

ABSTRACT

Title of Thesis: EFFECTIVENESS OF PROXIMAL POLICY
OPTIMIZATION METHODS FOR NEURAL
PROGRAM INDUCTION

 Runxing Lin,

Master of Computer Science, 2020

Thesis Directed By: Professor James A. Reggia

Department of Computer Science

The Neural Virtual Machine (NVM) is a novel neurocomputational

architecture designed to emulate the functionality of a traditional computer. A

version of the NVM called NVM-RL supports reinforcement learning based on

standard policy gradient methods as a mechanism for performing neural program

induction. In this thesis, I modified NVM-RL using one of the most popular

reinforcement learning algorithms, proximal policy optimization (PPO).

Surprisingly, using PPO with the existing all-or-nothing reward function did not

improve its effectiveness. However, I found that PPO did improve the performance

of the existing NVM-RL if one instead used a reward function that grants partial

credit for incorrect outputs based on how much those incorrect outputs differ from

the correct targets. I conclude that, in some situations, PPO can improve the

performance of reinforcement learning during program induction, but that this

improvement is dependent on the quality of the reward function that is used.

EFFECTIVENESS OF PROXIMAL POLICY OPTIMIZATION METHODS

FOR NEURAL PROGRAM INDUCTION

 by

Runxing Lin

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Master of Computer Science

2020

Advisory Committee:

Professor James A. Reggia, Chair

Professor Dana Nau

Professor Garrett E. Katz

© Copyright by

Runxing Lin

2020

ii

Acknowledgements

I express my gratitude to Professor James A. Reggia, my advisor, for helping

me so much in my research and my master thesis.

I want to thank Professor Garrett E. Katz, for giving me suggestion about my

research.

I want to thank Professor Dana Nau. He is the first professor who bring me

into the area of Artificial Intelligent.

I want to thank Professor Yee Chiew. He is my advisor when I am in chemical

engineering. It was Dr. Chiew who brought me into the area of scientific research.

I have been experienced so much warmth and love in University of Maryland,

Computer Science Department. I want to say thanks to my colleagues and my friends.

iii

Table of Contents

Table of Contents

Acknowledgements ... ii

Table of Contents ... iii

List of Figures ... iv

1. Introduction ... 1

2. Background .. 5

2.1 Artificial Neural Networks .. 5

2.2 Reinforcement Learning ... 12

2.3 The Neural Virtual Machine ... 20

3. Methodology ... 33

4. Experimental Results ... 37

4.1 Results with All-or-Nothing Reward Function ... 37

4.2 Results When Using a Partial-Credit Reward Function .. 43

5. Conclusion ... 52

Bibliography .. 55

iv

List of Figures

Figure 2.1 Biological neural networks and a single layer artificial neural network............................. 6
Figure 2.2 An example of a feedforward network .. 8
Figure 2.3 Error Backpropagation ... 10
Figure 2.4 Recurrent Neural Networks. ... 11
Figure 2.5 The traditional agent-environment interaction used in reinforcement learning. 13
Figure 2.6 The comparison between PPO and other methods ... 19
Figure 2.7 Architecture of the NVM’s working memory. ... 21
Figure 2.8 Overall structure of NVM-RL.. ... 22
Figure 2.9 Experimental results for Max and filter.. .. 31
Figure 2.10 Result of experiment Reverse ... 32
Figure 4.1a Result of Experiment Max in NVM-PPO .. 39
Figure 4.1b Comparing PPO and SPG in experiment Max .. 39
Figure 4.2 Experimental results for PPO with experiment Filter using all-or-nothing function 40
Figure 4.3a PPO experimental results for experiment Reverse using all-or-nothing function 42
Figure 4.3b PPO experimental results with Reverse .. 43
Figure 4.4a Result of experiment filter with NVM-PPO, under partial-credit reward function......... 45
Figure 4.4b Result of experiment filter with NVM-SPG, under partial-credit reward function. 45
Figure 4.5a NVM-SPG Result of Experiment Reserve under partial-credit reward function 46
Figure 4.5b NVM-PPO Result of Experiment Reserve under partial-credit reward function............. 46
Figure 4.5c PPO vs SPG in Experiment Reverse under partial-credit reward function 47
Figure 4.6a NVM-SPG Results for Experiment Reserve, under partial-credit reward function 48
Figure 4.6b NVM-PPO Result of Experiment Reserve, under partial-credit reward function............ 48
Figure 4.7a NVM-SPG Results of Experiment Sorting (L=3), under partial-credit reward function ... 49
Figure 4.7b NVM-PPO Results of Experiment Sorting (L=3), under partial-credit reward function ... 49
Figure 4.7c PPO vs SPG in Experiment Sorting (L=3), under partial-credit reward function 50
Figure 4.8 NVM-PPO Results with Experiment Sorting (L=4), under partial-credit reward function . 51

1

1. Introduction

Neural program induction (NPI) has become a popular research area in recent

years. NPI is the problem of training a neural network that can solve algorithmic

problems, such as sorting or reversing a list, usually by providing a very large number

of labeled input examples as training data. This has proven to be a very challenging

task, but one that is very important for extending the range of abilities possessed by

neural networks. It has been suggested that NPI can help to solve decision-making

problems in robotics (Xu, et al., 2018). For example, planning a complex task with

multiple actions under different conditions can be transferred to the problem of

learning a policy to sort a sequence of actions regarding different states of situations.

NPI can also help in visual navigation by breaking the visual navigation rules into

state transitions (Zheng, et al., 2019), and by providing complex question-answering

over knowledge bases by decomposing the task into a sequence of atomic actions

(Ansari, 2019). In general, NPI can be a conducive paradigm for decomposing high-

level tasks into program executions.

Training a neural network architecture to perform algorithmic problems is not

as simple as mapping input to outputs in supervised learning. It requires the networks

to have long-term memories about the complex relationship among all character

symbols as well as fast and precise executions for each output. Most of the existing

neural architectures designed to perform algorithmic tasks involve a local

representation paradigm such as having symbols or variables represented by

individual neurons (Abdelbar, et al., 2003), data structures represented by single time-

2

step neural activities rather than a temporal sequence (Plate, 1995), or requiring

different architectures in different programming task (Dehaene & Changeux, 1997).

Those neural architectures involving local representations are less neuro-biologically

faithful and lack flexibility from an engineering perspective (Katz, et al., 2019). The

Neural Virtual Machine (NVM) is a novel neural architecture that supports all of the

functionalities of a traditional computer architecture (Katz, et al., 2019). The NVM is

able to interpret and execute computer programs written in assembly-like language,

using solely neural computational methods without local representation. This novel

neurocomputational architecture shows great potential for performing NPI since its

architecture can remain unchanged in different algorithmic problems or with different

numbers of symbols to process.

Many of the potential applications of NPI, such as action planning, are more

related to reinforcement-learning-based problems than supervised-learning-based

problems. In spite of this, most current NPI approaches use a supervised learning

paradigm. Recently, a reinforcement-based version of the neural virtual machine,

referred to here as the NVM-RL, was designed to perform NPI using a reinforcement-

learning paradigm (Katz, et al., 2020). The existing NVM-RL uses standard policy

gradient methods with an all-or-nothing reward function, and this past work showed

that the NVM-RL can perform NPI for some simple algorithmic problems such as

selecting the maximum value of a numeric list or filtering out certain given values

from a list. However, the NVM-RL failed to have consistent success in more complex

problems like reversing a list.

3

Past results with the NVM-RL with NPI is still encouraging despite the

inconsistent performance of NVM-RL in complex problems. One possible way to

improve the NVM-RL is applying a more modern reinforcement learning method.

The standard policy gradient (SPG) algorithm used in NVM-RL only allows one

gradient update for each set of training data samples while sampling training data can

be very computationally expensive. Proximal policy optimization (PPO) methods

(Schulman, et al., 2017) are designed to address this issue by increasing the data

efficiency of standard policy gradients, which allows a policy function to be updated

multiple times under one set of sampled data. Here I explore the hypothesis that

replacing SPG with PPO will help to improve the performance of NVM-RL, either by

allowing NVM-RL to converge faster or by enabling it to solve larger or more

complex problems.

In this work, I applied PPO to train the NVM-RL and compared the

experimental results of PPO and SPG to each other. Surprisingly, I found that PPO

did not have a substantial impact on improving the performance of NVM-RL using

the existing all-or-nothing reward function. However, under a reward function that

gives partial credits for partially correct outputs, the NVM using PPO was able to

outperform SPG in complex problems like reversing or sorting a list. These results,

while limited in scope, suggest that PPO combined with a more guided reward

function has the potential to improve the effectiveness of reinforcement learning of

neurocomputationally-supported programs. This work shows that using a modern

reinforcement learning method does have a positive impact on NVM-RL,

4

encouraging further research to improve the NVM-RL to achieve more complex NPI

tasks by seeking some more appropriate reinforcement learning method.

