

ABSTRACT

Title of Dissertation: REFERENCE-GUIDED ASSEMBLY OF

METAGENOMES

Victoria Paz Cepeda-Espinoza, Doctor of

Philosophy, 2020

Dissertation Directed By: Professor Mihai Pop, Department of Computer

Science

Microorganisms play an important role in all of the Earth's ecosystems, and are critical

for the health of humans [1], plants, and animals. Most microbes are not easily cultured

[2]; yet, Metagenomics, the analysis of organismal DNA sequences obtained directly

from an environmental sample, enables the study of these microorganisms.

Metagenomic assembly is a computational process aimed at reconstructing genes and

genomes from metagenomic mixtures. The two main paradigms for this method are de

novo assembly (i.e., reconstructing genomes directly from the read data), and

reference-guided assembly (i.e., reconstructing genomes using closely related

organisms). Because the latter paradigm has a high computational cost—due to the

mapping of tens of millions of reads to thousands of full genome sequences—

Metagenomic studies have primarily relied on the former paradigm.

However, the increased availability of high-throughput sequencing technologies

has generated thousands of bacterial genomes, making reference-guided assembly a

valuable resource regardless of its computational cost. Thus, this study describes a

novel metagenome assembly approach, called MetaCompass, that combines reference-

guided assembly and de novo assembly, and it is organized in the following stages: (i)

selecting reference genomes from a database using a metagenomic taxonomy

classification software that combines gene and genome comparison methods, achieving

species and strain level resolution; (ii) performing reference-guided assembly in a new

manner, which uses the minimum set cover principle to remove redundancy in a

metagenome read mapping while performing consensus calling; and (iii) performing

de novo assembly using the reads that have not been mapped to any reference genomes.

We show that MetaCompass improves the most common metrics used to evaluate

assembly quality—contiguity, consistency, and reference-bases metrics—for both

synthetic and real datasets such as the ones gathered in the Human Microbiome Project

(HMP) [3], and it also facilitates the assembly of low abundance microorganisms

retrieved with the reference-guided approach. Lastly, we used our HMP assembly

results to characterize the relative advantages and limitations of de novo and reference-

guided assembly approaches, thereby providing guidance on analytical strategies for

characterizing the human-associated microbiota.

REFERENCE-GUIDED ASSEMBLY OF METAGENOMES

by

Victoria Paz Cepeda Espinoza

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2020

Advisory Committee:

Professor Mihai Pop, Chair

Professor Héctor Corrada-Bravo

Professor Abhinav Bhatele

Professor Robert Patro

Professor Stephanie Yarwood, Dean’s Representative

© Copyright by

Victoria Paz Cepeda Espinoza

2020

ii

Preface

The algorithms, software, and results in this dissertation have either been published in

peer-reviewed journals and conferences or are currently under preparation for submis-

sion and/or available as a preprint. At the time of this writing, parts of Chapters 1, 2

already been published and are reformatted here. Chapter 3 is under preparation for

publication. Chapter 4 and 6 are available in a preprint and are under preparation for

submission to a peer-reviewed journal.

• Chapter 1: Introduction.

Ghurye, J. S., Cepeda-Espinoza, V., & Pop, M. (2016). Focus: Microbiome:

Metagenomic Assembly: Overview, Challenges and Applications. The Yale

journal of biology and medicine, 89(3), 353.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045144

My contributions to these works include (1) surveying the literature for recent

and seminal results, and (2) writing the manuscript.

• Chapter 2: Related work.

Olson, N. D., Treangen, T. J., Hill, C. M., Cepeda-Espinoza, V., Ghurye, J.,

Koren, S., & Pop, M. (2017). Metagenomic assembly through the lens of

validation: recent advances in assessing and improving the quality of genomes

assembled from metagenomes. Briefings in Bioinformatics, bbx098.

https://doi.org/10.1093/bib/bbx098

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045144
https://doi.org/10.1093/bib/bbx098

iii

My contributions to these works include (1) surveying the literature for recent

and seminal results, and (2) writing the manuscript.

• Chapter 3: Selecting references genome for metagenomic reference-guided

assembly.

Cepeda-Espinoza & Pop, M. “Reference selection of Metagenomes”. Under

preparation.

My contributions to this work include (1) design and implementation of the

method, (2) doing software evaluation, and (3) writing the manuscript.

• Chapters 4 and 5:

o Chapter 4: Reference-guided metagenomic assembly.

o Chapter 5: Hybrid reference-guided and de novo assembly of

metagenomes.

Cepeda-Espinoza, V., Liu, B., Almeida, M., Hill, C. M., Koren, S., Treangen,

T. J., & Pop, M. “MetaCompass: Reference-guided Assembly of

Metagenomes”. bioRxiv (2017): 212506.

https://www.biorxiv.org/content/early/2017/11/01/212506

My contributions to this work include (1) design and implementation of the

algorithm, (2) doing software evaluation, and (3) writing the manuscript.

Here is the list of other publications in which I have been involved, as a contributing

author.

• Meisel, J. S., Nasko, D. J., Brubach, B., Cepeda-Espinoza, V., Chopyk, J.,

Corrada-Bravo, H., ... & Shah, N. (2018). Current progress and future

https://doi.org/10.1093/bib/bbx098

iv

opportunities in applications of bioinformatics for biodefense and pathogen

detection: report from the Winter Mid-Atlantic Microbiome Meet-up, College

Park, MD, January 10, 2018.

My contributions to this work include (1) Participating in the Winter Mid-

Atlantic Microbiome Meet-up as a speaker and discussion sessions, and (2)

reviewing the manuscript before publication.

• Mihai Pop, Jacquelyn Meisel, Victoria Cepeda Espinoza, Kiran Javkar and

Dylan Taylor. " Introducing genome assembly to the general public through

interactive word games" (2020). Education COSI: Computational Biology

Education. ISMB 2020.

My contributions to this work include (1) Designing word games to simulate

genome assembly and participating in the Maryland Day.

v

Dedication

To my family and friends for their unconditional love and support.

vi

Acknowledgements

First, I wish to express my sincere appreciation to my supervisor, Professor Mihai Pop,

who gave the opportunity to join his lab to work on challenging problems. He

convincingly guided and encouraged me to be professional and do the right thing even

when the road got tough. Without his persistent help, this dissertation would not have

been possible.

 I would also like to thank all my other committee members —Héctor Corrada-

Bravo, Rob Patro, Abhinav Bhatele and Stephanie Yarwood—for being interested in

my research and for giving me insightful feedback to complete my dissertation.

 I wish to express my deepest gratitude to all my colleagues and collaborators,

which are all current and former members of the Pop Lab: Brian Brubach, Brook Stacy,

Christopher Hill, Dan Nasko, Domenick Braccia, Dylan Taylor, Jay Ghurye, Hari

Muralidharan, Irina Astrovskaya, Jacquelyn Meisel, Jeremy Selengut, Joseph Paulson,

Kiran Javkar, Lee Mendelowitz, Marcus Fedarko, Mathieu Almeida, Nate Olson, Nidhi

Shah, Saul Sarria, Senthil Muthiah, Seth Commichaux, Sergey Koren, Todd Treangen

and Tu Luan. Your academic and moral support throughout my entire PhD. Process

was a blessing.

Finally, I would like to thank every person who made my graduate student life

happier, including students, faculty, and staff from CBCB, UMIACS, the CS

department and UMD.

vii

Table of Contents

Preface .. ii
Dedication .. v
Acknowledgements .. vi
Table of Contents .. vii
List of Tables .. ix
List of Figures .. x
List of Abbreviations ... xi
Chapter 1: Introduction ... 1

1.1 DNA basics ... 1
1.2 DNA sequencing ... 2
1.3 Genome assembly ... 4

1.3.1 De novo assembly ... 5
1.3.2 Reference-guided assembly .. 10

1.4 Metagenomics ... 11
Chapter 2: Related work.. 12

2.1 Discovering microbes present in a metagenomic sample 12
2.1.1 Taxonomic classification of metagenomes ... 12
2.1.2 Current methods for taxonomic classification of metagenomes 15
2.1.3 Metrics to evaluate taxonomy classification of metagenomes 20

2.2 Metagenomic assembly ... 22
2.2.1 Current methods for metagenomic assembly 24
2.2.2 Metagenome assembly validation ... 26

2.3 Conclusion .. 30
Chapter 3: Selecting references genome for metagenomic reference-guided

assembly 32
3.1 Introduction ... 32
3.2 Methods... 33

3.2.1 Marker gene alignment ... 33
3.2.2 Complete genome k-mer matching ... 34
3.2.3 Database construction ... 35
3.2.4 Implementation details .. 36

3.3 Results ... 37
3.3.1 Evaluation of performance on Salmonella enterica simulated genome

 37
3.3.2 Evaluation of performance on synthetic metagenomic dataset........... 39
3.3.3 Evaluation of computational performance on simulated and synthetic

metagenomic datasets ... 42
3.3.4 Evaluation of performance on CAMI medium dataset 43

3.4 Conclusion and discussion .. 46
Chapter 4: Reference-guided metagenomic assembly 47

4.1 Introduction ... 47

viii

4.2 Related work ... 48
4.2.1 Read mapping ... 48
4.2.2 Consensus calling.. 50
4.2.3 Assembly polishing ... 50

4.3 Methods... 52
4.3.1 Read mapping ... 52
4.3.2 Selecting a minimal reference set for consensus calling 52
4.3.3 Building contigs (consensus calling) .. 54

4.4 Results ... 56
4.5 Conclusion and future directions .. 59

Chapter 5: Hybrid reference-guided and de novo assembly of metagenomes 61
5.1 Introduction ... 61
5.2 Method .. 61

5.2.1 Datasets used to evaluate metagenomic assemblies 63
5.2.2 Parameters used for metagenome assembly and metagenome assembly

validation64
5.3 Results ... 64

5.3.1 Evaluation of performance on synthetic metagenomic dataset........... 65
5.3.2 Evaluation of performance on Human Microbiome Project (HMP2) 74

5.4 Conclusion and discussion .. 81
Chapter 6: Conclusion ... 84
Appendices ... 87
Bibliography .. 89

ix

List of Tables

Table 1.1. Overview of sequencing technologies. .. 2
Table 3.1. Most abundant species in MetaCompassRS database. 37
Table 3.2. Taxonomy classifier predictions at different taxonomy levels for

Salmonella enterica serovar Typhimurium LT2 simulated dataset............................. 38
Table 3.3. Comparison between Salmonella enterica serovar Typhimurium LT2

(NC_003197.2) and MetaCompassRS false positive (FP) strains. 39
Table 3.4. Running time for taxonomy classifiers on simulated and synthetic datasets.

... 43
Table 4.1. Evaluation of performance on synthetic dataset without using reference

genomes. ... 58
Table 4.2. Evaluation of performance on synthetic dataset using reference genomes.

... 58
Table 5.1. Evaluation of performance on synthetic dataset. 67
Table 5.2. Evaluation of performance on down-sampled synthetic dataset. 72
Table 5.3. Running time for assemblers on Shakya et al. sample. 73
Table 5.4. Re-assembly of 2,294 samples generated in the Human Microbiome

Project. .. 76

x

List of Figures

Figure 1.1. Depth and Breadth of coverage. ... 4
Figure 1.2. The challenge of repeats in metagenomes. ... 5
Figure 1.3. Overview of different de novo assembly paradigms. 6
Figure 2.1. Metagenome assembly error signatures. .. 29
Figure 3.1. Overview of MetaCompassRS. .. 34
Figure 3.2. Species and strain level classification results on Shakya et al. dataset. ... 40
Figure 3.3. Species and strain level classification results on down-sampled Shakya et

al. dataset... 41
Figure 3.4. Scatter plot of Precision (x-axis) versus Recall (y-axis) across all datasets

and taxa. .. 42
Figure 3.5. Species and strain level classification results on a medium complexity

CAMI dataset. ... 45
Figure 4.1. Aligning read to reference genomes. .. 53
Figure 4.2. Creating contigs from reads that are mapped to reference genome using

the majority rule. ... 55
Figure 5.1. Overview of the MetaCompass pipeline. ... 62
Figure 5.2. Genome recovery percentages in synthetic metagenome (MetaCompass

versus de novo assembly).. 68
Figure 5.3. Error profile on synthetic dataset. .. 70
Figure 5.4. MetaCompass performance on low coverage dataset. 74
Figure 5.5. Comparative assembly of 2,294 metagenomic samples from the HMP2

Project. .. 77
Figure 5.6. Icarus view of metagenomic assembly of the stool sample SRS143342

from the HMP2 Project. .. 80
Figure 5.7. Longest contig from Bacteroides cellulosilyticus strain WH2 chromosome

genome assembly (accession:NZ_CP012801.1, length: 7084828 bp). 80
Figure 5.8. IGV visualization of read and contig mapped against a segment of the

Bacteroides cellulosilyticus WH2 genome (accession:NZ_CP012801.1, length:

7084828 bp). ... 81

xi

List of Abbreviations

Bp Base pair

DNA Deoxyribonucleic acid

Gbp 1 Giga base pair equal to 109 base pairs

Kbp 1 Kilo base pairs equal to 1000 base pairs

Mpb 1 Mega base pairs equal to 106 base pairs

ORF Open reading frame

RNA Ribonucleic acid

1

Chapter 1: Introduction

1.1 DNA basics

DNA is a long chain of molecules that holds all the genetic information needed for the

organisms to function and reproduce. The DNA alphabet is composed of four letters:

A (Adenine), T (Thymidine), G (Guanine), and C (Cytosine), known as nucleotides. A

DNA sequence can be represented as a string consisting of series of these four letters,

and it is composed of two strands of nucleotides that “match” each other following a

constraint: i.e., A always matches T and C always matches G. Because nucleotides pair

up, each letter in the DNA sequence is called base pair (bp). Here we will only refer to

the sequence of one strand.

An organism’s genome sequence refers to an organism’s complete set of DNA

(e.g., the human genome has 3.2 billion bp). A genome consists of a set of genes—

which are contiguous intervals of DNA that contain information needed to code for

proteins or RNAs—that are paramount for answering a variety of biological questions,

such as inheritance, ancestry, health and disease of an organism.

2

Table 1.1. Overview of sequencing technologies.

 Technology Read

Length

Accuracy

Time per

run

Bases per

run

Third-

generation

sequencing

technologies

Single Molecular Real

Time Sequencing (Pacific

Biosciences)

10 kbp to

15 kbp

87%

(Low)

30 min. to

4 hrs.

5-10 Gbp

Oxford Nanopore MinION

Sequencing

5 kbp to

10 kbp

70% to

90%

(Low)

1 to 2 days 500 Mbp

Second-

generation

sequencing

technologies

Ion Semiconductor (Ion

Torrent sequencing)

Up to

400 bp

98%

(Medium)

2 hrs.

10 Gbp

Sequencing by synthesis

(Illumina)

50-300bp

99.9%

(High)

1 to 11

days

300Gbp

Sequencing by Ligation

(SOLiD sequencing)

75 bp

99.9%

(High)

1 to 2

weeks

3 Gbp

Pyrosequencing (454) 700 bp

99.9%
(High)

24 hrs.

400 Mbp

First-

generation

sequencing

technologies

Chain termination (Sanger

sequencing)

400 to

900 bp

99.9%

(High)

N/A

50-100

Kbp

1.2 DNA sequencing

The process of determining the complete base pair sequence order of a string of DNA

sequencing is called DNA sequencing or simply sequencing. The technique called

shotgun sequencing randomly “breaks up” DNA into a collection of small fragments,

and each fragment is individually sequenced into a read. In many cases, reads are pair

3

ended or mate-paired, which means that pairs of reads are sequenced from the same

DNA fragment. The distance between the reads in each pair, and their relative

orientation are approximately known.

The various sequencing technologies developed over the past 40 years can be

broadly classified into three generations based on key technological innovations (Table

1.1). First-generation sequencing, usually referred to as Sanger sequencing, relied on

DNA cloning, and therefore had limited throughput. The second-generation

sequencing, often called short-read sequencing due to the much shorter length of the

sequences compared to the Sanger technology, massively increased throughput by

parallelizing many reactions on chips. Third-generation sequencing, also called single

molecule or long-read sequencing, allows sequencing of single DNA molecules in

contrast with prior technologies that required each molecule to be amplified [4]. Single

molecule technologies can read substantially longer sequences than prior technologies.

Sequencing technologies randomly oversample the genome and produce many

overlapping reads such that the total amount of reads is greater than the amount needed

to “cover” each base pair of the genome. The theoretical or expected coverage is the

average number of times that each nucleotide is expected to be sequenced given a

certain number of reads of a given length and the assumption that reads are randomly

distributed across an idealized genome[5]. Empirically, the term “depth of coverage”

(usually referred to as coverage) is defined as the average number of times a base of a

genome is sequenced or “covered” by a read. The term “breadth of coverage”, on the

other hand, is defined as the percentage of bases of a genome that are sequenced, or the

percentage of the genome “covered” by reads (Figure 1.1).

4

Figure 1.1. Depth and Breadth of coverage.

In this example, the depth of coverage of the reference genome (10 Mbp) is 4X (there

is average of 4 reads per base pair). The breadth of coverage is 90% of the reference

genomes, or, in other words, 1 Mbp of the genome is not covered by any read.

1.3 Genome assembly

Genome assembly is the reconstruction of a genome from short overlapping reads, and

it is a complex computational tasks due to DNA segments repeated within a same

organism, also known as “intragenomic repeats” (Figure 1.2 A) [6]. Repeats present a

challenge, because different genomic regions that share repeats can be

indistinguishable if the repeats are longer than the reads. Therefore, if a genome region

has a repeat, the repeat will introduce several possible sequences or paths in the

assembly graph. It has been shown that assembly complexity is directly tied to the ratio

between the sequencing read length and the length of repeats [7].

Algorithms and computational tools called “genome assemblers” are able to

reconstruct near-complete genome sequences from reads and they fall into two

paradigms: the de novo assembly strategy where reads are used to reconstruct the

genome without prior knowledge of the source of DNA, and a reference-guided

assembly (also known as comparative assembly), in which reads are aligned to a

reference genome. Although the first genome assembler was developed almost three

5

decades ago and now there are numerous computational tools to tackle genome

assembly, genome assembly remains a challenging computational problem. In most

cases, genome assemblers cannot fully reconstruct an organism’s genome and the

output consists of a set of continuous fragments called contigs.

Figure 1.2. The challenge of repeats in metagenomes.

Three genomes are used to depict intragenomic (A) and intergenomic (B) repeats. The dark

blue and light blue genomes represent two closely related strains and the green genome an

unrelated strain. Within the genomes the red, orange, and tan blocks represent inparalogs. The

yellow blocks represent a horizontal gene transfer event between the light blue and green

genomes. In traditional assembly, any reads longer than the inparalog blocks (red, orange)

would be sufficient to fully resolve the genome. In metagenomic assembly, reads longer than

the full syntenic block (gray) would be necessary.

1.3.1 De novo assembly

Currently, most state of the art de novo genome assemblers use a graph-based approach,

where the problem can be formulated as a Hamiltonian or Eulerian path problem [8],

depending on how the reads and overlaps are defined. Ideally, the genome assembly

problem has one solution, but the graph formulations can have many solutions and

finding the correct solution (genome assembly) is NP-hard [9]. Due to the

computational intractability, three heuristic based methods have been developed

6

throughout time to perform de novo assembly: Greedy assembly, Overlap-layout

consensus assembly, and de Bruijn graph assembly—currently the most widely used

technique (Figure 1.3).

Figure 1.3. Overview of different de novo assembly paradigms.

Schematic representation of the three main paradigms for genome assembly – Greedy, Overlap-

Layout-Consensus, and de Bruijn. In Greedy assembler, reads with maximum overlaps are

iteratively merged into contigs. In Overlap-Layout-Consensus approach, a graph is constructed

by finding overlaps between all pairs of reads. This graph is further simplified and contigs are

constructed by finding branch-less paths in the graph and taking the consensus sequence of the

overlapping reads implied by the corresponding paths. Contigs are further organized and

extended using mate pair information. In de Bruijn graph assemblers, reads are cut into short

overlapping segments (k-mers) organized in a de Bruijn graph structure based on their co-

occurrence across reads. The graph is simplified to remove artifacts due to sequencing errors,

and branch-less paths are reported as contigs.

