−r,0 + |R0|−r,0

≤ |D0|−r,0 + C(2)
r [1/I(Y )]a/2Cr(ΛO)T−1.

(3.82)

We now estimate |D0|−r,0. By definition of the Lyapunov norm and its bound (3.28),
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for −s < −r < 0,

|D0|−s,0 ≤ Cr,s ‖D0‖−r,0 . (3.83)

Since Dj + Rj = Dj−1 + Rj−1, observe Dj−1 = Dj + R′j, where R′j denotes

the orthogonal projection of Rj, in the space W−r(HO,F(tj−1)), on the space of

invariant distribution. By definition of Lyapunov norm,

‖Dj−1‖−r,j−1 ≤ ‖Dj‖−r,j−1 +
∥∥R′j∥∥−r,j−1

≤ ‖Dj‖−r,j−1 + |R′j|−r,j−1

≤ ‖Dj‖−r,j−1 + |Rj|−r,j−1.

By Lemma 3.57, equivalence of norm gives

‖Dj−1‖−r,j−1 ≤ ‖Dj‖−r,j−1 + C|Rj|−r,j. (3.84)

By Lemma 3.22, for any Xα-invariant distribution D and for all tj ≥ tj−1,

‖D‖−r,F(tj−1) ≤ e−λ(ρ)(tj−tj−1)/2 ‖D‖−r,F(tj)
.

Since F(tj) = A
tj−tj−1
ρ F(tj−1) and tj − tj−1 = log T/N implies

‖Dj‖−r,j−1 ≤ T−λ(ρ)/2N ‖Dj‖−r,j .
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From (3.84) we conclude by induction

‖D0‖−r,0 ≤ T−λ(ρ)/2

(
‖DN‖−r,N + C

N−1∑
l=0

T (l+1)λ(ρ)/2N |RN−l|−r,N−l

)
. (3.85)

By Lemma 3.55 and 3.56,

‖D0‖−r,0 ≤ C1
r (ρ)Cr(O)w−1/2T 1−δ(ρ)+ζ/2−(1−λ)−λ(ρ)/2. (3.86)

From (3.82) and the above, we conclude that there exists a constant Cr(ρ) such

that

|γ|−r,F ≤ Cr(ρ)Cr(O)w−1/2T−δ(ρ)+ζ/2+λ/2.

Here we introduce the proof of supplementary lemmas.

Lemma 3.55. For any r, there exists a constant Cr > 0 such that, for all good

points x ∈ G(w, (Ti), ζ), we have

‖DN‖−r,N ≤ CrT
ζ/2/w1/2.

Proof. Recall from definition 3.46, for x ∈ G(w, (Ti), ζ) and yi = φTiXα(x) for all i ∈ N

1

wF(tj)(x, 1)
≤ T ζi /w and

1

wF(tj)(yi, 1)
≤ T ζi /w (3.87)

where tj = tj,i.
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By definition of norm, we obtain ‖DN‖−r,N ≤ |DN |−r,N ≤ |γ|−r,N . The orbit

segment (φtXα(x))0≤t≤T coincides with the orbit segment (φτXα(tN )(x))0≤τ≤1 of length

1 since Xα(tN) = Xα(log T ) = TXα. By Theorem 3.25,

|γ|F(tN ),−r ≤ CrwF(tN )(x, 1)−1/2.

By the inequality (3.87),

wF(tN )(x, 1)−1/2 ≤ T ζ/2/w1/2.

Lemma 3.56. For every r > 2(k + 1)(a/2 + 1) + 1/2, there is a constant C such

that for all good points x ∈ G(w, (Ti), ζ), we have

N−1∑
l=0

T (l+1)ρY /2N |RN−l|−r,N−l ≤ C(1)
r (ρ)Cr(O)w−1/2T 1−δ(ρ)−(1−λ)+ζ/2. (3.88)

Proof. The orbit segment (φtXα(x))0≤t≤T has length T l/N with respect to the gen-

erator Xα(tN−l) = Xα((1 − l/N) log T ) = T 1−l/NXα. Thus, by Theorem 3.52 with

e(1−δ(ρ))tN−l = T (1−l/N)(1−δ(ρ)). Then,

|RN−l|−r,N−l ≤ C(1)
r Cr(O)T (1−l/N)(1−δ(ρ)−(1−λ))−l/N)

(
1

wF(tN−l)(x, 1)
1
2

+
1

wF(tN−l)(y, 1)
1
2

)

≤ 2C(1)
r Cr(O)w−1/2T (1−l/N)(λ−δ(ρ))−l/N+ζ/2.
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Let C = 2C
(1)
r Cr(O)w−1/2. Remember that Ni = [log Ti] and Ni ≤ log Ti ≤ Ni + 1,

hence Ti1/(Ni+1) ≤ e ≤ Ti
1/Ni . Recall that we set T = Ti, then

N−1∑
l=0

T (l+1)ρY /2N |RN−l|−r,N−l

≤ CT 1−δ(ρ)−(1−λ)+ζ/2

N−1∑
l=0

T (l+1)ρY /2NT−l/N(1−δ(ρ)−(1−λ))−l/N

≤ CT 1−δ(ρ)−(1−λ)+ζ/2+ρY /2N

N−1∑
l=0

T−l/N(2−δ(ρ)−(1−λ)−ρY /2)

≤ erCT 1−δ(ρ)−(1−λ)+ζ/2

∞∑
l=0

e−l(1+λ−δ(ρ)−ρY /2)

By Lemma 3.50, we have 1 + λ − δ(ρ) − ρY /2 ≥ 1 − ρY /2 > 1/2, thus geometric

series converges.

Lemma 3.57. There exists a constant C := C(r) > 0 such that, for all j =

0, · · · , N,

C−1| · |−r,j ≤ | · |−r,j−1 ≤ C| · |−r,j.

Proof. From (3.73), tj − tj−1 ≤ 2 and observe F(tj) = Atj−tj−1F(tj−1). Passing

from the frame F(tj−1) to Ft, it can be verified that distortion of the corresponding

transversal Sobolev norm is uniformly bounded.

Let σ = (σ1, · · · , σn) ∈ (0, 1)n be such that σ1+· · ·+σn = 1. For the simplicity,

we choose σi = 1/n from now on. Recall the definition 3.39 or Lemma 3.42 it implies

that under certain exponent, Dn(σ, ν) contains simultaneous Diophantine condition.

Let

M̃0 =
⋃
O∈M̂0

{Λ ∈ O | Λ integral}
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be collection of maximal integral coadjoint orbits.

Recall from (3.74), we assume

Sn(k) := (n1 − 1)(k − 1) + n2(k − 2) + ....+ nk−1.

Theorem 3.58. For any Λ ∈ M̃0, let ν ∈ [1, 1 + (k/2 − 1) 1
n
]. Then, for any

r > (k + 1)(a/2 + 1) + 1/2, there exists a constant C(σ, ν) satisfying the following.

For every ε > 0, there exists a constant Kε(σ, ν) > 0 such that, for every α1 =

(α
(1)
1 , · · · , α(1)

n ) ∈ Dn(σ, ν) and for every w ∈ (0, I(Y )a] there exists a measurable set

GΛ(σ, ε, w) satisfying the estimate

meas(GΛ(σ, ε, w)c) ≤ Kε(σ, ν)(
w

I(YΛ)a
)H(YΛ, ρ, α). (3.89)

For every x ∈ GΛ(σ, ε, w), for every f ∈ W r(HO,F) and T ≥ 1 we have

∣∣∣∣ 1

T

∫ T

0

f ◦ φtXα(x)dt

∣∣∣∣ ≤ Cr(σ, ν)Cr(Λ)

w
1
2

T−(1−ε) 1
3Sn(k) |f |r,Fα,Λ .

Proof. If the coadjoint orbit O is integral and maximal with full rank, then we

can see that the optimal exponent will be attained by the following scaling. Let

ρ = (ρ
(m)
i ) be the vector given by homogeneous scaling:

ρ
(j)
i =

dj
Sn

for i ≤ k.

Let us set ζ = 2δ(ρ)/3− λ/3. Let ε > 0, for all i ∈ N, let us set Ti = i(1+ε)ζ−1 .
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Then, there exists a constant Kε(ρ) > 0 such that

Σ(w, (Ti), ζ) ≤
∑
i

(log Ti)
2T−ζi ≤ Kε(ρ).

Let G = GΛ(σ, ε, w) = G(w, (Ti), ζ) be the set of (w, (Ti), ζ)-good points for

the basis Fα. The estimate in the formula (3.89) follows from the Lemma 3.47

and definition of good points. By Proposition 3.54, for all x ∈ G and for every

f ∈ W r(HO,F), the estimate (3.81) holds true. Let T ∈ [Ti, Ti+1]. Then

∫ T

0

f ◦ φtXα(x)dt =

∫ Ti

0

f ◦ φtXαdt+

∫ T

Ti

f ◦ φtXα(x)dt = (I) + (II).

Let C = Cr(ρ)Cr(O)/w1/2. The first term is estimated by the formula (3.81):

(I) ≤ CT 1−δ(ρ)+ζ/2+λ/2|f |r,Fα,Λ = CT 1−2δ(ρ)/3+λ/3|f |r,Fα,Λ .

For the second term, let us set γ = (1 + ε)ζ−1 and observe that γ−1 = ζ(1 +

ε)−1 ≥ (1− ε)ζ. We have

(II) ≤ (T − Ti) ‖f‖∞ ≤ β2γ−1T 1−γ−1 ‖f‖∞

≤ C ′(ρ)T 1−(1−ε)(−2δ(ρ)/3+λ/3)|f |r,Fα,Λ .

By the estimates on the terms (I) and (II), the proof is completed.

Remark 3.59. If O is integral but not maximal, then the restriction of Λ factors
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through an irreducible representation of the k − 1 step nilpotent group N/ expn′k.

Then, n/nk is polarizing subalgebra for subrepresentation and it reduces to the case

of maximal integral. Since the growth rate is determined by the scaling factors and

the exponent λ is determined by the step size and number of elements, the highest

exponent is obtained by integral maximal full rank case.

3.6.3 General bounds on ergodic averages.

Finally, in order to solve cohomological equation on nilmanifold, we glue the

solutions constructed in every irreducible sub-representation of N . The main idea

is to increase extra regularity of the Sobolev norm to obtain the estimates that are

uniformly bounded across all irreducible subrepresentation.

Definition 3.60. For every O ∈ M̂0, we define

|O| = max
ηi∈nk

|Λ(η
(k)
i )|.

Note that |O| does not depend on the choice of Λ and |O| 6= 0 by maximality.

We specifically choose an element η(k)
∗ whose degree k such that

|O| = |Λ(η(k)
∗ )|.

Lemma 3.61. For every O ∈ M̂0 and for every Λ ∈ O, we have

I(YΛ)−aH(YΛ) ≤ C(α1)(1 + logC(α1))2a+1.
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Proof. The return time of the flow Xα to any orbit of the codimension one subgroup

N ′ ⊂ N is 1. Hence, by Definition 3.32, we have I(YΛ) = 1/2 for the basis. By

(3.69), we have and C(α1) ≥ 1. Then, from the definition of the constant H(Y, ρ, α),

we obtain

I(YΛ)−aH(Y ) ≤ I(YΛ)−a + I(Y )−nC(α1)
(
1 + log+[I(Y )−1] + logC(α1)

)
≤ C(α1)(1 + logC(α1))

(
I(YΛ)−a + I(YΛ)−n log+[I(Y )−1]

)
≤ 2C(α1)(1 + logC(α1))I(YΛ)−a.

Corollary 3.62. For every O ∈ M̂0,Λ ∈ O, w > 0 and ε > 0, let

wΛ = w|Λ(F)|−2a−ε. (3.90)

Then, for every w > 0 and ε > 0 the set

G(σ, ε, w) =
⋂

Λ∈M̂0

GΛ(σ, ε, wΛ)

has measure greater than 1− Cwε−1, with C = 2−a+1Kε(σ, ν)C(α1)(1 + logC(α1)).

Furthermore, if ε′ < ε we have G(σ, ε, w) ⊂ G(σ, ε′, w).

Proof. Recall that |Λ(F)| is integral multiples of 2π. By Lemma 3.61, inequaltiy
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(3.89) and definition of wΛ, we have

meas(GΛ(σ, ε, wΛ)c) ≤ Kε(σ, ν)(
wΛ

I(Y )a
)H(YΛ, ρ, α)

≤ C ′|Λ(F)|−2a−εw,

where C ′ = 2a+1Kε(σ, ν)C(α1)(1 + logC(α1)). Since the |Λ(F)| = 2πl is bounded

by (2l)a−1,

∑
Λ∈M̃0

meas(GΛ(σ, ε, wΛ)c) ≤ 2−2awC ′
∑
l>0

∑
Λ∈M̃0:|Λ|=2πl

l−a−ε

≤ Cw
∑
l>0

l−1−ε < Cwε−1.

The last statement on the monotonicity of the set follows from the analogous

statement in Theorem 3.58.

In every coadjoint orbit, we will make a particular choice of a linear form to

accomplish the estimates of the bound for each irreducible sub-representation in

terms of higher norms.

Definition 3.63. For every O ∈ M̂0, we define ΛO as the unique integral linear

form Λ ∈ O such that

0 ≤ Λ(η(k−1)
∗ ) < |O|.
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The existence and uniqueness of ΛO follows from

Λ ◦ Ad(exp(tXα))(η(k−1)
∗ ) = Λ(η(k−1)

∗ ) + t|O|,

and the form Λ ◦ Ad(exp(tXα) is integral for all integer values of t ∈ R.

Lemma 3.64. There exists a constant C(Γ) > 0 such that the following holds on

the primary subspace C∞(HO) the following holds:

|ΛO(F)|Id ≤ C(Γ)(1 + ∆F)k/2.

Proof. Let x0 = −ΛO(η
(k−1)
∗ )/|O|. Then there exists a unique Λ′ ∈ O such that

Λ′(η
(k−1)
∗ ) = 0 given by Λ′ = Λ ◦ Ad(ex0Xα). The element W ∈ I is represented in

the representation as multiplication operators by the polynomials (3.9),

P (Λ,W )(x) = Λ(Ad(exXα)W ). (3.91)

By the definition of the linear form, the identity [Xα, η
(k−1)
∗ ] = η

(k)
∗ implies

P (Λ′, η(k−1)
∗ )(x) = |O|x.

From (3.91), we have

∑
j

(−x)j

j!
P (Λ′, ad(Xα)jW ) = Λ′(W ), for all W ∈ I.
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Then we obtain

Λ′(W ) =
∑
j

(−x)j

j!
P (Λ′, ad(Xα)jW )

=
∑
j

(−1)j

j!

(
P (Λ′, η

(k−1)
∗ )

|O|

)j

P (Λ′, ad(Xα)jW )

= |O|1−k
∑
j

(−1)j

j!
P (Λ′, η(k−1)

∗ )P (Λ′, η(k)
∗ )k−1−jP (Λ′, ad(Xα)jW ).

For any Λ ∈ n∗ the transversal Laplacian for a basis F in the representation

πΛ is the operator of multiplication by the polynomial and derivative operators

∆Λ,F =
∑
W∈F

πXαΛ (W )2 =
∑
W∈F

P (Λ,W )2.

Hence,

|P (Λ′, η
(m)
j )| ≤ (1 + ∆Λ′,F)1/2.

By above identity in formula, the constant operators Λ′(η
(m)
j ) are given by

polynomial and derivative expressions of degree k in the operators P (Λ′, η
(m)
j ) we

obtain the estimate

|Λ′(F)|Id ≤ C1(Γ)(1 + ∆Λ′,F)k/2.

Since the representation πΛ′ and πΛO are unitarily intertwined by the translation

operator by x0, and since constant operators commute with translations, we also

have

|Λ′(F)|Id ≤ C1(Γ)(1 + ∆ΛO,F)k/2.
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Since x0 is bounded by a constant depending only step size k, the norms of

the linear maps Ad(exp(±x0Xα)) are bounded by a constant depending only on k.

Therefore, |ΛO(F)| ≤ C2(k)|Λ′(F)| and the statements of the lemma follows.

Corollary 3.65. There exists a constant C ′(Γ) such that for all O ∈ M̂0 and for

any sufficiently smooth function f ∈ HO,

Cr(ΛO)|f |r,Fα,Λ ≤ C ′(Γ)w−1/2|f |r+l,Fα

where l = (kr + 1)k/2 + ak.

Proof. From the definition (3.80) we have Cr(ΛO) = (1+|ΛO(F)|)l1 with l1 = kr+1.

By the formula (3.90),

Cr(ΛO)w
−1/2
Λ ≤ w−1/2(1 + |ΛO(F)|)l2

with l2 = l1 + 2a. By Lemma 3.64 we have

(1 + |ΛO(F)|)l2 ≤ C ′(Γ)(1 + ∆F)l2k/2.

