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Microorganisms play an important role in all of the Earth's ecosystems, and are critical 

for the health of humans [1], plants, and animals. Most microbes are not easily cultured  

[2]; yet, Metagenomics, the analysis of organismal DNA sequences obtained directly 

from an environmental sample, enables the study of these microorganisms. 

Metagenomic assembly is a computational process aimed at reconstructing genes and 

genomes from metagenomic mixtures. The two main paradigms for this method are de 

novo assembly (i.e., reconstructing genomes directly from the read data), and 

reference-guided assembly (i.e., reconstructing genomes using closely related 

organisms). Because the latter paradigm has a high computational cost—due to the 

mapping of tens of millions of reads to thousands of full genome sequences—

Metagenomic studies have primarily relied on the former paradigm.  

 



  

However, the increased availability of high-throughput sequencing technologies 

has generated thousands of bacterial genomes, making reference-guided assembly a 

valuable resource regardless of its computational cost. Thus, this study describes a 

novel metagenome assembly approach, called MetaCompass, that combines reference-

guided assembly and de novo assembly, and it is organized in the following stages: (i) 

selecting reference genomes from a database using a metagenomic taxonomy 

classification software that combines gene and genome comparison methods, achieving 

species and strain level resolution; (ii) performing reference-guided assembly in a new 

manner, which uses the minimum set cover principle to remove redundancy in a 

metagenome read mapping while performing consensus calling; and (iii) performing 

de novo assembly using the reads that have not been mapped to any reference genomes.     

We  show that MetaCompass improves the most common metrics used to evaluate 

assembly quality—contiguity, consistency, and reference-bases metrics—for both 

synthetic and real datasets such as the ones gathered in the Human Microbiome Project 

(HMP) [3], and it also facilitates the assembly of low abundance microorganisms 

retrieved with the reference-guided approach. Lastly, we used our HMP assembly 

results to characterize the relative advantages and limitations of de novo and reference-

guided assembly approaches, thereby providing guidance on analytical strategies for 

characterizing the human-associated microbiota. 
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Preface 

The algorithms, software, and results in this dissertation have either been published in 

peer-reviewed journals and conferences or are currently under preparation for submis- 

sion and/or available as a preprint. At the time of this writing, parts of Chapters 1, 2 

already been published and are reformatted here. Chapter 3 is under preparation for 

publication. Chapter 4 and 6 are available in a preprint and are under preparation for 

submission to a peer-reviewed journal. 
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validation: recent advances in assessing and improving the quality of genomes 

assembled from metagenomes. Briefings in Bioinformatics, bbx098. 
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assembly. 
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My contributions to this work include (1) design and implementation of the 

method, (2) doing software evaluation, and (3) writing the manuscript.  

• Chapters 4 and 5: 
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My contributions to this work include (1) Participating in the Winter Mid-
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reviewing the manuscript before publication. 
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Chapter 1: Introduction 

1.1 DNA basics 

DNA is a long chain of molecules that holds all the genetic information needed for the 

organisms to function and reproduce. The DNA alphabet is composed of four letters: 

A (Adenine), T (Thymidine), G (Guanine), and C (Cytosine), known as nucleotides. A 

DNA sequence can be represented as a string consisting of series of these four letters, 

and it is composed of two strands of nucleotides that “match” each other following a 

constraint: i.e., A always matches T and C always matches G. Because nucleotides pair 

up, each letter in the DNA sequence is called base pair (bp). Here we will only refer to 

the sequence of one strand. 

An organism’s genome sequence refers to an organism’s complete set of DNA 

(e.g., the human genome has 3.2 billion bp). A genome consists of a set of genes—

which are contiguous intervals of DNA that contain information needed to code for 

proteins or RNAs—that are paramount for answering a variety of biological questions, 

such as inheritance, ancestry, health and disease of an organism.  
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Table 1.1. Overview of sequencing technologies. 

 Technology           Read 

Length 

                    

  

Accuracy 

                    

  

Time per 

run 

Bases per 

run                    

  

 

Third- 

generation 

sequencing 

technologies 

Single Molecular Real 

Time Sequencing (Pacific 

Biosciences) 

10 kbp to  

15 kbp 

                    

  

87% 

(Low) 

                    

  

30 min. to 

4 hrs. 

                    

  

5-10 Gbp 

                    

  

Oxford Nanopore MinION 

Sequencing 

5 kbp to  

10 kbp 

70% to 

90% 

(Low) 

1 to 2 days 500 Mbp 

 

 

 

 

 

Second-

generation 

sequencing 

technologies 

Ion Semiconductor (Ion 

Torrent sequencing) 

Up to 

400 bp 

                    

  

98% 

(Medium) 

                    

  

2 hrs. 

                    

  

10 Gbp 

                    

  

Sequencing by synthesis 

(Illumina)  

50-300bp 

                    

  

99.9% 

(High) 

                    

  

1 to 11 

days 

                    

  

300Gbp 

                    

  

Sequencing by Ligation 

(SOLiD sequencing)   

75 bp 

                    

  

99.9%  

(High) 

                    

  

1 to 2 

weeks 

                    

  

3 Gbp 

                    

  

Pyrosequencing (454) 700 bp 
                    

  

99.9%  
(High) 

                    

  

24 hrs. 
                    

  

400 Mbp 
                    

  

First-

generation 

sequencing 

technologies 

Chain termination (Sanger 

sequencing) 

400 to  

900 bp 

                    

  

99.9%  

(High) 

                    

  

N/A 

                    

  

50-100 

Kbp 

          

 

1.2 DNA sequencing 

The process of determining the complete base pair sequence order of a string of DNA 

sequencing is called DNA sequencing or simply sequencing. The technique called 

shotgun sequencing randomly “breaks up” DNA into a collection of small fragments, 

and each fragment is individually sequenced into a read. In many cases, reads are pair 
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ended or mate-paired, which means that pairs of reads are sequenced from the same 

DNA fragment. The distance between the reads in each pair, and their relative 

orientation are approximately known.  

The various sequencing technologies developed over the past 40 years can be 

broadly classified into three generations based on key technological innovations (Table 

1.1). First-generation sequencing, usually referred to as Sanger sequencing, relied on 

DNA cloning, and therefore had limited throughput. The second-generation 

sequencing, often called short-read sequencing due to the much shorter length of the 

sequences compared to the Sanger technology, massively increased throughput by 

parallelizing many reactions on chips. Third-generation sequencing, also called single 

molecule or long-read sequencing, allows sequencing of single DNA molecules in 

contrast with prior technologies that required each molecule to be amplified [4].  Single 

molecule technologies can read substantially longer sequences than prior technologies. 

Sequencing technologies randomly oversample the genome and produce many 

overlapping reads such that the total amount of reads is greater than the amount needed 

to “cover” each base pair of the genome. The theoretical or expected coverage is the 

average number of times that each nucleotide is expected to be sequenced given a 

certain number of reads of a given length and the assumption that reads are randomly 

distributed across an idealized genome[5]. Empirically, the term “depth of coverage” 

(usually referred to as coverage) is defined as the average number of times a base of a 

genome is sequenced or “covered” by a read. The term “breadth of coverage”, on the 

other hand, is defined as the percentage of bases of a genome that are sequenced, or the 

percentage of the genome “covered” by reads (Figure 1.1). 
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Figure 1.1. Depth and Breadth of coverage. 

In this example, the depth of coverage of the reference genome (10 Mbp) is 4X (there 

is average of 4 reads per base pair). The breadth of coverage is 90% of the reference 

genomes, or, in other words, 1 Mbp of the genome is not covered by any read. 

1.3 Genome assembly  

Genome assembly is the reconstruction of a genome from short overlapping reads, and 

it is a complex computational tasks due to DNA segments repeated within a same 

organism, also known as “intragenomic repeats” (Figure 1.2 A) [6]. Repeats present a 

challenge, because different genomic regions that share repeats can be 

indistinguishable if the repeats are longer than the reads. Therefore, if a genome region 

has a repeat, the repeat will introduce several possible sequences or paths in the 

assembly graph. It has been shown that assembly complexity is directly tied to the ratio 

between the sequencing read length and the length of repeats [7].  

Algorithms and computational tools called “genome assemblers” are able to 

reconstruct near-complete genome sequences from reads and they fall into two 

paradigms: the de novo assembly strategy where reads are used to reconstruct the 

genome without prior knowledge of the source of DNA, and a reference-guided 

assembly (also known as comparative assembly), in which reads are aligned to a 

reference genome.  Although the first genome assembler was developed almost three 
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decades ago and now there are numerous computational tools to tackle genome 

assembly, genome assembly remains a challenging computational problem. In most 

cases, genome assemblers cannot fully reconstruct an organism’s genome and the 

output consists of a set of continuous fragments called contigs. 

 

Figure 1.2. The challenge of repeats in metagenomes. 

Three genomes are used to depict intragenomic (A) and intergenomic (B) repeats. The dark 

blue and light blue genomes represent two closely related strains and the green genome an 

unrelated strain. Within the genomes the red, orange, and tan blocks represent inparalogs. The 

yellow blocks represent a horizontal gene transfer event between the light blue and green 

genomes. In traditional assembly, any reads longer than the inparalog blocks (red, orange) 

would be sufficient to fully resolve the genome. In metagenomic assembly, reads longer than 

the full syntenic block (gray) would be necessary. 

1.3.1 De novo assembly 

Currently, most state of the art de novo genome assemblers use a graph-based approach, 

where the problem can be formulated as a Hamiltonian or Eulerian path problem [8], 

depending on how the reads and overlaps are defined. Ideally, the genome assembly 

problem has one solution, but the graph formulations can have many solutions and 

finding the correct solution (genome assembly) is NP-hard [9]. Due to the 

computational intractability, three heuristic based methods have been developed 
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throughout time to perform de novo assembly: Greedy assembly, Overlap-layout 

consensus assembly, and de Bruijn graph assembly—currently the most widely used 

technique (Figure 1.3).  

 

Figure 1.3. Overview of different de novo assembly paradigms.  

Schematic representation of the three main paradigms for genome assembly – Greedy, Overlap-

Layout-Consensus, and de Bruijn. In Greedy assembler, reads with maximum overlaps are 

iteratively merged into contigs. In Overlap-Layout-Consensus approach, a graph is constructed 

by finding overlaps between all pairs of reads. This graph is further simplified and contigs are 

constructed by finding branch-less paths in the graph and taking the consensus sequence of the 

overlapping reads implied by the corresponding paths. Contigs are further organized and 

extended using mate pair information. In de Bruijn graph assemblers, reads are cut into short 

overlapping segments (k-mers) organized in a de Bruijn graph structure based on their co-

occurrence across reads. The graph is simplified to remove artifacts due to sequencing errors, 

and branch-less paths are reported as contigs. 
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1.3.1.1 Greedy assembly 

This approach first identifies overlaps between pairs of reads and merges reads with 

the best overlaps. The overlap and merging steps continue in an iterative way until all 

reads and overlaps are merged. The main advantages of the greedy assembly method is 

the simplicity of its algorithm, which makes it easy to implement, and its effectivity 

when the genome contains only short or no repeats. Its disadvantage, on the other hand, 

is that the choices made during the merging steps are locally optimal and do not 

consider global relationships between reads. As a result, this approach can produce 

incorrect assemblies within repetitive sequences.  

1.3.1.2 Overlap-layout consensus (OLC) 

This method was developed in 1995[9] and was used to assemble the first bacterial 

genome, Haemophilus influenzae [10][11], and the first human genome [12][13].  

The OLC approach has three steps. In the first overlap step, it computes all 

pairwise overlaps with a dynamic programming-based alignment algorithm. The 

complexity of this computational step is quadratic in terms of the number of reads. 

Then an overlap graph is generated from both the reads and pairwise overlaps, using 

reads as vertices and overlaps as edges. In the second layout step, the overlap graph is 

simplified to identify a path (or “layout”) of the reads along the genome that 

corresponds to its sequence. And, finally, in the consensus step the layout is used to 

construct a multiple alignment of the reads to infer the sequence of the genome.  

This approach is effective at high error rates, but its efficiency is reduced with 

high depth of coverage due to the complexity of the overlap computation step. 

Therefore, this approach is more suitable for relatively long reads such as those 
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generated by first and third-generation technologies, and it is also particularly 

beneficial in assembling reads with high error rates, such as those generated by third 

generation technologies. 

1.3.1.3 De Bruijn Graph (DBG) 

The DBG approach became popular with the appearance of second-generation 

sequencing technologies, which increased the throughput to hundreds of millions of 

reads, as opposed to the Greedy and OLC assembly approaches that were designed for 

first-generation sequencing, and which did not scale well.  

The reads are used to construct a DBG as follows: each read is decomposed into 

overlapping segments of equal length k, called k-mers. The k-mers become the nodes 

of the graph, and the edges connect nodes with k-1 matching bases. In this approach 

reads are not explicitly aligned to each other, rather their overlaps can be inferred from 

the fact that they share k-mers.  

The DBG is a multigraph due to repeats. Repeats create additional edges in the 

graph, increasing the number of possible traversals. Given a collection of all k-mers in 

a genome sequence, the assembly problem reduces to finding an Eulerian path—a path 

through the graph that visits each edge once.  

The de Bruijn formulation above assumes perfect data and makes the 

assumption that for a given read length k, we are given all length-k substrings of a 

genome as well as the number of times they occur. In practice, not all substrings are 

obtained, and several factors impact the performance of de Bruijn graph assemblers: (i) 

sequencing errors; (ii) repeats; and (iii) the depth of sequencing coverage. The interplay 
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between these factors drives the choice of optimal k-mer size for a specific application 

as well as the ultimate performance of an assembler. 

Unlike the Overlap-Layout-Consensus approach, the DBG paradigm is affected 

by read errors. Sequencing errors create incorrect k-mers thereby increasing the 

complexity of the graph and making it more difficult to identify an unambiguous 

reconstruction of a sequence. These errors must be eliminated prior to identifying an 

Eulerian path in the graph. Every error impacts at most k different k-mers, thus the 

impact of sequencing errors increases with the size of k. As a result, assemblers often 

include a correction step or assume pre-corrected data as input. Initial de Bruijn 

assemblers used spectral correction [14], which attempts to make a minimum number 

of changes in a sequence to make it consistent with correct or “solid” k-mers [15,16].  