5

2. Background

In this section, I briefly review past related work on neural networks,

reinforcement learning, and the neural virtual machine, to provide important

contextual information for the research done for this thesis.

2.1 Artificial Neural Networks

Artificial neural networks are computational algorithms that are inspired by

biological neurons, and arguably simulate the information processing mechanisms of

human brains (Aggarwal, 2018). The basic unit of an artificial neural networks is a

simplified model of a neuron in a biological nervous system. In the human nervous

system, neurons are connected by axons, dendrites and synapses, while in artificial

neural networks, connections between units are much simpler and represented as

matrices (or tensors) of numeric synaptic weights. Information flows in the human

nervous system from neurons to neurons through electrochemical transmission, while

the output and input of neurons in artificial neural networks are usually numerical

values, which are scaled by the weight matrices involved. In the following

description, I use the term “neural network” to refer to artificial neural networks

unless explicitly noted otherwise.

6

Figure 2.1 Biological neural networks and a single layer artificial neural network. (Aggarwal, 2018)

2.1.1 Feedforward networks

The perceptron (Rosenblatt, 1961), or single-layer neural networks in general,

can be considered as the simplest neural networks. Elementary perceptron contains

only one input layer of nodes that are assigned values and one output node, showed as

Figure 2.1b. The mechanism of a perceptron can be represented as formula:

 𝑦 = 𝜙(𝑤 ⋅ 𝑥 + 𝑏) (2.1)

where 𝑥 is the input vector, 𝑤 is the weight vector, 𝑏 is the bias, and ϕ is the

activation function. There can be different kinds of activation functions, the most

common being a linear threshold unit in the form of a 0/1 step function, but other

common ones are shown here:

Sign Φ(𝑖𝑛𝑥) = 𝑠𝑖𝑔𝑛(𝑖𝑛𝑥) (2.2)

ReLu Φ(𝑖𝑛𝑥) = 𝑚𝑎𝑥(𝑖𝑛𝑥 , 0) (2.3)

Sigmoid
Φ(𝑖𝑛𝑥) =

1

1 + 𝑒−𝑖𝑛𝑥

(2.4)

Hyperbolic Tangent
Φ(𝑖𝑛𝑥) =

𝑒𝑖𝑛𝑥 − 𝑒−𝑖𝑛𝑥

𝑒𝑖𝑛𝑥 + 𝑒−𝑖𝑛𝑥

(2.5)

7

More generally, a feedforward network (Haykin, 2007) contains more than

one layer of neurons. It consists of a set of input neurons (not counted as a layer), one

or more hidden layers, and an output layer. Each neuron in the hidden layers and

output layer uses an activation function. An example of the architecture of a

feedforward network is shown in figure 2.2, where in general the output layer consists

of more than one node.

The mechanisms for computing the output for each neuron in feedforward

networks are similar to those of Equations 2.1 – 2.4. The transformation from the

input layer to the output layer can be expressed as the following composed equations:

Input layer to hidden layer ℎ1 = Φ(𝑊1𝑥) (2.5)

Hidden layer to hidden layer ℎ𝑝+1 = Φ(𝑊𝑝+1ℎ𝑝) (2.6)

Hidden layer to output layer 𝑜 = Φ(𝑊𝑛+1ℎ𝑛) (2.7)

where ℎ refers to the activation of hidden layers, 𝑜 refers to the activation of the

output layer, and W refers to the weight matrix for each layer. A softmax function

can be applied on the output layers, normalizing the output of each node to be

between 0 and 1 and the sum of all nodes in the output layer to be 1. This can be used

to represent the likelihood or each node in a classification problem:

Softmax
Φ(𝑣)𝑖 =

𝑒𝑣𝑖

∑ 𝑒𝑣𝑗𝐾
𝑗=1

(2.8)

where, in the softmax activation function, the input is a vector 𝑣 with K dimensions.

8

Figure 2.2 An example of a feedforward network (Aggarwal, 2018)

2.1.2 Gradient Descent and Error Backpropagation

In supervised learning, the task of training a neural network usually refers to

minimizing the differences between target vectors in the training data and the network

outputs for this same data, which is called the error or loss. We usually define a loss

function to represent the error of the neural networks so that the training task is to

minimize the loss function or objective function, ultimately over test data that has

been held out and not used during training. Two commonly used loss functions L are

given here:

Mean Square Error
𝐿 = ∑

(θ(𝑥𝑖) − 𝑡)2

𝑛

𝑛

𝑖=1

(2.9)

Cross Entropy Loss 𝐿 = − (𝑡𝑖𝑙𝑜𝑔(θ(𝑥𝑖)) + (1 − 𝑡𝑖)𝑙𝑜𝑔(1 − θ(𝑥𝑖))) (2.10)

where 𝑡𝑖 refers to the target output and 𝜃(𝑥𝑖) refers to the actual output of the neural

network; n refers to the total number of training examples. The mean square error

9

(MSE) function is usually used for regression problems while cross entropy loss is

often used on classification problems.

To minimize the objective function, we usually use a stochastic gradient

descent method (Ruder, 2016). Gradient descent is a function optimization algorithm

to find the local minimum of a function. In gradient descent, for each step we move

the variables negatively proportional to the gradient of the function until we reach the

local minimum. Mathematically this can be written as:

 𝑊 = 𝑊 − η∇L(𝑊) (2.11)

Here W refers to the weights of the neural network, η refers to the learning rate, and

∇L(𝑊) refers to the gradient of the loss function in the weight space, which can be

written as:

∇𝐿(𝑊) = [

⋮
∂𝐿

∂𝑤𝑖𝑗

⋮

]

(2.12)

where 𝑤𝑖𝑗 refers to each individual weight of the neural network, specifically from

node 𝑗 to node 𝑖. Therefore, Equation 2.11 can be expressed as:

 𝑤𝑖𝑗 = 𝑤𝑖𝑗 + Δ𝑤𝑖𝑗 (2.13)

Δ𝑤𝑖𝑗 = −η

∂𝐿

∂𝑤𝑖𝑗

(2.14)

Applying the chain rule to the derivation, we get:

10

 Δ𝑤𝑖𝑗 = ηδ𝑖𝑎𝑗 (2.15)

where 𝑎𝑗 refers to the activation level of node 𝑗, δ𝑖 refers to the error signal at node 𝑖.

Error backpropagation (Kelley, 1960) is usually the learning rule used to train

a neural network, which is based on a combination of gradient descent and using the

chain rule. The error of the output node is straightforward to calculate. However, to

calculate the error of the hidden layer, we need to propagate the error back from the

output layers. Figure 2.3 shows the basic concept of backpropagation.

Figure 2.3 Error Backpropagation

Using the concept of backpropagation, we can compute the 𝛿𝑖 values for

nodes in the hidden and output layer as:

For output nodes δ𝑖 = (𝑡𝑖 − 𝑎𝑖)𝑓′(𝑎𝑖) (2.16)

For hidden nodes δ𝑖 = ∑ 𝑤𝑗𝑖δ𝑗 𝑓′(𝑎𝑖) (2.17)

11

Here δ𝑗 refers to the error of the nodes that node 𝑖 is directed to.

2.1.3 Recurrent Neural Networks

The neural virtual machine used in this work makes use of not only

feedforward networks, but also recurrent neural networks (RNN), so we briefly

consider them here. In reinforcement learning with the neural virtual machine, RNNs

are used as an agent’s policy generator.

The inputs of a feedforward network are generally a fixed-length vector.

Therefore, feedforward networks are not well suited for analyzing time-series data or

sets or sentences having different lengths. Such temporal data is usually the domain

of RNNs which have recurrent connections (loops, cycles) and allow sequential

inputs and outputs. The current output or an RNN is derived not only from the current

input but also from a hidden state which contains the memory of previous states.

Figure 2.4a shows an abstract representation of a simple RNN and Figure 2.4b shows

the RNN unfolded in time.

Figure 2.4 Recurrent Neural Networks. (a) Network architecture. (b) The network unfolded in time.

(Sutton & Barto, 2018)

12

Taking a sequence as an input to an RNN, the position of each element of the

input sequence can refer to the time-step at which that element serves as input to the

network. The mechanism of the RNN in each state or time-step can be expressed as:

 ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1) (2.18)

 𝑦𝑡 = 𝑊ℎ𝑡ℎ𝑡 (2.19)

where ℎ𝑡 refers to the hidden state of the current step and ℎ𝑡−1 refers to the hidden

state of the previous step. The activation function 𝑡𝑎𝑛ℎ can be replaced by other

activation functions such logistic functions.

