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High-throughput sequencing methods now provide extensive data on disease-related 

human genetic variants. New methods are required to maximally utilize these data for 

enhanced understanding and treatment of human diseases. This dissertation describes 

my work in addressing three aspects of this challenge: Determining disease-causative 

variants; representing mechanisms by which genetic variant(s) cause disease 

phenotypes; and quantitatively analyzing genetic disease mechanisms.  

 

First, I developed a variant prioritization algorithm, VarP, and objectively tested it in 

CAGI (Critical Assessment of Genome Interpretation). It was ranked best in the 

CAGI challenge on interpreting panel sequencing data for 106 patients, determining 

which disease class each patient has and the corresponding causative variant(s). VarP 

correctly identified the disease class for 36 cases, including 10 where the original 



  

clinical pipeline failed, and found seven cases with strong evidence of an alternative 

disease to that tested. Over-reliance on pathogenicity annotations in the HGMD 

mutation database led to several incorrect cases. Post analysis showed that protein 

structure data could have helped to interpret the impact of many prioritized missense 

variants. 

 

Next, I co-developed and implemented MecCog, a web-based graphical framework to 

represent mechanisms by which genetic variants cause disease phenotypes. A 

MecCog mechanism schema displays the propagation of system perturbations across 

stages of biological organization, using graphical notations to symbolize perturbed 

entities and activities, knowledge gaps, ambiguities and uncertainties, and 

hyperlinked evidence. The web platform enables a user to construct, store, publish, 

browse, query, and comment on schemas. MecCog facilitates better comprehension 

of disease mechanisms, identification of critical unanswered questions on causal 

relationships, and possible new sites of therapeutic intervention. 

 

Finally, I developed a framework to quantitatively represent and analyze mechanisms 

relating genetic variants to complex trait disease. It involves generating a computable 

circuit from MecCog schemas by assigning node functions and parameters to 

represent the behavior of the schema components. I demonstrate that such a circuit 

can be used to analyze the effect size of a variant contributing to disease risk as a 

function of the genetic background in an individual and the extent to which epistatic 

effects may be masked in population averages. I also show that the circuit functions 



  

and parameters can be learned in a data-driven manner using a hybrid neural network 

approach. 
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Chapter 1: Introduction 

1.1 Rare variants and human disease 

1.1.1 Genetic variants in the human genome  

Human genetic variants are differences found in DNA sequences between individuals 

within and among populations. Accumulation of DNA mutations due to uncorrected 

DNA replication errors, and exogenous and endogenous factors (such as chemicals, 

ionizing radiation, and oxygen free radicals) are major sources of genetic variants. 

Knowledge of the human genome sequence together with advances has made way for 

executing multiple large-scale initiatives on characterizing genetic variants in the 

human genome. These include the 1000 Genomes Project (1KG) (2504 individuals) 

(Auton et al., 2015), the Exome Sequencing Project (ESP) (7034 individuals) (Auer et 

al., 2016), and the Genome Aggregation Database (gnomAD) (141,456 individuals) 

(Karczewski et al., 2020). It has been found that a typical genome has 4.1 million to 

5.0 million sites that differ from the reference human genome (Auton et al., 2015). 

The primary types of genetic variant are single nucleotide variants (SNVs), short 

indels, structural variants such as large deletions, copy-number variations (CNVs), 

and mobile insertion elements (MEIs). Based on 1000 genome data (Devuyst, 2015), 

typically a genome has ~4.31 million (median) SNVs, ~625K (median) indels, and an 

estimated 2100 to 2500 structural variants. Although SNVs and short indels forms 

>99.9% of the variant set, the structural variants affect more bases. 
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In the coding region of the human genome, SNVs may cause synonymous (no amino 

acid change) and non-synonymous (amino acid change resulting in missense, 

nonsense due to creation of termination codon, and stoploss due to loss of a 

termination codon) variations, and indel and structural variants may cause loss of 

function (LoF) variation such as frameshift (change in the reading frame of ORFs), 

and non-frameshift (no change in the reading frame of ORFs) variations. These 

coding variants may also cause aberrant splicing by changing regulatory splice sites 

such as exon splicing enhancer or silencer. In the non-coding region of the human 

genome, variants may alter splice sites or gene expression regulatory sites. In a 

typical genome, about 0.3% of genetic variants are missense (~12000), 0.3% are 

synonymous (~ 13000), 0.004% are LoF (~180), and 12% are in regulatory sites 

(such as promoter, insulator, enhancer, transcription factor binding sites) (~500000) 

(Auton et al., 2015). Genetic variants are also shown to affect long-range intra-

chromosomal functional connections (Smemo et al., 2014). Minor allele frequency 

(MAF) analysis of the variants in populations shows that the majority of variants 

observed in a single genome are common (i.e. MAF > 0.5%) and only 1 to 4% are 

rare variants having MAF < 0.5%. Exome Sequencing Project (ESP) data shows that 

in an individual most coding variants (e.g. missense, synonymous or nonsense) are 

rare variants (MAF<1%) and the majority of these are missense (Auer et al., 2016). 

 

As of August 2020, the two widely used human genetic variant databases, dbSNP 

(Sherry et al., 2001)and gnomAD (Karczewski et al., 2020), contain 700 million and 

229.9 million variants respectively. These large counts are because of the total 
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amount of sequencing data being produced, currently doubling approximately every 

seven months, establishing human genomics as a big data domain (Stephens et al., 

2015). Knowledge of these variants has provoked intense scientific interest in their 

use to obtain insights into human genetics and diseases.  

 

1.1.2 Role of rare variants in monogenic diseases  

Monogenic diseases are caused by mutations in one gene, so exhibiting a Mendelian 

inheritance pattern (therefore also referred to as Mendelian diseases). For example, 

Lynch syndrome, a hereditary nonpolyposis colorectal cancer, is caused by 

heterozygous mutations in any of the DNA mismatch repair (MMR) genes MLH1, 

MSH2, MSH6, or PMS2 (Sehgal et al., 2014). These diseases are individually rare 

(incidence of 1 in 10000 live births on the upper end; based on data from Orphanet - 

https://www.orpha.net/) but impact millions of individuals and families (Baird et al., 

1988; Carter, 1977), with over ~6200 distinct disease traits known to date (Amberger 

et al., 2019). The World Health Organization (WHO) reports that the global 

prevalence of all single-gene diseases at birth is very high (approximately 1/100) thus 

making this disease type of major scientific interest. Monogenic diseases are 

classified into three categories: (A) Dominant disease where one of the two copies of 

a gene is damaged, (B) Recessive disease where both the copies of a gene are 

damaged, and (C) X-linked disease where the defective gene is on the X 

chromosome. Data in the Online Mendelian Inheritance in Man (OMIM) (August 

2020) databases show that for ~91% of the rare Mendelian diseases the inheritance 

pattern is not reported and in the set where it is reported, dominant diseases (670) are 



 

 

4 

 

the majority followed by recessive (101). Studies have revealed that these rare 

diseases can also be characterized by more complex modes of inheritance such as 

digenic inheritance (variants at two distinct loci required for trait manifestation), dual 

molecular diagnoses (variants at two distinct loci lead to two independent segregating 

traits), multilocus mutational burden (effect of a highly penetrant variant modified by 

variation at additional loci), and compound inheritance of rare and common variants 

(trait requires one rare and one common variant) (Posey, 2019). The OMIM data also 

shows that only ~20% (3949/~20000) of human protein-coding genes have been 

associated with one or more monogenic diseases. It is reported that genetic testing 

based on these disease genes yields a molecular diagnosis in only 24% of the tested 

patients (Lionel et al., 2018) and new disease genes are only being discovered at a 

rate of 263 a year (Posey et al., 2019). This indicates that there is a tremendous 

amount of research that remains to be done to elucidate the molecular etiology of 

monogenic diseases.  

 

Many rare and novel (not previously seen) SNVs, short insertions/deletions, CNVs, 

and structural variants have been identified to underlie monogenic diseases. 

Commercial (such as the Human Gene Mutation Database (HGMD) (Stenson et al., 

2017)) and public (such as ClinVar (Landrum et al., 2018)) databases have been built 

to collate medically important variants associated with monogenic diseases and 

susceptibility to complex trait diseases. HGMD (August 2020) catalogs ~275K 

variants, of which SNVs (including missense, nonsense, and splicing) are the majority 

(67%), followed by small deletions (14%), small insertions (6%), and complex 
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rearrangement and repeat variations (1%). ClinVar (August 2020) archives a smaller 

set of ~89K pathogenic and likely pathogenic variants but has a similar trend as 

HGMD with SNVs being the majority (70%), followed by deletions (17%), 

insertion/duplication (8%), copy number (2%) and structural variation (5%). To 

catalog somatic variants in cancer, expert-curated (such as COSMIC (Tate et al., 

2019)) and community-driven (such as CIVIC (Griffith et al., 2017)) databases have 

also been built.   

 

It has been estimated that clinical exome sequencing (CES, covering exomes and 

flanking regions) should capture about 95% of variants that cause genetic disorders 

(Shamseldin et al., 2017). This should make it possible to investigate the impact of 

variants on cis- control of expression, splicing, and protein level mechanisms using 

this type of data. Many such mechanisms have been elucidated. For example, a rare 

(MAF=0.007 in gnomAD) non-frameshift deletion variant rs113993960 

(NM_000492:c.1521_1523del) in the CFTR gene is known to cause cystic fibrosis 

(CF) with a recessive inheritance pattern (Wang & Li, 2014). This variant is present 

in the 11th exon (11/27) of the gene and causes a deletion of three base pairs that leads 

to the loss of amino acid, phenylalanine, at position 508 in the CFTR protein (1480 

amino acids). Studies have reported that the mutation causes a twofold problem  

(https://www.ncbi.nlm.nih.gov/books/NBK540352/) that results in loss of chloride 

channel function: (a) A defect in the protein conformation due to misfolding results in 

the degradation of the mutant protein before it can reach to the cell surface (Cutting, 

2015; X. R. ober. Wang & Li, 2014); (b) Misfolded protein that escapes degradation 
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has a reduced half-life compared to wildtype protein (Cutting, 2015). Understanding 

such molecular mechanisms aids in devising therapeutic strategies. For example, 

TriKafta (Bear, 2020), a triple combination drug containing tezacaftor, elexacaftor, 

and ivacaftor, is being used as one of the therapies for CF patients. Tezacaftor is a 

CFTR corrector that acts as a pharmacological chaperone that promotes forward 

trafficking of F508del-CFTR to the cell surface (Hanrahan et al., 2017). Elexacaftor 

is also a CFTR corrector that binds to an alternate site than tezacaftor to facilitate the 

trafficking of mutant CFTR to the cell surface (Ridley & Condren, 2020). Ivacaftor is 

a CFTR potentiator as it increases the probability of the CFTR channel open 

conformation, so increasing the chloride ion flow (Condren & Bradshaw, 2013; 

Hanrahan et al., 2017).  

 

1.1.3 Interpretation of rare variants in clinical settings  

Sequencing technologies (whole-genome, whole-exome, or targeted/panel 

sequencing) have recently become more available for clinical diagnostic testing of 

monogenic diseases and cancer. As of August 2020, the Genetic Testing Registry 

(https://www.ncbi.nlm.nih.gov/gtr/) contains entries for about 575 labs worldwide 

and so far a total of 76268 tests on 18695 genes for 16424 conditions. The current 

diagnostic yield ranges widely from 21 to 73%, depending on the phenotypes tested 

(Gilissen et al., 2014; Lionel et al., 2018; Posey, 2019; Soden et al., 2014; Taylor et 

al., 2015). Most clinical labs follow a semi-automated approach for variant 

interpretation, by first making use of available variant annotation and prioritization 

tools and then checking putative causative variants for association with the disease of 
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interest in databases and the literature (Sadedin et al., 2015) ( 

https://blog.goldenhelix.com/golden-helix-end-to-end-architecture-for-clinical-

testing-labs). There are dozens of commercial and open-source variant annotation and 

prioritization tools available that identify putative causative variants by considering 

factors such as inheritance pattern, minor allele frequency, genomic region 

(coding/non-coding), mutation type, and in silico impact prediction for 

missense/splicing mutations (Hu et al., 2019). However, it has been demonstrated that 

there are substantial discrepancies between existing tools (McCarthy et al., 2014; 

Pabinger et al., 2014). For instance, on comparing results between two widely used 

annotations tools (Annovar (K. Wang et al., 2010) and VEP (McLaren et al., 2016)) it 

was found that 35% of the LoF variants and 13% of all exonic variants had 

mismatched annotations, with splicing variants having the greatest discrepancies 

(McCarthy et al., 2014). The choice of transcript database (RefSeq or Ensembl) for an 

annotation tool caused 21% and 17% discrepancies for the Lof + missense and all 

exonic variants respectively. These discrepancies illustrate that there is scope for 

improved genome interpretation accuracy through further development of the tools 

and improved annotation. 

     

To standardize assignment of variant pathogenicity in clinical labs, the American 

College of Medical Genetics and Genomics (ACMG) has developed guidelines for 

weighing the evidence of pathogenicity for a variant, with classification into one of 

five categories: pathogenic, likely pathogenic, uncertain significance, likely benign 

and benign (Richards et al., 2015a). In the current version of ClinVar (August 2020) 
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the majority of the variants are classified as ‘uncertain significance’ (41%) and with 

only 12% are classified as ‘pathogenic and likely pathogenic’. Additionally, there are 

5% variants with ‘conflicting interpretation of pathogenicity’ for cases with 

conflicting ACMG classification outcomes from different sources. A recent analysis 

of variant reclassification over time showed that predominantly variants are being 

reclassified to ‘conflicting interpretation of pathogenicity’ from all other types (~5000 

per year)  and that there is very low (~150 per year) reclassification traffic towards 

‘pathogenic or likely pathogenic’ types (Shah et al., 2018). These data show a need 

for improving methods for consistently and accurately assigning pathogenicity. One 

of the areas where there is most potential for improvement is the use of computational 

methods. These are currently down-weighted in the ACMG guideline compared to the 

experimental evidence because of low accuracy. 

         

In order to objectively assess methods for interpreting the impact of genetic variants, 

John Moult and Steven Brenner started the Critical Assessment of Genome 

Interpretation (CAGI, https://genomeinterpretation.org/) in 2010 

(https://doi.org/10.1038/news.2010.679). CAGI is an organization that conducts 

community experiments to test methods for relating genotype to phenotype. 

Participants are asked to predict particular phenotypes, given genetic variant 

information. The corresponding results are not released until all participants have 

submitted their predictions; thus, these are bona fide blind predictions. Independent 

experts assess the predictions and the outcomes are discussed at a CAGI conference. 

CAGI challenge datasets have included germline and somatic variants from whole-
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genomes, whole-exomes, clinical gene panels, and phenotypes that have covered rare 

monogenic diseases, complex trait diseases, and particular types of cancer. One of 

these challenges is of particular interest in this dissertation. The aim was to determine 

which of 14 monogenic disease classes each of 106 patients has together with the 

corresponding causative variants, given each patient’s gene panel sequencing data 

(https://genomeinterpretation.org/content/4-Hopkins_clinical_panel), obtained from a 

genetic testing laboratory. Motivated to build a more accurate variant interpretation 

method that can be used for the clinical diagnosis of rare monogenic diseases, I 

designed and implemented an open-source variant prioritization pipeline and assessed 

its performance on the CAGI gene panel challenge dataset. Chapter 2 describes the 

design and implementation of the prioritization pipeline and its assessment in CAGI.  

 

1.2 Representation of genetic disease mechanisms 

1.2.1 Genetic disease mechanisms  

Variant annotation pipelines, when successful, provide insight into some of the low-

level molecular mechanisms involved in the disease. Development of effective 

treatments, such as in the cystic fibrosis example above, is greatly facilitated by 

knowledge of the full succession of causal links across levels of biological 

organization by which a DNA change leads to a disease phenotype, not just the 

molecular stage steps. Advanced experimental model systems (such as cell lines 

(Pansarasa et al., 2018), organ-on-chips (Santoso & McCain, 2020), organoids 

(Lancaster & Huch, 2019), and model organisms), multi-omics data (such as 

epigenetic, transcriptomic, and proteomic), imaging techniques (Femminella et al., 
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2018; Pegoraro & Misteli, 2017), and bioinformatics approaches (such as 

mathematical modeling and network analysis (Kikuchi et al., 2015; Zhang et al., 

2013)) are facilitating the discovery of these complete causal mechanisms. But so far, 

as discussed below, the field lacks a comprehensive framework for describing and 

evaluating the mechanisms. 

 

1.2.2 Mechanism representation in literature and digital platforms 

 

To illustrate the need for tools for describing disease mechanism, consider the 

example of a mutation that causes Lynch Syndrome, a heritable form of colon cancer 

introduced earlier (Bartosova et al., 2003). The mechanism starts with a novel (not 

reported in the gnomAD or 1000 Genomes databases) heterozygous nonsense variant 

rs63750245:C>T in a DNA mismatch repair gene, MSH2, (Bartosova et al., 2003): 

This variant is in the sixth exon (6/16) of the gene and creates a premature 

termination codon in the mRNA. The codon position corresponds to the first half 

(p.Gln344Ter) of the MSH2 protein (934 amino acids). This causes nonsense-

mediated decay of the MSH2 mRNA and so leads to a decreased abundance of MSH2 

protein in the cell. Normally, MSH2 protein interacts with MSH6 and MSH3 proteins 

to form MutSα and MutSβ complexes respectively. These complexes are involved in 

repairing single nucleotide variants (SNVs), and small (up to 13 nucleotides long) 

insertion/deletions in the genome (Acharya et al., 1996; Drummond et al., 1995; 

Gupta et al., 2012; Lang et al., 2011; Martín-López & Fishel, 2013; Umar et al., 

1996). Perturbation of MSH2 protein abundance affects the abundance of these 

complexes and hence decreases the mismatch repair activity. That leads to the 
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accumulation of more variants, including those that alter the activity of the 

oncogenes/tumor suppressor genes, so increasing the chances of cancer.  

 

This informal description of how a MSH2 variant affects cancer risk is derived from 

considering the information reported in 17 publications. These publications contain 

varying combinations of structured and unstructured data and use many different 

diagrammatic representations. The scattered nature of information about the 

mechanisms by which human variants affect phenotypes is a general trend: querying 

for well-studied disease-related variants such as ‘CFTR rs113993960’ (X. R. ober. 

Wang & Li, 2014), ‘FTO rs1558902’ (Shimaoka et al., 2010) and ‘NOD2 rs2066847’ 

(Hugot et al., 2001a; Ogura et al., 2001) on LitVar (a PubMed and PMC search 

engine for genetic variant data) (Allot et al., 2018) returns ~100 – 200 publications. 

Multiple projects have addressed the resulting knowledge integration problem, 

including the building of disease-specific knowledge managements resources (for 

example alzforum.org (Kinoshita & Clark, 2007)), development of natural language 

processing (NLP) based texting mining methods (DARPA’s Big Mechanism program 

(Cohen, 2015)), development of statistical methods for genotype-phenotype evidence 

integration (Konopka & Smedley, 2020), and the community-driven systems 

medicine disease maps project (Mazein et al., 2018). Each of these contributes 

elements of a solution, but none provides a systems-level representation of the disease 

mechanisms in a clear, precise, and comprehensive manner. 
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There have also been major technological advances in the development of tools to 

represent biological mechanism descriptions. These include graphical notations 

(SBGN (Systems Biology Graphical Notation) (Novère et al., 2009a)) and computer-

readable languages (SBML (Systems Biology Markup Language) (Hucka et al., 

2018), KGML (KEGG Markup Language) (https://www.genome.jp/kegg/xml/docs), 

RDF (Resource Description Framework), BEL (Biological Expression Language, 

https://bel.bio/)) to encode representations, software to draw/visualize models (GO-

CAM (Thomas et al., 2019), PathWhiz (Pon et al., 2015), and Cytoscape (P. Shannon 

et al., 2003)), linked data formats such as Nanopublications (http://nanopub.org/) to 

organize provenance and metadata for scientific assertions (Mina et al., 2015), and 

database management systems to store and query graph-based representations (Neo4j 

- https://neo4j.com/). These tools have helped in the creation of pathway databases 

(such as KEGG (Minoru Kanehisa et al., 2016) and Reactome (Fabregat et al., 2017)), 

causal activity models (GO-CAM (Thomas et al., 2019)), causal biological networks 

(Boué et al., 2015), and knowledge graphs that integrate information about bio-

entities (genes, compounds, and diseases) and their relationships (https://het.io/).  

 

Most of these resources overlay disease mechanism information on depictions of 

‘normal’ biological pathways. Two examples are shown in figure 1-1, for KEGG and 

Reactome depictions of Lynch syndrome related mechanisms. Figure 1-1 A is part of 

the KEGG disease pathway map of colorectal cancer (accession: hsa05210), showing 

the relationship between the inactivation of DNA mismatch repair genes (such as 

MLH1 and/or MSH2) and genome instability in this cancer type. This type of KEGG 
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cancer pathway map is created by adding graphical indicators to represent the 

disease-related perturbations on top of the normal pathway representation. In this 

instance, the colorectal cancer map was created by combining parts of nine normal 

pathways, including those for the cell cycle, apoptosis, and p53 signaling. 

 

 

Figure 1-1. Disease mechanism representations in pathway databases. Both types of 

representation add disease mechanism symbols to ‘normal’ pathways and only show 

perturbations at the molecular level. Figure 1-1 A shows part of the colorectal cancer 

pathway in KEGG (accession: hsa05210) illustrating gene products (green boxes) and 

their interactions (e.g. protein-protein interactions) or relations (e.g. expression, 

repression) (black arrows). Red represents disease-associated gene products and 

A 

B 
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arrows with cut marks represent missing or reduced interactions due to mutations. 