Repeats create ambiguity in the reconstruction of the genome and therefore a 

larger possible space of solutions must be explored [7].  Without further information, 

an assembler can randomly choose one of the branches, possibly leading to assembly 

errors, or decide to break the assembly, leading to fragmented results. Large values of 

k reduce the complexity of the graph and impact of repeats, but using such values 

requires longer sequences (longer than the k-mer size) as well as a higher depth of 

coverage, leading to an increased impact of sequencing errors (each error impacts k 

different k-mers). Conversely, shorter k-mers mitigate the impact of sequencing errors 

but lead to a higher impact of repeats on assembly effectiveness. Assuming uniform 

error and random sequencing, it is possible to compute the expected surviving coverage 

for a given k-mer size and input coverage [17]. These trade-offs represent a key 
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component of the algorithmic choices made by the assembly software and also guide 

the empirical choices made by users of assembly tools. 

Finally, the depth of coverage impacts the connectivity of the DBG graph. A 

path stretching from one read to another across an entire genome can only be found if 

adjacent reads share k-mers. At low depths of coverage, the adjacent reads are only 

expected to overlap by a small extent, and as a result the assembly is only possible for 

small values of k. 

1.3.2 Reference-guided assembly 

The reference-guided assembly approach consists of two steps: first, all the reads are 

aligned against the reference genome; then a consensus sequence is generated by 

calling a base at each position where reads have mapped along the reference genome. 

This approach is more effective than de novo assembly in resolving repeats and is thus 

able to get better results than de novo approaches especially at low depths of coverage. 

Long repeats are still a challenge as they lead to an ambiguous alignment of reads 

against the genome, though the use of mate-pair information can partly mitigate this 

issue and can help to identify the correct placement of reads. At the same time, the 

effectiveness of the comparative assembly approach depends on the availability of a 

closely related reference sequence. Differences between the genome being assembled 

and the reference can lead to either errors in reconstruction or to a fragmented 

assembly. The AMOScmp [18,19] comparative assembler attempts to identify such 

polymorphisms and rearrangements between genomes, and breaks the assembly at 

these locations in order to avoid mis-assemblies. 
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Several tools were developed to help augment or improve de novo assemblies 

with the help of reference genomes. OSLay [20], Projector 2 [21], ABACAS [22] and 

r2cat [23] simply use a reference sequences to identify the correct order and orientation 

of contigs from a de novo assembly. An extension of this approach was proposed by 

Husemann et al. [24] that leverages information from multiple related genomes, 

weighted by their evolutionary distance from the sequence being assembled. 

Scaffold_builder [25] also provides functionality to join together contigs that were left 

unassembled by the de novo approach, thereby helping improve the assembly through 

the use of a reference sequence. Finally, E-RGA [26] performs de novo and reference 

guided assembly independently first and then merges two assemblies later using a novel 

data structure called merge graph to avoid mis-assemblies and ambiguous overlaps. 

1.4 Metagenomics 

Metagenomics studies microbial samples directly taken from the environment. This 

technology allows research in human microbiome, soil, air, bodies of water, surfaces, 

and virtually any place where there is a community of interest. The advantage of 

metagenomic sequencing over single genome sequencing is the possibility of studying 

all the archaea, bacteria, plasmids, and viruses present at a given time in a sample. This 

same feature is also a challenge, for the microbial composition of the sample is 

unknown. 

In the following chapter we further outline several approaches developed to 

address both the composition and the assembly of a metagenomic sample. 
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Chapter 2: Related work 

2.1 Discovering microbes present in a metagenomic sample 

Finding and quantifying the composition of a microbial community is a fundamental 

part of metagenomics. This process is both biologically and computationally 

challenging.  

In this chapter, we outline key biological concepts to understand how 

microorganisms can be computationally classified and quantified. Then, we describe 

current computational approaches used to classify and determine the composition of a 

metagenomic sample. 

2.1.1 Taxonomic classification of metagenomes 

Taxonomy classifies living organisms into eight ranks: domain, kingdom, phylum, 

class, order, family, genus, and species. Each taxonomic rank is called taxon (plural 

taxa). Bacteria and archaea—the organism of interest in a metagenomic sample—

belong to the prokaryotic domain in the tree of life and can be further classified into a 

taxonomy rank below species called strain—which are genetic variants (or subtypes) 

within a species.  

Taxonomic profiling is the computational process of inferring which taxonomic 

ranks are present in a microbial community (taxonomy classification) and estimating 

their relative abundances [27]. In metagenomics, marker genes are genes that are 

conserved across species, and thus are suitable to discriminate between taxonomic 
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ranks. The most widely used approaches for metagenomics taxonomy profiling use two 

type of marker genes universally present in prokaryotes: single genetic markers called 

16S rRNA genes, and protein coding single-copy orthologous genes.  

In bacteria and archaea, the genes coding for the 16S ribosomal RNA (16S 

rRNA), part of the 30S small ribosomal unit, are referred to as 16S rRNA genes. These 

genes sequences consist of nine conserved regions separated by nine hypervariable 

regions (V1-V9). Highly conserved regions can be used as PCR primer bonding sites 

to amplify and sequence one or more hypervariable regions of the 16S rRNA gene, 

which, in turn, are used to identify the phylogeny of microorganism [28]. Such 

characteristics have made 16S rRNA sequencing one of the most widely used 

approaches to characterize the taxonomic diversity of a metagenomic sample. 

After sequencing, 16S rRNA analysis pipelines [29–31] start by clustering 

reads based on sequence similarity into Operational Taxonomic Units (OTUs). Then, a 

representative sequence from each OTU is compared against curated 16S rRNA 

reference databases [32–35] to assign taxonomic labels. The taxonomic resolution of 

16S pipelines is usually limited to genus level. 

The 16S approach has several known shortcomings: (i) different organisms 

contain different copy numbers of 16S rRNA genes, introducing abundance estimation 

biases [36]; (ii) the amplification process introduces biases [37,38]; (iii) targeting 

different sub-regions of the 16S rRNA gene can influence the taxonomic assignment 

[39]; and (iv) problems differentiating species in an accurate and consistent manner 

[40]. 
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One of the possible explanations of the 16S rRNA gene problems to delineate 

taxa is its extremely slow rate of evolution. Thus, organisms from closely related but 

different taxa (e.g. different species from the same genera) might not have evolved fast 

enough to diverge in their 16S rRNA gene sequences [41,42]. Single-copy protein-

coding orthologous genes, usually called single-copy marker genes, evolve faster than 

16S rRNA and have been shown to have more power at resolving the relationships of 

closely related species [43]. Moreover, single-copy marker genes overcome many of 

the shortcomings of 16S rRNA genes. First, single-copy marker genes can be retrieved 

by sequencing the whole metagenomic dataset instead of targeting one gene, avoiding 

amplification biases. Second, they are not biased by copy number variation, allowing a 

more accurate abundance estimation of metagenomes. Lastly, single-copy marker 

genes can provide microbial species boundaries at higher resolution than 16S rRNA 

genes [44,45]. 

Several studies (Ciccarelli et al. [46] , Sorek et al. [44]) identified 40 universal 

single copy marker gene families that are present in all bacteria and archaea and can be 

used to reconstruct a phylogenetic tree [43,44]. These marker genes families are 

available in the Clusters of Orthologous Groups of proteins (COGs) public database 

[47,48]. Single copy marker genes can be extracted from microbial genomes using 

Hidden Markov Models (HMMs) trained on protein alignments [45]. Single-copy 

protein-coding orthologous genes are currently the most used marker genes in 

metagenomic studies and are part of some of the methods described below. 
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2.1.2 Current methods for taxonomic classification of metagenomes 

The taxonomic classification of metagenomes is computationally challenging for two 

reasons. First, high-throughput sequences technologies generate millions of reads that 

need to be analyzed. Second, there are hundreds of thousands microbial genomes 

available in public databases and the number is constantly increasing. Thus, the number 

of comparisons that need to be performed to analyze a metagenomic sequencing dataset 

is considerably large. 

In this section, we highlight published methods for metagenomic taxonomy 

classification. Most methods gather genomic, genetic, and taxonomy information from 

the public NCBI Reference Sequence Database (RefSeq) [49–52]. Several methods  

performed well in a recent review [53]. 

2.1.2.1 Whole genome alignment-based methods 

The most intuitive approach for predicting the composition of a metagenomic sample 

is comparing each read to a database of reference genomes. This task can be 

accomplished by traditional methods based on local sequence alignment [54,55], which 

are highly accurate. Yet, while effective, aligning each read individually to a database 

of whole genomes can become prohibitively slow. Here we described the most popular 

alignment-based methods. 

 

BLAST (basic local alignment search tool) [56,57] is the most widely used software 

suite for sequence alignment (at nucleotide and protein level) and has been shown to 

align reads with greater accuracy than other sequence alignment methods [58]. BLAST 

was designed to find local similarities between one or more “query” sequences and one 
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or more “subject” sequences within a database. The intuition behind BLAST is that if 

the query and subject sequences are highly similar, they will contain exactly matching 

k-mers or “seeds”. Before running a BLAST search, a database is created from subject 

sequences by decomposing them into seeds (k-mers of length 7 to 11) and then storing 

them in a hash table. During the search, BLAST performs local sequence alignment 

using a seed-and-extend algorithm. In the seed step, the query is decomposed into seeds 

and then looked up into the hash table to locate seed matches between the query and 

subject. In the extend step, matching seeds are joined and extend using the Smith-

Waterman alignment algorithm [59]. In a metagenomic sequencing experiment, a 

massive set of reads correspond to the query and the hundreds of thousands microbial 

reference genomes correspond to the subject. Although BLAST was not designed for 

metagenomics and it is computationally intensive, it has been incorporated in several 

metagenomic classification tools described below as a pre-filter for read classification 

due to his accuracy.  

 

MegaBLAST [60], which is part of the BLAST software suite, was designed to 

compare highly similar sequences. MegaBLAST uses a greedy algorithm to perform 

gapped alignments between nucleotide sequences, and longer seeds (length 28) to 

reduce the number of alignments and accelerate the search. This is the only tool from 

the BLAST+ software suit that can compare metagenomic reads to a reference genome 

database in a feasible amount of time. MegaBLAST can also serve as a pre-filter for 

read classification. 



 

 

17 

 

DIAMOND (double index alignment of next-generation sequencing data) [61] is a 

protein-based method similar to BLASTx—BLAST module that translates the query 

into its six reading frames and compares it to a protein database— to align read queries 

to a protein database. Similar to MegaBLAST, it uses a longer seed (length from 15 to 

24) to speed up the search of its BLASTx-like approach, and its main novelty is the use 

of double-indexing to determine the list of all seeds and their locations in both the query 

and subject. Double indexing improves cache locality, thus reducing memory usage. 

Although not designed for metagenomics classification, a DIAMOND search is usually 

followed by MEGAN [55], which post-processes sequence alignments and assigns 

each read to taxa using the lowest common ancestor (LCA) algorithm. 

 

Kaiju [62] is a protein-based classifier that finds maximum inexact matches on the 

protein-level using the Burrows–Wheeler transform (BWT) [63] and FM-index [64]. 

The use of the FM-index to store the reference genomes reduces memory requirements 

compared to both BLAST and DIAMOND. Kaiju first translates each read into six-

reading frames and then searches for MEMs (Maximal exact matches) in the FM-index. 

Then taxonomic assignment is done by assigning reads to the longest MEM, or to the 

LCA taxon if a read matches multiple taxa. Kaiju also has a greedy search mode which 

allows some mismatches by searching backwards in the BWT. 

2.1.2.2 Marker gene alignment-based methods 

As described in the previous section, marker genes are ideal for taxonomic profiling of 

metagenomic samples. While traditional sequence alignment methods can become 

prohibitively slow, by using marker genes instead is much faster due to the reduced 
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size of the subject database [62,65–67]. Thus, traditional sequence alignment methods, 

such as BLAST, can quickly align reads to marker genes while maintaining high 

accuracy. The following methods are based on marker gene sequence alignment. 

 

MetaPhyler [65] is a taxonomic classifier that relies on 30 marker genes as a 

taxonomic reference. First, MetaPhyler aligns a metagenomic sample against a marker 

gene database using BLAST. It then classifies each read individually based on its best 

blast-hit alignments to the database, and it uses different thresholds (automatically 

learned from the reference database) for each combination of taxa, reference gene, and 

sequence length. MetaPhyler achieves genus and species level taxonomic resolution. 

 

MetaPhlAn (Metagenomic Phylogenetic Analysis) is a taxonomic classifier that relies 

on a clade-specific marker gene database. Reads are aligned to the marker gene 

database using Bowtie2 [68]. The total number of reads in each clade is normalized by 

marker gene length to then provide a relative abundance of each taxon. MetaPhlAn 

achieves genus and species level taxonomic resolution. 

2.1.2.3 K-mer-based methods 

 

K-mer based methods provide a fast identification of a metagenomic sample by relying 

on exact-match database queries instead of alignment. To achieve this, these methods 

pre-compute all k-mers contained in a database of complete microbial genomes [69–

71]. 
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Although k-mer approaches were created to achieve maximal speed, their main 

drawback is its substantial memory requirement. More recently, methods using a subset 

of k-mers to reduce the dimension of the problem have been developed [72–74], 

drastically reducing memory requirements. Regardless of the efficiency of k-mer-based   

approaches, a main shortcoming is their lower accuracy compared to alignment-based 

sequencing methods. 

 

Kraken [71,75], the first k-mer based taxonomic classifier, uses a hash-based index to 

store a genome’s k-mers along with its taxonomic label. If a k-mer is shared across 

multiple taxa, the k-mer is stored along with the LCA of those taxa. During the 

classification, Kraken decomposes each read into its constituent k-mers and then maps 

each k-mer to the database with an inexpensive table lookup. Because Kraken assigns 

reads to the LCA of taxa, many reads don’t get specific labels assigned. To tackle this 

problem, BRACKEN (Bayesian Reestimation of Abundance after Classification with 

Kraken) [76] was designed to re-estimate taxonomic abundance from Kraken results, 

and it estimates abundance by redistributing read assignments in the taxonomic tree 

using Bayesian probabilities. Bracken achieves genus and species level taxonomic 

resolution. 