7

1.3.1.1 Greedy assembly

This approach first identifies overlaps between pairs of reads and merges reads with

the best overlaps. The overlap and merging steps continue in an iterative way until all

reads and overlaps are merged. The main advantages of the greedy assembly method is

the simplicity of its algorithm, which makes it easy to implement, and its effectivity

when the genome contains only short or no repeats. Its disadvantage, on the other hand,

is that the choices made during the merging steps are locally optimal and do not

consider global relationships between reads. As a result, this approach can produce

incorrect assemblies within repetitive sequences.

1.3.1.2 Overlap-layout consensus (OLC)

This method was developed in 1995[9] and was used to assemble the first bacterial

genome, Haemophilus influenzae [10][11], and the first human genome [12][13].

The OLC approach has three steps. In the first overlap step, it computes all

pairwise overlaps with a dynamic programming-based alignment algorithm. The

complexity of this computational step is quadratic in terms of the number of reads.

Then an overlap graph is generated from both the reads and pairwise overlaps, using

reads as vertices and overlaps as edges. In the second layout step, the overlap graph is

simplified to identify a path (or “layout”) of the reads along the genome that

corresponds to its sequence. And, finally, in the consensus step the layout is used to

construct a multiple alignment of the reads to infer the sequence of the genome.

This approach is effective at high error rates, but its efficiency is reduced with

high depth of coverage due to the complexity of the overlap computation step.

Therefore, this approach is more suitable for relatively long reads such as those

8

generated by first and third-generation technologies, and it is also particularly

beneficial in assembling reads with high error rates, such as those generated by third

generation technologies.

1.3.1.3 De Bruijn Graph (DBG)

The DBG approach became popular with the appearance of second-generation

sequencing technologies, which increased the throughput to hundreds of millions of

reads, as opposed to the Greedy and OLC assembly approaches that were designed for

first-generation sequencing, and which did not scale well.

The reads are used to construct a DBG as follows: each read is decomposed into

overlapping segments of equal length k, called k-mers. The k-mers become the nodes

of the graph, and the edges connect nodes with k-1 matching bases. In this approach

reads are not explicitly aligned to each other, rather their overlaps can be inferred from

the fact that they share k-mers.

The DBG is a multigraph due to repeats. Repeats create additional edges in the

graph, increasing the number of possible traversals. Given a collection of all k-mers in

a genome sequence, the assembly problem reduces to finding an Eulerian path—a path

through the graph that visits each edge once.

The de Bruijn formulation above assumes perfect data and makes the

assumption that for a given read length k, we are given all length-k substrings of a

genome as well as the number of times they occur. In practice, not all substrings are

obtained, and several factors impact the performance of de Bruijn graph assemblers: (i)

sequencing errors; (ii) repeats; and (iii) the depth of sequencing coverage. The interplay

9

between these factors drives the choice of optimal k-mer size for a specific application

as well as the ultimate performance of an assembler.

Unlike the Overlap-Layout-Consensus approach, the DBG paradigm is affected

by read errors. Sequencing errors create incorrect k-mers thereby increasing the

complexity of the graph and making it more difficult to identify an unambiguous

reconstruction of a sequence. These errors must be eliminated prior to identifying an

Eulerian path in the graph. Every error impacts at most k different k-mers, thus the

impact of sequencing errors increases with the size of k. As a result, assemblers often

include a correction step or assume pre-corrected data as input. Initial de Bruijn

assemblers used spectral correction [14], which attempts to make a minimum number

of changes in a sequence to make it consistent with correct or “solid” k-mers [15,16].

Repeats create ambiguity in the reconstruction of the genome and therefore a

larger possible space of solutions must be explored [7]. Without further information,

an assembler can randomly choose one of the branches, possibly leading to assembly

errors, or decide to break the assembly, leading to fragmented results. Large values of

k reduce the complexity of the graph and impact of repeats, but using such values

requires longer sequences (longer than the k-mer size) as well as a higher depth of

coverage, leading to an increased impact of sequencing errors (each error impacts k

different k-mers). Conversely, shorter k-mers mitigate the impact of sequencing errors

but lead to a higher impact of repeats on assembly effectiveness. Assuming uniform

error and random sequencing, it is possible to compute the expected surviving coverage

for a given k-mer size and input coverage [17]. These trade-offs represent a key

10

component of the algorithmic choices made by the assembly software and also guide

the empirical choices made by users of assembly tools.

Finally, the depth of coverage impacts the connectivity of the DBG graph. A

path stretching from one read to another across an entire genome can only be found if

adjacent reads share k-mers. At low depths of coverage, the adjacent reads are only

expected to overlap by a small extent, and as a result the assembly is only possible for

small values of k.

1.3.2 Reference-guided assembly

The reference-guided assembly approach consists of two steps: first, all the reads are

aligned against the reference genome; then a consensus sequence is generated by

calling a base at each position where reads have mapped along the reference genome.

This approach is more effective than de novo assembly in resolving repeats and is thus

able to get better results than de novo approaches especially at low depths of coverage.

Long repeats are still a challenge as they lead to an ambiguous alignment of reads

against the genome, though the use of mate-pair information can partly mitigate this

issue and can help to identify the correct placement of reads. At the same time, the

effectiveness of the comparative assembly approach depends on the availability of a

closely related reference sequence. Differences between the genome being assembled

and the reference can lead to either errors in reconstruction or to a fragmented

assembly. The AMOScmp [18,19] comparative assembler attempts to identify such

polymorphisms and rearrangements between genomes, and breaks the assembly at

these locations in order to avoid mis-assemblies.

11

Several tools were developed to help augment or improve de novo assemblies

with the help of reference genomes. OSLay [20], Projector 2 [21], ABACAS [22] and

r2cat [23] simply use a reference sequences to identify the correct order and orientation

of contigs from a de novo assembly. An extension of this approach was proposed by

Husemann et al. [24] that leverages information from multiple related genomes,

weighted by their evolutionary distance from the sequence being assembled.

Scaffold_builder [25] also provides functionality to join together contigs that were left

unassembled by the de novo approach, thereby helping improve the assembly through

the use of a reference sequence. Finally, E-RGA [26] performs de novo and reference

guided assembly independently first and then merges two assemblies later using a novel

data structure called merge graph to avoid mis-assemblies and ambiguous overlaps.

1.4 Metagenomics

Metagenomics studies microbial samples directly taken from the environment. This

technology allows research in human microbiome, soil, air, bodies of water, surfaces,

and virtually any place where there is a community of interest. The advantage of

metagenomic sequencing over single genome sequencing is the possibility of studying

all the archaea, bacteria, plasmids, and viruses present at a given time in a sample. This

same feature is also a challenge, for the microbial composition of the sample is

unknown.

In the following chapter we further outline several approaches developed to

address both the composition and the assembly of a metagenomic sample.

12

Chapter 2: Related work

2.1 Discovering microbes present in a metagenomic sample

Finding and quantifying the composition of a microbial community is a fundamental

part of metagenomics. This process is both biologically and computationally

challenging.

In this chapter, we outline key biological concepts to understand how

microorganisms can be computationally classified and quantified. Then, we describe

current computational approaches used to classify and determine the composition of a

metagenomic sample.

2.1.1 Taxonomic classification of metagenomes

Taxonomy classifies living organisms into eight ranks: domain, kingdom, phylum,

class, order, family, genus, and species. Each taxonomic rank is called taxon (plural

taxa). Bacteria and archaea—the organism of interest in a metagenomic sample—

belong to the prokaryotic domain in the tree of life and can be further classified into a

taxonomy rank below species called strain—which are genetic variants (or subtypes)

within a species.

Taxonomic profiling is the computational process of inferring which taxonomic

ranks are present in a microbial community (taxonomy classification) and estimating

their relative abundances [27]. In metagenomics, marker genes are genes that are

conserved across species, and thus are suitable to discriminate between taxonomic

13

ranks. The most widely used approaches for metagenomics taxonomy profiling use two

type of marker genes universally present in prokaryotes: single genetic markers called

16S rRNA genes, and protein coding single-copy orthologous genes.

In bacteria and archaea, the genes coding for the 16S ribosomal RNA (16S

rRNA), part of the 30S small ribosomal unit, are referred to as 16S rRNA genes. These

genes sequences consist of nine conserved regions separated by nine hypervariable

regions (V1-V9). Highly conserved regions can be used as PCR primer bonding sites

to amplify and sequence one or more hypervariable regions of the 16S rRNA gene,

which, in turn, are used to identify the phylogeny of microorganism [28]. Such

characteristics have made 16S rRNA sequencing one of the most widely used

approaches to characterize the taxonomic diversity of a metagenomic sample.

After sequencing, 16S rRNA analysis pipelines [29–31] start by clustering

reads based on sequence similarity into Operational Taxonomic Units (OTUs). Then, a

representative sequence from each OTU is compared against curated 16S rRNA

reference databases [32–35] to assign taxonomic labels. The taxonomic resolution of

16S pipelines is usually limited to genus level.

The 16S approach has several known shortcomings: (i) different organisms

contain different copy numbers of 16S rRNA genes, introducing abundance estimation

biases [36]; (ii) the amplification process introduces biases [37,38]; (iii) targeting

different sub-regions of the 16S rRNA gene can influence the taxonomic assignment

[39]; and (iv) problems differentiating species in an accurate and consistent manner

[40].

14

One of the possible explanations of the 16S rRNA gene problems to delineate

taxa is its extremely slow rate of evolution. Thus, organisms from closely related but

different taxa (e.g. different species from the same genera) might not have evolved fast

enough to diverge in their 16S rRNA gene sequences [41,42]. Single-copy protein-

coding orthologous genes, usually called single-copy marker genes, evolve faster than

16S rRNA and have been shown to have more power at resolving the relationships of

closely related species [43]. Moreover, single-copy marker genes overcome many of

the shortcomings of 16S rRNA genes. First, single-copy marker genes can be retrieved

by sequencing the whole metagenomic dataset instead of targeting one gene, avoiding

amplification biases. Second, they are not biased by copy number variation, allowing a

more accurate abundance estimation of metagenomes. Lastly, single-copy marker

genes can provide microbial species boundaries at higher resolution than 16S rRNA

genes [44,45].

Several studies (Ciccarelli et al. [46] , Sorek et al. [44]) identified 40 universal

single copy marker gene families that are present in all bacteria and archaea and can be

used to reconstruct a phylogenetic tree [43,44]. These marker genes families are

available in the Clusters of Orthologous Groups of proteins (COGs) public database

[47,48]. Single copy marker genes can be extracted from microbial genomes using

Hidden Markov Models (HMMs) trained on protein alignments [45]. Single-copy

protein-coding orthologous genes are currently the most used marker genes in

metagenomic studies and are part of some of the methods described below.

15

2.1.2 Current methods for taxonomic classification of metagenomes

The taxonomic classification of metagenomes is computationally challenging for two

reasons. First, high-throughput sequences technologies generate millions of reads that

need to be analyzed. Second, there are hundreds of thousands microbial genomes

available in public databases and the number is constantly increasing. Thus, the number

of comparisons that need to be performed to analyze a metagenomic sequencing dataset

is considerably large.

In this section, we highlight published methods for metagenomic taxonomy

classification. Most methods gather genomic, genetic, and taxonomy information from

the public NCBI Reference Sequence Database (RefSeq) [49–52]. Several methods

performed well in a recent review [53].

2.1.2.1 Whole genome alignment-based methods

The most intuitive approach for predicting the composition of a metagenomic sample

is comparing each read to a database of reference genomes. This task can be

accomplished by traditional methods based on local sequence alignment [54,55], which

are highly accurate. Yet, while effective, aligning each read individually to a database

of whole genomes can become prohibitively slow. Here we described the most popular

alignment-based methods.

BLAST (basic local alignment search tool) [56,57] is the most widely used software

suite for sequence alignment (at nucleotide and protein level) and has been shown to

align reads with greater accuracy than other sequence alignment methods [58]. BLAST

was designed to find local similarities between one or more “query” sequences and one

16

or more “subject” sequences within a database. The intuition behind BLAST is that if

the query and subject sequences are highly similar, they will contain exactly matching

k-mers or “seeds”. Before running a BLAST search, a database is created from subject

sequences by decomposing them into seeds (k-mers of length 7 to 11) and then storing

them in a hash table. During the search, BLAST performs local sequence alignment

using a seed-and-extend algorithm. In the seed step, the query is decomposed into seeds

and then looked up into the hash table to locate seed matches between the query and

subject. In the extend step, matching seeds are joined and extend using the Smith-

Waterman alignment algorithm [59]. In a metagenomic sequencing experiment, a

massive set of reads correspond to the query and the hundreds of thousands microbial

reference genomes correspond to the subject. Although BLAST was not designed for

metagenomics and it is computationally intensive, it has been incorporated in several

metagenomic classification tools described below as a pre-filter for read classification

due to his accuracy.

MegaBLAST [60], which is part of the BLAST software suite, was designed to

compare highly similar sequences. MegaBLAST uses a greedy algorithm to perform

gapped alignments between nucleotide sequences, and longer seeds (length 28) to

reduce the number of alignments and accelerate the search. This is the only tool from

the BLAST+ software suit that can compare metagenomic reads to a reference genome

database in a feasible amount of time. MegaBLAST can also serve as a pre-filter for

read classification.

17

DIAMOND (double index alignment of next-generation sequencing data) [61] is a

protein-based method similar to BLASTx—BLAST module that translates the query

into its six reading frames and compares it to a protein database— to align read queries

to a protein database. Similar to MegaBLAST, it uses a longer seed (length from 15 to

24) to speed up the search of its BLASTx-like approach, and its main novelty is the use

of double-indexing to determine the list of all seeds and their locations in both the query

and subject. Double indexing improves cache locality, thus reducing memory usage.

Although not designed for metagenomics classification, a DIAMOND search is usually

followed by MEGAN [55], which post-processes sequence alignments and assigns

each read to taxa using the lowest common ancestor (LCA) algorithm.

Kaiju [62] is a protein-based classifier that finds maximum inexact matches on the

protein-level using the Burrows–Wheeler transform (BWT) [63] and FM-index [64].

The use of the FM-index to store the reference genomes reduces memory requirements

compared to both BLAST and DIAMOND. Kaiju first translates each read into six-

reading frames and then searches for MEMs (Maximal exact matches) in the FM-index.

Then taxonomic assignment is done by assigning reads to the longest MEM, or to the

LCA taxon if a read matches multiple taxa. Kaiju also has a greedy search mode which

allows some mismatches by searching backwards in the BWT.

2.1.2.2 Marker gene alignment-based methods

As described in the previous section, marker genes are ideal for taxonomic profiling of

metagenomic samples. While traditional sequence alignment methods can become

prohibitively slow, by using marker genes instead is much faster due to the reduced

18

size of the subject database [62,65–67]. Thus, traditional sequence alignment methods,

such as BLAST, can quickly align reads to marker genes while maintaining high

accuracy. The following methods are based on marker gene sequence alignment.

MetaPhyler [65] is a taxonomic classifier that relies on 30 marker genes as a

taxonomic reference. First, MetaPhyler aligns a metagenomic sample against a marker

gene database using BLAST. It then classifies each read individually based on its best

blast-hit alignments to the database, and it uses different thresholds (automatically

learned from the reference database) for each combination of taxa, reference gene, and

sequence length. MetaPhyler achieves genus and species level taxonomic resolution.

MetaPhlAn (Metagenomic Phylogenetic Analysis) is a taxonomic classifier that relies

on a clade-specific marker gene database. Reads are aligned to the marker gene

database using Bowtie2 [68]. The total number of reads in each clade is normalized by

marker gene length to then provide a relative abundance of each taxon. MetaPhlAn

achieves genus and species level taxonomic resolution.

2.1.2.3 K-mer-based methods

K-mer based methods provide a fast identification of a metagenomic sample by relying

on exact-match database queries instead of alignment. To achieve this, these methods

pre-compute all k-mers contained in a database of complete microbial genomes [69–

71].

19

Although k-mer approaches were created to achieve maximal speed, their main

drawback is its substantial memory requirement. More recently, methods using a subset

of k-mers to reduce the dimension of the problem have been developed [72–74],

drastically reducing memory requirements. Regardless of the efficiency of k-mer-based

approaches, a main shortcoming is their lower accuracy compared to alignment-based

sequencing methods.

Kraken [71,75], the first k-mer based taxonomic classifier, uses a hash-based index to

store a genome’s k-mers along with its taxonomic label. If a k-mer is shared across

multiple taxa, the k-mer is stored along with the LCA of those taxa. During the

classification, Kraken decomposes each read into its constituent k-mers and then maps

each k-mer to the database with an inexpensive table lookup. Because Kraken assigns

reads to the LCA of taxa, many reads don’t get specific labels assigned. To tackle this

problem, BRACKEN (Bayesian Reestimation of Abundance after Classification with

Kraken) [76] was designed to re-estimate taxonomic abundance from Kraken results,

and it estimates abundance by redistributing read assignments in the taxonomic tree

using Bayesian probabilities. Bracken achieves genus and species level taxonomic

resolution.

CLARK [70], similar to Kraken, builds a database of genome’s k-mers. However,

CLARK reduces the size of the k-mer by storing only species or genus-level specific

k-mers and removing nonunique k-mers and rare k-mers, which also reduces noise

20

during the classification. CLARK-S [77] improves CLARK’s sensitivity by replacing

fixed-length k-mers with target-specific or discriminative spaced k-mers.

Mash Screen [78] is an extension of Mash [73], a tool that uses MinHash

dimensionality reduction techniques to quickly calculate the approximated distance

between two genomes via Jaccard index. Mash Screen introduces the concept of

“screen”, in which a genome database is tested for their containment within a set of

metagenomic reads. For each reference genome, Mash Screen computes a containment

score that measures the similarity of the reference genome to a metagenomic dataset.

Similar to BLAST and DIAMOND, Mash Screen was not designed for taxonomy

classification but can serve as a pre-filtering step.

2.1.3 Metrics to evaluate taxonomy classification of metagenomes

The metrics selected to benchmark metagenomic classifiers greatly influence their

relative rankings and performance. Different metrics have been applied for evaluating

the binary classification task of predicting taxa presence or absence. The most

commonly metrics for presence or absence in metagenomic classification used across

benchmarking studies [79–81] are precision, recall, F1 score, and the Jaccard index.

Precision, also known as positive predictive value, refers to the proportion of

true positive classifications, out of the total number of classifications attempted:

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

21

In the context of metagenome classification, precision can be calculated by taxon as

the proportion of correct classification in the sample divided by the number of total

classifications identified by the method.

Recall, also known as sensitivity or true positive rate, is defined as the

proportion of true positive classifications out of the total true positives plus false

negatives being tested:

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 In the context of metagenome classification, recall can be calculated by taxon

as the proportion of correct classifications divided by the number of distinct elements

in the sample.

There is a fundamental trade-off between precision and recall. Depending on

the downstream analysis being performed after taxonomy classification, achieving

either a higher precision or a higher recall can be preferred. Precision can represent a

measure of exactness or quality, while recall a measure of completeness or quantity. In

reference-based methods, such as reference-guided metagenome assembly and

pangenome-based analysis, it is desired to retrieve all-known taxa present in the

classification (higher recall) without sacrificing precision.

The F1 Score measures the balance between precision and recall. The F1 score

is the harmonic mean of recall and precision, weighting them equally in a single metric:

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

22

Finally, the Jaccard index refers to the number of true positives (intersect

between predicted and real communities) divided by the true positives plus the false

positives and negatives:

𝑱𝒂𝒄𝒄𝒂𝒓𝒅 𝒊𝒏𝒅𝒆𝒙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

To provide a realistic estimate of precision, recall, F1 score, and Jaccard index

for benchmarking, all taxonomy classifiers should be tested using the same abundance

threshold.

2.2 Metagenomic assembly

The goal of metagenomic assembly is to reconstruct the genomes of all organisms in a

given microbial community. Metagenomic datasets are commonly sequenced using

short second-generation reads. Thus, similarly to the de novo genome assembly

problem, the short-metagenome assembly problem can be formulated as a DBG

problem. In a metagenomic context, the task of a DBG metagenome assembler is not

just to reconstruct one path through a graph, but a multitude of paths that come together

and split apart at different places.

As described in Chapter 1, the main factors affecting the performance of single

genome DBG assemblers are sequencing errors, repeats—the presence of repetitive

DNA segments within an organism's genome (intragenomic repeats)—, and the depth

of sequencing coverage. Furthermore, the problem of reconstructing a metagenome is

complicated by: (i) the presence of strain variants; (ii) the combination of both

intragenomic and intergenomic repeats (DNA segments shared between distinct

organisms, Figure 1B); and (iii) the uneven sequencing coverage within a metagenome.