Proposition 3.66. Let r > (k+1)(3a/4+2)+1/2. Let σ = (1/n, · · · , 1/n) ∈ (0, 1)n

be a positive vector. Let us assume that ν ∈ [1, 1 + (k/2− 1) 1
n
] and let α ∈ Dn(σ, ν).
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For every ε > 0 and w > 0, there exists a measurable set G(σ, ε, w) satisfying

meas(G(σ, ε, w)c) ≤ Cwε−1 with C = 2−a+1Kε(σ, ν)C(α1)(1 + logC(α1)),

such that for every x ∈ G(σ, ε, w), for every f ∈ W r(M) and every T ≥ 1 we have

∣∣∣∣ 1

T

∫ T

0

f ◦ φtXα(x)dt

∣∣∣∣ ≤ Cw−1/2T−(1−ε) 1
3Sn(k) |f |r,Fα . (3.92)

Proof. Let τ := r − ak/2 > (a + 2)(k + 1) + 1/2. Let f ∈ W τ (M,F) and let

f =
∑
O∈M̂0

fO be its orthogonal decomposition onto the primary subspace HO. For

each O ∈ M̂0, the constant wO is given and the set

G(σ, ε, w) =
⋂
O∈M̂0

GΛ(σ, ε, wO)

has measure greater than 1− Cwε−1 as proved in Corollary 3.62.

If x ∈ G(σ, ε, w), then by Theorem 3.58 and Corollary 3.65, the following

estimate holds true for every O ∈ M̂0 and all T ≥ 1:

∣∣∣∣ 1

T

∫ T

0

fO ◦ φtXα(x)dt

∣∣∣∣ ≤ Cr(σ, ν)w−1/2T−(1−ε) 1
3Sn(k) |fO|r,Fα .

For any τ > 0 and any ε′ > 0, by Lemma 3.64 and orthogonal splitting of HO
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we have

∣∣∣∣∣∣
∑
O∈M̂0

|fO|τ

∣∣∣∣∣∣
2

≤
∑
O∈M̂0

(1 + |ΛO(Fα)|)−a−ε′
∑
O∈M̂0

(1 + |ΛO(Fα)|)a+ε′|fO|2τ,Fα

≤ C(a)|f |2τ+(a+ε′)k/2,Fα

and the theorem follows after renaming the constant.

Proof of Theorem 3.2. Under same hypothesis of proposition 3.66, for i ∈ N

let wi = 1/2iC and Gi = G(σ, ε, wi). Set Kε(x) = 1/wi
1/2 if x ∈ Gi\Gi−1. By

proposition 3.66, the set Gi are increasing and satisfy meas(Gci ) ≤ 1/2iε. Hence,

the set G(σ, ε) =
⋃
i∈N Gi has full measure and the function K is in Lp(M) for every

p ∈ [1, 2).

Proof of Corollary 3.3. For step-k strictly triangular nilpotent Lie algebra

n has dimension 1
2
k(k + 1) with 1 dimensional center. If the coadjoint orbit O is

integral and maximal, then the optimal exponent will be attained by the formula

(3.74). Let ρ = (· · · , ρ(m)
i , · · · ) be the rescaling factor given :

Sn(k) = [(k − 1)2 +
k−2∑
n=1

n(n+ 1)] = (k − 1)(k2 + k − 3),

and we choose homogeneous scaling

ρ
(j)
i =

d
(j)
i

Sn(k)
=

k − j
(k − 1)(k2 + k − 3)

for i ≤ j.
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Then, we can verify that λ(ρ) = δ(ρ) = 1
(k−1)(k2+k−3)

. By inductive argument

with rescaling again, the exponent is obtained which proves Corollary 3.3.

3.7 Uniform bound of the average width of step 3 case.

In this section, we prove Theorem 3.4 on the effective equidistribution of nilflow

on strictly triangular step 3 nilmanifold. On its structure, it is possible to derive

uniform bound under Roth-type Diophantine condition due to linear divergence of

of orbit. This argument is based on counting principles of close return times which

substitute the necessity of good point.

3.7.1 Average Width Function

Let N be a step 3 nilpotent Lie group on 3 generators introduced in (3.2). We

denote its Lie algebra n with its basis {X1, X2, X3, Y1, Y2, Z} satisfying following

commutation relations

[X1, X2] = Y1, [X2, X3] = Y2, [X1, Y2] = [Y1, X3] = Z. (3.93)

As introduced in section 2, {φtV }t∈R is a measure preserving flow generated by V :=

X1 + αX2 + βX3 and (1, α) satisfies standard simultaneous Diophantine condition

(3.39).

By definition of the average width (3.63), for any t ≥ 0 and for any (x, T ) ∈

M × [1,+∞) we construct an open set Ωt(x, T ) ⊂ R6 which contains the segment
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{(s, 0, · · · , 0) | 0 ≤ s ≤ T} such that the map

φx(s, x2, x3, y1, y2, z)

= Γx exp(setV ) exp(e−
1
3
tx2X2 + e−

1
3
tx3X3 + e−

1
6
ty1Y1 + e−

1
6
ty2Y2 + zZ)

is injective on Ωt(x, T ). Injectivity fails if and only if there exists vectors

(s, x2, x3, y1, y2, z) 6= (s′, x′2, x
′
3, y
′
1, y
′
2, z
′)

such that

Γx exp(s′etV ) exp(e−
1
3
tx′2X2 + e−

1
3
tx′3X3 + e−

1
6
ty′1Y1 + e−

1
6
ty′2Y2 + z′Z) (3.94)

= Γx exp(setV ) exp(e−
1
3
tx2X2 + e−

1
3
tx3X3 + e−

1
6
ty1Y1 + e−

1
6
ty2Y2 + zZ).

Let us denote r = s′ − s and x̃i = xi
′ − xi, ỹi = yi

′ − yi and z̃ = z′ − z. Let

cΓ > 0 denote the distance from the identity of the smallest non-zero element of the

lattice Γ.

Lemma 3.67. Under equality (3.94), we obtain followings:

x̃2(t, s) = x̃2, x̃3(t, s) = x̃3, ỹ1(t, s) = ỹ1 + e
5
6
tsx̃2

ỹ2(t, s) = ỹ2 + αe
5
6
tsx̃3 + 1/2e−1/2t(x2x

′
3 − x′2x3).

From definition 3.32, denote cΓ(= I) > 0 denote the supremum of all constants
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cΓ ∈ (0, 1/2) such that for all the map φx(0, s) is local embedding on the domain

{s ∈ R5 | |xi|, |yi| < cΓ for all i}.

Let us assume that |xi|′, |xi|, |yi|, |y′i| ≤ cγ/4 and x̃i, ỹi, z̃ ∈ [− cΓ
2
, cΓ

2
]. Project-

ing on base torus,

exp(retV̄ ) exp(e−
1
3
tx̃2X̄2 + e−

1
3
tx̃3X̄3) ∈ Γ. (3.95)

we obtain that ret is return time for the projected toral linear flow at distance at

most distance e−t/3cΓ/2.

Definition 3.68. Let Rt(x, T ) denote the set of r ∈ [−T, T ] such that the equation

(3.95) on projected torus has a solution x̃2, x̃3 ∈ [− cΓ
2
, cΓ

2
].

By construction for every r ∈ Rt(x, T ), the solution x̃i := x̃i(r) of the identity

in formula (3.94) is unique. Recall that wΩt(r)(s) be the (inner) width function for

s ∈ [0, T ].

Lemma 3.69. The following average-width estimation holds.

1

T

∫ T

0

ds

wΩt(r)(s)
≤ 1024

c2
Γ

Cα

e
2
3
t ‖(x̃2(r), x̃3(r))‖

. (3.96)

Proof. Given r ∈ Rt(x, T ), let S(r) be the set of s ∈ [0, T ] such that there exists

a solution of identity which fails injectivity. Here we approximate concrete width

estimates with counting principles. By its definition, S(r) is a union of intervals I∗ of
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length at most max{cΓ|x̃2(r)|−1e−5t/6/2, cΓ|αx̃3(r)|−1e−5t/6/2}. To count the number

of such intervals, we will choose certain points where the distance is minimized. As

long as |x̃2(r)| ≥ e−5t/6, there exists solution s∗ of the equation ỹ1(t, s) = ỹ1 +e
5
6
tsx̃2.

The same holds for |x̃3(r)|.

Let S∗(r) be the set of all such solutions. Its cardinality can be estimated by

counting points.

Claim.

#S∗(r) ≤ c−1
Γ Cα ‖(x̃2(r), x̃3(r))‖ e

1
6
tT. (3.97)

Proof. Let’s say s∗ is almost crossing point on the manifold M which means the

distance between orbit and its return is minimized.

s∗ = min
s

max{|ỹ1(t, s)|, |ỹ2(t, s)|}

with

ỹ1(t, s) = ỹ1 + e
5
6
tsx̃2

ỹ2(t, s) = ỹ2 + αe
5
6
tsx̃3 + 1/2e−

1
2
t(x2x

′
3 − x′2x3)

If either distance |ỹ1(t, s)| or |ỹ2(t, s)| dominates another, then it reduces to

simply finding a solution to single equation. For other case, we assume |ỹ1(t, s)| =

|ỹ2(t, s)|. We distinguish following two cases. In either case, restrict on either

ỹ1(r) = 0 or ỹ2(r) = 0 in specific subspace for convenience.
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If ỹ1(t, s) = ỹ2(t, s), then assuming ỹ1(r) = 0, we obtain

s =
e−

5
6
t(ỹ2 + 1/2e−

1
2
t(x2x

′
3 − x′2x3))

x̃2(r)− αx̃3(r)

If ỹ1(t, s) = −ỹ2(t, s), then

s =
e−

5
6
t(ỹ2 + 1/2e−

1
2
t(x2x

′
3 − x′2x3))

x̃2(r) + αx̃3(r)

From bound |ỹ2 + 1/2e−
1
2
t(x2x

′
3 − x′2x3)| ≥ |2/cγ − 16/c2

γ|, we can count

#S∗(r) ≤


(2cγ − 16)/c−2

Γ |x̃2(r)− αx̃3(r)|e 1
6
tT if x̃2(r)x̃3(r) < 0

(2cγ − 16)/c−2
Γ |x̃2(r) + αx̃3(r)|e 1

6
tT if x̃2(r)x̃3(r) > 0

thus, we are done.

Since #S∗(r) counts specific subspace on whole components, it suffices to

conclude the number of interval has same bounds with #S∗(r).

Define the set Ωt(x, T )(r) ⊂ [0, T ]× R5 as follows. Let

Ωt(r) := {(s, x2, x3, y1, y2, z) | max{|x2|, |x3|, |y1|, |y2|} < δr(t, s), |z| < cΓ/16}.

and

Ωt(x, T ) =
⋂

r∈Rt(x,T )

Ωt(r).
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Figure 3.2: Illustration of width function and related quantities

Under above construction, the map φx is injective on Ωt(x, T ). The open set

Ωt(r) ∩Ωt(−r) are narrowed near both endpoints of the return time r so that their

images in M have no self-intersections given by return times r and −r.

For every r ∈ Rt(x, T ) and every s ∈ [0, T ], we define function

δr(t, s) =



1
16
‖(x̃2(r), x̃3(r))‖ |(s− s∗)e 5t

6 | for s ∈ I∗ with |s− s∗| ≥ e−
5
6
t

1
16
‖(x̃2(r), x̃3(r))‖ for s ∈ I∗ with |s− s∗| ≤ e−

5
6
t

cΓ
16

for all s ∈ [0, T ]\S(r)

associated with Ωt(r).

By the definition of inner width and by construction of the set Ωt(r) we have

that

wΩt(r)(s) = δr(t, s)
2, ∀s ∈ [0, T ]

from which it follows that for every subinterval I∗ ⊂ S(r) we have (using
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definition of δr) ∫
I∗

ds

wΩt(r)(s)
≤ 512

e
5t
6 ‖(x̃2(r), x̃3(r))‖2

.

By the upper bound on the length of interval I∗ and on the cardinality of the

set S∗(r) we finally derive the conclusion.

Recall from Definition 3.39, we choose simultaneously Diophantine number

α ∈ R2\Q2 of exponent ν ≥ 1.

Lemma 3.70. Given Diophantine condition of exponent ν ≥ 1, there exists a con-

stant C(α) > 0 such that all solutions of formula (3.95) satisfy the following lower

bound

‖(x̃2, x̃3)‖Z2 ≥ Cαe
( 1

3
− ν

2
)tr−

ν
2 .

Proof. From projected identity (3.95) on base 3-torus,

(ret, retα + e−t/3x̃2, re
tβ + e−t/3x̃3) ∈ Z3

If it holds, we set ret = q ∈ Z and there exists (p1, p2) ∈ Z2 such that

p1 − qα = e−t/3x̃2, p2 − qβ = e−t/3x̃3. By the Diophantine condition, there exists a
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constant C(α) such that

‖(x̃2, x̃3)‖Z2 = e
1
3
t ‖(p1 − qα, p2 − qβ)‖Z2

= e
1
3
t ‖(qα, qβ)‖Z2

= e
1
3
t ‖q(α)‖Z2

≥ Cαe
1
3
tq−

ν
2

which proves the statement.

For every n ∈ N, let R(n)
t (x, T ) ⊂ Rt(x, T ) characterized by

max(x̃2(r), x̃3(r)) ∈ (
cΓ

2n+1
,
cΓ

2n
].

Lemma 3.71. If the frequency of the projected linear flow satisfy Diophantine con-

dition of exponent ν =
√

2 + ε, for all ε > 0, then there exists Cε > 0 such that

#R
(n)
t (x, T ) ≤ Cε(V̄ )T

cΓ

2n
e

2
3
t+ εt

2 (3.98)

Proof. Under a Diophantine condition of exponent ν ≥ 1, from inequality (3.67)

and definition of R(n)
t (x, T ), we have following:

#R
(n)
t (x, T ) ≤ Cν(V ) max{(Tet)1− 1

ν , T et
cΓ

2n
e−

5t
6 } (3.99)

It suffices to show (Tet)1− 1
ν is less than or equal to the desired bound. From
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Lemma 3.70,

(Tet)1− 1
ν / ‖(x̃2, x̃3)‖ ≤ (Tet)1− 1

νCαe
(− 1

3
+ ν

2
)tr

ν
2

≤ T 1+ ν
2
− 1
νCαe

( 2
3

+ ν
2
− 1
ν

)t.

Limiting ν →
√

2,

(Tet)1− 1
ν / ‖(x̃2, x̃3)‖ ≤ CαTe

( 2
3

+ ε
2

)t.

Approximating ‖(x2, x3)‖ ∼ 1/2n,

(Tet)1− 1
ν ≤ Cε(V̄ )T

cΓ

2n
e( 2

3
+ ε

2
)t.

By combining counting return time and width estimates, we obtain uniform

bound.

Proposition 3.72. There exists a constant

1

T

∫ T

0

ds

wΩt(r)(s)
≤ Cε(V )eεt.
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Proof. By inequality (3.96) and lemma 3.71

1

T

∫ T

0

ds

wΩt(r)(s)
≤
∑
r∈Rt

(
1024

c2
Γ

Cα

e
2
3
t ‖(x̃2(r), x̃3(r))‖

)

≤ Cε(V )eεt.

Corollary 3.73. For every nilflow generated with V such that projected flow on T3

is Diophantine condition of ν ∈ [1,
√

2 + ε]. For every ε > 0, there exists a constant

Cε(V ) > 0 such that, for all t ≥ 0 and for all (x, T ) ∈M × R we have

wF(t)(x, T ) ≥ Cε(V )−1e−εt.

Proof of Theorem 3.4. By Corollary 3.73, it goes without quoting Good points

technique and Lyapunov norm. Improved bound of R in Theorem 3.52 can be

obtained.

|R(g)|−r ≤ Cr(1 + δ−1
O )r−2T−1 (3.100)

We revisit backward iteration scheme introduced in proof of Theorem 3.54.

We know that

|γ|−r,0 ≤ |D0|−r,0 + |R0|−r,0

≤ |D0|−r,0 + Cr(1 + δ−1
O )r−2T−1

(3.101)
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and

|D0|−r,0 ≤ |DN |−r,0 +
N∑
j=1

|R′j−1|−r,0. (3.102)

Changing the length to 1 and by uniform width bound from corollary 3.73,

|DN |−r,0 ≤ CrT
−1/12|DN |−s,F(tN ) ≤ CwF(tN )(x, 1)−1/2 ≤ CεT

ε (3.103)

Then, by inductive argument resembling (3.85),

|D0|−s,0 ≤ Cr,sT
−1/12

(
|DN |−r,F(tN ) +

N∑
j=1

CjT
1/12
j |Rj−1|−r,F(tj−1)

)
(3.104)

Therefore

|γ|−r,0 ≤ Cr(O)T−1/12+ε.

Finally, we glue all the function on irreducible representation HO, which only in-

creases the regularity accordingly.

3.8 Application : Mixing of nilautomorphism.

In this section, as a further application of main equidistribution results, we can

verify the explicit rate of exponential mixing of hyperbolic automorphism relying

on renormalization argument.
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Let F2,3 = {X1, X2, Y1, Z1, Z2} be step 3 free nilpotent Lie algebra with two

generators with commutation relations

[X1, X2] = Y1, [X1, Y1] = Z1, [X2, Y1] = Z2.

The group of automorphism on Lie algebras induces automorphism on the

nilmanifold

Aut(n) =




A

1

A

 , A ∈ SL(2,Z)


and we consider a hyperbolic automorphism T with an eigenvalue λ > 1 with corre-

sponding eigenvector V = X1 +αX2 satisfying Diophantine condition (1, α) on base

torus T2. By direct computation, the following renormalization holds :

T ◦ exp(tV ) = exp(tλV ) ◦ T.