 

CLARK [70], similar to Kraken, builds a database of genome’s k-mers. However, 

CLARK reduces the size of the k-mer by storing only species or genus-level specific 

k-mers and removing nonunique k-mers and rare k-mers, which also reduces noise 
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during the classification. CLARK-S [77] improves CLARK’s sensitivity by replacing 

fixed-length k-mers with target-specific or discriminative spaced k-mers. 

 

Mash Screen [78] is an extension of Mash [73], a tool that uses MinHash 

dimensionality reduction techniques to quickly calculate the approximated distance 

between two genomes via Jaccard index. Mash Screen introduces the concept of 

“screen”, in which a genome database is tested for their containment within a set of 

metagenomic reads. For each reference genome, Mash Screen computes a containment 

score that measures the similarity of the reference genome to a metagenomic dataset. 

Similar to BLAST and DIAMOND, Mash Screen was not designed for taxonomy 

classification but can serve as a pre-filtering step. 

2.1.3 Metrics to evaluate taxonomy classification of metagenomes 

The metrics selected to benchmark metagenomic classifiers greatly influence their 

relative rankings and performance. Different metrics have been applied for evaluating 

the binary classification task of predicting taxa presence or absence. The most 

commonly metrics for presence or absence in metagenomic classification used across 

benchmarking studies [79–81] are precision, recall, F1 score, and  the Jaccard index.  

Precision, also known as positive predictive value, refers to the proportion of 

true positive classifications, out of the total number of classifications attempted: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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In the context of metagenome classification, precision can be calculated by taxon as 

the proportion of correct classification in the sample divided by the number of total 

classifications identified by the method. 

Recall, also known as sensitivity or true positive rate, is defined as the 

proportion of true positive classifications out of the total true positives plus false 

negatives being tested:  

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

  In the context of metagenome classification, recall can be calculated by taxon 

as the proportion of correct classifications divided by the number of distinct elements 

in the sample. 

There is a fundamental trade-off between precision and recall. Depending on 

the downstream analysis being performed after taxonomy classification, achieving 

either a higher precision or a higher recall can be preferred. Precision can represent a 

measure of exactness or quality, while recall a measure of completeness or quantity. In 

reference-based methods, such as reference-guided metagenome assembly and 

pangenome-based analysis, it is desired to retrieve all-known taxa present in the 

classification (higher recall) without sacrificing precision. 

The F1 Score measures the balance between precision and recall. The F1 score 

is the harmonic mean of recall and precision, weighting them equally in a single metric: 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Finally, the Jaccard index refers to the number of true positives (intersect 

between predicted and real communities) divided by the true positives plus the false 

positives and negatives: 

𝑱𝒂𝒄𝒄𝒂𝒓𝒅 𝒊𝒏𝒅𝒆𝒙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

To provide a realistic estimate of precision, recall, F1 score, and Jaccard index 

for benchmarking, all taxonomy classifiers should be tested using the same abundance 

threshold. 

2.2 Metagenomic assembly 

The goal of metagenomic assembly is to reconstruct the genomes of all organisms in a 

given microbial community. Metagenomic datasets are commonly sequenced using 

short second-generation reads. Thus, similarly to the de novo genome assembly 

problem, the short-metagenome assembly problem can be formulated as a DBG 

problem. In a metagenomic context, the task of a DBG metagenome assembler is not 

just to reconstruct one path through a graph, but a multitude of paths that come together 

and split apart at different places.  

As described in Chapter 1, the main factors affecting the performance of single 

genome DBG assemblers are sequencing errors, repeats—the presence of repetitive 

DNA segments within an organism's genome (intragenomic repeats)—, and the depth 

of sequencing coverage. Furthermore, the problem of reconstructing a metagenome is 

complicated by: (i) the presence of strain variants; (ii) the combination of both 

intragenomic and intergenomic repeats (DNA segments shared between distinct 

organisms, Figure 1B); and (iii) the uneven sequencing coverage within a metagenome. 
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Strain variants create a challenge similar to sequencing errors and in highly 

polymorphic samples the assembly result will likely be fragmented [82].  Furthermore, 

distinguishing true biological differences from sequencing errors becomes nearly 

impossible in a metagenomic setting.  

Intragenomic repeats are generally small (usually smaller than ~10,000 bp in 

bacteria [83,84]) but  intergenomic repeats can be nearly the entire chromosomes for 

closely related strains. Multiple bacteria from the same species in a community (strain 

variants) may differ in just one gene, in which case almost the entire genomes are inter-

genomic repeats. The decision of whether such differences can be ignored when 

reconstructing the corresponding genome, or whether it is proper to reconstruct 

individual-specific genomes, is not only computationally difficult but also ill-defined 

from a biological point of view.  

Due to uneven sequencing coverage within a metagenome, coverage heuristics 

employed for single genome assembly can no longer be used to detect repeats [85]. 

Organisms sequenced at high depth of coverage (often exceeding 1000-fold) lead to 

high computational costs. In a DBG, the higher depth of coverage amplifies the effect 

of errors on the assembly graph and may even confuse error correction algorithms 

(simply by chance multiple random errors can confirm each other). Organisms 

sequenced at low depth of coverage (less than 10-fold) can be assembled using shorter 

k-mers, but this strategy can lead to a higher impact of repeats on the assembly.  

Due to these complications, despite initial attempts, algorithms developed for a 

single genome assembly cannot be applied directly to metagenomics data. Instead, 
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several approaches, mostly under the DBG paradigm, have been developed that 

explicitly consider the specific characteristics of metagenomic datasets.  

2.2.1 Current methods for metagenomic assembly 

Various de novo assemblers [3,4,8,10] have been developed and applied to the 

assembly of metagenomes from massive amounts of short reads. In this section, we 

highlight three published algorithms developed specifically for de novo metagenomic 

assembly that perform well in recent reviews [86,87].  

 

IDBA-UD [88] is part of the IDBA (Iterative De Bruijn Graph De Novo Assembler) 

[89] suite of assemblers. A key algorithmic component of IDBA assemblers is the use 

of multiple k-mer sizes to address the trade-offs of different choices of k. To improve 

the DBG, IDBA-UD iterates through a range of k-mer values in a stepwise fashion. 

Sequencing errors are corrected at each iteration, reducing its impact in the assembly. 

The assembly graph becomes more resolved with increasing k-mer size in each 

iteration step, resulting in a more contiguous assembly. 

 

MEGAHIT [90] relies on the same multiple k-mer strategy as the [90] IDBA 

assemblers [89].  MEGAHIT is currently the most efficient de novo assembler largely 

due to its use of efficient data-structures for storing the de Bruijn graph[87]. Memory 

requirements are reduced by using a new data structure, called succinctly de Bruijn 

graph [91]. Memory is further reduced by eliminating k-mers below a defined 

frequency threshold from the graph. This step also minimizes the negative impact of 
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sequencing errors on the assembly. To retain k-mers from low abundance organisms, 

distinguishing them from errors, MEGAHIT reconsiders discarded k-mers in low-

coverage regions of the assembly graph.  

 

MetaSPAdes [92] is a metagenomic-specific version of the SPAdes assembler [93], 

and it was originally designed to address two major issues of single cell sequencing 

data: the uneven read coverage and chimeric sequences—issues that are also relevant 

to metagenomic assembly. The main innovation in these family of assemblers is the 

use of paired-end information during the assembly process rather than afterwards [94]. 

This information is incorporated in the DBG by using pairs of k-mers separated by an 

estimated distance. Similar to IDBA-UD and MEGAHIT, SPAdes follows an iterative 

multiple k-mer approach, and, moreover, it uses the complete read information together 

with the preassembled contigs at every step. In addition, metaSPAdes was extended to 

handle strain variation; micro-variations between highly similar “strain-contigs” are 

combined to form high quality consensus sequences, aiming at the best possible 

representation of each species instead of every strain variant. MetaSPAdes is slower 

than IDBA-UD and MEGAHIT and it is not scalable to large datasets[87]. 

 

Despite advances in metagenomic assembly algorithms [88,95–98], the 

assembly problem remains computationally challenging. As mentioned in Chapter 1, 

reference-guided assembly is more effective than the de novo assembly when 

sufficiently closely related sequences are available, yet, it has not been applied to 



 

 

26 

 

metagenomics. In this regard, a metagenomic reference-guided approach will be 

discussed in Chapter 4. 

2.2.2 Metagenome assembly validation 

The validation of genome assemblies has been an active area of interest since the 

development of the first genome assemblers in the late 1970s [99]. The most commonly 

used metrics to evaluate the quality of metagenomics assembly can be classified into 

(i) contiguity-based, (ii) completeness-based, (iii) reference-based, and (iv) 

consistency-based. Contiguity, completeness and consistency-based metrics rely on 

features of the assembled data, seeking to identify internal inconsistencies indicative of 

potential assembly errors. Reference-based metrics need to know the “ground truth” 

genomes used for generating the metagenomic reads. 

2.2.2.1 Contiguity-based metrics 

Contiguity-based metrics are the most intuitive. These metrics evaluate how 

fragmented the final assembly is. The most common metric used to compare 

assemblies, the number of contigs (total number of assembled contigs reported by each 

assembler), attempts to assess how far the assembly is from the ideal goal of one contig 

per chromosome. Since most assemblies consist of many small contigs, usually due to 

sequencing errors or other artifacts, this metric can be misleading. More robust 

measures are the Contig Number at 1Mbp (the number of contigs required to exceed 

1Mbp) and the Assembly size at 1MBp (the size of the largest contig C such that the 

sum of all contigs larger than C exceeds 1Mbp). The choice of 1Mbp is driven by 

bacterial and archaeal genome sizes: while the average length of such organisms is 



 

 

27 

 

usually longer than 3Mbp, many of them encompass multiple replicons of shorter 

length (~0.3-1.3Mbp) [100]. Since the real average length of replicons in a metagenome 

is arbitrary, using 2-5Mbps is also reasonable.  

The contiguity metrics already described do not take any correctness 

information into account and can be misled by accepting errors—a single long contig 

can be constructed by concatenating all the reads in an incorrect order. 

2.2.2.2 Completeness-based metrics 

The most intuitive completeness-based metric is the total assembly size, which is the 

total number of bases in the assembly. The gene information contained in a 

metagenome assembly can also be used not only to evaluate completeness but also to 

measure how useful an assembly may be to downstream analyses. As genes are used to 

address biological questions, a greater number or density of genes results in more 

information available for testing biological hypotheses. Single-copy marker genes, here 

referred simply as marker genes, can be assumed to exist in all newly assembled 

bacterial and archaeal sequence. Thus, an assembly where some of these genes are 

missing can be assumed to be incomplete. Additionally, complete genes and marker 

genes metrics can be used as a measure of correctness, as assembly errors would disrupt 

ORFs (open reading frames). The completeness-based metrics used to represent a 

metagenome’s gene content are complete genes and complete marker genes, which are 

the median number of fully reconstructed complete genes and the marker genes, 

respectively. 
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2.2.2.3 Reference-based metrics 

To calculate reference-based validation metrics,  the assembly is compared to a 

database containing previously assembled genes or genomes [101,102]. The most 

common reference-based metrics are: (i) Genome Recovery (%), which is the median 

percentage of each truth genome that is recovered; (ii) Total Aligned Length, which is 

the sum of the length of contigs aligned to the truth genomes; (iii) Total Unaligned 

Length, which is the sum of the length of unaligned contigs; and (iv) NGAx, which is 

the length of the contig that covers at least half the reference genome. 

Reference-based metrics are particularly effective in benchmarking 

experiments that try to reconstruct communities with known composition. However, 

these metrics can have limited effectiveness in real datasets. For example, metagenomic 

segments originating from a genome for which no reference sequence is available 

cannot be verified through a reference-based approach. It is also difficult to determine 

whether differences between an assembled contig and the reference genome are true 

differences o errors. 

2.2.2.4 Consistency-based metrics 

It is often important to determine where exactly errors were introduced in the assembly, 

either to correct these mistakes, or to ensure that the errors do not influence the results 

of downstream analyses. The major types of assembly errors are: repeat collapse, 

insertions, deletions, and inversions (Figure 2.1).  

Consistency-based metrics evaluate assembly errors by aligning sequencing 

reads to the assembly and finding regions where the mappings are inconsistent. 
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Common consistency-based metrics include depth of coverage, consensus, split read 

mapping and insert size consistency. 

The depth of coverage metric is a statistical comparison of global vs local 

coverage, as signature of compressed or expanded repeats. Increases in coverage show 

collapsed repeats, while drops in coverage or coverage gaps can show breakpoints due 

to insertions, deletions, and inversions. Consensus refers to the concordance of the 

consensus to the read pileup. Split-read mapping measures single reads with partial 

alignments to separate locations of a genome. Lastly, insert size consistency evaluates 

the concordance of the insert size (distance between read pairs); increase in insert size 

shows expanded repeats and decrease size shows collapsed repeats. 

 

 

Figure 2.1. Metagenome assembly error signatures. 

There are four primary types of assembly errors, repeat collapse, insertions, deletions, and 

inversions. These assembly errors can be identified by mapping reads to the assembly and 

evaluating the coverage (blue curve), distance between read pairs (green reads), and split read 

mapping data (green reads). Increase in coverage indicates repeat collapse whereas drops in 



 

 

30 

 

coverage indicate breakpoints for insertions, deletions, and inversions. Shorter than expected 

distance between read pairs indicates potential repeat collapse or deletion, whereas increase in 

distance between read pairs indicates a potential insertion. Inconsistency in read pair direction 

can indicate an inversion. Finally, split-read mapping data, obtained by independently aligning 

the first and last third of a read can be used in a similar manner to read pair information to 

identify assembly errors [103].  

 

2.2.2.5 Current Methods for Metagenome assembly validation 

The software packages CheckM [104] and BUSCO [105] are only based on 

completeness-based metrics. CheckM relies on single-copy marker genes that are 

specific to a genome-based lineage within a reference tree, while also supplying 

information to correct the assemblies. BUSCO (Benchmarking Universal Single-Copy 

Orthologs) evaluates assemblies by measuring single copy ortholog marker genes and 

it estimates contamination from the recovered genes. 