23

Strain variants create a challenge similar to sequencing errors and in highly

polymorphic samples the assembly result will likely be fragmented [82]. Furthermore,

distinguishing true biological differences from sequencing errors becomes nearly

impossible in a metagenomic setting.

Intragenomic repeats are generally small (usually smaller than ~10,000 bp in

bacteria [83,84]) but intergenomic repeats can be nearly the entire chromosomes for

closely related strains. Multiple bacteria from the same species in a community (strain

variants) may differ in just one gene, in which case almost the entire genomes are inter-

genomic repeats. The decision of whether such differences can be ignored when

reconstructing the corresponding genome, or whether it is proper to reconstruct

individual-specific genomes, is not only computationally difficult but also ill-defined

from a biological point of view.

Due to uneven sequencing coverage within a metagenome, coverage heuristics

employed for single genome assembly can no longer be used to detect repeats [85].

Organisms sequenced at high depth of coverage (often exceeding 1000-fold) lead to

high computational costs. In a DBG, the higher depth of coverage amplifies the effect

of errors on the assembly graph and may even confuse error correction algorithms

(simply by chance multiple random errors can confirm each other). Organisms

sequenced at low depth of coverage (less than 10-fold) can be assembled using shorter

k-mers, but this strategy can lead to a higher impact of repeats on the assembly.

Due to these complications, despite initial attempts, algorithms developed for a

single genome assembly cannot be applied directly to metagenomics data. Instead,

24

several approaches, mostly under the DBG paradigm, have been developed that

explicitly consider the specific characteristics of metagenomic datasets.

2.2.1 Current methods for metagenomic assembly

Various de novo assemblers [3,4,8,10] have been developed and applied to the

assembly of metagenomes from massive amounts of short reads. In this section, we

highlight three published algorithms developed specifically for de novo metagenomic

assembly that perform well in recent reviews [86,87].

IDBA-UD [88] is part of the IDBA (Iterative De Bruijn Graph De Novo Assembler)

[89] suite of assemblers. A key algorithmic component of IDBA assemblers is the use

of multiple k-mer sizes to address the trade-offs of different choices of k. To improve

the DBG, IDBA-UD iterates through a range of k-mer values in a stepwise fashion.

Sequencing errors are corrected at each iteration, reducing its impact in the assembly.

The assembly graph becomes more resolved with increasing k-mer size in each

iteration step, resulting in a more contiguous assembly.

MEGAHIT [90] relies on the same multiple k-mer strategy as the [90] IDBA

assemblers [89]. MEGAHIT is currently the most efficient de novo assembler largely

due to its use of efficient data-structures for storing the de Bruijn graph[87]. Memory

requirements are reduced by using a new data structure, called succinctly de Bruijn

graph [91]. Memory is further reduced by eliminating k-mers below a defined

frequency threshold from the graph. This step also minimizes the negative impact of

25

sequencing errors on the assembly. To retain k-mers from low abundance organisms,

distinguishing them from errors, MEGAHIT reconsiders discarded k-mers in low-

coverage regions of the assembly graph.

MetaSPAdes [92] is a metagenomic-specific version of the SPAdes assembler [93],

and it was originally designed to address two major issues of single cell sequencing

data: the uneven read coverage and chimeric sequences—issues that are also relevant

to metagenomic assembly. The main innovation in these family of assemblers is the

use of paired-end information during the assembly process rather than afterwards [94].

This information is incorporated in the DBG by using pairs of k-mers separated by an

estimated distance. Similar to IDBA-UD and MEGAHIT, SPAdes follows an iterative

multiple k-mer approach, and, moreover, it uses the complete read information together

with the preassembled contigs at every step. In addition, metaSPAdes was extended to

handle strain variation; micro-variations between highly similar “strain-contigs” are

combined to form high quality consensus sequences, aiming at the best possible

representation of each species instead of every strain variant. MetaSPAdes is slower

than IDBA-UD and MEGAHIT and it is not scalable to large datasets[87].

Despite advances in metagenomic assembly algorithms [88,95–98], the

assembly problem remains computationally challenging. As mentioned in Chapter 1,

reference-guided assembly is more effective than the de novo assembly when

sufficiently closely related sequences are available, yet, it has not been applied to

26

metagenomics. In this regard, a metagenomic reference-guided approach will be

discussed in Chapter 4.

2.2.2 Metagenome assembly validation

The validation of genome assemblies has been an active area of interest since the

development of the first genome assemblers in the late 1970s [99]. The most commonly

used metrics to evaluate the quality of metagenomics assembly can be classified into

(i) contiguity-based, (ii) completeness-based, (iii) reference-based, and (iv)

consistency-based. Contiguity, completeness and consistency-based metrics rely on

features of the assembled data, seeking to identify internal inconsistencies indicative of

potential assembly errors. Reference-based metrics need to know the “ground truth”

genomes used for generating the metagenomic reads.

2.2.2.1 Contiguity-based metrics

Contiguity-based metrics are the most intuitive. These metrics evaluate how

fragmented the final assembly is. The most common metric used to compare

assemblies, the number of contigs (total number of assembled contigs reported by each

assembler), attempts to assess how far the assembly is from the ideal goal of one contig

per chromosome. Since most assemblies consist of many small contigs, usually due to

sequencing errors or other artifacts, this metric can be misleading. More robust

measures are the Contig Number at 1Mbp (the number of contigs required to exceed

1Mbp) and the Assembly size at 1MBp (the size of the largest contig C such that the

sum of all contigs larger than C exceeds 1Mbp). The choice of 1Mbp is driven by

bacterial and archaeal genome sizes: while the average length of such organisms is

27

usually longer than 3Mbp, many of them encompass multiple replicons of shorter

length (~0.3-1.3Mbp) [100]. Since the real average length of replicons in a metagenome

is arbitrary, using 2-5Mbps is also reasonable.

The contiguity metrics already described do not take any correctness

information into account and can be misled by accepting errors—a single long contig

can be constructed by concatenating all the reads in an incorrect order.

2.2.2.2 Completeness-based metrics

The most intuitive completeness-based metric is the total assembly size, which is the

total number of bases in the assembly. The gene information contained in a

metagenome assembly can also be used not only to evaluate completeness but also to

measure how useful an assembly may be to downstream analyses. As genes are used to

address biological questions, a greater number or density of genes results in more

information available for testing biological hypotheses. Single-copy marker genes, here

referred simply as marker genes, can be assumed to exist in all newly assembled

bacterial and archaeal sequence. Thus, an assembly where some of these genes are

missing can be assumed to be incomplete. Additionally, complete genes and marker

genes metrics can be used as a measure of correctness, as assembly errors would disrupt

ORFs (open reading frames). The completeness-based metrics used to represent a

metagenome’s gene content are complete genes and complete marker genes, which are

the median number of fully reconstructed complete genes and the marker genes,

respectively.

28

2.2.2.3 Reference-based metrics

To calculate reference-based validation metrics, the assembly is compared to a

database containing previously assembled genes or genomes [101,102]. The most

common reference-based metrics are: (i) Genome Recovery (%), which is the median

percentage of each truth genome that is recovered; (ii) Total Aligned Length, which is

the sum of the length of contigs aligned to the truth genomes; (iii) Total Unaligned

Length, which is the sum of the length of unaligned contigs; and (iv) NGAx, which is

the length of the contig that covers at least half the reference genome.

Reference-based metrics are particularly effective in benchmarking

experiments that try to reconstruct communities with known composition. However,

these metrics can have limited effectiveness in real datasets. For example, metagenomic

segments originating from a genome for which no reference sequence is available

cannot be verified through a reference-based approach. It is also difficult to determine

whether differences between an assembled contig and the reference genome are true

differences o errors.

2.2.2.4 Consistency-based metrics

It is often important to determine where exactly errors were introduced in the assembly,

either to correct these mistakes, or to ensure that the errors do not influence the results

of downstream analyses. The major types of assembly errors are: repeat collapse,

insertions, deletions, and inversions (Figure 2.1).

Consistency-based metrics evaluate assembly errors by aligning sequencing

reads to the assembly and finding regions where the mappings are inconsistent.

29

Common consistency-based metrics include depth of coverage, consensus, split read

mapping and insert size consistency.

The depth of coverage metric is a statistical comparison of global vs local

coverage, as signature of compressed or expanded repeats. Increases in coverage show

collapsed repeats, while drops in coverage or coverage gaps can show breakpoints due

to insertions, deletions, and inversions. Consensus refers to the concordance of the

consensus to the read pileup. Split-read mapping measures single reads with partial

alignments to separate locations of a genome. Lastly, insert size consistency evaluates

the concordance of the insert size (distance between read pairs); increase in insert size

shows expanded repeats and decrease size shows collapsed repeats.

Figure 2.1. Metagenome assembly error signatures.

There are four primary types of assembly errors, repeat collapse, insertions, deletions, and

inversions. These assembly errors can be identified by mapping reads to the assembly and

evaluating the coverage (blue curve), distance between read pairs (green reads), and split read

mapping data (green reads). Increase in coverage indicates repeat collapse whereas drops in

30

coverage indicate breakpoints for insertions, deletions, and inversions. Shorter than expected

distance between read pairs indicates potential repeat collapse or deletion, whereas increase in

distance between read pairs indicates a potential insertion. Inconsistency in read pair direction

can indicate an inversion. Finally, split-read mapping data, obtained by independently aligning

the first and last third of a read can be used in a similar manner to read pair information to

identify assembly errors [103].

2.2.2.5 Current Methods for Metagenome assembly validation

The software packages CheckM [104] and BUSCO [105] are only based on

completeness-based metrics. CheckM relies on single-copy marker genes that are

specific to a genome-based lineage within a reference tree, while also supplying

information to correct the assemblies. BUSCO (Benchmarking Universal Single-Copy

Orthologs) evaluates assemblies by measuring single copy ortholog marker genes and

it estimates contamination from the recovered genes.

The most used tool for metagenome assembly validation is the tool called

MetaQUAST [106], which, unlike the previous ones that only use completeness

metrics, incorporates contiguity, consistency, and reference-based metrics.

MetaQUAST is a modification of QUAST [107], an isolate genome assembly

validation tool that computes alignments of assembled contigs to a single reference

genome. Similar to QUAST, MetaQUAST identifies mis-assemblies relative to a set of

reference genomes. Additionally, metaQUAST applies a structural variant finding

algorithm to distinguish between structural variants and true assembly errors.

2.3 Conclusion

In this chapter, we first introduced the concept of taxonomy classification—finding the

organisms present in a metagenomic sample—and then described several methods—

whole genome alignment, marker gene alignment, and k-mer-based—to accomplish

31

this task. Secondly, we reviewed contemporary advances and challenges in de novo

metagenomic assembly and outlined the main challenges faced by de novo

metagenomic assemblers. Lastly, we described current methods and strategies for

metagenome assembly validation and error characterization based on contiguity,

completeness, consistency and references. In the following two chapters, we present

our method for both taxonomy classification and metagenome assembly.

32

Chapter 3: Selecting references genome for metagenomic

reference-guided assembly

3.1 Introduction

As mentioned in Chapter 1, reference-guided assembly is an effective approach when

sufficiently closely related sequences are available, yet, it has not been applied to

metagenomics. Differences between the genomes being assembled and the references

can greatly affect the final assembly by either leading to errors in reconstruction or to

a fragmented assembly. Therefore, selecting closely related reference genomes is a

crucial step before reference-guiding the assembly of a microbial community.

The most popular metagenomic classification methods, Kraken and MetaPhlAn,

are designed to achieve, at most, species level taxonomic resolution. Kraken was the

first k-mer-based approach for metagenomic classification, and it is best-suited to

rapidly match metagenomic sequences to large databases of complete genomes. The

drawback of using k-mer approaches is that they are not as accurate as older sequence

alignment-based methods. MetaPhlAn, on the other hand, maps metagenomic reads to

a database of clade-specific marker genes to perform taxonomy classification.

Although marker genes are a well-known resource to select biologically relevant

genomes and can led to good precision and recall at species level, such genes only

account for a small part of the complete microbial genome, excluding additional

genomic information that can be relevant for strain resolution.

33

To tackle the above-mentioned problems, we designed MetaCompassRS

(MetaCompass Reference Selection), a metagenome classification approach that

achieves strain-level resolution by combining a marker gene sequence alignment

approach with a whole genome k-mer matching approach. MetaCompassRS can be

used both as a standalone software and as part of the MetaCompass pipeline described

in Chapter 5.

3.2 Methods

MetaCompassRS (Figure 3.1) follows a two-stage strategy: a marker gene alignment

stage and a complete genome k-mer matching stage.

3.2.1 Marker gene alignment

Each genome is assumed to have a defined marker gene set, thus, if a genome is present

in a metagenomic sample, it should have a sufficient portion of its marker gene set

covered by reads. We define this concept as “marker gene set containment” to estimate

how well a set of reference genomes is contained in metagenomic sample. Although

aligning millions of reads to a marker gene database is relatively fast, we further speed

up this process by pre-filtering the reads. We use kmer-mask [108] to extract k-mers

from both metagenomic reads and a marker genes database, and then filter out reads

without exact k-mer matches. Next, we use Blastn to align the complete sequence of

the pre-filtered reads against the complete marker gene sequences. Lastly, we estimate

a marker gene set containment score for each reference genome and only keep

references above a certain percentage threshold.

34

3.2.2 Complete genome k-mer matching

In this stage, we use the complete sequence of the pre-selected reference genomes from

the first stage and the complete set of reads to re-estimate read containment. We use

Mash Screen to identify which reference genomes are sufficiently contained within the

reads. We then select the strains with higher containment score, which are more likely

to be present in the metagenomic sample.

By combining these two stages, we take advantage of the high accuracy of

marker gene alignment methods and the efficiency of k-mer based approaches to

compare complete genomes.

Figure 3.1. Overview of MetaCompassRS.

A) Reads are prefiltered using k-mer-mask. B) Pre-filtered reads are aligned to marker genes

using blastn. Then Marker gene set containment is estimated from Blast results and complete

genomes C) Preselected genomes are screened for containment using Mash screen.

35

3.2.3 Database construction

To create our reference database, we retrieve high-quality genome assemblies from the

NCBI Refseq database, including complete genome assemblies and chromosome level

assemblies (which include chromosomes, scaffolds and contigs). We also retrieve taxa,

genes, and protein sequences associated to each genome.

After retrieving all the necessary information from RefSeq, we used several

tools to gather marker gene information from each genome. First, use the tool FetchMG

[45,109] to predict the 40 universal single-copy marker genes present in each genome.

Due to the high redundancy of organisms currently available at RefSeq, many genomes

share almost identical marker gene sequences. To further speed up the marker gene

alignment stage (described below), we cluster almost identical marker genes with

CDHIT [110]. Lastly, we use kmer-mask, part of the [111] k-mer counter package

Meryl, to create a marker gene k-mer database.

Finally, we process each genome retrieved from RefSeq to gather the k-mer

information used in the second stage of MetaCompassRS. We pre-compute k-mer

sketches for each genome using Mash sketch and estimate pairwise average nucleotide

identity (ANI) between genomes using Mash dist. The former information is used by

Mash screen to estimate containment. The latter is used to filter out almost identical

genomes from the final metagenomic classification.

36

3.2.4 Implementation details

3.2.4.1 Marker gene alignment stage

Pre-filtering reads before alignment: We pre-filter the reads to speed up the Blastn

alignment. Given a k-mer database and a set of reads, kmer-mask computes the fraction

of the reads which are covered by k-mers in the database. We use a seed size of 28.

Aligning reads to marker genes: We run blastn with a word size or seed of 28, to

retrieve only highly similar alignments. Since closely related genomes can share the

same marker genes, each read can be aligned to multiple marker genes.

Estimating marker gene set containment: After aligning reads to marker genes, we

process the alignment results to estimate the “marker gene set containment” per each

genome. Intuitively, this metric estimates how well a genome is contained in the reads,

using a set of marker genes as representation of such genome. Given a genome “G”

with “n” marker genes, we define the marker gene set containment score as the total

number of marker genes bases covered by the reads divided by the sum of marker gene

lengths:

𝑀𝑎𝑟𝑘𝑒𝑟 𝑔𝑒𝑛𝑒 𝑠𝑒𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑔𝑒𝑛𝑜𝑚𝑒 𝐺 = ∑
𝑏𝑎𝑠𝑒𝑠 𝑐𝑜𝑣𝑒𝑟𝑑 𝑏𝑦 𝑟𝑒𝑎𝑑𝑠

𝑚𝑎𝑟𝑘𝑒𝑟 𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑛

𝑖

The number of bases covering a marker gene is calculated from the blast alignment

results by extracting all the alignment intervals for that marker gene, then merging

overlapping intervals, and finally adding the merged interval lengths.

We exclude from further consideration all the genomes with an estimated

marker gene set containment below a certain threshold (one third of the complete

marker gene set, by default).

37

3.2.4.2 Whole genome comparison stage.

To re-estimate read containment, we use Mash Screen with a minimum identity

threshold of 0.95 percent. This step removes many reference genomes that had a

sufficient marker gene containment score but were poorly contained in the reads when

considering the complete genome. In case of finding multiple strains that satisfied all

the criteria mentioned above, we only select the top ten strains per species.

3.3 Results

3.3.1 Evaluation of performance on Salmonella enterica simulated

genome

To test the efficacy of our approach in finding the correct organism among multiple

strains, we simulated reads from a strain of one of the most abundant species in our

database (Table 3.1), Salmonella enterica—well-known food pathogen that causes

gastroenteritis in humans. We chose the strain Salmonella enterica serovar

Typhimurium LT2 (available at RefSeq with accession NC_003197.2), which has close

homologue genes with eight genomes from the Enterobacteriaceae family: Salmonella

enterica serovar Typhi CT18, Salmonella enterica serovar Paratyphi A, Salmonella

enterica serovar Paratyphi B, Salmonella enterica arizonae, Salmonella bongori, E.

coli K12, E. coli O157:H7, and Klebsiella pneumoniae [112].

Table 3.1. Most abundant species in MetaCompassRS database.

Species ID Number of strains Description

562 3217 Escherichia coli

573 2022 Klebsiella pneumoniae

28901 1779 Salmonella enterica

47466 1634 Borrelia miyamotoi

1280 987 Staphylococcus aureus

38

We compared the performance of our approach with the most widely used

marker gene and k-mer based taxonomic classifiers, MetaPhlAn, Kraken2,

respectively. We also used Kraken2 with its abundance estimation companion method

Bracken. We evaluated the genus and strain level classification results in terms of

precision, recall and F1 score.

At the genus and species level, MetaCompassRS and MetaPhlAn made a

perfect prediction (Table 3.2). In Contrast, Kraken2 and Kraken2+Bracken reported

several low abundance false positives. At the strain level, MetaCompass outperformed

Kraken2 and Metaphlan2 by reporting fewer false positives. Among all strains reported

by the two versions of Kraken2, Salmonella enterica serovar Typhimurium LT2 was

not assigned any read. Conversely, MetaCompassRS reported the correct strain with a

marker gene containment score of 99. 8% and a genome containment of 99.99%.

Compared to the true Salmonella enterica strain, the nine false positive strains reported

by MetaCompassRS (Table 3.3) shared more than 99% of identity and covered 97-99%

of the true genome. This experiment highlights the effectiveness of our approach in

selecting highly closed reference genomes.

Table 3.2. Taxonomy classifier predictions at different taxonomy levels for Salmonella

enterica serovar Typhimurium LT2 simulated dataset.

Note that MetaPhlAn does not provide strain level resolution.

 Kraken2 Kraken2+Bracken MetaPhlAn2 MetaCompass

Genus 14 35 1 1

Species 9 59 1 1

Strains 161 240 NA 10

39

Table 3.3. Comparison between Salmonella enterica serovar Typhimurium LT2

(NC_003197.2) and MetaCompassRS false positive (FP) strains.

Query cover describe how much the query genome, NC_003197.2, is covered by each FP and

percentage of identity describes how similar the query is to each FP.

