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Snow, a key component of terrestrial water storage (TWS) in many water-

sheds across the globe, is a significant contributor to the Earth’s hydrologic cycle,

energy cycle, and climate system. This study explores multi-sensor, multi-variate

data assimilation (DA) using synthetic Advanced Microwave Scanning Radiometer

for EOS (AMSR-E) passive microwave (PMW) brightness temperature spectral dif-

ferences (∆Tb) and synthetic Gravity Recovery and Climate Experiment (GRACE)

TWS retrievals in order to improve estimates of snow water equivalent (SWE), sub-

surface water storage, and TWS over snow-covered terrain. A series of synthetic

twin experiments are conducted using NASA Catchment land surface model as the

prognostic model. AMSR-E ∆Tb DA using a support vector machine as the obser-

vation operator improves SWE estimates, but adds little value to subsurface storage

estimates. A physically-informed GRACE TWS DA approach significantly enhances

the TWS vertical resolution via discretization into SWE and subsurface components



more accurately. When AMSR-E ∆Tb and GRACE TWS are assimilated simulta-

neously, dual assimilation significantly improves the SWE estimates with a 14.1%

reduction of RMSE (relative to the Open Loop without assimilation) and leads to

the largest improvement in TWS estimates (RMSE = 66.4 mm) and most reliable

subsurface water storage ensemble spread (spread-error ratio = 1.08) as compared

to the single-sensor DA scenarios. However, dual DA does not always yield com-

plementary updates, and can at times, lead to conflictory changes to SWE. That

is, the assimilation of ∆Tb often generates positive SWE increments whereas assim-

ilation of TWS often removes SWE in the dual DA system, which can ultimately

degrade the posterior SWE estimates. This synthetic experiment provides valu-

able insight for future DA experiments merging real-world AMRS-E/AMSR-2 ∆Tb

and GRACE/GRACE-FO TWS retrievals in order to better characterize terrestrial

freshwater storage across regional and continental scales.
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Chapter 1: Introduction and Motivation

1.1 Hydrologic Cycle and Terrestrial Water Storage

The global hydrologic cycle describes the amount of movement within the

Earth system, including the oceans, atmosphere, cryosphere, hydrosphere, and bio-

sphere (see Figure 1.1). The hydrologic cycle starts with water evaporation from the

ocean surface. As the water vapor rises, it expands, cools, and condenses to form

clouds. If the cloud droplet can collide and coalesce, the water can return to the

surface as precipitation. Once the water reaches the ground, it may evaporate or

transpire into the atmosphere or infiltrate into ground as soil moisture or groundwa-

ter. Groundwater can be transpired into the atmosphere a second time or exfiltrate

into the oceans, rivers, and streams. The runoff can carry the water from the land

surface into the oceans where the cycle begins again.

Terrestrial water storage (TWS), as a key component of the terrestrial and

global hydrological cycles, refers to all water stored on the land surface such as the

groundwater, ice and snow, lakes and wetlands [1]. It can be defined as the residual of

precipitation minus the amount of water that either evapotranspired from land sur-

faces or discharges as surface runoff [2]. TWS plays a major role in Earth’s climate

system by exerting a first-order control over the water, energy and biogeochemical

1



Figure 1.1: Schematic overview of the global nature water cycle. Source:
https://www.usgs.gov/media/images/water-cycle-natural-water-cycle

fluxes [3]. As an integrated measure of terrestrial water, TWS has significant im-

plications for water resources management. Since 2002, the Gravity Recovery and

Climate Experiment (GRACE) satellites have provided the first global, time-varying

estimate of changes in total, column-integrated TWS [4, 5]. However, the applica-

tion of GRACE TWS retrievals to hydrologic applications is limited by its coarse

temporal (∼ monthly) and spatial resolutions (≥150,000 km2) [6, 7]. In addition,

the time latency (∼1 to 2 month) of GRACE TWS retrievals also greatly limits its

real-time applicability [8].
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1.2 Importance and Challenge of Snow Characterization

Snow, as a key component of terrestrial water storage (TWS) in many basins

globally, is a significant contributor to the Earth’s hydrologic cycle [9], energy cycle

[10], and climate system [11, 12]. Seasonal snow has high spatial and temporal

variability and covers between 7% to 40% of the northern hemisphere land surface

annually [13]. Further, snow accounts for a large fraction of the available freshwater

resources of the northern hemisphere [12]. Due to global warming and an unsteady

large-scale atmospheric movement, the snow cover extent in the northern hemisphere

has reduced significantly over time during the spring season [14]. In other words,

our virtual reservoir of freshwater in the form of snow is disappearing much earlier

in the year. Meanwhile, an earlier onset of spring melt results in an earlier ablation

season that causes more rapid peak stream flow in mountainous regions, which can

increase the occurrence of natural hazards like floods that often adversely impact

human life. Therefore, it is important to identify and quantify the snow mass in the

natural environment to better understand the hydrologic responses associated with

snow as well as to enhance our characterization of TWS.

It remains challenging to obtain high quality snow estimates across time and

space. It is difficult to measure snow in conventional acquisition approaches such

as point-scale, ground-based techniques due to the spatial and temporal variability

inherent to snow processes. In addition, snow measurement collection can be dan-

gerous given the cold weather conditions, limited access, and the everpresent danger

of avalanches. As an alternative, snow can be estimated across regional and con-

3



tinental scales with land surface models. However, model-derived SWE estimates

contain significant uncertainty due to the model limitations such as initial condition

errors, model structure errors, model forcing errors, and model parameterization

errors [15–18].

Remotely-sensed measurements from space-borne instrumentations are an-

other way to characterize terrestrial snow mass or snow water equivalent (SWE).

Previous studies have shown the potential of GRACE TWS retrievals for snow

mass estimation when coupled with a land surface model [8, 19–22]. In addition,

remotely-sensed measurements, primarily in the form of passive microwave (PMW)

brightness temperature (Tb) measurements (e.g., Advanced Microwave Scanning Ra-

diometer for EOS; AMSR-E) observations) [23–25], contain snow information across

regional and continental scales. However, PMW Tb-based SWE retrievals typically

contain numerous uncertainties and biases due to a variety of factors. For exam-

ple, PMW radiation emitted from the underlying snowpack will be attenuated by

the overlying vegetation can attenuate. At the same time, overlying vegetation will

add on its own contribution to the signal as measured by the radiometer [24]. In

addition, the signal saturation typically occurs when SWE is greater than 100 to

200 mm such that the correlation between SWE and Tb (at relative high frequency)

can reverse [26–30]. Further, the presence of liquid water within the snowpack al-

ters the electromagnetic response from a dry microwave scatter to a wet microwave

emitter [31,32].
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1.3 Snow Assimilation

Fortunately, snow information from both observations and model predictions

can be optimally combined through data assimilation (DA) to generate high-quality

estimates that are better than the observations or the model alone [17, 33–35]. In

addition, DA has the ability to implicitly downscale the integrated, monthly GRACE

TWS retrievals to a finer resolution when merged with a land surface model.

A variety of snow-related observations and snow retrieval products can be

assimilated into a land surface model. Previous studies have demonstrated that

assimilation of point-scale, in-situ SWE measurements into a snow model can im-

prove SWE estimation [36–40]. Further, satellite-based snow retrieval products

derived from a radiative transfer model or a statistical regression models can also

be assimilated into a land surface model [16, 41–46]. In addition to satellite-based

snow retrievals, PMW Tb or spectral difference (∆Tb) observations can be directly

assimilated (a.k.a. radiance assimilation) using a physically-based microwave radia-

tive transfer mode (RTM) [46–51] or machine learning in the form of support vector

machine (SVM) regression [52–60]. In addition, previous studies have proven that as-

similating GRACE TWS anomalies can improve modeled SWE estimates [8,22]. But

the application of GRACE TWS retrievals is limited by the temporal (∼monthly)

and spatial resolutions (≥150,000 km2).

Despite the improvements in snow estimation using a single-sensor assimilation

approach as highlighted above, it remains a challenge to discriminate only the snow

mass-related portion of the PMW Tb or ∆Tb signal given the fact that snow mass

5



estimation using PMW radiometry is fundamentally an ill-posed, underdetermined

system [61]. Numerous combinations of snow characteristics can yield the same Tb

or ∆Tb observations [61]. In addition, it is known that assimilating one model state

may destabilize other model processes [62]. Kumar et al. [8] performed GRACE

TWS assimilation across North America and the results suggested GRACE single-

sensor assimilation may degrade model estimation in some locations such as the

eastern United States.

As stated by Pan et al. [63] and Rodell et al. [64], constraining a model with a

broad range of complementary observations is able to provide a more comprehensive

understanding of the hydrological cycle. In the context of snow assimilation, Su et al.

[21] first performed a one-dimensional (1-D) multi-sensor assimilation that merged

MODIS snow cover fraction along GRACE TWS information over North America.

The study suggested that a multi-sensor approach can significantly improve snow

estimation compare to a MODIS-only assimilation approach.

1.4 Goals and Objectives

The limitations and breakthroughs mentioned above motivate this study to

further investigate a more comprehensive way to estimate snow using a multi-variate

analysis that includes multiple sources of observational information, namely, AMSR-

E PMW Tb observations and GRACE TWS retrievals. This goal was achieved by

establishing the following objectives:

1). Improve snow estimation using SVM-based PMW ∆Tb assimilation by in-
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corporating a physically-informed assimilation approach along with a “data-thinning”

approach

2). Improve snow estimation using GRACE TWS assimilation by including a

physically-informed approach

3). Improve snow estimation via multi-sensor, multi-variate assimilation of

AMSR-E ∆Tb observations and GRACE TWS retrievals

1.5 Organization of the Thesis

In Chapter 2, the background of the dissertation research and prior research

accomplishments are discussed. In Chapter 3, a synthetic identical twin experiment

is established over the Volga River basin, which contains a significant amount of

snow but where ground-based snow measurements are lacking. In Chapter 4, SVM-

based PMW ∆Tb assimilation using a physically-informed approach and a “data-

thinning” approach is conducted and then evaluated against the synthetic truth

established in Chapter 3. In Chapter 5, multi-sensor, multi-variate assimilation of

AMSR-E ∆Tb and GRACE TWS observations is performed and compared against

the single-sensor, single-variate assimilation (i.e., AMSR-E-only or GRACE-only

assimilation). Chapter 6 summarizes the major findings and future directions for

continued research.
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Chapter 2: Background and Literature Review

2.1 Components of Terrestrial Water Storage

Terrestrial water storage (TWS) can be defined as the summation of all water

components on the land surface and in the subsurface, including biomass intercep-

tion, snow and ice, soil moisture, groundwater, and surface water impoundments

(Figure 1.1) [65]. TWS, as a dynamic part of the hydrological cycle, plays an im-

portant role in Earth’s climate system by acting as a first-order control on water,

energy, and biogeochemical fluxes [1, 3]. It is critical to monitor the TWS in or-

der to characterize changes in water availability and hydrologic extremes, especially

in a changing climate [66]. In addition, the accurate estimation of TWS variation

can improve our understanding of regional and global water cycles as well as their

interactions within the Earth system [3].

The variability of TWS tends to be dominated by snow and ice in polar and

alpine regions, by subsurface water (i.e, soil moisture and groundwater) in mid-

latitudes, and by surface water in wet and tropical regions (e.g, Amazon) [4]. Wet

biomass (i.e., water stored in vegetation) is often considered negligible in TWS

budget analyses because of the small weight compared to other TWS components

[67].
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Surface water impoundments, including rivers, wetlands, inland water bod-

ies, and floodplains, exist at the land-atmosphere interface. In most regions of the

tropics, the water from the land surface helps supply agricultural and energy produc-

tion [65]. The contribution of changes in surface water storage to TWS variability

are highly dependent on location. For example, surface water storage change con-

tributes the most in the tropic regions where major rivers flow over arid regions and

at high latitudes [68].

Subsurface water storage, including soil moisture and groundwater, is another

major component of TWS. Soil moisture refers to the water stored in the unsatu-

rated zone. It plays an important role in partitioning rainfall into surface runoff,

infiltration, and evapotranspiration [3]. In addition, soil moisture has a great im-

pact on the occurrences of flood and drought [69, 70]. Soil moisture helps dictate

the turbulent fluxes, and hence, it influences global and regional hydrometeorolog-

ical processes [71, 72]. The high variability of soil moisture is generally the most

important component of seasonal changes in TWS in the mid-latitudes areas [65].

Groundwater, on the other hand, provides domestic water for agriculture and en-

ergy production [73, 74]. Groundwater responds mores slowly to meteorological

conditions compared to soil moisture, and hence, contributes less to seasonal TWS

variations but is a significant components to TWS variations at inter-annual to

decadal timescales [4, 75,76].

Snow, as a key component of TWS, is mainly distributed in mountainous re-

gions in the mid-latitude and high latitude regions [4]. It has a significant impact on

the Earth’s hydrologic cycle [9], energy cycle [10], and climate system [11, 12]. The
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high variability of snow in space and time induces significant variations in TWS.

Due to snow accumulation and ablation, the surface albedo can change and can fur-

ther affect the surface energy balance [77]. In addition, freshwater from snow (and

ice resulting from snow) provides the freshwater supply for more than one billion

people globally [78]. However, high quality global snow estimates across time and

space are lacking due to the complexity of the terrain when snow if often located and

limitations in conventional acquisition approaches such as point-scale, ground-based

techniques. For this reason, snow or snow water equivalent (SWE) estimation rely

heavily on remote sensing techniques such as microwave or gravimetric measure-

ments [79].

2.2 Catchment Land Surface Model

The NASA Catchment Land Surface Model (Catchment) [80], the land model

component of the Goddard Earth Observing System (GEOS-5) modeling and data

assimilation framework, is used in this study. Catchment (Figure 2.1) includes

an explicit representation of the spatial variation of the soil moisture, water table

depth, surface runoff, and evaporation [80]. The hydrological processes for each grid

are based on its hydraulic parameters, topographical statistics, and soil texture.

Catchment is able to represent shallow groundwater storage changes that is suitable

for GRACE TWS data assimilation [22,81–85].

Snow conditions on the land surface are represented with a three-layer snow

model in Catchment, including snowpack consolidation and snow metamorphosis
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Figure 2.1: Conceptual representation of TWS and its components in the
NASA GEOS-5 Catchment Land Surface Model. Number 1 represents
the soil moisture deficit, 2 is root-zone layer excess, 3 is surface soil
moisture excess, 4-6 represent three-layer snow model, and 7 is canopy
interception.
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processes [86]. Subsurface water storage is defined as the sum of soil moisture and

shallow water storage, which can be calculated by three prognostic variables (i.e.,

surface excess, root zone excess, and catchment deficit) in Catchment. Catchment

deficit is the amount of water that is required to saturate the subsurface, which is

related to the unconfined groundwater table depth [87]. Root zone excess and surface

excess are the excess or deficit soil moisture relative to equilibrium conditions for

the top 100 cm and 5 cm of soils, respectively [87]. Although total groundwater

is not explicitly modeled, the vertical distribution of soil moisture has an implicit

water table that is located at the depth of the equilibrium saturation. This model

feature indicates the model ability to represent time-varying water storage. The

Catchment modeled TWS can be calculated as:

TWS =
cdcr2

1− wpwet
− catdef + rzex+ srfexc+ capac+ SWE (2.1)

where cdcr2 is the total water equivalent within the pore space of the subsurface;

wpwet is the wilting point wetness; catdef is the catchment deficit; rzex is the

root-zone layer excess; srfexc is the surface layer excess; and capac is the canopy

interception [22].

One major hydraulic limitation in Catchment is the lack of dynamic surface

water impoundments (e.g., reservoirs) and dynamic river routing routines. This

deficiency may result in a non-negligible amount in the modeled TWS in regions

where surface water storage changes are a significant component of TWS [88].
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2.3 Remote Sensing of Terrestrial Water Storage

2.3.1 Overview of GRACE Mission

The Gravity Recovery and Climate Experiment (GRACE) mission is a joint

operation between the National Aeronautics and Space Administration (NASA)

and the German Aerospace Center. GRACE was launched on March 17, 2002 and

monitored the time-variable gravity field of the Earth until 2017 [5]. GRACE Follow-

On (GRACE-FO) was launched in 2018 that is a continuation of GRACE’s legacy

of tracking Earth’s water movement across the planet. The Earth’s gravity field

observations from GRACE can be used to infer global and regional TWS changes and

provides a unique view of Earth’s climate and hydrologic cycle. GRACE consisted

of two almost-identical satellites in tandem formation operating about 200 km apart

in one orbital plane with an altitude of 450∼500 km [89].

Figure 2.2 illustrates the basic principle of the gravity measurements by GRACE

satellites. As the leading satellite approaches a positive mass or gravity anomaly

(e.g., snow-covered mountains), the satellite is pulled toward the mass anomaly,

resulting in a larger separation distance between the two satellites. As the trail-

ing satellite approaches the same snow-covered mountain, it is also pulled toward

the anomalous mass while the leading satellite is held back by the positive mass

anomaly, which results in a decrease in distance between these two satellites. A

highly accurate inter-satellite K-Band microwave ranging system was used to mea-

sure the distance between the two satellite with a precision better than 1 µm [5].
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The precise positions of the twin satellites of GRACE were measured with global

positioning system (GPS) and star cameras. By this principle, GRACE was able to

detect the mass changes associated with atmospheric circulation, ocean circulation,

and redistribution of TWS via the hydrological cycle [65].

2.3.2 Terrestrial Water Storage Retrievals

GRACE TWS retrievals have improved the understanding of hydrologic states

and fluxes [90], such as the drought characterization [83,91,92], identification of flood

potential [93–95], estimation of streamflow [96], estimation of evapotranspiration

from major river basins [97], quantification of snow variations [19–22, 98], quan-

tification of groundwater changes in major aquifer systems [75, 99, 100], estimation

of soil moisture [84, 101, 102], tracking of glacier ice mass loss over Greenland and

Alaska [103,104], and hence improved the global water budget estimates [88,101].