The most used tool for metagenome assembly validation is the tool called 

MetaQUAST [106], which, unlike the previous ones that only use completeness 

metrics, incorporates contiguity, consistency, and reference-based metrics. 

MetaQUAST is a modification of QUAST [107], an isolate genome assembly 

validation tool that computes alignments of assembled contigs to a single reference 

genome. Similar to QUAST, MetaQUAST identifies mis-assemblies relative to a set of 

reference genomes. Additionally, metaQUAST applies a structural variant finding 

algorithm to distinguish between structural variants and true assembly errors.  

2.3 Conclusion 

In this chapter, we first introduced the concept of taxonomy classification—finding the 

organisms present in a metagenomic sample—and then described several methods—

whole genome alignment, marker gene alignment, and k-mer-based—to accomplish 
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this task. Secondly, we reviewed contemporary advances and challenges in de novo 

metagenomic assembly and outlined the main challenges faced by de novo 

metagenomic assemblers. Lastly, we described current methods and strategies for 

metagenome assembly validation and error characterization based on contiguity, 

completeness, consistency and references. In the following two chapters, we present 

our method for both taxonomy classification and metagenome assembly. 
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Chapter 3: Selecting references genome for metagenomic 

reference-guided assembly 

3.1 Introduction 

As mentioned in Chapter 1, reference-guided assembly is an effective approach when 

sufficiently closely related sequences are available, yet, it has not been applied to 

metagenomics. Differences between the genomes being assembled and the references 

can greatly affect the final assembly by either leading to errors in reconstruction or to 

a fragmented assembly. Therefore, selecting closely related reference genomes is a 

crucial step before reference-guiding the assembly of a microbial community. 

The most popular metagenomic classification methods, Kraken and MetaPhlAn, 

are designed to achieve, at most, species level taxonomic resolution. Kraken was the 

first k-mer-based approach for metagenomic classification, and it is best-suited to 

rapidly match metagenomic sequences to large databases of complete genomes. The 

drawback of using k-mer approaches is that they are not as accurate as older sequence 

alignment-based methods. MetaPhlAn, on the other hand, maps metagenomic reads to 

a database of clade-specific marker genes to perform taxonomy classification. 

Although marker genes are a well-known resource to select biologically relevant 

genomes and can led to good precision and recall at species level, such genes only 

account for a small part of the complete microbial genome, excluding additional 

genomic information that can be relevant for strain resolution. 
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To tackle the above-mentioned problems, we designed MetaCompassRS 

(MetaCompass Reference Selection), a metagenome classification approach that 

achieves strain-level resolution by combining a marker gene sequence alignment 

approach with a whole genome k-mer matching approach. MetaCompassRS can be 

used both as a standalone software and as part of the MetaCompass pipeline described 

in Chapter 5. 

3.2 Methods 

MetaCompassRS (Figure 3.1) follows a two-stage strategy: a marker gene alignment 

stage and a complete genome k-mer matching stage. 

3.2.1 Marker gene alignment 

Each genome is assumed to have a defined marker gene set, thus, if a genome is present 

in a metagenomic sample, it should have a sufficient portion of its marker gene set 

covered by reads. We define this concept as “marker gene set containment” to estimate 

how well a set of reference genomes is contained in metagenomic sample. Although 

aligning millions of reads to a marker gene database is relatively fast, we further speed 

up this process by pre-filtering the reads. We use kmer-mask [108] to extract k-mers 

from both metagenomic reads and a marker genes database, and then filter out reads 

without exact k-mer matches. Next, we use Blastn to align the complete sequence of 

the pre-filtered reads against the complete marker gene sequences. Lastly, we estimate 

a marker gene set containment score for each reference genome and only keep 

references above a certain percentage threshold. 
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3.2.2 Complete genome k-mer matching 

In this stage, we use the complete sequence of the pre-selected reference genomes from 

the first stage and the complete set of reads to re-estimate read containment. We use 

Mash Screen to identify which reference genomes are sufficiently contained within the 

reads. We then select the strains with higher containment score, which are more likely 

to be present in the metagenomic sample.  

By combining these two stages, we take advantage of the high accuracy of 

marker gene alignment methods and the efficiency of k-mer based approaches to 

compare complete genomes. 

 
Figure 3.1. Overview of MetaCompassRS. 

A) Reads are prefiltered using k-mer-mask. B) Pre-filtered reads are aligned to marker genes 

using blastn. Then Marker gene set containment is estimated from Blast results and complete 

genomes C) Preselected genomes are screened for containment using Mash screen. 
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3.2.3 Database construction 

To create our reference database, we retrieve high-quality genome assemblies from the 

NCBI Refseq database, including complete genome assemblies and chromosome level 

assemblies (which include chromosomes, scaffolds and contigs). We also retrieve taxa, 

genes, and protein sequences associated to each genome. 

After retrieving all the necessary information from RefSeq, we used several 

tools to gather marker gene information from each genome. First, use the tool FetchMG 

[45,109] to predict the 40 universal single-copy marker genes present in each genome. 

Due to the high redundancy of organisms currently available at RefSeq, many genomes 

share almost identical marker gene sequences. To further speed up the marker gene 

alignment stage (described below), we cluster almost identical marker genes with 

CDHIT [110]. Lastly, we use kmer-mask, part of the [111] k-mer counter package 

Meryl, to create a marker gene k-mer database. 

Finally, we process each genome retrieved from RefSeq to gather the k-mer 

information used in the second stage of MetaCompassRS. We pre-compute k-mer 

sketches for each genome using Mash sketch and estimate pairwise average nucleotide 

identity (ANI) between genomes using Mash dist. The former information is used by 

Mash screen to estimate containment. The latter is used to filter out almost identical 

genomes from the final metagenomic classification. 



 

 

36 

 

3.2.4 Implementation details 

3.2.4.1 Marker gene alignment stage 

Pre-filtering reads before alignment: We pre-filter the reads to speed up the Blastn 

alignment. Given a k-mer database and a set of reads, kmer-mask computes the fraction 

of the reads which are covered by k-mers in the database. We use a seed size of 28. 

Aligning reads to marker genes: We run blastn with a word size or seed of 28, to 

retrieve only highly similar alignments. Since closely related genomes can share the 

same marker genes, each read can be aligned to multiple marker genes.  

Estimating marker gene set containment: After aligning reads to marker genes, we 

process the alignment results to estimate the “marker gene set containment” per each 

genome. Intuitively, this metric estimates how well a genome is contained in the reads, 

using a set of marker genes as representation of such genome. Given a genome “G” 

with “n” marker genes, we define the marker gene set containment score as the total 

number of marker genes bases covered by the reads divided by the sum of marker gene 

lengths: 

𝑀𝑎𝑟𝑘𝑒𝑟 𝑔𝑒𝑛𝑒 𝑠𝑒𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑔𝑒𝑛𝑜𝑚𝑒 𝐺 = ∑
𝑏𝑎𝑠𝑒𝑠 𝑐𝑜𝑣𝑒𝑟𝑑 𝑏𝑦 𝑟𝑒𝑎𝑑𝑠

𝑚𝑎𝑟𝑘𝑒𝑟 𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑛

𝑖

 

The number of bases covering a marker gene is calculated from the blast alignment 

results by extracting all the alignment intervals for that marker gene, then merging 

overlapping intervals, and finally adding the merged interval lengths. 

We exclude from further consideration all the genomes with an estimated 

marker gene set containment below a certain threshold (one third of the complete 

marker gene set, by default). 
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3.2.4.2 Whole genome comparison stage.  

To re-estimate read containment, we use Mash Screen with a minimum identity 

threshold of 0.95 percent. This step removes many reference genomes that had a 

sufficient marker gene containment score but were poorly contained in the reads when 

considering the complete genome. In case of finding multiple strains that satisfied all 

the criteria mentioned above, we only select the top ten strains per species.  

3.3 Results 

3.3.1 Evaluation of performance on Salmonella enterica simulated 

genome  

To test the efficacy of our approach in finding the correct organism among multiple 

strains, we simulated reads from a strain of one of the most abundant species in our 

database (Table 3.1), Salmonella enterica—well-known food pathogen that causes 

gastroenteritis in humans. We chose the strain Salmonella enterica serovar 

Typhimurium  LT2 (available at RefSeq with accession NC_003197.2), which has close 

homologue genes with eight genomes from the Enterobacteriaceae family: Salmonella 

enterica serovar Typhi CT18, Salmonella enterica serovar Paratyphi A, Salmonella 

enterica serovar Paratyphi B, Salmonella enterica arizonae, Salmonella bongori, E. 

coli K12, E. coli O157:H7, and Klebsiella pneumoniae [112]. 

 
Table 3.1. Most abundant species in MetaCompassRS database. 

Species ID Number of strains Description 

562 3217 Escherichia coli 

573 2022 Klebsiella pneumoniae 

28901 1779 Salmonella enterica 

47466 1634 Borrelia miyamotoi 

1280 987 Staphylococcus aureus 
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We compared the performance of our approach with the most widely used 

marker gene and k-mer based taxonomic classifiers, MetaPhlAn, Kraken2, 

respectively. We also used Kraken2 with its abundance estimation companion method 

Bracken. We evaluated the genus and strain level classification results in terms of 

precision, recall and F1 score.  

At the genus and species level, MetaCompassRS and MetaPhlAn made a 

perfect prediction (Table 3.2). In Contrast, Kraken2 and Kraken2+Bracken reported 

several low abundance false positives. At the strain level, MetaCompass outperformed 

Kraken2 and Metaphlan2 by reporting fewer false positives. Among all strains reported 

by the two versions of Kraken2, Salmonella enterica serovar Typhimurium LT2 was 

not assigned any read. Conversely, MetaCompassRS reported the correct strain with a 

marker gene containment score of 99. 8% and a genome containment of 99.99%. 

Compared to the true Salmonella enterica strain, the nine false positive strains reported 

by MetaCompassRS (Table 3.3) shared more than 99% of identity and covered 97-99% 

of the true genome. This experiment highlights the effectiveness of our approach in 

selecting highly closed reference genomes. 

Table 3.2. Taxonomy classifier predictions at different taxonomy levels for Salmonella 

enterica serovar Typhimurium LT2 simulated dataset.  

Note that MetaPhlAn does not provide strain level resolution. 

 

 

 

 

 Kraken2 Kraken2+Bracken MetaPhlAn2 MetaCompass 

Genus 14 35 1 1 

Species 9 59 1 1 

Strains 161 240 NA 10 
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Table 3.3. Comparison between Salmonella enterica serovar Typhimurium LT2 

(NC_003197.2) and MetaCompassRS false positive (FP) strains.  

Query cover describe how much the query genome, NC_003197.2, is covered by each FP and 

percentage of identity describes how similar the query is to each FP. 

Accession ID Description Query 

cover 

Percentage 

of Identity 

NC_021151.1  Salmonella enterica subsp. enterica serovar 

Typhimurium str. U288 

99% 99.99% 

NZ_CP007523.1 Salmonella enterica subsp. enterica serovar 

Typhimurium str. CDC 2011K-0870 

98% 99.99% 

NZ_CP014051.2 Salmonella enterica strain LT2 100% 100% 

NZ_CP014971.2 Salmonella enterica subsp. enterica serovar 

Typhimurium str. USDA-ARS-USMARC-1898 

98% 99.97% 

NZ_CP021909.1 Salmonella enterica subsp. enterica strain 

ST1120 

99% 100% 

NZ_CP028199.1

  

Salmonella enterica subsp. enterica serovar 

Typhimurium strain CFSAN018746 

100% 100% 

NZ_CP025736.1 Salmonella enterica strain FORC_079 99% 99.98% 

NZ_CP041005.1 Salmonella enterica strain FDAARGOS_768 100% 100% 

NZ_CP032494.1 Salmonella enterica subsp. enterica serovar 

Typhimurium strain SO21 

97% 99.99% 

 

3.3.2 Evaluation of performance on synthetic metagenomic dataset 

We evaluated our method on synthetic microbial community published by Shakya et 

al. [113]. The synthetic sample was downloaded from the NCBI Short Read Archive 

(SRA) database, (SRR606249) and contains 54 bacteria and 10 archaea. Among these 

organisms, 55 had complete genome sequences in the NCBI RefSeq database (the 

database used by default by MetaCompassRS), and 9 are available only as a high-

quality draft assembly. The sample contains 61 species. 

At the species level, MetaCompassRS outperformed Kraken2 and MetaPhlan2 

in recall, correctly predicting 59 out of the 61 species. Although MetaPhlan2 achieved 

the highest precision, thus, predicting fewer false positives, it only predicted 54 out of 

the 61 species. Both MetaCompassRS and MetaPhlan2 had almost identical F1 score 

(Figure 3.2A). 



 

 

40 

 

At the strain level, MetaCompassRS outperformed Kraken2 in all metrics, 

correctly predicting 59 out of the 64 strains. The 5 strains that MetaCompassRS did not 

predict are draft assemblies without complete reference genomes available to date. 

(Figure 3.2B).  

 

 

Figure 3.2. Species and strain level classification results on Shakya et al. dataset. 

(A) Heatmap showing Precision, Recall, and F1 score at species level. (B) Heatmap showing 

Precision, Recall, and F1 score at strain level. 

 

To evaluate the ability of MetaCompassRS to classify low-coverage genomes, 

we downsampled the synthetic dataset to 10% of its original size. The results (Figure 

A 

B 
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3.3) highlight that MetaCompassRS is also highly effective at low coverage and 

outperformed the other tools in several metrics. 

 

 

 

Figure 3.3. Species and strain level classification results on down-sampled Shakya et al. 

dataset. 

(A) Heatmap showing Precision, Recall, and F1 score at species level. (B) Heatmap showing 

Precision, Recall, and F1 score at strain level. 

 

We further evaluated the classification averaging across all datasets on the 

species and strain level (Figure 3.4). Only MetaCompass achieved more than 90% 

recall for both taxa. Similarly, only MetaPhlAn achieved more than 50% of precision. 

A 

B 
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In terms running time, Kraken2 was the fastest across all datasets. MetaCompassRS 

and MetaPhlAn, which are both based on read alignment, took a very similar amount 

of time (Table 3.4). 