Accession ID Description Query

cover

Percentage

of Identity

NC_021151.1 Salmonella enterica subsp. enterica serovar

Typhimurium str. U288

99% 99.99%

NZ_CP007523.1 Salmonella enterica subsp. enterica serovar

Typhimurium str. CDC 2011K-0870

98% 99.99%

NZ_CP014051.2 Salmonella enterica strain LT2 100% 100%

NZ_CP014971.2 Salmonella enterica subsp. enterica serovar

Typhimurium str. USDA-ARS-USMARC-1898

98% 99.97%

NZ_CP021909.1 Salmonella enterica subsp. enterica strain

ST1120

99% 100%

NZ_CP028199.1

Salmonella enterica subsp. enterica serovar

Typhimurium strain CFSAN018746

100% 100%

NZ_CP025736.1 Salmonella enterica strain FORC_079 99% 99.98%

NZ_CP041005.1 Salmonella enterica strain FDAARGOS_768 100% 100%

NZ_CP032494.1 Salmonella enterica subsp. enterica serovar

Typhimurium strain SO21

97% 99.99%

3.3.2 Evaluation of performance on synthetic metagenomic dataset

We evaluated our method on synthetic microbial community published by Shakya et

al. [113]. The synthetic sample was downloaded from the NCBI Short Read Archive

(SRA) database, (SRR606249) and contains 54 bacteria and 10 archaea. Among these

organisms, 55 had complete genome sequences in the NCBI RefSeq database (the

database used by default by MetaCompassRS), and 9 are available only as a high-

quality draft assembly. The sample contains 61 species.

At the species level, MetaCompassRS outperformed Kraken2 and MetaPhlan2

in recall, correctly predicting 59 out of the 61 species. Although MetaPhlan2 achieved

the highest precision, thus, predicting fewer false positives, it only predicted 54 out of

the 61 species. Both MetaCompassRS and MetaPhlan2 had almost identical F1 score

(Figure 3.2A).

40

At the strain level, MetaCompassRS outperformed Kraken2 in all metrics,

correctly predicting 59 out of the 64 strains. The 5 strains that MetaCompassRS did not

predict are draft assemblies without complete reference genomes available to date.

(Figure 3.2B).

Figure 3.2. Species and strain level classification results on Shakya et al. dataset.

(A) Heatmap showing Precision, Recall, and F1 score at species level. (B) Heatmap showing

Precision, Recall, and F1 score at strain level.

To evaluate the ability of MetaCompassRS to classify low-coverage genomes,

we downsampled the synthetic dataset to 10% of its original size. The results (Figure

A

B

41

3.3) highlight that MetaCompassRS is also highly effective at low coverage and

outperformed the other tools in several metrics.

Figure 3.3. Species and strain level classification results on down-sampled Shakya et al.

dataset.

(A) Heatmap showing Precision, Recall, and F1 score at species level. (B) Heatmap showing

Precision, Recall, and F1 score at strain level.

We further evaluated the classification averaging across all datasets on the

species and strain level (Figure 3.4). Only MetaCompass achieved more than 90%

recall for both taxa. Similarly, only MetaPhlAn achieved more than 50% of precision.

A

B

42

In terms running time, Kraken2 was the fastest across all datasets. MetaCompassRS

and MetaPhlAn, which are both based on read alignment, took a very similar amount

of time (Table 3.4).

Figure 3.4. Scatter plot of Precision (x-axis) versus Recall (y-axis) across all datasets and

taxa.

3.3.3 Evaluation of computational performance on simulated and

synthetic metagenomic datasets

We evaluated the running time performance of MetaCompassRS on a Linux 12-core

server node with 16 GB of memory using the Salmonella enterica simulated dataset,

the Shakya et al. synthetic dataset, and the downsampled Shakya et al. synthetic dataset.

The wall clock running time on this synthetic dataset for MetaCompassRS was slightly

higher than Kraken2 and considerably lower than MetaPhlAn2 (Table 3.4).

MetaPhlAn2 had the lowest memory usage among all taxonomic classifiers, followed

by Kraken2. Note that since Kraken2 loads the database into memory, its memory

43

usage is determined by the size of the Kraken2 database. We used the reduced size

Kraken2 database (MiniKraken2 database, 8GB) because the default Kraken2 database

(29 GB) required more memory than the limit used in our experiments.

MetaCompassRS was able to process a 100 million read dataset using the complete

MetaCompassRS database in less than 16 minutes without prohibitive memory

requirements (13.06GB), highlighting the scalability of this method to large datasets.

Table 3.4. Running time for taxonomy classifiers on simulated and synthetic datasets.

We evaluated the running time performance of MetaCompassRS and three taxonomic

classifiers for the simulated Salmonella enterica sample, the full Shakya et al. sample (100

million paired-end reads), and a 10% of the original Shakya et al. sample (5 million paired-end

reads). We used the default MetaCompassRS and MetaPhlSn2 databases and the reduced size

Kraken2 database (MiniKraken2 database). All dataset were run using 16 GB of memory and

12 CPUs.

Classifier

Salmonella enterica Shakya et al.
Downsampled

Shakya et al.

Time

(mm:ss)

Memory

(Gb)

Time

(mm:ss)

Memory

(Gb)

Time

(mm:ss)

Memory

(Gb)

MetaCompassRS 10:21 7.42 15:32 13.06 5:38 12.40

MetaPhlAn 62:14 3.27 177:44 3.05 151:00 2.66

Kraken2 1:03 8.67 1:33 8.22 1:12 8.21

Kraken2+Bracken 1:04 8.67 1:35 8.22 1:13 8.21

3.3.4 Evaluation of performance on CAMI medium dataset

To provide a better idea of how MetaCompassRS would perform in a worst-case

scenario (the closest genomes contained in the metagenomic sample are not present in

the database), we used a medium complexity dataset generated by the benchmarking

study CAMI (Critical Assessment of Metagenome Interpretation) [81]. From the two

medium complexity datasets generated by CAMI, we used the medium complexity

dataset consisting of 132 newly sequenced genomes (not present in public databases)

with an insert size of 270bp. We ran MetaCompassRS on the selected medium

44

complexity dataset and compared our species-level performance with the publicly-

released results from CAMI. We only included methods that achieved species level

taxonomy resolution (FOCUS [114], TIPP [115], MetaPhlAn2 [66] MetaPhyler [116],

mOTU [45], Quikr [117], Taxy-pro2 [118], and CommonKmers [119]).

Notably, the least precise profiling methods (TIPP, MetaPhyler, and Quikr) had

the highest recall, introducing a high false positive rate in their prediction (Figure 3.5

A). MetaPhlAn2 and MetaCompassRS achieved not only the highest precision (fewer

false positives) but also the highest F1 score (balance between precision and recall)

(Figure 3.5 B). The similar results obtained by MetaPhlAn2 and MetaCompassRS are

expected as both tools use marker genes, which are known for being precise at higher

taxonomic ranks up to species level. We did not evaluate strain level predictions as

CAMI didn’t not include such results in their study.

45

Figure 3.5. Species and strain level classification results on a medium complexity CAMI

dataset.

(A) Heatmap showing Precision, Recall, and F1 score at species level. (B) Scatter plot of

Precision (x-axis) versus Recall (y-axis) across all taxa.

46

3.4 Conclusion and discussion

We presented MetaCompassRS, a taxonomic classification method that outperforms

previous methods in both species and strain level recall, while maintaining a strong

balance between precision and recall. Achieving a high recall at the strain level is ideal

if the end goal of the classification is to capture all relevant genomes from a database.

MetaCompassRS achieves such results by combining alignment-based and k-mer

based approach with a highly comprehensive reference database.

MetaCompassRS maintains a competitive running time and memory usage due

to its marker gene clustering and k-mer pre-filtering steps. Clustering almost identical

marker genes reduces the marker gene database size, and pre-filtering the reads

dramatically reduces the query size. Furthermore, the use of Mash Screen adds genomic

information beyond marker genes while keeping a low running time and memory

usage.

Any of the methods presented, including ours, was capable to achieve full strain

resolution. In fact, full strain resolution might not be possible by only analyzing short

reads due to their short genomic context. Assembling the reads after the metagenomic

classification can provide a more complete picture of the microbial community and

further improve strain resolution [120–123]. In the following chapters, we describe

how to use a set of reference genomes to perform reference-guided metagenomic

assembly (Chapter 4 and 5).

47

Chapter 4: Reference-guided metagenomic assembly

4.1 Introduction

In the previous chapter, we described a method to infer the microbial genomes present

in a metagenomic sample and select closely related genomes. In this chapter, we

describe a metagenomic reference-guided assembly approach that uses a set of

microbial genomes to reconstruct a metagenome.

Several de novo assembly methods have been applied to metagenomic data sets,

but very little progress has been made on reference-guided assembly for metagenomics.

Reference-guided assembly approaches are commonly used to assist the assembly of

short reads when a closely related reference genome is available [19,23]. This process

overcomes, in part, the challenge posed by repeats as the entire read provides

information about its location in the genome.

Currently, thousands of bacterial genomes have been sequenced and finished

[50,124]. These genomes are a great resource for performing comparative assembly of

metagenomic sequences. However, to date, they have not been used for assembly,

primarily due to the tremendous computational cost of aligning metagenomic reads to

the entire reference collection of bacterial genomes. In this chapter, we describe our

approach for reference-guided assembly of metagenomes.

48

4.2 Related work

The reference-guided metagenomic assembly process has two steps: (i) reads are

aligned to a set of closely related reference genomes (read mapping step); and (ii)

contigs are built from the relative locations of the reads in the reference genomes

(consensus calling step). In this section we describe the read mapping step, consensus

calling step and also present methods suitable for polishing metagenome assemblies.

4.2.1 Read mapping

A fundamental part of reference-guided assembly and many other bioinformatics

analyses is the mapping of millions of short reads to reference genomes. A variety of

algorithms and tools have been developed for read alignment[125,126]. Currently, the

most widely used methods for read mapping can be divided into hash table based

algorithms and Burrows-Wheeler Transform (BWT) [63] based algorithms.

Hash table methods can index either the genomes or the reads. Some methods

for indexing genomes include GSNAP [127], Novoalign [128], mrFAST [129] ,

mrsFAST [130], and FANGS [131]. Methods for indexing reads include MAQ [132]

and RMAP [133].

The most popular read mapping tools rely on the Burrows-Wheeler transform

to reduce memory requirements [68,134–136]. Some BWT based read mapping tools

are Bowtie [134], Bowtie2 [68], BWA [135], and SOAP2 [136]. Among them, the most

widely used tool is Bowtie2, and improved version of Bowtie. Bowtie and Bowtie2

index the reference genome using a FM-index a [64] to maintain a small memory

footprint. Bowtie was designed to find ungapped alignments, reporting end-to-end read

49

alignments. Bowtie2 was extended to support local alignment— i.e. doesn’t require

end-to-end read alignments.

For a single reference sequence, the read mapping problem has mostly been

solved by indexing the reference into a data structure that supports efficient pattern

search queries [125]. The read mappers described above [68,130,132,134–136] provide

different trade-offs between speed and quality of the mapping [126,137].

Read mappers for single genomes are not suited for classification of

metagenomic sequences, because they usually use a semi-global alignment model and

assume near-identity of read sequences and reference genomes. Some metagenomic-

specific mappers have been developed by adding filtration and normalization

techniques to previously described single-genome mapping approaches [138,139].

Despite these efforts, metagenomic read mapping remain an open area of research.

The standard output format of read mappers is the Sequence Alignment/Map

(SAM) format [140]. A SAM file has the information for each individual read

mappings, including the read and reference genome identifiers, leftmost mapping

position, mapping quality, and the CIGAR (Concise Idiosyncratic Gapped Alignment

Report) string. A CIGAR string is a compress representation of an alignment that shows

how the reads align to a reference genome. The CIGAR string has key information that

can be used for consensus calling, such as matches, mismatches, gaps, deletion and

insertion positions.

50

4.2.2 Consensus calling

The process of getting a consensus from the bases aligned to a genome is called

consensus calling. In metagenomics, we need to find consensus sequences—equivalent

to a de novo contigs—for each individual reference genome.

The most common approach for single genome consensus calling is using the

mpileup and BCFtools utilities from the SAMtools package[141]. First, Mpileup

summarize the base call information at each position in the reference genome into a

“pileup of reads”. The pileups of reads are generated by calculating the likelihoods of

a base at each genomic position based on depth of coverage. Then, BCFtools call

performs variant calling on each pileup of reads. The variant calling process involves

identifying difference between the reads and the reference genome—such as single

base changes, such as SNPs and indels, or larger scale structural variants. Finally,

BCFtools consensus generates consensus calls from pileup of reads using the variant

information.

There are multiple variant calling methods described in literature that could be

used instead of BCFtools call, however, a broader discussion of such methods is beyond

the scope of this dissertation.

4.2.3 Assembly polishing

Both de novo and reference-guided assemblies may have considerable base errors.

Compared to de novo assembly, reference guided assembly has less space for

misassembles. However, even small errors can degrade the performance of the

reference-guided assembly process.

51

Assembly polishing tools can be used to correct base errors in draft assemblies.

State of the art assembly polishing tools are GATK [142], Pilon [143], Racon [144],

POLCA [145], and ntEdit [146].

Pilon and GATK are the most well-established polishers and can fix single

bases changes, small and large indels, local misassemblies and can also fill gaps in the

assembly. RACON and POLCA, part of the MaSuRca assembler [147], are more recent

tools aimed to correct assemblies from long reads. Pilon, GATK and RACON work by

mapping all reads against the assembly and then re-doing the consensus calling. This

read mapping step, although accurate, makes the running time prohibitive to samples

with high depth of coverage. POLCA is a little bit faster than Pilon and GATK by

calling variants first and then only correcting the variants found in the assembly, thus

avoiding remapping the reads.

A more recent tool, ntEDIT [148] is a bloom filter k-mer based approach that

reduces time significatively compared to the previous described tools. First, ntEdit runs

the tool ntHits [149], which removes erroneous k-mers and build a canonical

representation of “coverage-thresholded k-mers” using a bloom filter. Then, ntEdit

process contigs by interrogating the bloom filter for presence/absence. If a k-mer

presence is confirmed, consecutive k-mers are skipped to avoid repetitive computation.

If a k-mer or a part of a k-mer is absent from the reads, that part of the assembly is

reported as a misassembly and the contig is polished. Warren et al. reported that ntEdit

its faster and makes fewer mistakes than Pilon, its closest competitor.

52

4.3 Methods

4.3.1 Read mapping

The reference-guided metagenomic assembly approach involves mapping

metagenomics reads to a set of genomes and then using their relative placement within

each genome to guide the assembly of each reference. To achieve this task, we use

Bowtie2 (parameters: --sam-nohead --sam-nosq --end-to-end --quiet --all -p 12). The

output is filtered to keep alignments with the lowest edit distance for each read,

allowing a read to be aligned in multiple locations (similar to the best-strata option of

Bowtie 1).

4.3.2 Selecting a minimal reference set for consensus calling

In metagenomics, the relative placement of the reads within a mixture of genomes is

more complex than in a single genome. This process is complicated by the fact that

individual reads may map to multiple reference genomes, some of which are highly

similar. Adequately dealing with this ambiguity is critical for effective assembly. If all

read mappings are kept, allowing a read to be associated with multiple reference

genomes, the resulting assembly will be redundant, reconstructing multiple copies of

homologous genomic regions (Figure 4.1a). If for each read a random placement is

selected from among the multiple equivalent matches, none of the related genomes may

recruit enough reads to allow assembly, thereby leading to a fragmented reconstruction

(Figure 4.1b). Assigning reads to genomes according to their estimated representation

in the sample (determined, e.g., based on the depth of coverage), may bias the

53

reconstruction towards the more divergent reference genomes, which may lead to an

overall poorer reconstruction of the genomic regions shared across related genomes

(Figure 4.1c). Here we propose a parsimony-driven approach: finding the minimal set

of reference genomes that explains all read alignments (Figure 4.1d).

Figure 4.1. Aligning read to reference genomes.

Shorter bars represent shotgun reads; longer bars represent reference genomes (4 genomes in

this figure). Regions with the same color in the reference genomes represent homologous

sequences. (a) All read mapping records. A read may be mapped to several reference genomes

equally well, e.g., 5 yellow reads are mapped to both of the first two genomes. (b) For each

read, if it is mapped to more than one reference genome, we randomly pick one. (c) A read is

assigned to a reference with highest depth of coverage. (d) We pick the minimum number of

reference genomes, to which all reads can be mapped.

4.3.2.1 Minimum set cover problem.

This parsimony-driven approach can be outlined as the set cover problem, an NP-hard

optimization problem [151]. An instance (X, F) of the set-covering problem consists of

a finite set X and a family F of subsets of X, such that every element of X belongs to

at least one subset S in F:

𝑋 = ⋃ 𝑆

𝑆⊆𝐹

The problem is to find a minimum-size subset 𝐶 ⊆F whose members cover all

of X:

54

𝑋 = ⋃ 𝑆

𝑆⊆𝐶

We use a greedy approximation algorithm (see Algorithm 1), which iteratively

picks the set of genomes using the greatest number of remaining unused reads. The

algorithm works as follows. The set U has, at each stage, the set of remaining uncovered

elements (uncovered reads). The set C has the cover being constructed (reference

genomes that are picked). In the greedy decision-making step (line 4) a subset S of

genomes is chosen that covers as many uncovered reads as possible with ties broken

randomly. After S is selected, its elements are removed from U, and S is placed into C.

When the algorithm ends, the set C has a subfamily of F that covers X with the greatest

number of reads. It can be shown that this greedy algorithm is the best-possible

polynomial time approximation algorithm for the set cover problem, under plausible

complexity assumptions [150].

Algorithm 1: Greedy approximation for minimum set covering problem.

Input: a finite set X; a family F of subsets of X.

Output: a minimum-size subset 𝐶 ⊆F whose members cover all of X.

1: 𝑈 ← 𝑋

2: 𝐶 ← ∅

3: while 𝑈 ≠ ∅ do

4: select an 𝑆 ∈ 𝐹 that maximizes |𝑆 ∩ 𝑈|
5: 𝑈 ← 𝑈 − 𝑆

6: 𝐶 ← 𝐶 ∪ {𝑆}

7: return C

4.3.3 Building contigs (consensus calling)

In order to apply the minimum set cover concept to metagenome assembly, we

developed a consensus caller called Buildcontig. Buildcontig starts assembling the

genome with the highest breadth of coverage first. Buildcontig evaluates the bases from

the reads that are mapped to each position in the reference genomes and reports the

55

genome with the highest depth of coverage as the consensus. Buildcontig can introduce

indels up to a threshold. To introduce an indel, its depth of coverage should be higher

than half of that of its neighbor nucleotides (Figure 4.2). Nucleotides from a reference

sequence that don’t match any base from the reads are discarded from the consensus

sequence. This guarantee that the consensus sequence is not overly biased against the

reference.

Figure 4.2. Creating contigs from reads that are mapped to reference genome using the

majority rule.

Nucleotides that differ from the reference sequences are highlighted in red.

Buildcontig received two inputs: a SAM file with the read alignments, and a

file with reference genomes. The minimum depth of coverage and minimum length for

creating contigs can be specified through the program command-line options.

Finally, to remove reference-bias, we employ ntEdit (v1.18) to modify the

consensus sequence to better represent the input data rather than the reference genome.

In this step, contigs can be broken if the metagenomic sequence diverges from the

reference sequence.

56

4.4 Results

We evaluated the performance of our reference-guided approach by using reads from

a synthetic microbial community, which consists of a set of metagenomic reads from

ground truth genomes [113]. After aligning the synthetic reads to the reference

genomes, we generated consensus sequences (or assemblies) with Buildcontig under

two settings. We first assembled the synthetic metagenomic skipping the minimum set

cover algorithm and using all read mappings to guide the assembly (see Buildcontig_all

results, Table 4.1). The aim of this experiment is to show that the performance of

Buildcontig can be undermined by multi-mapped reads. Secondly, we ran Buildcontig

including the minimum set cover algorithm (see Buildcontig results, Table 4.1). For

both experiments, we set the minimum depth of coverage at 1-fold. We also assembled

the reads using Samtools. For all experiments, we performed error correction with

ntEdit (see “+ntEdit” results, Table 4.1).

When analyzing assembly statistics without reference genomes (Table 4.1), we

observed that Buildcontig_all performed better than Buildcontig and Samtools in terms

of contiguity (maximum contig size and size to 1 Mbp, Table 4.1) and completeness

(total assembly size(bp) and # genes, Table 4.1). However, the higher contiguity and

completeness of Buildcontig_all were hampered by the highest duplication and error

rates (Table 4.2). Buildcontig produced the lowest duplication ratio (1.0), which

indicates that Buildcontig was the only tool without a redundant assembly.

Buildcontig_all had the highest duplication ratio (2.1), which indicates that

Buildcontig_all generated a highly redundant assembly. In terms of assembly errors,

Buildcontig produced the fewest misassemblies, mismatches, and indels.