The monthly variations (i.e., anomalies) of TWS are provided by the anal-

ysis of the range-rate observations between the twin satellites. In general, there

are two methods to produce the monthly TWS anomalies, including the spherical

harmonics [105] and the mass concentration (a.k.a., mascon) techniques [6]. TWS,

as a part of the gravity field, is often represented using spherical harmonics that

is based on the expansion of a set of coefficients (degree and order ≤ 120). Spher-

ical harmonic expansion is used to describe the shape of the geoid with a surface

of constant gravitational potential matching the mean sea surface level. Numeri-

cal devices such as Gaussian averaging functions can be used with the expansion
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Figure 2.2: Simplified example of how the GRACE satellites detected
changes in the gravity field. The distance between the two satellites is
constant when there is no mass change (panel 1). As the leading satel-
lite approaches the snow-covered mountain, which represents a positive
mass anomaly, the satellite is pulled toward the mountain due to the
gravitational force exerted by the mass change (panel 2). Thus, the
distance between the two satellites increases. As the second satellite
encounters the positive mass anomaly, it is also pulled toward the mass
while the lead satellite is held back by the mass, and hence, the distance
between them decreases (panel 3). As the satellites move away from
the mass anomaly, they return to their original positions of separation
(panel 4). Source: https://gracefo.jpl.nasa.gov/resources/50/how-grace-
fo-measures-gravity/.
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coefficients to isolate mass anomalies from the baseline temporal mean [106]. How-

ever, GRACE TWS retrievals derived from spherical harmonic solutions suffer from

north-south “stripes” that must be removed with “de-striping” or smoothing algo-

rithms due to the presence of correlated errors between different spherical harmonic

coefficients [105]. During the smoothing or “de-striping” processes, a portion of

the real, geophysical signal is also removed. In addition, the effectiveness of “de-

striping” is strongly affected by the orientation, shape, and size of the signals, and

further results in estimation errors that are inversely correlated to the size of the

region. In general, the estimation error for continental-scale watershed is 1-2 cm

equivalent height of water. For small regions (area ≤ 150,000 km2), the estimation

errors are so large that they overwhelm the hydrology signal [4, 105].

Unlike spherical harmonics, the mass concentration (mascons) method uses

the inter-satellite ranging observations directly to estimate the gravity solutions

[6]. Each mason has a specific known geophysical location that can serve as a

priori constraints. During the inversion process, the correlated estimation errors

in the gravity solution can be removed internally, which can eliminate the need for

smoothing or de-striping [65]. In addition, the constrained mascons solutions have

a better ability to separate the terrestrial signals from the ocean signals [107].

GRACE-based TWS retrievals suffer from a coarse spatial (≥ 150,000 km2 at

midlatitudes) [6, 7] and coarse temporal (∼ monthly) resolution. In addition, the

hydrologic application of GRACE-based TWS retrievals is limited due to the verti-

cal integration of the water storage components. To address these challenges, data

assimilation methods can be utilized [81]. Selection of an appropriate observation
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operator helps partition the vertically integrated TWS into its constituent compo-

nents and while effectively downscaling TWS information into finer temporal and

spatial resolutions [84,99].

2.4 Remote Sensing of Snow

Remote sensing of snow can be performed using the electromagnetic spectra

across a range of wavelengths. Snow cover products have been derived from Mod-

erate Resolution Imaging Spectroradiometer (MODIS) with the infrared and visible

bands (0.4-14 µm) [108]. Active remote sensing in the microwave portion of the

spectrum based on backscattering effects have been used to study snow cover [109].

Alternatively, NASA Airborne Snow Observatory using a scanning LIDAR and an

imaging spectrometer is regularly used to investigate the distribution of snow [110].

Finally, space-borne microwave radiometers are particularly effective for detecting

snow and have been utilized in the production of a generation of snow retrieval

products [109,111]. This dissertation, in particular, will focus on the passive remote

sensing of snow.

2.4.1 Passive Microwave Remote Sensing of Snow

Passive microwave (PMW) radiation is defined as microwave radiation nat-

urally emitted by an object. Compared to optical (visible) radiation, microwave

radiation can penetrate through media, and hence, is able to penetrate clouds and

be detected by space-borne microwave radiometers. Therefore, PMW sensing of
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snow can be detected during both day and night under all-weather conditions [112].

In order to quantify emitted microwave radiation associated with snow, bright-

ness temperature (Tb) is often used, which is defined as the equivalent temperature

of the microwave radiation thermally emitted by an object [113]. As a fundamental

parameter measured by passive microwave radiometers, Tb is calculated based on

the Raleigh-Jean approximation:

Tb = ε× Tphysical (2.2)

where ε is a dimensionless quantity of emissivity (0 ≤ ε ≤ 1) and Tphysical is the phys-

ical temperature [K] of the emitting surface. Emissivity is wavelength dependent

and is largely affected by the dielectric constant of the material.

PMW remote sensing of snow is dependent on preferential scattering of mi-

crowave radiation by the snow pack at a relatively low frequency (10.7 GHz or 18.7

GHz) compared to a relatively high frequency (18.7 GHz or 36.5 GHz) (Figure 2.4).

This preferential scattering at lower (or higher) frequency increases (or decreases) the

emissivity and hence increases (or decreases) the corresponding measured brightness

temperature [114]. The difference between Tb’s, also known as spectral differences,

at lower (10.7 GHz or 18.7 GHz) and higher (18.7 GHz or 36.5 GHz) frequencies is

often used in SWE retrievals [111]. The spectral differences, ∆Tb, can be expressed

as:

∆Tb18V−36V = Tb18V − Tb36V (2.3)

where Tb18 represents Tb at 18.7 GHz; Tb36 represents Tb at 36.5 GHz; and the

subscript V represents vertical polarization with a similar equation for horizontal
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(H) polarization.

PMW measured brightness temperature is affected by several snow charac-

teristics. For example, a deeper, dry snow pack depth can induce more scattering

and less emission of the upward radiation that ultimately results in a lower Tb (Fig-

ure 2.4). This effect is more prominent on Tb measured at a relatively high frequency

(Figure 2.3) [114]. Snow grain size is generally inversely correlated with measured Tb

as the larger mean snow grain size is associated with lower measured Tb for a given

amount of SWE (Figure 2.4) [115,116]. The presence of ice layers inside and on the

surface of a snow pack generally leads to overestimation of snow depth and SWE

since the ice layers can introduce greater scattering and a lower measured Tb [30].

Similar to an ice layer, the increase in the thickness of depth hoar layer (cup-like

large loose snow grains) induces more microwave scattering and less emission, which

will ultimately results in lower measured Tb [117]. Liquid water within the snow pack

can further complicate the snow estimation. The presence of liquid water within

the snowpack alters the electromagnetic response from a dry microwave scatter to

a wet microwave emitter due to a larger dielectric constant [31, 32]. In general, Tb

has a positive correlation with snow wetness within the snowpack until a saturation

threshold (a.k.a. signal saturation) is reached [118]. In addition, It is hard to distin-

guish wet snow from snow free soil because wet snow behaves like a blackbody [119]

which is a perfect emitter for all incident radiation at the physical temperature of

the snow layer [120]. Vegetation over snow can attenuate the upwards transport

of radiation emitted from the underlying snowpack, and at the same time, it will

emit radiation upward microwave radiation as measured by the radiometer (Fig-
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Figure 2.3: Preferential scattering of microwave radiation with frequency
37 GHz compared to microwave radiation with frequency 19 GHz by the
snow pack. The orange arrows represent the direction of the wave and
the width of the arrow indicates the strength of measured radiation.
Source: http://meted.ucar.edu/

ure 2.4) [24]. Clouds and aerosols in the atmosphere are similar to the vegetation in

that not only attenuate the microwave radiation emitted by the snowpack but also

make its own contribution to the signal [121]. Luckily, the microwave bands (i.e.,

10.7 GHz, 18.7 GHz, and 36.5 GHz) utilized for remote sensing of snow are in an

atmospheric window that are not significantly affected by the atmosphere [122].

Figure 2.5 shows a comparison of in-situ measurements of snow depth from

the SNOwpack TELemetry (SNOTEL) network against the AMSR-E PMW spectral

difference (∆Tb18V−36V , see notations in Equation 4.1). Although PMW ∆Tb18V−36V

captures the snow accumulation and ablation phase, significant high-frequency noise
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Figure 2.4: Electromagnetic wave emitted by each object (ground, shal-
low snowpack, deep snowpack, and vegetation) on the surface. The
orange arrows represent the direction of the wave and the width of the
arrow indicates the strength of measured radiation (reproduced from
University Corporation for Atmospheric Research, the COMET R© Pro-
gram).
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still exists and must be carefully considered.
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Figure 2.5: Example comparison between AMSR-E ∆Tb18V−36V observations and SNOTEL snow depth measurements
for a location in Western Colorado (40.31◦N, 105.65◦W) from 1 September 2005 to 1 September 2006. ∆Tb (black
line) captures the general features of snow depth (black dots), but contains more signals (e.g., snow temperature)
not related to snow mass as well as the presence of high-frequency noise.
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2.4.2 Snow Products

One way to estimate snow-related properties from PMW radiation is to invert

snow depth (SD) or SWE from PMW Tb or ∆Tb using regression coefficients. Chang

et al. [114] first presented the relationship between snow depth and ∆Tb for a dry,

uniform snowpack with a constant snow density as:

∆SD = 1.59× (Tb18H − Tb37H) (2.4)

where SD represents the snow depth [cm] and Tb18H [K] and Tb37H [K] represent Tb at

18 and 37 GHz at horizontal (H) polarization, respectively. Analogously, Goodison

et al. [123] derived the relationship between SWE and ∆Tb for dry snow as:

SWE = a+ b× (Tb37V − Tb19V ) (2.5)

where SWE represents the snow water equivalent [cm]; Tb19V [K] and Tb37V [K]

represent Tb at 18 and 37 GHz for vertical (V) polarization, respectively; a = −20.7

[m] and b = −2.74 [K−1] are fixed parameters.

Kelly et al. [124] later employed a radiative transfer model to estimate snow

depth by coupling the snow grain size and volumetric fraction. Given the fact that

forest cover has an important impact on the snow retrieval algorithm [125], Chang

et al. [126] considered forest fraction in the algorithm as:

SWE =
a× (Tb19V − Tb37V )

(1− FF )
(2.6)

where a is a calibrated coefficient [-] and FF (0 ≤ FF ≤ 0.75) is the forest fraction

[-]. Kelly et al. [111] calculated snow depth (SD) for both forested and non-forested
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regions as:

SD = FF×[p1× (Tb18V − Tb36V )

(1− b× FD)
](1−FF )×[p1(T10V−T36V )+p2(T10V−T18V )] (2.7)

where SD represents the snow depth [cm]; FF (0 ≤ FF ≤ 0.75) is the forest fraction

[-]; FD is the forest density; b is a regression coefficient; p1 and p2 are two dynamic

coefficients ranging from 1 to 2; and Tb10V [K], Tb18V [K], and Tb36V [K] represent Tb

at 10, 18 and 36 GHz at vertical (V) polarization, respectively.

However, there are some certain assumptions, such as constant snow density

and uniform snow grain size, have to be made first in order to use above empirical

equations. In addition, satellite-based PMW SWE retrievals are affected by signal

attenuation in deep snow [127], forest and atmospheric attenuation [24, 128, 129],

and the assumed (quasi-) linear relationship between the physical characteristics of

SWE and the electromagnetic response of the snowpack [126, 127]. Further, PMW

Tb-based SWE retrievals are also affected by an inaccurate model representation of

snow morphology [124], stratigraphy [24], ice crusts [130], depth hoar [23], snow

grain size [116], and sub-grid scale lake effects [30].

2.4.3 Advanced Microwave Scanning Radiometer – Earth Observing

System

During this dissertation, PMW radiation observations from the Advanced Mi-

crowave Scanning Radiometer for Earth Observing Systems (AMSR-E) are used for

the experiments. AMSR-E was aboard the AQUA polar-orbiting, sun-synchronous

satellite from May 4, 2002 to October 4, 2011. AMSR-E instruments are dual-
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polarized, conical scanning, passive microwave radiometers. They are placed in a

near-polar orbit (altitude = 705 km) which allows for up to twice daily sampling of

a given location [131]. There are twelve channels and six frequencies, including 6.9

GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz at both horizontal

and vertical polarizations. The spatial resolution of AMSR-E observations is dif-

ferent with different frequencies that higher frequency band is associated with finer

resolution. For example, the observations at 36.5 GHz have the spatial resolution of

14 × 8 km2 while those at 10.7 GHz and 18.7 GHz have coarser spatial resolution

of 51 × 29 km2 and 27 × 16 km2, respectively [131].

AMSR-E observations are suitable for snow retrievals, especially at the 10.65

GHz, 18.7 GHz and 36.5 GHz frequency bands whose wavelengths are large enough

to pass through the atmosphere and clouds with minimal attenuation [111, 115].

AMSR-E observations are also used for retrieving other geophysical fields such as soil

moisture, precipitation rate, water vapor, cloud water, sea surface winds, sea surface

temperature, and ice [132]. As a successor to AMSR-E, the Advanced Microwave

Scanning Radiometer 2 (AMSR2) is onboard the GCOM-W1 satellite that measures

weak microwave emission from the surface and the atmosphere of the Earth.

2.5 Data Assimilation

The goal of data assimilation (DA) is to merge complementary information

from disparate measurements of any type, including remote sensing observations,

into an estimate of one or more geophysical fields from a physically-based model [17].
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DA is able to interpolate and, at times, extrapolate remote sensing observations into

finer smaller scales in both time and space. An optimal DA system relies on the

relative weights of uncertainties that come from the model estimates and the remote

sensing observations [17]. In general, assimilated (a.k.a. updated) estimates will be

closer to the observations when accurate observations are available and when a

reasonable error correlation structure exists.

All DA methods share the same general theory of merging models with obser-

vations. However, there are differences between the different methods for a given

application. For example, DA systems used for atmospheric and oceanic applica-

tions are greatly concerned with the appropriate specification of initial conditions

because small errors in the initial conditions can result large differences in the up-

dated results. Alternatively, land surface assimilation is more about estimating

errors in boundary conditions (a.k.a. meteorological forcing) and model parameter-

izations [17].

The skill of a DA framework is largely dependent on the accurate specification

of the input error parameters, including the observation error and model background

error [133]. Observation errors include instrument errors and the errors of represen-

tativeness (such as the errors in the observation operator and the errors associated

with the observation interpolation (φ in Equation 2.9)) [17]. Model background

errors, including uncertainties in boundary conditions, model parameters, and defi-

ciencies in model physics, (a.k.a. model structure error) are usually represented by

stochastic perturbations of model prognostics and input forcings [133].
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2.5.1 Ensemble Kalman Filter

In this work, the ensemble Kalman filter (EnKF) is used to improve charac-

terization of TWS and its components across regional and continental scales. The

standard Kalman filter is the optimal sequential data assimilation method for linear

dynamics and measurement processes with Gaussian errors [134]. Given the fact

that land surface models are nonlinear, the fully optimal behavior of Kalman fil-

ter can not be achieved. Therefore, Evensen [135] developed an ensemble of model

trajectories from which the model error covariances are estimated at the time of

an update. This Monte-Carlo based approach to filtering problem is known as the

EnKF.

EnKF is a reduced-rank approximation that can reduce the number of degrees

of freedom to a more manageable level and is suitable for modestly nonlinear prob-

lems where a small ensemble of model replicates can capture the relevant parts of

the true error structure [17,136]. The EnKF is an attractive option for land surface

applications due to four reasons [136]. Firstly, it is relatively easy to implement even

with nonlinear land surface models and measurement equations. Secondly, the se-

quential structure of EnKF is convenient for assimilating measurements in real time.

Thirdly, the EnKF provides information on assessing the accuracy of its estimates.

Finally, a wide range of possible model errors can be considered in the process [136].

As shown in Figure 2.6, the EnKF alternates between two steps, an ensemble

forecast step and an update step. During the forecast step, an ensemble of model

state vectors, x, containing the relevant model prognostic variables (i.e., SWE and
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Figure 2.6: Schematic of the ensemble Kalman filter (EnKF) [137].

catdef) are propagated forward in time in the generic form as:

xi−t = f(xi+t−1, u
i
t, α, ω

i
t), i = 1, ..., N, (2.8)

where f(·) represents the nonlinear hydrologic model and u, α, and ω represent the

forcing fields, model parameters, and model errors, respectively; i represents a single

replicate drawn from an ensemble of size N ; and the superscripts − and + refer to

the a priori state vector and a posteriori state vector, respectively. The model error

accounts for the uncertainties related to errors in the background model formulation

(e.g., model parameters and model structural errors) or the surface meteorological

forcing [136]. In the forecast step, the model prognostic variables of interest (e.g.,

snow water equivalent and catchment deficit described in Section 2.2) are collected

into the state vector xt of dimension M at time t. The EnKF state estimates are
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computed based on the mean of the ensemble members.

The ensemble of replicates are generated by applying perturbations sampled

from randomly generated noise to the boundary condition and model prognostic

fields [133]. The typical approach is to employ normally distributed additive or log-

normally distributed multiplicative perturbations to model prognostic field errors

and meteorological boundary condition errors [133]. The ensemble mean of the per-

turbations are constrained to zero (additive perturbations) and one (multiplicative

perturbations) to avoid introducing systematic biases in the perturbed fields [133].

Using the available observations Zt at time t (Figure 2.6), the prior state vector,

xi−t , is updated to a new value, xi+t , based on the relative uncertainties between the

state vector and the predicted observation using appropriate weights [8, 81, 138]

expressed in the Kalman gain, Kt, via:

xi+t = xi−t +Kt(Zt + vi − φt(xi−t )), i = 1, ..., N, (2.9)

where φt(·) is the observation operator that maps the model states (e.g, SWE, cat-

def) into observation space (e.g., ∆Tb or TWS); i represents a single replicate drawn

from an ensemble size N ; and vi represents the observation errors that are assumed

here to be Gaussian. Each ensemble member is updated separately. The observation

errors include the measurement instrument errors, deficiencies of the observation op-

erators (such as support vector machine regression and radiative transfer models),

and representativeness errors from differences in spatial scales [133, 139]. Kt is the

Kalman gain matrix computed from the ensemble and can be expressed as:

Kt = C−xtyt [C
−
ytyt +R]−1 (2.10)
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where R is the specified observation error variance; yt is the observation prediction

(φt(xt) in Equation 2.9); C−xtyt is the error cross-covariance between the modeled

state estimates (x−t ) and the observation prediction (y−t ) prior to the update; and

C−ytyt is the error covariance (a.k.a., sample covariance) of the observation prediction

prior to the update. The error covariances (i.e., C−xtyt and C−ytyt) can be computed

as sample statistics from the ensemble as:

C−xtyt '
1

N − 1
[(x−t − x−t )(y−t − y−t )T ] (2.11)

C−ytyt '
1

N − 1
[(y−t − y−t )(y−t − y−t )T ] (2.12)

where

x−t =
1

N

N∑
i=1

xi−t (2.13)

y−t =
1

N

N∑
i=1

yi−t (2.14)

where N is the number of ensemble size. The linear update step is, in general,

suboptimal. But the degree of suboptimality is relatively small such that the es-

timates from the EnKF are satisfactory even for moderate ensemble sizes [136].

The reduction of the uncertainty is represented by the reduction of the ensemble

spread [137].

As mentioned above, the merging of the observations and model forecasts is

based on weighting their respsective sources of errors. Therefore, the appropriate

specification of error characteristics, include model errors and observation errors, is

critical for the successful implementation of EnKF framework [17, 139–142]. How-

ever, the specification of input error covariances is still challenging and remains a

subjective process in current land data assimilation systems [17,140,142].
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2.5.2 Snow Assimilation

There are a variety of observations and snow retrieval products, including

SWE, snow depth, snow-covered area, and ∆Tb, that could be assimilated with a

land surface model. Previous studies has demonstrated that assimilation of point-

scale, in-situ SWE measurements into a snow model can improve SWE estimation

[36–39]. Point-scale SWE assimilation needs an interpolation algorithm in order to

convert point measurements into a spatially continuous observation coverage prior

to conducting the DA. Therefore, SWE estimates using DA are relatively good

in regions with a sufficiently dense network of observation stations, but remains

challenging in places with sparse ground-based measurement networks due to error

and uncertainty introduced during interpolation of the the sparse observations [40].