Disease-related processes (such as anti-apoptosis and proliferation) are annotated in 

the pathway. Figure 1-1 B shows part of the Defective Mismatch Repair Associated 

With MSH2 pathway in Reactome (accession: R-HSA-5632928.1). Green boxes 

represent proteins, a  red boundary box indicates the presence of a genetic variant, 

light blue boxes represent complexes, ovals represent small molecules, black arrows 

represent normal reaction types, red crosses represent perturbed entities, and red 

arrow represent perturbed reaction types caused by the genetic variants. 

 

 

In the map, the ‘disease genes’ (for instance hMSH2 and hMLH1) are colored red and 

interactions affected by mutations in them are indicated by adding cut marks to the 

corresponding ‘normal’ arrows. Figure 1-1 B shows part of the Reactome disease 

pathway for defective mismatch repair associated with MSH2 (accession: R-HSA-

5632928.1). This disease pathway was created by adding perturbation indicators to 

the normal state of the mismatch repair pathway (accession: R-HAS-5358508.1). 

Perturbed entities are indicated by red crosses, perturbed reaction types by red lines, 

and the presence of genetic variants is indicated by red boundary boxes.  

 

These two pathway representations describe disease mechanisms as perturbations at 

the molecular level only and do not show how perturbations propagate through the 

higher stages of biological organization to cause a disease phenotype. This issue is 

partly addressed by the systems medicine disease map project: these disease maps 

provide an encyclopedic description of disease mechanisms involving signaling, 
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metabolic, and gene regulatory processes at different levels of granularity including 

molecular, subcellular, cellular, tissue, organs, and organism. But they do not 

represent the perturbation propagation across the levels (Mazein et al., 2018). 

Currently, disease maps have been generated for 14 diseases, for example, cystic 

fibrosis, Parkinson’s disease, asthma, and lung cancer. The interactive graphical 

interface includes a feature to zoom in/out from cellular to molecular stages, showing 

the mapping of information across the stages. 

 

 

Figure 1-2. Parkinson’s disease map. Figure 1-2 A shows the top-level view,  

displaying disease-related cellular components (such as mitochondria and the nucleus 

A 

B 
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of a neuron), cellular processes (such as autophagy, cell death, calcium signaling) and 

cell types (such as astrocyte). Figure 1-2 B shows the zoomed-in molecular level view 

inside the astrocyte. Green boxes represent proteins, green parallelograms represent 

mRNAs, green ovals represent small molecules, purple colored hexagons represent 

phenotypes, the pink oval shows a drug, and arrows represent reaction types (e.g. 

association, binding, dissociation, transition). Sub-cellular locations (such as the 

nucleus and mitochondria) are also shown.      

 

 

Figure 1-2 shows a view of the Parkinson’s disease map. The top-level view (Figure 

1-2 A) displays a mosaic of disease-related cell types, and related cellular 

components and processes. Zooming into a specific tile displays the normal molecular 

interactions (Figure 1-2 B) but not the perturbed interactions of the diseased system. 

Uncertainties, ambiguities, and ignorance in mechanistic knowledge are not presented 

in the disease maps (only Reactome pathway diagrams label uncertain reaction types). 

This is a serious omission since such knowledge gaps exist in almost all disease 

mechanisms (Greenberg & Amato, 2004; Kametani & Hasegawa, 2018). 

 

The two primary deficiencies of these disease mechanism representations–lack of 

means of displaying the propagation of disease-related perturbation across stages of 

biological organization and absence or inadequate inclusion of knowledge gaps, 

uncertainties and ambiguities–motivated us to develop a new graphical framework for 

disease mechanisms.  Design goals for this framework include depiction of 

mechanism components across stages of biological organization; an as simple as 
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possible representation (only included features directly related to disease 

mechanism); an intuitive way to visualize ignorance, uncertainties, and ambiguities in 

the mechanistic information; and tight linkage to evidence in the literature and 

databases. Chapter 3 discusses the design and implementation of this framework.    

 

1.3 Quantitative modeling of complex trait diseases 

1.3.1 Quantitative modeling of biological systems   

Biological systems are formally complex systems that have interconnected and 

interdependent components orchestrating non-linearly to produce system behavior 

(such as regulation of genes, or induction of immune response) in response to inputs 

(Hillmer, 2015). To understand the emergent properties of these systems, either a 

reductionist approach is used where small modular subsystems are discovered and 

studied (for example (Süel, 2011)), or a synthesis approach is used that involves 

approximating a complex system via a tractable number of components (Ellner & 

Guckenheimer, 2006) (for example, (Tsuda et al., 2009)). In both approaches, it may 

be possible to use descriptive sentences to represent relationships within or between 

system components, but exhaustively deriving the implications of these relationships 

is prohibitively laborious, error-prone, and imprecise. Therefore, quantitative models 

are built to numerically describe how system components cross-talk and control 

system output. These models are imperfect but provide a virtual version of a system 

that can be tested to see if it captures salient features (Hillmer, 2015). Successful 

models of this type also allow investigation of system response to varied external 

conditions and internal perturbations, insights that otherwise are far more labor-
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intensive, costly, and sometimes impossible to achieve experimentally. Model 

building involves first choosing appropriate mathematical and/or computational 

methods that best capture the nature of the biological system and then following an 

iterative procedure (model train-predict-test-repeat all) to fine-tune the model 

properties. Quantitative modeling has a long history and has been used for studying a 

wide range of biological systems including tissue models of the human heart (Kohl & 

Noble, 2009), explaining the chemical basis of morphogenesis (Turing, 1952), and 

predicting disease spread (Keeling, 2005). Another important application of 

quantitative modeling has been to understand the mechanisms of complex trait 

diseases.  

 

Complex trait diseases (for example hypertension, type 2 diabetes, and Crohn’s 

disease) are caused by multiple genetic (DNA variants), epigenetic (such as DNA 

methylation), and environmental factors that perturb the interactions between 

components located within and across stages of biological organization so as to 

manifest the disease phenotype. Many computational modeling approaches have been 

devised to precisely (though not necessarily accurately) model the disease state and so 

obtain insights into the underlying mechanisms. Three primary approaches are 

network modeling, genome-scale metabolic modeling (GEM), and kinetic modeling:  

(1) In network modeling, construction of biomolecular (such as gene-gene and 

protein-protein) association networks is carried out based on large scale data (such as 

RNA-Seq co-expression, and affinity-purification – mass spectrometry (AP-MS)), 

sometimes for both the disease and healthy states of a system. The networks are then 
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analyzed to discover and characterize the biological significance of the highly 

connected genes/proteins often using packages such as WGCNA (Langfelder & 

Horvath, 2008), and also to identify differences in network structure between healthy 

and disease states using a differential network approach (Ideker & Krogan, 2012). 

Network modeling has resulted in many large-scale networks used to investigate the 

disease states, for example (Greene et al., 2015; Daniel S. Himmelstein & Baranzini, 

2015; Thul & Lindskog, 2018). As these network models are built on data measured 

under a specific stimulus to a biological system, inferring the new network properties 

(such as edge weights) of the model for other instances of the stimulus, for which data 

does not exist or is hard to generate, can be challenging for this modeling approach. 

(2) In genome-scale metabolic modeling (GEM), organism-specific stoichiometric-

based metabolic reaction networks are compiled and analyzed to predict metabolic 

fluxes using linear programming. The latest human GEM (Recon3D (Brunk et al., 

2018)) contains 5835 metabolites, 10600 reactions, and 2248 genes. GEMs can be 

used to identify the impact of the disease-associated genes by knocking out the 

gene/reaction during flux balance analysis (N. E. Lewis et al., 2012). GEM models 

have been used to study types of cancer (such as breast cancer (Gámez-Pozo et al., 

2017), prostate cancer (Asgari et al., 2018; Marín de Mas et al., 2018)), as well as 

chronic diseases (such as type 2 diabetes (J. Sarkar et al., 2019; Väremo et al., 2015)). 

Despite these developments, it has been reported that GEM-based simulations alone 

are insufficient to provide insights into disease mechanisms and there is a need for a 

computational framework that allows simultaneous simulation of material flow 

(metabolic network) and information flow (gene regulatory and signaling networks) 
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to capture the highly complex cues and cascading of signals in the diseased system 

(Gu et al., 2019).  

(3) In kinetic modeling, in contrast to genome-scale modeling, a smaller set of 

reactions with known kinetic parameters (such as rate and affinity of reactions) are 

defined by nonlinear differential equations or partial differential equations to indicate 

changes in product concentration during a time period (Resat et al., 2009). These 

models have been developed to understand very specific dynamic aspects of a disease 

such as T cell autoreactivity in autoimmune diseases (Ramos et al., 2019), 

mononuclear phagocyte system function in systemic lupus erythematosus (Meryhew 

et al., 1986), and amyloid formation in prion disease (Come et al., 1993). Large 

kinetic models are also being built to capture the interactions for understanding 

system-wide properties (Bordbar et al., 2015). However, several issues (Miskovic et 

al., 2015) have been noted as the size of the model increases such as difficulties in 

estimating values of the large number of parameters, because of uncertainty in 

available data but also the intrinsic ‘sloppiness’ of these systems, implying a need for 

very high accuracy for some parameters in a kinetic model (Gutenkunst et al., 2007).  

 

Although these modeling approaches are useful to study aspects of biological 

systems, none of them demonstrates the capacity to build large multiscale integrative 

models that can capture emergent properties of a complex disease at each scale 

(Tiwary, 2020). Recently, an integrated model for yeast cells (DCell, http://d-

cell.ucsd.edu/) (J. Ma et al., 2018a) has been built using an old concept of a hybrid 

neural network (Psichogios & Ungar, 1992). In 1992, a hybrid neural network model 
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was first used to model a bioreactor, combining prior knowledge with a neural 

network to estimate the unknown process parameters. It was shown that the hybrid 

model had better properties than standard ‘black-box’ neural network models in terms 

of being easier to analyze and interpret, and requiring significantly fewer training 

data. In the yeast DCell model, prior knowledge is in the form of the Gene Ontology 

(Ashburner et al., 2000) hierarchical structure of 2526 biological subsystems in a 

eukaryotic cell. Those data are integrated with a deep neural network. The model is 

claimed to simulate growth phenotypes in response to gene knockout(s) as accurately 

as laboratory observations (J. Ma et al., 2018b). A key feature of the DCell model is 

interpretability: in spite of the use of a deep neural network, because of the biology-

based architecture, genotype/phenotype relationships can be interpreted in terms of 

perturbed subsystems and their interactions. Thus, DCell provides a proof-of-concept 

on the feasibility and utility of this type of hybrid model for studying biological 

systems.   

 

The fourth chapter focuses on developing a computational framework for building 

integrated quantitative models of complex diseases using a hybrid neural network. 

The approach takes as input results from the mechanism representation framework 

(MecCog (Darden et al., 2018)) described in the third chapter, where the mechanisms 

by which genetic variants cause disease phenotypes are represented as perturbation 

propagation across stages of the biological organization.  

 



 

 

22 

 

1.3.2 Genetic variants relating to complex trait disease   

As sequencing and genotype technologies have advanced, methods for finding 

genetic variants (primarily single nucleotide polymorphisms (SNPs)) associated with 

the complex trait diseases have evolved. Initially, family-based linkage analysis was 

used to identify chromosomal regions containing the relevant genes. For example, the 

IBD1 risk locus on chromosome 16 for Crohn’s disease (CD) was discovered in this 

way and later was more finely mapped to determine NOD2 as the susceptibility gene 

(Hugot et al., 1996, 2001b). However, the overall results from this approach were 

poor because it could not be applied to finding all relevant genes across the whole 

genome. The advent of genotyping microarray technologies made it possible to screen 

hundreds of thousands of genetic variants in case and control populations allowing 

genome-wide association studies (GWAS). GWAS analyses have also been 

performed to screen for genetic variants associated with continuous traits, such as 

blood pressure (Yan Wang & Wang, 2018), body mass index (Willer et al., 2009), 

age at menarche (He et al., 2009), and height (Allen et al., 2010). A variety of 

statistical approaches have been devised to identify disease-associated variants in 

GWAS (Hayes, 2013). As far as possible, population structure and other confounding 

effects are taken into account in these approaches. The incidence of false positives is 

reduced by validation using an independent dataset. Because of linkage 

disequilibrium (LD), a GWAS variant found to be associated with a phenotype is not 

itself likely to be involved in disease mechanism, but is likely in LD with a variant 

that is. For example, the Illumina Human Omni2.5S-8 chip with only 2.5 million 

SNPs represents ~48% of the ~7.8 million SNPs in an Asian human genome (Ha et 
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al., 2014)). A fine-mapping process is often used to identify the genetic variants in the 

LD region around each GWAS associated variant that are most likely to causally 

influence the examined trait (Schaid et al., 2018). Approaches like GWASeq, a 

targeted re-sequencing follow-up to GWAS loci, (Salomon et al., 2016) are used for 

this purpose. Variant findings from the many GWAS studies are curated and 

maintained in the GWAS Catalog database (https://www.ebi.ac.uk/gwas/). As of 

September 2018, the database contains 71673 variant-phenotype associations based 

on 5687 GWAS studies (Buniello et al., 2019).  

 

Unlike the rare causative variants of monogenic diseases, where each variant usually 

has a large impact on the function of a single protein, the functional effects of 

complex trait variants contributing to a complex trait are usually more subtle and 

often not yet known (Cleynen & Halfvarsson, 2019). Functional interpretation of 

these variants is challenging because: (a) the majority of associated variants are 

located in the non-coding region of the genome with only a small fraction in the 

coding region, making it hard to identify the affected genes and the ways in which 

their function is affected (Edwards et al., 2013; Giral et al., 2018), and (b) the variant 

effect can be influenced by gene-gene and gene-environment interactions. Currently, 

functional genomics datasets (Cano-Gamez & Trynka, 2020), chromatic organization 

datasets (Soskic et al., 2019), and epigenetic datasets (Tak & Farnham, 2015) are 

being used to assist in functionally interpreting the statistical association of these 

variants with the disease phenotype. For example, a previous study on predicting 

variant mechanisms (such as splicing, gene expression, or protein function altering) in 
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seven complex diseases (bipolar disorder, coronary heart, Crohn’s disease, 

hypertension, rheumatoid arthritis, type 1 & 2 diabetes), using an expression 

quantitative trait loci (eQTL) dataset, and in silico tools to predict variant impact, 

found possible mechanisms for 76% of the 356 disease-associated loci (Pal et al., 

2015).  

 

1.3.3 Limitations of GWAS   

Although GWAS has been extremely effective at identifying variants associated with 

complex traits, it has a number of limitations. One is the fact that observations are 

unavoidably made against the varied genetic background found in a human 

population. For example, the effect size of phenotype-associated variants is an 

average over all individuals in the sampled population (Stringer et al., 2011). In 

model organisms, many instances (Galardini et al., 2019; Vu et al., 2015) have been 

reported on the differences in single variant effect size as a function of genetic 

background. For example, in Drosophila melanogaster the severity of the retinitis 

pigmentosa disease phenotype (as measured by the eye size) caused by a missense 

mutation (G69D) in the rhodopsin gene (Rh1) has a strong Drosophila-strain 

dependent effect, with eye size varying from ~14K to ~28K pixels (Chow et al., 

2016). In the fourth chapter, the variation in effect size of human GWAS variants as a 

function of genetic background and its consequences for GWAS are investigated 

using a quantitative model of complex disease outlined in the previous section.    
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A second GWAS limitation is that despite continuous efforts to discover and interpret 

GWAS variants, these variants explain only a small proportion of heritability – the 

portion of phenotypic variance in a population attributable to genetic factors (Kendler 

& Neale, 2009). Heritability of a disease phenotype is zero if it is fully dependent on 

environmental factors and is one if it is only determined by genetic factors. For the 

complex trait diseases, the heritability is between 0 and 1 and is often estimated from 

twin studies. Only a small proportion of the estimated heritability is explained by 

GWAS variants, for example (Manolio et al., 2009), only 20% for Crohn’s disease 

(Barrett et al., 2008), 15% for systemic lupus erythematosus (Harley et al., 2008), and 

6% for type 2 diabetes (Zeggini et al., 2008). Many hypotheses (Maher, 2008) have 

been put forward to explain the reasons for missing heritability. One explanation 

often advanced is the role of epistatic interactions in which one or multiple genes 

influence(s) the effect of another. These effects are not captured by GWAS. The 

fourth chapter investigates the extent of epistatic interactions using the quantitative 

model for complex disease.   

 

1.3.4 Epistatic interactions between genetic variants  

Three different types of epistasis have been proposed (Phillips, 2008): 

(A) Functional epistasis describes the interaction between proteins, either directly in 

the form of protein complexes or indirectly by operating within the same pathway.  

(B) Compositional epistasis describes the altering of the effect of one allele by an 

allele at another locus, in the presence of a specific genetic background. In model 

organisms, many systematic studies (Baryshnikova et al., 2013; Onge et al., 2007; 
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Sopko et al., 2006) have been conducted to analyze compositional epistatic effects 

between gene pairs. For example, using a Synthetic Genetic Array (SGA) analysis 

that enables large-scale construction and selection of yeast double-mutant strains, the 

majority of all possible yeast gene pairs (~18 million) revealed a network consisting 

of nearly one million genetic interactions (Costanzo et al., 2016). More recently, 

using CRISPR (clustered regularly interspaced short palindromic repeats)-based 

combinatorial loss-of-function screens, epistatic interactions in human cancer cell 

lines have been analyzed to (i) identify potential targets for synthetic lethal-based 

cancer therapy (Najm et al., 2018; Shen et al., 2017), and (ii) identify drug target 

genes for combinatorial therapies in cancer (Han et al., 2017). However, measuring 

compositional epistasis at the human population level is not possible because of the 

very varied genetic backgrounds.  

(C) Statistical epistasis describes the average effect of combinations of alleles at 

different loci estimated over the diverse genetic background found in a population. 

Because of the dependence of the epistatic effect size on genetic background, the 

average will underestimate the phenomena in some individuals and overestimate it in 

others. For example, in Escherichia coli, it has been shown that the size of the 

epistatic effect between two beneficial mutations varies drastically across strains 

(Yinhua Wang et al., 2013).  

 

Quantitative models of the relationship between GWAS risk variants and a phenotype 

such as those outlined earlier effectively incorporate functional epistatic effects – 

physical and pathway interactions between proteins. And these quantitative models 
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potentially can provide a way to determine the compositional epistasis for pairs of 

variants in each individual from GWAS data - the size of the epistatic effect in each 

specific genetic background.  Results in the fourth chapter of this dissertation 

demonstrate this integration of functional, compositional, and statistical epistasis 

approaches, with an analysis of epistatic effects at the individual level across a human 

population. 

 

1.4 Overview 

The dissertation is organized as follows. In Chapter 2, I start by summarizing the use 

of targeted sequencing approaches in genetic testing for clinical diagnosis of 

monogenic diseases and highlight the inadequacy of the computational methods used 

to interpret the clinical significance of the genetic variants. I then introduce the CAGI 

gene panel challenge that our lab participated in, and for which I developed a variant 

prioritization pipeline for identifying causative variants from gene panel sequencing 

data. I provide a detailed CAGI assessment report of the variant prioritization pipeline 

performance and discuss how its performance may be improved. In Chapter 3, I 

summarize the inadequacy of existing representations for describing disease 

mechanisms at the system level. I then introduce the theory of the MecCog 

framework for graphically representing disease mechanisms. I describe the web-based 

implementation of MecCog and illustrate its use for qualitative representation of 

disease mechanisms. In Chapter 4, I summarize the use of the MecCog framework in 

constructing disease mechanism graphs and as a use-case describe the mechanism 

graph for the barrier integrity subprocess in Crohn’s disease. I describe a quantitative 
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encoding technique to generate computable circuits from mechanism graphs and 

demonstrate the use of a hybrid neural network approach to learn properties of the 

circuit in a data-driven manner. I show a use-case of how such a disease mechanism-

based circuit can be used to analyze epistatic interactions between genetic variants. In 

Chapter 5, I summarize the conclusions of the three projects and describe the future 

perspectives on improving genetic disease diagnosis, standardizing evidence of 

pathogenicity for disease causative variants, ways of scaling the disease mechanism 

representations in MecCog, and broader use of the quantitatively encoded disease 

mechanism graphs in complex trait disease risk assessment. 
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Chapter 2: Determination of disease phenotypes and pathogenic 

variants from exome sequence data in the CAGI 4 gene panel 

challenge 

 

Published: 

Kundu, K., Pal, L. R., Yin, Y., & Moult, J. (2017). Determination of disease 

phenotypes and pathogenic variants from exome sequence data in the CAGI 4 gene 

panel challenge. Human Mutation, 38(9), 1201–1216.  

My contribution: computational experiment and data analysis 

 

2.1 Abstract 

The use of gene panel sequence for diagnostic and prognostic testing is now 

widespread, but there are so far few objective tests of methods to interpret these data. 

We describe the design and implementation of a gene panel sequencing data analysis 

pipeline (VarP) and its assessment in a CAGI4 community experiment. The method 

was applied to clinical gene panel sequencing data of 106 patients, with the goal of 

determining which of 14 disease classes each patient has and the corresponding 

causative variant(s). The disease class was correctly identified for 36 cases, including 

10 where the original clinical pipeline did not find causative variants. For a further 

seven cases, we found strong evidence of an alternative disease to that tested. Many 

of the potentially causative variants are missense, with no previous association with 
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disease, and these proved the hardest to correctly assign pathogenicity or otherwise. 

Post analysis showed that three-dimensional structure data could have helped for up 

to half of these cases. Over-reliance on HGMD annotation led to a number of 

incorrect disease assignments. We used a largely ad hoc method to assign 

probabilities of pathogenicity for each variant, and there is much work still to be done 

in this area.  