To train an RNN, we often use backpropagation through time (BPTT)

(Werbos, 1990), which is based on propagating the errors back to the previous time

steps. Mathematically this can be written as:

 ∂𝐿

∂𝑊𝑥ℎ
 = ∑

∂𝐿

∂𝑊𝑥ℎ
(𝑡)

𝑇

𝑡=1

(2.20)

 ∂𝐿

∂𝑊ℎℎ
 = ∑

∂𝐿

∂𝑊ℎℎ
(𝑡)

𝑇

𝑡=1

(2.21)

 ∂𝐿

∂𝑊ℎ𝑦
 = ∑

∂𝐿

∂𝑊ℎ𝑦
(𝑡)

𝑇

𝑡=1

(2.22)

2.2 Reinforcement Learning

Reinforcement learning is a machine learning area focused on training an

agent to take actions in different situations so that the cumulative reward signals

collected from the environment are maximized. Figure 2.5 shows a typical agent-

environment-interaction problem in reinforcement learning. In each time step, an

13

agent takes an action towards the environment and observes a new state as well as

receives a reward signal from the environment. The agent then determines which

action to take for next time step based on the rewards and state signal it has received.

Here we just consider reinforcement learning problems that can be viewed as a

Markov Decision Process (MDP) (Wei, et al., n.d.), which is a framework in which

sequential states depend just on the preceding state and action taken by the agent.

Figure 2.5 The traditional agent-environment interaction used in reinforcement learning.

(Sutton & Barto, 2018)

In addition to agent and environment, reinforcement learning usually includes

another four sub-elements: a policy π(𝑠), determining which action to take at each

time step; a reward signal Rt, essentially defining the goal of the reinforcement

learning problem and usually sent from the environment to the agent; a value function

𝑉(𝑠), calculating the value of a state, usually by predicting the future rewards that can

be obtained by the agent from the state; and (in model-based RL) finally a model of

the environment, which mimics the true environment and is used by the agent to

predict what states it can possibly get to after taking an action.

The methods used to solve reinforcement learning problems can be divided

into two main parts: Tabular Solution Methods and Approximate Solution Methods.

14

Tabular solution methods are usually used in small problems with finite action spaces

and finite state spaces. Approximate solution methods are mostly used in problems

with large action or state spaces and involve training a function estimator that

replaces the state-action table to evaluate the V or Q-values or to represent a policy.

2.2.1 Key concepts in reinforcement learning

The model of the environment should contain at least two elements: the state-

transition function 𝑇 and the reward function 𝑅,

 𝑇(𝑠′|𝑠, 𝑎) = ℙ[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.23)

 𝑅(𝑠, 𝑎) = 𝔼[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.24)

The transition function calculates the probability that the agent will go to state 𝑠′ after

taking action 𝑎 at state 𝑠. The reward function calculates the expectation of the

reward of taking action 𝑎 in state 𝑠.

Not every reinforcement learning algorithm requires the agent to have a built-

in model of the environment. However, the transition function and reward function

are also implicitly learned in algorithms without a model of the environment, such as

with policy gradient methods.

A policy of an agent determines how the agent takes actions in different states.

A policy can be either deterministic or stochastic; mathematically it can be written as:

Deterministic π(𝑠) = 𝑎 (2.25)

Stochastic π(𝑎𝑖|𝑠𝑖) = ℙ[𝐴 = 𝑎𝑖|𝑆 = 𝑠𝑖] (2.26)

15

Here, ℙ[𝐴 = 𝑎𝑖|𝑆 = 𝑠𝑖] refers to the probability that the agent takes action 𝑎𝑖 when in

state 𝑠𝑖.

A value function of an agent evaluates the goodness of a state, usually by

calculating/estimating the future reward that the agent can get starting in that state

and subsequently following its policy. The future reward, also refers to the return,

after time-step t can be define as:

𝐺𝑡 = 𝑅𝑡+1 + γ𝑅𝑡+2 + ⋯ = ∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

(2.27)

where γ is the discount factor used to determine the weight of future rewards. Based

on the return 𝐺𝑡, the state-value function of a policy π is the expectation of the future

reward of the current state:

 𝑉π(𝑠) = 𝔼π[𝐺𝑡|𝑆𝑡 = 𝑠] (2.28)

Similarly, the action value function, also referred to as the Q-value, calculates

the expectation of the return at state 𝑠 if the agent takes action 𝑎:

 𝑄π(𝑠, 𝑎) = 𝔼π[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.29)

Based on equation 2.26 and 2.29 the state value function can then be defined as:

 𝑉π(𝑠) = ∑ 𝑄π(𝑠, 𝑎)

𝑎∈𝒜

π(𝑎|𝑠) (2.30)

and the advantage function can then be defined as:

 𝐴π(𝑠, 𝑎) = 𝑄π(𝑠, 𝑎) − 𝑉π(𝑠) (2.31)

16

which refers to the advantage of taking action 𝑎, at state 𝑠.

When the state space or action space is continuous, 𝑄π(𝑠, 𝑎), 𝑉π(𝑠), and

𝐴π(𝑠, 𝑎), are each usually represented as an approximate function that can be trained

by sampling large amounts of data through practicing via agent-environment

interactions.

2.2.2 Policy Gradient Methods

2.2.2a Standard Policy Gradient

A policy gradient method is an algorithm in reinforcement learning that learns

the policy 𝜋 directly without learning the state-value function 𝑉π(𝑠) or the action-

value function 𝑄𝜋(𝑠, 𝑎) (Sutton, et al., 2000). With policy gradients, the policy is a

parameterized function with parameters θ, written as 𝜋(𝑎𝑖|𝑠𝑖 , 𝜃). Policy 𝜋(𝑎𝑖|𝑠𝑖 , 𝜃)

should usually be differentiable with respect to 𝜃. The NVM-RL currently uses a

policy gradient method for program induction, so we briefly review this concept here.

With a policy gradient method, we usually measure the performance of the

policy by an objective function 𝐽(θ). Then we perform gradient ascent on the

function 𝐽(𝜃) similar to with Equation 2.11:

 θ𝑡+1 = θ𝑡 + η∇𝐽(𝜃) (2.32)

The objective function 𝐽(𝜃) can be defined as the state value function of the

beginning state:

 𝐽(𝜃) = 𝑉π(𝑠0) (2.33)

17

By the policy gradient theorem (Sutton & Barto, 2018), ∇𝐽(𝜃) can be calculated as:

The objective function 𝐽(𝜃) and its gradient can vary in different ways by switching

the Q-value function with the advantage function or other functions or values that

represents the change of total rewards by taking an action:

 ∇𝐽(𝜃) = 𝔼π[∇𝑙𝑛(π(𝑎|𝑠, θ))𝐴π(𝑠, 𝑎)] (2.35)

∇𝐽(𝜃) = 𝔼π∇𝑙𝑛(π(𝑎|𝑠, θ)) ∑ 𝑅𝑡

𝑇

𝑡=𝑡′

(2.36)

In equation 2.36, ∑ 𝑅𝑡
𝑇
𝑡=𝑡′ refers to the method “reward-to-go,” which stands for the

state-action value at a current time-step 𝑡′and is represented by the cumulative

rewards from 𝑡′ to the terminal time-step T (Peters & Schaal, 2006).

It has been shown that policy gradient methods generally work better by

comparing action values with a baseline value 𝑏(𝑠), where 𝑏(𝑠) can be any arbitrary

value:

2.2.2b Proximal Policy Optimization (PPO)

In this thesis work, I compare the use of proximal policy optimization (PPO)

for the first time versus the standard policy gradient method described above in using

the NVM for program induction during reinforcement learning.

 ∇𝐽(𝜃) = 𝔼π[∇𝑙𝑛(π(𝑎|𝑠, θ))𝑄π(𝑠, 𝑎)] (2.34)

∇𝐽(𝜃) = 𝔼π[∇𝑙𝑛(π(𝑎|𝑠, θ))(𝑄π(𝑠, 𝑎) − 𝑏(𝑠))] (2.37)

18

A major limitation of the standard policy gradient method of Equation 2.32 is

that it can only be executed one time per set of data sampled by policy πθ. This is

because once Equation 2.32 is executed, the parameter of the policy θ becomes θ𝑛𝑒𝑤

and we have to resample training data from the viewpoint of the new policy πθnew
.

Sampling training data from agent-environment interactions is fairly computationally

expensive. Investigators have tried various ways to enable the policy gradient method

to update θ𝑛𝑒𝑤 with the old data sampled from the old policy πθold
, and proximal

policy optimization (PPO) methods provide a simple implementation of this with

great experimental results.