Instead of directly assimilating ground-based measurements, satellite-based

snow retrieval products derived from a radiative transfer model or a statistical re-

gression models can be assimilated. For example, Liu et al. [45,46] assimilated bias-

adjusted AMSR-E snow depth retrievals in Alaska and Colorado that resulting in

improved snow depth estimates. DA results showed a 65% reduction in root-mean-

square error (RMSE) versus ground-based snow depth measurements in Alaska as

compared to modeled snow depth without assimilation. However, other studies

yielded limited improvements in SWE estimates via data assimilation due to the

presence of significant negative biases in the assimilated SWE retrievals [16,41–44].

Satellite-based snow-covered area and snow-covered fraction products derived

from visible and thermal imaging have also been assimilated. Preliminary results
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showed a modest improvement for peak SWE in some study domains such as south-

ern Colorado and the Sierra Nevada mountains [41, 44, 143–145]. However, these

studies suggested there were significant uncertainties in the estimation of SWE be-

cause of the utilization of a snow depletion curve as a function of fractional snow

cover [44]. It has also been shown that AMSR-E-based snow depth assimilation is

more effective when using snow-covered area retrievals as an additional data con-

straint [146]. Beyond satellite-based snow retrieval products, PMW Tb observations

can be directly assimilated (a.k.a. radiance assimilation). There are two types of

model operators to convert modeled SWE into the PMW Tb observation space: 1)

a physically-based microwave radiative transfer mode ls(RTMs), and 2) a machine

learning in the form of physically-constrained support vector machine (SVM) re-

gression or an artificial neural network.

With the utilization of a RTM, Pulliainen et al. [47] first assimilated spectral

differences ∆Tb from AMSR-E and Special Sensor Microwave/Imager (SSM/I) obser-

vations. The study showed the combing a snow model with ∆Tb information reduced

the systematic errors in SWE associated with signal saturation effects. Durand et

al. [147] assimilated the ground-based Tb over a relatively small domain and suc-

cessfully reduced systematic errors in snow depth estimation. Similarly encouraging

results were also found in snow estimation via assimilation of AMSR-E Tb obser-

vation in Siberia and Nevada [46, 49]. Kwon et al. [50, 51] also demonstrated that

Tb assimilation can improve continental-scale snow storage estimates [50, 51]. How-

ever, the application of a RTM acorss a large region of space is constrained by the

nontrivial computational demand [50]. In addition, most global land surface models
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are unable to accurately represent the snow microstructure such as snow grain size,

snow grain shape and internal ice layers to fulfill the RTM requirements [48].

Alternatively, a machine learning technique can be employed within a radiance

assimilation framework. A physically-constrained support vector machine (SVM)

regression was able to accurately capture the temporal and spatial variability in

the modeled Tb or ∆Tb [52–60]. Therefore, SVM is able to be applied across large

spatial scales. Xue et al. [58] used SVM regression as the PMW ∆Tb observation

operator over North America and showed improvements in snow mass estimation

under certain conditions such as shallow, dry snow in the absence of forest cover.

However, the SVM-based observation operator has issues related to controlla-

bility [59]. Controllability demonstrates the skill of a linear or nonlinear model to

guide the model output from any physical plausible initial state towards any physi-

cally plausible final state over a finite time period [148]. That is, the system output

for a controllable system should be able to be changed by simply changing the sys-

tem input [134]. For purposes of data assimilation, controllability of the SVM-based

observation operator is critical during the analysis update. This is because one of

the fundamental assumptions inherent to a DA framework is that model errors are

assumed to correlate back to errors in the observation operator predictions [59]. In

the context of a SVM-based ∆Tb observation operator, an “uncontrollable” SVM

is insensitive to changes of the inputs, which eventually leads to the collapse of

the ensemble of SVM-based ∆Tb predictions [59]. This generally happens when the

given inputs are outside of the prediction space at which point the SVM is unable

to accurately predict snow ∆Tb [60].
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2.5.3 GRACE Assimilation

GRACE TWS retrievals have coarse spatial and monthly temporal resolution,

and the vertical integration of the water storage components including soil mois-

ture, groundwater, snow, and surface water in rivers, lakes, and wetlands [5]. To

realize the full potential of GRACE for hydrology, GRACE TWS retrievals must be

disaggregated horizontally, vertically, and in time [81]. One way to vertical disaggre-

gate GRACE TWS retrievals is to use auxiliary information. For example, Yeh et

al. [149] isolated groundwater storage variations from the GRACE TWS anomalies

using ground-based observations of soil moisture.

Alternatively, data assimilation can be used to merge GRACE TWS retrievals

with a land surface model. Despite the coarse resolution, GRACE retrievals still

have reasonably reliable information about TWS anomalies [150]. Therefore, there is

a potential to improve the accuracy of modeled TWS estimates via data assimilation

[151]. On the other hand, the hydrological processes captured by the model can be

used to enhance the satellite observations. Data assimilation approach provides

downscaling and quality control of GRACE TWS retrievals while enabling synthesis

of multiple observations in a physically consistent manner [81]. Most importantly,

the assimilation of GRACE TWS retrievals has an impact on a number of processes

within a land surface model in addition to water storage. Hence, the impacts of

GRACE TWS retrievals on model predictions of water and energy fluxes can be

quantified [81].

The assimilation method employed for GRACE TWS retrievals is either a
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“two-step” scheme or a straight application of sequential Kalman filter. Zaitchik

et al. [81] assimilated monthly GRACE TWS retrievals using an ensemble Kalman

smoother approach. That is, the land model runs twice over the course of the same

month. The first run is to collect the innovations (i.e., the differences between

model predictions and TWS observations). The second run is to update the model

states. The TWS retrievals were assimilated on basin-averaged scale with uniformly

distributed observation errors [22,82,83,152]. Later research suggests that subbasin

scale TWS assimilation is more suitable [21,98,153]. However, the “two-step” scheme

is computational expensive since it needs to integrate the model twice. Alternatively,

a straight application of sequential Kalman filter can be applied. That is, the

model only need to run for one time and the increments are applied at the end of

the assimilation window [96]. Instead of assimilation basin or subbasin scale TWS

observation, gridded TWS observation at 1◦ × 1◦ resolution has been assimilated

into a model [8, 84, 85, 96, 153]. But the sequential method fails to capture the

sub-seasonal variations in land states. The released daily GRACE TWS generated

through the regularized sliding window mascon (RSWM) solution [154] provides

another opportunity on TWS applications at a higher temporal resolution. All these

studies demonstrate the great potential of GRACE TWS DA to improve TWS and

its components.
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2.5.4 Multi-sensor Assimilation

Over the past decades, the number of satellites observing the land surface

hydrological cycle has increased [155, 156]. Many scientific efforts have focused on

multi-sensor, multi-variate data assimilation in order to understand the hydrological

cycle in a more comprehensive way. Su et al. [21] first performed a 1-D assimilation

of GRACE along with MODIS snow cover fraction products over North America

from January 2002 to Jun 2007, toward the goal of better estimation of SWE and

snow depth. The results showed the multi-sensor approach provided significant

improvements over a single-sensor MODIS only approach. Tian et al. [101] jointly

assimilated GRACE TWS and soil moisture retrievals from Soil Moisture and Ocean

Salinity (SMOS, [157]) using a 1-D ensemble Kalman smoother across the Australian

continent. The results demonstrated that joint assimilation produced better water

balance component estimates compared to GRACE or SMOS single-sensor assimi-

lation.

The studies mentioned above integrated model TWS components over all grids

within the GRACE spatial resolution. Alternatively, GRACE TWS retrievals can be

interpolated and disaggregated into finer spatial and temporal scales that are similar

to those of other satellite missions. For example, Zhao et al. [158] combined MODIS,

ASMR-E observation, and GRACE daily observations with a deterministic ensemble

adjustment Kalman Filter. A daily version of the GRACE TWS retrievals with a

finer spatial resolution of 0.5◦ [154] was assimilated in this study. They found that

the ASMR-E assimilation globally improved the soil moisture and snow estimates
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while the assimilation of GRACE improved snow estimation in high-latitudes. Khaki

et al. [102] disaggregated GRACE retrievals (5-days) along with assimilating SMOS

and AMSR-E observations together to study the water storage changes over South

America. The results showed that the sub-surface water storages, especially the

variations of groundwater and soil moisture have been significantly improved. Unlike

the above studies, Girotto et al. [85] applied a spatially distributed (3-D) sequential

assimilation scheme without pre-processing of the satellite data over the contiguous

US. In this study, SMOS passive Tb observations and GRACE TWS retrievals were

assimilated simultaneously. The results suggested that multi-sensor assimilation

resulted in the better and more consistent soil moisture and groundwater estimates.

They found GRACE assimilation increments can be removed by SMOS assimilation

at some times. That is, the SMOS assimilation tried to undo the increments from

the GRACE DA.
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Chapter 3: Synthetic Identical Twin Experiment Setup

3.1 Study Domain

The study domain for this dissertation is the Volga River basin located in

the Eastern European Plain (or Russian Plain) spanning from 45◦N to 64◦N and

from 30◦E to 62◦E (Figure 3.1). The total area of the Volga River basin is about

1,390,000 km2 occupying about one-third of the East European Plain. The length

of the Volga River is about 3,700 km and ultimately discharges into the Caspian

Sea. The main parts of the basin as delineated in Figure 3.1a are the Moskva Oka

River basin (237,000 km2), the upper Volga basin (430,000 km2), the Kama River

basin (500,000 km2), and the lower Volga River basin (223,000 km2) [159,160].

The Volga river basin is located within the Atlantic-continental European cli-

matic region (Myachkova, 1983) that is primarily influenced by the dominant east-

ward drift of air masses from the northern Atlantic Ocean. As solar radiation in-

creases southward, the recurrence frequency of anticyclonic weather increases, which

leads to an increase of continentality of climatic conditions and a decrease in annual

precipitation [159]. As shown in Figure 3.2, the Volga River basin experiences min-

imal postglacial rebound, and hence, most of the gravitational signal changes in the

Volga basin are ultimately caused by changes in regional water storage [162].
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Figure 3.1: (a) The Volga River basin compasses four sub-basins, includ-
ing the Moskva Oka river basin (black), upper Volga river basin (green),
lower Volga river basin (red), and Kama river basin (blue). The black
line is the Volga river. (b) Forest cover fraction as derived from the
Moderate Resolution Imaging Spectroradiometer [161].
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Figure 3.2: Rates of present day global post glacial rebound based on
the ICE-6G Model [162]. The Volga River basin demarcated by the red
outline experiences relatively little postglacial rebound.
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The Volga river basin is dominated by plain landscapes such that mountainous

terrain occupies less than 5% of the total basin area [159]. Approximately 80% of

the total basin area has an elevation less than 200 m above the sea level [159]. The

Ural Mountains are located along the eastern edge of the Volga basin and are mainly

located in the Kama subbasin. The average air temperature increases from 3◦C in

the north to 9◦C in the south. The annual precipitation decreases from 750 mm to

150 mm (southward). As a result, the snow depth decreases from 60 cm (north) to

3 cm (south) with a duration of persistence of 240 (north) to 30 days (south) [159].

In general, the Volga River basin can be divided in to three zones based on

the spatial pattern of vegetation cover. Coniferous forest occupies the northern part

of the Volga River basin. Steppe vegetation is dominant in the middle portion of

the basin. The southern part of the basin is mainly semi-desert landscape [159]. As

shown in Figure 3.1b), the forest cover fraction of the Volga River basin decreases

from the north to the south where the northern area is mainly covered by coniferous

forests (taiga) [159].

The Volga river has the largest annual discharge in Europe. The observed

annual discharge near the river outlet is 8,380 m3/s near Volgograd City. The

main tributary of the Volga River is the Kama (Figure 3.1a) with an observed

annual discharge of 4,100 m3/s [159]. The primary source of Volga River discharge

is snowmelt [159]. In addition, groundwater contributes about 30% of annual flow

while rainfall provides about 10% of annual flow [159]. As a result, the Volga

River regime can be characterized by a sharp and high spring snowmelt flood wave

followed by low-rate flow in the summer and winter. The annual water level ranges
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Figure 3.3: Conceptual framework for the synthetic twin experiment, in-
cluding forcings (a.k.a., boundary conditions), Catchment Land Surface
Model (CLSM), synthetic TWS and Tb retrieval generation, and data
assimilation.

in the upper, middle, and lower Volga is 4 to 8 m, 10 to 11 m, and up to 5 m,

respectively [159].

3.2 Synthetic Identical Twin Experiment

The Volga River basin study domain has few, if any, publicly-available in-situ

measurements, such as snow, soil moisture, groundwater, or runoff observations,

which motivates the application of synthetic identical twin experiment (Figure 3.3).

A synthetic experiment starts with the generation of a synthetic “truth” run

to generate “true” model states. In this work, the synthetic truth run is forced by

meteorological fields from the Modern-Era Retrospective analysis for Research and

Applications, version 2 (MERRA-2) product [163]. More specifically, the precipita-

tion product from MERRA-2 with corrections made by ground-based observations is

used [164]. The “true” model states derived from the synthetic “truth” run serve as
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Table 3.1: Forcing inputs to the synthetic truth, open loop, and data assimilation

Model run Synthetic truth Open loop and Assimilation

Forcing name MERRA-2 GLDAS

Temporal resolution 1 hour 3 hour

Spatial resolution (latitude × longitude) 0.5◦ × 0.625◦ 2.0◦ × 2.5◦

a reasonable proxy for the real-world system variability. Using the nominal output

(geophysical) from the synthetic truth, synthetic ∆Tb and synthetic TWS observa-

tions are generated using the observation operators discussed in Section 4.4.1. The

next step is to assimilate the synthetic observations into a degraded version of the

same modeling system that is forced by a different (“erroneous”) set of meteorologi-

cal boundary conditions from the Global Land Data Assimilation System (GLDAS)

product [165] (Figure 3.3). The difference between MERRA-2 and GLDAS serves

as a reasonable proxy for the boundary condition errors encountered by a real (op-

erational) DA system. The details of the meteorological boundary conditions are

summarized in Table 3.1.

This type of synthetic experiment is often referred to as an “identical” twin

in that the same land surface model is used in all aspects of the experiment. The

major assumption behind an identical twin experiment setup is that the majority

of errors encountered by a real-world system originate from the boundary condi-

tions instead of the initial condition errors, model structure errors, or parameter

errors [166]. In the context of snow and terrestrial water storage modeling, this

assumption is reasonable given the large degree of precipitation error often found

in remote, mountainous terrain such as that as the Volga River basin [167]. Alter-
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natively, a “fraternal” twin experiment could be employed in which different land

surface models are used during different phases of the experiment. However, this

experiment setup is avoided in this current study because we want to focus on model

improvements to terrestrial water storage and its components (e.g., snow) associated

with erroneous forcings in the mountainous terrain.

In the present study, the spatial resolution of the model grid is the 25 km × 25

km on the Equal Area Scalable Earth (EASE version 2) computational grid [168].

The model initial conditions are generated by looping the model five times over the

same 10-year period from 1 September 1992 to 1 September 2002. The model is

then initialized and propagated forward from 1 September 2002 in order to initialize

the model with a seasonal minimum of snowpack and runoff errors. The experiment

period covers 1 September 2002 to 1 September 2011, which coincides with both the

majority of the AMSR-E observations and GRACE TWS retrievals.

3.3 Boundary Condition Bias Corrections and Amendments

In the context of a synthetic identical twin experiment, it is critical to first

characterize the boundary condition (e.g., precipitation) errors. Boundary condition

errors often result in bias or random errors that can be considered representative of

the “real-world” errors that could be encountered in an operational assimilation sys-

tem [166]. In windy conditions, precipitation (snow) measurement errors can range

from 20% to 50% [127]. Therefore, an error characterization strategy is employed

here such that the difference between MERRA-2 forcings and GLDAS forcings can
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serve as a reasonable proxy for a range of plausible precipitation error scenarios.

That is, the GLDAS precipitation over the study period is rescaled so that its cu-

mulative, domain-averaged total matches 50% (negatively-biased), 100% (neutral),

and 150% (positively-biased) of the corresponding total MERRA-2 precipitation by

multiplying a fixed factor (γ, Table 3.2) computed as:

γ = α×
∑
MERRA2∑
GLDAS

(3.1)

where
∑
MERRA2 and

∑
GLDAS are the cumulative, domain-averaged MERRA-

2 and GLDAS boundary conditions, including snowfall and rainfall over the course

of the entire study period, respectively, where α is set to 50%, 100% , and 150% to

yield the rescaled GLDAS scenarios for negatively-biased, neutral, and positively-

biased boundary conditions relative to MERRA-2 (synthetic truth), respectively.

The EnKF assumes unbiased models which is included in the neutral scenario. How-

ever, the negatively-biased and positively-biased scenarios are included too, as to

explore a range of feasible boundary conditions that could be encountered in a real-

world DA system.

These three different scenarios will help explore how data assimilation can

improve TWS and snow estimation where the total amount of precipitation in the

study domain is under-, well-, or over-estimated. In addition, the downwelling

shortwave radiation boundary conditions are also rescaled proportionally. Given

the fact the correlation between shortwave radiation and precipitation is negative,

the shortwave radiation is decreased as the rainfall is increased due to the present of

more cloud (and vice versa). Therefore, the fixed factor (γ, Table 3.2) for shortwave
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radiation was computed as:

γ = α×
∑
GLDAS∑
MERRA2

(3.2)

where
∑
MERRA2 and

∑
GLDAS are the cumulative, domain-averaged MERRA-2

and GLDAS shortwave radiation over the course of the entire study period, where α

is set to 50%, 100% , and 150% to yield the rescaled GLDAS scenarios for negatively-

biased, neutral, and positively-biased boundary conditions relative to MERRA-2

(synthetic truth), respectively. This last step is conducted in order to more care-

fully focus on the first-order control of precipitation (and its error) on TWS and

snow mass assimilation. Further, simulations were conducted without the shortwave

radiation correction factor and it was shown that the impact of shortwave radiation

changes were secondary (or negligible) relative to that of the precipitation correction

factor.