 

2.2 Introduction 

Genetic testing in clinical laboratories is becoming increasingly common: As of 

March 2017, GeneTests.org contains entries for about 706 labs and 1,083 clinics 

worldwide performing a total of 67,187 tests on 5,926 genes for 4,963 genetic 

conditions. So far though, there has been only limited testing of method efficacy 

(Cornish & Guda, 2015; Hwang et al., 2015; McCarthy et al., 2014; Pirooznia et al., 

2014).  Many of the genetic tests use targeted gene sequencing panels for identifying 

variants in a set of genes or gene regions that are known to be associated with a 

disease (Kammermeier et al., 2014; Okazaki et al., 2016). In clinical laboratories 

specializing in specific diseases or classes of disease, panels provide high coverage 

data for genes of interest at relatively low cost, and also reduce the issues in reporting 

incidental findings to patients. A key and challenging step in all these tests is the 

ability to accurately interpret the genetic variants and assign a likelihood of 

pathogenicity (Richards et al., 2015a).  
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Potentially pathogenic sequence variants fall into three classes: (a) those almost 

certain to cause major loss of protein function (LoF), arising from the introduction of 

premature stop codons, frameshifts caused by small insertions or deletions, and direct 

hits on splice sites; (b) those that may or may not significantly affect gene regulation 

(such as regulatory variants at transcription factor binding sites) or protein function, 

particularly missense variants; and (c) those that are more likely benign, particularly 

synonymous, UTR, and deep intronic variants. The main challenge lies in 

understanding the phenotypic consequences of the large fraction of variants falling 

into the last two classes. Most clinical laboratories follow a semi-automated approach 

for variant interpretation, first making use of available variant annotation and 

prioritization tools and then checking the potential causative variants’ association 

with the disease of interest in databases and the literature. For the first step, there are 

dozens of annotation and prioritization tools (open-source or commercial) available 

(for example, Wang et al. 2010; Cingolani et al. 2012; Sifrim et al. 2013; Robinson et 

al. 2014; McLaren et al. 2016), typically providing potentially causative variants 

based on inheritance pattern, allele frequency, genomic region of interest, mutation 

type and in silico analysis of the likely impact of missense mutations. It has been 

demonstrated that there are substantial discrepancies between existing annotation 

tools (McCarthy et al., 2014; Pabinger et al., 2014) so that there is a clear need to 

encourage and monitor advances in this field. In most clinical laboratories,  standard 

guidelines such as those from the American College of Medical Genetics and 

Genomics (ACMG) (Richards et al., 2015a) are followed for variant interpretation 

and reporting. Although the guidelines accept computational predictions of 
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pathogenicity for variants, these are only considered a ‘supportive’ evidence. Other 

evidence is required to classify a variant as causative. As a consequence, the overall 

contribution of computational methods for variant classification is low and this 

motivates the development and testing of more accurate methods for variant 

interpretation. 

 

CAGI (Critical Assessment of Genome Interpretation) is an organization that 

conducts community experiments to objectively assess computational methods for 

predicting phenotypic impacts of genomic variation 

(https://genomeinterpretation.org/). The most recent round of experiments (CAGI4) 

included a challenge to determine which of 14 disease classes each of 106 patients 

has and the corresponding causal variants, given each patient’s gene panel sequencing 

data (https://genomeinterpretation.org/content/4-Hopkins_clinical_panel). The gene 

panel dataset consists of exons with flanking regions and some complete intron 

sequencing data for 83 genes from each patient. Data were provided by the Johns 

Hopkins DNA Diagnostic Laboratory. The Laboratory is a CLIA and CAP certified, 

Maryland, New York, and Pennsylvania licensed clinical genetic testing laboratory 

specializing in rare, inherited disorder testing 

(http://www.hopkinsmedicine.org/dnadiagnostic/tests/).  

 

The data were made available to registered CAGI participants, and all were required 

to deposit disease and variant assignments by a specified deadline. The anonymized 

submissions were assessed by John-Marc Chandonia 

http://www.hopkinsmedicine.org/dnadiagnostic/tests/)
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(http://enigma.lbl.gov/chandonia-john-marc/) and Shamil R. Sunyaev 

(http://genetics.bwh.harvard.edu/wiki/sunyaevlab/), and results were later discussed at 

the CAGI4 conference. A paper on the assessment is part of this CAGI special issue 

of Human Mutation (Chandonia et al., 2017). 

 

The identification of causal variants requires a number of carefully controlled 

procedures for assessing the quality of the data, accurate variant annotation, handling 

of unphased genotypes, and an appropriate probability model that can prioritize 

primary and secondary disease findings. With these considerations in mind, we 

developed a new variant prioritization pipeline (implemented in Python) called VarP 

(https://github.com/kunduk/VarP) using a combination of open-source and in-house 

software tools for analyzing gene panel sequencing data. This pipeline was the most 

successful of those used in CAGI, in the sense that it resulted in the correct matching 

of the highest number of panel exomes to disease class. 

[https://genomeinterpretation.org/sites/default/files/protected_files/4-

Hopkins_clinical_panel_assessor1_AAdhikari_remixable.pptx]. Nevertheless, the 

results are far from perfect. In this chapter , we describe the design and 

implementation of the variant prioritization pipeline and the results obtained. 
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2.3 Materials and Methods 

2.3.1 Capture bed files, gene panel sequencing data, and the disease class 

The Johns Hopkins DNA Diagnostic Laboratory panel sequencing procedure 

generates sequence for all exons plus a boundary of 50 bases up and down stream and 

some introns for 83 genes (1350 exonic and 39 intronic regions), covering 14 

monogenic disease classes. 73 of these genes are known to harbor mutations for one 

of the 14 monogenic disease classes. The remaining ten genes are known to harbor 

mutations for two or more disease classes. Sequences had been captured using one of 

the two custom probe sets (Agilent SureSelectXT Target Enrichment Kit) and 

sequenced using Illumina MiSeq to generate paired-end reads (2X100 nt reads). Two 

capture bed files (v01, v02) describing the two probe sets were provided as part of the 

challenge. The Hopkins group called sequence variants and produced two VCF files 

for each patient, one a gVCF for single nucleotide variants (SNVs; using GATK 

UnifiedGenotyper, v2.7-4) and the other a VCF for insertion-deletion variants (Indels, 

GATK HaplotypeCaller, v2.7-4). For the challenge, all VCF files from 106 patients 

had been combined into two files, one each for SNVs and Indels.  

 

2.3.2 Building the gene list for disease classes 

All the genes annotated in the two capture bed files (v01 and v02) were extracted to 

compile a list of genes to examine. The description of 14 disease classes was 

provided on the challenge webpage 

(https://genomeinterpretation.org/sites/default/files/protected_files/4-

Hopkins_clinical_panel_disorders.pdf). We made extensive use of the Hopkins’ DNA 
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Diagnostic Laboratory website to map genes to disease class 

(http://www.hopkinsmedicine.org/dnadiagnostic/). The website lists a number of gene 

panel tests and also gives a detailed description of the genes associated with each 

disease as well as their inheritance pattern. Using this resource we were able to group 

53 of the 83 genes to 12 disease classes and obtain the inheritance pattern. We used 

literature and the Genetic Home Reference Database (http://ghr.nlm.nih.gov/) to 

group another 24 genes to some of the disease classes and obtain the inheritance 

pattern. In total 77 out of 83 genes were grouped among the 14 disease classes as 

shown in Table 2-1. The remaining 6 genes (DHODH, TRIM37, EFTUD2, AMACR, 

AGXT and CAT) are associated with diseases that are not related to any of the 14 

disease classes and therefore were excluded from any downstream analysis. 
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Table 2-1. The 14 disease classes and genes identified as relevant to each class. 

Genes associated with more than one disease class are indicated by an asterisk.  

2.3.3 Gene Panel Sequencing data analysis pipeline 

The method developed for this challenge (VarP - Variant Prioritization) uses open-

source and in-house software tools to analyze gene panel sequencing data with 

respect to rare genetic disorders in an automated manner. The method has four 

modules – Variant annotation, QC (quality control) analysis, Variant Prioritization, 

and estimation of the probability of each variant being causative for the disease. The 

four modules were executed in a sequential manner (Fig. 2-1). The inputs were the 

two VCF files and a gene configuration file that contained the genes associated with 
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each disease class and their inheritance pattern (autosomal dominant/recessive, 

compound heterozygous, pseudoautosomal dominant/recessive, X-linked 

dominant/recessive).  

 

 

Figure 2-1. The Variant Prioritization (VarP) Method. Circles represent the four 

modules. Modules are executed sequentially starting from Variant Annotation and 

ending with Probability Scoring. The ‘Varant’ tool in step 1 annotates variants with 

genomic region of occurrence, mutation type, minor allele frequency and prediction 

of pathogenicity for variants. Ts/Tv=Transition/Transversion, 

Het/Hom=Heterozygous/Homozygous AD=Autosomal Dominant, AR=Autosomal 

Recessive, CH=Compound Heterozygous, XD=X-linked dominant, XR=X-linked 

recessive, PAD=Pseudo Autosomal Dominant, and PAR=Pseudo Autosomal 

Recessive. 

 

 

Variant Annotation: The two VCF files (one for SNVs and another for Indels) were 

annotated using Varant (http://compbio.berkeley.edu/proj/varant, 

doi:10.5060/D2F47M2C). Details on Varant are provided in the Appendix. Varant 

annotated each variant in the VCF files with region of occurrence (intron, exon, splice 

site or intergenic), observed minor allele frequencies (MAF) from ExAC (Lek et al., 
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2016) and 1000 Genomes Phase-3 (Auton et al., 2015), mutation type (missense, 

nonsense, silent, frameshift and non-frameshift indels), predicted impact on protein 

function, and previously associated phenotypes reported in ClinVar (Landrum et al., 

2016). Varant used dbNSFP (v2.9) (Jian et al., 2014) database to fetch the mutation 

impact predictions from PolyPhen-2 (v2.2.2) (Adzhubei et al., 2013), SIFT (release 

Jan, 2015) (Kumar et al., 2009) and CADD (v1.2) (Kircher et al., 2014). The 

RefGene (Pruitt et al., 2014) gene definition file was used for gene and transcript 

annotations. The principal isoforms of each gene were taken from the APPRIS 

database (Rodriguez et al., 2013). In addition, the VCF files were annotated with 

SNPs3D (May, 2015) (Yue et al., 2006) mutation impact predictions, HGMD 

(version June 2014) (Stenson et al., 2003) disease-related variants and with dbscSNV 

(Jian et al., 2014) variants that potentially alter splicing.  

 

Quality control Analysis: Three types of QC analyses were run on the Hopkins’ 

dataset. The first QC analysis is a comparison of Transition vs. Transversion ratio 

(Ts/Tv), Heterozygous vs. Homozygous variants (Het/Hom), no call sites vs. low 

quality sites and common vs. rare vs. novel variant counts across all 106 samples and 

with those in a control variant set from 2,504 samples in 1000 Genomes Phase-3 

(Auton et al., 2015). No call sites (sites where neither reference nor alternate allele 

was called) and low-quality sites (sites not marked PASS and/or genotype quality less 

than or equal to 30) per sample were computed from the challenge gVCF file. A 

variant is considered novel if it was not present in the 1000 Genomes and ExAC (Lek 

et al., 2016) dataset and considered rare if present with an MAF of less than 5% in 
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both of these datasets. Other 1000 Genomes or ExAC variants were considered 

common. Only SNVs flagged as PASS in the VCF file and with a genotype quality 

(GQ) greater than 30 were included in the analysis. Scatter plots were generated to 

represent the results. The QC module also estimated which samples are of African 

ethnicity, to aid in interpretation of variant count differences. The ethnicity analysis 

used the population-specific allele frequency (AF) from the 1000 Genomes Phases-3 

dataset to identify population enriched variants (i.e. variants that are common (AF > 

0.05) in a population but rare (AF <= 0.05) in other populations). Samples whose 

African population enriched variant count was highest in number compared to other 

populations in 1000 Genomes (Admix American, South Asian, East Asian and 

European) were assigned African ethnicity. The second QC analysis is a comparison 

of the average read depth for 83 genes across 106 samples, using the read depth 

provided in the gVCF file. The module produced a heat-map of these data, allowing 

convenient visual inspection for anomalies. The third QC analysis identifies capture 

regions (exon or intron) with anomalous read depth with respect to other captured 

regions in the same gene, where the anomaly is found in at least 85% of the samples. 

Anomalous coverage was identified by first computing the average read depth across 

the gene (µ) and its standard deviation (σ), and then checking each region for 

significantly low (< µ - 2σ) or high (> µ + 2σ) coverage. The anomalous coverage 

regions were then visually inspected using gene coverage plots. 

 

Identification of potentially causative variants: Only rare or novel variants rated high 

quality (marked PASS and with a GQ > 30 in the VCF files) were considered in the 
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search for causal variants. At this stage, a rare variant was defined as one reported in 

ExAC (Lek et al., 2016) with a minor allele frequency (MAF) less than or equal to 

0.01 and a novel variant was defined as one not found in ExAC. Indels in low 

complexity regions (LCR) were excluded from the analysis, based on the LCR dataset 

computed for the human genome by Heng Li (Heng Li, 2014). For each sample, each 

QC qualified variant in each of the 83 genes was assigned to one of four categories, 

ranked by the likelihood that the variant is causative.  

Category 1: Variants reported in HGMD with either DM (disease-causing mutation) 

or DP (disease-associated polymorphism) status, and/or reported in ClinVar with 

pathogenic or likely pathogenic clinical significance.  

Category 2: Variants annotated as nonsense mutations, direct splicing mutations 

disrupting either a splice donor or acceptor site, frameshift or non-frameshift causing 

Indels, splice altering variants predicted in the dbscSNV database, and missense 

mutations predicted as damaging by one or more of SNPs3D, SIFT, PolyPhen-2 and 

CADD. 

Category 3: Variants annotated as missense but not predicted to be damaging by any 

of the above methods, and UTR and intronic variants. 

Category 4: All other variants (including synonymous and all with MAF > 0.1). 

These were not considered as potentially causative.  

Each variant was also grouped by frequency based on its ExAC MAF: group 1 - 

novel, 2 - very rare (MAF <= 0.005), or 3 - rare (0.005 < MAF <= 0.01). 
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For each sample, the variant assigned to the lowest category was taken as the 

potentially causative variant. If there were two or more variants with the same 

category, the one in the lowest frequency group was selected. When there were two or 

more variants with the same category and frequency group, all were selected. Once a 

selection had been made, no other variants in that sample were considered. Category 

1 variants were assumed to be of highest confidence, followed by category 2 and 3 

variants and so selection was made in that order: If a suitable variant or variants were 

found in Category 1, no category 2 ones were considered, and similarly, if suitable 

variants were found in Category 2, no Category 3 ones were considered. No phase 

information was available for these data, so for non-homozygous variants where the 

inheritance model of the gene containing the selected variant required a second allele 

as part of a compound heterozygous pair, the next ranked variant in that gene was 

selected. 

 

Thus, for each of the 106 samples, the output from the module was usually one (for 

dominant or homozygous recessive situations) or two (for compound heterozygous 

situations) potentially causative variants in a particular gene. Since each gene is 

associated with one or more of the 14 disease classes (shown in Table 2-1), 

identification of a gene implied one or in some cases two possible disease classes. For 

some samples, no potentially causative variants were found, or for compound 

heterozygous situations, only a single variant met selection criteria, and so no disease 

was identified. 
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Estimating probability for the disease: Table 2-2 lists the probability of pathogenicity 

assigned for each category of potentially causative variant. Category 1 variants (based 

on HGMD or ClinVar entries) were assigned a probability of 1.0, except for some 

missense variants where prediction methods suggested low impact.  Category 2 

missense variants were assigned a probability based on the extent of consensus 

among the four missense impact analysis methods used (SNPs3D, SIFT, PolyPhen-2, 

and CADD), utilizing a calibration from HGMD data and a control set of inter-

species variants. That calibration shows a strong and approximately linear 

dependence of pathogenic probability on agreement between methods (Supp. Figure 

S1). Other variant types were subjectively assigned probabilities as shown in Table 2-

2. For autosomal recessive situations, the combined probability of pathogenicity was 

taken as the product of probabilities for the two contributing variants. Those values 

were incremented by 0.2 for homozygous cases, as an ad hoc correction for increased 

confidence, and by 0.1 in compound heterozygous situations. Based on this scoring 

scheme, a probability of pathogenicity for a disease class was generated for all the 

samples in which one or more potentially causative variants were identified. For the 

cases in which a gene was associated with more than one disease class, equal 

probability was assigned for all the disease classes. 
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Table 2-2. Pathogenicity probability estimates for each variant type. 

 

 

2.3.4 Post-challenge analysis 

We performed many post-challenge analyses on the results in order to gain insight 

into the performance, strengths, and weaknesses of the method, and in doing so, made 

a number of observations. We assessed performance based on the official answer key 

provided by the Johns Hopkins DNA Diagnostic Laboratory group. For each patient, 

the key specified the disease class, the possibly causative variants (if any) found in 

the subset of the 83 genes examined, and a classification of each of these variants 

(pathogenic, likely pathogenic, VUS (variant of uncertain significance), likely benign 

and benign). The Hopkins classifications were based on the ACMG evidence rules 

(Richards et al., 2015a).  
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2.4 Results 

2.4.1 QC analysis summary 

Supp. Figures S2 and S3 and Supp. Table S1 (in Appendix) together with 

accompanying text provide details of the QC analysis. Overall, transition/transversion 

ratios and heterozygosity/ homozygosity ratios are consistent with those found in 

1000genome data, with the exception of one sample (P8) with excess homozygosity. 

There are a maximum of 2000 low quality and 940 no-call calls per sample in the v01 

capture data and lower numbers in v02. We expect that any causative variants at these 

positions would be missed. Common, rare, and novel variant (SNV and Indel) counts 

for all the samples are consistent with 1000 genome data, except for two outlier 

samples identified as of African ethnicity which have larger rare Indel counts. The 

average read depth per gene per sample is high (greater than 100X) with the 

exception of two capture regions (Exon-53 and Exon-60 of HYDIN gene in Supp. 

Figure S4) where anomalous coverage could potentially result in causative variants 

being missed or in false positives. 

 

2.4.2 Missense mutations are amplified in the potentially causative variant set 

The VCF files provided for the challenge have a total 2311 unique variants across the 

106 patients. This variant set consists of 40% intronic variants, 26% missense 

variants, 20% synonymous variants, and 14% of variants that are assigned as LoF 

(frameshift Indels, non-frameshift Indels, and nonsense), UTR, or splicing (Fig. 2-

2A). After applying the PASS (PASS in VCF file), genotype (GQ > 30) and 
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frequency filters (MAF <= 1% in ExAC), the total number of variants was reduced by 

almost 50% to 1291, with 233 variants filtered because of low quality and 787 further 

variants filtered because of high MAF. Figure 2-2B shows that the frameshift and 

non-frameshift indels decreased the most (by 40% and 27%) on applying the PASS 

filter and NonSyn, Syn, UTR, CodingIntronic and ‘Close to splice site’ variants 

decreased the most (by 37 to 42%) on applying the frequency filter. After all filtering, 

138 out of the 1291 variants were assigned as potentially causative by the 

prioritization procedure. In this set, the fraction of LoF variant is 16% and the fraction 

of missense variants is doubled to more than half (56%), while intronic variants drop 

to 8% and synonymous to 1%. The high fraction of potentially causative missense 

variants emphasizes the importance of correctly interpreting this class of mutation. 

 

Figure 2-2. Distribution of variant types for the gene panel sequencing data for 83 

genes from 106 patients. Figure 2-2A: Distribution of variant types. The outer circle 

shows the distribution for all variants present in the VCF files provided as part of the 
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challenge. The middle circle shows the distribution of high-quality rare variants after 

applying PASS, GQ and frequency filters using data in the VCF file. The inner circle 

shows the distribution of potentially causative high quality rare and novel variants in 

104 patients after applying the variant selection algorithm. Missense and loss of 

function variants are substantially enhanced in the latter set. Figure 2-2B: Changes in 

the variant type distribution during the filtering process, from total VCF variants, to 

those annotated as PASS, to those with low frequency, and finally those selected as 

potentially causative. The heat map indicates the percent decrease in variants on 

applying each filter (in the direction indicated by the arrows): the larger the decrease, 

the more orange; the smaller the decrease, the more green. The frameshift and non-

frameshift Indel count decreased the most (by 40% and 27%) on applying the PASS 

filter and NonSyn, Syn, UTR, CodingIntronic, Close to splice site variants decreased 

the most (by 37 to 42%) on applying the frequency filter. 

 

 

2.4.3 Matching individuals to disease class 

Application of the categorization procedure described in Methods resulted in a non-

zero probability for a specific disease class being assigned to 87 of the 106 patients. A 

further 17 patients were assigned a non-zero probability for two disease classes, as a 

consequence of a single gene being associated with two of the 14 disease classes. 

Two patients (P59 and P86) were not assigned to any disease class. P59 had the 

lowest average read depth for 50 genes out of 83 and next to lowest for the other 33 

genes compared to other samples, suggesting that causative variants may have been 

missed. 



 

 

47 

 

 

2.4.4 Correct disease assignments also made by Hopkins 

Overall, the assessors determined that we made correct disease assignments for 36 of 

106 cases (Fig. 2-3A), in the sense that the highest probability was assigned to the 

disease class specified in the Hopkins answer key. The Hopkins group reported 

“pathogenic”, “likely pathogenic, or “variant of uncertain significance” (VUS), based 

on ACMG variant classification, for 43 cases (Fig. 2-3B).  The VarP pipeline 

assigned the maximum probability to the same disease class for 26 of these 43 cases, 

with the same variants assigned as causative. There are two primary reasons for our 

non-identification of the other 17 cases (row 6 and row 10 in Fig. 2-3A). First, for 10 

of these patients, the Hopkins group found only one heterozygous variant in genes 

known to be associated with disease in a recessive inheritance pattern. Our method 

considered this insufficient evidence. Second, for the remaining seven patients we 

found an alternative disease that ranked higher in the variant categorization scheme. 