PPO (Schulman, et al., 2017) defines a quantitative measurement for

measuring the difference between two policies πθ and πθold
, which is the probability

ratio between the two policies:

𝑟𝑡(θ) =

πθ(𝑎𝑡|𝑠𝑡)

πθold
(𝑎𝑡|𝑠𝑡)

(2.38)

Given this, the objective function for PPO is defined as:

 𝐿𝐶𝐿𝐼𝑃(θ) = 𝔼𝑡[min(𝑟𝑡(θ)𝐴𝑡, clip(𝑟𝑡(θ), 1 − ϵ, 1 + ϵ)𝐴𝑡)] (2.39)

where 𝐴𝑡 is the function estimator for the advantage function at time step 𝑡, ϵ is an

arbitrary hyperparameter, and the output of the function clip(𝑟𝑡(θ), 1 − ϵ, 1 + ϵ) is:

clip(𝑟𝑡(θ), 1 − ϵ, 1 + ϵ) = {

1 + ϵ if 𝑟𝑡(θ) > 1 + ϵ

 𝑟𝑡(θ) 𝑖𝑓 (1 − ϵ) < 𝑟𝑡(θ) < (1 + ϵ)

1 − ϵ if 𝑟𝑡(θ) < 1 − ϵ

(2.40)

19

The function min(𝑟𝑡(θ)𝐴𝑡, clip(𝑟𝑡(θ), 1 − ϵ, 1 + ϵ)𝐴𝑡) then selects the minimum of

the two objects. The ratio is then bounded by (1 + ϵ) if 𝐴𝑡 > 0 and (1 − ϵ) if 𝐴𝑡 < 0.

Under this objective function, the policy πθ can be updated using the data

sampled by π𝜃𝑜𝑙𝑑
. Each time the parameters θ can be updated as was done with

Equation 2.32:

 θ𝑛𝑒𝑤,𝑡+1 = θ𝑛𝑒𝑤,𝑡 + η∇𝐿𝐶𝐿𝐼𝑃(θ) (2.41)

where θ𝑛𝑒𝑤 refers to the parameters in the new policy πθ𝑛𝑒𝑤
. Equation 2.41 can be

executed several times without sampling a new advantage function estimator 𝐴𝑡 by

the new policy, which largely improve the data efficiency.

The original paper describing PPO (Schulman, et al., 2017) ran several

computational experiments to compare PPO with other existing reinforcement

learning methods. The results showed that PPO outperformed other methods within a

1 million time-steps framework. Their results are shown in Figure 2.6.

Figure 2.6 The comparison between PPO and other methods over 1 million time-steps (Schulman, et

al., 2017). The vertical axes represent the rewards each algorithm achieved in a specific game while

the horizontal axes represent the number of time-steps. The purple curve shows the performance of

20

PPO, which shows better results than the other algorithms in multiple tasks. A2C refers to an actor-

critic algorithm; CEM refers to cross entropy method; TRPO refers to Trust Region Policy

Optimizations (Schulman, et al., 2015); Vanilla PG refers to Vanilla Policy Gradient. (Mnih, et al.,

2016)

2.3 The Neural Virtual Machine

The NVN is a purely neural architecture that can emulate the functionality of

a traditional Harvard architecture of a computer (Katz, et al., 2019). The NVM uses

neural layers to emulate the registers of traditional computer where register values are

represented as distributed activity patterns over the corresponding neural layers.

Values transferred through registers and tape-based memory are emulated via

associative recall and associative learning through the pathways between the neural

layers. Multiplicative weight vectors determine whether or not associative learning or

associative recall happens in those pathways (Mehaffey, et al., 2005) (Salinias &

Sejnowski, 2001). Figure 2.7 shows a simplified rendition of the internal neural

architecture of the part of the NVM that serves as a working memory for NVM-RL

(Katz, et al., 2020).

21

Figure 2.7 Architecture of the NVM’s working memory. Each region represents a register or the tape-

based memory of a traditional computer. The bottom region represents a gated vector to control if

associative recall or associative learning happens in each pathway. (Katz, et al., 2019)

NVM-RL can be divided into two parts: a portion representing working

memory ℒ and a controller 𝒞θ where  represents the parameters in the controller. ℒ

consists of multiple neural activity layers, and those layers are fully connected to each

other by a set of pathways 𝒫. An environmental function ℰ is used to manipulate the

inputs and outputs of the working memory. The controller outputs multiplicative gate

vectors 𝑢𝑡
𝑝
 and ℓ𝑡

𝑝
 to determine whether associative learning and recall should happen

in any corresponding pathway 𝑝 based on a hidden vector ℎ𝑡 and the activity patterns

{𝑣𝑡
𝑝

}𝑞∈ℒ received back from the working memory. Figure 2.9 shows the overall

structure of NVM-RL.

22

Figure 2.8 Overall structure of NVM-RL. A working memory serves as registers in a traditional

computer architecture and a controller is trained about how to manage the register actions that solve

the algorithmic problems to be learned.

2.3.1 Working Memory of NVM-RL

The working memory consists of multiple neural activity layers. Those layers

can emulate the “registers” and “memory address” of a typical computer architecture.

Neural activity layers are connected to each other through pathways.

At each time step, 𝑣𝑡
𝑞
 can be updated by associative recall from neural layer

𝑟𝑝 and the corresponding pathway 𝑝𝑟
𝑞
, which can emulate the movement of register

contents from 𝑟𝑝 to 𝑟𝑞, Mathematically,

Associative recall:

𝑣𝑡+1
𝑞

= 𝑡𝑎𝑛ℎ (∑ 𝑊𝑡
𝑝

𝑝∈𝒫𝑞

𝑣𝑡

𝑟𝑝𝑢𝑡
𝑝)

(2.42)

where 𝒫𝑞 is the set of pathways connecting to the layer 𝑞, 𝑣𝑡

𝑟𝑝
 denotes the activity

vector at pathway 𝑟𝑝, which denotes the source layer of the pathway 𝑝; 𝑢𝑡
𝑝
 denotes the

23

multiplicative gates, which is a vector of 0 and 1 elements with one position per

pathway connected to layer 𝑞 and only the position of the chosen pathway to proceed

with associative recall is a 1.

 𝑊𝑡
𝑝

 is the weight matrix for each pathway 𝑝, which can also be updated at a

given time step. The changes during this step define the associative learning on

pathway 𝑝 and involve a novel store-erase learning rule first introduced in the NVM

that simultaneously stores one association while erasing another, as follows:

Associative

learning:
𝑊𝑡+1

𝑝
= 𝑊𝑡

𝑝
+ Δ𝑊𝑡

𝑝
ℓ𝑡

𝑝
 (2.43)

 Δ𝑊𝑡
𝑝

(𝑥, 𝑦) = (𝑡𝑎𝑛ℎ−1(𝑦) − 𝑊𝑡
𝑝

𝑥)𝑥⊺/(𝑁𝑥ρ2) (2.44)

where 𝑁𝑥 is the number of neurons in layer x, and the Δ𝑊𝑡
𝑝
 of a pathway from layer

𝑟𝑝 to layer 𝑞𝑝 is calculated by equation 2.44 as Δ𝑊𝑡
𝑝(𝑟𝑝, 𝑞𝑝). Here ℓ𝑡

𝑝
 is a vector of

multiplicative gates like 𝑢𝑡
𝑝
, choosing the pathway that will have its weights updated

as the one with ℓ𝑡
𝑝

= 1.

 The NVM-RL expects that its inputs and outputs will be fixed-length

sequences and that each element in a sequence is a character symbol 𝒶 in a finite

space 𝒜. Those symbols are represented as distributed neural patterns that are stored

in the neural activity layers. As noted earlier, 𝑣𝑞[𝒶] denotes a pattern 𝒶 stored in

layer 𝑞 and 𝑣𝑡
𝑞
 denotes activity vector at time step 𝑡 in layer 𝑞. Moving a pattern

𝑣𝑟𝑝[𝒶] from register 𝑟𝑝 to register 𝑞 can be simply obtained by associative recall as in

equation 2.42 if 𝑊𝑡
𝑝
 has been updated by associative learning with Δ𝑊𝑡

𝑝
(𝒶, 𝒶).