Theorem 3.74. Let (φtV ) be a nilflow on 3-step nilmanifold M = F2,3/Γ such that

the projected toral flow (φ̄tV ) is a linear flow with frequency vector v := (1, α) in

Roth-type Diophantine condition (with exponent ν = 1 + ε for all ε > 0). For

every s > 12, there exists a constant Cs such that for every zero-average function
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f ∈ W s(M), for all (x, T ) ∈M × R, we have

∣∣∣∣ 1

T

∫ T

0

f ◦ φtV (x)dt

∣∣∣∣ ≤ CsT
−1/6+ε ‖f‖s . (3.105)

The detailed computation follows from the section 3.7 and it is similar to the

case of step 3 filiform [For16]. The only difference with filiform is that it has an extra

element in center which is redundant in actual calculation on width, only raising

required regularity of zero-average function.

Proposition 3.75. Hyperbolic nilautomorphism T is exponential mixing.

Proof. Let f, g ∈ C1(M) be smooth. Define 〈f, g〉 =
∫
M
fgdµ. Since Haar measure

is invariant under φtV ,

〈f ◦ T n, g〉 =

∫ 1

0

〈f ◦ T n ◦ φtV , g ◦ φtV 〉dt.

Integration by parts,

〈f ◦ T n, g〉 = 〈
∫ 1

0

f ◦ T n ◦ φtV dt, g ◦ φtV 〉 (3.106)

−
∫ 1

0

〈
∫ t

0

f ◦ T n ◦ φsV ds, V g ◦ φtV 〉dt. (3.107)

Therefore,

〈f ◦ T n, g〉 = (‖g‖∞ + ‖V g‖∞)

∫
M

sup
s∈[0,1]

∣∣∣∣∫ s

0

f ◦ T n ◦ φtV dt
∣∣∣∣ dµ. (3.108)
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By renormalizing the flow, T n ◦ φtV = φλ
nt
V ◦ T n and

∫ s

0

f ◦ T n ◦ φtV (x)dt =

∫ s

0

f ◦ φλntV ◦ T n(x)dt

=
1

λn

∫ λns

0

f ◦ φtV ◦ T n(x)dt.

Therefore, by the result of equidistribution (3.105),

〈f ◦ T n, g〉 ≤ λ(−1/6+ε)n ‖f‖s (‖g‖∞ + ‖V g‖∞)→ 0. (3.109)

3.9 Appendix: Free group type of step 5 with 3 generators.

In this appendix, we introduce specific example of nilpotent Lie algebra which

goes beyond our approach introduced in the section 3.5. In this example, we will

show the failure of transversality condition.

Let Fn be free nilpotent Lie algebra with n generators and (Fn)k+1 be k+ 1th

subalgebra in central series, following notation in (2.1). Denote Fn,k := Fn/(Fn)k+1

quotient of free algebra with n generators Fn and it is finite dimensional.

Definition 3.76. Let n be nilpotent Lie algebra satisfying generalized transversality

condition if there exists basis (Xα, YΛ) of n for each irreducible representation πXαΛ

such that

〈Gα〉+ Ran(adXα) + CI(π
Xα
Λ ) = n (3.110)
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where CI(π
Xα
Λ ) = {Y ∈ I | Λ([Y,Xα]) = 0}.

Generalized transversality condition implies existence of completed basis for

each irreducible representation πXαΛ of non-zero degree. That is, given adapted basis

F = (X, Y1, · · · , Ya), there exists reduced system F̄ = (X, Y ′1 , · · · , Y ′a′) satisfying

transversality condition (3.31) and πXΛ (Y ′m) = 0 for all a′ ≤ m ≤ a.

Now we will investigate an example that fails transversality condition as well

as that in the sense of representation. Let F = (X, Y
(j)
i ) be basis of F5,3 with

generators {X1, X2, X3} with the following relations:

X1 X2 X3

Y1 Y2 Y3

Z1 Z2 · · · Z8 Z9

with

[X1, X2] = Y1, [X2, X3] = Y2, [X1, X3] = Y3

[X1, Y1] = Z1, [X1, Y2] = Z2, [X1, Y3] = Z3

[X2, Y1] = Z4, [X2, Y2] = Z5, [X2, Y3] = Z6

[X3, Y1] = Z7, [X3, Y2] = Z8, [X3, Y3] = Z9

and rest of elements are generated commutation relations with these. In general, we

123



write elements Y (i)
j ∈ ni\ni+1 and Y (5)

i ∈ Z(n) for all i. By Jacobi-identity

[X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0 ⇐⇒ Z2 − Z6 + Z7 = 0.

For fixed αi and βi, let

V = X1 + α2X2 + α3X3 + β1Y1 + β2Y2 + β3Y3

and set I ideal of F5,3 codimension 1, not containing V .

Proposition 3.77. F5,3 does not satisfy generalized transversality condition for

some irreducible representation.

Proof. To find centralizer in Lie algebra, for ai, bi ∈ R, set

[V,X] = 0 ⇐⇒ X = a1X1 + a2X2 + a3X3 + b1Y1 + b2Y2 + b3Y3 + c1Z1 + · · ·+ c8Z8.

Then, it contains

(a2 − α2a1)Y1 + (α2a3 − α3a2)Y2 + (a3 − α3a1)Y3

+ (b1 − β1a1)Z1 + (b2 − β2a1)Z2 + (b3 − β3a1)Z3 + · · · = 0.

By linear independence, all the coefficients vanish and it remains

a1X1 + a2X2 + a3X3 = a1(X1 + α2X2 + α3X3)
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b1Y1 + b2Y2 + b3Y3 = a1(β1Y1 + β2Y2 + β3Y3)

Therefore, there is no non-trivial element in CI(V )∩n2\n3. Since range of adV

has rank 2, this model does not satisfy transversality condition in the Lie algebra

level.

Now, we verify generalized transversality condition is not satisfied on some

irreducible representation. By Schur’s lemma, an irreducible representation πVΛ acts

as a constant on center.

Assume π∗(Wi) = siI 6= 0 for some Wi ∈ Z(n). Then, it is possible to choose

element Li ∈ n2\n3 such that



π∗([V, L1]) = (a1t
2 + a2t+ a3)

π∗([V, L2]) = (b1t
2 + b2t+ b3)

π∗([V, L3]) = (c1t
2 + c2t+ c3)

with (ai, bi, ci) are non-proportional for each i, and

π∗(ad3
V (Li)) = π∗(Wi) 6= 0.

However, on given irreducible representation, any linear combination of L1, L2
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and L3 does not give any trivial relation. If s1L1 + s2L2 + s3L3 ∈ CI(π
V
Λ ), then

π∗([V, s1L1 + s2L2 + s3L3])

= s1(a1t
2 + a2t+ a3) + s2(b1t

2 + b2t+ b3) + s3(c1t
2 + c2t+ c3)

= (s1a1 + s2b1 + s3c1)t2 + (s1a2 + s2b2 + s3c2)t+ (s1a3 + s2b3 + s3c3) = 0.

The system of equations has trivial solution (t = 0) by linear independence of each

coefficients. Then, there does not exist any element of n2\n3 that has degree 0.

However, range of adV has rank 2 and generalized transversality condition cannot

be satisfied in this example.
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Chapter 4: Higher rank actions on Heisenberg nilmanifolds

In this chapter, our main results are on limit distributions of higher rank

abelian actions. We firstly introduce the Bufetov functional for higher rank abelian

actions under bounded type of Diophantine conditions. Our main argument is based

on the renormalization argument for higher rank actions by induction argument.

This is a key idea used in Cosentino and Flaminio in [CF15], but we extend their

constructions to rectangular shape and derive the deviation of ergodic averages of

higher rank actions. Likewise, this explains the duality between Bufetov functionals

and invariant currents appeared in [CF15]. The crucial part is handling the esti-

mation of deviation ergodic averages on (stretched) rectangles, and this enables to

derive our main theorems.

As a corollary, we can prove there exists a limit distributions of (normalized)

ergodic integrals of abelian actions with variance 1. More specifically, for almost all

limit of normalized ergodic integrals of converges in distribution to a nondegenerate

compactly supported measure on the real line, which is certain form of Bufetov

functionals. This generalizes a limit theorem for theta series on Siegel half spaces,

which introduced in the works of Götze and Gordin [GG04] and Marklof [Mar99].

(See [Tol78,MM07,MNN07] for general introduction and nilflow case [GM14,CM16].)

127



4.1 Main theorem

One of the main objects of this section is a space of finitely-additive measures

defined on the space of all squares on Heisenberg manifold M . We state our results

beginning with an overview of Bufetov functional.

Definition 4.1. For (m,T) ∈M ×Rd
+, denote the standard rectangle for action P,

ΓXT(m) = {Pd,αt (m) | t ∈ U(T) = [0,T(1)]× · · · × [0,T(d)]}. (4.1)

Let Qd,Y
y := exp(y1Y1 + · · · + ydYd), y = (y1, · · · , yd) ∈ Rd be the action

generated by elements Yi of standard basis. Set φZz := exp(zZ) is the flow generated

by central element Z.

Definition 4.2. Let R be the collection of the generalized rectangles in M . For

each 1 ≤ d ≤ g and t = (t1, · · · , td),

R :=
⋃

1≤i≤d

⋃
(y,z)∈Rd×R

⋃
(m,T)∈M×Rd+

{(φZtiz) ◦ Qd,Y
y ◦ Pd,αt (m) | t ∈ U(T)}.

Theorem 4.3. For any irreducible representation H, there exists a measure β̂H(Γ) ∈

C for every rectangle Γ ∈ R, such that the following holds:

1. (Additive property) For any decomposition of disjoint rectangles Γ =
⋃n
i=1 Γi

or those intersections have zero measure,

β̂H(α,Γ) =
n∑
i=1

β̂H(α,Γi).
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2. (Scaling property) For t ∈ Rd,

β̂H(rt[α],Γ) = e−(t1+···td)/2β̂H(α,Γ).

3. (Invariance property) For any action Qd,Y
τ generated by Yi’s and τ ∈ Rd

+,

β̂H(α, (Qd,Y
τ )∗Γ) = β̂H(α,Γ).

4. (Bounded proprety) For any rectangle Γ ∈ R, there exists a constant C(Γ) > 0

such that for X̂ = X̂1 ∧ · · · ∧ X̂d,

|β̂H(α,Γ)| ≤ C(Γ)(

∫
Γ

|X̂|)d/2.

For arbitrary rectangle UT = [0,T(1)] × · · · × [0,T(d)], pick T′(i) ∈ [0,T(i)]

for each i to decompose UT into 2d sub-rectangles. We write P(T′) collection of

2d vertices v = (v(1), v(2), · · · , v(d)) where v(i) ∈ {0,T′(i)}. Let UT,v be a rectangle

whose sides Iv = (I(1), I(2), · · · , I(d)) ∈ Rd
+ where

I(l) =


T (l) − T ′(l) if v(l) = T ′(l)

T ′(l) if v(l) = 0.

Then, we have UT =
⋃
v∈P(T′) UT,v.

Theorem 4.4. Let us denote βH(α,m,T) := β̂H(α,ΓXT(m)). The function βH
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satisfies following properties:

1. (Cocycle property) For all (m,T1,T2) ∈M × Rd × Rd,

βH(α,m,T1 + T2) =
∑

v∈P(T1)

βH(α,Pd,αv (m), Iv).

2. (Scaling property) For all m ∈M ,

βH(rtα,m,T ) = e(t1+···td)/2βH(α,m,T ).

3. (Bounded proprety) Let us denote largest length of side Tmax = maxiT(i).

Then, there exists a constant CH > 0 such that

βH(α,m,T ) ≤ CHT
d/2
max.

4. (Orthogonality) For all [α] ∈ DC and all T ∈ Rd, bounded function βH(α, ·,T )

belongs to the irreducible component, i.e,

βH(α, ·,T ) ∈ H ⊂ L2(M).

By representation theory introduced (4.4), for any f ∈ W s(M) has a decom-

position

f =
∑
H

fH
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and we define Bufetov cocycle associated to f (or form ω) as the sum

βf (α,m,T ) =
∑
H

DH
α (f)βH(α,m,T ). (4.2)

Remark 4.5. For convenience, identification of distributions of form ω and function

f were used. The formula (4.2) yields a duality between the space of basic (closed)

currents and invariant distributions. In the similar setting for horocycle flow, refer

[BF14, Cor 1.2, p.10].

Given a Jordan region U and a point m ∈ M , set P d,α
U m the Birkhoff sums

associated to some m ∈M for the action Pd,αx given by

〈
P d,α
U m,ω

〉
:=

∫
U

f(Pd,αx m)dx1 · · · dxd

for any degree p-form ω = fX̂α
1 ∧ · · · ∧ X̂α

d , with f ∈ C∞0 (M) (smooth function with

zero averages).

Let the family of random variable

ETn(f) :=
1

vol(U(Tn))1/2

〈
P d,α
U(Tn)(·), ωf

〉
,

and we are interested in asymptotic behavior of the probability distributions of

ETn(f). Our goal is to understand the asymptotics of ETn .

Theorem 4.6. For every closed form ωf ∈ Λdp ⊗W s(M) with s > sd,g = d(d +

11)/4 + g + 1/2, which is not a coboundary, the limit distribution of the family
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of random variables ETn(f) exists, and for almost all frequency α, it has compact

support on the real line.

4.2 Preliminary

We review definitions about Heisenberg manifold and its moduli space.

4.2.1 Heisenberg manifold

Let Hg be standard 2g+1 dimensional Heisenberg group and set Γ := Zg×Zg×

1
2
Z a discrete and co-compact subgroup of Hg. We shall call it standard lattice of Hg

and the quotient M := Hg/Γ will be called Heisenberg manifold. Lie algebra hg =

Lie(Hg) of Hg is equipped with basis (X1, · · · , Xg, Y1, · · ·Yg, Z) satisfying canonical

commutation relation

[Xi, Yj] = δijZ. (4.3)

For 1 ≤ d ≤ g, let Pd < Hg be the subgroup with Lie algebra p generated

by (X1, · · · , Xd) and for any α ∈ Sp2g(R), set (Xα
i , Y

α
i , Z) = α−1(Xi, Yi, Z) for

1 ≤ i ≤ d. We define parametrization of the subgroup α−1(Pd)

Pd,αx := exp(x1X
α
1 + · · ·+ xdX

α
d ), x = (x1, · · · , xd) ∈ Rd.

By central extension of R2g by R, we have an exact sequence

0→ Z(Hg)→ Hg → R2g → 0.

132



The natural projection map pr : M → Hg/(ΓZ(Hg)) mapsM onto a 2g-dimensional

torus T2g := R2g/Z2g.

4.2.1.1 Moduli space

The group of automorphisms of Hg that are trivial on the center is Aut0(Hg) =

Sp(2g,R) n R2g. Since dynamical properties of actions are invariant under inner

automorphism, we restrict our interest to Sp(2g,R). We call moduli space of the

standard Heisenbeg manifold the quotient Mg = Sp(2g,R)/Sp(2g,Z). We regard

Sp(2g,R) as the deformation space of the the standard Heisenbeg manifold M and

Mg as the moduli space of M .

Siegel modular variety is double coset space Σg = Kg\Sp2g(R)/Sp2g(Z) where

Kg is maximal compact subgroup Sp2g(R) ∩ SO2g(R) of Sp2g(R).

For α ∈ Sp2g(R), we denote [α] := αSp2g(Z) its projection on the moduli space

Mg and write [[α]] := KgαSp2g(Z) the projection of α to the Siegel modular variety

Σg. Double coset Kg\Sp2g(R)/12g is identifed to the Siegel upper half space Hg :=

{Z ∈ Symg(C) | =(Z) > 0}. Siegel upper half space of genus g is complex manifold

of symmetric complex g × g matrices Z = X + iY with positive definite symmetric

imaginary part =(Z) = Y and arbitrary real part X. We note Σg ≈ Sp2g(Z)\Hg.

4.2.1.2 Sobolev bundles

Given basis (Vi) of Lie algebra, let ∆ = −
∑
V 2
i denote Laplacian via the

standard basis. Similarly, denote ∆α Laplacian defined by the basis (α−1)∗Vi. For
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any s ∈ R and any C∞ function f ∈ L2(M),

‖f‖α,s = 〈f, (1 + ∆α)sf〉1/2.

Let W s
α(M) be the completion of C∞(M) with above norm and denote W−s

α (M)

its dual space. Extending it to the exterior algebra, define the Sobolev spaces

Λdp⊗W s(M) of cochains of degree d, and use the same notations for the norms.

The group Sp2g(Z) acts on the right on the trivial bundles

Sp2g(R)×W s(M)→ Sp2g(R).

We obtain the quotient flat bundle of Sobolev spaces over the moduli space:

(Sp2g(R)×W s(M))/Sp2g(Z)→Mg = Sp2g(R)/Sp2g(Z)

the fiber over [α] ∈Mg is locally identified with the space W s
α(M).

Sp2g(Z) acts on the right on the trivial bundles by

(α, ϕ) 7→ (α, ϕ)γ = (αγ, γ∗ϕ), γ ∈ Sp2g(Z).

By invariance of Sp2g(Z) action, we denote the class (α, ϕ) by [α, ϕ] and write
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Sp2g(Z)-invariant Sobolev norm

‖(α, f)‖s := ‖f‖α,s .

4.3 Analysis on Heisenberg manifolds

In this section, we will recall definitions of currents, representation and renor-

malization on moduli space.

4.3.1 Invariant currents

We denote the bundle of p-forms of degree j of Sobolev order s by Aj(p,Ms).