 

 
Figure 3.4. Scatter plot of Precision (x-axis) versus Recall (y-axis) across all datasets and 

taxa. 

 

3.3.3 Evaluation of computational performance on simulated and 

synthetic metagenomic datasets 

We evaluated the running time performance of MetaCompassRS on a Linux 12-core 

server node with 16 GB of memory using the Salmonella enterica simulated dataset, 

the Shakya et al. synthetic dataset, and the downsampled Shakya et al. synthetic dataset. 

The wall clock running time on this synthetic dataset for MetaCompassRS was slightly 

higher than Kraken2 and considerably lower than MetaPhlAn2 (Table 3.4). 

MetaPhlAn2 had the lowest memory usage among all taxonomic classifiers, followed 

by Kraken2. Note that since Kraken2 loads the database into memory, its memory 



 

 

43 

 

usage is determined by the size of the Kraken2 database. We used the reduced size 

Kraken2 database (MiniKraken2 database, 8GB) because the default Kraken2 database 

(29 GB) required more memory than the limit used in our experiments. 

MetaCompassRS was able to process a 100 million read dataset using the complete 

MetaCompassRS database in less than 16 minutes without prohibitive memory 

requirements (13.06GB), highlighting the scalability of this method to large datasets. 

 
Table 3.4. Running time for taxonomy classifiers on simulated and synthetic datasets. 

We evaluated the running time performance of MetaCompassRS and three taxonomic 

classifiers for the simulated Salmonella enterica sample, the full Shakya et al. sample (100 

million paired-end reads), and a 10% of the original Shakya et al. sample (5 million paired-end 

reads). We used the default MetaCompassRS and MetaPhlSn2 databases and the reduced size 

Kraken2 database (MiniKraken2 database). All dataset were run using 16 GB of memory and 

12 CPUs.  

Classifier 

Salmonella enterica Shakya et al. 
Downsampled 

Shakya et al. 

Time 

(mm:ss) 

Memory 

(Gb) 

Time 

(mm:ss) 

Memory 

(Gb) 

Time 

(mm:ss) 

Memory 

(Gb) 

MetaCompassRS 10:21 7.42 15:32 13.06 5:38 12.40 

MetaPhlAn 62:14 3.27 177:44 3.05  151:00 2.66 

Kraken2 1:03 8.67 1:33 8.22 1:12 8.21 

Kraken2+Bracken 1:04 8.67 1:35 8.22 1:13 8.21 

 

3.3.4 Evaluation of performance on CAMI medium dataset 

To provide a better idea of how MetaCompassRS would perform in a worst-case 

scenario (the closest genomes contained in the metagenomic sample are not present in 

the database), we used a medium complexity dataset generated by the benchmarking 

study CAMI (Critical Assessment of Metagenome Interpretation) [81]. From the two 

medium complexity datasets generated by CAMI, we used the medium complexity 

dataset consisting of 132 newly sequenced genomes (not present in public databases) 

with an insert size of 270bp. We ran MetaCompassRS on the selected medium 
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complexity dataset and compared our species-level performance with the publicly-

released results from CAMI. We only included methods that achieved species level 

taxonomy resolution (FOCUS [114], TIPP [115], MetaPhlAn2 [66] MetaPhyler [116], 

mOTU [45], Quikr [117], Taxy-pro2 [118], and CommonKmers [119]). 

Notably, the least precise profiling methods (TIPP, MetaPhyler, and Quikr) had 

the highest recall, introducing a high false positive rate in their prediction (Figure 3.5 

A). MetaPhlAn2 and MetaCompassRS achieved not only the highest precision (fewer 

false positives) but also the highest F1 score (balance between precision and recall) 

(Figure 3.5 B). The similar results obtained by MetaPhlAn2 and MetaCompassRS are 

expected as both tools use marker genes, which are known for being precise at higher 

taxonomic ranks up to species level. We did not evaluate strain level predictions as 

CAMI didn’t not include such results in their study. 
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Figure 3.5. Species and strain level classification results on a medium complexity CAMI 

dataset. 

(A) Heatmap showing Precision, Recall, and F1 score at species level. (B) Scatter plot of 

Precision (x-axis) versus Recall (y-axis) across all taxa. 
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3.4 Conclusion and discussion 

We presented MetaCompassRS, a taxonomic classification method that outperforms 

previous methods in both species and strain level recall, while maintaining a strong 

balance between precision and recall. Achieving a high recall at the strain level is ideal 

if the end goal of the classification is to capture all relevant genomes from a database. 

MetaCompassRS achieves such results by combining alignment-based and k-mer 

based approach with a highly comprehensive reference database. 

MetaCompassRS maintains a competitive running time and memory usage due 

to its marker gene clustering and k-mer pre-filtering steps. Clustering almost identical 

marker genes reduces the marker gene database size, and pre-filtering the reads 

dramatically reduces the query size. Furthermore, the use of Mash Screen adds genomic 

information beyond marker genes while keeping a low running time and memory 

usage. 

Any of the methods presented, including ours, was capable to achieve full strain 

resolution. In fact, full strain resolution might not be possible by only analyzing short 

reads due to their short genomic context. Assembling the reads after the metagenomic 

classification can provide a more complete picture of the microbial community and 

further improve strain resolution [120–123].  In the following chapters, we describe 

how to use a set of reference genomes to perform reference-guided metagenomic 

assembly (Chapter 4 and 5). 
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Chapter 4: Reference-guided metagenomic assembly 

4.1 Introduction 

In the previous chapter, we described a method to infer the microbial genomes present 

in a metagenomic sample and select closely related genomes. In this chapter, we 

describe a metagenomic reference-guided assembly approach that uses a set of 

microbial genomes to reconstruct a metagenome. 

Several de novo assembly methods have been applied to metagenomic data sets, 

but very little progress has been made on reference-guided assembly for metagenomics. 

Reference-guided assembly approaches are commonly used to assist the assembly of 

short reads when a closely related reference genome is available [19,23].  This process 

overcomes, in part, the challenge posed by repeats as the entire read provides 

information about its location in the genome.  

Currently, thousands of bacterial genomes have been sequenced and finished 

[50,124]. These genomes are a great resource for performing comparative assembly of 

metagenomic sequences. However, to date, they have not been used for assembly, 

primarily due to the tremendous computational cost of aligning metagenomic reads to 

the entire reference collection of bacterial genomes. In this chapter, we describe our 

approach for reference-guided assembly of metagenomes. 
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4.2 Related work 

The reference-guided metagenomic assembly process has two steps: (i) reads are 

aligned to a set of closely related reference genomes (read mapping step); and (ii) 

contigs are built from the relative locations of the reads in the reference genomes 

(consensus calling step). In this section we describe the read mapping step, consensus 

calling step and also present methods suitable for polishing metagenome assemblies. 

4.2.1 Read mapping 

A fundamental part of reference-guided assembly and many other bioinformatics 

analyses is the mapping of millions of short reads to reference genomes. A variety of 

algorithms and tools have been developed for read alignment[125,126]. Currently, the 

most widely used methods for read mapping can be divided into hash table based 

algorithms and Burrows-Wheeler Transform (BWT) [63] based algorithms. 

Hash table methods can index either the genomes or the reads. Some methods 

for indexing genomes include GSNAP [127], Novoalign [128], mrFAST [129] , 

mrsFAST [130], and FANGS [131]. Methods for indexing reads include MAQ [132] 

and RMAP [133]. 

The most popular read mapping tools rely on the Burrows-Wheeler transform 

to reduce memory requirements [68,134–136]. Some BWT based read mapping tools 

are Bowtie [134], Bowtie2 [68], BWA [135], and SOAP2 [136]. Among them, the most 

widely used tool is Bowtie2, and improved version of Bowtie. Bowtie and Bowtie2 

index the reference genome using a FM-index a [64] to maintain a small memory 

footprint. Bowtie was designed to find ungapped alignments, reporting end-to-end read 
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alignments. Bowtie2 was extended to support local alignment— i.e. doesn’t require 

end-to-end read alignments. 

For a single reference sequence, the read mapping problem has mostly been 

solved by indexing the reference into a data structure that supports efficient pattern 

search queries [125]. The read mappers described above [68,130,132,134–136] provide 

different trade-offs between speed and quality of the mapping [126,137]. 

Read mappers for single genomes are not suited for classification of 

metagenomic sequences, because they usually use a semi-global alignment model and 

assume near-identity of read sequences and reference genomes. Some metagenomic-

specific mappers have been developed by adding filtration and normalization 

techniques to previously described single-genome mapping approaches [138,139].  

Despite these efforts, metagenomic read mapping remain an open area of research. 

The standard output format of read mappers is the Sequence Alignment/Map 

(SAM) format [140]. A SAM file has the information for each individual read 

mappings, including the read and reference genome identifiers, leftmost mapping 

position, mapping quality, and the CIGAR (Concise Idiosyncratic Gapped Alignment 

Report) string. A CIGAR string is a compress representation of an alignment that shows 

how the reads align to a reference genome. The CIGAR string has key information that 

can be used for consensus calling, such as matches, mismatches, gaps, deletion and 

insertion positions. 
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4.2.2 Consensus calling  

The process of getting a consensus from the bases aligned to a genome is called 

consensus calling. In metagenomics, we need to find consensus sequences—equivalent 

to a de novo contigs—for each individual reference genome. 

The most common approach for single genome consensus calling is using the 

mpileup and BCFtools utilities from the SAMtools package[141]. First, Mpileup 

summarize the base call information at each position in the reference genome into a 

“pileup of reads”. The pileups of reads are generated by calculating the likelihoods of 

a base at each genomic position based on depth of coverage. Then, BCFtools call 

performs variant calling on each pileup of reads. The variant calling process involves 

identifying difference between the reads and the reference genome—such as single  

base changes, such as SNPs and indels, or larger scale structural variants. Finally, 

BCFtools consensus generates consensus calls from pileup of reads using the variant 

information.  

There are multiple variant calling methods described in literature that could be 

used instead of BCFtools call, however, a broader discussion of such methods is beyond 

the scope of this dissertation. 

4.2.3 Assembly polishing 

Both de novo and reference-guided assemblies may have considerable base errors. 

Compared to de novo assembly, reference guided assembly has less space for 

misassembles. However, even small errors can degrade the performance of the 

reference-guided assembly process. 
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Assembly polishing tools can be used to correct base errors in draft assemblies. 

State of the art assembly polishing tools are GATK [142], Pilon [143], Racon [144], 

POLCA [145], and ntEdit [146]. 

Pilon and GATK are the most well-established polishers and can fix single 

bases changes, small and large indels, local misassemblies and can also fill gaps in the 

assembly. RACON and POLCA, part of the MaSuRca assembler [147], are more recent 

tools aimed to correct assemblies from long reads. Pilon, GATK and RACON work by 

mapping all reads against the assembly and then re-doing the consensus calling. This 

read mapping step, although accurate, makes the running time prohibitive to samples 

with high depth of coverage. POLCA is a little bit faster than Pilon and GATK by 

calling variants first and then only correcting the variants found in the assembly, thus 

avoiding remapping the reads. 

A more recent tool, ntEDIT [148] is a bloom filter k-mer based approach that 

reduces time significatively compared to the previous described tools. First, ntEdit runs 

the tool ntHits [149], which removes erroneous k-mers and build a canonical 

representation of “coverage-thresholded k-mers” using a bloom filter. Then, ntEdit 

process contigs by interrogating the bloom filter for presence/absence. If a k-mer 

presence is confirmed, consecutive k-mers are skipped to avoid repetitive computation. 

If a k-mer or a part of a k-mer is absent from the reads, that part of the assembly is 

reported as a misassembly and the contig is polished. Warren et al. reported that ntEdit 

its faster and makes fewer mistakes than Pilon, its closest competitor. 
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4.3 Methods 

4.3.1 Read mapping 

The reference-guided metagenomic assembly approach involves mapping 

metagenomics reads to a set of genomes and then using their relative placement within 

each genome to guide the assembly of each reference. To achieve this task, we use  

Bowtie2 (parameters: --sam-nohead --sam-nosq --end-to-end --quiet --all -p 12). The 

output is filtered to keep alignments with the lowest edit distance for each read, 

allowing a read to be aligned in multiple locations (similar to the best-strata option of 

Bowtie 1).  

4.3.2 Selecting a minimal reference set for consensus calling 

In metagenomics, the relative placement of the reads within a mixture of genomes is 

more complex than in a single genome. This process is complicated by the fact that 

individual reads may map to multiple reference genomes, some of which are highly 

similar. Adequately dealing with this ambiguity is critical for effective assembly. If all 

read mappings are kept, allowing a read to be associated with multiple reference 

genomes, the resulting assembly will be redundant, reconstructing multiple copies of 

homologous genomic regions (Figure 4.1a). If for each read a random placement is 

selected from among the multiple equivalent matches, none of the related genomes may 

recruit enough reads to allow assembly, thereby leading to a fragmented reconstruction 

(Figure 4.1b). Assigning reads to genomes according to their estimated representation 

in the sample (determined, e.g., based on the depth of coverage), may bias the 
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reconstruction towards the more divergent reference genomes, which may lead to an 

overall poorer reconstruction of the genomic regions shared across related genomes 

(Figure 4.1c). Here we propose a parsimony-driven approach: finding the minimal set 

of reference genomes that explains all read alignments (Figure 4.1d). 

 

Figure 4.1. Aligning read to reference genomes.  

Shorter bars represent shotgun reads; longer bars represent reference genomes (4 genomes in 

this figure). Regions with the same color in the reference genomes represent homologous 

sequences. (a) All read mapping records. A read may be mapped to several reference genomes 

equally well, e.g., 5 yellow reads are mapped to both of the first two genomes. (b) For each 

read, if it is mapped to more than one reference genome, we randomly pick one. (c) A read is 

assigned to a reference with highest depth of coverage. (d) We pick the minimum number of 

reference genomes, to which all reads can be mapped. 