24

Therefore, before we train the NVM-RL, each pathway between registers will be

initialized with Algorithm 2.1:

Algorithm 2.1 Initial associative learning for all pathways

For 𝒑 ∈ 𝓟 do:

 Initialize 𝑾𝟎
𝒑
 with all zero entries,

 For 𝓪 ∈ 𝓐:

 Update 𝑾𝟎
𝒑

= 𝑾𝟎
𝒑

+ 𝚫𝑾𝟎
𝒑

(𝓪, 𝓪)

 End for

End for

A neural layer can also be used as a tape-based memory, denoted as 𝑣𝑚 ,

which is usually set up with two recurrent pathways: 𝒾𝓃𝒸𝓂 and 𝒹ℯ𝒸𝓂, which are

used to increase or decrease the current position in the memory. A memory position

can also be represented by a pattern 𝑘, denoted as 𝑣𝑚[𝑘]. The head address of

memory 𝑣𝑚[𝑘] can be updated from 𝑣𝑚[𝑘] to 𝑣𝑚[𝑘 + 1] through pathway 𝒾𝓃𝒸𝓂 if

𝑊𝒾𝓃𝒸𝓂 has been updated by associative learning with Δ𝑊0
𝒾𝓃𝒸𝓂(𝑘, 𝑘 + 1). We use the

input pattern to serve as a memory address pattern. The recurrent pathways 𝒾𝓃𝒸𝓂 and

𝒹ℯ𝒸𝓂 are then initialized with Algorithm 2.2.

Algorithm 2.2 Initialize tape-based memory pathway

Initialize 𝑾𝟎
𝓲𝓷𝓬𝓶 and 𝑾𝟎

𝓭𝓮𝓬𝓶 with all zero entries

For 𝒌 ∈ 𝓐 do:

 Update 𝑾𝟎
𝓲𝓷𝓬𝓶 = 𝑾𝟎

𝓲𝓷𝓬𝓶 + 𝚫𝑾𝟎
𝓲𝓷𝓬𝓶(𝒌, 𝒌 + 𝟏)

 Update 𝑾𝟎
𝓭𝓮𝓬𝓶 = 𝑾𝟎

𝓭𝓮𝓬𝓶 + 𝚫𝑾𝟎
𝓭𝓮𝓬𝓶(𝒌, 𝒌 − 𝟏)

End for

25

2.3.2 The controller network

The controller 𝒞θ is a simple recurrent neural network. For each time step, the

controller is updated by:

ℎ𝑡 = 𝑡𝑎𝑛ℎ (∑ 𝑊ℎ,𝑞𝑣𝑡
𝑞

𝑞∈ℒ

+ 𝑊ℎ,ℎℎ𝑡−1 + 𝑏ℎ)

(2.45)

 𝑙𝑡 = σ(𝑊𝑙,ℎℎ𝑡 + 𝑏𝑙) (2.46)

 𝑢𝑡

𝒫𝑞 = μ(𝑊𝑞,ℎℎ𝑡 + 𝑏𝑞) (2.47)

where σ is a hyperbolic tangent activation function and μ is a softmax activation

function. Here 𝑙𝑡 is an activity pattern with one neuron per pathway 𝑝, and the value

at each of the neurons denotes the probability that weight updating occurs at each

corresponding pathway. Also, 𝑢𝑡

𝒫𝑞
 is the probability that associative recall will

happen in the pathways 𝒫𝑞 that connect to layer 𝑞. The multiplicative gates can then

be sampled by:

 ℓ𝑡
𝑝

~ℬ(𝑙𝑡) (2.48)

 𝑝𝑡
𝑞

~ℳ (𝑢𝑡

𝒫𝓆) (2.49)

𝑢𝑡

𝑝
 = {1 𝑖𝑓 ∃𝑞: 𝑝 = 𝑝𝑡

𝑞

0 𝑒𝑙𝑠𝑒

(2.50)

where ℬ and ℳ denote Bernoulli and multinomial distributions, respectively. The

sampling makes each layer 𝑞 be updated by only one associative pathway at a certain

time-step t.

26

2.3.3 Overall Mechanism of the NVM-RL

Combining the mechanisms of the working memory and the controller, the

operation of the NVM-RL at one time-step can be characterized by four sub-steps:

Step 1: {𝑢𝑡
𝑝

}𝑝∈𝒫 , {ℓ𝑡
𝑝

}𝑝∈𝒫 , ℎ𝑡 = 𝒞𝜃({𝑣𝑡
𝑝

}𝑞∈ℒ , ℎ𝑡−1) (2.51)

Step 2:

𝑣𝑡+1
𝑞

= 𝑡𝑎𝑛ℎ (∑ 𝑊𝑡
𝑝

𝑝∈𝒫

𝑣𝑡

𝑟𝑝𝑢𝑡
𝑝)

(2.52)

Step 3: 𝑊𝑡+1
𝑝

= 𝑊𝑡
𝑝

+ Δ𝑊𝑡
𝑝

ℓ𝑡
𝑝
 (2.53)

Step 4: {𝑣𝑡+1
𝑝

}𝑞∈ℒ , 𝜓𝑡+1 = ℰ({𝑣𝑡+1
𝑝

}𝑞∈ℒ , 𝜓𝑡) (2.54)

In step 1, the controller assigns the multiplicative gates values 𝑢𝑡
𝑝

 and ℓ𝑡
𝑝
 based on the

activity vectors of the memory layers and the hidden vector of the controller. In step

2, the chosen memory layers are updated by associative recalls, where 𝑣𝑡+1
𝑞

 denotes

the activity vector at layer 𝑞 before it is modified by the environment function ℰ at

time step 𝑡 + 1, and 𝑣𝑡

𝑟𝑝
 denotes the activity vector at layer 𝑟𝑝 which is the source of

the pathway 𝑝. In step 3, weight matrixes of the associative pathways are updated.

Finally, in step 4, the environment function modifies the activity vector for each

memory layer based on external inputs.

2.3.4 Policy Gradient in NVM-RL

The NVM-RL uses standard policy optimization for training the controller to

have desired target outputs. The NVM-RL expects inputs and outputs to be fixed

length sequences. The environment function modifies an input sequence to feed into a

designated input layer. The NVM-RL is supposed to produce a correct sequence at a

27

designated output layer. If NVM-RL is expected to have a target output list

[′1′, ′2′, ′0′, ′3′] from timestep t to t+3, the designated output layer is supposed to have

𝑣𝑡
𝑜𝑢𝑡 = 𝑣𝑡

𝑜𝑢𝑡[1], 𝑣𝑡+1
𝑜𝑢𝑡 = 𝑣𝑡+1

𝑜𝑢𝑡[2], 𝑣𝑡+2
𝑜𝑢𝑡 = 𝑣𝑡+2

𝑜𝑢𝑡[0], 𝑣𝑡+3
𝑜𝑢𝑡 = 𝑣𝑡+3

𝑜𝑢𝑡[3]. In the training

process, the output will be compared with the target and receive a reward. The NVM-

RL will only receive a reward 𝑟𝑡 at the final time-step.

Under the reinforcement learning paradigm, the controller is regarded as an

agent, the gating decision at each time-step 𝑡 is regarded as an action:

 𝑎𝑡 = {𝑢𝑡
𝑝

}𝑝∈𝒫 ∪ {ℓ𝑡
𝑝

}𝑝∈𝒫 (2.55)

The set of activity vectors in working memory is regarded as the state observation at

time 𝑡,

 𝑠𝑡 = {𝑣𝑡
𝑝

}𝑞∈ℒ (2.56)

The hidden states of the controller 𝒞𝜃 encode the history of all state

observations and can calculate the probability distribution of the action for each state

by:

𝑃𝑟(ℓ𝑡

𝑝|𝑠0, 𝑠1, … 𝑠𝑡) = 𝑃𝑟(𝑙𝑡
𝑝|ℎ𝑡) = {

𝑙𝑡
𝑝

 𝑖𝑓 ℓ𝑡
𝑝

= 1

1 − 𝑙𝑡
𝑝

 𝑖𝑓 ℓ𝑡
𝑝

= 0

(2.57)

𝑃𝑟(𝑝𝑡

𝑞|𝑠0, 𝑠1, … 𝑠𝑡) = 𝑃𝑟(𝑝𝑡
𝑞|ℎ𝑡) = 𝑢𝑡

𝑝𝑡
𝑞

(2.58)

where 𝑢𝑡

𝑝𝑡
𝑞

 is the value of a neuron in 𝑢𝑡

𝒫𝓆 , 𝑢𝑡

𝑝𝑡
𝑞

 represents the probability that

associative recall will happen in the pathways 𝑝 ∈ 𝒫𝓆 to a layer 𝑞. Because the

likelihoods of each gating output are independent of one another, the policy formula

of NVM-RL can be written as:

28

 π(𝑎𝑡|𝑠0, 𝑠1, … 𝑠𝑡) = ∏ 𝑃𝑟(𝑔|ℎ𝑡)

𝑔∈𝑎𝑡

 (2.59)

For each training set of data, NVM-RL is trained with 𝐸 number of episodes.