As noted in Methods, the selection scheme only considered the disease identified by 

the highest-ranked variants, and rejected all others. Had we considered diseases 

identified by lower confidence categorizations, five of these seven cases the Hopkins 

reported disease would have received 2nd ranking; one 3rd ranking; and one 4th 

ranking.   
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Figure 2-3. Disease assignment statistics for the 36 patients with correctly identified 

disease class. Figure 2-3A: Distribution of the number of patients across prediction 

performance. The highlighted numbers represent the patients with correct disease 

class assignment. The reasons for incorrect disease assignment are described in the 

text. Figure 2-3B: Distribution of Positive cases (orange) are those found by Hopkins 

to be carrying pathogenic or likely pathogenic variants, the VUS cases based on 

ACMG guidelines (yellow) are those carrying variants of uncertain significance and 

Negative cases (grey) are those in which no causative variant was found by Hopkins. 

* indicates the number of cases with correct disease class assignment. The VarP 

pipeline assigned the correct disease class for 26 of the Positive and VUS cases and 

also correctly assigned disease class (with potentially causative variants) in 10 of the 

Hopkins Negative cases. 
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2.4.5 Additional correct disease assignments 

Out of the 63 patients for which the Hopkins analysis found no causative variants in 

the genes ordered as part of the clinical test, our method made 10 correct assignments 

of disease class and assigned potentially causative variants (row 5 in Fig. 2-3A). 

Seven of these patients were found to carry autosomal dominant or homozygous 

recessive variants and remaining three patients carried compound heterozygous 

variants. For nine of these 10 cases, the gene hosting the potentially causative variant 

was not analyzed by the Hopkins group, presumably because coverage was not 

selected by the requesting physician. For the remaining case, the Hopkins group did 

not report the potentially causative variant even though they analyzed the relevant 

gene. For the other 53 patients (row 6 and row 9 in Fig. 2-3A), neither our method nor 

the Hopkins group found any causative variants for the expected disease class. 

However, we found potentially causative variants for a different disease in four of 

these patients, suggesting alternative diagnoses (see the Alternative Diagnosis 

section).  

 

2.4.6 Assignment of probability 

In order to estimate the accuracy of our probability model, we checked how well the 

probability of pathogenicity scores correlated with incorrect disease class assignment. 

The dependence of incorrect disease assignment on assigned probability follows the 

correct trend, with a high fraction at low probability and a lower fraction at high 

probability (Fig. 2-4). However, there are 25 patients with incorrect disease class 

assignments and a probability greater than 0.8. We found the following reasons for 
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this: 1. High confidence given to DM status HGMD variants – 11 of the 25 anomalies 

are of this type. These are discussed below in the Selection section and listed in Table 

2-4. 2. In five cases, there were pairs of Indels (frameshift or non-frameshift) close 

together (less than 10 bp apart, Supp. Table S2) in the CCDC40 gene and classified 

by us as causative compound heterozygous variants. Very likely,  these are false 

Indels arising from alignment errors or errors near perfect repeat regions (Fang et al., 

2014). 3. In two cases there are two heterozygous variants predicted damaging by 

three methods in genes associated with recessive disease. It is possible that these are 

the same copy of the gene (no phasing information was available). 4. In the remaining 

seven cases, we found possible alternative diagnoses. These are discussed in detail 

below.  

 

Figure 2-4. Distribution of patients with incorrectly assigned disease class versus 

estimated probability of pathogenicity. The dotted line shows the expected value in 
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each bin (e.g. in the 0.8 to 1.0 bin, 10% of disease assignments are expected to be 

incorrect). Bars show the % of patients in each bin that actually have incorrect 

assignments. Bar colors show the number of patients with assignments made in each 

category (Category 1, most confidence). The error bar for each bin is the standard 

deviation of the number of patients in that bin. As should be the case for a good 

probability algorithm, patients with a high probability of a correct disease assignment 

do have a lower rate of incorrect disease classes. However, the plot also shows that 

there are 25 patients with high probability scores (> 0.8) but incorrect disease class. 

15 of these patients carry variant(s) reported as pathogenic (tagged as DM) in the 

HGMD database. Reasons for this are discussed in the text. 

 

 

2.4.7 Variant assignment accuracy for each Selection Category 

As described in Methods, we used a work flow to assign variants to one of three 

categories, ranked by likelihood of pathogenicity. Table 2-3 shows the percent of 

correct disease assignments for variants in each category. The highest fraction of 

cases (42%, 11 out of 26) agreeing with the Hopkins disease class were based on 

Category 1 variants. The corresponding fractions for Category 2 and Category 3 

variants are 38% and 23% respectively.  This trend is expected, since assignment 

confidence decreases with increasing category number.  
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Table 2-3. Percentage of correct disease assignments in each of the three variant 

selection categories. As expected, accuracy is highest in Category-1, then Category-2, 

then Category-3. Novel variant assignments are more accurate than for rare variants. 

 

 

As noted earlier, Category 1 variants are those annotated in HGMD and/or ClinVar as 

disease-causing. Further inspection showed that 11 of the 15 discordant assignments 

cases had conflicting database annotations and sometimes weak or no supporting 

evidence (Table 2-4). In seven cases, the corresponding variant is annotated ’DM’ 

(disease mutation) in HGMD but is annotated ‘benign’ or ‘likely benign’ in ClinVar. 

Consistent with the ClinVar annotation, a check of the supporting literature for these 

showed either no experimental support or no evidence favoring pathogenicity. For the 

other four cases, ClinVar had no relevant entry and there was no literature support. 

Seven of these 11 cases involved missense variants, and none of those were rated 

 

Category Variant Considered 
Minor Allele Frequency % Correct 

Assignment Novel <= 0.005 <=0.01 

Category-1 

In HGMD with DM, DP status 

and/or in ClinVar with 

Pathogenic or Likely pathogenic 

tag 

4/4 7/19 0/3 11/26: 42% 

      

Category-2 

Missense (Predicted damaging 

either by SNPs3D, SIFT, 

PolyPhen2 or CADD) 

Frameshift / Non-Frameshift 

Indel 

NonSense 

Direct Splicing 

Any variant predicted damaging 

by dbscSNVs 

9/14 7/28 2/5 18/47: 38% 

      

Category-3 
All other missense, UTR, and 

Intronic 
4/17 2/12 1/2 7/31: 23% 

 
 17/35: 

49% 

16/59: 

27% 

3/10: 

30% 
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high confidence pathogenic by our consensus method. With the wisdom of hindsight, 

we should have factored these considerations into the categorization and probability 

procedures, and placed less faith in HGMD. The remaining four discordant 

assignments have either functional validation of the variant as damaging or are 

annotated as pathogenic in ClinVar as well. As discussed later, these four patients 

may really have a different disease. 

 

Category 2 variants are those selected because of being a LoF variant, the 

computational method assigning pathogenicity for missense variants, a direct hit on a 

splice site, or a prediction of an impact on splicing (Jian et al., 2014). The 18 correct 

assignment cases include seven compound heterozygous and 11 autosomal dominant 

or recessive cases. Seven out of these 11 cases carry a LoF (nonsense, frameshift or 

non-frameshift Indel) or direct splicing variant, and the remaining four carry missense 

variants (two predicted damaging by two methods and two predicted damaging by 

one method). The 29 cases with discordant disease class with respect to the Hopkins 

information in this category include 11 compound heterozygous cases and 18 

autosomal dominant or recessive cases. For the 11 discordant compound 

heterozygous cases, the assumption that the two variants are appropriately phased is a 

likely cause of misassignment. The 18 other cases include one frameshift Indel and 17 

missense variants. Of the 17 missense, only one was high confidence, predicted 

damaging by all four methods. Four were damaging by three methods (expected 

accuracy 0.8), 10 were damaging by two methods (expected accuracy 0.5), and two 

were damaging by only one method (expected accuracy 0.25). 
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Category 3 variants are missense mutations predicted benign by all four 

computational methods and those which are intronic or in a UTR. All were assigned 

low causative probability, ranging from 0.05 to 0.29. There are only seven out of 30 

with correct disease class assignments that were assigned based on Category 3 

potentially causative variants. Six of these seven cases carried intronic insertions or 

deletions close to a splice site (within 5 to 30 bases), suggesting proper treatment of 

this mechanism is important. The remaining case carries a missense mutation 

predicted benign by the four mutation impact prediction methods.  

 

There is a marked dependence of level of agreement with the Hopkins disease class 

and the frequency of the potentially causative variants (Table 2-3): 49% of disease 

assignments made for novel variants agree with the Hopkins answer key, compared to 

27-30% for the other, non-novel variants with less than 1% MAF. 

 

 

Table 2-4. List of variants reported in HGMD with DM or DP status but not 

supported by other data and leading to an incorrect diagnosis. MAF: Minor Allele 

Frequency. These variants were present in 11 patients. Green: benign missense 

prediction, red: deleterious prediction. 
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2.4.8 Alternative Diagnoses 

There is an important difference between the Hopkins lab procedures and the CAGI 

challenge. In the lab, in accordance with clinical guidelines, for each patient, variant 

analysis was performed only on the subset of genes identified by the physician 

requesting the test, usually those for a single disease, and sometimes only a subset of 

genes for a single disease. On the other hand, the challenge required analysis of all 

genes for each patient. That led to a number of findings suggesting that in some cases, 

causative variants are overlooked in the clinic. Of the 70 cases where our disease 

assignments and the disease tested by the Hopkins pipeline differ, seven have strong 

evidence supporting assignment to a different disease (Table 2-5). In four of these 

cases, no variants supportive of the tested disease were found by ourselves or by 

Hopkins. In two further cases, the Hopkins pipeline reported only one variant in a 

recessive gene and for the remaining case (patient P8 in Table 2-5), there is evidence 

that the patient may have two diseases. These seven cases fall into three groups:  

 

1. Three cases where the patient carried variants likely causative of a disease 

phenotype that has overlapping symptoms with the disease tested at Hopkins. One of 

these is a patient (P36) carrying a very rare (AF=0.0047 in ExAC) autosomal 

dominant missense mutation (rs5738:G>A, NM_001039.3:c.589G>A, p.(E197K)) in 

exon-3 of the SCNN1G gene. This mutation is reported in HGMD and ClinVar to be 

causative for Bronchiectasis with pathogenic clinical significance (Fajac et al., 2008). 

The patient was tested for Diffuse Lung disease and no variants with the required 

inheritance pattern was found in the relevant genes. Bronchiectasis has been 
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previously shown to be associated with Idiopathic Pulmonary Fibrosis, one of the 

diseases in the Diffuse Lung disease class. ( International Consensus Statement of the 

American Thoracic Society and the European Respiratory Society. 2000; Bourke 

2006).  

 

2. One case where a patient (P8) carried a variant reported in HGMD and ClinVar to 

have pathogenic clinical significance for a disease other than that tested for, and 

where the tested and apparent diseases cannot be easily confused. P8 carries a very 

rare (AF=0.0051 in ExAC) homozygous recessive mutation (rs1800098:G>C, 

NM_000492.3:c.1727G>C, p.(G576A)) in the CFTR gene, consistent with the disease 

class ‘Cystic Fibrosis and CF-related disorders’. A functional study found the 

mutation causes an increased amount of skipping of exon-12 during splicing (Pagani 

et al., 2003). This patient was originally tested for Peroxisomal Beta-Oxidation 

Defects and a homozygous recessive frameshift mutation was found in the relevant 

gene. We did not report that variant because of finding the CFTR variant which we 

categorize as higher confidence of pathogenicity. The data are consistent with the 

patient having both diseases.   

 

3. Three cases where the patient carried variant(s) predicted damaging by all 

reporting computational methods or a LoF variant. For example, one of these is a 

patient (P46) to whom we assigned ‘Treacher Collins and Related Syndromes’ based 

on a very rare (MAF = 0.0002 in ExAC) missense mutation (rs538401137:C>T, 

NM_001135243.1:c.3029C>T, p.(T1010I)) in the TCOF1 gene and assigned as 
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damaging by all four computational methods. This patient was tested for the Diffuse 

Lung disease class in the Hopkins pipeline, and no variants consistent with that 

phenotype were found by them or us.  

 

 

Table 2-5. Patients carrying putative causative variants for an alternative disease. 

AD=Autosomal Dominant, AR=Autosomal Recessive, CH=Compound Heterozygous 

(for AR cases, the listed variant is homozygous). The table is divided into three case 

types. Green: benign missense prediction, red: deleterious prediction. 
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2.4.9 Protein structure coverage for potentially causative variants 

In principle, information from three-dimensional structure and on the detailed 

functional roles of residues, motifs, and domains should be of considerable value in 

evaluating the impact of missense variants. In practice, it is often ignored, and indeed 

we did not use it in this challenge. What difference might it have made? To 

investigate this, we considered only potentially causative missense variants that are 

not included in HGMD or ClinVar. Current ACMG guidelines (Richards et al., 

2015a) would place a low weight on computational analysis of these, and thus they 

would likely be reported as VUSs. There are 47 such missense variants distributed 

over 41 patients. ~50% (23/47) of these are either included in an experimental 

structure or can be included in a homology model based on 22% or higher sequence 

identity to an experimental structure (Fig. 2-5A). Three of these mutations are in 

proteins with experimental structure (X-ray structure). We use these three cases to 

illustrate how protein structure could be used to: (a) supplement the sequence analysis 

methods to increase confidence in a pathogenic or benign assignment and (b) 

understand the pathogenicity mechanism at the protein level. Two of these mutations 

have correctly assigned disease classes and causative variants in our submission. One 

of those is of a novel mutation (NM_000901.4:c.1807T>A, p.(C603S)) at a highly 

conserved position in the Mineralocorticoid receptor. This protein is associated with 

Pseudohypoaldosteronism Type 1. Although we correctly identified this mutation 

from sequence information, only two of the four (SNPs3D, SIFT, PolyPhen2, CADD) 

methods assigned it as pathogenic, and the other two did not. Thus additional 

evidence would have improved confidence in the assignment. Inspection of the 
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structure (PDBID: 4TNT) showed that the wild-type amino acid (CYS-603) is a zinc 

ligand in a zinc finger domain (Fig. 2-5B). Many other zinc ligand mutations in these 

domains cause loss of function of the corresponding proteins (Kambouris et al., 2014; 

Vincent et al., 2014), providing additional evidence of pathogenicity. The second case 

with correct disease assignment is of another novel mutation 

(NM_000492.3:c.3849G>C, p.(R1283S)) at a highly conserved position in the second 

nucleotide binding domain of the CFTR protein. Mutations in CFTR cause Cystic 

Fibrosis, one of the disease classes in the Hopkins dataset. This mutation is predicted 

damaging by three out of four (SNPs3D, SIFT, PolyPhen2, CADD) sequence 

methods. Inspection of the protein structure (PDBID: 3GD7) hosting this mutation 

shows the wild type side chain (R1283) makes two charge-dipole interactions with 

main chain carbonyl groups of L1258 and R1259, providing a helix cap (Hol et al., 

1981), consistent with significant destabilization of the structure  (Fig. 2-5C). Loss of 

protein stability has been shown to be the most common cause of monogenic disease 

(Wang and Moult 2001; Yue et al. 2005).  A different mutation at this position 

(rs77902683, NM_000492.3:c.3848G>T, p.(R1283M)) has previously been found in 

CF patients (Cheadle et al., 1992) and has been reported as pathogenic in ClinVar and 

HGMD. 

 

The third mutation with experimental structure coverage is one where we made an 

incorrect disease assignment on the basis of just one of the four missense analysis 

methods predicting deleterious. Although that was already a low confidence 

prediction, further evidence would be useful. This is a very rare (MAF=0.0005 in 
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ExAC) variant (rs147398624:G>A, NM_000901.4: c.2578G>A, p.(V860I)) in the 

Mineralocorticoid receptor, with an autosomal dominant pattern disease inheritance 

pattern. The mutation is located on the protein surface (PDBID: 2AA5) and is not part 

of any known interface, providing further evidence the mutation is benign. 

 

 

Figure 2-5. Structural coverage of prioritized missense mutations. Figure 2-5A: 

Missense variant distribution: 1) Known (variant reported in HGMD or ClinVar) 

versus VUS variants, 2) Structural coverage for VUS variants, 3) Number of 

mutations in different sequence identity ranges between the protein hosting the 

mutation and the closest available homologous protein in the PDB. Figure 2-5B and 

2-5C show two examples of structure assisting mutation interpretation. Figure 2-5B: 

Part of a zinc finger domain of the Mineralocorticoid receptor protein (PDB: 4TNT) 
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including the mutation C603S found in a Hopkins patient, showing that C603 is one 

of the Zn ligands. Analogy to other zinc coordinating mutations in zinc fingers 

provides strong evidence structure and hence function will be disrupted. Figure 2-5C: 

Mutation R1283S, found in one of the Hopkins patients, is predicted deleterious by 

the three out of four computational methods. Inspection of the structure shows 

disruption of two charge-dipole interactions forming a helix cap, expected to 

significantly destabilize the structure. 

 

2.5 Discussion 

The CAGI4 challenge based on panel sequencing data provided by the Johns Hopkins 

DNA diagnostic laboratory has allowed a blind test of current methods for identifying 

causative variants in clinical rare disease sequence data. Participants were asked to 

match each of 106 patients to one of 14 classes of disease. To address this challenge, 

we developed an analysis pipeline, VarP, designed to identify potentially causative 

variants. Using this pipeline, we were able to correctly match 36 patients to the 

reported disease class. The analysis provided a number of insights into issues related 

to gene panel testing, including the relationship between data quality and success in 

finding causative variants, variant prioritization procedure limitations, inconsistencies 

in databases, and cases of possible alternate diagnosis.  

 

2.5.1 Undiagnosed cases 

Even with full knowledge of the reported disease class, the Hopkins pipeline could 

only find potential causative variants for 43 cases, leaving 63 with no causative 



 

 

64 

 

variants. As discussed below, we were able to find variants correctly matching a 

further 10, but that still leaves half (53) of the cases where neither we nor Hopkins 

could find variants. There are three major factors that may contribute to the high 

fraction of undiagnosed cases. First, a limitation in all studies of this type is data 

quality. Our QC analysis suggests the Hopkins data are generally of high quality. 

Read depth per gene per sample is high (between 107X to 983X) and each sample has 

only about 2000 positions with no call or a low-quality variant call. But there are 

some particular sample level properties in the data that may affect analysis. For 

example, sample P8 (tested for an autosomal recessive disease, Peroxisomal Beta-

Oxidation defect) has an abnormally high fraction of homozygous variant calls 

compared with heterozygous ones, increasing the chances of finding an apparently 

causative homozygous variant. Our pipeline identified a potentially causative 

homozygous missense variant in CFTR, consistent with cystic fibrosis, and annotated 

as pathogenic in both HGMD and ClinVar, whereas the Hopkins pipeline found a 

homozygous frameshift variant in HSD17B4, consistent with the tested disease. There 

are also some areas of low coverage, for instance 78 samples have zero coverage of 

Exon-60 in HYDIN. Variants in this gene may cause Primary ciliary dyskinesia. 

Overall though, sequencing data quality does not appear to make a large contribution 

to missing diagnostic variants. 

 

A second factor contributing to non-identification of causative variants is that there 

may be other, unknown, genes where variants cause the disease phenotype. Many 

new monogenic disease genes are still being discovered (more than 67 genes in a two-
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year period, Beaulieu et al. 2014). Thirdly, the causative variants may have been not 

covered in the panel, which consists of mostly exon sequence. Missing variants may 

include those affecting the expression of a relevant gene, CNVs, and larger scale 

structural genomic changes. In some rare disease analyses using whole genome 

sequence (WGS), such as in the SickKids Genome Clinic 

(http://www.sickkids.ca/CGM/genome-clinic/index.html), the latter type of variant 

has been found to make a significant contribution (Stavropoulos et al., 2016). 

However, those patients mostly exhibit major developmental disease phenotypes, and 

may not be typical of rare disease patients in general.  

 

2.5.2 Correct diagnosis for cases where Hopkins pipeline did not find causative variants 

For 10 cases we were able to identify the reported disease class even though Hopkins 

reported no potentially causative variants. In nine out of these ten cases, the Hopkins 

pipeline did not include analysis of the gene carrying the diagnostic variant(s). 