Similarly, there is a flat bundle of distribution Aj(p,M
−s) whose fiber over [α] is

locally identified with the space W−s
α (M) normed by ‖·‖α,−s.

In the following, we set ωd,α = dXα
1 ∧ · · · ∧ dXα

d a top dimensional p-form and

identify d dimensional currents D with distributions, for any f ∈ C∞(M)

〈D, f〉 := 〈D, fωd,α〉.

Definition 4.7. For s > 0, we denote D ∈ Zd(p,W−s(M)) a closed P-invariant cur-

rents of dimension d and Sobolev order s. Then, from formal identities, 〈D,Xα
i (f)〉 =

0 for all test function f and i ∈ [1, d].

By [CF15, Prop 3.13], for any s > d/2 with d = dim P, denote Id(p,S (Rg))

the space of P-invariant currents of Sobolev order s, which coincides with the space
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of closed currents of dimension d.

• It is one dimensional space if dim P = g, or an infinite-dimensional space if

dim P < g. We have Id(p,S (Rg)) ⊂ W−d/2−ε(Rg) for all ε > 0.

Let ω ∈ Λdp′ ⊗W s(Rg) with s > (d + 1)/2. Then, ω admits a primitive Ω if

and only if T (ω) = 0 for all T ∈ Id(p,S (Rg)). We may have Ω ∈ Λd−1p′ ⊗W t(Rg)

for any t < s− (d+ 1)/2.

4.3.2 Representation

We write Hilbert sum decomposition

L2(M) =
⊕
n∈Z

Hn (4.4)

into closed Hg-invariant subspaces. For some fixed K > 0, we write f =
∑

n∈Z fn ∈

L2(M), fn ∈ Hn where

Hn = {f ∈ L2(M) | exp(tZ)f = exp(2πιnKt)f}.

We also have W s(M) =
⊕

iW
s(Hi) of W s(M) into closed Hg-invariant subspaces

W s(Hi) = W s(M) ∩Hi. The center Z(Hg) has spectrum 2πZ\{0} the space splits

as Hilburt sum of Hg-module Hi, which is equivalent to irreducible representation

π.

Theorem 4.8. [Stone-Von Neumann] For α = (Xi, Yi, Z), the unitary irreducible

representation π of the Heisenberg group of non-zero central parameter K, is unitar-
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ily equivalent to Schrödinger representation. For infinitesimal representation with

parameter n for k = 1, 2, · · · , g

Dπ(Xk) =
∂

∂xk
, Dπ(Yk) = 2πιnKxk, Dπ(Z) = 2πιnK.

4.3.3 Best Sobolev constant

The Sobolev embedding theorem implies that for any α ∈ Sp(2g,R) and s >

g + 1/2, there exists a constant Bs(α) such that for any f ∈ W s
α(M),

‖f‖∞ ≤ Bs(α) ‖f‖s,α .

The best Sobolev constant is defined as the function on the group of automorphism

Bs(α) = sup
f∈W s

α(M)

‖f‖∞
‖f‖s,α

. (4.5)

By Proposition 4.8 of [CF15], there exists a universal constant C(s) > 0 such that

the best Sobolev constant satisfies the estimate

Bs([[α]]) ≤ C(s) · (Hgt[[α]])1/4. (4.6)

From the Sobolev embedding theorem and the definition of the best Sobolev

constant, we have the following bound.

Lemma 4.9. [CF15, Lemma 5.5] For any Jordan region U ⊂ Rd with Lebesgue
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measure |U |, for any s > g + 1/2 and all m ∈M ,

∥∥∥[α, (P d,α
U m)]

∥∥∥
−s
≤ Bs(α)|U |.

4.3.4 Renormalization

Denote diagonal matrix δi = diag(d1, · · · , dg) with di = 1, dk = 0 if k 6= i.

Then, for each 1 ≤ i ≤ g, we denote δ̂i =

δi 0

0 −δi

 ∈ sp2g.

Any such δ̂i generate a one-parameter subgroup of automorphism rti = etδ̂i .

We denote (rank d) renormalization flow rt := rt1i1 · · · r
td
id

for t = (t1, · · · , td), and

rti [α, ω] = [rtiα, ω], rti [α,D] = [rtiα,D].

Let Ut : L2(Rd)→ L2(Rd) be unitary operator for t = (t1, · · · , td),

Utf(x) = e−(t1+···+td)/2f(et1x1, · · · etdxd). (4.7)

That is, for invariant currents DH
α ,

DH
rt(α) = e(t1+···+td)/2DH

α .

Then, the action of Rd defined by their parametrization is

P
d,(r

t1
1 ...r

td
d α)

x = Pd,α
(e−t1x1,...,e

−tdxd)
(4.8)
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and the Birkhoff sum satisfy identities

P
d,(r

t1
1 ...r

td
d α)

U m = e(t1+···+td)/2P d,α

(e−t1 ,...,e−td )U
m. (4.9)

4.3.5 Diophantine condition

Definition 4.10. The height of a point Z in Siegel upper half space Hg is the positive

number

hgt(Z) := det=(Z).

The height function Hgt : Σg → R+ to be the maximal height of a Sp2g(Z) orbit.

That is, for the class of [Z] ∈ Σg,

Hgt([Z]) := max
γ∈Sp2g(Z)

hgt(γ(Z)).

Let exp tδ̂(d) be the subgroup of Sp2g(R) defined by exp(tδ̂(d))Xi = etiXi,

for i = 1, · · · , d, and exp(tδ̂(d))Xi = Xi for i = d + 1, · · · g. We also denote

rt = exp tδ̂(d).

Lemma 4.11. [CF15, Lemma 4.9] For any [α] ∈Mg and any t ≥ 0,

Hgt([[exp(tδ̂(d))α]]) ≤ (det(etδ))2Hgt([[α]]). (4.10)

Definition 4.12. [CF15, Definition 4.10] We say that an automorphism α ∈

Sp2g(R) or a point [α] ∈ Mg is δ̂(d)-Diophantine of type σ if there exists a σ > 0
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and a constant C > 0 such that

Hgt([[exp(−tδ̂(d))α]]) ≤ CHgt([[exp(−tδ̂(d))]])(1−σ)Hgt([[α]]), ∀t ∈ Rd
+. (4.11)

This states that α ∈ Sp2g(R) satisfies a δ̂(d)-Diophantine if the height of the pro-

jection of exp(−tδ̂(d))α in the Siegel modular variety Σg is bounded by e2(t1+···td)(1−σ).

- [α] ∈Mg satisfies a δ̂-Roth condition if for any ε > 0 there exists a constant

C > 0 such that

Hgt([[exp(−tδ̂(d))α]]) ≤ CHgt([[exp(−tδ̂(d))]])εHgt([[α]]), ∀t ∈ Rd
+. (4.12)

That is, δ̂(d)-Diophantine of type 0 < σ < 1.

- [α] is of bounded type if there exists a constant C > 0 such that

Hgt([[exp(−tδ̂(d))]]) ≤ C, ∀t ∈ Rd
+. (4.13)

For 1 ≤ d ≤ g, according to Margulis-Kleinblock [KM99], a generalization of

Khinchin-Sullivan logarithm law for geodesic excursion [Sul82] holds.

Definition 4.13. Let X = G/Λ be a homogeneous space equipped with the probability

Haar measure µ. A function φ : X → R is said k-DL (distance like) for some

exponent k > 0 if it is uniformly continuous and if there exist constants C1, C2 > 0
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such that

C1e
−kz ≤ µ({x ∈ X | φ(x) ≥ z}) ≤ C2e

−kz, ∀z ∈ R.

Theorem 1.9 of [KM99] states the following.

Proposition 4.14. Let G be a connected semisimple Lie group without compact fac-

tors, µ its normalized Haar measure, Λ ⊂ G an irreducible lattice, a a Cartan sub-

algebra of the Lie algebra of G. Let d+ be a nonempty open cone in a d-dimensional

subalgebra d of a. If φ : G/Λ → R is a k-DL function for some k > 0, then for

µ-almost all x ∈ G/Λ one has

lim sup
z∈d+,z→∞

φ(exp(z)x)

log ‖z‖
=
d

k

By Lemma 4.7 of [CF15], logarithm of Height function is DL-function with

exponent k = g+1
2

on the Siegel variety Σg (and induces on Mg = Sp2g(R)/Sp2g(Z)).

Hence, we obtain the following proposition.

Proposition 4.15. Under the assumption X = Mg of Proposition 4.14, for s >

g + 1/2, there exists a full measure set Ωg(δ̂) and for all [α] ∈ Ωg(δ̂) ⊂Mg

lim sup
t→∞

logHgt([[exp(−tδ̂(d))α]])

log ‖t‖
≤ 2d

g + 1
. (4.14)

Any such [α] satisfies a δ̂-Roth condition (4.12).
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For any L > 0 and 1 ≤ d ≤ g, let DC(L) denote the set of [α] ∈Mg such that

∫ ∞
0

· · ·
∫ ∞

0

e−(t1+···td)/2Hgt([[r-tα]])1/4dt1 · · · dtd ≤ L. (4.15)

Let DC denote the union of the sets DC(L) over all L > 0. It follows immediately

that the set DC ⊂Mg has full Haar volume.

4.4 Constructions of the functionals

For an irreducible representation H, there exists basic current BH
α associated

to DH
α . The current is basic in the sense that for all j ∈ {i1, · · · , id},

ιXjB
H
α = LXjB

H
α = 0.

The basic current BH
α is defined as BH

α = DH
α ηX . The formula implies that for

every d-form ξ,

BH
α (ξ) = DH

α (
ηX ∧ ξ
ω

)

where ηX := ιXi1 · · · ιXidω and ω is an invariant volume form.

The basic current BH
α belongs to a dual Sobolev space of currents. We write

any smooth d-form ξ =
∑
ξ(i)X̂i, where X̂i ∈ Λdp′. It follows that the space of

smooth d-form is identified to the product of C∞(M) by isomorphism ξ −→ ξ(i).

By isomorphism, we define Sobolev space of currents Ωs
α(M) and their dual spaces

of currents Ω−sα (M).

By Sobolev embedding theorem, for every rectangle Γ, the current Γ ∈ Ω−sα (M)
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for s > (2d + 1)/2. Then, all basic currents BH
α ∈ Ω−sα (M) for all s > d/2 since

DH
α ∈ Ω−sα (M) for all s > d/2.

4.4.1 Constructions of the functionals

For any exponent s > d/2, Hilbert bundle induces an orthogonal decomposi-

tion

Ad(p,M
−s) = Zd(p,M

−s)⊕Rd(p,M
−s)

where Rd(p,M
−s) = Zd(p,M

−s)⊥. Denote by I−s and R−s the corresponding or-

thogonal projection operator and by I−sα and R−sα the restrictions to the fiber over

[α] ∈M for α ∈ Sp(2g,R). In particular, for the Birkhoff averages D = P d,α
U m, we

call I−sα (D) = I−s[α,D] boundary term and R−sα (D) = R−s[α,D] remainder term

respectively. Consider the orthogonal projection

D = I−sr−t[α](D) +R−sr−t[α](D). (4.16)

For fixed α, let Π−sH : Ad(p,W
−s
α (M))→ Ad(p,W

−s
α (H)) denote the orthogonal

projection on a single irreducible unitary representation. We further decompose

projection operators with

Π−sH = B−sα (Γ)B−s,Hα +R−s,Hα

where B−sH,α : Ad(p,W
−s
α (M)) → C denote the orthogonal component map of P-

invariant currents (closed), supported on a single irreducible unitary representation.
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The Bufetov functionals on rectangles Γ ∈ R are defined for all α ∈ DC as

follows.

Lemma 4.16. Let α ∈ DC(L). For s > sd = d(d+ 11)/4 + g + 1/2, the limit

β̂H(α,Γ) = lim
td→∞

· · · lim
t1→∞

e−(t1+···td)/2B−sH,r-t[α](Γ)

exists and define a finitely-additive finite measure on the standard rectangle (4.1)

Γ := ΓXT(m) for m ∈ M . There exists constant C(s,Γ) > 0 such that the following

estimate holds:

|Π−sH,α(Γ)− β̂(α,Γ)BH
α |α,−s ≤ C(s,Γ)(1 + L). (4.17)

Proof. For simplicity, we omit dependence of H. For every t ∈ Rd, we have the

following orthogonal splitting:

Π−sH,α(Γ) = B−sα,t(Γ)Bα,t +Rα,t,

where

B−sα,t := B−sH,r-t[α], Bα,t := B−s,Hr-t[α] , Rα,t := R−s,Hr-t[α].

For any h ∈ Rd, we have

B−sα,t+h(Γ)Bα,t+h +Rα,t+h = B−sα,t(Γ)Bα,t +Rα,t.

144



By reparametrization (4.8), Bt+h = e−(h1+···hd)/2Bt,

B−sα,t+h(Γ) = e(h1+···hd)/2B−sα,t(Γ) + B−sα,t+h(Rα,t) (4.18)

and it follows that

B−sα,t+h(Γ) = eh1/2B−sα,t1,t2+h2,··· ,td+hd
(Γ) + B−sα,t+h(Rα,t). (4.19)

By differentiating at h1 = 0,

d

dt1
B−sα,t1,t2+h2,··· ,td+hd

(Γ) =
1

2
B−sα,t1,t2+h2,··· ,td+hd

(Γ) + [
d

dh1

B−sα,t+h(Rα,t)]h1=0. (4.20)

Therefore, we solve the following first order ODE

d

dt1
B−sα,t1,t2+h2,··· ,td+hd

(Γ) =
1

2
B−sα,t1,t2+h2,··· ,td+hd

(Γ) +K(1)
α,t(Γ)

where

K(1)
α,t(Γ) = [

d

dh1

B−sα,t+h(Rα,t)]h1=0.

Then, the solution of the differential equation is

B−sα,t1,t2+h2,···td+hd
(Γ) = et1/2[B−sα,0,t2+h2,···td+hd

(Γ) +

∫ t1

0

e−τ1/2K(1)
α,τ (Γ)dτ1]

= et1/2B−sα,0,t2+h2,···td+hd
(Γ) +

∫ t1

0

e(t1−τ1)/2K(1)
α,τ (Γ)dτ1.
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Note by reparametrization

et1/2B−sα,0,t2+h2,···td+hd
(Γ) = eh2/2B−sα,t1,t2,t3+h3···td+hd

(Γ)

and it is possible to differentiate the previous equation with respect to h2 again.

Then

d

dt2
B−sα,t1,t2,···td+hd

(Γ) =
1

2
B−sα,t1,t2,t3+h3,···td+hd

+

∫ t1

0

e−τ1/2K(2)
α,τ (Γ)dτ1. (4.21)

where K(2)
α,τ (Γ) = d

dh2
K(1)
α,τ (Γ).

Then, the solution of (4.21) is

B−sα,t1,t2,···td+hd
(Γ)

= et2/2[B−sα,t1,0,t3+h3,···td+hd
+

∫ t2

0

e−τ2/2
∫ t1

0

e(t1−τ1)/2K(2)
α,τ (Γ)dτ1dτ2]

= eh3/2B−sα,t1,t2,t3,···td+hd
+

∫ t2

0

e(t2−τ2)/2

∫ t1

0

e(t1−τ1)/2K(2)
α,τ (Γ)dτ1dτ2.

Inductively, we solve first order ODE repeatedly and obtain the following so-

lution

B−sα,t(Γ) = e(t1+···td)/2
(
B−sα,0 +

∫ td

0

· · ·
∫ t1

0

e−(τ1+···τd)/2K(d)
α,τ (Γ)dτ1 · · · dτd

)
(4.22)

where

K(d)
α,τ (Γ) = [

d

dhd
· · · d

dh1

B−sα,t+h(Rα,t)]hd···h1=0.
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Let 〈·, ·〉t denote the inner product in Hilbert space Ω−sr-t[α]. From the inter-

twining formula,

B−sα,t+h(Rα,t) = 〈Rα,t,
Bα,t+h

|Bα,t+h|2t+h

〉α,t+h

= 〈Rα,t ◦ U−h,
Bα,t+h ◦ U−h

|Bα,t+h|2t+h

〉

= 〈Rα,t ◦ U−h,
Bα,t

|Bα,t|2t
〉 = B−sα,t(Rα,t ◦ U−h).

In the sense of distribution,

d

dhd
· · · d

dh1

(Rα,t ◦ U−h) = −Rα,t ◦ (
d

2
+

d∑
i=1

Xi(t)) ◦ U−h

= [(
d∑
i=1

Xi(t)−
d

2
)Rα,t] ◦ U−h

and we compute derivative term of (4.20) in representation,

[
d

dhd
· · · d

dh1

(B−sα,t+h(Rα,t))]h=0 = −B−sα,t((
d∑
i=1

Xi(t)−
d

2
)Rα,t)).

SetKα,t(Γ) = |Rα,t|r−tα,−(s+1) with a bounded non-negative function, then by Lemma

4.20, we claim that

|B−sα,t((
d∑
i=1

Xi(t)−
d

2
)Rα,t))| ≤ Kα,τ (Γ) ≤ C(s,Γ)Hgt([r−tα])1/4.

Therefore, the solution of equation (4.22) exists under Diophantine condition
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(4.15) and the following holds:

lim
td→∞

· · · lim
t1→∞

e−(t1+···td)/2B−sα,t(Γ) = β̂H(α,Γ).