4.3.2.1 Minimum set cover problem. 

This parsimony-driven approach can be outlined as the set cover problem, an NP-hard 

optimization problem [151]. An instance (X, F) of the set-covering problem consists of 

a finite set X and a family F of subsets of X, such that every element of X belongs to 

at least one subset S in F: 

𝑋 = ⋃ 𝑆

𝑆⊆𝐹

 

The problem is to find a minimum-size subset 𝐶 ⊆F whose members cover all 

of X: 
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𝑋 = ⋃ 𝑆

𝑆⊆𝐶

 

We use a greedy approximation algorithm (see Algorithm 1), which iteratively 

picks the set of genomes using the greatest number of remaining unused reads. The 

algorithm works as follows. The set U has, at each stage, the set of remaining uncovered 

elements (uncovered reads). The set C has the cover being constructed (reference 

genomes that are picked). In the greedy decision-making step (line 4) a subset S of 

genomes is chosen that covers as many uncovered reads as possible with ties broken 

randomly. After S is selected, its elements are removed from U, and S is placed into C. 

When the algorithm ends, the set C has a subfamily of F that covers X with the greatest 

number of reads. It can be shown that this greedy algorithm is the best-possible 

polynomial time approximation algorithm for the set cover problem, under plausible 

complexity assumptions [150]. 

Algorithm 1: Greedy approximation for minimum set covering problem. 

Input: a finite set X; a family F of subsets of X. 

Output: a minimum-size subset 𝐶 ⊆F whose members cover all of X. 

1: 𝑈 ← 𝑋 

2: 𝐶 ← ∅ 

3: while 𝑈 ≠ ∅ do 

4:  select an  𝑆 ∈ 𝐹 that maximizes |𝑆 ∩ 𝑈|  
5:   𝑈 ← 𝑈 − 𝑆 

6:   𝐶 ← 𝐶 ∪ {𝑆} 

7: return C 

4.3.3 Building contigs (consensus calling)  

In order to apply the minimum set cover concept to metagenome assembly, we 

developed a consensus caller called Buildcontig. Buildcontig starts assembling the 

genome with the highest breadth of coverage first. Buildcontig evaluates the bases from 

the reads that are mapped to each position in the reference genomes and reports the 
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genome with the highest depth of coverage as the consensus. Buildcontig can introduce 

indels up to a threshold. To introduce an indel, its depth of coverage should be higher 

than half of that of its neighbor nucleotides (Figure 4.2). Nucleotides from a reference 

sequence that don’t match any base from the reads are discarded from the consensus 

sequence. This guarantee that the consensus sequence is not overly biased against the 

reference.  

 

Figure 4.2. Creating contigs from reads that are mapped to reference genome using the 

majority rule. 

Nucleotides that differ from the reference sequences are highlighted in red. 

 

Buildcontig received two inputs: a SAM file with the read alignments, and a 

file with reference genomes. The minimum depth of coverage and minimum length for 

creating contigs can be specified through the program command-line options. 

Finally, to remove reference-bias, we employ ntEdit (v1.18) to modify the 

consensus sequence to better represent the input data rather than the reference genome. 

In this step, contigs can be broken if the metagenomic sequence diverges from the 

reference sequence. 
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4.4 Results 

We evaluated the performance of our reference-guided approach by using reads from 

a synthetic microbial community, which consists of a set of metagenomic reads from 

ground truth genomes [113]. After aligning the synthetic reads to the reference 

genomes, we generated consensus sequences (or assemblies) with Buildcontig under 

two settings. We first assembled the synthetic metagenomic skipping the minimum set 

cover algorithm and using all read mappings to guide the assembly (see Buildcontig_all 

results, Table 4.1). The aim of this experiment is to show that the performance of 

Buildcontig can be undermined by multi-mapped reads. Secondly, we ran Buildcontig 

including the minimum set cover algorithm (see Buildcontig results, Table 4.1). For 

both experiments, we set the minimum depth of coverage at 1-fold. We also assembled 

the reads using Samtools. For all experiments, we performed error correction with 

ntEdit (see “+ntEdit” results, Table 4.1). 

When analyzing assembly statistics without reference genomes (Table 4.1), we 

observed that Buildcontig_all performed better than Buildcontig and Samtools in terms 

of contiguity (maximum contig size and size to 1 Mbp, Table 4.1) and completeness 

(total assembly size(bp)  and # genes, Table 4.1). However, the higher contiguity and 

completeness of Buildcontig_all were hampered by the highest duplication and error 

rates (Table 4.2). Buildcontig produced the lowest duplication ratio (1.0), which 

indicates that Buildcontig was the only tool without a redundant assembly. 

Buildcontig_all had the highest duplication ratio (2.1), which indicates that 

Buildcontig_all generated a highly redundant assembly. In terms of assembly errors, 

Buildcontig produced the fewest misassemblies, mismatches, and indels. 
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For all assemblers, we observed a decrease in the total number of contigs shorter 

than 500bp after running ntEdit (see #contigs(<=0bp) and #contigs(<=500bp), Table 

4.1), indicating that short erroneous contigs were effectively removed from the 

assemblies.
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Table 4.1. Evaluation of performance on synthetic dataset without using reference genomes. 

Tool indicates the consensus calling method: Buildcontig, Buildcontig_all and Samtools. Buildcontig indicates the default settings the 

minimum set coverage setting was used, and Buildcontig_all indicates that all read mapping were used (no minimum set coverage 

setting).“+ntEdit” indicates that ntEdit was run over the . # ctgs is the total number of assembled contigs reported by each assembler, 

Total assembly size is the total assembled length per assembler, Max ctg is the maximum contig length (broken at errors) for all 

assembled contigs, Size to 1 Mbp is the size of the largest contig C such that the sum of all contigs larger than C exceeds 1Mbp, 

#Genes is the number of fully reconstructed genes. 

Tool 

# 

Contigs 

(>=0bp) 

# 

Contigs 

(>=500bp) 

Total  

assembly 

 size 

(bp) 

Max 

contig 

size 

(bp) 

Size to 

1Mbp 

(Kbp) # Genes 

Buildcontig 54,207 13,727 187,980,023 7,057,101 7,057.10 179,428 

Buildcontig+ntEdit 52,954 13,727 187,980,311 7,057,103 7,057.10 179,376 

Buildcontig_all 821,792 139,413 383,249,716 7,145,578 7,145.58 281,753 

Buildcontig_all+ntEdit 806,658 139,412 383,252,412 7,145,577 7,145.58 280,262 

Samtools 815,862 63,570 377,636,570 7,057,100 7,057.10 242,306 

Samtools+ntEdit 793,884 63,572 375,724,066 7,057,099 7,057.10 241,692 

 
Table 4.2. Evaluation of performance on synthetic dataset using reference genomes. 

Total aligned Length is the sum of the length of contigs aligned to the reference genomes, Total unaligned Length is the sum of the 

length of unaligned contigs, Genome fraction(%) is the total number of aligned bases in the references divided by genome size, and 

Duplication ratio(%) is the total number of aligned bases in the assembly divided by the total number of aligned bases in the reference. 

The last five statistics are reference-based errors reported by MetaQUAST. 

Tool 

Total 

aligned 

length  

Fully 

unaligned 

length 

Genome 

fraction 

(%)  

Duplication 

ratio (%) 

# 

Mismatches  

(/100 kbp)  

# 

Indels 

(/100 

kbp)  

#  

Mis-

assemblies 

(>1 Mbp)  

# 

Local 

Misassm 

(<1 

Mbp) 

# 

Total 

Misassm 

Buildcontig 185,773,672 1,364,126 89.366 1.00 137.74 3.53 242 155 357 

Buildcontig+ntEdit 185,774,130 1,363,100 89.367 1.00 136.91 3.55 242 156 358 

Buildcontig_all 377,259,399 3,834,531 92.211 2.10 395.55 15.36 1581 780 2361 

Buildcontig_all+ntEdit 377,267,056 3,833,765 92.210 2.10 391.16 13.29 1586 781 2367 

Samtools 250,165,735 3,197,557 89.548 1.45 138.33 5.21 512 301 813 

Samtools+ntEdit 250,161,490 3,200,782 89.547 1.45 141.25 4.90 512 301 813 
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4.5 Conclusion and future directions 

In this chapter, we first described concepts relevant to the reference-guided 

metagenomic assembly problem. We introduced the concept of read mapping in the 

context of both single genome and metagenomes, highlighting the most widely used 

indexing data structures for read mapping—Hash Tables and the Burrows-Wheeler 

Transform (BWT). Next, we briefly described the consensus calling process for single 

genomes. Lastly, we explained how assembly polishing can boost the correctness of 

the final assembly. 

Secondly, we presented our reference-guided metagenomic assembly strategy. 

Our strategy starts by aligning a set of metagenomic reads to reference genomes using 

Bowtie2. Then, our consensus caller Buildcontig applies the minimum set cover 

algorithm to select a minimal reference set. After calling the consensus, we use the 

error correction tool ntEdit to polish the assembly and remove reference-bias. We 

showed that our reference-guided metagenome assembly strategy outperforms previous 

methods in terms of reference-free and reference-based assembly statistics. Finally, we 

showed that our assembly strategy generates non-redundant assemblies (low 

duplication ratio) while maintaining a high genome recovery.  

Our reference guided assembly method could be further improved by adopting 

different read mapping and consensus calling strategies. As previously mentioned, 

Bowtie2 was not designed for metagenomics. As the number of available bacterial 

genomes increases, mapping reads with Bowie2 will get increasingly difficult. A more 

suitable mapping strategy for metagenomics would be a graph-based approach. In 
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particular, the use of de Bruijn graphs for pan-genome analysis is well-suited for the 

tasks of compressing genomes and mapping reads, as described in previous work [152–

155]. The most recent tools designed to align reads to de Bruijn graphs are Puffaligner, 

part of Pufferfish [156], and an extension of the pangenomic suit PanTools [157]. 

Our current assembly algorithm uses the minimum set cover algorithm, a 

winner-take-all strategy to minimize redundancy. When multiple closely related 

species co-exist, one will be well-assembled and the other species assemblies will be 

shattered into small contigs. We want to explore strategies for re-distributing multi-

mapped reads across all aligned locations, resulting in a “resolve strains” mode. One 

strategy could be probabilistic assignment to pick the best strains given a species. This 

problem is similar to estimating differential abundance of transcript isoforms in RNA-

sequencing data. Several methods for estimating differential abundance analysis 

employ the EM algorithm, which has also been successfully applied to metagenomics 

datasets [74]. 
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Chapter 5: Hybrid reference-guided and de novo assembly of 

metagenomes 

5.1 Introduction 

In this chapter, we present MetaCompass, a metagenomic assembly approach that 

combines reference-guided and de novo assembly. MetaCompass selects reference 

genomes using MetaCompassRS (Chapter 3), and then follows the reference-guided 

assembly method described in Chapters 4 to reconstruct a metagenomic sample. 

Finally, to reconstruct genomes missing from our database, MetaCompass incorporates 

a de novo assembly step. 

5.2 Method 

MetaCompass is divided into five steps (Figure 5.1): (i) selecting reference genomes, 

(ii) reference guided assembly, (iii) removing reference bias, (iv) de novo assembly, 

and (v) combining reference-guided and de novo assembly. 

First, we use the taxonomic classifier method MetaCompassRS to find the 

reference genomes most closely related to the input metagenomic sample. In the 

reference-guided assembly process reads are mapped to the selected genomes using 

Bowtie2, and then the consensus calling is performed with Buildcontig. After 

consensus calling, we rely on ntEdit to correct the contigs and avoid biasing the 

reconstruction towards the reference sequences. Finally, the reads that were not 

included in the reference-guided process outlined above are de novo assembled using 
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MEGAHIT [90] (v1.0.6). We chose MEGAHIT because it is the fastest and lowest-

memory metagenomic assembler available, and it was shown to perform excellent in 

recovering the genomes of closely related strains [87]. Finally, we combined reference-

guided contigs and assembly contigs. This hybrid approach allows the final assembly 

to capture microbes with closest reference genomes available and microbes that are 

missing from our reference database (such as novel variants).  

 

Figure 5.1. Overview of the MetaCompass pipeline.  

Short colored lines represent reads and long lines genomes. Each color represents a different 

genome from a metagenomic sample. 1a-1c are part of the taxonomy classifier 

MetaCompassRS. 2a and 2b are part of the reference-guided assembly step. 
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5.2.1 Datasets used to evaluate metagenomic assemblies  

5.2.1.1 Synthetic dataset 

As described in Chapter 3, the  synthetic microbial community published by Shakya et 

al. [113] contains 64 genomes. The set of known genomes for the synthetic dataset is 

available in the Supplementary Table 2 from Shakya et al [113]. The synthetic sample 

was downloaded from the NCBI Short Read Archive (SRA) database, (SRR606249) 

and has 54 bacterial and 10 archaeal strains from, representing a total of 61 species. 

Among these organisms, 55 had complete genome sequences in the NCBI RefSeq 

database (the database used by default by MetaCompass), and 9 were available only as 

a high-quality draft assembly. 

5.2.1.2 HMP2 dataset 

The Human Microbiome Project (HMP) is a collection of organisms living in 

association with the human body. The HMP has more than two thousand samples from 

different body sites sequenced and assembled. A list of all available HMP samples was 

obtained by from the HMP Data Analysis and Coordination Center (DACC) 

(www.hmpdacc.org). Some samples were excluded from the downloaded set because 

they were corrupt or extracted to a duplicate SRS identifier. Additional samples had no 

references recruited and were excluded from further analysis. A total of 2,294 samples 

had both an HMP2 assembly and a MetaCompass assembly and were used for the 

analysis. 

http://www.hmpdacc.org/
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5.2.2 Parameters used for metagenome assembly and metagenome 

assembly validation 

5.2.2.1 Metagenomic assembly parameters 

We compared MetaCompass with the de novo assemblers IDBA-UD (July 2016) 

[88], MEGAHIT (v1.0.6) [90], and MetaSPAdes (v3.9.0) [9]. IDBA-UD requires a 

single fasta file that was generated using the IDBA ‘fq2fa --merge --filter’ command. 

MEGAHIT was run using the options ‘--presets meta-sensitive --min-count 3 --min-

contig-len 300 -t 12’. MetaSPAdes was run using the options ‘--meta -t 12’, then all 

contigs shorter than 300nt and with less than 3X coverage were removed. IDBA-UD 

was run using the options ‘--min_count 3 --min_contig 100 --mink 20 --maxk 100 --

num_threads 12’. MetaCompass was run using the options -m [1,2,3] -g 100 -t 16’ on 

the synthetic dataset and ‘-m 3 -g 100 -t 16’ on the HMP2 samples. 