57

For all assemblers, we observed a decrease in the total number of contigs shorter

than 500bp after running ntEdit (see #contigs(<=0bp) and #contigs(<=500bp), Table

4.1), indicating that short erroneous contigs were effectively removed from the

assemblies.

58

Table 4.1. Evaluation of performance on synthetic dataset without using reference genomes.

Tool indicates the consensus calling method: Buildcontig, Buildcontig_all and Samtools. Buildcontig indicates the default settings the

minimum set coverage setting was used, and Buildcontig_all indicates that all read mapping were used (no minimum set coverage

setting).“+ntEdit” indicates that ntEdit was run over the . # ctgs is the total number of assembled contigs reported by each assembler,

Total assembly size is the total assembled length per assembler, Max ctg is the maximum contig length (broken at errors) for all

assembled contigs, Size to 1 Mbp is the size of the largest contig C such that the sum of all contigs larger than C exceeds 1Mbp,

#Genes is the number of fully reconstructed genes.

Tool

Contigs

(>=0bp)

Contigs

(>=500bp)

Total

assembly

 size

(bp)

Max

contig

size

(bp)

Size to

1Mbp

(Kbp) # Genes

Buildcontig 54,207 13,727 187,980,023 7,057,101 7,057.10 179,428

Buildcontig+ntEdit 52,954 13,727 187,980,311 7,057,103 7,057.10 179,376

Buildcontig_all 821,792 139,413 383,249,716 7,145,578 7,145.58 281,753

Buildcontig_all+ntEdit 806,658 139,412 383,252,412 7,145,577 7,145.58 280,262

Samtools 815,862 63,570 377,636,570 7,057,100 7,057.10 242,306

Samtools+ntEdit 793,884 63,572 375,724,066 7,057,099 7,057.10 241,692

Table 4.2. Evaluation of performance on synthetic dataset using reference genomes.

Total aligned Length is the sum of the length of contigs aligned to the reference genomes, Total unaligned Length is the sum of the

length of unaligned contigs, Genome fraction(%) is the total number of aligned bases in the references divided by genome size, and

Duplication ratio(%) is the total number of aligned bases in the assembly divided by the total number of aligned bases in the reference.

The last five statistics are reference-based errors reported by MetaQUAST.

Tool

Total

aligned

length

Fully

unaligned

length

Genome

fraction

(%)

Duplication

ratio (%)

Mismatches

(/100 kbp)

Indels

(/100

kbp)

Mis-

assemblies

(>1 Mbp)

Local

Misassm

(<1

Mbp)

Total

Misassm

Buildcontig 185,773,672 1,364,126 89.366 1.00 137.74 3.53 242 155 357

Buildcontig+ntEdit 185,774,130 1,363,100 89.367 1.00 136.91 3.55 242 156 358

Buildcontig_all 377,259,399 3,834,531 92.211 2.10 395.55 15.36 1581 780 2361

Buildcontig_all+ntEdit 377,267,056 3,833,765 92.210 2.10 391.16 13.29 1586 781 2367

Samtools 250,165,735 3,197,557 89.548 1.45 138.33 5.21 512 301 813

Samtools+ntEdit 250,161,490 3,200,782 89.547 1.45 141.25 4.90 512 301 813

59

4.5 Conclusion and future directions

In this chapter, we first described concepts relevant to the reference-guided

metagenomic assembly problem. We introduced the concept of read mapping in the

context of both single genome and metagenomes, highlighting the most widely used

indexing data structures for read mapping—Hash Tables and the Burrows-Wheeler

Transform (BWT). Next, we briefly described the consensus calling process for single

genomes. Lastly, we explained how assembly polishing can boost the correctness of

the final assembly.

Secondly, we presented our reference-guided metagenomic assembly strategy.

Our strategy starts by aligning a set of metagenomic reads to reference genomes using

Bowtie2. Then, our consensus caller Buildcontig applies the minimum set cover

algorithm to select a minimal reference set. After calling the consensus, we use the

error correction tool ntEdit to polish the assembly and remove reference-bias. We

showed that our reference-guided metagenome assembly strategy outperforms previous

methods in terms of reference-free and reference-based assembly statistics. Finally, we

showed that our assembly strategy generates non-redundant assemblies (low

duplication ratio) while maintaining a high genome recovery.

Our reference guided assembly method could be further improved by adopting

different read mapping and consensus calling strategies. As previously mentioned,

Bowtie2 was not designed for metagenomics. As the number of available bacterial

genomes increases, mapping reads with Bowie2 will get increasingly difficult. A more

suitable mapping strategy for metagenomics would be a graph-based approach. In

60

particular, the use of de Bruijn graphs for pan-genome analysis is well-suited for the

tasks of compressing genomes and mapping reads, as described in previous work [152–

155]. The most recent tools designed to align reads to de Bruijn graphs are Puffaligner,

part of Pufferfish [156], and an extension of the pangenomic suit PanTools [157].

Our current assembly algorithm uses the minimum set cover algorithm, a

winner-take-all strategy to minimize redundancy. When multiple closely related

species co-exist, one will be well-assembled and the other species assemblies will be

shattered into small contigs. We want to explore strategies for re-distributing multi-

mapped reads across all aligned locations, resulting in a “resolve strains” mode. One

strategy could be probabilistic assignment to pick the best strains given a species. This

problem is similar to estimating differential abundance of transcript isoforms in RNA-

sequencing data. Several methods for estimating differential abundance analysis

employ the EM algorithm, which has also been successfully applied to metagenomics

datasets [74].

61

Chapter 5: Hybrid reference-guided and de novo assembly of

metagenomes

5.1 Introduction

In this chapter, we present MetaCompass, a metagenomic assembly approach that

combines reference-guided and de novo assembly. MetaCompass selects reference

genomes using MetaCompassRS (Chapter 3), and then follows the reference-guided

assembly method described in Chapters 4 to reconstruct a metagenomic sample.

Finally, to reconstruct genomes missing from our database, MetaCompass incorporates

a de novo assembly step.

5.2 Method

MetaCompass is divided into five steps (Figure 5.1): (i) selecting reference genomes,

(ii) reference guided assembly, (iii) removing reference bias, (iv) de novo assembly,

and (v) combining reference-guided and de novo assembly.

First, we use the taxonomic classifier method MetaCompassRS to find the

reference genomes most closely related to the input metagenomic sample. In the

reference-guided assembly process reads are mapped to the selected genomes using

Bowtie2, and then the consensus calling is performed with Buildcontig. After

consensus calling, we rely on ntEdit to correct the contigs and avoid biasing the

reconstruction towards the reference sequences. Finally, the reads that were not

included in the reference-guided process outlined above are de novo assembled using

62

MEGAHIT [90] (v1.0.6). We chose MEGAHIT because it is the fastest and lowest-

memory metagenomic assembler available, and it was shown to perform excellent in

recovering the genomes of closely related strains [87]. Finally, we combined reference-

guided contigs and assembly contigs. This hybrid approach allows the final assembly

to capture microbes with closest reference genomes available and microbes that are

missing from our reference database (such as novel variants).

Figure 5.1. Overview of the MetaCompass pipeline.

Short colored lines represent reads and long lines genomes. Each color represents a different

genome from a metagenomic sample. 1a-1c are part of the taxonomy classifier

MetaCompassRS. 2a and 2b are part of the reference-guided assembly step.

63

5.2.1 Datasets used to evaluate metagenomic assemblies

5.2.1.1 Synthetic dataset

As described in Chapter 3, the synthetic microbial community published by Shakya et

al. [113] contains 64 genomes. The set of known genomes for the synthetic dataset is

available in the Supplementary Table 2 from Shakya et al [113]. The synthetic sample

was downloaded from the NCBI Short Read Archive (SRA) database, (SRR606249)

and has 54 bacterial and 10 archaeal strains from, representing a total of 61 species.

Among these organisms, 55 had complete genome sequences in the NCBI RefSeq

database (the database used by default by MetaCompass), and 9 were available only as

a high-quality draft assembly.

5.2.1.2 HMP2 dataset

The Human Microbiome Project (HMP) is a collection of organisms living in

association with the human body. The HMP has more than two thousand samples from

different body sites sequenced and assembled. A list of all available HMP samples was

obtained by from the HMP Data Analysis and Coordination Center (DACC)

(www.hmpdacc.org). Some samples were excluded from the downloaded set because

they were corrupt or extracted to a duplicate SRS identifier. Additional samples had no

references recruited and were excluded from further analysis. A total of 2,294 samples

had both an HMP2 assembly and a MetaCompass assembly and were used for the

analysis.

http://www.hmpdacc.org/

64

5.2.2 Parameters used for metagenome assembly and metagenome

assembly validation

5.2.2.1 Metagenomic assembly parameters

We compared MetaCompass with the de novo assemblers IDBA-UD (July 2016)

[88], MEGAHIT (v1.0.6) [90], and MetaSPAdes (v3.9.0) [9]. IDBA-UD requires a

single fasta file that was generated using the IDBA ‘fq2fa --merge --filter’ command.

MEGAHIT was run using the options ‘--presets meta-sensitive --min-count 3 --min-

contig-len 300 -t 12’. MetaSPAdes was run using the options ‘--meta -t 12’, then all

contigs shorter than 300nt and with less than 3X coverage were removed. IDBA-UD

was run using the options ‘--min_count 3 --min_contig 100 --mink 20 --maxk 100 --

num_threads 12’. MetaCompass was run using the options -m [1,2,3] -g 100 -t 16’ on

the synthetic dataset and ‘-m 3 -g 100 -t 16’ on the HMP2 samples.

5.2.2.2 Metagenomic assembly validation parameters

We used MetaQUAST, a reference-based metagenomic assembly validation method

that finds misassemblies and structural variants in an assembly relative to reference

genomes. The command used to run MetaQUAST on the Shakya et al. synthetic dataset

was: ‘metaquast.py -R ./shakya_references --fragmented --gene-finding’.

5.3 Results

Although real metagenomic reads are the most proper test of performance, it is not

possible to assess accuracy from such data because true species in metagenomic

datasets are unknown. We first evaluated the performance of MetaCompass using

65

synthetic datasets. Since the true genome sequences are known, these data are ideal as

they allow us to fully quantify the quality of the genomic reconstruction.

Additionally, we generated improved assemblies of almost the entire dataset

generated by the Human Microbiome Project (2,294 distinct samples in total), and use

the results to characterize the relative advantages and limitations of de novo and

reference-guided assembly approaches, thereby providing guidance on analytical

strategies for characterizing the human-associated microbiota.

5.3.1 Evaluation of performance on synthetic metagenomic dataset

We valuated MetaCompass by assembling a synthetic microbial community [113]. We

assembled this synthetic metagenomic with MetaCompass under two settings. We first

assembled the synthetic metagenome skipping the reference selection step and using

the exact genomes present in the sample as a reference to guide the assembly. The aim

of this experiment is to show that the performance of MetaCompass can be excellent if

the reference collection has genomes highly similar to those in the metagenomic sample

being assembled. Secondly, we ran the complete MetaCompass pipeline including both

the reference selection step and reference-guided assembly. We set the minimum depth

of coverage in MetaCompass at 1-fold and 2-fold for both experiments.

The assembly results of our fist experiment (Table 5.1, see MetaCompass 1X

and 2X) can be considered an approximate upper bound on the performance of any

assembly tool, as in this case almost all of the genomes recruited (90%) were exactly

those from which the metagenomic reads were obtained. We compared the

performance of the two rans of MetaCompass with that of three widely used de novo

66

assemblers: IDBA-UD, MEGAHIT, and metaSPAdes. Compared with these

assemblers, MetaCompass achieved higher genome recovery (Table 5.1, Figure 5.2)

and produced significantly larger and more accurate contigs (Table 5.1). When we

decreased the MetaCompass minimum coverage threshold from 2-fold to 1-fold, we

observed gains in maximum contig size and total aligned length, while retaining a

similar error profile.

67

Table 5.1. Evaluation of performance on synthetic dataset.

MetaCompass (X) indicates the minimum coverage setting (1X or 2X), and MetaCompass.nr indicates all 64 reference genomes comprising the

Shakya et al. dataset were removed from the database. # ctgs is the total number of assembled contigs reported by each assembler, Max ctg is the

maximum contig length for all assembled contigs, Gen. Rec. (%) is the median percentage of each of the synthetic genomes that is recovered,

Complete Marker Genes (median) is the median number of fully reconstructed marker genes, Total aligned length is the sum of the length of contigs

aligned to the reference genomes, Total unaligned length is the sum of the length of unaligned contigs. Mismatches, Indels, and Misassemblies

(Misassm) are error statistics generated with MetaQUAST.

Assembler #contigs Max Ctg

Gen.

Rec.

(%)

Complete

marker

genes

(median)

Total

aligned

length

Total

unaligned

length

Mismatches

(/100 kbp)

Indels

(/100

kbp)

Misassm

(>1

Mbp)

Misassm

(<1

Mbp)

Total

Misassm

(<1

Mbp)

MetaCompass (1X) 18,766 7,057,109 100 40 198,113,036 6,340,278 61.9 1.9 0.8 1.1 1.9

MetaCompass (2X) 23,648 5,841,107 100 40 195,836,655 6,198,040 63.1 1.8 0.9 1.1 2.0

MetaCompass.nr (2X) 42,852 1,151,857 98 40 195,225,556 6,338,183 89.9 3.6 3.3 1.6 4.9

IDBA-UD 22,355 991,792 98 39 186,777,879 6,186,424 98.6 3.5 5.3 1.0 6.3

MEGAHIT 35,351 1,151,857 99 40 195,334,581 6,263,018 66.5 2.8 1.5 1.0 2.5

metaSPAdes 21,424 1,438,235 99 40 192,795,050 6,208,276 97.1 3.7 1.3 1.0 2.3

68

Figure 5.2. Genome recovery percentages in synthetic metagenome (MetaCompass

versus de novo assembly).

 Box plots represent distribution of genome recovery percentages (for the 64 genomes present

in the synthetic metagenome). x-axis indicates the assembly method, either IDBA-UD,

metaSPAdes, MEGAHIT, or MetaCompass. MetaCompass was run both with the reference

genomes present in the database (recruited as described in the methods) and without the truth

reference genomes in the database (they were individually removed). y-axis indicates the

genome recovery percentage, 0% indicates the genome was unassembled, whereas 100%

indicates the genome was fully assembled.

5.3.1.1 References removed from database

To provide a better idea of how MetaCompass would perform in a worst-case scenario,

we removed from the database the genomes represented in the synthetic community

(Appendix A), thereby forcing MetaCompass to recruit near-neighbor reference

genomes, when available. (see ‘MetaCompass.nr’ row, Table 5.1). In this case, we

found that MetaCompass still performed almost as well as de novo assemblers while

making far fewer errors than if it simply mimicked the reference genome. Median

genome recovery for MetaCompass is just 1% less than that of de novo assemblers. The

69

accuracy of the reconstruction, as measured by mismatch and indel rates, is lower than

that of IDBA-UD and metaSPAdes (Table 5.1, MetaCompass.nr (2x)), while

moderately higher than MEGAHIT.

The number of misassemblies and local misassemblies per 1 Mbp of assembled

sequence (as reported by MetaQUAST [158]) increased from 2.0 to 4.9 when reducing

the coverage threshold to 1. To put this increase into context, we measured the total

number of possible errors by evaluating the "accuracy" of the near-neighbor reference

genomes recruited by MetaCompass with respect to the correct reference sequence

(Figure 4 see hashed blue bar). This allows us to capture the real differences between

the recruited reference genomes and the actual genome represented in the synthetic

dataset [113], providing an upper bound on the number of errors MetaCompass could

make if it simply recapitulated the sequence of the selected reference genomes. As seen

in Figure 5.3, the MetaCompass assembly is much closer to the correct genome than

the reference sequence.

70

Figure 5.3. Error profile on synthetic dataset.

The hashed blue bar represents the difference between the second-best reference genome

(recruited by MetaCompass) and the true genome represented in the sample. This bar can be

viewed as an upper bound on the errors metacompass.nr could make if it simply reconstructed

the reference genome. Mismatches are the number of bases in a contig that differ from the

reference genome. Misassemblies include large-scale (left flanking region aligns >1 kbp away

from right flanking region) relocations, interspecies relocations, translocations, and inversions.

Local misassemblies include small-scale (left flanking region aligns <=1 kbp away from right

flanking region) translocations and inversions. All errors are normalized to represent rates per

1 Mbp.

5.3.1.2 Evaluation of performance on down sampled synthetic metagenomic dataset

To evaluate the ability of MetaCompass to assemble low-coverage genomes, we

downsampled the synthetic dataset to just 5 million paired-end reads, or 10% of the

original data set. After downsampling, the average coverage was reduced to

approximately 3-fold. The results (Table 5.2, Figure 5.4) highlight that MetaCompass

can recover a median of 90% of each of the 64 genomes in the sample. While

metaSPAdes comes in second place and is able to recover 80% (median recovery), it

does so at the cost of four times higher misassembly rate (Table 5.2). The two

remaining methods, MEGAHIT and IDBA-UD leave a quarter to a half of the genomes

unassembled and also produce higher misassembly rates

71

assemblers: IDBA-UD, MEGAHIT, and metaSPAdes. Compared with these

assemblers, MetaCompass achieved higher genome recovery (Table 5.2, Figure 5.2)

and produced significantly larger and more accurate contigs (Table 5.2). When we

decreased the MetaCompass minimum coverage threshold from 2-fold to 1-fold, we

observed gains in maximum contig size and total aligned length, while retaining a

similar error profile.

72

Table 5.2. Evaluation of performance on down-sampled synthetic dataset.

The synthetic dataset was down-sampled to only contain 10% of the total reads.

ctgs is the total number of assembled contigs reported by each assembler, Max ctg is the maximum contig length for all assembled contigs, Median

Genome Recovery (%) is the median percentage of each of the synthetic genomes that is recovered, Complete Marker Genes (median) is the median

number of fully reconstructed marker genes, Total aligned Length is the sum of the length of contigs aligned to the reference genomes, Total

unaligned Length is the sum of the length of unaligned contigs. Mismatches, Indels, and Misassemblies (Misassm) are error statistics generated with

MetaQUAST.

Assembler #contigs
Max

Ctg

Median

Genome

Recovery

(%)

Complete

Marker

Genes

(median)

Total

aligned

length

Total

unaligned

length

Mismatches

(/100kbp)

Indels

(/100kbp)

Misassm

(>1 kbp)

Misassm

(<1 kbp)

Total

Misassm (<1

kbp)

MetaCompass 71457 962,929 90% 22 134,008,055 3,009,931 117.6 1.9 112 33 145

IDBA-UD 43973 120159 45% 6 75,970,693 1,564,008 175.0 5.3 3447 93 3540

MEGAHIT 62842 209,706 76% 15 105,665,678 2,774,432 128.0 4.1 772 122 894

metaSPAdes 67138 287,554 80% 16 111,636,826 3,154,199 133.0 4.3 470 115 585

73

5.3.1.3 Computational performance

When dealing with large-scale data sets, the total required memory and running time

are important factors in determining the applicability of a computational tool. We first

evaluated the running time performance of MetaCompass on a Linux 12-core server

node with 80 GB of memory using the Shakya et al. synthetic dataset. The wall clock

running time on this synthetic dataset for MetaCompass is comparable to the evaluated

de novo assemblers and sometimes lower (Table 5.4). MetaCompass and Megahit were

the only approaches that required less than 16GB of RAM on a 100 million read dataset,

highlighting the scalability of this methods to large datasets.

Table 5.3. Running time for assemblers on Shakya et al. sample.

We evaluated the running time performance of MetaCompass and three de novo assemblers

for the full Shakya et al. sample (100 million paired-end reads) and a 10% of the original data

set (5 million paired-end reads). The full dataset was run using 80 GB of memory and 12

CPUs and the down-sampled dataset using 36GB of memory and 4 CPUs.

 Shakya et al. Downsampled Shakya et al.

Assembler Time (hh:mm) Memory (Gb) Time (mm:ss) Memory (Gb)

MetaCompass 3:53 19.82 3:35 10.34

IDBA-UD 3:53 16.78 2:42 7.39

MEGAHIT 2:26 8.61 2:03 2.35

metaSPAdes 6:02 28.07 8:25 19.63

74

Figure 5.4. MetaCompass performance on low coverage dataset.