Apparently this is because the requested test did not include the gene, a choice made 

by the referring physician. As noted earlier, Hopkins is only permitted to analyze the 

requested gene set.  For the 10th (a compound heterozygous case where one of the 

variants is missense predicted damaging by four methods and other is an intronic 

variant close to a splice acceptor), Hopkins did not report the potentially causative 

variants even though they analyzed the relevant gene. 
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2.5.3 Missed diagnoses 

There are 17 cases where we did not identify the correct disease class, but the 

Hopkins analysis did find potentially causative variants. For 10 of these, the Hopkins 

variants are in genes expected to have a recessive inheritance pattern, and only one 

heterozygous variant was present – not sufficient for our evidence rule. Had we used 

such a weak criterion for inheritance model filtering many more false positives would 

have been generated. Thus these should not be regarded as failure of the VarP 

approach but rather an appropriate filtering strategy used in VarP.  In the other seven 

cases where Hopkins found variants, VarP found stronger evidence for a different 

disease class. For two of these, as discussed below, we consider the evidence that the 

patients have the VarP identified disease very strong, and if so, these also are not 

errors.  For the other five, we made two sorts of errors. One was placing too much 

trust in HGMD that affected three cases – in each of these cases the HGMD 

annotations were incorrect and contradicted or not supported by ClinVar or 

experimental data. The other source of error was for two compound heterozygous 

cases where one of the partner variants was a low impact missense (predicted benign 

by 1/4 methods) or an intronic variant and so provided very weak evidence. In 

retrospect, the procedure of taking just the most likely causative variant(s) and 

ignoring all other variants in a patient was sub-optimal. A better procedure would 

probably be to use all variants in each gene to assign a probability of pathogenicity 

and to use those probabilities to infer disease class. 
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2.5.4 Incorrect diagnoses 

For 25 patients VarP made high confidence (probability score > 0.8) incorrect disease 

class assignments. A primary factor was again over-reliance on HGMD annotation, 

accounting of 11 of the 25 cases. A further five cases involved pairs of Indels very 

close to each other (less than 10 base pairs apart), and consistent with a compound 

heterozygous cause for a recessive disease. In fact, these Indel pairs are probably 

coupled alignment errors. There are two cases where the assumption that a pair of 

recessive variants are on different copies of the gene may be incorrect (there was no 

phasing data available). In seven of the remaining cases, we found high confidence 

pathogenic variants in genes associated with a different disease from that in the 

Hopkins answer key. As discussed later, the evidence for some of these is sufficiently 

strong that they may not be errors.   

 

2.5.5 Distinct potentially causative variants that led to disease classification 

VarP identified 105 potentially causative variants each of which occurs once in a total 

of 78 patients. A further 14 potentially causative variants were seen in two or more of 

the other 28 patients (Supp. Table S3). We also considered accuracy in terms of the 

fraction of these 119 distinct variants which led to correct and incorrect disease 

assignments. By this measure, correct disease identification increases from 34% 

(36/106) to 36% (33/91). The improvement occurs because the majority of repeat 

variants are present in cases where an incorrect disease was assigned, and we 

speculate that some of these may reflect sequencing artifacts. 
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2.5.6 Reliability of probability for disease assignments 

In the clinic, perhaps more important than having an accurate method of determining 

pathogenicity is having an accurate method for assigning a probability of correctness 

to a pathogenic assignment. The CAGI challenge required participants to also provide 

these probabilities, and so it was possible to evaluate how effective our approach was. 

We used a largely ad hoc probability scale in this analysis. Although there is a 

reasonable overall correlation between these quantities (Fig. 2-4), there were a 

substantial number of variants assigned a high probability that were not in fact 

pathogenic. There were two primary reasons for that – first, as noted earlier, we 

misjudged the reliability of HGMD assignments of disease mutations. Had we used a 

model that included disagreements between HGMD and ClinVar, these cases would 

have had more appropriate probabilities. Second, as discussed below, in a number of 

cases we consider the evidence strong that these patients had a different disease.  

 

2.5.7 Reliability of missense probability estimates 

As described in the Results, overall, the estimated probabilities of pathogenicity 

shows qualitative though not quantitatively correct properties. The majority of 

potentially causative variants are missense, so improved confidence in assigning a 

probability of pathogenicity to these are of particular importance. As described 

earlier, we assigned a probability based on the fraction of four different missense 

analysis methods reporting deleterious. The method was calibrated (Yin et al., 2017b) 

using a set of HGMD mutations (all assumed pathogenic) and a set of interspecies 

variants (assumed benign). There are a number of limitations to this dataset, and so 
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we were interested to see to what extent the estimated probabilities were useful. 

Interpretation of the results is complicated by the alternative diagnosis cases and by 

compound heterozygous cases, involving two different variants. Supp. Figure S5 

shows the relationship between estimated probabilities and correct disease class 

assignment, omitting those cases. Counts here are too small to draw firm conclusions. 

A high proportion of mutations assigned with a probability of less than or equal to 0.5 

are incorrect, consistent with expectations. However, more than half of the mutations 

with probabilities higher than 0.7 are also incorrect, not as expected. Further analysis 

Yin et al. (ref to Yin et al. CAGI issue paper when available) suggests that a 

probability method based on more than four missense impact prediction methods 

would have yielded better results. But clearly a more extensive blind test is needed to 

evaluate this approach.  

 

2.5.8 Apparent cases of alternative diagnoses 

Using quite stringent criteria we identified seven cases where the data are consistent 

with patients having a different disease class than that provided in the Hopkins 

answer key. Four of these patients carry variants for the alternative disease class that 

are reported in HGMD and ClinVar as pathogenic. The remaining cases carry 

missense variants predicted damaging by all reporting methods, frameshift or non-

frameshift indels, or variants directly affecting splicing. In three cases, symptoms of 

the answer key disease and the alternative overlap, so it is possible that there was a 

misdiagnosis in the referring clinic. The other cases are more puzzling. Since we have 

no information as to why a particular test was ordered (and in many cases the 
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Hopkins group may not either), it is difficult to comment further. But it is concerning 

that in a number of cases there could be confusion of some sort as to what disease 

patients have. In these seven cases, the Hopkins pipeline did not report any variant for 

four cases, reported only one variant in a recessive gene for two cases and reported a 

homozygous frameshift mutation in the remaining case. The pipeline was prevented 

from discovering the possible alternatives by the current guidelines, which require 

that only requested genes for a specific disease test be examined. On the basis of 

these limited data, it is not clear whether on balance this practice is in the patients’ 

best interest. 

 

2.5.9 VarP performance improves when the patients’ clinical indications are known 

Clinical laboratories typically have information on each patient’s disease phenotype, 

and variants are evaluated with that knowledge. In that aspect, the CAGI Hopkins 

challenge creates an artificially harder problem, since disease class is not known to 

participants. If the disease classes were known, would VarP identify the variant(s) 

reported by Hopkins pipeline? We tested this scenario by searching for potentially 

causative variant(s) only in genes associated with each patient’s diagnosed disease 

class, using the VarP pipeline. On this basis, VarP identifies potentially causative 

variants for 61 patients, 18 more cases than the Hopkins pipeline. However, there are 

still nine cases where Hopkins identified potentially causative variants and VarP does 

not. As discussed earlier, these patients each carry only one heterozygous variant in a 

recessive gene, which we considered insufficient evidence.  

 



 

 

71 

 

2.5.10 Better results have been obtained not using HGMD 

As noted earlier, 11 of the 25 incorrect disease class assignment cases with a 

probability of pathogenicity higher than 0.8 are a result of accepting HGMD 

annotations of pathogenicity. Such a high error rate from a single cause suggests that 

it might be better to ignore HGMD altogether and just use ClinVar for pathogenicity 

information. We tested this by running the VarP pipeline again, omitting HGMD. The 

success rate (correct match to disease class) increases from 36 to 40 (Supp. Table S4). 

 

2.5.11 Lessons learned 

Going forward, how would we now improve performance of the VarP analysis 

pipeline? As noted earlier, a suboptimal feature of the procedure was terminating the 

variant search once a suitable candidate had been found, rather than finding all 

possible causative variants and assigning each a probability. As also noted earlier, 

over-reliance on HGMD was a cause of errors and this can be corrected by 

considering ClinVar and HGMD annotations together, and, where appropriate, 

include missense impact analysis in assigning a probability to these Category 1 

variants. Structure also has the potential for contributing to the discovery of causative 

variants and providing mechanistic insight. However, full automation of that analysis 

will require the development of new methods. In general, much more work must be 

done to provide a reliable probability of pathogenicity, not only for missense but for 

all types of variants.  
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Chapter 3: MecCog: A knowledge representation framework for 

genetic disease mechanism 

3.1 Abstract 

Experimental findings on genetic disease mechanisms are scattered throughout the 

literature and represented in many ways, including unstructured text, cartoons, 

pathway diagrams, and network graphs. Integration and structuring of such 

mechanistic information will greatly enhance its utility. MecCog is a graphical 

framework for building integrated representations (mechanism schemas) of 

mechanisms by which a genetic variant causes a disease phenotype. A MecCog 

mechanism schema displays the propagation of system perturbations across stages of 

biological organization, using graphical notations to symbolize perturbed entities and 

activities, hyperlinked evidence tagging, a mechanism ontology, and depiction of 

knowledge gaps, ambiguities, and uncertainties. The web platform enables a user to 

construct, store, publish, browse, query, and comment on schemas. MecCog 

facilitates the identification of potential biomarkers, therapeutic intervention sites, 

and critical future experiments. 

 

3.2 Introduction 

Findings from experimental studies of disease mechanism are reported across 

multiple publications in varying combinations of structured and unstructured data and 

many different diagrammatic representations. A number of projects have addressed 

different aspects of the resulting knowledge integration problem. These include 
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building disease-specific knowledge management resources (for example 

alzforum.org (Kinoshita & Clark, 2007)) and ontologies (ADO (Malhotra et al., 

2014), PDON (Younesi et al., 2015), CVDO 

https://bioportal.bioontology.org/ontologies/CVDO); compiling disease etiology 

databases (HGMD (Stenson et al., 2017), ClinVar (Landrum et al., 2018), CIVIC 

(Griffith et al., 2017), PanelApp (Martin et al., 2019)); development of biomedical 

text mining methods (DARPA’s Big Mechanism program (Cohen, 2015)); 

development of statistical methods for evidence integration and assessment (Konopka 

& Smedley, 2020); and community-driven expert systems medicine disease maps 

projects (Mazein et al., 2018). Each of these contributes elements of a solution, but a 

major omission is an integrated representation of mechanism knowledge in a clear, 

precise, and comprehensive manner. 

 

There have also been major technological advances in the development of tools to 

support mechanism descriptions, such as graphical notations (SGBN (Systems 

Biology Graphical Notation) (Novère et al., 2009b)) and languages (SBML (Systems 

Biology Markup Language) (Hucka et al., 2018), KGML (KEGG Markup language - 

https://www.genome.jp/kegg/xml/), BCML (Biological Connection Markup 

Language) (Beltrame et al., 2011), BioPAX (http://www.biopax.org/), BEL 

(Biological Expression Language - https://bel.bio/)) to encode representations; 

software to draw and visualize models (GO-CAM (Thomas et al., 2019), PathWhiz 

(Pon et al., 2015), Cytoscape (Paul Shannon et al., 2003)); linked data formats such as 

Nanopublications (Mina et al., 2015) to organize provenance and metadata for 
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scientific assertions; and databases to store and query graph-based representations 

(Neo4j - https://neo4j.com/, (Daniel Scott Himmelstein et al., 2017)).  

 

With the help of these tools; pathway, network, and disease map representation types 

have been created to describe aspects of biological system mechanism and in some 

cases disease mechanisms as well. For instance, KEGG (Minoru Kanehisa et al., 

2016), and Reactome (Fabregat et al., 2017) pathways represent normal and perturbed 

molecular interactions that are part of cellular or metabolic processes. STRING 

(Szklarczyk et al., 2018) and GeneMANIA (Franz et al., 2018) networks represent 

integrated information on protein-protein interactions and associations that are part of 

normally functioning biological systems. Gene ontology (GO) causal activity models 

(Thomas et al., 2019) integrate GO annotations to generate larger models of normal 

biological function (such as ‘pathways’) in a semantically structured manner. The 

Disease Maps Project (Mazein et al., 2018) provides an encyclopedic description of 

disease-related signaling, metabolic, and gene regulatory processes. Although 

together these representations aptly describe the normal working of biological 

systems, representation of the disease-related perturbations is limited.  In the existing 

representations (such as KEGG or Reactome disease pathways), disease state 

perturbations and consequences are added locally to the depiction of the normal state 

of the biological system. Adding disease perturbation information to already complex 

pathway diagrams can be useful, but limits clarity. Also, uncertainties, ambiguities, 

and ignorance in mechanistic knowledge are not presented in most representations 

(with the exception of Reactome pathway diagrams, but these label uncertain reaction 
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types only). Such knowledge gaps exist in almost all disease mechanisms (Greenberg 

& Amato, 2004; Kametani & Hasegawa, 2018).    

 

These considerations led us to propose a graphical framework with an integrated 

representation of genetic disease mechanisms from gene to phenotype. Our design 

goals were that the representation framework depict mechanism components across 

stages of biological organization; display perturbation propagation; make use of 

standard biomedical ontology terms wherever possible to name the components; 

provide an intuitive way to visualize ignorance, uncertainties, and ambiguities; and 

allow tight linkage to evidence in the literature and databases. The MecCog 

mechanism representation framework (Darden et al., 2018) incorporates all these 

features. The representation formalism is based on the analysis of biological 

mechanisms developed in the philosophy of biology (Craver & Darden, 2013): 

Mechanisms are characterized as entities and activities organized such that they are 

productive of regular changes from start or set-up to finish or termination conditions. 

In MecCog, a mechanism by which a genetic variant causes a disease phenotype is 

represented as a mechanism schema that displays the propagation of entity and 

activity perturbations across biological organizational stages 

(DNA→RNA→Protein→Complex→Organelle→Cell→Tissue→Organ→Phenotype) 

in the form of a graph (nodes are biological entities; directed edges are causal and 

labeled with productive activities) constructed from information in the biomedical 

literature in addition to established biological concepts. The schema structure uses 

graph properties such as branching, merging, and looping of sub-paths. 
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In this article, we describe the implementation of the MecCog framework as a web 

platform with a collaborative environment to manually construct, store, publish, 

browse, query, and comment on mechanism schemas for genetic diseases. The 

schema building tool in MecCog is supported by specially designed graphical 

notations, curated ontology-informed terminology for the annotation of mechanism 

components (entities and activities), an interactive graphical user interface (GUI) to 

construct the schema drawings, application programming interfaces (APIs) to fetch 

reference information and scientific figures, tight integration and hyperlinking of 

evidence to the graphics, and a secure server to save schemas as JSON (JavaScript 

Object Notation) objects. The platform supports edit, version, and share operations on 

each schema to facilitate collaborative work. Mature schemas can be published on the 

platform, thereby adding to the collection of disease mechanisms available for 

browsing by MecCog web-site visitors. Sketchier schemas with gaps, ambiguities, 

and uncertainties can also be published to indicate where additional work needs to be 

directed. 

 

3.3 Methods and Results 

3.3.1 Mechanism schema representation structure 

In MecCog, a mechanism by which a genetic variant causes a disease phenotype is 

represented by multiple steps. Each step consists of a triplet with an input substate 

perturbation, a mechanism module, and an output substate perturbation (SSP-MM-

SSP). A substate perturbation represents a perturbed biological entity (e.g. a DNA 
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base change, altered stability of a protein, altered abundance of a molecular complex, 

altered state of a cell). A mechanism module represents the productive activity (e.g. 

transcription, translation, or protein-protein interaction) by which the input sub-state 

perturbation produces the output sub-state perturbation. The succession of 

overlapping SSP-MM-SSP triplets represents perturbation propagation across stages 

of biological organization (DNA, RNA, Protein, Complex, Organelle, Cell, Tissue, 

Organ, and Phenotype), and together form a mechanism schema. In MecCog, a 

schema is represented as a graph where the nodes are SSPs and edge labels are MMs, 

as illustrated in Figure 3-1.  

 

 

Figure 3-1. Principles of a mechanism schema. SSP: Substate Perturbation; MM: 

Mechanism Module. Each SSP represents a perturbed biological entity and each MM 

represents a productive activity (or a group of entities and activities) that produce an 

output SSP.  

 

Evidence about SSPs and MMs is curated from the literature. Ambiguities in a 

mechanism and possible alternative mechanisms are represented in a schema by 

branching. Branch points may be labeled with the logical operators AND, OR, or 

AND/OR. The degree of confidence as to whether each SSP and MM is part of a 

schema is indicated by an evidence strength color code (red least confidence to green 

most confident) for the corresponding symbol. In addition to SSPs and MMs, five 
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other types of mechanism components are defined in MecCog: 1. Unknown 

mechanism module to represent ignorance about a mechanism component; 2. 

Biomarker to represent entities correlated with a disease phenotype; 3. Environmental 

factor to represent relevant external factors; 4. Hypothetical therapeutic intervention 

site; 5. Known therapeutic intervention site. 

 

3.3.2 MecCog platform web-architecture 

Figure 3-2 shows the web-architecture of MecCog. On the server-side, Node.js (an 

open-source JavaScript runtime environment) is used as the web-server, Sails.js is 

used to build the model-view-controller compliant web-application, and a MySQL 

relational database is used to store data on users and mechanism schemas. The 

MySQL database is connected to the web-application by the Object-relational mapper 

(ORM), Waterline, in Sails and all the database transactions use REST APIs secured 

by CSRF (Cross-site request forgery). The front-end GUI of MecCog is implemented 

using HTML, CSS, and Javascript, and is made responsive by Bootstrap.js javascript 

library. The schema building and visualizing GUI is powered by the Rappid 

Diagramming Javascript library (https://www.jointjs.com/). Rappid also provides a 

feature for converting diagrams to JSON format and for communicating with the 

database via AJAX requests. An open-source version of the IntenseDebate 

commenting system (https://www.intensedebate.com/) is used to render commenting 

forms. 
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Figure 3-2. MecCog Web-Application Architecture. HTTP=Hypertext Transfer 

Protocol, REST API = Representational State Transfer Application Programming 

Interface, JSON=JavaScript Object Notation, SQL = Structured Query Language, 

ORM= Object-relational mapping.  

 

3.3.3 Graphical notation of mechanism components in MecCog 

Graphical notations symbolize components of a mechanism schema (Figure 3-3). An 

SSP (substate perturbation) is represented by a rectangle containing three types of 

information – the biological stage where the SSP occurs, the perturbation class name 

(curated from standard biomedical ontologies wherever possible), and the instance of 

that perturbation class. For example, a truncated NOD2 protein can be represented by 

an SSP with Protein as the stage name, Truncated Protein as the SSP perturbation 

class name (from BioAssay Ontology (Visser et al., 2011)), and NOD2:1007fs as the 

instance of the SSP class. A biomarker is a special case of an SSP and is represented 

by the same shape but with a different color. An environmental factor is represented 

by a cloud icon. Known and hypothetical therapeutic intervention sites are 

represented by pink and blue octagons respectively. A known mechanism module is 

represented by a clear oval displaying the MM class or instance name, such as 
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transcription or protein folding. An unknown mechanism module is represented by a 

black oval. 

 

 

Figure 3-3. Graphical notations for components in a mechanism schema. 

 

3.3.4 Mechanism schema meta-information and schema component annotations in MecCog 

Table 3-1 summarizes the mechanism schema data model. Table 3-1A shows the 

meta-information of a schema. Each schema in MecCog is identified by a unique 

accession number automatically generated by the platform. Schema authors provide a 

schema name, a schema caption, genes that are part of the schema, keywords relevant 

to the mechanism, names of authors who constructed the schema, and the name of the 

curator who publishes the schema, monitors comments, and approves changes. 

Authors also provide a schema description with scientific background information.  

 

Table 3-1B shows the mechanism component annotations. All mechanism 

components in a schema are annotated with a unique component identifier. Nine stage 

names may be assigned to an SSP component notation – DNA, RNA, Protein, 
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Complex, Organelle, Cell, Tissue, Organ, and Phenotype. For the molecular stages 

(DNA, RNA Protein, and Complex), a set of stage-specific SSP perturbation class 

names, such as SNV, mRNA abundance, or protein stability, have been compiled. 

Molecular stage MM classes, such as transcription, translation, and protein folding, 

are also defined (Table 3-2). Whenever possible the SSP and MM class names are 

curated from existing biomedical ontologies. Currently used ontologies are listed in 

Table 3-2. Where required, ontology terms may be prefixed with a modifier – 

increased, decreased, or altered. A MecCog schema builder may choose from the 

curated set of classes for a step, or may add new class names if needed. SSP and MM 

instance names are in free text. We are in the process of developing a disease 

mechanism ontology, based on the class names. Such an ontology is potentially useful 

for automatic text mining of SSP, MM, and triplet information from the literature, so 

speeding schema building by identifying relevant papers and sections of papers. 

Environmental factor names are in free text. Therapeutic intervention site components 

may be annotated with a potential therapy name or known drug name. 

 

For all mechanism components, five types of evidence annotation are defined (Table 

3-1C): 1. For Evidence PubMed IDs of papers that contain data supporting a 

component’s role in a mechanism; 2. Against Evidence PubMed IDs for papers that 

provide data suggesting a mechanism component is incorrect; 3. Links to figures in 

PMC that illustrate aspects of a schema by summarizing experimental results and 

evidence for spatial and structural features; 4. User assigned Confidence scores with 

five levels (also used to automatically encode a component’s confidence color) based 
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on the strength of the available evidence; 5. Evidence Comments - brief free text 

comments that summarize the evidence. 

 

Table 3-1. Data Model of mechanism schema and component annotations. Text in 

parentheses indicates the data type.  

Table 3-1A. Mechanism schema meta-information 

Accession number (Automatically generated, versioned, alphanumeric) 

Schema Name (Free text – 300 character limit) 

Schema Caption (Free text – 500 character limit) 

Schema Description (Free text) 

Genes (Free text) 

Keywords (Free text) 

Curators (Free text) 

Authors (Free text) 

 

Table 3-1B. Mechanism component annotations 

Mechanism 

Component 

Component Specific Annotation 

SSP (Substate 

Perturbation) 

Component ID (Format: SSP#) 

Stage Name (Predefined list) 

SSP Class Name (Predefined list with the facility 

to add new names) 

SSP Instance Name (Free text) 

MM (Mechanism 

Module) 

Component ID (Format: MM#) 

MM Class Name (Predefined list with the facility 

to add new names) 

MM Instance Name (Free text; Optional) 

Biomarker 

Component ID (Format: BM#) 

Stage Name (Predefined list) 

Biomarker Class Name (Predefined list with the 

facility to add new names) 

Biomarker Instance Name (Free text) 

Unknown Mechanism 

Module 
Component ID (Format: MM#) 

Environmental factor 
Component ID (Format: EF#) 

Factor name (Free text) 

Component ID (Format: TT#) 
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Known therapeutic 

intervention site 

Drug or Therapy name (Free text) 

Hypothetical 

therapeutic intervention 

site 

Component ID (Format: TT#) 

Potential therapy name (Free text) 

‘#’ represents an integer number denoting the order of the schema component (for 

example SSP1, MM3, BM1, TT2)  

 

Table 3-1C. Evidence annotations for the mechanism components 

For Evidence PubMed IDs (PMID number) 

Against Evidence PubMed IDs (PMID number) 

Figure links from PubMed Central (PMC figure number) 

Confidence score (Predefined integer score range 1 to 5) 

Evidence comment (Free text) 

 

 

 

 

Table 3-2. Curated class names for Substate Perturbations (SSP) and Mechanism 

Modules (MM) at the molecular stages. The class names are curated from biomedical 

ontologies and are prefixed with the ontology name abbreviation.  