Table 3.2: Summary of GLDAS forcing correction factor γ

γ Rainfall Snowfall Shortwave Radiation

Neutral precipitation 1.17 1.95 0.79

positively-biased precipitation 1.75 2.93 0.53

negatively-biased precipitation 0.58 0.97 1.58

As shown in Figures 3.4a and 3.4b), there is a strong precipitation gradient

from the north to south across the study domain where the highest precipitation is in

the northwest of the domain for both MERRA-2 and GLDAS. Under the positively-

biased scenario (Figures 3.4c and d), the “true” precipitation (i.e., MERRA-2) is less

than the precipitation forcing field used in both the OL and DA (i.e., positively-
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biased precipitation) with a gradient from the southeast to northwest. A similar

pattern is seen for the negatively-biased scenario (Figures 3.4g and h) but with

more “true” precipitation relative to the OL and DA precipitation. Even though

the 9-year cumulative amount of precipitation across the domain is identical between

MERRA-2 and the neutral precipitation scenarios, differences still exist at different

locations in time and space between these two data sets as shown in Figures 3.4e)

and 3.4f). As a result, the amount of TWS and SWE could be significantly different

at different locations due to the nonlinear hydrologic response of forcing even though

the domain-averaged precipitation is identical between the two.
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Figure 3.4: Cumulative precipitation (from years 2002 to 2011): (a)
MERRA-2 precipitation, (b) GLDAS precipitation, (c) positively-biased
minus MERRA-2 rainfall, (d) positively-biased minus MERRA-2 snow-
fall, (e) neutral minus MERRA-2 rainfall, (f) neutral minus MERRA-
2 snowfall, (g) negatively-biased minus MERRA-2 rainfall, and (f)
negatively-biased minus MERRA-2 snowfall.
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Chapter 4: Exploration of synthetic terrestrial snow mass estima-

tion via assimilation of AMSR-E brightness temperature

spectral differences using the Catchment land surface

model and support vector machine regression

4.1 Motivation and Objective

Despite the improvements in snow estimation via radiance assimilation, there

are still many deficiencies that must be overcome in order to better optimize its use.

For example, snow mass estimation using PMW radiometry is fundamentally an

ill-posed, underdetermined system [61]. That is, there are numerous combinations

of snow depth, snow density, snow temperature, snow grain size, and other snow

characteristics that collectively yield the same ∆Tb observation [61]. Therefore, the

task of assimilating only the snow mass-related portion of the PMW ∆Tb signal

from all of the other signals inherent therein (e.g., vegetation, atmosphere, snow

temperature, and snow liquid water content) is a challenge. In addition, the efficacy

of SVM-based PMW ∆Tb assimilation is often limited by the controllability and

reachability of SVM regression [59]. All of these issues motivate this study and help

answer the question: How can we further improve snow estimation with SVM-based
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PMW ∆Tb assimilation using a physically-informed approach? To this end, synthetic

AMSR-E PMW ∆Tb observations are assimilated into the Catchment Land Surface

Model (i.e., Catchment) [80] using SVM regression as the observation operator over

snow-covered terrain in Russia.

Unlike previous works that simultaneously assimilating a fixed number of

∆Tb channels [58, 59], a priori modeled SWE is used as an indicator to determine

which ∆Tb channels should be assimilated into the model. In addition, a simple

“data-thinning” strategy is also explored to help mitigate high-frequency error (e.g.,

changes in snow temperature not related to snow mass) embedded in the synthetic

AMSR-E PMW ∆Tb observations.

4.2 Synthetic AMSR-E Observations

The synthetic “truth” ∆Tbs are generated using a well-trained SVM (see sec-

tion 4.4.1) that maps relevant model states (e.g., SWE, snow temperature) derived

from the synthetic truth into the corresponding observation space (i.e., ∆Tb). The

synthetic ∆Tb truth, including spectral difference between 10.65 and 36.5 GHz,

10.65 and 18.7 GHz, and 18.7 and 36.5 GHz at both horizontal and vertical polar-

izations [54, 56–58] compactly easily expressed as:

∆Tb18V−36V = Tb18V − Tb36V (4.1)

where Tb18 represents Tb at 18.7 GHz; Tb36 represents Tb at 36.5 GHz; and the

subscript V represents vertical polarization with a similar equation for horizontal

(H) polarization.
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The synthetic ∆Tb observations, including ∆Tb10H−36H , ∆Tb10V−36V , ∆Tb10H−18H ,

∆Tb10V−18V , ∆Tb18H−36H , and ∆Tb18V−36V , are generated by corrupting the synthetic

∆Tb truth through the inclusion of additive, Gaussian observation noise that is tem-

porally and spatially uncorrelated and is presented in more details in Section 4.3.

4.3 Ensemble Open Loop

As mentioned in Chapter 3, an ensemble open loop (OL) simulation is con-

ducted without the assimilation of observations. The “imperfect” boundary con-

ditions are established using the Global Land Data Assimilation System (GLDAS)

product with a 3-hourly temporal resolution and 2.0◦ × 2.5◦ (latitude/longitude)

spatial resolution [165]. In this study, the difference between the “truth” and the

OL ensemble mean is used as a representative proxy for the true system errors.

One key to the success of data assimilation is the appropriate characterization

of both model and observation errors [17, 133]. An ensemble of perturbations is

generally applied to the forcing variables (e.g., precipitation) as a low-rank approxi-

mation of the true system errors. The ensemble mean of the model states is typically

used as the expected model estimate and the ensemble spread is used as a proxy for

the model error variance [169, 170]. In line with previous works [22, 58, 83, 84, 171],

the perturbation settings used in this study are summarized in Table 4.1. The ad-

ditive observation error is assumed to be Gaussian-distributed with zero mean and

a standard deviation of 3 K [50,58,170,172].

With a finite ensemble size, only a small subset of the error space is sampled,
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Table 4.1: Parameters for meteorological forcing perturbations used in the assimi-

lation experiments.

Model Variables Type Standard Deviation x, ycorr tcorr(day)

Cross-correlation

pcp sw lw

pcp Ma 0.5 2◦ 3 NA −0.8 0.5

sw M 0.3 2◦ 3 −0.8 NA −0.5

lw Ab 20 W m−2 2◦ 3 0.5 −0.5 NA

aMultiultiplicative (M) or bAdditive (A) perturbations are applied to precipitation (pcp),

downwelling shortwave radiation (sw), downwelling longwave radiation (lw).

and thus, the statistical (or sampling) error is non-negligible [136, 173, 174]. The

ensemble size, in part, dictates whether or not the relevant part of the error structure

(e.g., error variance) can be reasonably captured by a finite ensemble size of model

trajectories, and in turn, provide a reasonable low-rank approximation of the true

errors. In this study, a range of ensemble sizes from N = 14 to N = 74 was tested.

An ensemble size of N = 24 is ultimately chosen because N > 24 show no significant

change in the ensemble spread (i.e., the ensemble SWE standard deviation over the

study domain) compared to N = 24. Therefore, it is assumed an ensemble size of 24

replicates could reasonably represent the low-rank approximation of the true error

probability distribution.

4.4 Data Assimilation

An existing, one-dimensional (1-D) ensemble Kalman filter (EnKF) framework

[175,176] is employed for daily, synthetic AMSR-E ∆Tb assimilation in this study. In
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a 1-D EnKF, the computational units are processed independently from one another,

which suggests that spatial error correlations between different catchments within

the study domain are negligible [175].

During the forecast step, an ensemble of model state vectors containing the

relevant model prognostic variables (e.g., SWE) are propagated forward in time by

Catchment. For each domain catchment or model grid (j), the prior state vector,

xi−j,t at time t:

xi−j,t = [SWE]i−j,t (4.2)

where i represents a single replicate drawn from an ensemble of size N , in this case,

N = 24. SWE is the only model state that updated using Equation 2.9. Other snow-

related states such as snow depth and snow-specific heat content are recomputed

based on the updated SWE while assuming the snow density and temperature in

each of the modeled snow layers remained constant before and after the update [22].

The observation predictions, yi−j,t , can be expressed as:

yi−j,t = φt(SWE, slwc, Tp, Ts)i−j,t (4.3)

where slwc is the snow liquid water content; Tp is the top-layer soil temperature; Ts

is the skin temperature; and φt(·) is the observation operator that maps the model

states into observation space (i.e., ∆Tb). The prior state vector, xi−j,t , is then updated

(Equation 2.9) to a new value, xi+j,t , using the available synthetic ∆Tb observations

Zt at time t:

Zj,t = [∆Tb10H−18H ,∆Tb10V−18V ,∆Tb10H−36H ,∆Tb10V−36V ,∆Tb18H−36H ,∆Tb18V−36V ]Tj,t

(4.4)
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where the “T” denotes the vector transpose. As stated by Burgers et al. [170] ,

the observations should be treated as random variables at the update step (Equa-

tion 2.9). That is, random perturbations with the correct statistics must be added

into the observations and generate an ensemble of observations as:

Zi
j,t = Zj,t + vi, v ∼ N (0, 32) (4.5)

where vi represents the observation errors that are assumed here to be Gaussian

with zero mean and a spatially- and temporally-uncorrelated covariance of 32 K2

[50, 58,170,172].

It is worth noting that there is no DA performed around water bodies. This was

due to that fact that grid cells with more than 5% coverage by water (ocean or inland

water bodies) are excluded from the data assimilation analysis because surface water

impoundments are not explicitly accounted for in the Catchment model. Therefore,

grid cells containing surface impoundments are not included in the EnKF update.

4.4.1 Observation Operator and SVM Controllability

SVM regression served as the observation operator for mapping the geophys-

ical states (e.g., SWE, snow temperature) into observational (i.e., PMW spectral

difference) space. Following Forman et al. [52] and Forman et al. [53], SVM training

used a split-sample, jackknifing procedure where observations used for validation

were excluded from the training dataset. The training period was from 1 September

2002 to 1 September 2011. A fortnightly (two weeks) training period was selected

to best capture seasonal variability while still providing a sufficiently large enough
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set for training. The inputs to SVM training were four Catchment model states

relevant to PMW remote sensing of snow: (1) SWE, (2) snow liquid water content,

(3) top-layer soil temperature, and (4) skin temperature. They were selected based

on the results of an extensive sensitivity analysis [57]. The SVM outputs were the

synthetic ∆Tb truth, including ∆Tb10H−36H , ∆Tb10V−36V , ∆Tb10H−18H , ∆Tb10V−18V ,

∆Tb18H−36H , and ∆Tb18V−36V .

It is important to highlight the issue of controllability with the SVM-based

observation operator [59]. As an important factor in optimal control theory, con-

trollability demonstrates the skill of a linear or nonlinear model to guide the model

output from any physical plausible initial state towards any physically plausible final

state over a finite time period [148]. Controllability is related to the set of training

data and the inability of the SVM to accurately predict snow ∆Tb when the given

inputs that are outside of the prediction space implicit in the training data [60]. As a

result, the model error would no longer correlate with the corresponding error in the

SVM-based observation operator, which can lead to spurious error correlations that

ultimately degrade the model estimate [59]. To avoid this, prior SWE was updated

only when the standard deviation of the prior SVM-predicted ∆Tb was greater than

0.05 K based on heuristics outlined in [59].

4.4.2 Shallow-to-Medium versus Medium-to-Deep Snow Algorithm

Following the methods of [58] and [59], the DA experiments start with si-

multaneous assimilation of six different ∆Tbs, including ∆Tb10H−18H , ∆Tb10V−18V ,
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∆Tb10H−36H , ∆Tb10V−36V , ∆Tb18H−36H , and ∆Tb18V−36V (baseline DA; Table 4.2)

in this study. However, these studies demonstrated that DA, at times, could de-

grade the snow estimation (also see section 4.7.1). To prevent DA degradation, a

physically-informed DA approach (section 4.4.2) and a data thinning DA approach

(section 4.4.3) are introduced.

An important assumption behind spectral difference assimilation is that ∆Tb

is positively correlated with SWE and that the Tb at the highest frequency (i.e.,

36.5 GHz) decreases as SWE increases while the lower frequency (i.e., 10.65 GHz or

18.7 GHz) Tb is relatively insensitive to increasing snow mass [30,177]. However, the

correlation between SWE and Tb at 36.5 GHz can reverse once SWE is greater than

100 to 200 mm [26–30,59]. This occurrence is often referred to as signal saturation.

Furthermore, ∆Tb10−18 may introduce errors during shallow snow conditions because

the signal is more representative of the soil moisture rather than the snow mass

[178]. In other words, the observation error covariance of ∆Tb18−36 during deep

snow conditions or ∆Tb10−18 during shallow snow conditions may not be adequately

represented by the prescribed error parameters, and hence, may introduce spurious

errors during the EnKF update. If an observational data set contains data whose

errors are not well represented by the prescribed error parameters, the EnKF will

not be able to accurately estimate the true fields [17]. Therefore, one hypothesis

for DA degradation in the snow estimates is due to the simultaneous assimilation

of all six ∆Tb when many of the ∆Tbs are not truly representative of snow mass.

Further, the presence of signal saturation during deep snow conditions also result in

a degraded estimate when the general assumption that ∆Tb is positively correlated

57



with SWE is no longer the case.

Instead of simultaneously assimilating all available multifrequency and polar-

ization spectral differences into a land surface model as done in the works of [58]

and [59], a new assimilation strategy based on prior SWE information is explored

here such that ∆Tb is assimilated more selectively. In this new approach, the en-

semble mean of the prior SWE is used as an indicator to determine which ∆Tb

should be assimilated. That is, shallow-to-medium snow conditions now only uti-

lize ∆Tb18H−36H , ∆Tb18V−36V , ∆Tb10H−36H , and ∆Tb10V−36V whereas medium-to-

deep snow conditions now only simultaneously utilize ∆Tb10H−18H , ∆Tb10V−18V ,

∆Tb10H−36H , and ∆Tb10V−36V (physically-informed DA; Table 4.2). The SWE thresh-

old used to differentiate between the shallow-to-medium and medium-to-deep snow is

somewhat subjective. In this study, the shallow-to-medium snow refers to SWE≤120

[mm] while SWE>120 [mm] is considered as the medium-to-deep snow based on

peer-reviewed literature [27, 28,179].

4.4.3 Data Thinning

Another common issue with snow ∆Tb assimilation is ensemble collapse (i.e.,

little or no ensemble spread) (Figure 4.1). Ensemble collapse results in an under-

representation of the true model uncertainty. Given the fact the optimal combina-

tion of the observations with the model is predicated on the consideration of the

respective uncertainties of each [142], a poor representation of model uncertainty

will often lead to degraded snow estimation.
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Ensemble collapse, in part, is exacerbated by the multi-observation nature of

the assimilation approach (i.e., multiple observations assimilated daily). In addi-

tion, the high-frequency errors embedded in the AMSR-E observations (Figure 2.5)

often overwhelm the snow-related information, and thus, can further degrade DA

performance. In an attempt to mitigate such high-frequency noise, the synthetic

∆Tb observations (all six channels) are assimilated every 3-, 5-, 7-, 10-, and 15-day

intervals rather than daily in order to explore the impact of using fewer observations

on DA performance (Table 4.2).

Table 4.2: Descriptions of different ∆Tb data assimilation strategies

Name Description

Baseline Simultaneous assimilation of six ∆Tb channels including:

DA ∆Tb10H−18H , ∆Tb10V−18V , ∆Tb10H−36H , ∆Tb10V−36V , ∆Tb18H−36H , and ∆Tb18V−36V

Physically- Update SWE based on prior SWE ensemble mean:

informed If SWE≤120 [mm], use ∆Tb10H−36H , ∆Tb10V−36V , ∆Tb18H−36H , and ∆Tb18V−36V

DA If SWE>120 [mm], use ∆Tb10H−36H , ∆Tb10V−36V , ∆Tb10H−18H , and ∆Tb10V−18V

3-day Simultaneous assimilation of six ∆Tb channels every 3 days including:

Thinning DA ∆Tb10H−18H , ∆Tb10V−18V , ∆Tb10H−36H , ∆Tb10V−36V , ∆Tb18H−36H , and ∆Tb18V−36V

4.5 Normalized Innovation and Filter Optimality Assessments

The optimal operation of the Kalman filter is closely related to the statistical

properties of the innovation sequence, which is the difference between the observa-

tion and model forecast [137]. In theory, the information exchange during the filter

update is optimal when the normalized innovation sequence appears as white noise

(i.e., mean zero with unit variance and temporally uncorrelated). If the models
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are unbiased and linear (both the land surface model and the observation opera-

tor) and all errors are uncorrelated and Gaussian (and correctly specified), then

the normalized innovation sequence, NI, should appear similar in form to a stan-

dard normal distribution N (0, 1) [137]. Although both the land surface model and

observation operator used here are nonlinear, the investigation of the normalized

innovation sequence can still provide useful information as to the performance of

the DA procedure.

The normalized innovation (NI) at time t can be written as:

NIt =
yt − φt(x−t )√
Cytyt +R

(4.6)

where the numerator is the difference (or innovation) between the synthetic ∆Tb

observation (yt) and SVM-based predicted (prior) ∆Tb observation (φt(x
−
t )), and the

denominator is the square root of the sum of the background error covariances (Cytyt)

and the observation error covariance (R). The normalized innovation sequence is

merely the vector concatenation of all NIt across the duration of the assimilation

experiment that is explored for mean zero, unit variance, temporally-uncorrelated

Gaussian-like features that can be used as a proxy for filter optimality.

4.6 Validation Approach

A synthetic, identical twin experiment is designed such that the “true” values

of hydrologic states and fluxes are known. Therefore, the validation is performed

against the true states (e.g., SWE) derived from the synthetic truth run. Several

goodness-of-fit statistics are used for the validation activities: (1) bias, (2) root
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mean squared error (RMSE), (3) unbiased root mean squared error (ubRMSE), (4)

correlation coefficient (R), (5) Nash-Sutcliffe efficiency (NSE), and (6) containing

ratio (CR2σ). In addition, normalized information contribution (NIC) is used to

quantify the DA improvement (or degradation) relative to the OL [180,181]. Details

about all of these calculations can be found in Appendix A.

4.7 Results and Discussion

4.7.1 SWE Estimates

The DA experiments started with simultaneous assimilation of six different

∆Tbs, including ∆Tb10H−18H , ∆Tb10V−18V , ∆Tb10H−36H , ∆Tb10V−36V , ∆Tb18H−36H , and

∆Tb18V−36V . For illustrative purposes, two relatively ideal locations, Grid #1 and

Grid #2, (i.e., long snow season; relatively dry snow conditions; no forest cover;

and relatively shallow snow such that SWEmax < 200 mm) are selected. Given the

fundamental physics of PMW Tb remote sensing of snow, if assimilation does not

work at these idealized locations (assuming appropriate specification of input error

parameters), then assimilation will likely not work at other locations in the Volga

basin. Therefore, we chose to present these locations prior to discussing results

across the remainder of the basin.