Each episode represents one sequence of input and output that the NVM-RL is

supposed to execute. The objective is to maximize the rewards obtained during each

episode. For each episode, the NVM-RL uses a reward-to-go method to estimate the

state-action value at each time step:

𝑅𝑡,𝑒 = ∑ 𝑟𝑡,𝑒

𝑇

𝑡=𝑡′

(2.60)

The objective function approximation for a training epoch is defined as:

𝔼[𝑅0] ≈
1

𝐸
∑ ∑ 𝑙𝑜𝑔(πθ(𝑎𝑡,𝑒|𝑠0,𝑒 , . . . 𝑠𝑡,𝑒))(𝑅𝑡,𝑒 − 𝑏𝑡)

𝑇

𝑡

𝐸

𝑒

(2.61)

where E is the total number of episodes in the epoch; 𝑅𝑡,𝑒 refers to the reward-to-go at

time step 𝑡 at training episode 𝑒; 𝑏𝑡 is the average reward for all episodes at a time

step 𝑡: 𝑏𝑡 =
1

𝐸
∑ 𝑅𝑡,𝑒𝑒 ; 𝑇 is the total time steps that NVM-RL has run for the episode

(referred to as the episode duration), which is also equal to the length of the output

sequence.

2.3.1 Experimental Results using the NVM-RL

All experiments in the original NVM-RL paper (Katz, et al., 2020) use an all-

or-nothing reward function, which gives a reward 1 if the NVM-RL predict a correct

result and gives a reward 0 otherwise. The reward is only given at the last time-step

of an episode. For each experiment, the NVM-RL is trained for 𝑁 epochs with 𝐸

29

episodes per epoch. For each episode, the NVM-RL is fed an input sequence with

fixed length 𝐿 and runs for 𝑇 time-steps. The NVM-RL only reads in one input

element each time-step. The character symbol ′0′ serves as a special “delimiter” that

can be padded by other meaningful symbol generated at the previous or later

timestep, which means an output list [′1′, ′0′, ′2′, ′3′] is equivalent to the list

[′1′, ′2′, ′0′, ′3′].

The experiments can be classified into two types: Experiments on problems

that the NVM only needs 3 registers to accomplish, and experiments on problems that

require the NVM to have a tape-based memory. Each experiment for a specific

problem has 30 trials. In the following we consider three experiments (Max, filter

and reverse) initially done using the NVM-RL.

Experiment Max addresses the problem of selecting the maximum value of a

list. This experiment uses an input length 𝐿 = 5 and episode duration 𝑇 = 𝐿, which

means the NVM-RL is expected to print out the correct answer right after reading all

elements in the input list. The NVM-RL is expected to print the maximum value of

the given list at the final time step (see Fig. 2.9). For example, the correct output of an

input list [′5′, ′2′, ′0′, ′4′, ′3′] can be any list with symbol ′5′ at the final step.

Experiment filter trains the NVM-RL not to output some certain elements in

the output list. In the experiments for Figure 2.9 (middle, bottom panels), the goal is

to filter out the elements that are lower than ′4′ in the input list. For example, a

correct output list for input list [′9′, ′2′, ′0′, ′5′, ′3′] can be a variety of lists with 9 and

5 in the correct order, such as [′9′, ′0′, ′0′, ′5′, ′0′] or [′0′, ′9′, ′0′, ′5′, ′0′], since the

symbol ′0′ is just padding.

30

The working memory of both Max and filter experiments is set up with 3

registers, ′𝑟𝑖𝑛𝑝′, ′𝑟𝑜𝑢𝑡′ and ′𝑟𝑡𝑒𝑚𝑝′. Each element of the input list is first written

into ′𝑟𝑖𝑛𝑝′ and the output element for each time step is expected at ′𝑟𝑜𝑢𝑡′. Register

′𝑟𝑡𝑒𝑚𝑝′ serve as a register that can hold a symbol at each time step. In both

experiments, the NVM-RL has the correct output in most episodes after a certain

number of epochs, as shown in Figure 2.9.

In the experiment reverse, a correct output of NVM-RL would be a reversed

list of the input list. This experiment use input length 𝐿 = 4 and episode duration

𝑇 = 8. That means the NVM-RL needs to print the correct output at the same length

of the input list after reading all elements in the input list. This experiment requires a

tape-based memory layer 𝓂 instead of a register for temporary value ′𝑟𝑡𝑒𝑚𝑝′

because the working memory needs to save more than one pattern at a time.

The NVM-RL did not consistently reach success (reward ≈ 1) with standard

policy gradients in experiment reverse. As shown in Figure 2.10, despite the NVM-

RL having a reward value that trends to one in some of the trials, the average reward

over all 30 trials remains at about 0.6. The average reward of one epoch is trapped in

a local minimum for many of the trials, which means the NVM-RL can only output

some certain cases correctly but fails to learn the full mechanism to reverse a list.

31

Figure 2.9 Experimental results for Max and filter. Grey lines show individual runs. The top panel is

the result of experiment Max, the middle panel is the result of experiment filter without repeat elements

in the list. The bottom panel is the result of experiment filter with repeat elements in the list. The

horizontal axis is the number of epochs and the vertical axis is the reward received. (Katz, et al., 2020)

32

Figure 2.10 Result of experiment Reverse. The top panel shows the performance of NVM-RL through

500 epochs. The grey curve shows the average reward of each trial, the black curve shows the average

result of all trials. The bottom figure shows the frequency of the final results after training. (Katz, et

al., 2020)

33

3. Methodology

Experimental results have shown a large advantage of PPO over other

reinforcement learning algorithms in many application problems (Schulman, et al.,

2017). Therefore, I examined the hypothesis that training the NVM-RL with PPO

might improve NVM-RL to have stable success with experiment Reverse or even

enable NVM-RL to achieve success on more complex tasks. In this section, I

introduce the methodology I used to apply PPO in NVM-RL and in the experiments

comparing PPO and the SPG used in the original NVM-RL.

In PPO, we want to update the new policy πθ with the data sampled from the

old policy πθold
. From equation 2.59, we calculate the stochastic policy as the

likelihoods of gating outputs given the hidden states of the controller, since the

hidden states encode the history of observation states from time-step 0 to time-step 𝑡.

 πθold
(𝑎𝑡|𝑠0, … 𝑠𝑡) = ∏ 𝑃𝑟θ𝑜𝑙𝑑

(𝑔|ℎ𝑡)

𝑔∈𝑎𝑡

 (2.59)

where 𝑃𝑟𝜃𝑜𝑙𝑑
(𝑔|ℎ𝑡) refers to the likelihoods of each gating decision from the

controller with parameters 𝜃𝑜𝑙𝑑 . Following this equation, our new policy can be

calculated by the using the same hidden states in the controller with new parameter

θ𝑛𝑒𝑤 :

 πθ𝑛𝑒𝑤
(𝑎𝑡|𝑠0, … 𝑠𝑡) = ∏ 𝑃𝑟θ𝑛𝑒𝑤

(𝑔|ℎ𝑡)

𝑔∈𝑎𝑡

 (3.1)

and the state-action value can still be estimated using rewards-to-go:

34

𝑅𝑡,𝑒 = ∑ 𝑟𝑡,𝑒

𝑇

𝑡=𝑡′

(2.60)

The ratio of 2 policies is just the same as 3.16:

𝑟𝑡(θ) =

πθnew
(𝑎𝑡|𝑠𝑡)

πθold
(𝑎𝑡|𝑠𝑡)

(3.2)

Further, we define our objective function by replacing the advantage estimator of

equation 2.36 with the reward-to-go:

𝑅0
𝐶𝐿𝐼𝑃(θ) ≈

1

𝐸
∑ ∑ min (𝑟𝑡(θ)(𝑅𝑡,𝑒 − 𝑏𝑡), clip(𝑟𝑡(θ), 1 − ϵ, 1

𝑇

𝑡

𝐸

𝑒

+ ϵ)(𝑅𝑡,𝑒 − 𝑏𝑡))

(3.3)

The algorithm we use to train the NVM-RL is as follows:

Algorithm 3.1 Train NVM-RL with PPO

For epochs 1,2,3…do:

 Run NVM-RL with a batch of training samples for 𝑬 episodes,

 Compute Reward-to-go, save hidden states 𝒉𝒕 for all episodes.

 For iteration 1,2,3…do:

 Update 𝛉𝒏𝒆𝒘 with objective function 𝑹𝟎
𝑪𝑳𝑰𝑷(𝛉)

 End for

End for

The NVM-RL is then modified with Algorithm 3.1, denoted as NVM-PPO.

The original NVM-RL trained with standard policy gradients is then denoted as

NVM-SPG. Algorithm NVM-PPO is tested in experiments Max, Filter, Reverse and a

more complex new task called Sorting.