Mechanism 

Component 

Stage 

Name 

Number 

of 

Classes 

Class Names 

SSP 

DNA 10 

SO:SNV, NCIT:IN/DEL, 

NCIT:Methylation Sites, 

NCIT:Chromosomal 

Rearrangement, VARIO:Copy 

Number Variation, DNA Repeats, 

NCIT:DNA Structure, 

NCIT:Holliday Junction, DNA 

Supercoiling, DNA Curvature 

RNA 12 

SO:SNV, NCIT:IN/DEL, 

VARIO:Edited RNA, Fused 

mRNAs, RNA Repeats, mRNA 

Abundance, Splicing Isoform 
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Abundance, Edited RNA 

Abundance, Other RNA 

Abundance, EDAM:RNA 

Secondary Structure 

Protein 16 

NCIT:Missense Mutation, 

NCIT:IN/DEL, BAO:Truncated 

Protein, NCIT:Post-Translational 

Modification Site(s), 

NCIT:Phosphorylation Site(s), 

Fused Proteins, Protein Sequence 

Repeats, PLOSTHES:Protein 

Abundance, Splicing Isoform 

Abundance, Post-Translational 

Modified Protein Abundance, 

BAO:Phosphorylated Protein 

Abundance, MESH:Protein 

Conformation, NCIT:Protein 

Dynamics, MESH:Protein Stability, 

MI:Allostery, MESH:Quaternary 

Protein Structure 

Complex 12 

GRO:Protein-RNA Complex 

Abundance, CRISP:Spliceosome 

Abundance, DNA-RNA Complex 

Abundance, BIPON:RNA-RNA 

Complex Abundance, GO:Protein-

DNA Complex Abundance, 

Transcription Complex Abundance, 

GO:Transcription Factor Complex 

Abundance, DNA-Scaffold 

Complex Abundance, DNA 

Replication Complex Abundance, 

DNA-Histone Complex Abundance, 

EDAM:Protein-Ligand Complex 

Abundance, ADMO:Protein-Protein 

Complex Abundance.  

MM - 24 

IXNO:Cleavage Rate, 

NCIT:Synthesis Rate, 

GO:Transport Rate, CRISP:Protein 

Degradation, NCIT:RNA 

Degradation Rate, NCIT:Protein 
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Folding Rate, NCIT:Nonsense-

Mediated Decay Rate, NCIT: 

Transcription Rate, GO:Translation 

Rate, DNA Internal Interactions, 

RNA Internal Interactions, Protein 

Internal Interactions, DNA-RNA 

Interaction, RNA-Ligand 

Interaction, IOBC:RNA-RNA 

Interaction, GRO:DNA Protein 

Interaction, GO:Scaffold Protein 

Binding, GO:Basal Transcriptional  

Machinery Binding, GO:Histone 

Binding, NCIT:RNA-Protein 

Interaction, NCIT:Protein-Protein 

Interaction, NCIT:Ligand Binding, 

Le Chatelier, GO:Signaling. 

SO: Sequence Ontology (Eilbeck et al., 2005); NCIT: National Cancer Institute 

Thesaurus (Sioutos et al., 2007); VARIO: Variation Ontology (Vihinen, 2014); 

EDAM: EMBRACE Data and Methods (Ison et al., 2013), MESH: Medical Subject 

Headings (https://meshb.nlm.nih.gov/), MI: Molecular Interactions 

(https://www.ebi.ac.uk/ols/ontologies/mi), CRISP: Computer Retrieval of 

Information on Scientific Projects Thesaurus 

(https://bioportal.bioontology.org/ontologies/CRISP), GRO: Gene Regulation 

Ontology (https://bioportal.bioontology.org/ontologies/GRO), BIPON: Bacterial 

interlocked Process Ontology (Henry et al., 2017), GO: Gene Ontology (The Gene 

Ontology Consortium, 2019), ADMO: Alzheimer Disease Map Ontology (Malhotra 

et al., 2014), PLOSTHES: PLOS Thesaurus 

(https://bioportal.bioontology.org/ontologies/PLOSTHES), BAO: BioAssay Ontology 

(Visser et al., 2011), IXNO: Interaction Ontology 
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(https://bioportal.bioontology.org/ontologies/IXNO), IOBC: Interlinking Ontology 

for Biological Concepts (https://bioportal.bioontology.org/ontologies/IOBC). 

 

3.3.5 Rules for constructing mechanism schemas in MecCog 

1. Each schema begins with a genome perturbation and ends in perturbation of a 

disease-related phenotype such as greater risk of a disease.  

2. Overall, the sequence of SSPs in a schema progresses through successive stages of 

biological organization, from DNA, through RNA, proteins, macromolecular 

complexes, organelles, cells, tissues, organs, and finally to a phenotype. There may be 

one or more or no SSP at any particular stage of organization and the order of the 

stages need not follow a prescribed order. For instance, the schema for Lynch 

syndrome 

(http://www.meccog.org/mchain/showpubchain?accession=MS020700047.3), where 

a causative mutation results in decreased DNA mismatch repair, reverts to the DNA 

stage after stages involving macromolecular complexes.  

3. Each pair of SSPs is linked by an MM. The granularity of an MM may be a single 

activity (such as splicing, protein-protein interaction, ligand binding, or protein 

folding) or may represent telescoped combinations of entities and activities (such as 

protein synthesis, or cell-cell signaling). If an activity is unknown, the black oval 

unknown mechanism module notation is used.  

4. Class names for the SSPs and MMs at the molecular stages (DNA, RNA, Protein, 

and Complex) can be selected from the pre-compiled list shown in Table 3-2. If 

existing names are inadequate, new names can be used. At higher organizational 



 

 

88 

 

stages, class names are user-provided. Wherever possible these should be part of 

existing biomedical ontologies. The NCBO BioPortal site 

(https://bioportal.bioontology.org/) is a source for ontology terms. Since most 

ontologies describe the normal state of a system, a user may select one of the in-built 

modifiers (increased, decreased, altered) to prefix a class name so as to represent a 

perturbed state.  

5. An evidence-based confidence score (on the scale of 1 to 5, where one indicates 

low confidence and five indicates high confidence) should be assigned to each SSP 

and MM. Evidence on which a confidence score is based should be recorded in the 

form of supporting/contradicting PMIDs and PMC figure URLs, together with 

appropriate free text commentary.   

6. Two or more possible sub-paths can exist in a schema either because of ambiguity 

due to conflicting evidence, or alternative sub-mechanisms.  Branch points should be 

labeled with OR, AND or AND/OR.  

7. Schemas should explicitly include steps only where there is a perturbation from the 

normal system. Where the function of a portion of a schema is unperturbed, for 

example, representing the standard activity of transcription operating on a perturbed 

input DNA sequence or a standard cell signaling process operates with more or less 

input signal, that section of the schema should be telescoped into a single mechanism 

module.  
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3.3.6 Steps in constructing, managing, and publishing mechanism schemas 

Before beginning schema building a new user must register on the MecCog platform. 

A registered user may select the “Build Schema” tab to initiate building a new 

schema or the “My Schemas” tab to access the workspace for managing and editing 

their existing schemas. Figures 3-4A and 3-4B show the two interfaces used in 

schema construction: A. The Initiate Mechanism Schema form used to enter meta-

information about a schema, and B. The Schema Builder GUI used to draw a schema. 

In the schema builder, mechanism components can be dragged and dropped from the 

mechanism component catalog panel to the drawing board panel. Clicking on a 

component displays five associated control icons: i) Icon to connect to other 

components; ii) Icon to adjust the component size; iii) Icon to clone the component; 

iv) Icon to show the pop-up box; and v) Icon to delete the component. Clicking on a 

component also renders a component-specific annotation form on the rightmost panel 

of the interface (labeled in Figure 3-4B). This form is used to enter the stage, class, 

and instance name of the components, prefix class names with a  perturbation type if 

needed (increased, decreased, or altered), and record the evidence annotations (listed 

in the Evidence Annotations Table 3-1C). This is a dynamic form that automatically 

provides predefined possible perturbation class names for the selected stage (listed in 

Table 3-2) and creates fields for adding new PubMed IDs and PMC image URLs. The 

NCBI E-utilities application programming interface (API) is used on the server-side 

to fetch publication details for the PubMed IDs. All the evidence annotations are 

transferred to the current component pop-up box together with hyperlinked PMIDs 

and PMC image URLs. The pop-up box can be visualized by clicking the ‘i’ shaped 
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control icon of the component.  Confidence score values selected in the annotation 

form are used to automatically apply the appropriate color to the current schema 

component (red: score 1, orange: scores 2, 3, 4 and, green: score 5). The color of the 

edge connecting two components is inherited from the target component, so 

indicating causal confidence. Schemas are saved to the database using the Click to 

save button. For each schema, a unique accession number is automatically generated 

in the database. The accession number format has a section indicating the version 

(default is .1) of the schema. The schema builder GUI also has a panel of interactive 

buttons to undo, redo, clear page, zoom, auto-layout, export (in SVG and PNG 

formats), and print schema diagrams. 

 

Figure 3-4C shows the view of a registered user’s workspace. Each schema can be 

versioned, edited, shared with other MecCog users, published, or deleted, using 

operation-specific buttons. The workspace has three sections: i) The Unpublished 

Mechanism Schemas section catalogs work-in-progress schemas.  ii) The Published 

Mechanism Schemas section catalogs published schemas. A button to remove each of 

these from the public collection is provided. iii) The Shared Mechanism Schemas 

section catalogs schemas that have been shared with the current user. For schemas 

with edit access privilege, the Copy to My Space operation is enabled, allowing the 

creation of a copy for the user to work on independently. All the schema accession 

numbers in the workspace page are hyperlinked to the schema specific landing page 

(described in the next section). 
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Published schemas are available for browsing via the main webpage of the MecCog 

site (as shown in Figure 3-4D) without the need for logging in. There is a search bar 

that allows schemas to be searched by gene name, keyword, or any component 

class/instance name. MYSQL’s FULLTEXT indexing 

(https://dev.mysql.com/doc/refman/5.6/en/innodb-fulltext-index.html) feature is used 

to support the search operation.  
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Figure 3-4. Graphical User Interface (GUI) to construct, manage, and browse 

mechanism schemas. Figure 3-4A shows the form for entering meta-information on a 

schema. Figure 3-4B shows the schema builder interface, including the mechanism 

component catalog panel (left), the drawing board panel, and the annotation form 

panel (right). Figure 3-4C shows the user workspace interface. Figure 3-4D shows a 

portion of the MecCog main webpage, designed to facilitate browsing publicly 

available mechanism schemas. 

 

 

The structured organization of mechanistic knowledge in MecCog allows this search 

to be used to find common entities or activities and common classes used in different 

schemas. On the main page, schemas are presented in a masonry layout view. Each 

tile in the view displays the schema name, schema caption, hyperlinked accession 

number of the schema linking to the corresponding schema landing page (described in 

the next section), and a hyperlinked schema image linked to an interactive web-based 

visualization of the schema (also described in the next section). 

 

3.3.7 Schema landing page, schema visualizer, and schema report 

A schema landing page displays schema meta-information in a tabular layout (Figure 

3-5A). A novel feature of this page is the display of references and hyper-linked 

PubMed IDs providing evidence for each aspect of the schema as well as PMC 

images selected to illustrate aspects of the mechanism. The Schema Visualizer button 

on the landing page directs a user to the GUI for interactively navigating the 

mechanism schema (as shown in Figure 3-5B). The visualizer inherits all the 
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interactive features of the schema builder GUI (described previously). A unique 

feature of the visualizer is the tight integration of the graphical notations for the 

mechanism components and the associated evidence information (presented in the 

pop-up box). The pop-up box (yellow-colored box in Figure 3-5B) displays 

hyperlinked ontology sources for the SSP/MM class name (if the term is from an 

ontology), a brief builder-provided commentary on the evidence, and hyperlinked 

PMIDs and PMC figure IDs. There is a help icon (‘?’) in the visualizer to display the 

mechanism schema key. Clicking on the Comment button in the visualizer opens a 

modal box to view or enter comments about the schema. The Schema Report button 

on the landing page generates a narrative report in which the meta-information, 

mechanism components, and evidence annotations about the schema are presented in 

a structured format. The schema content can be downloaded as a JSON file from the 

landing page using the download icon. The page also has social media share icons. 
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Figure 3-5. NOD2 mechanism schema entry in MecCog. This schema describes the 

known mechanisms by which a frameshift mutation (rs2066847) in the NOD2 gene 

causes an increased risk for Crohn’s disease. Figure 3-5A shows part of the landing 

A 

B 
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page of the NOD2 schema, displaying the meta-information in tabular format. This 

page includes the collection of thumbnails of PMC figures selected to illustrate 

aspects of the mechanism and the list of references with PubMed IDs from which 

evidence was derived (the list is truncated here - there are 26 references). Figure 3-5B 

shows the schema visualizer GUI used for interactive navigation of the schema. For 

this schema, four possible submechanisms with varying levels of evidence (indicated 

by the confidence colors – red=low, orange=medium, and green=high) are included. 

The example yellow pop-up box in Figure 3-5B displays hyperlinked evidence for the 

associated MM. The comment button on the top can be used to open a modal box, 

allowing a user to view and add comments. Details of the mechanism are described in 

the text. 

 

 

3.3.8 An example MecCog Schema: Known mechanisms by which a frameshift mutation in 

the NOD2 gene causes an increased risk of Crohn’s disease 

Figure 3-5 shows two pages of a MecCog mechanism schema 

(http://www.meccog.org/mchain/showpubchain?accession=MS031100031.9) 

describing the mechanism by which a frameshift mutation (rs2066847; 

NM_022162.3:c.3019dup (p.Leu1007fs)) in the NOD2 gene causes an increased risk 

of Crohn’s disease (CD). NOD2 is the first gene for which variants were found to be 

associated with altered CD risk (Hugot et al., 2001b; Ogura et al., 2001; Yamamoto & 

Ma, 2009) and the 1007fs mutation is most consistently associated with CD across 

multiple studies and population groups (Economou et al., 2004) with a very high 

relative risk of 17.6 for its homozygous genotype status as compared with wild-type 
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controls (Ogura et al., 2001). Figure 3-5A shows the landing page displaying the 

meta-information of the schema and the list of references used as evidence in the 

schema, together with figures used to illustrate aspects of the mechanism. 

 

Figure 3-5B shows the view of the NOD2 1007fs schema in the interactive visualizer. 

This schema was constructed using information about mechanism reported in 26 

research articles. The left-most SSP (SSP1) represents the DNA stage perturbation 

(i.e. the single base insertion of cytosine - rs2066847 in the NOD2 gene). The paths in 

the schema show how the effect of this perturbation propagates through the RNA, 

protein, complex, and cell stages (represented by the stage-specific SSPs and MMs) 

so causing the increased Crohn’s disease risk phenotype (SSP12). At the RNA stage 

(SSP2), the rs2066847 variant causes the insertion of a cytosine after the first 

nucleotide of codon 1007, so introducing a premature downstream stop codon. This 

leads to the protein stage perturbation, a truncated NOD2 protein (SSP3) missing the 

last 33 amino acids of the wild-type sequence (Lécine et al., 2007). Following this, 

the schema branches represent the multiple submechanisms by which the truncated 

NOD2 protein may lead to the increased Crohn’s disease risk phenotype by altering 

the activation of the immune response (MM10) (Negroni et al., 2018; Park et al., 

2007; W. Strober & Watanabe, 2011). All the branches are labeled ‘AND/OR’ since 

none has fully compelling supporting evidence. The submechanism of each branch is 

outlined below.  
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A) The top branch (SSP3→MM3 → SSP4) shows a potential alteration to NOD2-

dependent regulation of Toll-like receptor (TLR) mediated NF-κB signaling that 

produces pro-inflammatory cytokines in response to the pathogen-associated 

molecular patterns (PAMPs) such as lipopolysaccharide (LPS), or muramyl dipeptide 

(MDP). This path is sparse and labeled medium confidence (orange) because the 

mechanism of interaction between NOD2 and TLRs is not known, nor is it clear how 

that interaction normally results in increased production of pro-inflammatory 

cytokines (Underhill, 2007). Different models have been proposed to describe the 

mechanism: synergistic production of TNF-α by NOD2 and TLR4 (Wolfert et al., 

2002); activation of the inflammasome by NOD2 via RICK to produce IL-1β from 

pro-IL-1β generated as the result of TLR signaling (A. Sarkar et al., 2006); and MDP 

(the primary agonist for NOD2 (Grimes et al., 2012)) dose-dependent TNF-α 

production by NOD2 and TLR2 (Borm et al., 2008). Further, for none of these 

possibilities has the effect of the NOD2 100fs variant been investigated. These details 

are provided in the pop-up box for MM3.   

 

B) The middle branch shows that truncated NOD2 protein has lost its ability to 

localize to the plasma membrane (MM4 → SSP5) (Barnich et al., 2005; Morosky et 

al., 2011) where binding to incoming  MDP normally produces an activated state of 

the protein (Al Nabhani et al., 2017). In turn, activated NOD2 forms complexes with 

RICK and with ATG16L1 (Barnich et al., 2005; Travassos et al., 2010). The schema 

shows these effects as lower abundance of the NOD2-RICK complex (MM5 → 

SSP6) (Barnich et al., 2005) and the NOD2-ATG16L1 complex (MM5 → SSP8) 
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(Travassos et al., 2010). There is no experimental evidence of the NOD2 1007fs 

protein’s impact on complex formation. Therefore the MM5 → SSP6 step in the 

schema is labeled medium confidence (orange). Following this step, the lower 

abundance of the NOD2-RICK complex alters downstream NF-κB signaling 

(SSP6→MM6→SSP7) (Barnich et al., 2005; Caruso et al., 2014; Girardin et al., 

2003; Lécine et al., 2007), resulting in lower pro-inflammatory cytokine production, 

so contributing to an altered activation of the immune response (MM10) (Negroni et 

al., 2018; Park et al., 2007; W. Strober & Watanabe, 2011; Vilela et al., 2012). The 

perturbation of the NOD2-ATG16L1 complex affects the xenophagy process 

(autophagy against bacteria) (MM7) (Travassos et al., 2010) so leading to an increase 

in the abundance of bacteria in the lamina propria (SSP9) (Sidiq et al., 2016) and 

thereby likely contributing to a more aggressive response from other components of 

the immune system, as indicated by the altered activation of immune response 

(MM10). This sub-path is labeled high confidence (green) as its mechanism 

components are well understood based on the available evidence in the literature. The 

yellow pop-up box for MM4 shows an example of an evidence commentary with an 

associated hyperlinked PMC figure and PMIDs. 

 

C) The lower branch of the schema provides examples of the representation of a gap 

in knowledge and of overall low confidence. Commensal bacteria are largely 

prevented from penetrating the gut wall by an outer mucosal barrier and the epithelial 

cell layer. Paneth cells situated in the gut epithelial layer produce a range of antibiotic 

defensin peptides to aid in preventing commensal bacteria from traversing the 
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mucosal layer. Some data suggest that this process is partly dependent on MDP 

binding to NOD2 in these cells, likely signaling that significant numbers of bacteria 

are getting through to the epithelial cell layer, and so triggering an increased 

response. Data supporting that view come from an experiment showing stimulation of 

NOD2 by MDP binding induces production of defensin HNP-1 (human neutrophil 

peptide 1) in Caco-2 cells (Yamamoto-Furusho et al., 2010). It has also been shown 

that the NOD2 1007fs protein fails to induce the production of defensin hBD2 

(human β-defensin-2) in several epithelial cell lines (Voss et al., 2006). Hence the 

link between the presence of the 1007fs variant (SSP3) and increased defensin 

production (currently SSP10). But the mechanism by which MDP binding to NOD2 

normally causes defensin production is unknown, hence the black oval (MM11) 

linking those two SSPs. There is also evidence from other studies that do not support 

the mechanism represented by this schema path: In two out of four CD cohort studies 

(Hayashi et al., 2016; Simms et al., 2008; Jan Wehkamp et al., 2005), and in NOD2 

deficient mouse organoids (Wilson et al., 2015), the association between NOD2 and 

defensin was not reproduced. Hence this branch is labeled low confidence (red). 