Figure 4.1 highlights the performance of DA (denoted as baseline DA as shown

in blue) at these idealized locations under the neutral forcing conditions. As shown

in Figure 4.1a) and 4.1b), simultaneous assimilation of all six ∆Tb channels actually

degraded model SWE estimates. Starting in late-January 2010 (Figure 4.1a), the DA
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Figure 4.1: Example time series of snow water equivalent (SWE) for (a)
Grid #1 (54.1685◦N, 47.3343◦E) from October 2009 to May 2010 and
(b) Grid #2 (49.1489◦N, 54.0778◦E) from October 2004 to May 2005.
Physically-informed DA and data thinning (3-day) improve model results
whereas baseline DA (no physical constraint) actually degrades model
results relative to the open loop.
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SWE estimates diverged from the OL (gray color) and the synthetic truth (black

dots). This divergence resulted in degraded SWE estimates with approximately

82%, 80%, and 85% increases in RMSE, bias, and ubRMSE, respectively, relative to

the OL. Similarly, the baseline DA SWE estimates at Grid #2 also diverged from

the synthetic truth early in the snow season (Figure 4.1b) such that the DA routine

was unable to recover.

The following sections will discuss whether the physically-informed DA or

the data thinning strategy could serve as a feasible solution in preventing filter

divergence, and hence, DA degradation while assimilating PMW ∆Tbs.

4.7.1.1 Shallow-to-Medium versus Medium-to-Deep Snow Algorithm

As shown in Figure 4.1a), the new assimilation strategy (denoted as physically-

informed DA, red color) improved the Grid #1 SWE estimates with a 58%, 80%,

and 41% reduction in RMSE, bias, and ubRMSE, respectively, relative to the OL.

Starting in late-January 2010 (SWE ≈ 120 mm), the physically-informed DA con-

verged toward the synthetic truth (black dots) and was able to encapsulate more

of the synthetic truth resulting in a larger containing ratio, CR2σ (0.26) than the

baseline DA (CR2σ = 0.10) (see Appendix A). These results suggest that the

physically-based shallow-to-medium versus medium-to-deep snow algorithm effec-

tively mitigated much of the negative influence of spurious correlations between

SWE and ∆Tb18−36 during deep snow conditions. Figure 4.1b) further illustrates

the benefits of the physically-informed shallow-to-medium versus medium-to-deep
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snow algorithm during the shallow snow conditions.

As shown in Figure 4.2a) and 4.2b), the correlation coefficient (R) between

the synthetic truth SWE and SVM-based synthetic ∆Tb10−18 observations for Grid

#2 was 0, whereas the correlation coefficients between the synthetic truth SWE

and SVM-based synthetic ∆Tb10−36 (Figure 4.2c, 4.2d) and ∆Tb18−36 (Figure 4.2e,

4.2f) observations were greater than 0. This implies that ∆Tb10−18 contained little

or no information about shallow snow conditions (i.e., SWE ≤ 120 mm) given the

fact that both 10 GHz and 18 GHz undergo little or no scattering across such a

shallow snow pack [61]. That is, these Tb frequencies (and ∆Tb by construct) are

effectively transparent through such shallow snow. After removing ∆Tb10−18 from the

observation vector, the physically-informed DA (red color) was able to correct the

model SWE estimates towards the synthetic truth (black dots) during the middle of

December 2004, which resulted in a 24%, 92%, and 24% reduction in RMSE, bias,

and ubRMSE, respectively, relative to the OL. Further, the CR2σ was increased

from 0.04 (baseline DA) to 0.29 (physically-informed DA), which suggested the

physically-informed DA was superior to the more uniformed, baseline approach.

However, such a strategy is far from a panacea and is only effective at some

locations. One possible reason is that if the prior SWE estimate is incorrect, it is

possible the spectral differences used in the update are not the most appropriate. As

an alternative, information from the observations can be used directly to help guide

which of the ∆Tbs to assimilate into model at a given point in time and space. For

example, if ∆Tb18−36 observation suggests the spectral difference is nearing satura-

tion, then one can assimilate the longer wavelengths as ∆Tb10−18. This approach will
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Figure 4.2: Scatter plots (with correlation in upper-left corner) between
the synthetic truth SWE and the SVM-based brightness temperature
spectral difference (∆Tb) for (a) 10H − 18H, (b) 10V − 18V , (c) 10H −
36H, (d) 10V − 36V , (e) 18H − 36H, and (f) 18V − 36V estimates for
Grid #2 (49.1489◦N, 54.0778◦E) from 1 September 2002 to 1 September
2011.
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be explored in a future study and is considered beyond the current project scope.

As shown in Figure 4.3, the Volga basin-averaged results suggested the physically-

informed DA (bias = −5.1 mm; R = 0.818) showed limited improvements in SWE

estimation over the baseline DA (bias = −5.4 mm; R = 0.817) under the neutral

forcing conditions. Similarly, the CR2σ increased from 0.24 (baseline DA) to 0.25

(physically-informed DA). Over 57% of the basin grids had improved CR2σ. The

SWE ensemble spread (σ), which was defined as the long-term time-average of the in-

stantaneous ensemble standard deviation, was also changed from 3.33 mm (baseline

DA) to 3.56 mm (physically-informed DA), which suggested the physically-informed

DA effectively inflated the ensemble spread, and had better ability to capture more

of the synthetic truth. All these results suggest that the physically-informed DA

marginally improved the accuracy of SWE estimation relative to the baseline DA

under the neutral forcing conditions.

4.7.1.2 Data Thinning

An example of data thinning to once every three days (cyan color) for Grid

#1 under the neutral forcing conditions is shown in Figure 4.1a). SWE estimates

were improved with a 80%, 98%, and 70% reduction in RMSE, bias, and ubRMSE,

respectively, relative to the OL. CR2σ increased from 0.055 (OL) to 0.25 implying

that using fewer observations in time during the DA update can help better capture

the synthetic truth. In addition, the SWE ensemble spread increased from 1.86

mm (baseline DA) to 3.02 mm (3-day thinning DA), but was significantly less than
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Figure 4.3: Histograms of Volga basin-averaged SWE statistics showing
(a) RMSE, (b) ubRMSE, (c) bias, and (d) R under the neutral (first set),
positively-biased (second set), and negatively-biased (third set) forcing
conditions. The white bar is for the Open Loop (OL). The light gray bar
is for baseline DA. The medium gray bar is for physically-informed DA
and the dark gray bar is for DA 3-day thinning as listed in Table 4.2.
Bars marked with ∗ indicate DA yields statistically significant statistics
with a level of significance of 5%.
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the OL (9.79 mm). The bigger SWE ensemble spread indicated the 3-day thinning

DA effectively prevented ensemble collapse from January to February. The 3-day

thinning strategy also significantly improved SWE estimates for Grid #2 as shown

in Figure 4.1b). The 3-day thinning strategy helped prevent SWE divergence in

December 2004, and as a result, yielded a 50%, 72%, and 25% reduction in RMSE,

bias, and ubRMSE, respectively, relative to the OL. As a measure of the standard

deviation of the errors, the decrease in ubRMSE suggested that the data thinning

strategy effectively mitigated some of the introduction of high-frequency noise (ran-

dom error) at both locations.

The Volga basin-averaged results under the neutral forcings are summarized in

Table 4.3. SWE RMSE increased from 43 mm to 47 mm as fewer observations were

assimilated into the model from once a day to every 15 days. This corroborated

the earlier results that synthetic assimilation indeed added utility to the model; in

the absence of assimilation (i.e., if data thinning approached an infinite amount

of time) the results would revert back to the original OL results. Further, there

was no statistically significant difference between the baseline DA RMSE and 3-day

thinning DA RMSE. In aggregate, these results suggest assimilating the synthetic

∆Tb every 3 days yielded the same amount of SWE errors with daily assimilation.

As fewer observations were assimilated beyond every 3 days, ubRMSE in-

creased from 41 mm (baseline DA) to 45 mm (15-day thinning DA) indicating that

assimilating the noisy observations every few days did not help mitigate the random

noise embedded in the synthetic ∆Tb observations. The bias, however, were statis-

tically significant (at a level of significance of 5%) and decreased from 10 mm (OL)
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Table 4.3: Domain-averaged SWE Statistics for DA thinning experiments from 1

September 2002 to 1 September 2011 under the neutral forcing conditions

Statistics OL DA DA thinning

baseline 3-day 5-day 7-day 10-day 15-day

RMSE [mm] 52 42 43 44 45 46 47

ubRMSE [mm] 49 41 42 43 43 44 45

bias [mm] 10 −5.4 −2.5a −0.73 0.16 1.3 3.6

CR2σ 0.30 0.25 0.26 0.27 0.28 0.28 0.28

Bolda number indicates which experiment yields statistically significant statistics

relative to the Open Loop with a level of significance of 5%.

to −2.5 mm and −0.73 mm when the model simultaneously assimilated with all

six channels every three and five days, respectively, rather than once a day. These

results imply that daily assimilation using all six channels tended to underestimate

SWE (in part due to filter divergence) and may have overconstrained the model,

and hence, often resulted in degraded SWE estimation in terms of bias.

Compared to the baseline DA, all DA thinning strategies enhanced the ability

to better capture the synthetic truth (i.e., larger CR2σ) in part by preventing en-

semble collapse, which was also proven by the bigger SWE ensemble spread of 4.6

mm (3-day thinning DA) relative to 3.3 mm (baseline DA). It can be reasonably

argued that the 3-day thinning data assimilation strategy was better for SWE esti-

mation under the neutral forcing conditions given the statistical results along with

the benefit of a reduction in computational demand.
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4.7.1.3 Effects of Precipitation Bias

Figure 4.3 shows the spatially-averaged statistics for the Volga river basin

using three different sets of boundary (forcing) conditions. All the DA strategies

(including the baseline DA, physically-informed DA, and 3-day thinning DA) had

the best performance in terms of SWE estimation under the positively-biased forcing

conditions in terms of the greatest reduction of RMSE relative to the OL. Compared

to the OL, the RMSE was reduced by approximately 30%, 31%, and 24% with the

baseline DA, physically-informed DA, and 3-day thinning DA, respectively. On the

contrary, DA with the negatively-biased forcing conditions had relatively smaller

improvements with approximately 7.6% (baseline DA), 7.2% (physically-informed

DA), and 11% (3-day thinning DA) reduction in RMSE relative to the OL. Under

the negatively-biased forcing conditions, all the DA strategies even degraded the

SWE estimation in terms of more ubRMSE relative to the OL. The same results

were found for bias and ubRMSE.

These results highlights a unique facet of snow assimilation – it is easier for

the DA system to remove excess mass than to add missing mass. That is, in part,

because the SVM can only make a prediction when snow exists, and hence, can only

update the land surface model when snow is present in the model. This behavior

is not unique to the SVM, but could also be said when a radiative transfer model

is used as the observation operator as part of an ensemble-based DA approach for

snow.
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Figure 4.4: Innovation statistics for ∆Tb10H−18H , ∆Tb10V−18V ,
∆Tb10H−36H , ∆Tb10V−36V , ∆Tb18H−36H , and ∆Tb18V−36V shown as differ-
ent marker shapes. The different marker colors represent different DA
strategies as listed in Table 4.2.

4.7.2 Filter Diagnostics

Figure 4.4 shows the temporal mean (NI) and standard deviation (σNI) of

the normalized innovation sequence (NI) over the study domain under the neu-

tral forcing conditions. In general, the negative NIs computed at ∆Tb10H−18H and

∆Tb10V−18V suggest the SVM-based ∆Tb forecasts had a small negative bias rela-

tive to the synthetic ∆Tb observations. On the contrary, SVM-based ∆Tb10H−36H ,

Tb10V−36V , ∆Tb18H−36H and ∆Tb18V−36V forecasts had positive biases relative to the

synthetic ∆Tb observations.

The σNI (i.e., the standard deviation of the NI) values computed from hori-
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zontally polarized spectral differences were greater than for the vertically polarized

spectral differences. In addition, the spatially-averaged σNI were greater than 1, im-

plying that all DA strategies underestimated the observation and/or forecast errors

for each frequency and polarization combination under the neutral forcing condi-

tions. Such underestimation could be corrected using a fraternal twin experiment

(rather than an identical twin experiment), but is considered well beyond the scope

of this study. The σNI computed at ∆Tb10H−18H and Tb10V−18V were the smallest,

which can be explained by the fact ∆Tb10H−18H , Tb10V−18V are not as sensitive to

shallow snow conditions, and hence, typically exhibit smaller variability during the

entire study period.

Compared to the baseline DA (blue color), the physically-informed DA (red

color) and 3-day thinning DA (black color) had a smaller σNI for each frequency

and polarization combination. It suggested that the prescribed observation error

characteristics are more optimal for the physically-informed DA and 3-day thinning

DA compared to the baseline DA. However, the SVM-based ∆Tb10H−36H , Tb10V−36V ,

∆Tb18H−36H and ∆Tb18V−36V forecasts within the physically-informed DA and 3-day

thinning DA had a relatively larger bias relative to the synthetic ∆Tb observations.

The NI and σNI computed at ∆Tb10H−18H and ∆Tb10V−18V for the 3-day thinning

DA were the closest to 0 and 1, respectively, relative to baseline DA and physically-

informed DA. These results suggest that the observation error characteristics for

∆Tb assimilation in this study may be too simplistic. Observation error standard

deviations as a function of frequency, polarization, and land cover type (i.e., forested

versus non-forested) should be explored in the future.
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4.7.3 Seasonality

To further investigate DA performance over the Volga Basin, the basin-averaged

bias and RMSE as a function of season for positively-biased, negatively-biased, and

neutral forcing conditions are presented in Figure 4.5. Similar patterns were found

for ubRMSE (not shown). As expected, the baseline DA performance showed a

strong seasonal component under all three forcing conditions. During the snow

accumulation period, generally from September to March, DA SWE estimates out-

performed OL in terms of smaller bias and RMSE.
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Figure 4.5: Histograms of monthly Volga basin-averaged SWE bias (first column) and RMSE (second column) under
the neutral (first row), positively-biased (second row), and negatively-biased (third row) forcing conditions. Bias
and root mean squared error (RMSE) were computed by comparing OL or DA SWE ensemble mean against the
synthetic truth. The light gray bar is for the Open Loop (OL) and the black bar is for the baseline DA as listed in
Table 4.2.
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Staring in April, DA performance waned in terms of SWE estimation due to

deep snow conditions and/or wet snow conditions given the limited skill of PMW re-

mote sensing of snow [127]. As a measure of the presence of random error, ubRMSE

had the largest value during April for DA SWE (not shown). The increase in

ubRMSE can be explained, in large part, by the introduction of high-frequency er-

rors originating from the synthetic ∆Tb observations along with the fact that PMW

remote sensing skill is least when the snow is deep and/or wet [127]. One main

reason for the degradation via DA during April was that snow liquid water (i.e.,

liquid water coating the snow grains) was commonplace during the snow ablation

period.

It has been shown that wet snow introduces additional uncertainties in the es-

timation of SWE [31,127]. The presence of liquid water within the snowpack alters

the electromagnetic response from a dry microwave scatter to a wet microwave emit-

ter [31, 32]. When the snow is wet, the general assumptions implicit in ∆Tb-based

remote sensing of snow are violated [31], and hence, the information content in the

∆Tb observations need not be related to snow mass. As an example shown in Fig-

ure 4.6, the correlations between dry (gray plus signs) or wet snow (black dots) and

the SVM-based ∆Tb18V−36V synthetic observations changed dramatically. Namely,

∆Tb18V−36V increased as SWE increased for dry snow. Alternatively, ∆Tb18V−36V

transitioned to a zero (Figure 4.6a) or negative (Figure 4.6b) correlation with SWE

when the snow pack ripens.

It is worth noting that DA had the worst performance in terms of SWE estima-

tion under the negatively-biased forcing conditions in terms of smallest reduction of
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Figure 4.6: Scatter plots (with correlations) between the model dry
snow (gray plus signs) and wet snow (black dots) along with SVM-
based brightness temperature spectral difference ∆Tb18V−36V estimates
for (a) Grid #1 (54.1685◦N, 47.3343◦E) and (b) Grid #2 (49.1489◦N,
54.0778◦E) from 1 September 2002 to 1 September 2011.
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RMSE relative to the OL. The relatively small change in RMSE between the OL and

DA suggested that DA could not significantly improve SWE estimates. In addition,

DA had a larger ubRMSE than OL across the entire snow season. It suggested that

∆Tb assimilation under the negatively-biased forcing conditions was suboptimal.

This latter point highlights the fact that assimilation works better at ameliorating

a positive bias (positively-biased forcings) more so than a negative bias.

4.7.4 Effects of Forest Attenuation

The performance of the snow DA framework in forested regions is explored

here in more detail because the presence of forest canopy can significantly alter

the PMW ∆Tb signal as measured at the top of the atmosphere. More specifically,

a low sensitivity of PMW ∆Tb from terrestrial snow is often observed in densely-

forested areas. Overlying vegetation attenuates the PMW radiation emitted from

the underlying snowpack while simultaneously adding its own contribution to the

signal that is measured by the radiometer [24]. Among all these three frequency

channels (i.e., 10.65 GHz, 18.6 GHz, and 36.5 GHz), microwave emission at 36.5 GHz

is most strongly absorbed by standing vegetation [29]. Consequently, the scattering

signal from the underlying snowpack can be overwhelmed by upwelling microwave

radiation from the canopy [29].

Figure 4.7 shows NICRMSE as a function of forest fraction under the neu-

tral forcing conditions for baseline DA. Similar results were found for other DA

strategies under both the positively-biased and negatively-biased forcing conditions
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Figure 4.7: Histograms of the domain-averaged SWE NICRMSE as a
function of forest fraction under the neutral forcing condition across the
study domain. N is the number of model grid cells. A negative value
of NICRMSE indicates data assimilation (DA) improves SWE estimates
relative to the open loop (OL). Note that the largest improvements occur
in the relatively sparsely-forested region where PMW attenuation is less
pronounced.
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(not shown). Overall, DA improved the SWE estimates relative to OL in the most

sparsely-forested regions (i.e., forest fraction≤0.4). A hypothesis test at a level of

significance of 5% was conducted to investigate whether the forest cover had a sig-

nificant effect on the DA performance. The null hypothesis was that the mean of

NICRMSE for sparsely-forested areas (FF≤0.4) was significantly smaller than the

mean of NICRMSE for densely forested areas (FF>0.4) (i.e., the forest cover has a

negative impact on DA performance). The results suggested the negative effect of

forest was statistically significant for the DA algorithm.

4.7.5 Runoff Estimates

Monthly domain-averaged runoff estimates from the OL and DA were com-

pared against true (synthetic) runoff from September 2002 to August 2011. It is

encouraging to see that all basins improved runoff estimation skill with the baseline

DA, physically-informed DA, and 3-day thinning DA relative to the OL under the

neutral, positively-biased, and negatively-biased forcing conditions.

In general, monthly runoff in the Moskva Oka (OL bias = 0.46 mm) and

lower Volga (OL bias = 0.12 mm) basins were overestimated whereas runoff in

the upper Volga (OL bias = −3.8 mm) and Kama basins (OL bias = −5.5 mm)

were underestimated under the neutral forcing conditions. This behavior can be

explained by the spatial pattern of precipitation as shown in Figure 3.4f). MERRA-

2 (synthetic truth) precipitation was greater than the neutral scenario for the OL

run precipitation in the Kama and upper Volga basins, and hence, the runoff from
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the synthetic truth run was greater than the OL run in the Kama and upper Volga

basins.