Moreover, by continuity, the complex number

β̂H(α,Γ) = B−sα,0 +

∫ ∞
0

· · ·
∫ ∞

0

e−(τ1+···τd)/2Kα,τ (Γ)dτ1 · · · dτd

depends on α ∈ DC(L). Since we have

Π−sH,α(Γ)− β̂(α,Γ)BH
α = R0 −

(∫ ∞
0

· · ·
∫ ∞

0

e−(τ1+···τd)/2Kα,τ (Γ)dτ1 · · · dτd
)
BH
α ,

by Diophantine condition again,

|Π−sH,α(Γ)− β̂(α,Γ)BH
α |α,−s ≤ C(s,Γ)(1 + L).

4.4.2 Remainder estimates

In this subsection, we obtain estimate for remainder term which is used in

Lemma 4.16. Firstly, we prove the bound of Birkhoff sum of rectangles.

Lemma 4.17. [CF15, Lemma 5.7] Let s > d/2 + 2. There exists a constant
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C = C(s) > 0 such that for all ti ≥ 0 for 1 ≤ i ≤ d, we have

∥∥I−s[α,D]
∥∥
−s ≤ e−(t1+···+td)/2

∥∥I−s[r−t11 · · · r−tdd α,D]
∥∥
−s

+ C1|t1 + · · ·+ td|
∫ 1

0

e−u(t1+···+td)/2
∥∥R−s[r−ut11 · · · r−utdd α,D

∥∥
−(s−2)

du.

By Stokes’ theorem, we have the following remainder estimate.

Lemma 4.18. [CF15, Lemma 5.6] For any non-negative s′ < s − (d + 1)/2 and

Jordan region U ⊂ Rd, there exists C = C(d, g, s, s′) > 0 such that

∥∥∥R−s[α, (P d,α
U m)]

∥∥∥
−s
≤ C

∥∥∥[α, ∂(P d,α
U m)]

∥∥∥
−s′

.

Here we prove quantitative bound of Birkhoff averages of higher rank actions

on rectangle. (Cf. [CF15, theorem 5.10]).

Theorem 4.19. For s > sd, there exists a constant C(s, d) > 0 such that the

following holds. For any ti > 0, m ∈M and Ud(t) = [0, et1 ]× · · · × [0, etd ], we have

∥∥∥[α, (P d,α
Ud(t)m)]

∥∥∥
−s
≤ C

d∑
k=0

∑
1≤i1<···<ik≤d

∫ tik

0

· · ·
∫ ti1

0

exp(
1

2

d∑
l=1

tl −
1

2

k∑
l=1

uil)

×Hgt([[
∏

1≤j≤d

r
−tj
j

k∏
l=1

r
uil
il
α]])1/4dui1 · · · duik .

(4.23)

Proof. We prove by induction. For d = 1, it follows from the theorem 5.8 in [CF15].

We assume that the result holds for d − 1. Decompose the current as a sum of

boundary and remainder term as in (4.16).
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Step 1. We estimate the boundary term. By Lemma 4.17, renormalize terms

with ru = ru1 · · · rud . Then, we have

∥∥∥I−s[α, (P d,α
Ud(t)m)]

∥∥∥
−s
≤ e−(t1+···+td)/2

∥∥∥I−s[r−t11 · · · r−tdd α, (P d,α
Ud(t)m)]

∥∥∥
−s

+ C1(s)

∫ t1+···+td

0

e−ud/2
∥∥∥R−s[r−uα, (P d,α

Ud(t)m)]
∥∥∥
−(s−2)

du

:= (I) + (II)

(4.24)

By renormalization (4.9) and Lemma 4.9 for unit volume,

∥∥∥I−s[r−t11 · · · r−tdd α, (P d,α
Ud(t)m)]

∥∥∥
−s

= et1+···+td

∥∥∥∥I−s[r−t11 · · · r−tdd α, (P
d,r
−t1
1 ···r−tdd α

Ud(0) m)]

∥∥∥∥
−s

≤ C2e
t1+···+tdHgt([[r−t11 · · · r−tdd α]])1/4

Hence,

I ≤ C2e
(t1+···td)/2Hgt([[r−t11 · · · r−tdd α]])1/4,

where the sum corresponds to the first term (k = 0) in the statement.

Step 2. To estimate (II),

∥∥∥R−s[r−uα, (P d,α
Ud(t)m)]

∥∥∥
−(s−2)

=
∥∥∥eudR−s[r−uα, (P d,r−uα

Ud(t−u)m)]
∥∥∥
−(s−2)

≤ C3(s, s′)eud
∥∥∥[r−uα, ∂(P d,r−uα

Ud(t−u)m)]
∥∥∥
−s′

.

(4.25)

The boundary ∂(Pd,r
−tα

Ud
) is the sum of 2d currents of dimension d− 1. These

currents are Birkhoff sums of d face subgroups obtained from Pd,r
−tα

Ud
by omitting
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one of the base vector fields Xi. It is reduced to (d− 1) dimensional shape obtained

from Ud(t − u) := [0, et1−u] × · · · [0, etd−u]. For each 1 ≤ j ≤ d, there are Birkhoff

sums along d− 1 dimensional cubes. By induction hypothesis, we add all the d− 1

dimensional cubes by adding all the terms along j:

∥∥∥[r−uα, (P d−1,r−uα
Ud−1(t−u)m)]

∥∥∥
−s′
≤ C4(s′, d− 1)

d∑
j=1

d−1∑
k=0

∑
1≤i1<···<ik≤d

il 6=j,∀l

∫ tik−u

0

· · ·
∫ ti1−u

0

exp(
1

2

d∑
l=1
l 6=j

(tl − u)− 1

2

k∑
l=1

uil)Hgt([[
∏

1≤l≤d
l 6=j

r
−(tl−u)
l

k∏
l=1

r
uil
il

(r−uα)]])1/4dui1 · · · duik .

(4.26)

Combining (4.24) and (4.25), we obtain the estimate for (II).

(II) ≤ C5(s′, d− 1)
d∑
j=1

d−1∑
k=0

∑
1≤i1<···<ik≤d

il 6=j

∫ t1+···td

0

∫ tik−u

0

· · ·
∫ ti1−u

0

dui1 · · · duikdu

× exp(
1

2

d∑
l=1
l 6=j

tl −
1

2
u− 1

2

k∑
l=1

uil)Hgt([[
∏

1≤l≤d

r−tll

k∏
l=1

r
uil
il

(r
−u+tj
j α)]])1/4.

Applying the change of variable uj = tj − u, we obtain

(II) ≤ C6(s′, d− 1)
d∑
j=1

d−1∑
k=1

∑
1≤i1<···<ik≤d

il 6=j

∫ tj

−(t1+···td)+tj

∫ tik−u

0

· · ·
∫ ti1−u

0

dui1 · · · duikduj

× exp(
1

2
(t1 + · · · td)−

1

2
uj −

1

2

k∑
l=1

uil)Hgt([[
∏

1≤l≤d

r−tll

k∏
l=1

r
uil
il

(r
−uj
j α)]])1/4.
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Simplifying multi-summation above, (with −(t1 + · · · td) + tj ≤ 0)

(II) ≤ C7(s′, d)
d∑

k=1

∑
1≤i1<···<ik≤d

∫ tik

0

· · ·
∫ ti1

0

dui1 · · · duik

× exp(
1

2
(t1 + · · · td)−

1

2

k∑
l=1

uil)Hgt([[
∏

1≤l≤d

r−tll

k∏
l=1

r
uil
il
α]])1/4.

Step 3. (Remainder estimate). The remainder term is obtained from Lemma

4.18 (Stokes’ theorem). Following step 2, estimate of remainder reduces to that of

d− 1 form. Combining with the step 1, we have the following

∥∥∥R−s[α, ∂(P d,α
Ud
m)]
∥∥∥
−s
≤ C(s)

d−1∑
i=1

∥∥I−s[α, (P i,α
Ui
m)]
∥∥
−s +

∥∥R−s[α, (P 1,α
U1
m)]
∥∥
−s

(4.27)

where Ui is i-dimensional rectangle. Sum of the boundary terms are absorbed in the

bound of (I) + (II). For 1-dimensional remainder with interval ΓT , the boundary is

a 0-dimensional current. Then,

〈∂(P 1,α
UT
m), f〉 = f(P1,α

UT
m)− f(m).

Hence, by Sobolev embedding theorem and by definition of Sobolev constant (4.5)

and (4.6),

∥∥R−s[α, ∂(P 1,α
UT
m)]
∥∥
−s ≤ 2Bs′([[α]]) ≤ C(s)Hgt([[α]])1/4.
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Then, by inequality (4.10)

Hgt([[α]])1/4 ≤ Ce(t1+···td)/2Hgt([[r−t11 · · · r−tdd α]])1/4.

This implies that remainder term produces one more term like the bound of (I).

Therefore, the theorem follows from combining all the terms (I), (II), and remain-

der.

Now we prove the estimate for constructing Bufetov functionals.

Lemma 4.20. Let s > sd. There exists a constant C(s) > 0 such that for any

rectangle UΓ = [0, eΓ1 ]× · · · × [0, eΓd ],

Kα,t(Γ) ≤ C(s,Γ)Hgt([r−tα])1/4.

Proof. Recall that Kα,t(Γ) =
∥∥∥R−s[r−t[α], (P

d,r−tα
UΓ

m)]
∥∥∥
−(s+1)

and by Lemma 4.18,

it is equivalent to prove to find the bound of d − 1 currents. By theorem 4.19, we

obtain the remainder estimate.

Kα,t(Γ) ≤ C
d−1∑
k=0

∑
1≤i1<···<ik≤d−1

∫ Γik

0

· · ·
∫ Γi1

0

exp(
1

2

d−1∑
l=1

Γl −
1

2

k∑
l=1

uil)

×Hgt([[
∏

1≤j≤d−1

r
−Γj
j

k∏
l=1

r
uil
il

(r−tα)]])1/4dui1 · · · duik .
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It follows from (4.10) that for 0 ≤ k ≤ d− 1,

Hgt([[
∏

1≤j≤d−1

r
−Γj
j

k∏
l=1

r
uil
il

(r−tα)]])1/4 ≤ e
1
2

(
∑k
l=1 uil−

∑d
l=1 Γl)Hgt([[r−tα]])1/4.

Then, we obtain

∥∥∥R−s[r−tα, (P d,r−tα
UΓ

m)]
∥∥∥
−s
≤ C

( d−1∑
k=0

∑
1≤i1<···<ik≤d−1

k∏
l=1

Γil

)
Hgt([[r−tα]])1/4. (4.28)

Setting C(s,Γ) = C
(∑d−1

k=0

∑
1≤i1<···<ik≤d−1

∏k
l=1 Γil

)
, we obtain the conclusion.

4.4.3 Extensions of domain

Now we extend the domain of Bufetov functional defined on standard rectangle

ΓXT to the class R.

Lemma 4.21. Bufetov functional defined on standard rectangle ΓXT extends to the

class (Qd,Y
y )∗Γ

X
T for any y ∈ Rd.

Proof. First, we prove that Bufetov functional exists and invariant under the action

Qd,Y
y . It suffices to verify that Bufetov functional is invariant under the rank 1 action

Q1,Y
τ for τ ∈ R.

Given a standard rectangle Γ, set ΓQ := (Q1,Y
τ )∗Γ. Let D(Γ,ΓQ) be the (d+ 1)

dimensional space spanned by the trajectories of the action of Q1,Y
τ projecting Γ onto

ΓQ. Then D(Γ,ΓQ) is union of all orbits I of action Q1,Y
τ such that the boundary

of I, d-dimensional faces, is contained in Γ ∪ ΓQ, and interior of I is disjoint from

Γ ∪ ΓQ.
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By definition, denote rt := rti . Then, r−t(Γ) and r−t(ΓQ) are respectively the

support of the currents r∗tΓ and r∗tΓQ. Thus, we have the following identity

r∗tD(Γ,ΓQ) = D(r−t(Γ), r−t(ΓQ)).

Since the currents ∂D(Γ,ΓQ)− (Γ−ΓQ) is composed of orbits of the action of Q1,Y
τ ,

it follows that

∂[r∗tD(Γ,ΓQ)]− (r∗tΓ− r∗tΓQ) = r∗t [∂D(Γ,ΓQ)− (Γ− ΓQ)]→ 0. (4.29)

Now, we turn to prove the volume of D(r−t(Γ), r−t(ΓQ)) is uniformly bounded

for all t > 0. For any p ∈ Γ, set τ(p) be length of the arc lying in D := D(Γ,ΓQ),

and set τΓ := sup{τ(p) | p ∈ Γ} <∞. We write

vold+1(D) =

∫
Γ

τdvold.

Since vold(r−tΓ) ≤ etvold(Γ),

vold+1(r−tD) =

∫
r−tΓ

τdvold ≤ τΓe
−tvold(r−tΓ) ≤ τΓvold(Γ) <∞. (4.30)

Note that current (Q1,Y
τ )∗Γ−Γ is equal to the boundary of a (d+1) dimensional

current D. By arguments in remainder estimate (or Sobolev embedding theorem),

|(Q1,Y
τ )∗Γ− Γ|r−tα,−s ≤ CsτBs([[r

−tα]]) ≤ CsτHgt[[r−tα]]1/4 (4.31)
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is finite for all t > 0.

Then, by (4.29), (4.30) and existence of Bufetov functional (from Diophantine

condition), the last inequality holds

|B−sα,t((Q1,Y
τ )∗Γ)−B−sα,t(Γ)|α,−s <∞.

Therefore, by definition of Bufetov functional in the Lemma 4.16, it is extended and

invariant under the action of Q1,Y
τ .

Similarly, Bufetov functional defined on the standard rectangles is extended

to (φZtiz) ◦Pd,αt (m). We postpone its proof by Lemma 4.38. Since the flow generated

by Z commutes with other actions P and Q, combining with the invariance under

the action Q from Lemma 4.21, we extend the domain of Bufetov functional to the

class R.

Proof of theorem 4.3. Additive property follows from linearity of projections

and limit. It is immediate to derive scaling property from the definition.

Bounded property. By scaling property,

β̂(α,Γ) = edt/2β̂H(rt[α],Γ).

Choose t = log(
∫

Γ
|X̂|) and X̂ = X̂1 ∧ · · · ∧ X̂d, then uniform bound of Bufetov
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functional on bounded size of rectangles,

|β̂(α,Γ)| ≤ C(Γ)(

∫
Γ

|X̂|)d/2.

Invariance property follows directly from the Lemma 4.21.

4.4.4 Bound of functionals

We define excursion function

EM(α,T) :=

∫ log T (d)

0

· · ·
∫ log T (1)

0

e−(t1+···td)/2Hgt([[rt−logTα]])1/4dt1 · · · dtd

=
d∏
i=1

(T (i))
1/2
∫ log T (d)

0

· · ·
∫ log T (1)

0

e(t1+···td)/2Hgt([[rtα]])1/4dt1 · · · dtd.

Denote tT = (t1T
(1), · · · , tdT (d)) and t = (t1, · · · , td).

Lemma 4.22. For any Diophantine [α] ∈ DC(L) and for any f ∈ W s(M) for

s > sd + 1/2, the Bufetov functional βf is defined by a uniformly convergent series.

|βf (α,m, tT )| ≤ Cs(L+
d∏
i=1

(T (i))1/2(1 +
d∏
i=1

ti + EM(α,T)) ‖ω‖α,s

for ω = fωd,α ∈ Λdp⊗W s(M).

Proof. It follows from Lemma 4.16 that there exists a constant C > 0 such that

|βH(α,m, t)| ≤ C(1 + L+
d∏
i=1

ti).
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By exact scaling property,

βH(α,m, tT ) =
d∏
i=1

(T (i))1/2βH(rlog T[α],m, t).

By Diophantine condition (4.15), whenever α ∈ DC(L) then rlog T[α] ∈ DC(LT )

with

LT ≤ L
d∏
i=1

(T (i))−1/2 + EM(α,T).

Thus for all (m, t) ∈M × Rd,

|βH(rlog T[α],m, t)| ≤ C(1 + LT +
d∏
i=1

ti).

It follows that for all s > 1/2, we have

|βf (α,m, tT )| ≤ Cs

d∏
i=1

(T (i))1/2(1 + L+
d∏
i=1

ti)
∑
n∈Z

‖ωn‖α,s

≤ Cs

d∏
i=1

(T (i))1/2(1 + LT +
d∏
i=1

ti)(
∑
n∈Z

(1 + n2)−s
′
)−1/2(

∑
n∈Z

∥∥∥(1− Z2)s
′/2ωn

∥∥∥2

α,s
)1/2.

Therefore, for all s′ > sd, there exists a constant Cs,s′ > 0 such that

|βf (α,m, tT)| ≤ Cr,r′
d∏
i=1

(T (i))1/2(1 + LT +
d∏
i=1

ti) ‖ω‖α,s+s′ .

This lemma implies that all properties of the Bufetov functionals associated

to a single irreducible component βH can be extended to the Bufetov functionals βf
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for any f ∈ W s(M). From this, we can derive bounded property for the cocycles

β(α,m,T) with respect to m along the orbits of actions in time T ∈ Rd respectively.

Corollary 4.23. For all s > sd + 1/2, there exists a constant Cs > 0 such that for

almost all frequency α and for all f ∈ W s(M) and for all (m,T ) ∈ M × Rd, we

have

|
〈
P d,α
U(T )m,ω

〉
− βf (α,m,T )| ≤ Cs(1 + L) ‖ω‖α,s . (4.32)

for U(T ) = [0, T (1)]× · · · [0, T (d)] and ω = fωd,α ∈ Λdp⊗W s(M).