5.2.2.2 Metagenomic assembly validation parameters 

We used MetaQUAST, a reference-based metagenomic assembly validation method 

that finds misassemblies and structural variants in an assembly relative to reference 

genomes. The command used to run MetaQUAST on the Shakya et al. synthetic dataset 

was: ‘metaquast.py -R ./shakya_references --fragmented --gene-finding’. 

5.3 Results 

Although real metagenomic reads are the most proper test of performance, it is not 

possible to assess accuracy from such data because true species in metagenomic 

datasets are unknown. We first evaluated the performance of MetaCompass using 
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synthetic datasets. Since the true genome sequences are known, these data are ideal as 

they allow us to fully quantify the quality of the genomic reconstruction. 

Additionally, we generated improved assemblies of almost the entire dataset 

generated by the Human Microbiome Project (2,294 distinct samples in total), and use 

the results to characterize the relative advantages and limitations of de novo and 

reference-guided assembly approaches, thereby providing guidance on analytical 

strategies for characterizing the human-associated microbiota. 

5.3.1 Evaluation of performance on synthetic metagenomic dataset 

We valuated MetaCompass by assembling a synthetic microbial community [113]. We 

assembled this synthetic metagenomic with MetaCompass under two settings. We first 

assembled the synthetic metagenome skipping the reference selection step and using 

the exact genomes present in the sample as a reference to guide the assembly. The aim 

of this experiment is to show that the performance of MetaCompass can be excellent if 

the reference collection has genomes highly similar to those in the metagenomic sample 

being assembled. Secondly, we ran the complete MetaCompass pipeline including both 

the reference selection step and reference-guided assembly. We set the minimum depth 

of coverage in MetaCompass at 1-fold and 2-fold for both experiments. 

The assembly results of our fist experiment (Table 5.1, see MetaCompass 1X 

and 2X) can be considered an approximate upper bound on the performance of any 

assembly tool, as in this case almost all of the genomes recruited (90%) were exactly 

those from which the metagenomic reads were obtained. We compared the 

performance of the two rans of MetaCompass with that of three widely used de novo 
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assemblers: IDBA-UD, MEGAHIT, and metaSPAdes. Compared with these 

assemblers, MetaCompass achieved higher genome recovery (Table 5.1, Figure 5.2) 

and produced significantly larger and more accurate contigs (Table 5.1). When we 

decreased the MetaCompass minimum coverage threshold from 2-fold to 1-fold, we 

observed gains in maximum contig size and total aligned length, while retaining a 

similar error profile.
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Table 5.1. Evaluation of performance on synthetic dataset. 

MetaCompass (X) indicates the minimum coverage setting (1X or 2X), and MetaCompass.nr indicates all 64 reference genomes comprising the 

Shakya et al. dataset were removed from the database. # ctgs is the total number of assembled contigs reported by each assembler, Max ctg is the 

maximum contig length for all assembled contigs, Gen. Rec. (%) is the median percentage of each of the synthetic genomes that is recovered, 

Complete Marker Genes (median) is the median number of fully reconstructed marker genes, Total aligned length is the sum of the length of contigs 

aligned to the reference genomes, Total unaligned length is the sum of the length of unaligned contigs. Mismatches, Indels, and Misassemblies 

(Misassm) are error statistics generated with MetaQUAST. 

 

Assembler #contigs Max Ctg 

Gen. 

Rec. 

(%) 

Complete 

marker 

genes 

(median) 

Total 

aligned 

length 

Total 

unaligned 

length 

Mismatches 

(/100 kbp) 

Indels 

(/100 

kbp) 

Misassm 

(>1 

Mbp) 

Misassm 

(<1 

Mbp) 

Total 

Misassm 

(<1 

Mbp) 

MetaCompass (1X) 18,766 7,057,109 100 40 198,113,036 6,340,278 61.9 1.9 0.8 1.1 1.9 

MetaCompass (2X) 23,648 5,841,107 100 40 195,836,655 6,198,040 63.1 1.8 0.9  1.1 2.0 

MetaCompass.nr (2X) 42,852 1,151,857 98 40 195,225,556 6,338,183 89.9 3.6 3.3  1.6 4.9 

IDBA-UD 22,355 991,792 98 39 186,777,879 6,186,424 98.6 3.5 5.3  1.0 6.3 

MEGAHIT 35,351 1,151,857 99 40 195,334,581 6,263,018 66.5 2.8 1.5  1.0 2.5 

metaSPAdes 21,424 1,438,235 99 40 192,795,050 6,208,276 97.1 3.7 1.3  1.0 2.3 
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Figure 5.2. Genome recovery percentages in synthetic metagenome (MetaCompass 

versus de novo assembly). 

 Box plots represent distribution of genome recovery percentages (for the 64 genomes present 

in the synthetic metagenome). x-axis indicates the assembly method, either IDBA-UD, 

metaSPAdes, MEGAHIT, or MetaCompass. MetaCompass was run both with the reference 

genomes present in the database (recruited as described in the methods) and without the truth 

reference genomes in the database (they were individually removed). y-axis indicates the 

genome recovery percentage, 0% indicates the genome was unassembled, whereas 100% 

indicates the genome was fully assembled.  

5.3.1.1  References removed from database 

To provide a better idea of how MetaCompass would perform in a worst-case scenario, 

we removed from the database the genomes represented in the synthetic community 

(Appendix A), thereby forcing MetaCompass to recruit near-neighbor reference 

genomes, when available. (see ‘MetaCompass.nr’ row, Table 5.1). In this case, we 

found that MetaCompass still performed almost as well as de novo assemblers while 

making far fewer errors than if it simply mimicked the reference genome. Median 

genome recovery for MetaCompass is just 1% less than that of de novo assemblers. The 
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accuracy of the reconstruction, as measured by mismatch and indel rates, is lower than 

that of IDBA-UD and metaSPAdes (Table 5.1, MetaCompass.nr (2x)), while 

moderately higher than MEGAHIT. 

The number of misassemblies and local misassemblies per 1 Mbp of assembled 

sequence (as reported by MetaQUAST [158]) increased from 2.0 to 4.9 when reducing 

the coverage threshold to 1. To put this increase into context, we measured the total 

number of possible errors by evaluating the "accuracy" of the near-neighbor reference 

genomes recruited by MetaCompass with respect to the correct reference sequence 

(Figure 4 see hashed blue bar). This allows us to capture the real differences between 

the recruited reference genomes and the actual genome represented in the synthetic 

dataset [113], providing an upper bound on the number of errors MetaCompass could 

make if it simply recapitulated the sequence of the selected reference genomes. As seen 

in Figure 5.3, the MetaCompass assembly is much closer to the correct genome than 

the reference sequence. 
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Figure 5.3. Error profile on synthetic dataset. 

The hashed blue bar represents the difference between the second-best reference genome 

(recruited by MetaCompass) and the true genome represented in the sample. This bar can be 

viewed as an upper bound on the errors metacompass.nr could make if it simply reconstructed 

the reference genome. Mismatches are the number of bases in a contig that differ from the 

reference genome. Misassemblies include large-scale (left flanking region aligns >1 kbp away 

from right flanking region) relocations, interspecies relocations, translocations, and inversions. 

Local misassemblies include small-scale (left flanking region aligns <=1 kbp away from right 

flanking region) translocations and inversions. All errors are normalized to represent rates per 

1 Mbp. 

5.3.1.2 Evaluation of performance on down sampled synthetic metagenomic dataset 

To evaluate the ability of MetaCompass to assemble low-coverage genomes, we 

downsampled the synthetic dataset to just 5 million paired-end reads, or 10% of the 

original data set. After downsampling, the average coverage was reduced to 

approximately 3-fold. The results (Table 5.2, Figure 5.4) highlight that MetaCompass 

can recover a median of 90% of each of the 64 genomes in the sample. While 

metaSPAdes comes in second place and is able to recover 80% (median recovery), it 

does so at the cost of four times higher misassembly rate (Table 5.2). The two 

remaining methods, MEGAHIT and IDBA-UD leave a quarter to a half of the genomes 

unassembled and also produce higher misassembly rates
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assemblers: IDBA-UD, MEGAHIT, and metaSPAdes. Compared with these 

assemblers, MetaCompass achieved higher genome recovery (Table 5.2, Figure 5.2) 

and produced significantly larger and more accurate contigs (Table 5.2). When we 

decreased the MetaCompass minimum coverage threshold from 2-fold to 1-fold, we 

observed gains in maximum contig size and total aligned length, while retaining a 

similar error profile.
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Table 5.2. Evaluation of performance on down-sampled synthetic dataset. 

The synthetic dataset was down-sampled to only contain 10% of the total reads. 

# ctgs is the total number of assembled contigs reported by each assembler, Max ctg is the maximum contig length for all assembled contigs, Median 

Genome Recovery (%) is the median percentage of each of the synthetic genomes that is recovered, Complete Marker Genes (median) is the median 

number of fully reconstructed marker genes, Total aligned Length is the sum of the length of contigs aligned to the reference genomes, Total 

unaligned Length is the sum of the length of unaligned contigs. Mismatches, Indels, and Misassemblies (Misassm) are error statistics generated with 

MetaQUAST. 

 

 

Assembler #contigs 
Max 

Ctg 

Median 

Genome 

Recovery 

(%) 

Complete 

Marker 

Genes 

(median) 

Total 

aligned 

length 

Total 

unaligned 

length 

Mismatches 

(/100kbp) 

Indels 

(/100kbp) 

Misassm 

(>1 kbp) 

Misassm 

(<1 kbp) 

Total 

Misassm (<1 

kbp) 

MetaCompass  71457 962,929 90% 22 134,008,055 3,009,931 117.6 1.9 112 33 145 

IDBA-UD 43973 120159 45% 6 75,970,693 1,564,008 175.0 5.3 3447 93 3540 

MEGAHIT 62842 209,706 76% 15 105,665,678 2,774,432 128.0 4.1 772 122 894 

metaSPAdes 67138 287,554 80% 16 111,636,826 3,154,199 133.0 4.3 470 115 585 
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5.3.1.3 Computational performance 

When dealing with large-scale data sets, the total required memory and running time 

are important factors in determining the applicability of a computational tool. We first 

evaluated the running time performance of MetaCompass on a Linux 12-core server 

node with 80 GB of memory using the Shakya et al. synthetic dataset. The wall clock 

running time on this synthetic dataset for MetaCompass is comparable to the evaluated 

de novo assemblers and sometimes lower (Table 5.4). MetaCompass and Megahit were 

the only approaches that required less than 16GB of RAM on a 100 million read dataset, 

highlighting the scalability of this methods to large datasets. 

  

Table 5.3. Running time for assemblers on Shakya et al. sample. 

We evaluated the running time performance of MetaCompass and three de novo assemblers 

for the full Shakya et al. sample (100 million paired-end reads) and a 10% of the original data 

set (5 million paired-end reads). The full dataset was run using 80 GB of memory and 12 

CPUs and the down-sampled dataset using 36GB of memory and 4 CPUs.  

 Shakya et al.  Downsampled Shakya et al. 

Assembler Time (hh:mm) Memory (Gb) Time (mm:ss) Memory (Gb) 

MetaCompass 3:53 19.82 3:35 10.34 

IDBA-UD 3:53 16.78 2:42 7.39 

MEGAHIT 2:26 8.61 2:03 2.35 

metaSPAdes 6:02 28.07 8:25 19.63 
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Figure 5.4. MetaCompass performance on low coverage dataset.  

Results obtained by down-sampling the Shakya et al. synthetic genome to just 10% of the 

original set of reads. The 64 genomes present in the sample are ordered per assembler by 

percent recovery, from lowest to highest. The y-axis indicates how much of the n-th reference 

was covered by correctly assembled contigs (can range from 0% to 100%). The colored dashed 

lines indicate the median percent recovery for each assembler. 

5.3.2 Evaluation of performance on Human Microbiome Project 

(HMP2) 

5.3.2.1 Reassembly of the data generated by the Human Microbiome Project 

(HMP2) 

To further explore the benefits and limits of comparative approaches for metagenomic 

assembly, we re-analyzed with MetaCompass 2,294 metagenomic samples from the 

HMP Project. These samples cover 15 body sites from four broad regions of the human 

body: oral, skin, stool, and vaginal. We compared the assemblies produced by 

MetaCompass with the assemblies reported by the HMP project [159]. Across all 

samples, on average, MetaCompass outperforms the HMP2 de novo approach, leading 

to an overall better assembly of the original data (Table 5.4, Figure 10).  
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The relative performance of the MetaCompass and HMP2 assemblies varied 

across body sites due to the specific characteristics of the microbial communities being 

reconstructed. While MetaCompass generates more assembled sequence and complete 

marker genes across all body sites, the maximum contig size and size at 1 Mbp metrics 

vary per body site. In oral and stool samples (Figure 5.5), MetaCompass outperforms 

de novo assembly for all metrics. In skin and vaginal samples (Figure 5.5), the de novo 

(HMP2) assemblies have better contiguity statistics but MetaCompass assembles more 

complete marker genes. To gain further insight into these results we calculated the 

average nucleotide identity of the de novo assembled contigs to the recruited reference 

genomes for each body site. In all body sites, except for oral, the assembled contigs 

had 99% average nucleotide identity to the reference genomes. In the oral samples, the 

most distant reference genomes had only 97% identity to the assembled contigs. 

To further explore the drop-in contiguity in skin and vaginal samples, we 

focused on just the contigs that mapped to bacterial genomes contained in the reference 

database, allowing for a direct comparison between MetaCompass and de novo contigs. 

The results in Table 5.4 show that for this set of contigs, MetaCompass outperforms 

the de novo approach for the vaginal samples. However, the de novo HMP2 assembly 

of the skin sample is still better in terms of complete genes recovered, but equivalent 

to MetaCompass with respect to complete marker genes recovered (a measure of 

assembly completeness). 
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Table 5.4. Re-assembly of 2,294 samples generated in the Human Microbiome Project. 