Results obtained by down-sampling the Shakya et al. synthetic genome to just 10% of the

original set of reads. The 64 genomes present in the sample are ordered per assembler by

percent recovery, from lowest to highest. The y-axis indicates how much of the n-th reference

was covered by correctly assembled contigs (can range from 0% to 100%). The colored dashed

lines indicate the median percent recovery for each assembler.

5.3.2 Evaluation of performance on Human Microbiome Project

(HMP2)

5.3.2.1 Reassembly of the data generated by the Human Microbiome Project

(HMP2)

To further explore the benefits and limits of comparative approaches for metagenomic

assembly, we re-analyzed with MetaCompass 2,294 metagenomic samples from the

HMP Project. These samples cover 15 body sites from four broad regions of the human

body: oral, skin, stool, and vaginal. We compared the assemblies produced by

MetaCompass with the assemblies reported by the HMP project [159]. Across all

samples, on average, MetaCompass outperforms the HMP2 de novo approach, leading

to an overall better assembly of the original data (Table 5.4, Figure 10).

75

The relative performance of the MetaCompass and HMP2 assemblies varied

across body sites due to the specific characteristics of the microbial communities being

reconstructed. While MetaCompass generates more assembled sequence and complete

marker genes across all body sites, the maximum contig size and size at 1 Mbp metrics

vary per body site. In oral and stool samples (Figure 5.5), MetaCompass outperforms

de novo assembly for all metrics. In skin and vaginal samples (Figure 5.5), the de novo

(HMP2) assemblies have better contiguity statistics but MetaCompass assembles more

complete marker genes. To gain further insight into these results we calculated the

average nucleotide identity of the de novo assembled contigs to the recruited reference

genomes for each body site. In all body sites, except for oral, the assembled contigs

had 99% average nucleotide identity to the reference genomes. In the oral samples, the

most distant reference genomes had only 97% identity to the assembled contigs.

To further explore the drop-in contiguity in skin and vaginal samples, we

focused on just the contigs that mapped to bacterial genomes contained in the reference

database, allowing for a direct comparison between MetaCompass and de novo contigs.

The results in Table 5.4 show that for this set of contigs, MetaCompass outperforms

the de novo approach for the vaginal samples. However, the de novo HMP2 assembly

of the skin sample is still better in terms of complete genes recovered, but equivalent

to MetaCompass with respect to complete marker genes recovered (a measure of

assembly completeness).

76

Table 5.4. Re-assembly of 2,294 samples generated in the Human Microbiome Project.

The results are aggregated by body site. # indicates the total reads per sample, Avg cvg per

sample (X) is the mean estimate read coverage calculated based on the de novo assembly of

each sample and body site, Shannon Entropy (median) is the Shannon diversity value per body

site as reported in Li et al. [160]. The rows labeled MC contain results obtained with

MetaCompass. The rows labeled HMP2 show the statistics for contigs from the production

HMP2 assembly. Total Size (Mbp) is the total assembly size for each method, Max ctg size

(kbp) is the size of the largest contig, Median Size 1Mbp (kbp) represents the median size of

the largest contig C such that the sum of all contigs larger than C exceeds 1Mbp. Median

Complete Genes represents the median number of complete genes per sample. Median Marker

Genes indicates the median number of complete marker genes per sample.

HMP2

body

site

Num of

samples

Avg

cvg per

sample

Shanon

Entropy

(median)

Asm

Total

size

(Mbp)

Max

ctg size

(kbp)

Median

size 1

Mbp

(kbp)

Median

complete

genes

Median

marker

genes

Oral 1259 20.0 2.4 HMP2 106,693 546.4 70.8 54,1 762

 ±8.1 MC 135,586 892.3 95.8 63,144 915

Skin 291 17.4 1.5 HMP2 2,944 890.7 36.5 4,654 78

 ±4.7 MC 3,782 2,159.3 15.1 5,01 79

Stool 524 18.4 2.6 HMP2 56,573 592.8 109.1 84,193 847

 ±4.9 MC 66,838 3,301.0 230.9 94,297 1,043

Vagina 220 7.8 0.2 HMP2 1,179 465.8 28.7 2,539 45

 ±4.5 MC 1,458 558.0 16.1 2,934 60

All 2294 18.2 1.9 HMP2 184,518 890.7 79.0 48,836 633

 ± 5.6 MC 232,161 3,301.0 114.6 57,639 764

77

Figure 5.5. Comparative assembly of 2,294 metagenomic samples from the HMP2

Project.

The bean plots represent the distribution of assembly contiguity and completeness statistics

across all samples within the data. The x axis organizes the data by assembly and body site.

The y-axis indicates the statistic used to evaluate the assembly contiguity or completeness. The

top panel shows total assembly size, the second panel shows maximum contig size, the third

panel shows the size of the contig at 1 Mbp, and the bottom panel shows the complete marker

genes assembled per sample.

78

5.3.2.2 Comparing reference-guided to de novo assembly on low-coverage HMP2

samples

To assess the ability of MetaCompass to assemble low-abundance organisms, we

focused on all skin HMP2 samples. The skin samples had the second lowest average

number of reads while still containing reasonable diversity and richness, as reported in

Table 5.4. We removed the contigs assembled via de novo assembly from the

MetaCompass output, collected the reference genomes that were used, mapped the

HMP2 contigs to these reference genomes, and then evaluated the number of complete

genes and complete marker genes. Compared to the HMP2 assembly, reference-guided

assembly of these low coverage samples is able to reconstruct approximately 10% more

marker genes (4,423 versus 3,915) than the de novo approach, roughly equating to 10

additional complete bacterial genomes.

We next searched for microbes that were present in the skin samples at

relatively low coverage and explored the differences between the reconstructions

generated by the HMP2 project and MetaCompass. Specifically, we identified the low

coverage assembly of a Propionibacterium acnes genome reconstructed by both

MetaCompass and the HMP in sample SRS057083. The HMP2 assembly covers less

than 40% of the closest reference genome (NC_016516.1, Propionibacterium acnes

TypeIA2 P.acn33), while the MetaCompass assembly covers more than 90% of the

same genome.

79

5.3.2.3 Comparing reference-guided to de novo assembly on high coverage HMP2

samples

To assess the ability of MetaCompass to assemble high-abundance organisms, we

focused on all stool HMP2 samples. The stool assemblies had the longest maximum

contig and median size to 1Mbp, as reported in Table 5.4. We searched for microbes

with the best assembly among all stool samples (NZ_CP012801, Bacteroides

cellulosilyticus WH2, HMP2 sample SRS143342), and explored the differences

between the reconstructions generated by de novo assemblers and MetaCompass.

We next collected the reference genomes that were used by MetaCompass and

mapped both de novo and reference-guided assemblies to these reference genomes. The

Bacteroides cellulosilyticus WH2 genome was recovered by all assemblies with more

than 70% of genome recovery. As show in Figure 5.6, all tools reconstructed a

fragmented assembly towards the beginning of the genome, were more sequencing

errors are usually found. Overall, after the initial fragmented contigs, MetaCompass

assembled ten long contigs with length ranging from 0.5 to 2.28MBp.

The longest MetaCompass contig covers 0.32% of the Bacteroides

cellulosilyticus WH2 genome (Figure 5.7) and aligned almost perfectly to the reference

genome (2 mismatches). In contrast, MetaSPAdes, Megahit and IDBA-UD

reconstructed an extremely fragmented assembly with many misassembled contigs. To

further investigate how the reads were distributed across both the reference genome

and contigs, we mapped both reads and contigs to the genome with Bowtie2 and

Minimap2 [161], respectively (Figure 5.8). Although the read mapping visualization

shows a relatively even depth of coverage, de novo assemblers were unable to

reconstruct a contiguous assembly. Conversely, MetaCompass reconstructed the full

80

segment of the genome. MEGAHIT was the second-best assembler, almost

reconstructing the full segment.

Figure 5.6. Icarus view of metagenomic assembly of the stool sample SRS143342 from the

HMP2 Project.

The contigs largest than 1000bp from MetaCompass, MetaSPAdes, Megahit, and IDBA were

aligned to the Bacteroides cellulosilyticus WH2 genome (NZ_CP012801, 7084828 bp). Colors

indicate how well the contigs aligned to the reference. Green represent correct contigs, red

misassembled contigs, purple ambiguously mapped contigs, and gray unaligned contigs.

Figure 5.7. Longest contig from Bacteroides cellulosilyticus strain WH2 chromosome

genome assembly (accession:NZ_CP012801.1, length: 7084828 bp).

The length of contig NCP012801.1_102 is almost 2.28 Mbp, covering 0.32% of the complete

genome.

81

Figure 5.8. IGV visualization of read and contig mapped against a segment of the

Bacteroides cellulosilyticus WH2 genome (accession:NZ_CP012801.1, length: 7084828

bp).

MetaCompass reconstructed the full segment of the genome. MEGAHIT almost reconstructed

the full segment. MetaSPAdes and IDBA-UD had the biggest assembly gap.

5.4 Conclusion and discussion

We have described MetaCompass, a comparative metagenome assembly method that

relies on an indexing strategy to construct sample-specific reference collections. We

show that comparative and de novo assemblies provide complementary strengths, and

that combining both approaches effectively improves the overall assembly, providing

a consistent increase in the quality of the assembly. Even when distant reference

genomes are recruited, we remain competitive with de novo genome assembly methods.

We accomplish this via two critical steps. First, we avoid reference bias by constructing

82

the consensus sequence from the reads within the sample, using the reference genome

as just a guide, and we break the assembly where the reads indicate a structural

disagreement with the reference. Second, we use unmapped reads in a de novo

assembly process to reconstruct the sections of the metagenomic sample that are not

similar to known reference genomes. We have shown MetaCompass to be particularly

effective in the assembly of low coverage or rare microbes, a setting in which de novo

assembly approaches simply cannot be used with good results. Improved assembly of

low-abundance, rare microbes from existing datasets has the potential to provide

additional resolution in complex microbial communities or clinical samples where the

host DNA comprises a large fraction of the data. Finally, we have shown that in high-

abundance genomes, MetaCompass is more effective that de novo in generating

complete and contiguous assemblies.

The benefit of comparative assembly is highly dependent on the reference

genomes available in the database provided to MetaCompass. While MetaCompass can

effectively use reference genomes that are distantly related to the genomes being

assembled, the quality of the reconstruction is lower than can be achieved with closely

related reference sequences. Many bacteria found in the human microbiota are difficult

to culture (e.g., the many anaerobes inhabiting the human intestinal tract) and are,

therefore, under-represented in public databases. Despite this fact, MetaCompass was

able to improve, often significantly, upon the assembly of the data generated by the

Human Microbiome Project 2. However, the contiguity of MetaCompass on skin

samples was not improved upon the assemblies generated by HMP2. This could be due

to the structural genome dynamics of bacterial defense systems commonly found in the

83

skin microbe [162–164]. Future work will focus on elucidating the effect of each of

these factors via assembly graph-based approaches. In addition, as the number of

genomes in public databases is increasing, comparative approaches such as ours will

be increasingly valuable for reconstructing near-complete genome sequences from

metagenomic data.

84

Chapter 6: Conclusion

Metagenomic assembly, the process of reconstructing large genomic segments from

metagenomic reads, is a formidable computational challenge. Even for single

organisms, the assembly of genome sequences from next-generation sequencing (NGS)

reads is a complex task, primarily due to ambiguities in the reconstruction that are

caused by genomic repeats. In addition, metagenomic assemblers must be tolerant of

non-uniform representation of genomes in a sample as well as of the genomic variants

between the sequences of closely related organisms. Despite advances in metagenomic

assembly algorithms over the past years, the computational difficulty of the assembly

process remains high and the quality of the resulting assemblies requires improvement.

The reference-guided assembly paradigm has been shown to outperform the de novo

assembly paradigm under certain settings, yet, the former has not been extensively

explored.

In this dissertation, we designed methods to address the reference-guided

metagenomic assembly problem. This problem consists of two subproblems: selecting

closely related genomes to guide the assembly and reconstructing each genome

individually. To address the first subproblem, we developed MetaCompassRS, a

taxonomy classification approach that is able to retrieve the closest reference genomes

available in a database that are contained in a metagenomic sample. We showed that

MetaCompassRS achieves higher recall than state of the art taxonomy classification

tools, while maintaining a competitive running time.

85

The second subproblem is further subdivided into read mapping and consensus

calling. We used Bowtie2—the most widely used short read mapper—for the former

task and developed an approached inspired on the minimum set cover problem for the

latter task. We implemented the minimum set cover algorithm in our tool Buildcontig

and showed its efficiency and effectivity in reducing the redundancy of metagenome

assemblies.

Finally, we developed MetaCompass, a metagenomic assembly pipeline that

encompass MetaCompassRS, Buildcontig and de novo assembly to reconstruct a

metagenomic sample. When combined with de novo assembly approaches, we showed

that reference-guided assembly is able to generate more complete assemblies than the

ones obtained by the de novo assembly alone. We also showed that MetaCompass

performs better than the state of the art methods in real world datasets—such as the

ones gather by the HMP.

We believe that reference-guided metagenomic assembly approaches, and with

MetaCompass being one of the first ones reported in the literature, will increasingly

replace the more computationally expensive and error-prone de novo assembly

approaches as the collection of available reference genome sequences increases.

Furthermore, reference-guided assembly provides new opportunities for the

development of both clinical and computational applications. Clinical applications are

a particularly relevant application domain for reference-guided approaches because the

vast majority of publicly available genome sequences comprises human pathogens.

Computational methods capable of handling a large amount of metagenomic

sequencing data are an active area of research. One of the most promising strategies to

86

handle metagenomics reference collections is using pangenome graphs, which we plan

to further explore in the future.

87

Appendices

Appendix A. References removed from database used by MetaCompass.

Species name

Acidobacterium capsulatum

Aciduliprofundum boonei

Akkermansia muciniphila

Archaeoglobus fulgidus

Bacteroides thetaiotaomicron

Bacteroides vulgatus

Bordetella bronchiseptica

Burkholderia xenovorans LB400

Caldicellulosiruptor bescii

Caldicellulosiruptor saccharolyticus

Chlorobium limicola

Chlorobium phaeobacteroides

Chlorobium phaeovibrioides

Chlorobium tepidum

Chloroflexus aurantiacus J-10-fl

Clostridium thermocellum

Deinococcus radiodurans R1

Desulfovibrio piger

Desulfovibrio vulgaris DP4

Dictyoglomus turgidum

Enterococcus faecalis

Fusobacterium nucleatum nucleatum

Gemmatimonas aurantiaca

Geobacter sulfurreducens PCA

Haloferax volcanii

Herpetosiphon aurantiacus

Hydrogenobaculum sp. Y04AAS1

Ignicoccus hospitalis

Leptothrix cholodnii

Methanocaldococcus jannaschii

Methanococcus maripaludis C5

Methanococcus maripaludis S2

Methanopyrus kandleri

88

Methanosarcina acetivorans C2A

Nanoarchaeum equitans

Nitrosomonas europaea

Nostoc sp. PCC 7120

Pelodictyon phaeoclathratiforme

Persephonella marina EX-H1

Porphyromonas gingivalis

Pyrobaculum aerophilum IM2

Pyrobaculum arsenaticum

Pyrobaculum calidifontis

Pyrococcus furiosus

Pyrococcus horikoshii

Rhodopirellula baltica

Ruegeria pomeroyi

Salinispora arenicola

Salinispora tropica

Shewanella baltica OS185

Shewanella baltica OS223

Sulfitobacter sp. EE-36

Sulfitobacter sp. NAS-14.1

Sulfolobus tokodaii

Sulfurihydrogenibium sp. YO3AOP1

Sulfurihydrogenibium yellowstonense SS-5

Thermoanaerobacter pseudethanolicus

Thermotoga neapolitana DSM 4359

Thermotoga petrophila RKU-1

Thermotoga sp. RQ2

Thermus thermophilus HB8

Treponema denticola

Wolinella succinogenes

Zymomonas mobilis

89

Bibliography

1. Hooper L V. Commensal Host-Bacterial Relationships in the Gut. Science (80-.).

[Internet]. 2001 [cited 2017 Mar 23];292:1115–8. Available from:

http://www.sciencemag.org/cgi/doi/10.1126/science.1058709

2. Tringe SG, Rubin EM. Metagenomics: DNA sequencing of environmental

samples. Nat. Rev. Genet. [Internet]. Nature Publishing Group; 2005 [cited 2017 Mar

23];6:805–14. Available from: http://www.nature.com/doifinder/10.1038/nrg1709

3. Methé BA, Nelson KE, Pop M, Creasy HH, Giglio MG, Huttenhower C, et al. A

framework for human microbiome research. Nature [Internet]. Nature Research; 2012

[cited 2017 Mar 23];486:215–21. Available from:

http://www.nature.com/doifinder/10.1038/nature11209

4. Heather JM, Chain B. The sequence of sequencers: The history of sequencing

DNA. Genomics. Academic Press Inc.; 2016. p. 1–8.

5. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and

coverage: key considerations in genomic analyses. Nat. Rev. Genet. [Internet]. Nature

Research; 2014 [cited 2017 Aug 5];15:121–32. Available from:

http://www.nature.com/doifinder/10.1038/nrg3642

6. Kingsford C, Schatz MC, Pop M. Assembly complexity of prokaryotic genomes

using short reads. BMC Bioinformatics [Internet]. 2010 [cited 2017 Apr 28];11:21.

Available from: http://www.biomedcentral.com/1471-2105/11/21

7. Nagarajan N, Pop M. Parametric Complexity of Sequence Assembly: Theory and

Applications to Next Generation Sequencing. J. Comput. Biol. [Internet]. 2009 [cited

2017 Apr 28];16:897–908. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/19580519

8. Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome

assembly. Nat. Biotechnol. [Internet]. 2011 [cited 2017 Mar 23];29:987–91.

Available from: http://www.nature.com/nbt/journal/v29/n11/pdf/nbt.2023.pdf

9. Kececioglu JD, Myers EW. Combinatorial algorithms for DNA sequence

assembly. Algorithmica [Internet]. Springer-Verlag; 1995 [cited 2017 Jun 28];13:7–

51. Available from: http://link.springer.com/10.1007/BF01188580

10. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage

AR, et al. Whole-genome random sequencing and assembly of Haemophilus

influenzae Rd. Science (80-.). [Internet]. American Association for the Advancement

of Science; 1995 [cited 2020 Jul 7];269:496–512. Available from:

https://science.sciencemag.org/content/269/5223/496

11. Ann Liebert M, Sutton GG, White O, Adams MD, Kerlavage AR. TIGR

Assembler: A New Tool for Assembling Large Shotgun Sequencing Projects

[Internet]. GENOME Sci. Technol. 1995. Available from: www.liebertpub.com

12. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial

sequencing and analysis of the human genome. Nature [Internet]. Nature; 2001 [cited

2020 Jul 7];409:860–921. Available from:

https://pubmed.ncbi.nlm.nih.gov/11237011/

90

13. Craig Venter J, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The

sequence of the human genome. Science (80-.). [Internet]. Science; 2001 [cited 2020

Jul 7];291:1304–51. Available from: https://pubmed.ncbi.nlm.nih.gov/11181995/

14. Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA

fragment assembly. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 2001 [cited 2017 Apr

28];98:9748–53. Available from:

http://www.pnas.org/cgi/doi/10.1073/pnas.171285098

15. Nagarajan N, Pop M. Sequence assembly demystified. Nat. Rev. Genet.

[Internet]. 2013 [cited 2017 Jun 15];14:157–67. Available from:

http://www.nature.com/doifinder/10.1038/nrg3367

16. Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation

sequencing data. Genomics [Internet]. 2010 [cited 2017 Jun 15];95:315–27. Available

from: http://linkinghub.elsevier.com/retrieve/pii/S0888754310000492

17. Salmela L, Walve R, Rivals E, Ukkonen E. Accurate self-correction of errors in

long reads using de Bruijn graphs. [cited 2020 Aug 4]; Available from:

http://www.cs.helsinki.fi/u/lmsalmel/LoRMA/.

18. Schatz MC, Phillippy AM, Sommer DD, Delcher AL, Puiu D, Narzisi G, et al.

Hawkeye and AMOS: visualizing and assessing the quality of genome assemblies.

[cited 2020 Jun 30]; Available from: http://amos.sourceforge.net.