Proof. By Lemma 4.16 and 4.22, asymptotic formula (4.17) on each irreducible

provides proof of Corollary 4.23.

4.5 Limit distributions

In this section, we prove Theorem 4.6, limit distribution of Birkhoff sums of

higher rank actions on squares.

4.5.1 Limiting distributions

Lemma 4.24. There exists a continuous modular function θH : Aut0(Hg) → H ⊂

L2(M) such that

lim
|U(T )|→∞

∥∥∥∥∥ 1

vol(U(T ))1/2

〈
P d,α
U(T )(·), ωf

〉
− θH(rlogT [α])DH

α (f)

∥∥∥∥∥
L2(M)

= 0.

The family {θH(α) | α ∈ Aut0(Hg)} has a constant norm in L2(M).
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Proof. By Fourier transform, the space of smooth vectors and Sobolev spaceW s(H)

is represented as Schwartz-type space S s(Rd) ⊂ L2(Rd) such that

∫
Rd
|(1 +

∑
i

∂2

∂u2
i

+
∑
i

u2
i )
s/2f̂(u)|2du <∞.

Let t, u ∈ Rd. Then we claim for any f ∈ S s(Rd), there exists θ[α] ∈ L2(Rd)

such that

lim
|U(T )|→∞

∥∥∥∥∥ 1

vol(U(T ))1/2

∫
U(T )

f(u+ t)dt− θH(rlogT [α])Leb(f)

∥∥∥∥∥
L2(Rd,du)

= 0.

Equivalently,

lim
|U(T )|→∞

∥∥∥∥∥ 1

vol(U(T ))1/2

∫ T (d)

0

· · ·
∫ T (1)

0

eit·ûf̂(û)dt− θ̂H(rlogT [α])f̂(0)

∥∥∥∥∥
L2(Rd,dû)

= 0.

For χ ∈ L2(Rd, dû), we denote

χj(û) =
eiûj − 1

iûj
, χ(û) =

d∏
j=1

χj(û).

Let θ̂[α](û) := χ(û) for all û ∈ Rd. Then, by intertwining formula, for T ∈ Rd

and u ∈ Rd,

UT(f)(û) =
d∏
i=1

(T (i))1/2f(T û), for T û = (T (1)û1, · · · , T (d)ûd).
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Then, for all α ∈ A,

θ̂(rlogT [α])(û) = UT(χ)(û) =
d∏
i=1

(T (i))1/2χ(T û).

The function θ[α] is defined by Fourier inverse transform

‖θH(α)‖H = ‖θ(α)‖L2(Rd) =
∥∥∥θ̂(α)

∥∥∥
L2(Rd)

= ‖χ(û)‖L2(Rd,dû) = C > 0.

By integration,

∫ T (d)

0

· · ·
∫ T (1)

0

eit·ûf̂(û)dt = (
d∏
i=1

T (i))χ(T û)f̂(û)

= (
d∏
i=1

T (i))χ(T û)(f̂(û)− f̂(0)) + (
d∏
i=1

T (i))1/2θ̂(rlogT [α])(û)f̂(0).

We note that
∏d

i=1 T
(i) = vol(U(T )). Then the claim reduces to the following:

lim sup
vol(U(T ))→∞

∥∥∥vol(U(T ))1/2χ(T û)(f̂(û)− f̂(0))
∥∥∥
L2(Rd)

= 0.

If f ∈ S s(Rg) with s > d/2, function f̂ ∈ C0(Rd) and bounded. Thus, by

Dominated convergence theorem,

∥∥∥vol(U(T ))1/2χ(T û)(f̂(û)− f̂(0))
∥∥∥
L2(Rd,dû)

=
∥∥∥χ(ν)(f̂(

ν

T
)− f̂(0))

∥∥∥
L2(Rd,dν)

→ 0.

Corollary 4.25. There exists a constant C > 0 such that for any s > d/2, for any
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α ∈ A and f ∈ W s(H), we have

lim
|U(T )|→∞

1

vol(U(T ))1/2

∥∥∥〈P d,α
U(T )m,ωf

〉∥∥∥
L2(M)

= C|DH
α (f)|.

From Corollary 4.25, we derive the following limit result for the L2 norm of

Bufetov functionals.

Corollary 4.26. For irreducible component H and α ∈ DC, there exists C > 0

such that

lim
|U(T )|→∞

1

vol(U(T ))1/2
‖βH(α, ·,T )‖L2(M) = C.

Proof. By the normalization of invariant distribution in Sobolev spaceW s(M), there

exists a function fHα ∈ W s(H) such that Dα(fHα ) =
∥∥fHα ∥∥s = 1. For all α ∈ DC(L),

by asymptotic formula (4.32),

∣∣ 〈P d,α
U(T )m,ω

〉
− βf (α,m,T )

∣∣ ≤ Cs(1 + L).

Therefore, L2-estimate follows from Corollary 4.25.

A relation between the Bufetov functional and the modular function θH is

established below.

Corollary 4.27. For any L > 0 and invariant probability measure supported on

DC(L) ⊂Mg,

βH(α, ·, 1) = θH([α]), for µ-almost all [α] ∈Mg.
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Proof. By Theorem 4.23 and Lemma 4.24, there exists a constant C > 0 such that

for all α ∈ supp(µ) ⊂ DC(L), for all T > 0 we have

lim
|U(T )|→∞

‖βH(rlogT [α], ·, 1)− θH(rlogT [α])‖L2(M) ≤
Cµ

vol(U(T ))1/2
. (4.33)

By Luzin’s theorem, for any δ > 0 there exists a compact subset E(δ) ⊂M such that

we have the measure bound µ(M\E(δ)) < δ and the function βH(α, ·, 1) ∈ L2(M)

depends continuously on [α] ∈ E(δ). By Poincare recurrence, there is a full measure

subset E ′(δ) ⊂ E(δ) of Rd-action.

For every α0 ∈ E ′(δ), there is diverging sequence (tn) such that {rtn(α0)} ⊂

E(δ) and limn→∞ r
tn(α0) = (α0). By continuity of θH and βH at [α0], we have

‖βH([α0], ·, 1)− θH([α0])‖L2(M)

= lim
n→∞

‖βH(rlogTn [α0], ·, 1)− θH(rlogTn [α0])‖L2(M) = 0. (4.34)

Thus, we have βH([α], ·, 1) = θH([α]) for [α] ∈ E ′(δ). It follows that the set of

equality fails has less than any δ > 0, thus the identity holds for almost all [α].

For all α ∈ Aut0(Hg), general smooth function f ∈ W s(M) for s > sd + 1/2, f

decompose an infinite sum, and the functional θf is defined by a convergent series.

θf (α) =
∑
H

DH
α (f)θH(α). (4.35)
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The following result is an extention to general asymptotic theorem from Corol-

lary 4.27.

Theorem 4.28. For all α ∈ Aut0(Hg), and for all f ∈ W s(M) for s > sd + 1/2,

lim
n→∞

∥∥∥∥ 1

vol(U(Tn))1/2

〈
P d,α
U(Tn)m,ωf

〉
− θf (rlogTnα)

∥∥∥∥
L2(M)

= 0.

4.5.2 Proof of Theorem 4.6

By theorem 4.28, we summarize our results on limit distributions for higher

rank actions.

Theorem 4.29. Let (Tn) be any sequence such that

lim
n→∞

rlogTn [α] = α∞ ∈Mg.

For every closed form ωf ∈ Λdp ⊗ W s(M) with s > sd + 1/2, which is not a

coboundary, the limit distribution of the family of random variables

ETn(f) :=
1

vol(U(Tn))1/2

〈
P d,α
U(Tn)(·), ωf

〉

exists and is equal to the distribution of the function θf (α∞) = β(α, ·, 1) ∈ L2(M).

If α∞ ∈ DC, then θf (α∞) is bounded function on M, and the limit distribution has

compact support.

Proof of theorem 4.6. Since α∞ ∈ Mg, the existence of limit follows from
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Corollary 4.27 and Lemma 4.28.

A relation with Birkhoff sum and theta sum was introduced in [CF15, §5.3],

and as an applications, we derive limit theorem of theta sums.

Corollary 4.30. Let Q[x] = x>Qx be the quadratic forms defined by g × g real

matrix Q, α =

 I 0

Q I

 ∈ Sp2g(R), `(x) = `>x be the linear form defined by

l ∈ Rg. Then, Theta sum

Θ(Q, l;N) = N−g/2
∑

n∈Zg∩[0,N ]

e(Q[n] + `(n))

has limit distribution and it has compact support.

4.6 L2-lower bounds

In this section we prove bounds for the square mean of ergodic integrals along

the leaves of foliations of the torus into circles transverse to central direction.

4.6.1 Structure of return map

Let Tg+1
Γ denote (g+1)-dimensional torus with standard frame (Xi, Yi, Z) with

Tg+1
Γ := {Γ exp(

g∑
i=1

yiYi + zZ) | (yi, z) ∈ R× R}.

It is convenient to work with the polarized Heisenberg group. Set Hg
pol ≈ Rg×
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Rg×R equipped with the group law (x, y, z) · (x′, y′, z′) = (x+x′, y+y′, z+z′+yx′).

Definition 4.31. Reduced standard Heisenberg group Hg
red is defined by quotient

Hg
pol/({0}×{0}× 1

2
Z) ≈ Rg×Rg×R/1

2
Z. Reduced standard latice Γgred is Zg×Zg×{0}

and the quotient Hg
red/Γgred is isomorhic to standard Heisenberg manifold Hg/Γ.

Now, we consider return map of Pd,α on Tg+1
Γ . For x = (x1, · · · , xg) ∈ Rg,

exp(x1X
α
1 + · · ·+ xgX

α
g ) = (xα, xβ, w · x), for some xα, xβ ∈ Rd.

In Hg
red,

exp(x1X
α
1 + · · ·+ xgX

α
g ) · (0, y, z) = (xα, y + xβ, z + w · x).

Then, given (n,m, 0) ∈ Γgred,

exp(x1X
α
1 +· · ·+xgXα

g )·(0, y, z)·(n,m, 0) = exp(x′1X
α
1 +· · ·+x′gXα

g )·(0, y′, z′) (4.36)

if and only if x′α = xα+n, y′ = y+(xβ−x′β)+m and z′ = z+(w−w′) ·x+n(y+xβ).

Assume 〈Xα
i , Xj〉 6= 0 for all i, j, and we write first return time tRet =

(tRet,1, · · · tRet,g) for Pd,α on transverse torus Tg+1
Γ . We denote domain for return

time U(tRet) = [0, tRet,1] × · · · [0, tRet,g]. Return map of action Pd,α on Tg+1
Γ has a
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form of skew-shift

Aρ,τ (y, z) = (y + ρ, z + v · y + τi) on Rg/Zg × R/K−1Z. (4.37)

From computation of each rank 1 action, for each 1 ≤ i ≤ d, it is a composition of

commuting linear skew-shift

Ai,ρ,τ (y, z) = (y + ρi, z + vi · y + τi) on Rg/Zg × R/K−1Z (4.38)

for some constant ρi, σi ∈ Rg and vi ∈ Rg. For each j 6= k,

Aj,ρ,τ ◦ Ak,ρ,τ = Ak,ρ,τ ◦ Aj,ρ,τ .

Given pair (m, n) ∈ ZgK|n|×Z, let H(m,n) denote the corresponding factor and

C∞(H(m,n)) be subspace of smooth function on H(m,n). Denote {em,n | (m, n) ∈

Zg|n| × Z} the basis of characters of Tg+1
Γ and for all (y, z) ∈ Tg × T,

em,n(y, z) := exp[2πι(m · y + nKz)].

For each Ai,ρ,σ and vi = (vi1, · · · vid), the orbit can be identified with the following

dual orbit

OAi(m, n) = {(m + (nji)vi, n), ji ∈ Z}

= {(m1 + (nvi1)ji, · · · ,md + (nvid)ji, n), ji ∈ Z}.
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If n = 0, the orbit [(m, 0)] ⊂ Zg × Z of (m, 0) is reduced to a single element.

If n 6= 0, then the dual orbit [(m, n)] ⊂ Zg+1 of (m, n) for higher rank actions is

described as follows:

OA(m, n) = {(mk + n

d∑
i=1

(vikji), n)1≤k≤d : j = (j1, · · · jd) ∈ Zd}.

It follows that every A-orbit for rank Rd-action (or Aj-orbit) can be labeled

uniquely by a pair (m, n) ∈ Zg|n| × Z\{0} with m = (m1, · · · ,mg). Thus, the

subspace of functions with non-zero central character can be split as a direct sum

of components H(m,n) with m ∈ Zg, n ∈ Z\{0}. Then,

L2(Tg+1
Γ ) =

⊕
ω∈OA

Hω.

Now we proceed to the cosideration of the higher cohomology problem which

appears in the space of Fourier coefficients.

4.6.2 Higher cohomology for Zd-action of skew-shifts

We consider a Zd action of return map Pd,α on torus Tg+1
Γ . By identification

of cochain complex on torus, it is equivalent to consider the following cohomological

equation for degree d form ω,

ω = dΩ ⇐⇒ ϕ(x, t) = DΦ(x, t), x ∈ Tg, t ∈ Zd. (4.39)

168



We restrict our interest of d-cocycle ϕ : Tg+1
Γ × Zd → R with Φ : Tg+1

Γ → Rd,

Φ = (Φ1, · · ·Φd) and D is coboundary operator DΦ =
∑d

i=1(−1)i+1∆iΦi where

∆iΦi = Φi ◦ Ai,ρ,τ − Φi. The following proposition is the generalization to the

argument of [KK95, Prop 2.2]. Let us denote Aj = Aj11,ρ,τ ◦ · · · ◦ A
jd
d,ρ,τ .

Proposition 4.32. A cocycle ϕ̂ satisfies cohomological equation (4.39) if and only

if
∑

j∈Zd ϕ̂(m,n) ◦ Aj = 0 for j = (j1, · · · , jd) ∈ Zd.

Proof. We consider dual equation

ϕ̂ = DΦ̂. (4.40)

Let us denote the following notation:

(δiϕ̂)(m1, · · · ,md) = δ(mi)ϕ̂(m1, · · · ,md), and δ(0) = 1, otherwise 0.

(Σiϕ̂)(m1, · · · ,md) =
∞∑

j=−∞

ϕ̂ ◦ (Am1
1 · · ·A

j
i · · ·A

md
d )

(Σ+
i ϕ̂)(m1, · · · ,md) =

∞∑
j=mi

ϕ̂ ◦ (Am1
1 · · ·A

j
i · · ·A

md
d )

(Σ−i ϕ̂)(m1, · · · ,md) = −
mi−1∑
j=−∞

ϕ̂ ◦ (Am1
1 · · ·A

j
i · · ·A

md
d )

It is clear that Σ−i − Σ+
i = Σi and Σ+

i ϕ̂ = Σ−i ϕ̂ if and only if Σiϕ̂ = 0.

Note that

Σ+
i ∆i = Σ−i ∆i = id, ∆iΣ

+
i = ∆iΣ

−
i = id. (4.41)
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By direct calculation of Fourier coefficient, Σi(ϕ̂− δiΣiϕ̂) = 0. Let Φ̂i(ϕ̂) = Σ−i (ϕ̂−

δiΣiϕ̂), then Φ̂i(ϕ̂) vanishes at ∞. By (4.41),

ϕ̂− δiΣiϕ̂ = ∆iΦ̂i(ϕ̂).

We can proceed this by induction.

ϕ̂− Σ1,··· ,dϕ̂ =
d∑
i=1

(δ1 · · · δi−1Σ1 · · ·Σi−1ϕ̂− δ1 · · · δiΣ1 · · ·Σiϕ̂)

=
d∑
i=1

(δ1 · · · δi−1Σ1 · · ·Σi−1ϕ̂− δiΣi(Σ1 · · ·Σi−1ϕ̂))

=
d∑
i=1

(−1)i+1∆iΦ̂i(ϕ̂)

where

Φ̂i(ϕ̂) = (−1)i+1Σ−i δ1 · · · δi−1(Σ1 · · ·Σi−1ϕ̂− δiΣi(Σ1 · · ·Σi−1ϕ̂))

and Φ̂i(ϕ̂) vanishes at∞. Thus, Φ̂i is a solution of (4.40) if and only if Σ1 · · ·Σdϕ̂ =

0.

For fixed (m, n) ∈ Zg × Z , we denote obstruction of cohomological equation

restricted to the orbit of (m, n) by Dm,n(ϕ) =
∑

j∈Zd ϕ̂(m,n) ◦ Aj.

Lemma 4.33. There exists a distributional obstruction to the existence of a smooth

solution ϕ ∈ C∞(H(m,n)) of the cohomological equation (4.39).
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A generator of the space of invariant distribution Dm,n has form of

Dm,n(ea,b) :=


e−2πι

∑d
i=1[(m·ρi+nKτi)ji+nKτi(ji2)] if (a, b) = (mk +K

∑d
i=1(vikji), n)1≤k≤g

0 otherwise.

Proof. From previous observation, there exists obstruction

Dm,n(ϕ) =
∑
j∈Zd

∫
Tg+1

Γ

ϕ(x, y)em,n ◦ Ajρ,τdxdy. (4.42)

By direct computation, for fixed j = (j1, · · · jd),

em,n ◦ Ajρ,τ (y, z) =
d∏
i=1

(
e2πι[(m·ρi+nKτi)ji+nKτi(ji2)]

)(
e2πι(m·y+K(z+n

∑d
k=1(vikji)yk))

)
.