As a measure of overall hydrograph fit, Nash-Sutcliffe efficiency (NSE) was

calculated for all monthly instances when either the synthetic truth or OL/DA runoff

estimation was nonzero [182]. All three DA strategies had greater NSE (NSE >

0.84) than the OL (NSE = 0.82) for all four sub-basins thereby highlighting the

DA skill in runoff estimation beyond simply estimating the mean of the synthetic

truth under the neutral forcing conditions. In addition, DA (baseline) had better

performance in the Moskva Oka (RMSE = 8.43 mm) and lower Volga (RMSE =

3.55 mm) than the upper Volga (RMSE = 15.6 mm) and Kama basins (RMSE =

15.4 mm).

For the Volga basin runoff estimation, the physically-informed DA had the

best performance in terms of the greatest reduction of RMSE (relative to the OL,

30.3%) compared to the baseline DA (30.2%) and 3-day thinning DA (23.7%) under

the positively-biased forcing conditions. This result further illustrated the fact that

assimilation worked better when forced with a positive precipitation bias more so

than a negative precipitation bias.

It is worth noting that monthly runoff estimation showed a strong seasonal-

ity effect. The spring season had the largest magnitude of runoff among the four

different seasons due to the snow melt. All three DA strategies yielded better per-

formance in the runoff estimation during the spring season compared to the OL in

terms of bigger NSE and smaller RMSE as shown in Figure 4.8a) and 4.8b), respec-

tively. Most notably during the positively-biased forcing conditions, DA strategies
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Figure 4.8: Histogram of the Volga basin monthly runoff Nash-Sutcliffe
efficiency (NSE) under the neutral forcing conditions and RMSE under
the positively-biased forcing conditions. (a) histogram of the Volga basin
monthly runoff Nash-Sutcliffe efficiency (NSE) under the neutral forcing
conditions and (b) RMSE under the positively-biased forcing conditions.
Bars marked with ∗ indicate which experiment yields statistically signif-
icant statistics with a level of significance of 5%.
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showed significant improvement over the OL (Figure 4.8b). These results suggest

DA effectively improved the model performance in capturing relatively high runoff.

4.8 Conclusions

A series of synthetic twin experiments were conducted to explore improvements

in the estimation of SWE in the Volga basin based on prescribed precipitation

errors. An ensemble Kalman filter (EnKF) was used to merge synthetic PMW

brightness temperature spectral differences (∆Tb) into the NASA Catchment land

surface model where well-trained support vector machines served as the observation

operator.

The results suggested that simultaneous assimilation of ∆Tb10H−36H , ∆Tb10V−36V ,

∆Tb10H−18H , ∆Tb10V−18V , ∆Tb18H−36H , and ∆Tb18V−36V could degrade SWE estima-

tion due to divergence from the synthetic truth at some experimental locations.

One reason for DA degradation was due to simultaneous assimilation of all six ∆Tb

channels and the presence of signal saturation during deep snow conditions. To help

mitigate this degradation, a physically-informed approach that used the prior SWE

ensemble mean as an indicator was explored. That is, ∆Tb18H−36H , ∆Tb18V−36V

, ∆Tb10H−36H , and ∆Tb10V−36V were assimilated during shallow-to-medium snow

conditions (i.e., SWE ≤ 120 mm), while simultaneously assimilating ∆Tb10H−18H ,

∆Tb10V−18V , ∆Tb10H−36H , and ∆Tb10V−36V during medium-to-deep snow conditions

(i.e., SWE > 120 mm). The physically-informed assimilation approach helped im-

prove SWE estimation at some locations but not all.
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In addition, a simple data thinning assimilation strategy was explored to fur-

ther mitigate the high-frequency noise embedded in synthetic AMSR-E ∆Tb ob-

servations. That is, the ∆Tb channels were assimilated every 3-, 5-, 7-, 10-, and 15

days rather than daily. The results suggested DA with 3-day data thinning modestly

reduced Volga basin averaged bias from −5.5 mm to −2.5 mm under the neutral

forcing conditions. CR2σ was slightly increased from 0.25 (baseline DA) to 0.26

(3-day thinning DA).

DA performance under the neutral, positively-biased, and negatively-biased

forcing conditions were investigated. The results suggest AMSR-E ∆Tb DA per-

formed the best under the positively-biased conditions in terms of SWE estimation

(relative to the OL). This highlights a unique facet of snow assimilation that it is

easier for the DA system to remove excess mass than to add missing mass. This

is, in part, due to the fact that the snow-centric DA update can only happen when

snow exists in the land surface model.

The investigation in forested regions highlighted the significant negative im-

pact of dense forest on SWE estimation. This is due to the fact that the presence

of forest canopy can further alter the PMW ∆Tb signal as measured at the top of

the atmosphere. Given the physical limitations of coarse-scale PMW radiometry of

snow in forested areas, such scenarios should likely be excluded from the snow DA

update in densely-forested areas.

SWE estimation demonstrated a strong seasonality. That is, DA SWE es-

timates outperformed OL in terms of smaller RMSE, bias, and ubRMSE during

the snow accumulation period. However, DA SWE estimates were often degraded
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during the ablation period due to the presence of liquid water coating the snow

grains. The reason for this is that the presence of liquid water within the snowpack

elicits a shift in the electromagnetic response from a dry microwave scatter to a

wet microwave emitter, and hence, the assumptions implicit in ∆Tb-based remote

sensing of snow are regularly violated. The results of runoff estimation also showed

a seasonal pattern. Among all four seasons, DA runoff estimates had the best per-

formance relative to the OL during the spring season. This was consistent with the

fact that DA SWE estimates were the best during the winter season, and therefore,

the runoff derived from snowmelt was vastly improved during the spring season.

In summary, this study investigated new and novel AMSR-E ∆Tb assimilation

approaches to further improve SWE estimation. Although the physically-informed

and data thinning approach showed no significant improvement in the ensemble

mean estimate of SWE, the ensemble spread increased, and as such, was able to en-

capsulate the synthetic SWE truth. Further, the inflated ensemble spread generally

provided more reasonable representation of model SWE uncertainty.
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Chapter 5: Estimating Terrestrial Snow Mass via Multi-sensor As-

similation of Synthetic AMSR-E Brightness Temperature

Spectral Differences and Synthetic GRACE Terrestrial

Water Storage Retrievals

5.1 Motivation and Objective

In this chapter, a multi-variate, multi-sensor assimilation framework is pro-

posed to enhance model-based terrestrial snow estimates across a large watershed

in Russia. The feasibility and benefits of jointly assimilating synthetic AMSR-E

∆Tb and GRACE TWS retrievals into the Catchment land surface model (CLSM;

Section 2.2) [80] in Volga basin (Section 3) are investigated using an identical twin

synthetic experiment [175]. To assess the performance of multi-sensor assimilation,

the Open Loop model (OL; model without assimilation), assimilation of synthetic

AMSR-E ∆Tb only, assimilation of synthetic GRACE TWS only, and joint assimila-

tion of synthetic AMSR-E ∆Tb and GRACE TWS are systematically evaluated. The

study domain lacks sufficient ground-based snow measurements to evaluate the hy-

drologic cycle estimates produced by the land surface model. Therefore, a synthetic,

identical twin experiment [175] was employed in this study (discussed in Section 3).
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The major motivation and rationale for the synthetic identical twin experiment is

that “true” model states can be generated and subsequently harnessed as a sys-

tematic means of evaluating land surface model improvements with and without

assimilation (Figure 3.3).

5.2 Synthetic Truth and Synthetic Observations

The synthetic “truth” is generated from the best representation of the land

surface model. Afterwards, state variables from this model representation, including

SWE, soil moisture, runoff, and surface energy fluxes, are perturbed with a realistic

amount of observation error (details provided below) as to generate a synthetic

set of observations (retrievals) for later use during assimilation that represents a

reasonable and realistic representation of those encountered in the real-world.

5.2.1 Synthetic AMSR-E ∆Tb Observations

As discussed in Section 4.2, the synthetic ∆Tb “truth” is generated using

a well-trained SVM that maps the relevant model states (i.e, SWE, snow liquid

water content, top-layer soil temperature, and skin temperature) derived from the

synthetic truth into the corresponding observation space (i.e., ∆Tb) at 25-km spatial

resolution and daily temporal resolution. The synthetic ∆Tb observations include

∆Tb10H−36H , ∆Tb10V−36V , ∆Tb10H−18H , ∆Tb10V−18V , ∆Tb18H−36H , and ∆Tb18V−36V .
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5.2.2 Synthetic GRACE TWS Retrievals

The synthetic GRACE TWS retrievals are generated to mimic the level-3,

monthly GRACE TWS (unscaled) product based on the RL05 spherical harmonics

[183]. The generation of GRACE TWS “truth” starts with a linear observation

operator (Equation 2.1) to vertically aggregate the monthly model states from a

25-km model grid. Next, a Gaussian spatial averaging function with a 300-km

full width at half maximum is used to spatially aggregate the modeled TWS on

the 25-km model grid up to a spatial resolution of 1◦ × 1◦, which corresponds

to the GRACE TWS retrieval spatial resolution [85]. The last step is to corrupt

the synthetic GRACE TWS “truth” with zero-mean, additive Gaussian noise that

is assumed to be temporally uncorrelated [21, 22, 81, 98]. Given the fact that the

effective spatial resolution of the GRACE TWS retrievals are >150,000 km2, the

errors in neighboring GRACE TWS retrieval grid cells on the 1◦ × 1◦ grid (∼10,000

km2) are spatially correlated [7,105]. Therefore, the prescribed Gaussian errors are

generated with a spatial correlation length (radius) of 300 km [98]. The horizontal

error correlation is directly computed with the function:

ρ(bi, bj) =
exp(−d(bi, bj))

λ
(5.1)

where d(bi, bj) is the distance between grids bi and bj; and λ is the error correlation

length (i.e., 300 km).
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5.3 Model Perturbation Setup

One important factor in the success of data assimilation is the appropriate

characterization of the model forecast errors, which are normally modeled by per-

turbing the forcing variables (e.g., precipitation) or/and model prognostic variables

of each ensemble member [17, 133]. Such perturbations can be temporally and/or

spatially correlated [137,184,185].

In line with previous work [22, 27, 58, 81, 83–85, 171], horizontal correlation

lengths of the forcing fields, including the precipitation, shortwave radiation, and

longwave radiation, are set to be isotropic at 2◦ while the temporal correlations are

chosen as three days in order to represent the error scale of precipitation dynamics

[175]. Error cross correlations are also imposed between precipitation and shortwave

radiation (−0.8), precipitation and longwave radiation (0.5), and shortwave and

longwave radiation (−0.5). The model prognostic state perturbations are chosen

relative to the particular characteristics of the observations [84, 85, 137, 184, 185].

This work adopted the model state perturbation settings from previous GRACE only

assimilation studies [84] but with a revised SWE error perturbation spatial length

of 0.25◦ to correspond with the spatial resolution of the synthetic AMSR-E ∆Tb

observations (i.e., 25-km). The perturbation settings are summarized in Table 5.1.

An ensemble size of N = 24 replicates was chosen as a suitable representation of

the low-rank approximation of the true error probability distribution [22,58,84,85].
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Table 5.1: Parameters for meteorological forcing perturbations in the assimilation

experiments

Cross-correlation

Model Variable Type Standard Deviation x, ycorr tcorr(day) pcp sw lw

pcp Ma 0.5 2◦ 3 NA −0.8 0.5

sw M 0.3 2◦ 3 −0.8 NA −0.5

lw Ab 20 W m−2 2◦ 3 0.5 −0.5 NA

catdef A 0.15 kg m−2 h−1 2◦ 1

srfexc A 0.06 kg m−2 h−1 2◦ 1

swe M 0.0012 0.25◦ 1

aMultiplicative (M) or badditive (A) perturbations are applied to precipitation (pcp),

downwelling shortwave radiation (sw), longwave radiation (lw), catchment deficit (catdef),

surface excess (srfexc), and snow water equivalent (swe). Spatial correlations are indicated

as x, ycorr and temporal correlations as tcorr.

5.4 Data Assimilation Methods

In this study, three sets of assimilation experiments were conducted:1) syn-

thetic AMSR-E ∆Tb only assimilation, 2) synthetic GRACE TWS only assimila-

tion, and 3) joint (a.k.a. dual) assimilation of synthetic AMSR-E ∆Tb and GRACE

TWS retrievals. The synthetic single-sensor assimilation experiments (i.e., AMSR-E

only or GRACE only) were conducted first as comparisons of marginal gain relative

to the synthetic, joint assimilation experiment. All assimilation experiments were

performed using the ensemble Kalman filter (EnKF; Section 2.5), which is a Monte

Carlo implementation of a nonlinear filtering problem [135].

The calculation of increments in a one-dimensional (1-D) EnKF (section 4.4)
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is different from that of a three-dimensional (3-D) EnKF (section 5.4.2). In the

1-D EnKF, the computational units (i.e., model grids) are processed independently

from one another, which suggests only error correlations between model state vari-

ables from the same grid are taken into account [175]. On the contrary, the 3-D

EnKF takes into account horizontal error correlations of model states from different

(adjacent) model grids.

5.4.1 Synthetic AMSR-E ∆Tb Assimilation

As discussed in Section 4.4, the synthetic, daily AMSR-E ∆Tb assimilation

framework employed the 1-D EnKF [58]. Only SWE was updated in the model

via simultaneous assimilation of ∆Tb10H−36H , ∆Tb10V−36V , ∆Tb10H−18H , ∆Tb10V−18V ,

∆Tb18H−36H , and ∆Tb18V−36V observations (Table 5.2). Other snow-related states

(i.e., snow depth and snow-specific heat content) were recomputed based on the

updated SWE assuming the snow density and snow temperature in each of the

modeled snow layers remained constant before and after the update [22].
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Table 5.2: Parameters for the single-sensor AMSR-E ∆Tb and GRACE TWS assimilation frameworks. The same observation

types and parameters are also used during dual assimilation (AMSR-E + GRACE DA).

Framework Details AMSR-E ∆Tb DA GRACE TWS DA

DA type one-dimensional (1-D) EnKF three-dimensional (3-D) EnKF

State vector (xji,t) SWE catdef and SWE

aSynthetic Obs. ∆Tb10H−36H , ∆Tb10V−36V , ∆Tb10H−18H TWS

∆Tb10V−18V , ∆Tb18H−36H , ∆Tb18V−36V

bObs. Spatial Resolution EASEv2 25 km 3◦ × 3◦

cObs. Temporal Resolution Daily Monthly

dObs. σerror 3 K 15 mm

eObs. ρerror – 2◦

frI – 6◦

aSynthetic Obs. is synthetic observations. bObs. Spatial Resolution is observation spatial resolution.

cObs. Temporal Resolution is observation temporal resolution. dObs. σerror is observation error standard

deviation. eObs. ρerror is observation error spatial correlation. frI is localization radius.

91



5.4.2 Synthetic GRACE TWS Assimilation

Synthetic monthly GRACE TWS assimilation employed a 3-D EnKF frame-

work that can effectively distribute information horizontally as well as vertically in

the TWS space [84,85]. Two model states, including catchment deficit (catdef) and

SWE, in each 25-km model grid were updated by assimilating synthetic GRACE

TWS retrievals each month within a prespecified radius of influence (see H(xj−)|I,T

in Equation 5.2; Table 5.2) . The update equation can be expressed as:

xj+i,t = xj−i,t +KI→i,T→t(YI,T −H(xj−)|I,T ) (5.2)

where xj−i,t and xj+i,t represent the jth replicate of model states (i.e., catdef and SWE)

before and after the update on day t within the month T at a 25-km (i) model grid,

respectively. YI,T is the perturbed, synthetic GRACE TWS retrievals for the month

T . Given the fact that the effective spatial resolution of the GRACE TWS retrievals

(and the synthetic GRACE TWS retrievals by construct) is around 300-400 km [183],

only one 1◦ × 1◦ synthetic TWS observation out of every three in the latitude and

longitudinal directions were used in the update routine [85]. This was done so

that the spatial resolution of assimilated synthetic TWS retrievals was effectively

3◦ × 3◦ (I) and served as a means of mitigating the presence of spatially-correlated

errors with the 1◦ × 1◦ TWS retrievals. H(·)|I,T is the linear observation operator

(Equation 2.1) that maps the model states into TWS observation predictions within

the monthly time window (T ).

The model TWS estimates at 25-km resolution were aggregated spatially up to
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1◦ × 1◦ resolution (to match with the assimilated synthetic TWS retrievals) by using

a Gaussian filter with a 300 km full width at half maximum. Next, a covariance lo-

calization technique was applied in order to collect all of the observation predictions

within a prespecified influence radius (rI = 6◦; Table 5.2) centered around the given

model grid (i) [84, 85, 175,186]. The daily model TWS estimates were converted to

monthly TWS estimates using a simple aggregation operator calculated as:

H(xj−)|I,T =
1

Ndays

1

Ngrid

Ndays∑
t=t1

Ngrid∑
k=1

[TWSi,j,t × F (dist, area)] (5.3)

where Ndays is the number of days in the month T and Ngrid is the number of 25-km

model grid cells within the influence radius (rI = 6◦; Table 5.2) around the given

model grid (i). TWSi,j,t is the jth replicate of the model grid (i) terrestrial water

storage for a given day (t) in the month T . F (dist, area) is a weighting factor that

was calculated based on the model grid area (area) and distance (dist) between the

model grid (i) and the synthetic TWS observation (I).

KI→i,T→t is the Kalman gain matrix weighing the relative uncertainties of the

model forecast and the observations. The gain transforms the TWS innovations

(i.e., ZI,T −H(xj−)|I,T ) in observation space into the analysis increments (i.e., ∆xji,t

= xj+i,t − x
j−
i,t ) in model grid space, and can be expressed as:

KI→i,T→t = C−xi,tH(xj)|I,T [C−H(xj)H(xj)|I,T +RI,T ]−1 (5.4)

where C−xi,tH(xj) is the error cross-covariance between the modeled states, includ-

ing catdef and SWE, and the observation prediction (TWS) prior to the update;

C−H(xj)H(xj)|I,T is the sample error covariance of the jth replicate of monthly (T )

TWS observation predictions prior to the update; and RI,T is the observation error
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covariance that is a temporally-uncorrelated Gaussian error (zero mean; standard

deviation equal to 15 mm; see Table 5.2). The spatial error correlation length is set

to be 2◦ as noted in Table 5.2 [84,85].

The analysis increments (i.e., KI→i,T→t(YI,T −H(xj−)|I,T ) in Equation 5.2) are

first calculated for each day (t) within the month T . Next, the average of the daily

increments are applied to the initial model states on the first day of the month T

and the model is then restarted with the updated initial conditions.

5.4.2.1 Physically-Informed TWS Update

SWE is expected to be the dominant component of TWS that changes during

the snow season in high latitude basins [20] such as the Volga basin explored in this

study. During the snow accumulation season in these cold, high latitude basins,

there is relatively little (or no) snowmelt that can infiltrate into the subsurface.