19. Pop M, Phillippy A, Delcher AL, Salzberg SL. Comparative genome assembly.

Brief. Bioinform. [Internet]. Oxford University Press; 2004 [cited 2017 Mar

23];5:237–48. Available from: https://academic.oup.com/bib/article-

lookup/doi/10.1093/bib/5.3.237

20. Richter DC, Schuster SC, Huson DH. OSLay: optimal syntenic layout of

unfinished assemblies. 2007 [cited 2020 Jun 30];23:1573–9. Available from:

http://www-ab.informatik.unituebingen.de/software/oslay

21. Van Hijum SAFT, Zomer AL, Kuipers OP, Kok J. Projector 2: contig mapping

for efficient gap-closure of prokaryotic genome sequence assemblies. [cited 2020 Jun

30]; Available from: http://genome.nhgri.nih.gov/blastall/

22. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. ABACAS: algorithm-

based automatic contiguation of assembled sequences. Bioinforma. Appl. NOTE

[Internet]. 2009 [cited 2020 Jun 30];25:1968–9. Available from:

http://abacas.sourceforge.

23. Husemann P, Stoye J. r2cat: synteny plots and comparative assembly.

Bioinformatics [Internet]. 2010 [cited 2015 Feb 12];26:570–1. Available from:

http://bioinformatics.oxfordjournals.org/content/26/4/570.full

24. Husemann P, Stoye J. Phylogenetic comparative assembly. Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)

[Internet]. Springer, Berlin, Heidelberg; 2009 [cited 2020 Jun 30]. p. 145–56.

Available from: https://link.springer.com/chapter/10.1007/978-3-642-04241-6_13

25. Silva GG, Dutilh BE, David Matthews T, Elkins K, Schmieder R, Dinsdale EA, et

al. Combining de novo and reference-guided assembly with scaffold_builder

[Internet]. 2013. Available from: http://www.scfbm.org/content/8/1/23

26. Vezzi F, Cattonaro F, Policriti A. e-RGA: enhanced Reference Guided Assembly

of Complex Genomes. EMBnet.journal [Internet]. 2011 [cited 2020 Jun 30];17:46–

54. Available from:

91

http://journal.embnet.org/index.php/embnetjournal/article/view/208/484

27. Scholz M, Tett A, Segata N. Computational Tools for Taxonomic Microbiome

Profiling of Shotgun Metagenomes. Metagenomics Microbiol. Elsevier Inc.; 2015. p.

67–80.

28. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA

amplification for phylogenetic study. J. Bacteriol. [Internet]. American Society for

Microbiology (ASM); 1991 [cited 2020 Jul 7];173:697–703. Available from:

/pmc/articles/PMC207061/?report=abstract

29. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al.

Introducing mothur: Open-source, platform-independent, community-supported

software for describing and comparing microbial communities. Appl. Environ.

Microbiol. 2009;75:7537–41.

30. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP.

DADA2: High-resolution sample inference from Illumina amplicon data. Nat.

Methods [Internet]. Nature Publishing Group; 2016 [cited 2020 Jul 12];13:581–3.

Available from: https://github.com/benjjneb/dada2

31. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK,

et al. QIIME allows analysis of high-throughput community sequencing data

[Internet]. Nat. Methods. Nature Publishing Group; 2010 [cited 2020 Jul 12]. p. 335–

6. Available from: http://qiime.sourceforge.

32. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA

ribosomal RNA gene database project: Improved data processing and web-based

tools. Nucleic Acids Res. 2013;41.

33. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al.

Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible

with ARB. Appl. Environ. Microbiol. 2006;72:5069–72.

34. Cole JR, Wang Q, Chai B, Tiedje JM. The Ribosomal Database Project:

Sequences and Software for High-Throughput rRNA Analysis. Handb. Mol. Microb.

Ecol. I [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2011 [cited 2020 Jun

30]. p. 313–24. Available from: http://doi.wiley.com/10.1002/9781118010518.ch36

35. Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel

D, et al. The UNITE database for molecular identification of fungi: handling dark

taxa and parallel taxonomic classifications. Nucleic Acids Res. [Internet]. 2018 [cited

2020 Jun 30];47:259–64. Available from: https://www.postgresql.org/

36. Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S. Use of

16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl.

Environ. Microbiol. [Internet]. American Society for Microbiology (ASM); 2007

[cited 2020 Jul 12];73:278–88. Available from:

/pmc/articles/PMC1797146/?report=abstract

37. Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H,

et al. Experimental factors affecting PCR-based estimates of microbial species

richness and evenness. ISME J. [Internet]. Nature Publishing Group; 2010 [cited 2020

Jul 12];4:642–7. Available from: www.nature.com/ismej

38. Kennedy K, Hall MW, Lynch MDJ, Moreno-Hagelsieb G, Neufeld JD.

Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. Appl. Environ.

Microbiol. [Internet]. American Society for Microbiology; 2014 [cited 2020 Jul

92

14];80:5717–22. Available from: http://dx.doi.org/10.1128

39. Comeau AM, Douglas GM, Langille MGI. Microbiome Helper: a Custom and

Streamlined Workflow for Microbiome Research. mSystems [Internet]. American

Society for Microbiology; 2017 [cited 2020 Jul 12];2. Available from:

/pmc/articles/PMC5209531/?report=abstract

40. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, et al. Re-

evaluating prokaryotic species [Internet]. Nat. Rev. Microbiol. Nature Publishing

Group; 2005 [cited 2020 Jul 12]. p. 733–9. Available from:

www.nature.com/reviews/micro

41. Ochman H, Wilson AC. Evolution in bacteria: Evidence for a universal

substitution rate in cellular genomes [Internet]. J. Mol. Evol. Springer-Verlag; 1987

[cited 2020 Jul 13]. p. 377. Available from:

https://link.springer.com/article/10.1007/BF02101157

42. Yamamoto S, Harayama S. Phylogenetic relationships of Pseudomonas putida

strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes.

Int. J. Syst. Bacteriol. [Internet]. Microbiology Society; 1998 [cited 2020 Jul

13];48:813–9. Available from:

https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-48-

3-813

43. Palys T, Berger E, Mitrica I, Nakamura LK, Cohan FM. Protein-coding genes as

molecular markers for ecologically distinct populations: The case of two Bacillus

species. Int. J. Syst. Evol. Microbiol. [Internet]. Society for General Microbiology;

2000 [cited 2020 Jul 13];50:1021–8. Available from:

https://pubmed.ncbi.nlm.nih.gov/10843041/

44. Mende DR, Sunagawa S, Zeller G, Bork P. Accurate and universal delineation of

prokaryotic species. Nat. Methods [Internet]. Nature Publishing Group; 2013 [cited

2020 Jul 13];10:881–4. Available from: http://www.bork.embl.de/software/speci/

45. Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR,

et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat.

Methods [Internet]. Nature Publishing Group, a division of Macmillan Publishers

Limited. All Rights Reserved.; 2013 [cited 2014 Jul 18];10:1196–9. Available from:

http://dx.doi.org/10.1038/nmeth.2693

46. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. Toward

automatic reconstruction of a highly resolved tree of life. Science [Internet]. 2006

[cited 2014 Jul 10];311:1283–7. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/16513982

47. Tatusov RL, Galperin MY, Natale DA, Koonin E V. The COG database: a tool

for genome-scale analysis of protein functions and evolution [Internet]. Nucleic Acids

Res. 2000. Available from: http://www.ncbi.nlm.nih.gov/COG

48. Galperin MY, Makarova KS, Wolf YI, Koonin E V. Expanded microbial genome

coverage and improved protein family annotation in the COG database. Nucleic

Acids Res. [Internet]. 2014 [cited 2020 Jul 14];43:261–9. Available from:

http://www.ncbi.nlm.nih.gov/COG/

49. Pruitt K, Brown G, Tatusova T, Maglott D. The Reference Sequence (RefSeq)

Database [Internet]. National Center for Biotechnology Information (US); 2012 [cited

2015 Sep 17]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK21091/

93

50. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al.

Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion,

and functional annotation. Nucleic Acids Res. [Internet]. Oxford University Press;

2016 [cited 2017 Mar 27];44:D733-45. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/26553804

51. RefSeq: NCBI Reference Sequence Database [Internet]. [cited 2020 Jul 2].

Available from: https://www.ncbi.nlm.nih.gov/refseq/

52. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a

curated non-redundant sequence database of genomes, transcripts and proteins. [cited

2020 Jul 2]; Available from: http://www.ncbi.nlm.nih.gov/RefSeq/

53. Ye SH, Siddle KJ, Park DJ, Sabeti PC. Benchmarking Metagenomics Tools for

Taxonomic Classification [Internet]. Cell. Cell Press; 2019 [cited 2020 Jul 2]. p. 779–

94. Available from: https://doi.org/10.1016/j.cell.2019.07.010

54. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, Yu Y, et al. Basic local

alignment search tool. J. Mol. Biol. [Internet]. BioMed Central; 1990 [cited 2017 Mar

23];215:403–10. Available from:

http://linkinghub.elsevier.com/retrieve/pii/S0022283605803602

55. Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN

Community Edition - Interactive Exploration and Analysis of Large-Scale

Microbiome Sequencing Data. Poisot T, editor. PLOS Comput. Biol. [Internet].

Public Library of Science; 2016 [cited 2016 Jul 19];12:e1004957. Available from:

http://dx.plos.org/10.1371/journal.pcbi.1004957

56. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment

search tool. J. Mol. Biol. [Internet]. J Mol Biol; 1990 [cited 2020 Jul 1];215:403–10.

Available from: https://pubmed.ncbi.nlm.nih.gov/2231712/

57. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al.

Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs [Internet]. Nucleic Acids Res. Oxford University Press; 1997. Available

from: https://academic.oup.com/nar/article-abstract/25/17/3389/1061651

58. McCall C, Xagoraraki I. Comparative study of sequence aligners for detecting

antibiotic resistance in bacterial metagenomes. Lett. Appl. Microbiol. [Internet].

Blackwell Publishing Ltd; 2018 [cited 2020 Jul 2];66:162–8. Available from:

http://doi.wiley.com/10.1111/lam.12842

59. Smith TF, Waterman MS. Identification of common molecular subsequences. J.

Mol. Biol. [Internet]. 1981 [cited 2014 Dec 11];147:195–7. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/7265238

60. Zhang Z, Schwartz S, Wagner L, Miller W. A Greedy Algorithm for Aligning

DNA Sequences [Internet]. J. Comput. Biol. Mary Ann Liebert, Inc. Pp; 2000.

Available from: www.liebertpub.com

61. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using

DIAMOND [Internet]. Nat. Methods. Nature Publishing Group; 2014 [cited 2020 Jul

16]. p. 59–60. Available from: http://ab.inf.uni-tuebingen.de/software/diamond

62. Menzel P, Ng KL, Krogh A, Marth G, Lipman D. Fast and sensitive taxonomic

classification for metagenomics with Kaiju. Nat. Commun. [Internet]. Nature

Publishing Group; 2016 [cited 2017 Mar 23];7:11257. Available from:

http://www.nature.com/doifinder/10.1038/ncomms11257

94

63. Burrows M, Burrows M, Wheeler DJ. A block-sorting lossless data compression

algorithm. 1994 [cited 2017 Sep 25];16. Available from:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.8069

64. Ferragina P, Manzini G. Opportunistic data structures with applications. Annu.

Symp. Found. Comput. Sci. - Proc. IEEE; 2000. p. 390–8.

65. Liu B, Gibbons T, Ghodsi M, Treangen T, Pop M. Accurate and fast estimation of

taxonomic profiles from metagenomic shotgun sequences. BMC Genomics [Internet].

2011 [cited 2017 Mar 23];12:S4. Available from:

http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-12-S2-S4

66. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C.

Metagenomic microbial community profiling using unique clade-specific marker

genes. Nat. Methods [Internet]. Nature Publishing Group, a division of Macmillan

Publishers Limited. All Rights Reserved.; 2012 [cited 2015 Mar 6];9:811–4.

Available from: http://dx.doi.org/10.1038/nmeth.2066

67. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using

DIAMOND [Internet]. Nat. Methods. Nature Publishing Group; 2014 [cited 2020 Jun

30]. p. 59–60. Available from: https://www.nature.com/articles/nmeth.3176

68. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat.

Methods [Internet]. Nature Publishing Group, a division of Macmillan Publishers

Limited. All Rights Reserved.; 2012 [cited 2014 Jul 10];9:357–9. Available from:

http://dx.doi.org/10.1038/nmeth.1923

69. Ames SK, Hysom DA, Gardner SN, Lloyd GS, Gokhale MB, Allen JE. Scalable

metagenomic taxonomy classification using a reference genome database.

Bioinformatics [Internet]. Ottawa, Canada; 2013 [cited 2017 Jul 5];29:2253–60.

Available from: https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btt389

70. Ounit R, Wanamaker S, Close TJ, Lonardi S. CLARK: fast and accurate

classification of metagenomic and genomic sequences using discriminative k-mers.

BMC Genomics [Internet]. 2015 [cited 2017 Jul 5];16:236. Available from:

http://www.biomedcentral.com/1471-2164/16/236

71. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification

using exact alignments. Genome Biol. [Internet]. 2014 [cited 2017 Mar 23];15:R46.

Available from: http://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-

15-3-r46

72. Ulyantsev VI, Kazakov S V., Dubinkina VB, Tyakht A V., Alexeev DG.

MetaFast: fast reference-free graph-based comparison of shotgun metagenomic data.

Bioinformatics [Internet]. Springer, Berlin/Heidelberg; 2016 [cited 2017 Jul

5];32:2760–7. Available from: https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btw312

73. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al.

Mash: fast genome and metagenome distance estimation using MinHash. Genome

Biol. [Internet]. 2016 [cited 2017 Jun 30];17:132. Available from:

http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0997-x

74. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive

classification of metagenomic sequences. Genome Res. [Internet]. Cold Spring

Harbor Laboratory Press; 2016 [cited 2017 Jul 9];26:1721–9. Available from:

95

http://www.ncbi.nlm.nih.gov/pubmed/27852649

75. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2.

Genome Biol. [Internet]. BioMed Central Ltd.; 2019 [cited 2020 Jul 18];20:257.

Available from: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-

019-1891-0

76. Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species

abundance in metagenomics data. PeerJ Comput. Sci. [Internet]. PeerJ Inc.; 2017

[cited 2017 Jul 9];3:e104. Available from: https://peerj.com/articles/cs-104

77. Ounit R, Lonardi S. Higher classification sensitivity of short metagenomic reads

with CLARK-S. [cited 2020 Jul 2]; Available from: http://clark.cs.ucr.edu/

78. Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S, Buck CB, et al. Mash

Screen: High-throughput sequence containment estimation for genome discovery.

Genome Biol. [Internet]. BioMed Central Ltd.; 2019 [cited 2020 Jul 2];20:232.

Available from: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-

019-1841-x

79. McIntyre ABR, Ounit R, Afshinnekoo E, Prill RJ, Hénaff E, Alexander N, et al.

Comprehensive benchmarking and ensemble approaches for metagenomic classifiers.

Genome Biol. [Internet]. BioMed Central Ltd.; 2017 [cited 2020 Jul 3];18:182.

Available from: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-

017-1299-7

80. Meyer F, Bremges A, Belmann P, Janssen S, McHardy AC, Koslicki D.

Assessing taxonomic metagenome profilers with OPAL. Genome Biol. [Internet].

BioMed Central Ltd.; 2019 [cited 2020 Jul 3];20:51. Available from:

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1646-y

81. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, et al. Critical

Assessment of Metagenome Interpretation - A benchmark of metagenomics software.

Nat. Methods [Internet]. Nature Publishing Group; 2017 [cited 2020 Jul 3];14:1063–

71. Available from: https://www.nature.com/articles/nmeth.4458

82. Morowitz MJ, Denef VJ, Costello EK, Thomas BC, Poroyko V, Relman DA, et

al. Strain-resolved community genomic analysis of gut microbial colonization in a

premature infant. Proc. Natl. Acad. Sci. [Internet]. 2011 [cited 2017 May

1];108:1128–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21191099

83. Treangen TJ, Abraham A-L, Touchon M, Rocha EPC. Genesis, effects and fates

of repeats in prokaryotic genomes. FEMS Microbiol. Rev. [Internet]. 2009 [cited

2017 May 1];33:539–71. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/19396957

84. Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM, Mcvey SD, et al.

Reducing assembly complexity of microbial genomes with single-molecule

sequencing. Genome Biol. [Internet]. 2013 [cited 2017 Apr 26];14:R101. Available

from: http://www.ncbi.nlm.nih.gov/pubmed/24034426

85. Namiki T, Hachiya T, Tanaka H, Sakakibara Y. MetaVelvet: an extension of

Velvet assembler to de novo metagenome assembly from short sequence reads.

Nucleic Acids Res. [Internet]. 2012 [cited 2014 Jul 10];40:e155. Available from:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3488206&tool=pmcentre

z&rendertype=abstract

86. Greenwald WW, Klitgord N, Seguritan V, Yooseph S, Venter JC, Garner C, et al.

96

Utilization of defined microbial communities enables effective evaluation of meta-

genomic assemblies. BMC Genomics [Internet]. 2017 [cited 2017 May 1];18:296.

Available from: http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-

017-3679-5

87. Awad S, Irber L, Brown CT. Evaluating Metagenome Assembly on a Simple

Defined Community with Many Strain Variants. bioRxiv [Internet]. 2017 [cited 2017

Jun 29]; Available from: http://www.biorxiv.org/content/early/2017/06/25/155358

88. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for

single-cell and metagenomic sequencing data with highly uneven depth.

Bioinformatics [Internet]. Oxford University Press; 2012 [cited 2017 Mar

23];28:1420–8. Available from: https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/bts174

89. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA – A Practical Iterative de Bruijn

Graph De Novo Assembler. Springer, Berlin, Heidelberg; 2010 [cited 2017 Apr 28].

p. 426–40. Available from: http://link.springer.com/10.1007/978-3-642-12683-3_28

90. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-

node solution for large and complex metagenomics assembly via succinct de Bruijn

graph. Bioinformatics [Internet]. Oxford University Press; 2015 [cited 2017 Mar

23];31:1674–6. Available from: https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btv033

91. Bowe A, Onodera T, Sadakane K, Shibuya T. Succinct de Bruijn Graphs.

Springer, Berlin, Heidelberg; 2012 [cited 2017 Apr 27]. p. 225–35. Available from:

http://link.springer.com/10.1007/978-3-642-33122-0_18

92. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile

metagenomic assembler. Genome Res. [Internet]. Cold Spring Harbor Laboratory

Press; 2017 [cited 2017 Mar 29];gr.213959.116. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/28298430

93. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.

SPAdes: a new genome assembly algorithm and its applications to single-cell

sequencing. J. Comput. Biol. [Internet]. Mary Ann Liebert, Inc.; 2012 [cited 2017

Apr 27];19:455–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22506599

94. Prjibelski AD, Vasilinetc I, Bankevich A, Gurevich A, Krivosheeva T, Nurk S, et

al. ExSPAnder: a universal repeat resolver for DNA fragment assembly.

Bioinformatics [Internet]. 2014 [cited 2017 May 1];30:i293–301. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/24931996

95. Laserson J, Jojic V, Koller D. Genovo: De Novo Assembly for Metagenomes. J.

Comput. Biol. [Internet]. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor

New Rochelle, NY 10801 USA ; 2011 [cited 2017 Mar 23];18:429–43. Available

from: http://www.liebertonline.com/doi/abs/10.1089/cmb.2010.0244

96. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using

de Bruijn graphs. Genome Res. [Internet]. Cold Spring Harbor Laboratory Press;

2008 [cited 2017 Mar 23];18:821–9. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/18349386

97. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: a

parallel assembler for short read sequence data. Genome Res. [Internet]. 2009 [cited

2014 Jul 11];19:1117–23. Available from:

97

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2694472&tool=pmcentre

z&rendertype=abstract

98. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human

genomes with massively parallel short read sequencing. Genome Res. [Internet]. 2010

[cited 2014 Jul 22];20:265–72. Available from:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2813482&tool=pmcentre

z&rendertype=abstract

99. Staden R. A strategy of DNA sequencing employing computer programs. Nucleic

Acids Res. [Internet]. Oxford University Press; 1979 [cited 2017 May 1];6:2601–10.

Available from: http://www.ncbi.nlm.nih.gov/pubmed/461197

100. diCenzo GC, Finan TM. The Divided Bacterial Genome: Structure, Function,

and Evolution. Microbiol. Mol. Biol. Rev. [Internet]. American Society for

Microbiology; 2017 [cited 2020 Jul 16];81. Available from: https://doi.org/10.1128/

101. Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of

metagenome assemblies. Bioinformatics [Internet]. 2016 [cited 2017 Apr

26];32:1088–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26614127

102. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:

assessing the quality of microbial genomes recovered from isolates, single cells, and

metagenomes. Genome Res. [Internet]. 2015 [cited 2015 May 20];gr.186072.114-.