Then, we choose ϕ = ea,b for (a, b) = (mk +K
∑d

i=1(vikji), n)1≤k≤g in the non-trivial

orbit (n 6= 0),

Dm,n(ea,b) = e−2πι
∑d
i=1[(m·ρi+nKτi)ji+nKτi(ji2)].

We conclude this section by introducing the theory of unitary representations.

L2(M) =
⊕
n∈Z

Hn :=
⊕
n∈Z

µ(n)⊕
i=1

Hi,n (4.43)
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where Hn =
⊕µ(n)

i=1 Hi,n is irreducible representation with central parameter n and

µ(n) is countable by Howe-Richardson multiplicity formula. By direct calculation,

we obtain µ(n) = |n|d for all n 6= 0.

For P-action, the space of invariant currents Id(p,S (Rg)) ⊂ W−s(Rg) for

s > d/2 + ε for all ε > 0. That is, by normalization of invariant distributions in

the Sobolev space, for any irreducible components H = Hn and α, there exists a

non-unique function fHα such that

Dα(fHα ) =
∥∥fHα ∥∥s = 1. (4.44)

4.6.3 Changes of coordinates

For any frame (Xα
i , Y

α
i , Z)gi=1, denote transverse cylinder for any m ∈M ,

Cα,m := {m exp(

g∑
i=1

y′iY
α
i + z′Z) | (y′, z′) ∈ U(t−1

Ret)× T}.

Let Φα,m : Tg+1
Γ → Cα,m denote the maps: for any ξ ∈ Tg+1

Γ , let ξ′ ∈ Cα,m

denote first intersection of the orbit {Pd,αt (ξ) | t ∈ Rd
+} with transverse cylinder

Cα,m. Then, there exists first return time to cylinder t(ξ) = (t1(ξ), · · · , td(ξ)) ∈ Rd
+

such that

ξ′ = Φα,m(ξ) = Pd,αt(ξ)(ξ), ∀ξ ∈ Tg+1
Γ .

Let (y, z) and (y′, z′) denote the coordinates on Tg+1
Γ and Cα,m given by the
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exponential map respectively,

(y, z)→ ξy,z := Γ exp(

g∑
i=1

yiYi + zZ), (y′, z′)→ m exp(

g∑
i=1

y′iY
α
i + z′Z).

For 1 ≤ i, j ≤ g and matrix A = (aij), B = (bij), C = (cij), D = (dij), set

α :=

 A B

C D

 ∈ Sp(2g,R),

satisfying AtD − CtB = I2g, CtA = AtC, DtB = BtD, and det(A) 6= 0.

Recall that Xα
i =

∑
j aijXj + bijYj + wiZ and Y α

i =
∑

j cijXj + dijYj + viZ

with det(A) 6= 0.

Let x = Γ exp(
∑d

i=1 yx,iYi + zxZ) exp(
∑d

i=1 tx,iXi), for some (yx, zx) ∈ Td ×

R/KZ and tx = (tx,i) ∈ [0, 1)d. Then, the map Φα,x : Tg+1
Γ → Cα,m is defined by

Φα,x(y, z) = (y′, z′) where



y′1

y′2

...

y′g


=



a11 a12 · · · a1g

a21 a22 · · · a2g

...
...

...
...

ag1 ag2 · · · agg





y1 − yx,1

y2 − yx,2
...

yg − yx,g


+



b11 · · · b1g

b21 · · · b2g

...
...

...

bg1 · · · bgg





tx,1

tx,2

...

tx,g


, (4.45)

and z′ = z + P (α, x, y) for some degree 4 polynomial P .

Therefore, the map Φα,x is invertible with

Φ∗α,x(dy
′
1 ∧ · · · dy′g ∧ dz′) =

1

det(A)
dy1 ∧ · · · dyg ∧ dz.
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Since AtD−CtB = I2g, by direct computation we obtain return time, we have



t1(ξ)

t2(ξ)

...

tg(ξ)


=



d11 · · · d1g

d21 · · · d2g

...
...

...

dd1 · · · dgg





tx,1

tx,2

...

tx,d


+



c11 c12 · · · c1g

c21 c22 · · · c2g

...
...

...
...

cg1 cg2 · · · cgg





y1 − yx,1

y2 − yx,2
...

yg − yx,g


. (4.46)

Then,

‖t(ξ)‖ ≤ max
i
|ti(ξ)|g ≤ max

i
|

g∑
j=1

dijtx,i + cij(yi − yx,i)|g ≤ max
i
‖Y α

i ‖
g .

4.6.4 L2-lower bound of functional.

We will prove bounds for the square mean of integrals along foliations of the

torus Tg+1
Γ into torus {ξ exp(

∑g
i=1 yiYi) | yi ∈ T}ξ∈Tg+1

Γ
.

Lemma 4.34. There exists a constant C > 0 such that for all α = (Xα
i , Y

α
i , Z),

and for every irreducible component H of central parameter n 6= 0, there exists a

function fH such that

|fH |L∞(H) ≤ Cvol(U(tRet))
−1|DHα (fH)|,

|fH |α,s ≤ Cvol(U(tRet))
−1|DHα (fH)|(1 +

T (tRet)

vol(U(tRet))
‖Y ‖)s(1 + n2)s/2

where ‖Y ‖ := max1≤i≤g ‖Y α
i ‖ and T (tRet) =

∑g
i=1 tRet,i.
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On rectangular domain U(T ), for all m ∈ Tg+1
Γ and T (i) ∈ ZtRet,i,

∥∥∥〈P d,α
U(T )(Qg,Y

y m), ωH

〉∥∥∥
L2(Tg ,dy)

= |DHα (fH)|
(
vol(U(T ))

vol(U(tRet))

)1/2

. (4.47)

In addition, whenever H ⊥ H ′ ⊂ L2(M) the functions

〈
P d,α
U(T )(Qg,Y

y m), ωH

〉
and

〈
P d,α
U(T )(Qg,Y

y m), ωH′
〉

are orthogonal in L2(Tg, dy).

Proof. As explained in §5.1, the space L2(Td+1
Γ ) decompose as a direct sum of ir-

reducible subspaces invariant under the action of each Aj,ρ,σ. It follows that the

subspace of functions with non-zero central character can be split as direct sum

of components H(m,n) with (m, n) ∈ Zg|n| × Z\{0} with m = (m1, · · · ,mg). For

F ∈ H(m,n), the function is characterized by Fourier expansion

F =
∑
j∈Zd

FjeAj(m,n) =
∑
j∈Zd

Fje(mk+K
∑d
i=1(vikji),n).

Then, by Lemma 4.33,

D(m,n)(eAj(m,n)) = e−2πι
∑d
i=1[(m·ρi+nKτi)ji+nKτi(ji2)]. (4.48)

For any irreducible representation H := Hn with central parameter n 6= 0, there

exists m ∈ Zd|n| such that the operator Iα maps the space H onto H(m,n). The
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operator Iα : L2(M)→ L2(Tg+1
Γ ) is defined

f → Iα(f) :=

∫
U(tRet)

f ◦ Pd,αx (·)dx. (4.49)

Then, operator Iα is surjective linear map of L2(M) onto L2(Tg+1
Γ ) with right inverse

defined as follows:

Let χ ∈ C∞0 (0, 1)g be any function of jointly integrable with integral 1. For

any F ∈ L2(Tg+1
Γ ), let Rχ

α(F ) ∈ L2(M) be the function defined by

Rχ
α(F )(Pd,αv (m)) =

1

vol(U(tRet))
χ(

v

tRet
)F (m), (m, v) ∈ Tg+1

Γ × U(tRet).

Then, it follows from the definition that there exists a constant Cχ > 0 such that

|Rχ
α(F )|α,s ≤ Cχvol(U(tRet))

−1(1 +

g∑
i=1

t−1
Ret,i ‖Y

α
i ‖)s ‖F‖W s(Tg+1

Γ )

≤ Cχvol(U(tRet))
−1(1 +

T (tRet)

vol(U(tRet))
‖Y ‖)s ‖F‖W s(Tg+1

Γ ) .

Choose fH := Rχ
α(em,n) ∈ C∞(H) such that Iα(fH) = em,n and

∫
U(tRet)

fH ◦ Pd,αt (y, z)dt = em,n(y, z), for (y, z) ∈ Tg+1
Γ . (4.50)

By (4.44) and (4.48), we have |DH(fH)| = |D(m,n)(em,n)| = 1. Therefore, it follows

that

|fH |L∞(H) ≤ Cχvol(U(tRet))
−1
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|fH |α,s ≤ Cvol(U(tRet))
−1|DH

α (fH)|(1 +
T (tRet)

vol(U(tRet))
‖Y ‖)s(1 + n2)s/2.

Moreover, since {em,n ◦ Ajρ,τ}j∈Zd ⊂ L2(TgΓ, dy) is orthonormal, we verify

∥∥∥〈P d,α
U(T )(Qg,Y

y m), ωH

〉∥∥∥
L2(Tg ,dy)

=

∥∥∥∥∥∥∥∥
[ T

(d)

tRet,d
]−1∑

jd=0

· · ·
[ T

(1)

tRet,1
]−1∑

j1=0

em,n ◦ Ajρ,τ

∥∥∥∥∥∥∥∥
L2(Tg ,dy)

=

(
vol(U(T ))

vol(U(tRet))

)1/2

.

For any infinite dimensional vector c := (ci,n) ∈ l2, let βc denote Bufetov

functional

βc =
∑
n∈Z

µ(n)∑
i=1

ci,nβ
i,n.

For any c := (ci,n), let |c|s denote the norm defined as

|c|2s =
∑

n∈Z\{0}

µ(n)∑
i=1

(1 +K2n2)s|ci,n|2.

From Corollary 4.26,

‖βc(α, ·,T)‖2
L2(M) ≤ C2|c|2l2vol(U(T )).

Lemma 4.35. For any s > sd + 1/2, there exists a constant Cs > 0 such that for
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all α ∈ DC(L), for all c ∈ l2, for all z ∈ T and all T > 0,

∣∣∣∣∣‖βc(α,Φα,x(ξy,z),T )‖L2(Tg ,dy) −
(
vol(U(T ))

vol(U(tRet))

)1/2

|c|0

∣∣∣∣∣
≤ Cs(vol(U(tRet)) + vol(U(tRet))

−1)(1 + L)(1 +
T (tRet)

vol(U(tRet))
‖Y ‖)s|c|s. (4.51)

Proof. By (4.43), for every n 6= 0, there exists a function fi,n ∈ C∞(H) with

D(fi,n) = 1. Let fc =
∑

n∈Z
∑µ(n)

i=1 ci,nfi,n, by adding functions on all irreducibles.

Then, by Lemma 4.34,

|fc|L∞(M) ≤ C|c|l1 (4.52)

|fc|α,s ≤ Cvol(U(tRet))
−1(1 +

T (tRet)

vol(U(tRet))
‖Y ‖)s|c|s. (4.53)

By orthogonality,

∥∥∥〈P d,α
U(T ) ◦ Qg,Y

y , ωc

〉∥∥∥
L2(Tg ,dy)

=

(
vol(U(T ))

vol(U(tRet))

)1/2

|c|0.

From the estimation for each fi,n in Lemma 4.34, for every z ∈ T and all T > 0, we

have

∥∥∥〈P d,α
U(T )(Φα,x(ξy,z)), ωc

〉
−
〈
P d,α
U(T )(ξy,z), ωc

〉∥∥∥
L2(Tg ,dy)

≤ 2|fc|L∞(M) ‖Y ‖ .
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Let Tα,i = tRet,i([T/tRet,i] + 1) and U(tα) = [0, Tα,1]× · · · × [0, Tα,g]. Then,

∥∥∥〈P d,α
U(T )(ξy,z), ωc

〉
−
〈
P d,α
U(tα)(ξy,z), ωc

〉∥∥∥
L2(Tg ,dy)

≤ vol(U(tRet))|fc|L∞(M).

Therefore, for some constant C ′ > 0 such that

∣∣∣∣∣∥∥∥〈P d,α
U(T )(Φα,x(ξy,z)), ωc

〉∥∥∥
L2(Tg ,dy)

−
(
vol(U(T ))

vol(U(tRet))

)1/2

|c|0

∣∣∣∣∣ ≤ C ′vol(U(tRet))|c|l1 .

For all s > sd + 1/2, by asymptotic property of Theorem 4.23, there exists

constant Cs > 0 such that

∣∣∣ 〈P d,α
U(T )m,ω

〉
− βH(α,m,T )DH

α (fH)
∣∣∣ ≤ Cs(1 + L) ‖f‖α,s .

Applying βc = βfc and combining bounds on the function fc with (4.52),

∣∣∣∣∣‖βc(α,Φα,x(ξy,z),T )‖L2(Tg ,dy) −
(
vol(U(T ))

vol(U(tRet))

)1/2

|c|0

∣∣∣∣∣
≤ C ′vol(U(tRet))|c|l1 + Csvol(U(tRet))

−1(1 + L)|fc|α,s

≤ C ′s(vol(U(tRet)) + vol(U(tRet))
−1)(1 + L)(1 +

T (tRet)

vol(U(tRet))
‖Y ‖)s|c|s.

Therefore, we derive the estimates in the statement.
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4.7 Analyticity of functionals

In this section we will prove that for all α ∈ DC, the Bufetov functionals on

any square are real analytic.

Definition 4.36. For every t ∈ R, 1 ≤ i ≤ d, and m ∈ M , the stretched (in

direction of Z) rectangle is denoted by

[ΓT ]Zi,t(m) := {(φZtsi) ◦ Pd,αs (m) | s ∈ U(T)}. (4.54)

Recall definition 4.1 for standard rectangles. For s = (s1, · · · , sd) ∈ Rd, let us

denote ΓT(s) := (γ1(s1), · · · , γd(sd)) for γi(si) = exp(siXi). Similarly, we also write

[ΓT ]Zi,t(s) := (γ1(s1), · · · , γZi,t(si), · · · γd(sd)) (4.55)

where γZi,t(si) := φZtsi(γi(si)) is a stretched curve.

Definition 4.37. The restriction ΓT,i,s of the rectangle ΓT is defined on restricted

domain UT,i,s = [0, T (1)]× · · · × [0, s] · · · × [0, T (d)] for s ≤ T (i) as following.

ΓT,i,s(s) := ΓT(s), s ∈ UT,i,s.

Recall the orthogonal property on a irreducible component H (central param-
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eter n ∈ Z\{0}). For any (m,T) ∈M × Rd
+ and t ∈ R,

βH(α, φZt (m),T) = e2πιKntβH(α,m,T). (4.56)

We obtain the following lemma for stretched rectangle by applying orthogonal prop-

erty.

Lemma 4.38. For fixed elements (Xi, Yi, Z) satisfying commutation relation (4.3),

the following formula for rank 1 action holds:

β̂H(α, [ΓT ]Zi,t) = e2πιtnKT (i)

β̂H(α,ΓT )− 2πιnKt

∫ T (i)

0

e2πιnKtsi β̂H(α,ΓT,i,s)dsi.

Proof. Let α = (Xi, Yi, Z) and ω be d-form supported on a single irreducible repre-

sentation H. We obtain following the formula for stretches of curve γZi,t (see [FK17,

§4, Lemma 9.1]),

dγZi,t
dsi

= DφZtsi(
dγi
dsi

) + tZ ◦ γZi,t.

It follows that pairing is given by

〈[ΓT]Zi,t, ω〉 =

∫
U(T )

ω(
dγ1

ds1

(s1), · · · ,
dγZi,t
dsi

(si), · · · ,
dγd
dsd

(sd))ds

=

∫
U(T )

e2πιnKtsi [ω(
dγ1

ds1

(s1), · · · , dγd
dsd

(sd))] + ιZω ◦ [ΓT]Zi,t(s)ds

Denote d − 1 dimensional triangle Ud−1(T ) with U(T ) = Ud−1(T ) × [0, T (i)]. Inte-
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gration by parts for a fixed i-th integral gives

∫
U(T )

e2πιnKtsi [ω(
dγ1

ds1

(s1), · · · , dγd
dsd

(sd))]ds

= e2πιnKtT (i)

∫
U(T )

[ω(
dγ1

ds1

(s1), · · · , dγd
dsd

(sd))]ds

− 2πιnKt

∫ T (i)

0

e2πιnKtsi

∫
Ud−1(T )

(∫ si

0

[ω(
dγ1

ds1

(s1), · · · , dγi
dsi

(r) · · · , dγd
dsd

(sd))]dr

)
ds.

Then, we have the following formula

〈[ΓT]Zi,t, ω〉 = e2πιnKtT (i)〈[ΓT], ω〉 − 2πιnKt

∫ T (i)

0

e2πιnKtsi〈ΓT,i,s, ω〉dsi

+

∫
U(T )

(ιZω ◦ [ΓT]Zi,t)(s)ds.

Since the action of Pd,Xt for t ∈ Rd is identity on the center Z,

lim
td→∞

· · · lim
t1→∞

e−(t1+···td)/2

∫
U(T )

(ιZ(Pd,Xt )∗ω ◦ [ΓT]Zi,t)(s)ds = 0.

Thus, it follows by definition of Bufetov functional, the statement holds.