Further along this schema branch, the decrease in defensin production (SSP10) leads 

to an increased abundance of bacteria in the mucosal layer (SSP11) due to decreased 

bactericidal activity (MM8). In turn, this contributes to increased bacterial abundance 

in the lamina propria due to increased bacterial influx from the mucosal layer (MM9) 

and finally leads to the altered activation of the immune response (MM10). 
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3.3.9 Representation of biomarker and therapeutic intervention sites in MecCog 

Figure 3-6A shows an example of the use of the biomarker symbol, in part of the 

Lynch syndrome schema 

(http://www.meccog.org/mchain/showpubchain?accession=MS020700047.3).  In this 

schema, microsatellite instability is a diagnostic biomarker (Vilar et al., 2014) for 

Lynch syndrome, resulting from defective base mismatch repair machinery, in turn a 

consequence of a mutation (rs63750245: C>T) in the MSH2 gene. Figure 3-6B shows 

an example of a putative therapeutic intervention site in a Crohn’s disease schema 

(http://www.meccog.org/mchain/showpubchain?accession=MS020500019.2) 

describing the mechanism by which a missense variant (rs3197999: G>A; R703C) in 

the MST1 gene (coding for Macrophage Stimulating Protein, MSP) increases disease 

risk. The missense variant causes a lower abundance of the MSP-RON protein 

complex by one or both of two mechanisms:  a weakened protein-protein interaction 

(Chao et al., 2014; Gorlatova et al., 2011) and reduced MSP abundance. Lower 

abundance of the complex is expected to result in reduced intracellular signaling 

affecting macrophage activation (Häuser et al., 2012; L. Kretschmann et al., 2010; M. 

H. Wang et al., 2002) and/or epithelial cell survival and growth (Danilkovitch et al., 

2000; Neurath, 2014). An appropriate compound that bridges the structural interface 

between MSP and RON could restore wild-type abundance of the complex and hence 

signaling strength and so eliminate the downstream consequences. (Of course, many 

factors affect whether this is in fact an effective therapeutic strategy.) 
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Figure 3-6. Biomarker and Therapeutic intervention site representation in MecCog. 

Figure 3-6A shows part of a Lynch syndrome schema 

(http://www.meccog.org/mchain/showpubchain?accession=MS020700047.3) where 

the presence of a nonsense mutation (rs63750245: C>T) in the MSH2 gene causes 

Microsatellite instability (MSI), a known biomarker (symbolized by the red location 

icon on the SSP) for the Lynch syndrome.  Figure 3-6B shows part of a Crohn’s 

disease schema 

(http://www.meccog.org/mchain/showpubchain?accession=MS020500019.2) where 

the decreased abundance of the MSP-RON protein complex (SSP3) is a hypothetical 

therapeutic intervention site, indicated by the blue octagon. In this case, an 

B 

A 
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appropriate small molecule binding across the protein-protein interface might restore 

the wild-type abundance.  

 

 

3.3.10 Validation of the MecCog representation framework 

Eleven MecCog mechanism schemas (nine for Crohn’s disease, one for cystic 

fibrosis, and one for Lynch syndrome) have so far been published, with additional 

schemas in progress on breast cancer and Alzheimer’s disease. Validation and 

improvement of MecCog content is obtained by soliciting feedback from specialists 

in the disease described in each schema. Feedback on the representation technique 

and platform can be provided using MecCog’s contact us form, encouraging users to 

provide suggestions and report problems. MecCog has also been used as an 

educational tool for senior undergraduate students in a Human Genetics class at the 

University of Maryland, providing valuable feedback, for example, linking PMC 

figures to aspects of schemas.  

 

3.4 Discussion 

We have developed MecCog, a graphical knowledge representation framework, to 

describe genetic disease mechanisms in a structured mechanism schema format. 

MecCog facilitates the assembly of mechanistic information in terms of perturbation 

propagation across stages of biological organization, evaluation of the evidence 

related to that information, and identification of uncertainties, ambiguities, and 

ignorance. The MecCog web platform provides functionalities to create, store, 

browse, and search schemas. Graphical notations are annotated with ontology-
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informed class terms so as to consistently and intuitively represent types of 

mechanism components found in schemas. The schema interactive visualizer in 

MecCog tightly integrates the graphics, text, and hyperlinks to evidence sources.  

  

Each schema in MecCog describes mechanisms by which a single genetic variant 

contributes to the increased risk for the disease phenotype. For complex trait genetic 

disease and cancer, multiple genetic variants contribute to disease phenotypes 

(Lilyquist et al., 2018; Peter et al., 2011). Further, contributions from variants may 

not be independent, as reflected by evidence of epistatic effects between pairs of 

variants for complex trait disease (Y. Li et al., 2020; Lin et al., 2017). The MecCog 

formalism also supports mechanism schemas with multiple input genetic 

perturbations. Interactions between these inputs results in a mechanism graph. An 

example for Crohn’s disease is a barrier integrity mechanism graph constructed by 

combining schemas on loci relevant to bacterial penetration of the gut-lining mucosal 

layer (Figure 3-7). This graph incorporates a number of non-additive interactions 

between mucin gene variants affecting mucosal-layer integrity (MUC1, MUC2), 

variants affecting the unfolded protein response (XBP1, ORMDL3), and variants 

affecting autophagy (NOD2, ATG16L1, LRRK2, IRGM).  
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Figure 3-7: Part of the barrier integrity mechanism graph for Crohn’s disease, 

showing the role of risk variants that affect bacterial penetration through the mucosal 

layer. SSP=Substate Perturbation and MM=Mechanism Module. An SNP (SSP1) in 

FUT2 affects glycosylation (MM1) of MUC1 (Kelly et al., 1995; Mcgovern et al., 

2010). The hypoglycosylated state of the MUC1 (SSP2) affects its interaction 

strength with other mucins (MM2) resulting in a less dense mucosal layer (SSP3) 

(Hall et al., 2017a). Weaker mucin interactions result in more rapid diffusion of 

bacteria through the mucosal layer (MM3) and faster mucin loss at the gut surface 

(MM6), one of the three factors contributing to an overall lower abundance of mucin 

(SSP8). A second factor is a missense SNP in MUC2 (SSP5), the main constituent of 

gut mucin, resulting in a less stable protein (MM5) (Heazlewood et al., 2008; Moehle 
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et al., 2006). The third factor is the state of the unfolded protein response (UPR) in 

the mucin-producing Goblet cells (MM9). The UPR system reduces protein 

production in response to the accumulation of excessive misfolded or unfolded 

protein in the ER (X. Ma et al., 2017). Because of the normal rapid loss of mucins at 

the gut interface, Goblet cells are among the most hard-working protein-producing 

cell types (Gersemann et al., 2009), and so are particularly susceptible to changes in 

the UPR (X. Ma et al., 2017). The UPR threshold is influenced by variants in two 

genes, XBP1 (Kaser et al., 2008) and ORMLD3 (Barrett et al., 2008; Moffatt et al., 

2007). The extent of misfolded protein is also influenced by the efficiency of 

autophagy (MM16), involving variants affecting four genes – NOD2 (Warren Strober 

et al., 2014), IRGM (Chauhan et al., 2016), LRRK2 (Hui et al., 2018) and 

ATG16L1(Salem et al., 2015). As the overall disease mechanism described in the 

mechanism graph has not been tested experimentally, all the branches are labeled 

medium confidence (orange color).  

 

 

Currently, MecCog schemas are manually constructed, relying on human 

understanding to extract and infer causal connections between mechanism 

components from literature. Given the scattered and incomplete nature of mechanistic 

information in literature, this process is complex and requires a combination of prior 

biological knowledge together with searching for and assimilating new facts and 

evidence from the literature. These activities are labor-intensive and work best when 

the schema builder is an expert on the schema subject. To achieve scale for the 

resource, we require an expert-crowdsourcing strategy, soliciting inputs from 
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appropriate domain experts. The resource is structured so that experts can build 

schemas based on their knowledge and can also edit and comment on existing 

schemas. The current version of the MecCog platform supports these activities in the 

following ways: i) acknowledging contributors to a schema as authors and curators, 

ii) providing a schema specific commenting interface to solicit input, and iii) allowing 

versioning of schemas to update content. To implement the crowdsourcing model, we 

will work closely work with disease-specific research communities (such as IBD 

Genetics, Crohn’s & Colitis Foundation, and Alzforum). 

 

An obvious question is whether mechanism schemas can be constructed automatically 

given the structured and unstructured data available in the biomedical domain. The 

structure of a mechanism schema shares features with that of knowledge graphs 

(KG), a knowledge representation system initiated by Google in 2012 

(https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-

not.html). There nodes (aka subjects) represent entities such as real-world objects, 

events or concepts, and edges (aka predicates) link the nodes with relationships. 

Because of a KG’s ability to integrate and represent multi-relational databases, many 

biological KGs (Sosa et al., 2019; Celebi et al., 2019; Chen et al., 2019; Himmelstein 

et al., 2017; PDBe-KB consortium, 2020; 

https://digitalinsights.qiagen.com/coronavirus-network-explorer/) are being 

generated, using a combination of manual and automated mining of subject-predicate-

object (SPO) triplets from biomedical literature and from bioinformatics relational 

databases. The elemental SSP-MM-SSP units of a MecCog schema are a subset of 
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SPO triplets and so it is in principle possible to construct a schema by extracting 

appropriate triplets from a comprehensive knowledge graph. However, preliminary 

tests of this process suggest that current knowledge graphs do not capture a large 

fraction of the triplets incorporated in the corresponding mechanism schemas. There 

are multiple reasons for this, including the absence of biological knowledge in 

knowledge graphs and the absence of causal reasoning components. We envisage that 

in the future comprehensive and well-structured KGs will be combined with a 

repository of biological knowledge and reasoning machines to generate a wide variety 

of biological mechanisms, as well as providing evaluation of evidence strength and 

identifying current gaps in mechanism knowledge.  
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Chapter 4: A framework to quantitatively represent and analyze 

mechanisms relating genetic variants to complex trait disease 

4.1 Introduction 

Genome-wide association studies (GWAS) have identified thousands of associations 

between genetic variants and complex trait diseases (Dehghan, 2018). A major focus 

has been to further identify the mechanisms underlying these associations in order to 

develop full disease models. The construction of disease models is non-trivial for two 

primary reasons. First, mechanistic information is scattered throughout the literature, 

is established with varying degrees of confidence, and the results are often ambiguous 

or contradictory to other findings. Second, biological knowledge of disease 

mechanisms is qualitative and descriptive, and so not immediately amenable to most 

quantitative modeling. To address the first obstacle, we have previously developed 

MecCog (Darden et al., 2018) a framework for integrating and representing disease 

mechanism knowledge in a structured format. The resulting schemas are able to 

comprehensively represent mechanisms by which genetic variants cause disease 

phenotypes. However, they are still purely qualitative. Here, we describe two 

developments aimed at overcoming the second obstacle. The first is a framework to 

quantitatively encode MecCog schemas, providing a method for building quantitative 

models using biological knowledge of disease mechanism. Using simulated data, we 

show that these Disease Mechanism Circuit (DCM) models are useful for exploring 

properties of complex trait diseases that are not experimentally accessible. While 

these models are informative, incomplete knowledge of the quantitative aspects of 
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mechanism limits their application. To address this, we have developed a hybrid 

neural network model of the relationship between genetic variants and disease-related 

phenotypes. We show that these models are able to learn key quantitative aspects of 

disease mechanism from GWAS data, so opening the way for large scale quantitative 

modeling of complex trait disease.  

 

We have applied both the disease mechanisms circuit model and the neural network 

to the analysis of the role of reduced gut wall barrier integrity in Crohn’s, a complex 

trait inflammatory bowel disease (Gorlatova et al., 2011; Pal, Chao, et al., 2017; Pal, 

Kundu, et al., 2017). More than 200 GWAS loci related to Crohn’s disease risk (De 

Lange et al., 2017) are known. Follow-up experimental work has revealed many of 

the mechanisms underlying those associations and has led to an overall model of the 

disease (Ahluwalia et al., 2018; Atreya & Siegmund, 2018; Fischer & Neurath, 2017) 

involving 11 subprocesses (Jostins et al., 2012). Briefly, the overall mechanism is as 

follows: The human gut contains a large load of commensal bacteria. Even in a 

healthy individual, a small number of these will continually pass through the gut wall 

and enter the underlying tissue (Schroeder, 2019). A concentration of immune system 

cells immediately below the gut wall normally ensures that penetrating bacteria are 

quickly removed. Some of the Crohn’s risk variants affect the integrity and thickness 

of the outer mucosal layer of the gut wall, the tightness of the epithelial cell junctions, 

and the effectiveness of outer antibacterial defenses, resulting in a higher flux of 

bacteria into the tissues. Risk variants in other genes affect the efficiency with which 

the innate immune system and the adaptive immune system deal with the penetrating 
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bacteria. Other risk variants affect the appropriateness of the inflammatory response. 

Finally, further risk variants affect the extent of gut wall tissue damage occurring as a 

result of inflammation and the efficiency of repair. In any particular individual, a 

subset of risk variants will be present - on average approximately half the maximum 

possible load. Each individual with the disease will likely have a different subset of 

risk variants from other individuals, and in this sense, the disease mechanism is 

different in each case.  

 

We demonstrate the utility of the circuit model by investigating two phenomena 

related to nonlinearity in the relationship between genetic variants and disease 

phenotypes. GWAS does not capture inter-gene dependencies of phenotypes, and 

these missing epistatic effects have been proposed as an explanation of why GWAS 

results only reflect a fraction of disease heritability (Maher, 2008). First, we use the 

model together with simulated GWAS data to investigate the extent to which 

differences in the effect size of single risk variants is observed in different 

individuals. Unavoidably GWAS provides average properties over a study 

population’s diverse genetic backgrounds and cannot show whether a variant has a 

large or small effect in a particular individual (Stringer et al., 2011). If disease 

phenotypes were a linear function of an individual’s relevant variants, this would not 

be an issue. But inter-gene interactions will result in varying effect sizes. Knowledge 

of an individual’s variant effect sizes may be key in judging what available treatments 

will be most effective.  Many model organism studies have demonstrated that the 

effect size of mutations varies as a function of the genetic background (Chow et al., 
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2016; Galardini et al., 2019; Vu et al., 2015). We show that the non-linear 

components of the barrier integrity circuit model do result in a dramatic variation of 

variant effect sizes across individuals in a GWAS population. Second, we directly 

address the extent to which interactions between relevant genetic variants are non-

linear, which is epistatic, using the circuit model. The extent of epistasis is a much-

debated question in studies of complex trait disease (Manolio et al., 2009; Wei et al., 

2014). Pair-wise knockout and RNA silencing experiments in a range of model 

organisms have shown that these effects are very wide-spread (Byrne et al., 2007; 

Cardinale & Cambray, 2017; Costanzo et al., 2016). Despite this evidence, pair-wise 

statistical tests using human GWAS data seldom detect epistatic effects (J. Li et al., 

2011). As with the variation in effect size for single variants, one reason for this may 

be that population epistatic effects are masked by averaging over all genetic 

backgrounds in a sampled population. Consistent with the model organism studies, 

we find a very large range of non-additive effects between risk variant pairs in a 

GWAS population. 

 

The circuit model provides an effective means of investigating the effect of genetic 

variants in each individual in a population, so overcoming major limitations in the 

GWAS data.  But it requires knowledge of not only the disease mechanism 

(represented by the mechanism graph) but also the functional form of each node’s 

response and the parameter values for those functions. Although functional forms 

may be estimated, as we do in the circuit model study, obtaining true parameter 

values is extremely labor-intensive, and because of the properties of this type of 
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biological circuit, maybe almost impossible to obtain with sufficient accuracy (Chou 

& Voit, 2009). Machine learning methods, including neural networks, have been used 

to predict disease phenotypes from genotype inputs for complex trait diseases  

(Laksshman et al., 2017; Pal, Kundu, et al., 2017; Zeigler et al., 1990). Model 

parameters are learned from the data and at least for neural networks, there should be 

good robustness with respect to data noise (Borodinov et al., 2019). But although 

these methods perform as well as additive models (Pal, Kundu, et al., 2017), they 

provide no insight into the underlying mechanism. An attractive solution to this issue 

is the incorporation of prior knowledge of network architecture so that only nodes 

representing known functional units in the system are included. The approach was 

first suggested in 1992 for modeling bioreactor function (Psichogios & Ungar, 1992), 

but has been little explored. Recently, it has been successfully used for building an 

integrated model for yeast cells (Dcell (J. Ma et al., 2018a)). We have developed a 

sparse neural network representation of genetic disease mechanisms, a Mechanism 

Architecture Neural Network (MANN) model. We show that MANN input/output 

relationships can be learned from GWAS data, that individual nodes reproduce the 

model’s functional form and behavior, and that it is possible to distinguish between 

alternative graph connectivity, so allowing the evaluation of alternative mechanism 

hypotheses.  
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4.2 Results 

4.2.1 Mechanism of barrier integrity disruption in Crohn’s disease 

MecCog mechanism schemas (Darden et al., 2018) are composed of input substate 

perturbation – mechanism module – output substrate perturbation (SSP-MM-SSP) 

triplets, where each SSP represents a perturbed entity at some stage of biological 

organization (e.g. a DNA variant, altered protein abundance, altered cell state) and 

each MM (e.g. transcription, protein-protein interaction, cell signaling) represents the 

productive activity by which the input SSP produces the output SSP. Simple schemas 

follow the progression of substate perturbations from a single genetic variant across 

stages of biological organization (RNA, protein, macromolecular complexes, 

organelles, cells, organs) to the disease phenotype, and are suitable for representing 

the mechanisms underlying monogenic disease and individual cancer-relevant 

mutations (see www.meccog.org for examples). For complex trait diseases like 

Crohn’s, where multiple genetic variants affect the disease phenotype, contributing 

individual variant schemas are combined to produce a mechanism graph, including 

interactions between the variants. Figure 4-1 shows the graph for part of the barrier 

integrity mechanism, where eight Crohn’s risk variants affect the concentration of 

bacteria at the epithelial wall of the gut, 𝐵𝑒. A higher bacterial concentration at the 

epithelial wall causes higher bacterial flux into the underlying tissues where they 

interact with the gut immune cells that lead to inflammation and increased risk for the 

disease (Okumura & Takeda, 2018). Here, a SNP in MUC1 (Franke et al., 2010) 

affects the strength of the corresponding protein’s interactions with other mucins 

(Kadayakkara et al., 2010) (M1), implying a less dense mucosal layer (S1). In turn, 
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weaker mucin interactions result in more rapid diffusion of bacteria through the 

mucosal layer (M3) and faster mucin loss at the gut surface (S2), one of three factors 

contributing to an overall lower abundance of mucin (S3). A second factor is a 

missense SNP in MUC2, the main constituent of gut mucin, resulting in a less stable 

protein (M5) (Heazlewood et al., 2008; Moehle et al., 2006). The third factor is the 

state of the unfolded protein response (UPR) in the mucin-producing Goblet cells 

(M8). The UPR system reduces protein production in response to the accumulation of 

excessive misfolded or unfolded protein (X. Ma et al., 2017). Because of the normal 

rapid loss of mucins at the gut interface, Goblet cells are among the most hard-

working protein-producing cell types (Gersemann et al., 2009), and so are particularly 

susceptible to changes in the UPR (X. Ma et al., 2017). The UPR threshold is 

influenced by variants in two genes, XBP1 (Adolph et al., 2012) and ORMDL3 (M. 

Li et al., 2017). The extent of overall misfolded protein is also influenced by the 

efficiency of autophagy (M10), involving variants affecting four genes (NOD2 

(Warren Strober et al., 2014), IRGM (Chauhan et al., 2016), LRRK2 (Hui et al., 

2018), and ATG16L1 (Salem et al., 2015)). This barrier integrity graph is not 

complete: Additional components include a SNP in FUT2 affecting mucin-mucin 

interaction strength via alterations to glycosylation (Hall et al., 2017b). IL10 (Hasnain 

et al., 2013) also influences the UPR response, and in turn the influence of IL10 

variants is modulated by variants in two members of the intracellular signaling 

pathway, STAT1 and STAT3 (Hasnain et al., 2013). Other significant contributions 

to barrier integrity are the efficiency of xenophagy (Knodler & Celli, 2011) and 

antibiotic production (J. Wehkamp et al., 2008) by epithelial wall Paneth cells and the 
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tightness of the epithelial cell-cell junctions, influenced by a variant affecting 

C1orf106 (Mohanan et al., 2018). Nevertheless, the graph captures sufficient disease 

biology to provide a test system for the Disease Mechanism Circuit (DCM) and 

Mechanism Architecture Neural Network (MANN) models. 
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Figure 4-1. Part of the barrier integrity mechanism graph for Crohn’s disease, 

showing the role of variants in eight genes that affect bacterial penetration through 

the gut mucosal layer. Genetic variant inputs to the network are shown as yellow 

rectangles, substate perturbations as blue rectangles, and mechanism modules as clear 

ovals. Edge labels show variables output from the preceding node and provide input 

to subsequent nodes. For each mechanism component, the corresponding approximate 

node function is shown (for details see Methods). Parameters determining 

quantitative behavior are in green.  

 

4.2.2 Building a disease mechanism circuit (DMC) from a disease mechanism graph 

Each substate perturbation (SSP) and mechanism module (MM) in the barrier 

integrity mechanism graph represents an altered value of a physical quantity: 

abundance of a protein, strength of a protein-protein interaction, thickness of the 

epithelial layer, and so on. The magnitude of these quantities can be computed given 

one or more input values to the SSP or MM nodes. For example, in Figure 4-1 there 

are two inputs into the node S6 ‘Higher bacterial concentration at the epithelial wall’ 

– a thinner mucosal layer, T, output from S4; and a faster bacterial diffusion rate D 

through the layer, output from M3. Quantitatively this node (S6) represents the 

perturbation of the bacterial concentration at the epithelial cell wall arising from a 

thinner and less dense mucosal layer. The simplest model of this process is the 

diffusion of bacteria across a planar mucosal layer, with a rate proportional to the 

diffusion constant D and inversely proportional to the layer thickness, T. Then, the 
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flux of bacteria arriving at the epithelial wall increases with faster diffusion (larger D) 

and with a thinner layer, T. We assume that at steady state, the bacterial concentration 

at the epithelial cell wall (Be) can be expressed as proportional to the incoming flux.   