35

The experiments Max, Filter and Reverse are set up with the same

configuration of the NVM-SPG described in Section 2.3. Two experiments of a

sorting task are performed, with input length 𝐿 = 3, and input length 𝐿 = 4 being

tested. The episode duration is set as 𝐸 = 2𝐿 for both experiments. The sorting task

can be considered as a more complex task than reverse because the NVM-RL is

supposed to learn both the positional information and the numerical order for each

pattern in the list. The NVM’s working memory set up for experiment Sorting is the

same as for experiment Reverse. The configuration of experiments on each task is

shown in Table 1.

 I tested the NVM-PPO on the experiments described above while using two

different reward functions separately: the all-or-nothing reward function used in the

original NVM-RL, and a partial-credit reward function. The partial-credit reward

function is designed to give partial rewards to incorrect output lists of the NVM-RL.

A correct output list will receive a reward 0 with the partial-credit reward function

while every positional mistake in an output list will be added to form a negative

reward k. In the experiments using the partial-credit reward function, I measured the

performance of NVM-RL with the fraction of episodes that reach a reward 0, which is

an equivalent measurement of the average reward in all-or-nothing function. The

original NVM-SPG is also tested with the partial-credit reward function in order to

compare its performance with NVM-PPO.

36

Table 1: CONFIGURATION FOR EACH EXPERIMENT

 L T E 𝒜

Max 5 5 500 10

Filter 5 5 1000 10

Reverse 4 8 5000 5

sorting 3-4 6-8 5000 5

37

4. Experimental Results

In this section, I describe the results of the experiments done in testing the

performance of NVM-PPO versus the original NVM-SPG.

4.1 Results with All-or-Nothing Reward Function

The NVM-PPO with an all-or-nothing reward function was tested on

experiments Max, filter and Reverse. Figure 4.1a shows the result of NVM-PPO in

experiment Max. As with the results of NVM-SPG shown in Figure 2.9 top, NVM-

PPO stably reach an average reward approximately equal to 1 in every individual trial

of the experiments. Figure 4.1b shows the comparison between NVM-SPG and

NVM-PPO. The original NVM-RL paper (Katz, et al., 2020) showed the results of

experiment Max with a learning rate 0.1. I reproduced the experiment Max of NVM-

SPG, changing the learning rate to find the best performance of NVM-SPG to see if

the NVM-PPO outperforms NVM-SPG by approaching average reward equal to 1

with a smaller number of epochs. The results in Figure 4.1b show that the best

performance of NVM-SPG can reach an average reward within a similar number of

epochs as the NVM-PPO can do that. Therefore, NVM-PPO and NVM-SPG have

essentially the same performance in experiment Max, with both of them can having

consistent success.

Figure 4.2 shows that the NVM-PPO can also achieve consistent success in

the filter task. Comparing with Figure 2.9 middle, we can conclude that both NVM-

PPO and NVM-SPG can stably reach an average reward approximating 1. In other

38

words, for simple tasks Max and filter which only involve 3 registers, the NVM-PPO

can achieve stable success just as NVM-SPG can do.

39

 Figure 4.1a Result of Experiment Max in NVM-PPO. The grey curves show the result of each trial

the blue line shows the average of all 30 trials. We see that every trial is able to reach an average

reward equal to 1.

 Figure 4.1b Comparing PPO and SPG in experiment Max. The blue line is the average reward over

30 trials with NVM-PPO. The green line is the average reward of NVM-SPG reproducing the result of

the original NVM-RL paper, the blue line is the average reward of NVM using a different learning

rate.

40

Figure 4.2 Experimental results for PPO with experiment Filter using all-or-nothing function. The

grey curves represent the average reward of each individual trial. The blue curve represents the

average reward of all 30 trials. Every trial is able to reach reward 1.

41

Despite the expectation that NVM-PPO would outperform NVM-SPG with a

complex task like reverse, which requires the NVM to make use of a tape-head

memory, the NVM-PPO did not show a better performance than that of NVM-SPG

with the all-or-nothing reward function.

Figure 4.3 shows the performance of NVM-PPO on task Reverse. The average

reward over 30 trials only reaches 0.6, which is at the same level as the result of

NVM-SPG shown in Figure 2.10. Figure 4.3b shows that only 15 out of 30 trials have

more than 90 percent of episodes producing a completely correct output after training.

The results of 12 trials have average rewards trapped within 0.3 to 0.4. Compared

with Figure 2.10, which shows that NVM-SPG achieved 12 out of 30 trials with an

average reward bigger than 0.9, the NVM-PPO has only 3 trials more, which is not a

sufficient lead to conclude that NVM-PPO has better performance. The NVM-PPO

neither achieve a significant lead in average reward over all 30 trials nor having a

significant number of more success cases than the NVM-SPG.

 These results show that the NVM-PPO fails to exhibit consistent success in

the task Reverse, and the NVM-PPO does not have a significant advantage over the

NVM-SPG under the all-or-nothing reward function.

42

Figure 4.3a PPO experimental results for experiment Reverse using all-or-nothing function. The grey

curves show the result of each individual trial, we can see many trials are trapped in an average

reward < 0.4. The average reward of all 30 trials after training is about 0.6, shown by the blue line.

Figure 4.3b PPO experimental results with Reverse. This histogram shows the count of the range of

average rewards for each trial. 15 out of 30 trials are able to reach an average reward > 0.9.

43

4.2 Results When Using a Partial-Credit Reward Function

The NVM-PPO and NVM-SPG with the partial-credit reward function was

next tested on tasks filter, reverse and sorting. Figure 4.4 shows the fraction of

correct episode outputs in an epoch of the NVM-PPO and NVM-SPG with the

partial-credit function for the filter experiment. As when using an all-or-nothing

reward function, both NVM-SPG and NVM-PPO are able to reach consistent

successes in the experiment filter.

Figure 4.5 and Figure 4.6 show the experimental results of Reverse for NVM-

PPO and NVM-SPG with the partial-credit reward function. None of the trials for

NVM-SPG achieved a success fraction higher than 0.4 and the average success

fraction over all 30 trials is around 0.2 as shown in Figure 4.5a. Figure 4.5b shows the

average success fraction over all trials for NVM-PPO reaches a number around 0.9,

which is a large improvement from NVM-SPG with the same partial-credit reward

function. Figure 4.5c shows the large advantage of the NVM-PPO over NVM-SPG

with the comparison of average success fraction over 30 trials. Figure 4.6b shows 24

out of 30 trials reached a success fraction over 90 percent while Figure 4.6a shows

none of the 30 trials can have a success fraction over 40 percent.

 That is to say, under a partial-credit reward function, NVM-PPO shows a

dominant performance over NVM-SPG. In comparison with the original NVM-SPG

with an all-or-nothing reward function in Figure 2.10, NVM-PPO with partial-credit

reward function shows a better performance where 100% of trials approach a success

fraction equal to 1 (from 12 out of 30 trials to 24 out of 30 trials).

44

Figure 4.7 shows the experimental results for the new task Sorting (L=3) for

NVM-PPO and NVM-SPG. As shown in Figure 4.7a, the NVM-SPG only reaches an

average success fraction of 0.4 after training while the maximum success fraction out

of 30 trials is 0.8. Figure 4.7b shows the NVM-PPO consistently reaches success in

task sorting (L=3) as the success fraction of every trial asymptotically trends to 1.0 at

the end of training. Figure 4.8 shows the result of the NVM-PPO on the task sorting

(L=4), which shows that the NVM-PPO becomes very unstable and only one trial

reaches a success fraction around 1 during the training. In contrast, the NVM-SPG

does not show any improvement at all on the task sorting (L=4) as the success

fraction is always around zero. In conclusion of the sorting experiments with a

partial-credit function, NVM-PPO shows a great advantage over NVM-SPG as

NVM-PPO consistently performs with a higher success fraction in the experiment.

45

 Figure 4.4a Result of experiment filter with NVM-PPO, under partial-credit reward function.

The grey curves show every individual trial is able to reach a total success fraction equal to 1.

Figure 4.4b Result of experiment filter with NVM-SPG, under partial-credit reward function. Same as

NVM-PPO every trial is able to reach success fraction equals 1.

46

Figure 4.5a NVM-SPG Result of Experiment Reserve under partial-credit reward function. None of the

30 trials is able to reach a success fraction > 0.4.

Figure 4.5b NVM-PPO Result of Experiment Reserve under partial-credit reward function. Many but

not all of the 30 trials are able to reach the success fraction equals 1.