Here we define a restricted vector Ti,s of T = (T (1), · · · , T (d)) ∈ Rd. For fixed

i, pick si ∈ [0, T (i)] such that Ti,s ∈ Rd is a vector with its coordinates

T
(j)
i,s =


T (j) if j 6= i

si if j = i.

Similarly, Ti1,··· ,ik,s is a vector with i1, · · · ik coordinates replaced by si1 , · · · , sik .
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Lemma 4.39. Let y = (y1, · · · , yd) ∈ Rd. The following equality holds for each

rank-1 action.

βH(α, φYiyi (m),T) =

e−2πιyinKT
(i)

βH(α,m,T) + 2πιnKyi

∫ T (i)

0

e−2πιyinKsiβH(α,m,Ti,s)dsi. (4.57)

Proof. By definition (4.1), (4.55) and commutation relation (4.3), it follows that

φYiyi (Γ
X
T(m)) = [ΓXT(φYiyi (m))]Zi,t.

By the invariance property of Bufetov functional and Lemma 4.38,

βH(α,m,T) = β̂H(α, φYiyi (Γ
X
T (m))

= e2πιyinKT
(i)

β̂H(α,ΓXT(φYiyi (m))− 2πιnKyi

∫ T (i)

0

e2πιnKyisi β̂H(α,ΓXT,i,s(φ
Yi
si

(m))dsi

= e2πιyinKT
(i)

βH(α, φYiyi (m),T)− 2πιnKyi

∫ T (i)

0

e2πιnKyisiβH(α, φYisi (m),Ti,s)dsi.

Then statement follows immediately.

We extend previous lemma for higher rank actions by induction.
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Lemma 4.40. The following equality holds for rank-d action.

βH(α,Qd,Y
y (m),T) = e−2πι

∑d
j=1 yjnKT

(j)

βH(α,m,T)

+
d∑

k=1

∑
1≤i1<···<ik≤d

k∏
j=1

(2πιnKyij)e
−2πιnK(

∑
l /∈{i1,··· ,ik} ylT

(l))

×
∫ T (i1)

0

· · ·
∫ T (ik)

0

e−2πιnK(yi1si1+···+yiksik )βH(α,m,Ti1,··· ,ik,s)dsik · · · dsi1

Proof. Assume inductive hypothesis works for rank d−1. For convenience, we write

Qd,Y
y (m) = φYdyd ◦ Qd−1,Y

y′ (m) for y′ ∈ Rd−1 and y = (y′, yd) ∈ Rd.

By applying Lemma 4.39,

βH(α,Qd,Y
y (m),T) = e−2πιydnKT

(d)

βH(α,Qd−1,Y
y′ (m),T)

+ 2πιnKyd

∫ T (d)

0

e−2πιydnKsdβH(α,Qd−1,Y
y′ (m),Td,s)dsd

:= I + II

(4.58)

Firstly, by induction hypothesis

I = e−2πι
∑d−1
j=1 yjnKT

(j)

βH(α,m,T)

+
d−1∑
k=1

∑
1≤i1<···<ik≤d−1

k∏
j=1

(2πιnKyij)e
−2πιnK(

∑
l /∈{i1,··· ,ik} ylT

(l)+ydT
(d))

×
∫ T (i1)

0

· · ·
∫ T (ik)

0

e−2πιnK(yi1si1+···+yiksik )βH(α,m,Ti1,··· ,ik,s)dsik · · · dsi1

which contains 0 to d − 1th iterated integrals containing e−2πιnKydT
(d) outside of
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iterated integrals.

For the second part, we apply induction hypothesis again for restricted rect-

angle Td,s. Then,

II = 2πιnKyd

∫ T (d)

0

e−2πιydnKsd
[
e−2πι

∑d−1
j=1 yjnKT

(j)

βH(α,m,Td,s)]dsd

+
d−1∑
k=1

∑
1≤i1<···<ik≤d−1

(2πιnKyd)
k∏
j=1

(2πιnKyij)e
−2πιnK(

∑
l /∈{i1,··· ,ik} ylT

(l))

×
∫ T (d)

0

(∫ T (i1)

0

· · ·
∫ T (ik)

0

dsik · · · dsi1

)
dsd

× e−2πιnK(yi1si1+···+yiksik+ydsd)βH(α,m,Ti1,··· ,ik,d,s).

The term II consist of 1 to d-th iterated integrals containing e−2πιnKydsd inside of

iterated integrals. Thus, combining these two terms, we prove the statement.

For any R > 0, the analytic norm defined for all c ∈ l2 as

‖c‖ω,R =
∑
n6=0

µ(n)∑
i=1

enR|ci,n|.

Let ΩR denote the subspace of c ∈ `2 such that ‖c‖ω,R is finite.

Lemma 4.41. For c ∈ ΩR, any α ∈ DC(L) and T ∈ Rd
+, the function

βc(α,Qd,Y
y ◦ φZz (m),T), (y, z) ∈ Rd × T
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extends to a holomorphic function in the domain

DR,T := {(y, z) ∈ Cd × C/Z |
d∑
i=1

|Im(yi)|T (i) + |Im(z)| < R

2πK
}. (4.59)

The following bound holds: for any R′ < R there exists a constant C > 0 such

that, for all (y, z) ∈ DR′,T we have

|βc(α,Qd,Y
y ◦ φZz (m),T)|

≤ CR,R′ ‖c‖ω,R (L+ vol(U(T ))1/2(1 + EM(a,T ))(1 +K
d∑
i=1

|Im(yi)|T (i))

Proof. By Lemma 4.40 and (4.56),

βc(α,Q
d,Y
y ◦ φZz (m),T) = e(z−2πι

∑d
j=1 yjnKT

(j))βH(α,m,T)

+
d∑

k=1

∑
1≤i1<···<ik≤d

k∏
j=1

(2πιnKyij)e
−2πιnK(

∑
l /∈{i1,··· ,ik} ylT

(l))

× e2πιnKz

∫ T (i1)

0

· · ·
∫ T (ik)

0

e−2πιnK(yi1si1+···+yiksik )βH(α,m,Ti1,··· ,ik,s)dsik · · · dsi1

As a consequence, by Lemma 4.22 for each variable (yi, z) ∈ C × C/Z, Then

186



for the rank d action, by induction, for (y, z) ∈ Cd × C/Z we have

|βc(α,Q
d,Y
y ◦ φZz (x),T)|

≤ (L+ vol(U(T ))1/2(1 + EM(a,T ))[C1

∑
n 6=0

µ(n)∑
i=1

enR|ci,n|e2π|Im(z−
∑d
i=1 T

(i)yi)|nK

+
d∑

k=1

Ck

 ∑
1≤i1<···<ik≤d

k∏
j=1

(|Im(yij)|T (ij))
∑
n 6=0

µ(n)∑
i=1

n|ci,n|e2π(|Im(z)|+
∑k
j=1 T

(ij)|Im(yij )|)nK

].

Therefore, the function βc(α,Q
d,Y
y ◦ φZz (m),T) is bounded by a series of holo-

morphic functions on Cd × C/Z and it converges uniformly on compact subsets of

domain DR,T .

4.8 Measure estimation for bounded-type

In this section, we prove measure estimation of Bufetov functional under

bounded-type case (4.13). This result is generalization of §11 of [FK17].

Let Or denote thee space of holomorphic functions on the ball BC(0, r) ⊂ Cn.

We recall the Chebyshev degree, the best constant df (r) stated in the following

theorem and estimation of valency.

Theorem 4.42. [Bru99, Thm 1.9] For any f ∈ Or, there is a constant d := df (r) >

0 such that for any convex set D ⊂ BR(0, 1) := BC(0, 1) ∩ Rn, for any measurable

subset U ⊂ D

sup
D
|f | ≤

(
4nLeb(D)

Leb(U)

)d
sup
U
|f |.

Let Lt denote the set of one-dimensional complex affine spaces L ⊂ Cn such
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that L ∩BC(0, t) 6= ∅.

Definition 4.43. [Bru99, Def 1.6] Let f ∈ Or. The number

νf (t) := sup{valency of f | L ∩BC(0, t) 6= ∅}

is called the valency of f in BC(0, t).

By [Bru99, Prop 1.7], for any f ∈ Or, and the valency νf (t) is finite and any

t ∈ [1, r) there is a constant c := c(r) > 0 such that

df (r) ≤ cνf (
1 + r

2
). (4.60)

Lemma 4.44. Let L > 0 and B ⊂ DC(L) be a bounded subset. Given R > 0, for

all c ∈ ΩR and all T(i) > 0, let F(c,T ) denote the family of real analytic functions

of the variable y ∈ [0, 1)d defined as

F(c,T ) := {βc(α,Φα,x(ξy,z),T ) | (α, x, z) ∈ B ×M × T}.

There exists TB := (T(i)
B ) and ρB > 0, such that for every (R,T ) such that R/T(i) ≥

ρB and T(i) ≥ T(i)
B , and for all c ∈ ΩR\{0}, we have

sup
f∈F(c,T )

νf <∞.
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Proof. Since B ⊂M is bounded, for each time ti ∈ R and 1 ≤ i ≤ g,

0 < tmini,B = min
i

inf
α∈B

tRet,i,α ≤ max
i

sup
α∈B

tRet,i,α = tmaxB <∞.

For any α ∈ B and x ∈ M , the map Φα,x : [0, 1)d × T →
∏d

i=1[0, tα,i) ×

T in (4.45) extends to a complex analytic diffeomorphism Φ̂α,x : Cd × C/Z →

Cd × C/Z. By Lemma 4.41, it follows that for fixed z ∈ T, real analytic function

βc(α,Φα,x(ξy,z),T ) extends to a holomorphic function defined on a region

Hα,m,R,t := {y ∈ Cd |
d∑
i=1

|Im(yi)| ≤ hα,m,R,t}.

By boundedness of the set B ⊂M, it follows that

inf
(α,x)∈B×M

hα,m,R,t := hR,T > 0.

We remark that the function hα,m,R,t and its lower bound hR,T can be obtained from

the formula (4.45) for the polynomial Φα,x and the definition of the domain DR,T in

formula (4.59).

For every r > 1, there exists ρB > 1 such that, for every R and T with

R/T(i) > ρB, then as a function of y ∈ Td

βc(α,Φα,x(ξy,z),T) ∈ Or.

Then, by Lemma 4.41, the family F(c,T) is uniformly bounded and normal.
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By Lemma 4.35, for sufficiently large pair T, no sequence from F(c,T) can converge

to a constant. By Lemma 10.3 of [FK17], for any normal family F ⊂ OR such that

no functions is constant along a one-dimensional complex line, hence the statement

follows.

We derive measure estimates of Bufetov functionals on the rectangular domain.

Lemma 4.45. Let α ∈ DC such that the forward orbit of Rd-action {rt[α]}t∈Rd+ is

contained in a compact set of M. There exist R,C, δ > 0 and T0 ∈ Rd
+ such that, for

every c ∈ ΩR\{0}, T ≥ T0 and for every ε > 0, we have

vol({m ∈M | |βc(α,m,T )| ≤ εvol(U(T ))1/2}) ≤ Cεδ.

Proof. Since α ∈ DC and the orbit {rt[α]}t∈R+ is contained in a compact set, there

exists L > 0 such that rt(α) ∈ DC(L) for all t ∈ Rd
+. Then, we choose T0 ∈ Rd

from conclusion of Lemma 4.44. By scaling property of Bufetov functionals,

βc(α,m,T ) =

(
vol(U(T ))

vol(U(T0))

)1/2

βc(glog(T/T0)[α],m,T0).

By Fubini’s theorem, it suffices to estimate

Leb({y ∈ [0, 1]d | |βc(α,Φα,x(ξy,z),T0)| ≤ ε}).
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Let δ−1 = c(r) supf∈F(c,T0) vf (
1+r

2
) <∞. Since by Lemma 4.35, we have

inf
(a,x,z)∈B×M×T

sup
y∈[0,1]d

|βc(α,Φα,x(ξy,z),T0)| > 0.

By theorem 4.42, for unit ballD = BR(0, 1) and U = {y ∈ [0, 1]d | |βc(α,Φα,x(ξy,z),T0)| ≤

ε} and bound in formula (4.60), there exists a constant C > 0 and δ > 0 such that

for all ε > 0 and (α, x, z) ∈ B ×M × T,

Leb({y ∈ [0, 1]d | |βc(α,Φα,x(ξy,z),T0)| ≤ ε}) ≤ Cεδ.

Then statement follows from Fubini theorem.

Corollary 4.46. Let α be as in the previous Lemma 4.45. There exist R,C, δ > 0

and T0 ∈ Rd
+ such that, for every c ∈ ΩR\{0}, T ≥ T0 and for every ε > 0, we have

vol({x ∈M |
∣∣∣〈P d,α

U(T )m,ωc〉
∣∣∣ ≤ εvol(U(T ))1/2}) ≤ Cεδ.
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Remeciement

If you are lucky enough to have lived in Paris as a young man, then wherever you go

for the rest of your life, it stays with you, for Paris is a moveable feast.

- Ernest Hemingway, A Moveable Feast.

Quand je suis venu à Paris le premier fois de ma vie, j’ai rêvé que je pourrai

habiter ici un jour. Paris étais très belle, romantique, animée. Chaque moment est

plein de joie et la vie de Paris semblait belle et rose à un jeune homme. Étonnam-

ment, ce rêve est devenu réalité subitement. J’ai visité l’IMJ-PRG en doctorant

pendant l’annee 2017 - 2018 et 2019 printemps. Heureusement, il y a beaucoup de

moments magnifiques et gentilles personnes qui m’ont aidé et encouragé. La vie à

paris a définitivement changé mon point de vue sur la vie et m’a appris la leçon:

Soyez heureux et profitez de ce que j’ai donné. C’est la vie. Je pourrai trouver des

millions de raisons de revenir à Paris a l’avenir.

Avant tout, je suis honoré et reconnaissant envers mon directeur Giovanni

Forni pour me pourvoir de moments précieux. Je suis très reconnaissant envers An-

ton Zorich et Carlos Matheus pour ses chaleureuses salutations et support pendant

tout cette période.

L’un des meilleurs moments de ma vie à Paris a été de participer un cour en

École Normale Supérieure. J’ai pris RER B à la gare de luxembourg et j’aimais

marcher à travers les petites ruelles pour les écoles dans la fraîcheur tous les matins.

Ensuite, j’arrive en classe et m’assieds en attendant que la classe commence. C’était

un moment paisible et heureux, un jour de mars. Sûrement, je remecie Anna Er-

schler de m’avoir appris la marche aléatoire et mon camarade de classe intelligent
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Emmanuel Rauzy. Merci à Antoine Julia, Juan-Pablo et Yi Pan pour me aider cours

en ENS aussi.

Remontons avant ma vie en Sophie Germain, Paris 7. Quand j’atterrissais on

Paris, je ne connaissais rien de parler français. Il faisait très froid, pauvre et seul et

il a fallu du temps pour que le printemp arrive. Je suis redevable à mes amis, sans

qui je n’aurais jamais résolu petits et grands problèms en ma nouvelle vie.

C’étais mon plasir de recontrer gens tous les jours et bavarder ensemble. Je

tiens à remecier particulierement les amis du bureau 652. (Élie Goudout, Kevin

Massard, Emmanuel Rauzy). Anna Rosine et Rodolfo David ont partagé le même

bureau à court terme et on a plasir ensemble. Vous me manquez. J’étais très

heureux de participer soutenance de E.L.I.E en Avril et content de recontrer la

généruse famille de Dr. Goûter.

Je remecie memberes de séminar etudiant systèmes dynamiques: Rodolfo

Gutiérrez, Yi Pan, Hao Wu, Frank Trujillo, Davi Obata, et Mauricio Poletti. Pas

seulement math, ils m’aident beaucoup de discutter. C’est aussi amusant et agréable

de avoir dejeuné et gouté avec mes amies à Sophie Germain: Wille, Omar, R.E.D.A

(SF3 garçon), Corentin, Sacha (Roi des clés), Charles, Jérémie (Piano garçon), Ro-
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Mon enfant, ma sœur,

Songe à la douceur

D’aller là-bas vivre ensemble !

Aimer à loisir,

Aimer et mourir

Au pays qui te ressemble !

Les soleils mouillés

De ces ciels brouillés

Pour mon esprit ont les charmes

Si mystérieux

De tes traîtrès yeux,

Brillant à travers leurs larmes.

Là, tout n’est qu’ordre et beauté,

Luxe, calme et volupté.

Des meubles luisants,

Polis par les ans,

Décoreraient notre chambre ;

Les plus rares fleurs

Mêlant leurs odeurs

Aux vagues senteurs de l’ambre,

Les riches plafonds,

Les miroirs profonds,

La splendeur orientale,

Tout y parlerait

À l’âme en secret

Sa douce langue natale.

Là, tout n’est qu’ordre et beauté,

Luxe, calme et volupté.

Vois sur ces canaux

Dormir ces vaisseaux

Dont l’humeur est vagabonde ;

C’est pour assouvir

Ton moindre désir

Qu’ils viennent du bout du monde.

- Les soleils couchants

Revêtent les champs,

Les canaux, la ville entière,

D’hyacinthe et d’or ;

Le monde s’endort

Dans une chaude lumière.

Là, tout n’est qu’ordre et beauté,

Luxe, calme et volupté.

L’Invitation au voyage, Les Fleurs du Mal (1857). Charles Baudelaire.
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