Hence, the subsurface water storage remains relatively unchanged during the snow

accumulation season as compared to other times of the year when snowmelt or

rainfall can easily infiltrate into the subsurface, and hence, alter the subsurface

storage. Therefore, snow mass change is the main contributor to the variability of

TWS (instead of subsurface water storage change) during the snow accumulation

season. When the snow starts to melt and infiltration increases, both the subsurface

water storage changes and the snow mass changes exert a large influence on TWS

change.

In consideration of these first-order physics as applied in snow-dominated,
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high latitude basins, this study modified the original application of the analysis

increments (denoted as baseline GRACE DA; see section 5.4.2). That is, a heuristic

is applied to each ensemble replicate such that when snow accumulates on the ground

without any snowmelt (i.e., SWE> 0 and snmelt = 0), the modified SWE increments

are equal to the sum of SWE and the negative value of catdef increments calculated

based on Equation 5.2. In other words, the computed increments via Equation 5.2

are assumed to operate only on SWE because it is assumed that SWE is the only

component of TWS that is changing. During the snow ablation phase (i.e, SWE >

0 and snmelt > 0), the modified SWE increments are equal to the half of the sum

of SWE and the negative value of catdef increments while the other half goes to the

modified catdef increments (Table 5.3). In other words, the computed increments

via Equation 5.2 are assumed and operate equally between SWE and subsurface

storage. It is worth reiterating here that a negative catdef yields a positive change

in subsurface storage (Equation 2.1). This new, modified GRACE DA is denoted

as Physically-informed GRACE DA hereafter.

5.4.3 Synthetic Dual Assimilation

The dual assimilation (AMSR-E + GRACE DA) merges the daily AMSR-E

∆Tb DA with the monthly GRACE TWS DA [85]. It is a “two-pass” procedure

that combines the concepts of the single-sensor AMSR-E DA and GRACE DA as

illustrated in Figure 5.1. During the first pass for a given month, GRACE TWS as-

similation is conducted provisionally in conjunction with assimilation of the AMSR-
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Figure 5.1: Simplified flowchart of dual assimilation for AMSR-E ∆Tb
and GRACE TWS retrievals (AMSR-E + GRACE DA).
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Table 5.3: Physically-informed, heuristic TWS update strategy appliable to both

GRACE-only assimilation and dual assimilation (AMSR-E + GRACE DA).

Application of Analysis Increments

Model Scenario SWE Increments catdef Increments

SWE > 0 and snmelt = 0 ∆xSWE −∆xcatdef 0

SWE > 0 and snmelt > 0 0.5 ×(∆xSWE −∆xcatdef ) 0.5 ×(∆xSWE −∆xcatdef )

SWE = 0 ∆xSWE ∆xcatdef

SWE is snow water equivalent; catdef is catchment deficient; snmelt is snowmelt flux.

∆xSWE and ∆xcatdef is SWE and catdef increments, respectively, calculated from

Equation 5.2.

E ∆Tb observations. That is, the TWS observation predictions (i.e., H(xj−)|I,T

in Equation 5.2) is calculated based on the updated model states after undergo-

ing single-sensor AMSR-E ∆Tb DA. The provisional AMSR-E ∆Tb assimilation in

the first run ensures that the GRACE TWS DA only corrects modeled TWS er-

rors that are not eventually corrected by the AMSR-E ∆Tb DA. At the end of the

same month, the increments are calculated in the same manner as the single-sensor

GRACE TWS DA outlined in section 5.4.2. Afterwards, the model is then rewound

to the beginning of the month at which point the TWS increments are applied to the

initial conditions. The second run of the month is to conduct the AMSR-E ∆Tb DA

as stated in section 5.4.1 with the updated initial conditions. The same “two-pass”

procedure is then repeated for the next month until the end of the simulation. Dual

assimilation employs the same observation types and parameters as the single-sensor

AMSR-E ∆Tb DA and GRACE TWS DA (Table 5.2).

97



5.5 Validation Approach

The main advantage of the synthetic, identical twin experiment is the gener-

ation of the synthetic “truth” for use during OL and DA evaluation. The synthetic

truth provides not only SWE and TWS estimates for using during comparison, but

all other states and fluxes associated with the hydrologic cycle. In addition, several

different metrics are used for the validation activities: (1) root mean squared error

(RMSE), (2) unbiased root mean squared error (ubRMSE) [187], (3) bias, and (4)

anomaly correlation coefficient (anomaly R). The anomaly R is computed by first

determining the mean seasonal (climatological) cycle over the course of the study

period. The second step is to remove the mean seasonal cycle from the original

time series. After that, the anomaly R is computed as the Pearson correlation coef-

ficient (R; AppendixA) between the synthetic truth ensemble mean anomalies and

the corresponding OL or DA ensemble mean anomalies. The advantage of anomaly

R is that it focuses on the skill of the model at estimating the inter-annual variabil-

ity [188]. In addition, the Nash-Sutcliffe efficiency (NSE; [182]) is selected for use

during the runoff evaluation. All statistics are calculated for instances only when

either the synthetic SWE truth and OL/DA SWE estimates are nonzero, which

yields a more rigorous comparison. Additional details about these calculations are

provided in AppendixA.
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5.6 Results and Discussion

In this section, the hydrological estimates, including SWE, subsurface water

storage, TWS, and runoff, and their subsequent changes via AMSR-E ∆Tb DA,

baseline and physically-informed GRACE TWS DA, and dual DA are quantified

by validating against the synthetic truth. Figure 5.2a), 5.2b), and 5.2c) show the

Volga basin-averaged bias, RMSE, and ubRMSE, respectively, with 99% confidence

intervals (CI) calculated based on daily SWE, subsurface water storage (subsrf), and

TWS. The anomaly R (Figure 5.2d) is calculated based on monthly SWE, subsrf, and

TWS. Runoff comparison (Figure 5.6) is based on monthly basin-averaged runoff,

particularly during the snow ablation period (from the March to May) since this

study focuses mostly on the change in snow mass.

5.6.1 AMSR-E ∆Tb Assimilation (AMSR-E DA)

AMSR-E ∆Tb DA yields marginal improvements in snow mass assimilation

that are consistent with the work by [58] and [59]. The SWE estimates are im-

proved with approximately 8.43%, 13.1%, and 4.45% reduction of RMSE, bias,

and ubRMSE relative to OL, respectively (Figure 5.2). However, the interannual

variability (anomaly R) of SWE is degraded by AMSR-E DA relative to OL (Fig-

ure 5.2d). SWE degradation often occurs in high latitude areas (e.g., northern parts

of the upper Volga and Kama basin; Figure 5.3g) that are colocated with deep snow

and dense forest fraction (>0.5; Figure 3.1b). Under such conditions, AMSR-E

PMW ∆Tb synthetic observations typically suffer from signal saturation due to the
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deep snow [26–29] and signal attenuation due to the forest cover [24]. Furthermore,

the simultaneous assimilation of six different ∆Tb’s may also result in degraded per-

formance by the EnKF. For example, during shallow snow conditions, ∆Tb10−18 is

more informative of soil moisture rather than snow mass [178], hence, the assimila-

tion of ∆Tb10−18 may introduce spurious errors into the SWE estimates during the

EnKF update. Finally, the presence of high-frequency noise and non-SWE related

signals embedded in the AMSR-E ∆Tb synthetic observations further degrade the

SWE estimates by introducing more random errors during the update.

The SWE improvements via AMSR-E DA further influence the subsurface wa-

ter storage estimates. AMSR-E DA significantly improved subsurface water storage

estimates with a RMSE reduction of 7.67% relative to the OL (Figure 5.2b). Similar

to SWE estimation, AMSR-E DA improves subsurface water storage estimates the

most in Moskva Oka and lower Volga basins with approximately 11.8% and 7.66%

reduction of RMSE (relative to OL), respectively. The interannual variability of

subsurface water storage is also improved via AMSR-E DA (anomaly R = 0.14)

compared to OL (anomaly R = 0.10).

Given the fact that snow is a major component of TWS, the improvement

in SWE estimates indicates the improvement of TWS estimates via AMSR-E DA.

The Volga-basin averaged RMSE is reduced from 76.2 mm (OL) to 67.8 mm. Con-

sistent with SWE estimates, the Moskva Oka and lower Volga basins have better

performance in TWS estimation compared to other two subbasins.
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Figure 5.2: Histograms of Volga basin-averaged statistics including (a) bias, (b) root-mean-square-error (RMSE),
(c) unbiased-root-mean-square-error (ubRMSE), and (d) anomaly correlation coefficient (R) of snow water equiv-
alent (SWE), subsurface water storage (subsrf), and terrestrial water storage (TWS) for the open loop (OL; no
assimilation), AMSR-E DA, baseline GRACE (Bs-GRACE) DA, Physically-informed GRACE (Phy-GRACE) DA,
and Dual (AMSR-E + Physically-informed GRACE) DA. All histograms are supplemented with 99% confidence
intervals. Bars marked with ∗ indicate DA yields statistically significant improvements with a level of significance
of 5% compared to the OL.
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Figure 5.3: Spatial maps of bias [column 1] and root-mean-square-error (RMSE) of open loop [column 2] and
[columns 3-5] changes in RMSE (∆RMSEDA−OL) due to [column 3] AMSR-E data assimilation (DA); [column 4]
Physically-informed GRACE DA; [column 5] Dual (AMSR-E + physically-informed GRACE) DA experiments for
snow water equivalent (SWE; first row), subsurface water storage (subsrf; second row), and terrestrial water storage
(TWS; third row) across the time period from 1 September 2002 to 31 August 2011.
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5.6.2 GRACE TWS Assimilation (GRACE DA)

GRACE TWS DA, including both baseline and physically-informed versions

of the DA algorithm, significantly improve SWE estimates compared to OL. Com-

pared to baseline GRACE DA, physically-informed GRACE DA yields better SWE

estimates with approximately 80.0% and 15.5% reduction of bias and RMSE (rela-

tive to OL), respectively (Figure 5.2). SWE degradation using physically-informed

GRACE DA approach mainly occurs in the areas where the OL has relatively good

performance (e.g., the middle parts of Volga basin; Figure 5.3j). Under such con-

dition, the assimilation of GRACE TWS retrievals introduces unwanted errors that

ultimately degrade the SWE estimates. In addition, the OL has more SWE but

less TWS than the synthetic truth in the northern parts of the Volga basin (Fig-

ures 5.3a and 5.3c). Therefore, the assimilation of synthetic TWS retrievals tends

to add snow mass, which results in further SWE overestimation relative to the syn-

thetic truth. It is worth noting the clear edge of the RMSE pattern (e.g., the middle

part of the Volga basin) is due to the forcing (i.e., GLDAS) resolution, which also

reflects the importance of accurate forcings in the representation of TWS and its

constituent components.

Compared to the OL, baseline GRACE DA tends to overestimate subsurface

water storage over the Volga basin (Figure 5.2a), whereas the physically-informed

GRACE DA using the modified update strategy (Table 5.3) has statistically signif-

icant improvements in subsurface water storage estimates. The RMSE and bias of

subsurface water storage decrease from 66.1 mm and 3.81 mm (baseline GRACE
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DA) to 57.8 and −1.77 mm (physically-informed GRACE DA), respectively. The

modified update strategy distributes the analysis increments to SWE and subsur-

face water storage more accurately. The interannual variability of subsurface water

storage is also significantly improved via physically-informed GRACE DA compared

to the OL at the level 5% (Figure 5.2d). Similar to GRACE DA SWE estimates,

subsurface water storage degradation mainly occurs in the areas where the OL sub-

surface water storage estimates are close to synthetic truth, and hence, there is

relatively little room for improvement.

On the topic of TWS estimation, physically-informed GRACE DA slightly

outperforms baseline GRACE DA in terms of smaller RMSE. More importantly,

physically-informed GRACE DA enhances the accuracy of TWS discretization into

its constituent components. As shown in Figure 5.4c, the example time series

of Volga basin-averaged TWS ensemble mean for the baseline (green color) and

Physically-informed GRACE DA (blue color) are almost identical in the significant

improvements over the OL. Compared to the baseline GRACE DA, the time series of

Volga basin-averaged SWE (Figure 5.4a) and subsurface water storage (Figure 5.4b)

from the physically-informed GRACE DA more closely match the synthetic truth

(black circles). The RMSE calculated based on the Volga basin-averaged SWE and

subsurface water storage (from 1 September 2002 to 31 August 2011) is reduced from

27.5 mm and 22.9 mm (baseline GRACE DA) to 19.2 mm and 17.1 mm (physically-

informed GRACE DA), respectively. During the snow accumulation season from

the December to March, the physically-informed GRACE DA adds more mass to

SWE and less mass to subsurface water storage that results in more accurate SWE
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and subsurface water storage estimates relative to the baseline GRACE DA (smaller

RMSE).
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Figure 5.4: Time series of Volga basin-averaged (a) snow water equivalent (SWE), (b) subsurface water storage
(subsrf), and (c) terrestrial water storage (TWS) ensemble mean derived from the synthetic truth (Syn. Truth),
Open Loop, baseline GRACE (Bs-GRACE) DA, physically-informed GRACE (Phy-GRACE) DA, and dual (AMSR-
E + phy-GRACE) DA for 1 September 2004 to 1 September 2007.
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5.6.3 Dual Data Assimilation (AMSR-E ∆Tb + GRACE TWS DA)

Dual DA merges the AMSR-E ∆Tb DA and physically-informed GRACE TWS

DA procedures. As expected, the results suggest that dual assimilation combines

the characteristics of each of the two single-sensor assimilation routines. Dual DA

reduces the RMSE (Figure 5.2b) of SWE estimates by 14.1% relative to the OL,

which falls between the physically-informed GRACE DA (15.5%) and AMSR-E DA

(12.7%) results. Similar results are found for SWE ubRMSE and bias (Figure 5.2a

and 5.2b). However, the SWE interannual variability is degraded.

Dual DA has the best performance in SWE estimation in the Moskva Oka

and upper Volga basins (relative to OL and single-sensor DAs) in terms of the

smallest RMSE (Figure 5.3m). Similar results are found for lower Volga basins.

However, dual DA tends to degrade SWE estimates in some parts of Kama basin

(Figure 5.3m). The assimilation of both synthetic ∆Tb and TWS retrievals introduce

more errors into the system that results in SWE degradation (RMSE = 58.2 mm)

compared to single-sensor AMSR-E DA (RMSE = 55.2 mm) and physically-informed

GRACE DA (RMSE = 54.8 mm) in the Kama basin where the OL has relatively

good performance.

As mentioned earlier, OL has more SWE (Figure 5.3a) but less TWS (Fig-

ure 5.3c) than the synthetic truth in the northern parts of the Kama basin due to

the differences between the GLDAS and MERRA-2 forcings (Figures 3.4c and 3.4d).

Therefore, the assimilation of synthetic ∆Tb observations removes snow mass whereas

the assimilation of synthetic TWS retrievals adds snow mass to the system. The
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Figure 5.5: Example time series (from 1 September 2005 to 30 April
2006) of snow water equivalent (SWE) increments for one grid cell
(55.5191◦N, 57.7089◦E) in the Kama basin via dual DA (AMSR-E +
physically-informed GRACE DA). The increments calculated based on
AMSR-E ∆Tb DA are shown as black dash lines while the increments
introduced by the Physically-informed GRACE DA are shown as gray
bars.

juxtaposed SWE increments introduced by assimilation of synthetic ∆Tb and TWS

retrievals degrades the SWE estimates in the Kama basin. Figure 5.5 shows SWE

increments (∆SWE) in one grid cell in the Kama basin that were introduced by the

AMSR-E-run (i.e., the assimilation of ∆Tb synthetic observations) and GRACE-run

(i.e., the assimilation of TWS synthetic retrievals) during dual DA. As expected,

SWE increments introduced by the AMSR-E-run are negative whereas those intro-

duced by the GRACE-run are positive. Such a juxtaposed relationship of increments

was also reported by Tian et al. [101] and Girotto et al. [85].

Similar to dual DA SWE estimation, the statistics for subsurface water storage

via dual assimilation fall between those of the AMSR-E DA and physically-informed
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GRACE DA results. Compared to the assimilation of synthetic ∆Tb observations,

the assimilation of GRACE synthetic TWS retrievals has a larger impact on the

subsurface water storage change (Figure 5.3n). Dual DA has the best estimation

of subsurface water storage in terms of bias (−0.98 mm; Figure 5.2a) compared

to that of the OL (−46.1 mm), AMSR-E DA (−39.3 mm), and physically-informed

GRACE DA (−1.77 mm). Similar to the single-sensor, physically-informed GRACE

DA, subsurface water storage degradation via dual DA mainly occurs the areas where

the OL has relatively good performance such as the middle and northern parts of

the Volga basin (Figure 5.3n).

Dual DA has the best TWS estimation in terms of smallest RMSE (66.4 mmm)

compared to the OL (76.2 mm), AMSR-E DA (67.8 mm), and physically-informed

GRACE DA (67.8 mm). In addition, dual DA maintains the improvements in TWS

discretization introduced by the physically-informed GRACE DA. As shown in Fig-

ure 5.4, dual DA (red color) is equally adapt at capturing the SWE, subsurface water

storage, and TWS synthetic truth comparable to the physically-informed GRACE

DA. The change in subsurface water storage and TWS estimates is mainly caused

by the assimilation of synthetic TWS retrievals, which is consistent with the work

by Girotto et al. [84] and Girotto et al. [85]. The pattern of TWS degradation is

consistent with that of SWE and subsurface water storage (Figure 5.3o).
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5.6.4 Runoff Estimates

In order to investigate the runoff change due to snow mass, runoff estimates

during the snow ablation period (March, April, and May) are investigated. In

general, the runoff estimates are consistent with SWE estimates via single-sensor

or dual DA (Figure 5.6). The single-sensor AMSR-E DA, baseline and physically-

informed GRACE DA, and dual DA procedures improved runoff estimates relative to

the OL for all basins during the snow ablation period expect the Kama basin. Dual

DA tends to overestimate the runoff in the Kama basin, which is consistent with the

SWE degradation associated with the juxtaposed increments cased by simultaneous

assimilation of synthetic ∆Tb and TWS retrievals as discussed in Section 5.6.3.