The results are aggregated by body site. # indicates the total reads per sample, Avg cvg per 

sample (X) is the mean estimate read coverage calculated based on the de novo assembly of 

each sample and body site, Shannon Entropy (median) is the Shannon diversity value per body 

site as reported in Li et al. [160]. The rows labeled MC contain results obtained with 

MetaCompass. The rows labeled HMP2 show the statistics for contigs from the production 

HMP2 assembly. Total Size (Mbp) is the total assembly size for each method, Max ctg size 

(kbp) is the size of the largest contig, Median Size 1Mbp (kbp) represents the median size of 

the largest contig C such that the sum of all contigs larger than C exceeds 1Mbp. Median 

Complete Genes represents the median number of complete genes per sample. Median Marker 

Genes indicates the median number of complete marker genes per sample. 

HMP2 

body 

site 

Num of 

samples 

Avg 

cvg per 

sample 

Shanon 

Entropy 

(median) 

Asm 

Total 

size 

(Mbp) 

Max 

ctg size 

(kbp) 

Median 

size 1 

Mbp 

(kbp) 

Median 

complete 

genes 

Median 

marker 

genes 

Oral 1259 20.0 2.4 HMP2 106,693 546.4 70.8 54,1 762 

    ±8.1   MC 135,586 892.3 95.8 63,144 915 

Skin 291 17.4 1.5 HMP2 2,944 890.7 36.5 4,654 78 

    ±4.7   MC 3,782 2,159.3 15.1 5,01 79 

Stool 524 18.4    2.6 HMP2 56,573 592.8 109.1 84,193 847 

    ±4.9   MC 66,838 3,301.0 230.9 94,297 1,043 

Vagina 220 7.8 0.2 HMP2 1,179 465.8 28.7 2,539 45 

    ±4.5   MC 1,458 558.0 16.1 2,934 60 

All  2294 18.2 1.9 HMP2 184,518 890.7 79.0 48,836 633 

  ± 5.6  MC 232,161 3,301.0 114.6 57,639 764 
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Figure 5.5. Comparative assembly of 2,294 metagenomic samples from the HMP2 

Project. 

The bean plots represent the distribution of assembly contiguity and completeness statistics 

across all samples within the data. The x axis organizes the data by assembly and body site. 

The y-axis indicates the statistic used to evaluate the assembly contiguity or completeness. The 

top panel shows total assembly size, the second panel shows maximum contig size, the third 

panel shows the size of the contig at 1 Mbp, and the bottom panel shows the complete marker 

genes assembled per sample. 
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5.3.2.2 Comparing reference-guided to de novo assembly on low-coverage HMP2 

samples 

To assess the ability of MetaCompass to assemble low-abundance organisms, we 

focused on all skin HMP2 samples. The skin samples had the second lowest average 

number of reads while still containing reasonable diversity and richness, as reported in 

Table 5.4. We removed the contigs assembled via de novo assembly from the 

MetaCompass output, collected the reference genomes that were used, mapped the 

HMP2 contigs to these reference genomes, and then evaluated the number of complete 

genes and complete marker genes. Compared to the HMP2 assembly, reference-guided 

assembly of these low coverage samples is able to reconstruct approximately 10% more 

marker genes (4,423 versus 3,915) than the de novo approach, roughly equating to 10 

additional complete bacterial genomes. 

We next searched for microbes that were present in the skin samples at 

relatively low coverage and explored the differences between the reconstructions 

generated by the HMP2 project and MetaCompass. Specifically, we identified the low 

coverage assembly of a Propionibacterium acnes genome reconstructed by both 

MetaCompass and the HMP in sample SRS057083. The HMP2 assembly covers less 

than 40% of the closest reference genome (NC_016516.1, Propionibacterium acnes 

TypeIA2 P.acn33), while the MetaCompass assembly covers more than 90% of the 

same genome. 
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5.3.2.3 Comparing reference-guided to de novo assembly on high coverage HMP2 

samples 

To assess the ability of MetaCompass to assemble high-abundance organisms, we 

focused on all stool HMP2 samples. The stool assemblies had the longest maximum 

contig and median size to 1Mbp, as reported in Table 5.4. We searched for microbes 

with the best assembly among all stool samples (NZ_CP012801, Bacteroides 

cellulosilyticus WH2, HMP2 sample SRS143342), and explored the differences 

between the reconstructions generated by de novo assemblers and MetaCompass. 

We next collected the reference genomes that were used by MetaCompass and  

mapped both de novo and reference-guided assemblies to these reference genomes. The 

Bacteroides cellulosilyticus WH2 genome was recovered by all assemblies with more 

than 70% of genome recovery. As show in Figure 5.6, all tools reconstructed a 

fragmented assembly towards the beginning of the genome, were more sequencing 

errors are usually found. Overall, after the initial fragmented contigs, MetaCompass 

assembled ten long contigs with length ranging from 0.5 to 2.28MBp. 

The longest MetaCompass contig covers 0.32% of the Bacteroides 

cellulosilyticus WH2 genome (Figure 5.7) and aligned almost perfectly to the reference 

genome (2 mismatches). In contrast, MetaSPAdes, Megahit and IDBA-UD 

reconstructed an extremely fragmented assembly with many misassembled contigs. To 

further investigate how the reads were distributed across both the reference genome 

and contigs, we mapped both reads and contigs to the genome with Bowtie2 and 

Minimap2 [161], respectively (Figure 5.8). Although the read mapping visualization 

shows a relatively even depth of coverage, de novo assemblers were unable to 

reconstruct a contiguous assembly. Conversely, MetaCompass reconstructed the full 
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segment of the genome. MEGAHIT was the second-best assembler, almost 

reconstructing the full segment. 

 

 

 
Figure 5.6. Icarus view of metagenomic assembly of the stool sample SRS143342 from the 

HMP2 Project.  

The contigs largest than 1000bp from MetaCompass, MetaSPAdes, Megahit, and IDBA were 

aligned to the Bacteroides cellulosilyticus WH2 genome (NZ_CP012801, 7084828 bp). Colors 

indicate how well the contigs aligned to the reference. Green represent correct contigs, red 

misassembled contigs, purple ambiguously mapped contigs, and gray unaligned contigs. 

 

 

 
Figure 5.7. Longest contig from Bacteroides cellulosilyticus strain WH2 chromosome 

genome assembly (accession:NZ_CP012801.1, length: 7084828 bp). 

The length of contig NCP012801.1_102 is almost 2.28 Mbp, covering 0.32% of the complete 

genome. 
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Figure 5.8. IGV visualization of read and contig mapped against a segment of the 

Bacteroides cellulosilyticus WH2 genome (accession:NZ_CP012801.1, length: 7084828 

bp).  

MetaCompass reconstructed the full segment of the genome. MEGAHIT almost reconstructed 

the full segment. MetaSPAdes and IDBA-UD had the biggest assembly gap.  

5.4 Conclusion and discussion 

We have described MetaCompass, a comparative metagenome assembly method that 

relies on an indexing strategy to construct sample-specific reference collections. We 

show that comparative and de novo assemblies provide complementary strengths, and 

that combining both approaches effectively improves the overall assembly, providing 

a consistent increase in the quality of the assembly. Even when distant reference 

genomes are recruited, we remain competitive with de novo genome assembly methods. 

We accomplish this via two critical steps. First, we avoid reference bias by constructing 
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the consensus sequence from the reads within the sample, using the reference genome 

as just a guide, and we break the assembly where the reads indicate a structural 

disagreement with the reference. Second, we use unmapped reads in a de novo 

assembly process to reconstruct the sections of the metagenomic sample that are not 

similar to known reference genomes. We have shown MetaCompass to be particularly 

effective in the assembly of low coverage or rare microbes, a setting in which de novo 

assembly approaches simply cannot be used with good results. Improved assembly of 

low-abundance, rare microbes from existing datasets has the potential to provide 

additional resolution in complex microbial communities or clinical samples where the 

host DNA comprises a large fraction of the data. Finally, we have shown that in high-

abundance genomes, MetaCompass is more effective that de novo in generating 

complete and contiguous assemblies. 

The benefit of comparative assembly is highly dependent on the reference 

genomes available in the database provided to MetaCompass. While MetaCompass can 

effectively use reference genomes that are distantly related to the genomes being 

assembled, the quality of the reconstruction is lower than can be achieved with closely 

related reference sequences. Many bacteria found in the human microbiota are difficult 

to culture (e.g., the many anaerobes inhabiting the human intestinal tract) and are, 

therefore, under-represented in public databases. Despite this fact, MetaCompass was 

able to improve, often significantly, upon the assembly of the data generated by the 

Human Microbiome Project 2. However, the contiguity of MetaCompass on skin 

samples was not improved upon the assemblies generated by HMP2. This could be due 

to the structural genome dynamics of bacterial defense systems commonly found in the 
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skin microbe [162–164]. Future work will focus on elucidating the effect of each of 

these factors via assembly graph-based approaches. In addition, as the number of 

genomes in public databases is increasing, comparative approaches such as ours will 

be increasingly valuable for reconstructing near-complete genome sequences from 

metagenomic data.  
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Chapter 6: Conclusion 

Metagenomic assembly, the process of reconstructing large genomic segments from 

metagenomic reads, is a formidable computational challenge. Even for single 

organisms, the assembly of genome sequences from next-generation sequencing (NGS) 

reads is a complex task, primarily due to ambiguities in the reconstruction that are 

caused by genomic repeats. In addition, metagenomic assemblers must be tolerant of 

non-uniform representation of genomes in a sample as well as of the genomic variants 

between the sequences of closely related organisms. Despite advances in metagenomic 

assembly algorithms over the past years, the computational difficulty of the assembly 

process remains high and the quality of the resulting assemblies requires improvement. 

The reference-guided assembly paradigm has been shown to outperform the de novo 

assembly paradigm under certain settings, yet, the former has not been extensively 

explored. 

In this dissertation, we designed methods to address the reference-guided 

metagenomic assembly problem. This problem consists of two subproblems: selecting 

closely related genomes to guide the assembly and reconstructing each genome 

individually. To address the first subproblem, we developed MetaCompassRS, a 

taxonomy classification approach that is able to retrieve the closest reference genomes 

available in a database that are contained in a metagenomic sample. We showed that 

MetaCompassRS achieves higher recall than state of the art taxonomy classification 

tools, while maintaining a competitive running time. 
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The second subproblem is further subdivided into read mapping and consensus 

calling. We used Bowtie2—the most widely used short read mapper—for the former 

task and developed an approached inspired on the minimum set cover problem for the 

latter task. We implemented the minimum set cover algorithm in our tool Buildcontig 

and showed its efficiency and effectivity in reducing the redundancy of metagenome 

assemblies. 

Finally, we developed MetaCompass, a metagenomic assembly pipeline that 

encompass MetaCompassRS, Buildcontig and de novo assembly to reconstruct a 

metagenomic sample. When combined with de novo assembly approaches, we showed 

that reference-guided assembly is able to generate more complete assemblies than the 

ones obtained by the de novo assembly alone. We also showed that MetaCompass 

performs better than the state of the art methods in real world datasets—such as the 

ones gather by the HMP. 

We believe that reference-guided metagenomic assembly approaches, and with 

MetaCompass being one of the first ones reported in the literature, will increasingly 

replace the more computationally expensive and error-prone de novo assembly 

approaches as the collection of available reference genome sequences increases. 

Furthermore, reference-guided assembly provides new opportunities for the 

development of both clinical and computational applications. Clinical applications are 

a particularly relevant application domain for reference-guided approaches because the 

vast majority of publicly available genome sequences comprises human pathogens. 

Computational methods capable of handling a large amount of metagenomic 

sequencing data are an active area of research. One of the most promising strategies to 
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handle metagenomics reference collections is using pangenome graphs, which we plan 

to further explore in the future.  
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Appendices 

Appendix A. References removed from database used by MetaCompass. 

Species name 

Acidobacterium capsulatum  

Aciduliprofundum boonei  

Akkermansia muciniphila  

Archaeoglobus fulgidus  

Bacteroides thetaiotaomicron  

Bacteroides vulgatus  

Bordetella bronchiseptica 

Burkholderia xenovorans LB400 

Caldicellulosiruptor bescii 

Caldicellulosiruptor saccharolyticus  

Chlorobium limicola  

Chlorobium phaeobacteroides  

Chlorobium phaeovibrioides  

Chlorobium tepidum  

Chloroflexus aurantiacus J-10-fl 

Clostridium thermocellum  

Deinococcus radiodurans R1 

Desulfovibrio piger 

Desulfovibrio vulgaris DP4 

Dictyoglomus turgidum  

Enterococcus faecalis  

Fusobacterium nucleatum nucleatum  

Gemmatimonas aurantiaca  

Geobacter sulfurreducens PCA 

Haloferax volcanii 

Herpetosiphon aurantiacus  

Hydrogenobaculum sp. Y04AAS1 

Ignicoccus hospitalis  

Leptothrix cholodnii 

Methanocaldococcus jannaschii 

Methanococcus maripaludis C5 

Methanococcus maripaludis S2 

Methanopyrus kandleri  
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Methanosarcina acetivorans C2A 

Nanoarchaeum equitans  

Nitrosomonas europaea  

Nostoc sp. PCC 7120 

Pelodictyon phaeoclathratiforme  

Persephonella marina EX-H1 

Porphyromonas gingivalis  

Pyrobaculum aerophilum IM2 

Pyrobaculum arsenaticum  

Pyrobaculum calidifontis  

Pyrococcus furiosus  

Pyrococcus horikoshii  

Rhodopirellula baltica  

Ruegeria pomeroyi  

Salinispora arenicola  

Salinispora tropica  

Shewanella baltica OS185 

Shewanella baltica OS223 

Sulfitobacter sp. EE-36 

Sulfitobacter sp. NAS-14.1 

Sulfolobus tokodaii  

Sulfurihydrogenibium sp. YO3AOP1 

Sulfurihydrogenibium yellowstonense SS-5 

Thermoanaerobacter pseudethanolicus  

Thermotoga neapolitana DSM 4359 

Thermotoga petrophila RKU-1 

Thermotoga sp. RQ2 

Thermus thermophilus HB8 

Treponema denticola  

Wolinella succinogenes 

Zymomonas mobilis  
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