47

Figure 4.5c PPO vs SPG in Experiment Reverse under partial-credit reward function. The orange

curve is the average success fraction of NVM-PPO and the blue curve is the average success fraction

of NVM-SPG. NVM-PPO shows a great advantage over NVM-SPG.

48

Figure 4.6a NVM-SPG Results for Experiment Reserve, under partial-credit reward function, where
the histogram counts success fraction in 30 trials after training. The success fraction of all 30 trials

lines within 0~0.4.

Figure 4.6b NVM-PPO Result of Experiment Reserve, under partial-credit reward function, where the

histogram counts success fraction in 30 trials after training. 24 out of 30 trials are able to reach a

success fraction > 0.9. All of the trials reach a success fraction > 0.6.

49

 Figure 4.7a NVM-SPG Results of Experiment Sorting (L=3), under partial-credit reward function.

The grey curves show the success fraction of every individual trials. None of the trials are able to

reach a success fraction = 1. The blue represents the average success fraction of 30 trials, and this did

not reach success fraction > 0.2.

Figure 4.7b NVM-PPO Results of Experiment Sorting (L=3), under partial-credit reward function. All

of the 30 trials are able to approach success fraction = 1.

50

Figure 4.7c PPO vs SPG in Experiment Sorting (L=3), under partial-credit reward function. The

orange curve is the average success fraction of NVM-PPO and the blue curve is the average success

fraction of NVM-SPG. NVM-PPO shows a great advantage over NVM-SPG.

51

Figure 4.8 NVM-PPO Results with Experiment Sorting (L=4), under partial-credit reward function.

The grey curves show the success fraction of every individual trials. None of the trials are able to

reach a success fraction = 1. The result of each trial is very unstable. One of the trials is able to

approach success fraction equals one during the training process but the performance drops down at

some epoch. The average success fraction of 30 trials is around 0.5 after 1000 epochs or training.

52

5. Conclusion

This thesis aimed to improve the performance of NVM-RL by training it with

a different modern reinforcement learning method. To assess this possibility, two

versions of the NVM-RL were compared experimentally: NVM-SPG, which was the

original NVM-RL, and a modified version NVM-PPO. As one of the most popular

reinforcement learning algorithms, PPO was selected because of its simplicity for

modifications and its data efficiency. The effects of these methodological variations

on the performance of NVM-PPO and NVM-SPG were given in the previous section.

These results suggest three conclusions.

First, surprisingly, PPO provided no advantage over SPG when compared to

the original published results for NVM-SPG when using the all-or none reward

function (Katz, et al., 2020). This clearly refuted my initial hypothesis. In the Reverse

experiment with all-or-nothing reward, NVM-PPO showed neither a significantly

higher average reward over all 30 trials nor had a significant lead in the number of

trials that reach reward > 0.9 after training. Despite the dominating results of the

PPO over other policy gradient methods reported elsewhere (Schulman, et al., 2017),

the NVM-PPO did not show an improvement over the NVM-SPG under an all-or-

nothing reward function.

Second, it was found that modifying the reward function to be a partial-credit

function changed this situation dramatically. By using a partial-credit function,

NVM-PPO demonstrated a clear and significant improvement over NVM-SPG.

Specifically, NVM-PPO showed a large improvement, by providing more consistent

53

success in complex tasks such as Reverse and Sorting that require the use of tape-

based memory in NVM-RL. For the more complex task sorting (L=4), the NVM-

PPO also did reasonably well on a fraction of the episodes while NVM-SPG only

rarely produced any correct outputs. In other words, with the change in reward

function, the NVM-PPO was consistently successful with some complex problems

that NVM-SPG did poorly on, and the NVM-PPO had inconsistent success on a more

challenging task for which the NVM-SPG was totally untrainable. This achievement

suggests that the further development of NPI with reinforcement learning methods

using pure neural architectures might benefit from focusing on PPO rather than SPG.

Third and finally, this work supports not only the potential of NVM-RL to

succeed as a new NPI approach, but also provides a basic test of the NVM itself on a

specific and challenging application. The NVM is a new and novel neuro-

computational architecture that emulates the mechanisms of a traditional computer

with a purely neural network distributed representation, and it has undergone only

limited testing so far. By building on the basic mechanisms of the NVM, NVM-PPO

has convincingly demonstrated that the fundamental underlying concepts of the NVM

are both effective and robust when used in practice.

The current main limitation of NVM-PPO that I observed is that its

performance on a more complex problem of sorting lists decreases quickly as the

number of symbols in the list increased. Although PPO improves the learning

efficiency of NVM-RL, the improvement did not overcome the increase of action

space and state space sizes when increasing problem size, suggesting that there is still

substantial work to be done. For example, future work might be undertaken to

54

explore whether one could improve the performance of NVM-RL by modifying its

internal structure to reduce the increased size of the action space as problem size

increases. In addition, one might seek to develop a less task-specific form of NVM-

RL. One possible approach to this would be embedding the representation of specific

tasks into a vector that could be fed to the NVM controller. One might also explore

training an advantage function and applying other reinforcement learning methods

such as the actor-critic algorithm in NVM-RL.

55

Bibliography

Abdelbar, A.M., Andrews, E.A. and Wunsch II, D.C., 2003. Abductive reasoning

with recurrent neural networks. Neural Networks, 16(5-6), pp.665-673.

Aggarwal, C.C., 2018. Neural networks and deep learning. Springer.

Ansari, G.A., Saha, A., Kumar, V., Bhambhani, M., Sankaranarayanan, K. and

Chakrabarti, S., 2019, August. Neural Program Induction for KBQA Without Gold

Programs or Query Annotations. In IJCAI (pp. 4890-4896).

Dehaene, S. and Changeux, J.P., 1997. A hierarchical neuronal network for planning

behavior. Proceedings of the National Academy of Sciences, 94(24), pp.13293-13298.

Katz, G.E., Davis, G.P., Gentili, R.J. and Reggia, J.A., 2019. A programmable neural

virtual machine based on a fast store-erase learning rule. Neural Networks, 119,

pp.10-30.

Katz, G.E., Gupta, K. and Reggia, J.A., 2020, July. Reinforcement-based Program

Induction in a Neural Virtual Machine. In 2020 International Joint Conference on

Neural Networks (IJCNN) (pp. 1-8). IEEE.

Mehaffey, W.H., Doiron, B., Maler, L. and Turner, R.W., 2005. Deterministic

multiplicative gain control with active dendrites. Journal of Neuroscience, 25(43),

pp.9968-9977.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D. and

Kavukcuoglu, K., 2016, June. Asynchronous methods for deep reinforcement

learning. In International conference on machine learning (pp. 1928-1937).

Peters, J. and Schaal, S., 2006, October. Policy gradient methods for robotics. In 2006

IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2219-

2225). IEEE.

Plate, T.A., 1995. Holographic reduced representations. IEEE Transactions on Neural

networks, 6(3), pp.623-641.

Salinias, E. and Sejnowski, T.J., 2001. Gain modulation in the central nervous

system: Where behavior. Neurophysiology, and Computation Meet, Neuroscientist, 7,

pp.430-440.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P., 2015, June. Trust

region policy optimization. In International conference on machine learning (pp.

1889-1897).

56

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O., 2017. Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT

press.

Sutton, R.S., McAllester, D.A., Singh, S.P. and Mansour, Y., 2000. Policy gradient

methods for reinforcement learning with function approximation. In Advances in

neural information processing systems (pp. 1057-1063).

Wei, Z., Xu, J., Lan, Y., Guo, J. and Cheng, X., 2017, August. Reinforcement

learning to rank with Markov decision process. In Proceedings of the 40th

International ACM SIGIR Conference on Research and Development in Information

Retrieval (pp. 945-948).

Werbos, P.J., 1990. Backpropagation through time: what it does and how to do

it. Proceedings of the IEEE, 78(10), pp.1550-1560.

Xu, D., Nair, S., Zhu, Y., Gao, J., Garg, A., Fei-Fei, L. and Savarese, S., 2018, May.

Neural task programming: Learning to generalize across hierarchical tasks. In 2018

IEEE International Conference on Robotics and Automation (ICRA) (pp. 1-8). IEEE.

Zheng, Z., Wu, X. and Weng, J., 2019. Emergent neural turing machine and its visual

navigation. Neural Networks, 110, pp.116-130.

Rosenblatt, F., 1961. Principles of neurodynamics. perceptrons and the theory of

brain mechanisms (No. VG-1196-G-8). Cornell Aeronautical Lab Inc Buffalo NY.

Kelley, H.J., 1960. Gradient theory of optimal flight paths. Ars Journal, 30(10),

pp.947-954.

Ruder, S., 2016. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747.

Haykin, S., 2007. Neural networks: a comprehensive foundation. Prentice-Hall, Inc..