Available from:

http://genome.cshlp.org/content/early/2015/05/14/gr.186072.114.abstract

103. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon:

an integrated tool for comprehensive microbial variant detection and genome

assembly improvement. PLoS One [Internet]. Broad Institute of MIT and Harvard,

Cambridge, Massachusetts, United States of America. Broad Institute of MIT and

Harvard, Cambridge, Massachusetts, United States of America; VIB Department of

Plant Systems Biology, Ghent University, Ghent, Belgium. Broa; 2014;9:e112963.

Available from: http://dx.doi.org/10.1371/journal.pone.0112963

104. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:

assessing the quality of microbial genomes recovered from isolates, single cells, and

metagenomes. Genome Res. [Internet]. Cold Spring Harbor Laboratory Press; 2015

[cited 2017 Apr 26];25:1043–55. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/25977477

105. Simã FA, Waterhouse RM, Ioannidis P, Kriventseva E V, Zdobnov EM.

BUSCO: assessing genome assembly and annotation completeness with single-copy

orthologs. [cited 2020 Jul 17]; Available from:

https://academic.oup.com/bioinformatics/article-abstract/31/19/3210/211866

106. Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of

metagenome assemblies. Bioinformatics [Internet]. 2016 [cited 2017 Mar

27];32:1088–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26614127

107. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool

for genome assemblies. Bioinformatics [Internet]. 2013 [cited 2017 May 1];29:1072–

5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23422339

108. kmer-mask [Internet]. [cited 2020 Jul 2]. Available from:

http://kmer.sourceforge.net/wiki/index.php?Main_Page)

109. Kultima JR, Sunagawa S, Li J, Chen W, Chen H, Mende DR, et al. MOCAT: a

98

metagenomics assembly and gene prediction toolkit. Gilbert JA, editor. PLoS One

[Internet]. 2012 [cited 2017 Mar 28];7:e47656. Available from:

http://dx.plos.org/10.1371/journal.pone.0047656

110. Li Ã W, Godzik A. BIOINFORMATICS APPLICATIONS NOTE Cd-hit: a fast

program for clustering and comparing large sets of protein or nucleotide sequences.

2006 [cited 2020 Jul 3];22:1658–9. Available from: http://cd-hit.org

111. Getting Started with Meryl - kmer [Internet]. [cited 2020 Jul 2]. Available from:

http://kmer.sourceforge.net/wiki/index.php/Getting_Started_with_Meryl

112. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et

al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2.

Nature [Internet]. ASM Press; 2001 [cited 2020 Jul 3];413:852–6. Available from:

http://www.sanger.ac.uk/Software/

113. Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, Podar M.

Comparative metagenomic and rRNA microbial diversity characterization using

archaeal and bacterial synthetic communities. Environ. Microbiol. [Internet]. 2013

[cited 2017 Mar 23];15:1882–99. Available from: http://doi.wiley.com/10.1111/1462-

2920.12086

114. Silva GGZ, Cuevas DA, Dutilh BE, Edwards RA. FOCUS: An alignment-free

model to identify organisms in metagenomes using non-negative least squares. PeerJ

[Internet]. PeerJ Inc.; 2014 [cited 2020 Aug 15];2014. Available from:

/pmc/articles/PMC4060023/?report=abstract

115. Nguyen NP, Mirarab S, Liu B, Pop M, Warnow T. TIPP: Taxonomic

identification and phylogenetic profiling. Bioinformatics [Internet]. Oxford

University Press; 2014 [cited 2020 Aug 14];30:3548–55. Available from:

https://pubmed.ncbi.nlm.nih.gov/25359891/

116. Liu B, Gibbons T, Ghodsi M, Treangen T, Pop M. Accurate and fast estimation

of taxonomic profiles from metagenomic shotgun sequences. BMC Genomics

[Internet]. 2011 [cited 2015 Feb 25];12 Suppl 2:S4. Available from:

http://www.biomedcentral.com/1471-2164/12/S2/S4

117. Koslicki D, Foucart S, Rosen G. Quikr: A method for rapid reconstruction of

bacterial communities via compressive sensing. Bioinformatics [Internet].

Bioinformatics; 2013 [cited 2020 Aug 14];29:2096–102. Available from:

https://pubmed.ncbi.nlm.nih.gov/23786768/

118. Klingenberg H, Aßhauer KP, Lingner T, Meinicke P. Protein signature-based

estimation of metagenomic abundances including all domains of life and viruses.

Bioinformatics [Internet]. Bioinformatics; 2013 [cited 2020 Aug 15];29:973–80.

Available from: https://pubmed.ncbi.nlm.nih.gov/23418187/

119. Koslicki D, Falush D. MetaPalette: a k-mer Painting Approach for Metagenomic

Taxonomic Profiling and Quantification of Novel Strain Variation. mSystems

[Internet]. American Society for Microbiology; 2016 [cited 2020 Aug 15];1.

Available from: /pmc/articles/PMC5069763/?report=abstract

120. Podell S, Ugalde JA, Narasingarao P, Banfield JF, Heidelberg KB, Allen EE.

Assembly-driven community genomics of a hypersaline microbial ecosystem.

Mormile MR, editor. PLoS One [Internet]. 2013 [cited 2017 Apr 28];8:e61692.

Available from: http://dx.plos.org/10.1371/journal.pone.0061692

121. Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks

99

JJ, et al. De novo metagenomic assembly reveals abundant novel major lineage of

Archaea in hypersaline microbial communities. ISME J. [Internet]. 2012 [cited 2017

Apr 28];6:81–93. Available from:

http://www.nature.com/doifinder/10.1038/ismej.2011.78

122. Ji P, Zhang Y, Wang J, Zhao F. MetaSort untangles metagenome assembly by

reducing microbial community complexity. Nat. Commun. [Internet]. 2017 [cited

2017 Apr 28];8:14306. Available from:

http://www.nature.com/doifinder/10.1038/ncomms14306

123. Sangwan N, Xia F, Gilbert JA. Recovering complete and draft population

genomes from metagenome datasets. Microbiome [Internet]. 2016 [cited 2017 Apr

28];4:8. Available from: http://www.microbiomejournal.com/content/4/1/8

124. Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP,

Göker M, et al. 1,003 reference genomes of bacterial and archaeal isolates expand

coverage of the tree of life. Nat. Biotechnol. [Internet]. Nature Research; 2017 [cited

2017 Jul 20];35:676–83. Available from:

http://www.nature.com/doifinder/10.1038/nbt.3886

125. Li H, Homer N. A survey of sequence alignment algorithms for next-generation

sequencing. [cited 2020 Jul 1]; Available from: http://novocraft.com

126. Hatem A, Bozdağ D, Toland AE, Çatalyürek Ü V. Benchmarking short sequence

mapping tools. BMC Bioinformatics [Internet]. 2013 [cited 2017 Jul 5];14:184.

Available from: http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-

2105-14-184

127. Wu Thomas D, Nacu Serban. Fast and SNP-tolerant Detection of Complex

Variants and Splicing in Short Reads - PubMed. Bioinformatics [Internet]. 2010

[cited 2020 Jul 1];26:873–81. Available from:

https://pubmed.ncbi.nlm.nih.gov/20147302/

128. Novocraft [Internet]. [cited 2020 Jul 1]. Available from:

http://www.novocraft.com/

129. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, et

al. Personalized copy number and segmental duplication maps using next-generation

sequencing. Nat. Genet. [Internet]. Nat Genet; 2009 [cited 2020 Jul 1];41:1061–7.

Available from: https://pubmed.ncbi.nlm.nih.gov/19718026/

130. Hach F, Hormozdiari F, Alkan C, Hormozdiari F, Birol I, Eichler EE, et al.

mrsFAST: a cache-oblivious algorithm for short-read mapping. Nat. Methods

[Internet]. Nature Research; 2010 [cited 2017 Jun 30];7:576–7. Available from:

http://www.nature.com/doifinder/10.1038/nmeth0810-576

131. Misra S, Narayanan R, Lin S, Choudhary A. FANGS: High speed sequence

mapping for next generation sequencers. Proc. ACM Symp. Appl. Comput. [Internet].

2010 [cited 2020 Jul 1]. p. 1539–46. Available from:

https://www.scholars.northwestern.edu/en/publications/fangs-high-speed-sequence-

mapping-for-next-generation-sequencers

132. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling

variants using mapping quality scores. Genome Res. [Internet]. Cold Spring Harbor

Laboratory Press; 2008 [cited 2017 Jul 6];18:1851–8. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/18714091

133. Smith AD, Xuan Z, Zhang MQ. Using quality scores and longer reads improves

100

accuracy of Solexa read mapping. BMC Bioinformatics [Internet]. BMC

Bioinformatics; 2008 [cited 2020 Jul 1];9. Available from:

https://pubmed.ncbi.nlm.nih.gov/18307793/

134. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome Biol. [Internet].

2009 [cited 2014 Jul 9];10:R25. Available from:

http://genomebiology.com/2009/10/3/R25

135. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics [Internet]. 2009 [cited 2014 Jul 9];25:1754–60. Available

from:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2705234&tool=pmcentre

z&rendertype=abstract

136. Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, et al. SOAP2: an

improved ultrafast tool for short read alignment. Bioinformatics [Internet]. Digital

Equipment Corporation, CA; 2009 [cited 2017 Jul 6];25:1966–7. Available from:

https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btp336

137. Ruffalo M, LaFramboise T, Koyuturk M. Comparative analysis of algorithms for

next-generation sequencing read alignment. Bioinformatics [Internet]. Springer,

Berlin/Heidelberg; 2011 [cited 2017 Jul 6];27:2790–6. Available from:

https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btr477

138. Chouvarine P, Wiehlmann L, Moran Losada P, DeLuca DS, Tümmler B, Speed

T. Filtration and Normalization of Sequencing Read Data in Whole-Metagenome

Shotgun Samples. Dalby AR, editor. PLoS One [Internet]. Public Library of Science;

2016 [cited 2017 Jul 6];11:e0165015. Available from:

http://dx.plos.org/10.1371/journal.pone.0165015

139. Petersen TN, Lukjancenko O, Thomsen MCF, Maddalena Sperotto M, Lund O,

Møller Aarestrup F, et al. MGmapper: Reference based mapping and taxonomy

annotation of metagenomics sequence reads. An L, editor. PLoS One [Internet].

Public Library of Science; 2017 [cited 2017 Jul 6];12:e0176469. Available from:

http://dx.plos.org/10.1371/journal.pone.0176469

140. Sequence Alignment/Map Format Specification [Internet]. 2020. Available

from: https://github.com/samtools/hts-specs.

141. Li H, Barrett J. A statistical framework for SNP calling, mutation discovery,

association mapping and population genetical parameter estimation from sequencing

data. 2011 [cited 2020 Jul 3];27:2987–93. Available from:

http://samtools.sourceforge.net

142. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.

The genome analysis toolkit: A MapReduce framework for analyzing next-generation

DNA sequencing data. Genome Res. [Internet]. Cold Spring Harbor Laboratory

Press; 2010 [cited 2020 Jul 3];20:1297–303. Available from:

http://www.genome.org/cgi/doi/10.1101/gr.107524.110.

143. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon:

An Integrated Tool for Comprehensive Microbial Variant Detection and Genome

Assembly Improvement. Wang J, editor. PLoS One [Internet]. Public Library of

101

Science; 2014 [cited 2017 Mar 23];9:e112963. Available from:

http://dx.plos.org/10.1371/journal.pone.0112963

144. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome

assembly from long uncorrected reads. Genome Res. [Internet]. Cold Spring Harbor

Laboratory Press; 2017 [cited 2020 Jul 3];27:737–46. Available from:

/pmc/articles/PMC5411768/?report=abstract

145. Zimin A V, Salzberg SL. The genome polishing tool POLCA makes fast and

accurate corrections in genome assemblies. [cited 2020 Jul 3]; Available from:

https://doi.org/10.1101/2019.12.17.864991

146. Warren RL, Coombe L, Mohamadi H, Zhang J, Jaquish B, Isabel N, et al. ntEdit:

scalable genome sequence polishing. [cited 2020 Jul 3]; Available from:

https://academic.oup.com/bioinformatics/article-abstract/35/21/4430/5490204

147. Zimin A V, Març Ais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. Genome

analysis The MaSuRCA genome assembler. 2013 [cited 2020 Jul 3];29:2669–77.

Available from: https://academic.oup.com/bioinformatics/article-

abstract/29/21/2669/195975

148. Solomon B, Kingsford C. Large-Scale Search of Transcriptomic Read Sets with

Sequence Bloom Trees. doi.org [Internet]. Cold Spring Harbor Laboratory; 2015

[cited 2017 Sep 25];017087. Available from:

https://www.biorxiv.org/content/early/2015/03/26/017087

149. bcgsc/ntHits: Identifying repeats in high-throughput sequencing data [Internet].

[cited 2020 Jul 4]. Available from: https://github.com/bcgsc/nthits

150. Feige U. A threshold of ln n for approximating set cover. J. ACM [Internet].

ACM; 1998 [cited 2015 May 7];45:634–52. Available from:

http://dl.acm.org/citation.cfm?id=285055.285059

151. Liu B. Title of dissertation: COMPUTATIONAL METAGENOMICS:

NETWORK, CLASSIFICATION AND ASSEMBLY [Internet]. 2012. Available

from: http://drum.lib.umd.edu/handle/1903/13278

152. Beller T, Ohlebusch E. A representation of a compressed de Bruijn graph for

pan-genome analysis that enables search. Algorithms Mol. Biol. [Internet]. 2016

[cited 2017 Jul 9];11:20. Available from:

http://almob.biomedcentral.com/articles/10.1186/s13015-016-0083-7

153. Baier U, Beller T, Ohlebusch E. Graphical pan-genome analysis with

compressed suffix trees and the Burrows–Wheeler transform. Bioinformatics

[Internet]. Oldenbusch Verlag, Bremen, Germany,; 2016 [cited 2017 Jul 9];32:497–

504. Available from: https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btv603

154. Marcus S, Lee H, Schatz MC. SplitMEM: a graphical algorithm for pan-genome

analysis with suffix skips. Bioinformatics [Internet]. 2014 [cited 2017 Jul 9];30:3476–

83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25398610

155. Holley G, Wittler R, Stoye J. Bloom Filter Trie: an alignment-free and

reference-free data structure for pan-genome storage. Algorithms Mol. Biol.

[Internet]. 2016 [cited 2017 Jul 9];11:3. Available from:

http://almob.biomedcentral.com/articles/10.1186/s13015-016-0066-8

156. Almodaresi F, Sarkar H, Srivastava A, Patro R. A space and time-efficient index

for the compacted colored de Bruijn graph. [cited 2020 Jul 5]; Available from:

102

https://academic.oup.com/bioinformatics/article-abstract/34/13/i169/5045749

157. Anari SS, Ridder D de, Schranz ME, Smit S. Pangenomic read mapping.

bioRxiv [Internet]. Cold Spring Harbor Laboratory; 2019 [cited 2020 Jul 5];813634.

Available from: https://doi.org/10.1101/813634

158. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool

for genome assemblies. Bioinformatics [Internet]. 2013 [cited 2017 Mar

28];29:1072–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23422339

159. HMP2 assembly details [Internet]. Available from:

http://gembox.cbcb.umd.edu/metacompass

160. Li K, Bihan M, Yooseph S, Methé BA, Ludwig W. Analyses of the Microbial

Diversity across the Human Microbiome. Xu P, editor. PLoS One [Internet]. Public

Library of Science; 2012 [cited 2017 Mar 23];7:e32118. Available from:

http://dx.plos.org/10.1371/journal.pone.0032118

161. Li H. Minimap2: pairwise alignment for nucleotide sequences. [cited 2020 Jul

5]; Available from: https://github.com/ruanjue/smartdenovo;

162. Puigbò P, Makarova KS, Kristensen DM, Wolf YI, Koonin E V. Reconstruction

of the evolution of microbial defense systems. BMC Evol. Biol. [Internet]. 2017

[cited 2017 May 6];17:94. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/28376755

163. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science

(80-.). [Internet]. 2014 [cited 2017 May 6];346:954–9. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/25414304

164. Ambur OH, Davidsen T, Frye SA, Balasingham S V, Lagesen K, Rognes T, et

al. Genome dynamics in major bacterial pathogens. FEMS Microbiol. Rev. [Internet].

2009 [cited 2017 May 6];33:453–70. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/19396949

	Preface
	Chapter 1:
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1: Introduction
	1.1 DNA basics
	1.2 DNA sequencing
	1.3 Genome assembly
	1.3.1 De novo assembly
	1.3.1.1 Greedy assembly
	1.3.1.2 Overlap-layout consensus (OLC)
	1.3.1.3 De Bruijn Graph (DBG)

	1.3.2 Reference-guided assembly

	1.4 Metagenomics

	Chapter 2: Related work
	2.1 Discovering microbes present in a metagenomic sample
	2.1.1 Taxonomic classification of metagenomes
	2.1.2 Current methods for taxonomic classification of metagenomes
	2.1.2.1 Whole genome alignment-based methods
	2.1.2.2 Marker gene alignment-based methods
	2.1.2.3 K-mer-based methods

	2.1.3 Metrics to evaluate taxonomy classification of metagenomes

	2.2 Metagenomic assembly
	2.2.1 Current methods for metagenomic assembly
	2.2.2 Metagenome assembly validation
	2.2.2.1 Contiguity-based metrics
	2.2.2.2 Completeness-based metrics
	2.2.2.3 Reference-based metrics
	2.2.2.4 Consistency-based metrics
	2.2.2.5 Current Methods for Metagenome assembly validation

	2.3 Conclusion

	Chapter 3: Selecting references genome for metagenomic reference-guided assembly
	3.1 Introduction
	3.2 Methods
	3.2.1 Marker gene alignment
	3.2.2 Complete genome k-mer matching
	3.2.3 Database construction
	3.2.4 Implementation details
	3.2.4.1 Marker gene alignment stage
	3.2.4.2 Whole genome comparison stage.

	3.3 Results
	3.3.1 Evaluation of performance on Salmonella enterica simulated genome
	3.3.2 Evaluation of performance on synthetic metagenomic dataset
	3.3.3 Evaluation of computational performance on simulated and synthetic metagenomic datasets
	3.3.4 Evaluation of performance on CAMI medium dataset

	3.4 Conclusion and discussion

	Chapter 4: Reference-guided metagenomic assembly
	4.1 Introduction
	4.2 Related work
	4.2.1 Read mapping
	4.2.2 Consensus calling
	4.2.3 Assembly polishing

	4.3 Methods
	4.3.1 Read mapping
	4.3.2 Selecting a minimal reference set for consensus calling
	4.3.2.1 Minimum set cover problem.

	4.3.3 Building contigs (consensus calling)

	4.4 Results
	4.5 Conclusion and future directions

	Chapter 5: Hybrid reference-guided and de novo assembly of metagenomes
	5.1 Introduction
	5.2 Method
	5.2.1 Datasets used to evaluate metagenomic assemblies
	5.2.1.1 Synthetic dataset
	5.2.1.2 HMP2 dataset

	5.2.2 Parameters used for metagenome assembly and metagenome assembly validation
	5.2.2.1 Metagenomic assembly parameters
	We compared MetaCompass with the de novo assemblers IDBA-UD (July 2016) [88], MEGAHIT (v1.0.6) [90], and MetaSPAdes (v3.9.0) [9]. IDBA-UD requires a single fasta file that was generated using the IDBA ‘fq2fa --merge --filter’ command. MEGAHIT was run ...
	5.2.2.2 Metagenomic assembly validation parameters

	5.3 Results
	5.3.1 Evaluation of performance on synthetic metagenomic dataset
	5.3.1.1 References removed from database
	5.3.1.2 Evaluation of performance on down sampled synthetic metagenomic dataset
	5.3.1.3 Computational performance

	5.3.2 Evaluation of performance on Human Microbiome Project (HMP2)
	5.3.2.1 Reassembly of the data generated by the Human Microbiome Project (HMP2)
	5.3.2.2 Comparing reference-guided to de novo assembly on low-coverage HMP2 samples
	5.3.2.3 Comparing reference-guided to de novo assembly on high coverage HMP2 samples

	5.4 Conclusion and discussion

	Chapter 6: Conclusion
	Appendices
	Bibliography