5.6.5 Ensemble Spread Diagnostics

The ensemble spread is typically used as a proxy for the model error covari-

ance [169,170]. The reduction of ensemble spread does not necessarily mean better

estimates compared to the synthetic truth. In this study, the ensemble spread is

defined as the time-averaged ensemble standard deviation (σ) across the study pe-

riod (from 1 September 2002 to 31 August 2011) [85]. In addition, the spread-error

ratio, SR, is also used to assess the ensemble reliability [189, 190]. SR is a com-

parison of the ensemble spread (σ) and the errors (ubRMSE) that is calculated as

SRi = σi
ubRMSEi

where i is the model grid within the Volga basin. The ensemble is

overdispersed (underdispersed) if SR is greater (smaller) than one [189]. Figure 5.7

maps the ensemble spread of the OL and DA experiments for the SWE and catdef
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Figure 5.6: Histograms of runoff showing (a) Nash-Sutcliffe efficiency
(NSE) and (b) bias of the Volga basin and four sub-basins for the
Open Loop (OL; no assimilation), AMSR-E DA, baseline GRACE (Bs-
GRACE) DA, physically-informed GRACE (Phy-GRACE) DA, and dual
(AMSR-E + physically-informed GRACE) DA. The statistics are calcu-
lated by comparing OL or DA basin-averaged monthly runoff ensem-
ble mean against the synthetic truth during the snow ablation period
(March, April, and May) from 2002 to 2011.
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(i.e., subsurface water storage) state variables. The Volga basin-averaged SR is

listed in Table 5.4.
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Figure 5.7: Time-averaged (1 September 2002 to 31 August 2011) ensemble standard deviation (σ) of the Open
Loop (column 1), AMSR-E DA (column 2), baseline GRACE (bs-GRACE) DA (column 3), physically-informed
GRACE (phy-GRACE) DA (column 4), and dual DA (AMSR-E + Physically-informed GRACE DA; column 5) for
the snow water equivalent (SWE; first row) and catchment deficient (catdef; second row) state variables. The Volga
basin-averaged value is shown in the text in each subplot.
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Table 5.4: The Volga basin-averaged spread-error ratio (SR) for the snow water

equivalent (SWE) and catchment deficit (catdef) resulting from the Open Loop,

AMSR-E DA, baseline GRACE DA, physically-informed GRACE DA, and dual DA

(AMSR-E + physically-informed GRACE DA) from 1 September 2002 to 31 August

2011.

SR Open Loop AMSR-E DA aBs-GRACE DA bPhy-GRACE DA Dual DA

SWE 0.67 0.27 0.74 0.98 0.38

catdef 1.36 1.26 0.85 1.15 1.08

aBs-GRACE DA is the baseline GRACE DA. bPhy-GRACE DA is the physically-

informed GRACE DA.

In general, AMSR-E DA generates the most underdispersed SWE ensem-

ble spread due to the multi-observation nature of the daily assimilation approach.

Physically-informed GRACE DA has a larger SWE ensemble spread (45.0 mm; Fig-

ure 5.7d) than baseline GRACE DA (34.9 mm; Figure 5.7c). As a combination of

AMSR-E DA and physically-informed GRACE DA, dual DA has a moderate SWE

ensemble spread (18.7 mm; Figure 5.7e). The SR results (Table 5.4) are consistent

with the ensemble spread in that AMSR-E DA has the smallest value (0.27) while the

physically-informed GRACE DA has the most reasonable ensemble spread (0.98).

For OL and all DA scenarios, the spatial distribution of SWE ensemble spread has

a strong gradient from the northeast to the southwest. It is worth noting that large

rivers also have a large SWE ensemble spread due to the fact that AMSR-E DA is

excluded from areas with significant surface water coverage.

In general, OL has the largest Volga basin-averaged catdef ensemble spread
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(48.4 mm; Figure 5.7f). AMSR-E DA slightly reduce the catdef ensemble spread to

45.6 mm (Figure 5.7g). Similar to the SWE ensemble spread, physically-informed

GRACE DA (31.1 mm; Figure 5.7g) has a larger catdef ensemble spread than base-

line GRACE DA (36.1 mm; Figure 5.7i). The reduction in catdef ensemble spread

via dual DA is the most pronounced as results in the most reasonable catdef ensem-

ble spread compared to the OL and single DA scenarios (Table 5.4).

5.7 Conclusion

This study investigates the performance of joint assimilation using AMSR-E

∆Tb observations and GRACE TWS retrievals through a series of synthetic twin ex-

periments. In order to better assess the performance of dual assimilation, the Open

Loop and single-sensor DA experiments (AMSR-E ∆Tb DA and GRACE TWS DA)

are also performed. A well-trained support vector machine is used as the observation

operator during the assimilation of AMSR-E ∆Tb observations. The baseline assim-

ilation of GRACE TWS retrievals is further modified using a physically-informed

approach during the application of the analysis increments.

Results suggests that single-sensor AMSR-E ∆Tb DA yields improvements in

SWE, subsurface water storage, runoff, and TWS estimation. The efficiency of

SVM-based PMW ∆Tb DA system is limited by the ill-posed nature of SWE remote

sensing using PMW radiometry coupled with limited controllability of the SVM-

based observation operator during deep, wet snow conditions. Furthermore, the

assimilation approach (i.e., multiple observations assimilated daily) can lead to SWE
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ensemble collapse, which can ultimately degrade the SWE estimates.

The single-sensor GRACE TWS DA experiment using the physically-informed

update approach leads to statistically significant improvements in SWE, subsurface

water storage, and TWS estimation. The application of increments based on the

presence (or absence) of snowmelt further discretizes TWS into SWE and subsurface

water storage more accurately, and hence, effectively enhances the TWS vertical

resolution.

Dual assimilation, in general, maintains the benefits introduced by the single-

sensor assimilation of AMSR-E ∆Tb observations and GRACE TWS retrievals. Dual

DA yields the best TWS estimates (in terms of smallest RMSE) and the most rea-

sonable ensemble spread of subsurface water storage compared to the OL and single-

sensor DA. The assimilation of AMSR-E ∆Tb observations significantly reduces the

SWE ensemble spread while the assimilation of TWS retrievals reduces the ensem-

ble spread of subsurface water storage. The assimilation of TWS helps mitigate

the SWE ensemble collapse often caused by daily assimilation of ∆Tb’s, and hence,

improves the SWE ensemble reliability. The AMSR-E DA, in general, removes snow

mass whereas GRACE DA, in general, adds snow mass to the system, and sometimes

results in SWE degradation given this juxtaposed, contradictory behavior.

In summary, this study investigates a new and novel joint assimilation of

AMSR-E ∆Tb observations and GRACE TWS retrievals to improve estimation of

TWS and its constitute components. In general, the statistics of SWE, subsur-

face water storage, and TWS using dual assimilation falls between the single-sensor

assimilation of AMSR-E ∆Tb observations and GRACE TWS retrievals. The ad-
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vantages of dual DA is that dual DA is able to generate more reasonable ensemble

spread that can better represents the implicit model uncertainty. For example, dual

DA inflates model SWE ensemble spread relative to the single-sensor AMSR-E ∆Tb

assimilation that mitigates the ensemble collapse. The ensemble spread of sub-

surface water storage via dual DA is the most reasonable when compared to the

single-sensor assimilation scenarios.
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Chapter 6: Conclusions and Future Work

6.1 Conclusions

This dissertation explored a multi-variate, multi-sensor assimilation framework

in order to enhance model-based terrestrial snow estimates across a large watershed

in Russia. The science question addressed in this thesis is: Can the predictability

of snow water equivalent (SWE) and terrestrial water storage (TWS) at regional

and continental scales be improved via multi-sensor, multi-variate assimilation of

AMSR-E spectral differences (∆Tb) and GRACE TWS retrievals?

In Chapter 4, the NASA Catchment land surface model is used as the prog-

nostic model in the assimilation of AMSR-E passive microwave (PMW) brightness

temperature spectral differences (∆Tb) where support vector machine (SVM) regres-

sion is employed as the observation operator. A series of synthetic twin experiments

conducted using different precipitation forcing. The results show that, at times,

DA degrades modeled SWE estimates (compared to the land surface model without

assimilation) over snow-covered terrain. To mitigate this degradation, a physically-

informed approach using different ∆Tb for shallow-to-medium or medium-to-deep

snow conditions along with a “data-thinning” strategy are explored. Overall, both

strategies improve the model ability to encapsulate more of the evaluation data
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and mitigate model ensemble collapse. The physically-informed DA and 3-day data

thinning DA strategies showed marginal improvements in basin-averaged SWE in

terms of a reduction in bias from 10 mm (baseline DA) to −5.2 mm and −2.5 mm,

respectively. When the estimated forcings are greater than the truth (i.e., posi-

tively biased), the baseline DA, physically-informed DA, and 3-day data thinning

DA improved SWE the most with approximately 30%, 31%, and 24% reduction of

RMSE (relative to OL), respectively. Overall, these results highlight the limited

utility of PMW ∆Tb observations in the estimation of snow in the study terrain,

but did demonstrate that a physically-based constraint approach and data thinning

strategy can add more utility to the ∆Tb observations in the estimation of SWE.

In Chapter 5, multi-sensor data assimilation using synthetic AMSR-E passive

microwave (PMW) brightness temperature spectral differences (∆Tb) and synthetic

GRACE terrestrial water storage (TWS) retrievals were used in order to improve

estimates of snow water equivalent (SWE), subsurface water storage, and TWS over

the Volga basin. Single-sensor AMSR-E ∆Tb DA using a support vector machine

as the observation operator improves SWE estimates, but adds little value to sub-

surface storage estimates. Single-sensor GRACE TWS DA is first modified with a

physically-informed increments application. That is, the calculated increments are

applied only to the SWE when the snow experiences no melt whereas the increments

are divided into two parts equally and applied to the SWE and subsurface water stor-

age, respectively, when snowmelt occurs. Results suggest that a physically-informed

GRACE TWS DA approach significantly enhances the TWS vertical resolution via

discretization into SWE and subsurface components more accurately.
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AMSR-E ∆Tb and GRACE TWS are assimilated simultaneously in the multi-

sensor, multi-variate (i.e., dual) assimilation framework. Results suggest significant

improvements in SWE estimates via dual assimilation with a 14.1% reduction in

RMSE (relative to the Open Loop without assimilation) and leads to the best TWS

estimates (smallest RMSE) and most reliable subsurface water storage ensemble

spread (spread-error ratio = 1.08) as compared to the single-sensor DA scenarios.

However, dual DA does not always yield complementary updates, and can at times,

lead to conflicting SWE increments. That is, the assimilation of ∆Tb can generate

positive SWE increments whereas assimilation of TWS removes SWE in the dual

DA system, which can ultimately degrade the posterior SWE estimates.

In summary, this study supports the conclusion that a multi-sensor, multi-

variate data assimilation framework using AMSR-E PMW ∆Tb and GRACE TWS

retrievals can improve the predictability of SWE as well as TWS and its constituent

components relative to the Open Loop without assimilation.

6.2 Original Contributions

This study conducts the synthetic experiments over the Volga basin in Russia,

which is a study domain that receives less attention in the literature as compared

to other parts of the globe. Volga basin is dominated by plain landscapes where less

than 5% of the total basin area is occupied by complex, mountainous terrain. The

relatively mild topography makes AMSR-E ∆Tb snow estimation more applicable

than in other areas of the globe such as Himalayas or Colorado Rockies. In addition,
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most of the gravitational signal changes in the Volga basin are caused by changes

in regional water storage due to the presence of minimal postglacial rebound. The

study results found in the Volga basin are assumed to be applicable to other basins

with mild topographic relief (e.g., northern Canada) that possess long, cold winters.

This study is the first to explore improvements in modeled SWE estimation

using either a physically-informed or data thinning approach for AMSR-E ∆Tb as-

similation. Results suggest limited improvements in the ensemble mean in term of

SWE estimation. However, the advantages of these assimilation approaches include

improvements in the posterior ensemble spread (i.e., better representation of the

implicit model uncertainty) as well as enhanced controllability of the SVM-based

observation operator. In addition, the joint assimilation of AMSR-E ∆Tb observa-

tions with GRACE TWS retrievals is a new and novel approach. Dual DA exhibits

benefits in terms of the modeled SWE uncertainty as well as TWS and its constituent

components relative to the single-sensor assimilation approaches.

6.3 Future Work

6.3.1 AMSR-E ∆Tb Observation Error Characterization

The synthetic experiments assumed that the observation error in AMSR-E

∆Tb is spatially uncorrelated. However, the effective field-of-view (FOV) for each

∆Tb channel changes as a function of frequency. For example, the Tb at 36.5 GHz

has a FOV of 14 × 8 km2 whereas those at 18.7 GHz have a coarser FOV of 27 × 16

km2. The exploration of observation error spatial correlation is expected to further
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enhance the accuracy of SWE estimates via AMSR-E ∆Tb DA.

6.3.2 Multi-sensor and Multi-variate Data Assimilation

Overall, these synthetic twin experiments demonstrate the potential benefits

and limitations of joint assimilation using AMSR-E ∆Tb observations and GRACE

TWS retrievals. A future study should conduct experiments using real-world ob-

servations including AMSR-E/AMSR-2 ∆Tb’s and GRACE/GRACE-FO TWS re-

trievals. Joint assimilation using real-world data is hypothesized to produce more

accurate hydrological estimates and effectively enhance the horizontal and vertical

resolution of GRACE/GRACE-FO TWS retrievals.

6.3.3 Implementation of an Ensemble Kalman Smoother

This study demonstrated that the multi-sensor, multi-variate ensemble Kalman

filter framework using AMSR-E PMW ∆Tb and GRACE TWS retrievals can lead to

improvements in SWE and TWS. However, the multi-sensor, multi-variate ensem-

ble Kalman filter can lead to conflicting SWE increments. That is, the increments

generated by assimilating ∆Tb and TWS are often opposite in sign and may ulti-

mately degrade the posterior SWE estimates. A revised assimilation scheme based

on the ensemble Kalman smoother could potentially mitigate this degradation due

to the fact that the assimilation state vector in the ensemble smoother could be

augmented by including observations from both PMW ∆Tb and TWS retrievals and

assimilated simultaneously (rather than sequentially) within a given assimilation
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temporal window.
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Appendix A: Goodness-of-Fit Statistics

Goodness-of-fit statistics used in this study include bias, root mean squared

error (RMSE), unbiased root mean squared error (ubRMSE), correlation coefficient

(R), Nash-Sutcliffe efficiency (NSE), normalized information contribution (NIC),

and containing ration (CR2σ). The symbol xest denotes the OL or DA ensemble

mean and the symbol xtruth denotes the synthetic truth. Bias was computed as:

bias =
1

Nt

Nt∑
i=1

(xest,i − xtruth,i), (A.1)

where xi is the state variable (e.g., SWE) at time i and Nt is the sample size over

the time period t. RMSE was computed as:

RMSE =

√√√√ 1

Nt

Nt∑
i=1

(xest,i − xtruth,i)2, (A.2)

where xi is the state variable (e.g., SWE) at time i and Nt is the sample size over

the time period t. ubRMSE was computed as:

ubRMSE =

√√√√ 1

Nt

Nt∑
i=1

(xest,i − xtruth,i)2 − (xest − xtruth)2, (A.3)

where xest is the time-averaged estimate of the model state variable (e.g., SWE) and

xtruth is the time-averaged synthetic truth. R was computed as:

R =

∑Nt
i=1(xest,i − xest)(xtruth,i − xtruth)√∑Nt

i=1(xest,i − xest)2
√∑Nt

i=1(xtruth,i − xtruth)2
(A.4)

124



NSE was computed as:

NSE = 1−
∑Nt
i=1(xtruth,i − xest,i)2∑Nt
i=1(xtruth − xest,i)2

(A.5)

NIC for RMSE, NICRMSE, was computed as

NICRMSE =
RMSEOL −RMSEDA

RMSEOL
(A.6)

where the RMSEOL is the OL-based RMSE and RMSEDA is the DA-based RMSE.

The containing ratio, CR2σ, is the number of synthetic truth that fall within the

ensemble mean ±2 times the ensemble standard deviation normalized by the total

number of synthetic truth (Nt), and was computed as

CR2σ =

∑Nt
i=1 I[O(x, i)]

Nt

(A.7)

where I[O(x, i)] = 1 if xmin,i ≤ xtruth,i ≤ xmax,i. In other words, if the synthetic

truth at time i, xtruth,i, is equal to or greater than the minimum of OL or DA

ensemble estimates, xmin,i, and also is less than or equal to the maximum of OL or

DA ensemble estimates, xmax,i, the I[O(x, i)] = 1. Otherwise, I[O(x, i)] = 0.
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[27] Danielle De Sève, Monique Bernier, Jean-Pierre Fortin, and Anne Walker.
Preliminary analysis of snow microwave radiometry using the SSM/I passive-
microwave data: the case of La Grande River watershed (Quebec). Annals of
Glaciology, 25:353–361, 1997.

[28] Christian Mätzler. Passive microwave signatures of landscapes in winter. Me-
teorology and Atmospheric Physics, 54(1-4):241–260, 1994.

[29] Chris Derksen. The contribution of AMSR-E 18.7 and 10.7 GHz measurements
to improved boreal forest snow water equivalent retrievals. Remote Sensing of
Environment, 112(5):2701–2710, 2008.

[30] Chris Derksen, Peter Toose, Andrew Rees, Libo Wang, Michael C. English,
Anne E. Walker, and Matthew Sturm. Development of a tundra-specific snow
water equivalent retrieval algorithm for satellite passive microwave data. Re-
mote Sensing of Environment, 114(8):1699–1709, 2010.

[31] Anne E Walker and Barry E Goodison. Discrimination of a wet snow cover
using passive microwave satellite data. Annals of Glaciology, 17:307–311, 1993.

128



[32] Richard L Armstrong and Mary J Brodzik. Recent Northern Hemisphere snow
extent: A comparison of data derived from visible and microwave satellite
sensors. Geophysical Research Letters, 28(19):3673–3676, 2001.

[33] Dennis McLaughlin. An integrated approach to hydrologic data assimilation:
interpolation, smoothing, and filtering. Advances in Water Resources, 25(8-
12):1275–1286, 2002.

[34] Barton A Forman and Steven A Margulis. Assimilation of multiresolution
radiation products into a downwelling surface radiation model: 2. Posterior
ensemble implementation. Journal of Geophysical Research: Atmospheres,
115(D22), 2010.

[35] Clara Draper and Rolf H Reichle. The impact of near-surface soil moisture
assimilation at subseasonal, seasonal, and inter-annual timescales. Hydrol.
Earth Syst. Sci, 19(12):4831, 2015.

[36] Matthias Drusch, Drasko Vasiljevic, and Pedro Viterbo. ECMWF’s global
snow analysis: Assessment and revision based on satellite observations. Jour-
nal of Applied Meteorology, 43(9):1282–1294, 2004.

[37] Hsin-Cheng Huang and Noel Cressie. Spatio-temporal prediction of snow water
equivalent using the Kalman filter. Computational Statistics & Data Analysis,
22(2):159–175, 1996.

[38] Andrew G Slater and Martyn P Clark. Snow data assimilation via an ensemble
Kalman filter. Journal of Hydrometeorology, 7(3):478–493, 2006.

[39] Glen E Liston and Christopher A Hiemstra. A simple data assimilation system
for complex snow distributions (SnowAssim). Journal of Hydrometeorology,
9(5):989–1004, 2008.

[40] Jan Magnusson, David Gustafsson, Fabia Hüsler, and Tobias Jonas. Assimi-
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