𝐵𝑒  = 𝑎23 ∗
𝐷

𝑇
 

where a23 is constant.  

Approximate analytical functions are assigned to each node. Table 4-1 (Methods) 

shows the node functions and the estimated parameters values. Any particular 

combination of risk genotypes for variants in the eight genes (the input risk genotype 

vector, where for each variant, 0 represents no risk alleles, 1 a single, heterozygous 

risk allele, and 2, homozygous risk alleles) will propagate through the circuit to 

determine 𝐵𝑒. A higher Be, indicating a higher bacterial concentration at the epithelial 

wall, will cause higher bacterial flux into the underlying tissues and so higher disease 

risk (Okumura & Takeda, 2018). Thus, Be is an intermediate Crohn’s disease risk 

phenotype.  

 

4.2.3 Sources of non-linearity in the DMC of barrier integrity 

As noted earlier, nonlinear interactions between variants will result in a nonlinear 

relationship between input risk genotypes and disease phenotypes. There are two 

explicit sources of inter-gene non-linearity in the circuit: First, the division function 

(F12 in Table 4-1) at node S6, representing the relationship between bacterial 

diffusion rate (D), the thickness of the mucosal layer (T), and the bacterial 

concentration 𝐵𝑒. Second, the sigmoid function (F7 in Table 4-1) at node M8 
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representing the unfolded protein response (UPR). In practice, the sigmoid function 

dominates the non-linear behavior of the circuit.  

 

4.2.4 Functional form of the Unfolded Protein Response (UPR) 

The UPR is a cellular response to the accumulation of unfolded protein. There are 

two main components, both resulting from unfolded proteins binding to and so 

activating kinases, IRE1, and PERK (Mendez et al., 2015). Activated IRE1 acts as an 

RNAase that results in abnormal splicing of XBP1, leading to increased chaperone 

production and so an increase in the amount of successfully folded proteins. 

Activated PERK phosphorylates the α-subunit of eukaryotic translation initiation 

factor 2 (eIF2α) (Harding et al., 1999) and traps it in the GDP-bound inactive state, so 

blocking eIF2α recycling. That results in the attenuation of global protein synthesis 

(Harding et al., 2000; Wek et al., 2006). Three experimental studies (Korennykh et 

al., 2009; Han Li et al., 2010; Mendez et al., 2015) have shown that IRE1 RNase 

activity (representing UPR activation) has a sigmoidal response to the concentration 

IRE1 enzyme. The Hill coefficient found in these studies is between 3.3 and 8 (The 

Hill coefficient is a dimensionless parameter characterizing the steepness of a 

sigmoid-like response (Frank, 2013).  No data are available for the response of PERK 

to increase in unfolded protein abundance, relevant to the barrier integrity model. We 

expect that the Hill coefficient of that response will not be less than for IRE1, and 

will likely be greater: whereas a relatively gradual increase in chaperone 

concentration (mediated by IRE1) is expected, protein production shut-down is a 

serious decision for a cell, and so may be abrupt.  
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Sigmoid functions, in which at a low concentration of some molecule in the system 

there is no response, but at some threshold, there is a co-operative transition to a large 

system response, which then saturates, are very often found in biological system 

input/output relationships (Andersen et al., 2002; Frank, 2013). The Hill coefficients 

are often large, for example in MAPK signaling pathways up to 8 (Blüthgen & 

Herzel, 2003), in the response of the bacterial flagellar motor to the concentration of 

the chemotaxis response regulator CheY-P, 20 (Yuan & Berg, 2013), and in oocyte 

maturation in response to progesterone concentration in Xenopus Oocytes, a Hill 

coefficient of 35 (Ferrell & Machleder, 1998). 

  

In the barrier integrity model, the sigmoid function at node M8 describes a cell’s total 

protein production rate (P) in response to the total abundance of unfolded or 

misfolded protein (U) in the cell:  

𝑃 = 𝑎11 + (
𝑎12

1 + 𝑒−𝑢(𝑈−𝑈0) 
) 

where 𝑎11, 𝑎12 𝑎𝑛𝑑 𝑢 are constants. 

The model assumes that below some threshold of unfolded protein abundance, U0, 

cells produce new protein with a rate independent of that quantity. Above the 

threshold, there is a progressive shut-down of protein production, with a rate 

determined by the parameter ‘u’. We have investigated the behavior of the circuit 

models for two values of u (-1 and -6) corresponding to Hill coefficients of about 3.0 

and 15. 
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Figure 4-2 illustrates how the sigmoid function results in a variation in the effect size 

of single variants as a function of genetic background and in variable epistatic 

interactions between risk alleles affecting gene pairs. At low unfolded protein 

abundance, represented by the plateau on the left of the plot, cell protein production is 

unaffected. Then, at some unfolded protein threshold (around 0.75 in the figure) there 

is a rapid decline in production to the low plateau (0.1 of the maximum in this model) 

at the right side of the plot. Panel A shows the positions of the three risk genotypes of 

NOD2 for a particular genetic background from the other seven genes affecting this 

node. All three NOD2 genotypes fall on the initial plateau, so that production and 

hence Be are unaffected by the which genotype is present. That is, the effect size is 

zero. In panel B, a different genetic background from the other genes results in a 

higher level of unfolded protein and so shifts the NOD2 genotypes to the right. The 

no-risk genotype is still on the plateau, but the single risk variant is at the start of the 

slope, and the homozygous risk variant genotype is near the bottom. The homozygous 

risk genotype now has a very large effect size. The NOD2 genotypes in each 

individual in a population will fall at different positions depending on the individual’s 

genetic background, and so a range of effect sizes is produced.  

 

To see one way in which non-linear, epistatic, interactions are created between pairs 

of genes, consider two genes with a genetic background such that each gene’s 

genotypes all fall on the initial plateau, as for NOD2 in panel A. The linear 

expectation is that the phenotype effect of the combined risk variants for the two 

genes will be the sum of the individual effects, in this example zero. But it is easy to 



 

 

122 

 

see that the combined impact on the unfolded protein level may actually result in a 

large loss of protein production by producing a point on the slope. As with the single 

variant case, different genetic backgrounds will produce different degrees of 

nonlinearity.   

 

 

 

Figure 4-2. Model of the unfolded protein response (UPR). The X-axis is the relative 

abundance of unfolded protein and the Y-axis is the fraction of full protein production 

in the cell. At low unfolded protein abundance, protein production is unaltered, but at 

a threshold of around 0.75 in this model, production begins to be reduced and then 

falls fairly rapidly to a lower threshold (0.1 of full production). Risk variants in eight 

genes affect the unfolded protein abundance. The three points on each panel represent 

the unfolded protein abundance for each NOD2 genotype (no risk variant,  green; 

heterozygous risk variant, orange; and homozygous risk variant, red) for a particular 

genetic background of the other seven genes. In panel A, all the genotypes fall on the 

leading full protein production plateau, so that production is unaffected by the 

genotype status of NOD2. In panel B, a higher risk variant background in the other 

seven genes results in a higher unfolded protein abundance. The zero risk allele 
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NOD2 genotype is still on the plateau, the single risk allele is on the start of the 

downslope, resulting in a small decrease in production, and the homozygous risk 

allele genotype falls near the bottom of the slope, resulting in a large change. 

Examples here are for the more strongly non-linear model.  

 

4.2.5 Characteristics of the barrier integrity model 

The quantitative behavior of the barrier integrity circuit was simulated by calculating 

the output relative epithelial layer bacterial concentration (Be) for each possible vector 

of input risk genotypes. Genotypes were encoded as 0 for the homozygous non-risk 

alleles, 1 for heterozygous, and 2 for homozygous risk alleles. There are 6561 (38) 

possible input genotype vectors. Parameters values of the circuit are listed in Table 4-

1. Each genotype vector was feedforward to generate the corresponding output Be 

value. Two sets of simulation data were generated corresponding to moderately non-

linear behavior of the UPR (u =-1 in F7, Hill coefficient approximately 3) and a 

higher value (u = -6, Hill coefficient approximately 15). In order to generate a 

reference linear approximation, a linear regression fit of Be to the eight genotype 

input values was performed, using the python scikit-learn package’s linear regression 

module (https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html) with 

default parameters.   

 

Figure 4-3A shows the distribution of relative bacterial abundance, Be, for the set of 

all possible risk variant genotypes. For the moderately non-linear model (u=-1), the 
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distribution is skewed towards low Be, with ~79% of genotype vectors generating Be 

values less than 10, and only ~4.5% above 20. In contrast, Figure 4-3C shows that Be 

values generated by the more strongly non-linear model (u=-6) are skewed more 

towards large Be values, with ~24% above 20. Figure 4-3B shows that for the 

moderately non-linear model there is an approximately parabolic curve relating model 

Be values to those generated by linear regression, with the predicted values for low-

risk situations negative. That is, a best fit linear model substantially underestimates 

the high risk Be values and will be inaccurate for low risk. For the more strongly non-

linear model (Figure 4-3D), the regression fit is not monotonic and has little 

relationship to the true Be values. Thus, a linear model is not able to represent the 

circuit’s behavior. 
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 Figure 4-3. Distributions of bacterial concentration (Be) across the 6561 input 

genotype vectors. Figure 4-3A shows the distribution of Be values and Figure 4-3B 

shows the scatter plot between the true Be values (Y-axis) and a linear regression 

approximation (X-axis) in the moderately (u=-1) non-linear UPR model. Figures 4-

3C and D show the corresponding results for a more non-linear model (u=-6). The Be 

distribution plot is skewed towards low Be (<10) in the moderately non-linear case but 

skewed towards larger Be (>20) in the more strongly non-linear case.  The linear 

regression approximation fit is poor for both cases and is not monotonic for higher 

non-linearity.  

 

 

4.2.6 Single variant effect varies across genetic backgrounds 

The Barrier Integrity DMC provides a human disease model for investigating the 

degree to which the population average obtained from a GWAS experiment masks 

variation across individuals with different genetic backgrounds. To this end, we have 

examined the variation in effect size for each of the eight risk variants as a function of 

genetic background.  

 

For every risk variant in the barrier integrity graph, there were 2187 (37) genetic 

backgrounds to be considered. For a specific background, the effect size of the risk 

variant was calculated as:   

𝑉𝑎𝑟𝑖𝑎𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒 (𝑉𝑠) =  𝐵𝑒𝑔𝑖

 − 𝐵𝑒𝑔0
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where 𝐵𝑒𝑔0
 is the Be value when the genotype of the risk variant is 0 (non-risk allele 

homozygous) in the background g, and 𝐵𝑒𝑔𝑖
 is the Be value when the genotype of the 

risk variant is i=1 (heterozygous) or 2 (risk allele homozygous) in the background g. 

To simplify the analysis, only i=2 was considered. In addition to considering all 

possible backgrounds, we also considered just those backgrounds found in a human 

population, using the WTCCC genotype dataset of 2000 Crohn’s patients and 3000 

controls (Burton et al., 2007). 

 

Figure 4-4 shows the variation in the effect size of the ATG16L1 risk variant. In the 

moderately non-linear model (Figure 4-4A), the effect size in the WTCCC population 

varies from near zero to ~14. The maximum value for any genotype vector is 42 

(Figure 4-3), so that the effect size for this one variant spans 1/3 of the full range. The 

average is only 2.6. That is, the GWAS result suggests that this risk variant will only 

make a small contribution to increasing bacterial concentration, but in fact, for 

particular individuals, fully 1/3 the maximum possible bacterial load is caused by this 

single variant. The variation is even larger in the more strongly non-linear model 

(Figure 4-4B), varying between ~zero and ~60, spanning the total spread found across 

all genotype vectors (Figure 4-3). The average is 10.5, for some individuals only 

about 1/6 of the actual effect size. Although individual variant effect size tends to 

increase with the number of other risk variants present, there is a very large scatter. 

For instance, in the moderately non-linear ATG16L1 model, at a typical level of 

background risk alleles found in WTCCC (~1100-1200 on the X-axis, Figure 4-4A), 
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effect size varies from about 1 to 9. The other seven genes show similar patterns 

(Figure S6).  

 

Thus, to the extent that the model represents the properties of real biology, average 

effect sizes derived from GWAS data mask a wide range of variation across 

individuals - in one individual an ATG16L1 risk allele may contribute almost no 

increase in bacteria penetrating the gut mucosal layer. In another individual, the 

increase may be very substantial, so contributing greatly to increased disease risk. As 

described earlier (Figure 4-2), in this model, the variation in effect size primarily 

arises from the nature of the sigmoid response to the level of unfolded protein. 

  

  

Figure 4-4. Variation in the ATG16L1 risk variant effect size as a function of the 

genetic background for the barrier integrity model. Each point represents the effect 

size for homozygous risk variants in ATG16L for one specific genetic background. 

Figure 4-4A shows the effect size distribution for the moderately non-linear 

simulation model and Figure 4-4B for the more strongly non-linear model. The X-

axis of each plot is sorted by the risk-allele load in the genetic background (ranging 
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from 0 where no other risk alleles are present to 14 where the seven other genes have 

homozygous risk alleles). Red points are for the 252 genetic backgrounds found in the 

WTCCC study population dataset and blue points cover all possible backgrounds 

(2187). The average effect sizes expected in GWAS are given above each plot. The 

effect size increases with the background risk variant load, though very non-

monotonically. In the moderately non-linear model, effect sizes vary from zero to 14 

in the WTCCC study population, about 1/3 of the total variation across all genotype 

vectors (zero to 42, Figure 4-2). For the more strongly non-linear model, the variation 

is from zero to 60 in the WTCCC population. In each case, the population average 

masks the range.    

 

4.2.7 Epistatic effects are masked by population averaging 

The size of each of the possible 28 pair-wise epistatic interactions was evaluated as a 

function of the genetic background of the other six risk variants. For every variant 

pair in the barrier integrity graph, there are 729 (36) possible genetic backgrounds. 

For a specific background, the non-additive epistatic effect of a variant pair was 

calculated as:   

𝐸𝑝𝑖𝑠𝑡𝑎𝑡𝑖𝑐 𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒 (𝐸) =  (𝐵𝑒𝑔𝑖𝑗

 − 𝐵𝑒𝑔00
) − { (𝐵𝑒𝑔0𝑗

− 𝐵𝑒𝑔00
) + (𝐵𝑒𝑔𝑖0

− 𝐵𝑒𝑔00)
} 

where 𝐵𝑒𝑔00
 is the epithelial layer bacterial concentration when the genotype of both 

the variants is 0 (homozygous non-risk-alleles) in a specific background g; 𝐵𝑒𝑔𝑖𝑗

  is 

the value when the genotype of both of the variants is i=j=1(heterozygous) or i=j=2 

(risk allele homozygous) in a specific background g; 𝐵𝑒𝑔0𝑗
 is the value when the 



 

 

129 

 

genotype of one variant (i) is 0 and the other is j=1 or j=2 in the specific background 

g; and 𝐵𝑒𝑔𝑖0
 is the value when the genotype of variant (j) is 0 and the other is i=1 or 

i=2 in a specific background g. This formula captures the change in Be when both the 

variants carry risk alleles versus the change in Be assuming the contribution from each 

of the contributing variants is additive. A positive E value indicates a positive 

epistatic effect (i.e. the effect is higher than the additive effect), and a negative value 

indicates a negative epistatic effect (i.e. the effect is lower than the additive effect). 

To simplify the analysis, only i=2 and j=2 were considered. For each variant pair, the 

set of 729 possible backgrounds was considered as well as the set of backgrounds 

found in a human population, using the WTCCC genotype dataset of 2000 Crohn’s 

patients and 3000 controls (Burton et al., 2007).  

 

 

Figure 4-5A shows the variation in the epistatic effect for an example risk variant 

pair, ATG16L1 – NOD2, using the moderately non-linear UPR model. For the 

WTCCC population, the ATG16L1 – NOD2 epistatic effect size varies from 0 to ~13, 

but the average is only 4.1. Other gene pairs (Figures S7) show a similar pattern of 

highly variable positive epistatic effects, with population averages much lower than 

the effect in many individuals. As is the case in the single variant analysis (Figure 4-

4), the very largest effects are seen in the highest risk genetic backgrounds, not often 

found in the WTCCC population. But within the population, epistatic effects are still 

substantial, with up to a 10-fold higher bacterial concentration at the epithelial layer 

above that expected from the additive model.  
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Figure S8 shows that the size of the epistatic effects is substantially larger in the more 

strongly non-linear model (up to a 50-fold change in bacterial concentration over the 

that expected from the linear model) and for many gene pairs may be positive or 

negative depending on the genetic background. The presence of both positive and 

negative effects leads to a greater damping of population average values. For 

example, for ORMDL3 – XBP1 (Figure 4-5B) the size of the epistatic effect in the 

WTCCC population varies from approximately -10 to +10, resulting in an average of 

only 0.48. As outlined earlier, the variable nonlinear effects arise primarily from the 

sigmoid for the sigmoid response to the amount of unfolded protein (Figure 4-2).  

 

 

Figure 4-5. Variation in the epistatic effect as a function of the genetic background. 

Figure 4-5A shows the epistatic effect distribution of the ATG16L1 – NOD2 risk 

variant pair in the moderately non-linear UPR model. Figure 4-5B shows the 

distribution for the ORMDL3 – XBP1 risk variant pair in the more strongly non-linear 

model. The X-axis of each plot is sorted by the risk-allele load in the background 

(ranging from 0 where no other risk alleles are present to 12 where the six other genes 
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have homozygous risk alleles, in total 729 combinations). Red points are for genetic 

backgrounds found in the WTCCC study population and blue points cover all 

possible backgrounds. The average epistatic effect sizes are shown above the plots. 

The size of the epistatic effect varies dramatically as a function of the genetic 

background in each individual, resulting in misleadingly low population averages.  

 

4.2.8 Constructing a Mechanism Architecture Neural Network 

As outlined earlier, representing a mechanism graph as a sparse neural network 

should allow node functions to be learned from GWAS data, avoiding a major 

limitation of the circuit model. We designed and implemented a version of this 

approach, a Mechanism Architecture Neural Network (MANN). In this 

representation, a MANN is a sparse neural network where each substate perturbation 

and mechanism module in a mechanism graph is represented by a node and the 

internode connectivity is that of the mechanism graph. Figure 4-6 shows the barrier 

integrity MANN. Each node is represented by one neuron. 

The output from each neuron is: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑇𝑎𝑛ℎ (∑ 𝑥𝑖𝑤𝑖 + 𝑏)) 

where {𝑤𝑖} are the weights on the ‘i’ edges connecting inputs to the neuron, {𝑥𝑖} are 

the values output from the input nodes, and b is the bias parameter. Tanh is the 

nonlinear transforming hyperbolic tangent activation function. The Batch Norm (Ioffe 

& Szegedy, 2015) function normalizes input values for each hidden layer in a 

network leading to faster convergence, decreased importance of initial weights in the 

network, and reduced overfitting (https://towardsdatascience.com/batch-
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normalization-in-neural-networks-1ac91516821c). PyTorch (https://pytorch.org/), an 

open-source machine learning library, was used to implement and train the MANN. 

There are 71 parameters to be trained (the weights on each of 25 edges, a bias 

parameter and two Batch Norm parameters for each of the 15 internal nodes, and a 

bias parameter for the output node).  

 

 

Figure 4-6. Mechanism Architecture Neural Network (MANN) for the Crohn’s 

barrier integrity model. Each blue dot corresponds to one of the nodes in the 

mechanism graph (Figure 4-1) and is represented by a neuron. Red dots indicate the 

inputs to the network. The connectivity between the neurons is that of the mechanism 

graph.  
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4.2.9 Training and testing the Barrier Integrity MANN 

The Disease Mechanism Circuit (DMC) generated Be values corresponding to each of 

the input 6561 genotype vectors were used to train and test the MANN. Using the 

moderately non-linear UPR model data the average MSE (Mean Square Error) of the 

MANN is 0.13. The two equivalent fully connected FCNN reference networks have a 

slightly large MSE of 0.22 for the two hidden layer network and 0.38 with the single 

hidden layer. This pattern is the same for the more strongly non-linear data, with an 

MSE for the MANN of 2.17, FCNN with two layers 3.20, and FCNN with single 

layer, 32.22. Based on these results, the MANN is able to learn the relationship 

between input genotype vectors and Be with high accuracy and its overall 

performance is slightly better than fully connected networks with an approximately 

equal number of parameters. Figure 4-7 shows a more detailed performance 

comparison. The moderately non-linear data plots show that the FCNNs fail to 

accurately predict the high Be values (>30) possibly due to the lack of sufficient 

training data in this range (as shown in Figure 4-3A). But the MANN is able to fit this 

portion of the data as well as the rest.  For the more strongly non-linear model, the 

plots show that a single hidden layer network is unable to properly represent the data, 

while the double layer network and the MANN are more successful. The fully 

connected double layer network likely does better here than with the moderately non-

linear data because there are more training points at high Be values. Overall, the 

MANN delivers the lowest MSEs, but these data are generally easy to train.   
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We also trained and tested the networks using the experimental WTCCC dataset 

(Burton et al., 2007) and disease status (1 for disease, 0 for control) instead of 

simulated bacterial concentration as the output. The MANN delivers an average ROC 

(Receiver Operating Characteristics) - AUC (Area Under The Curve) of 0.63, slightly 

better than the FCNN with two layers (0.59). Thus, the MANN is able to learn the 

relationship between an individual’s genotype data and their disease status slightly 

better than a conventional network. Apparently, with the noisy experimental data, 

explicitly incorporating knowledge of the interactions between the genetic variants 

results in an improved fit between the genotype-phenotype data. Interestingly, 

including 86 risk variants with a fully connected neural network (one hidden layer 

with three neurons, 265 parameters) yields a ROC-AUC of only 0.72, and attempts by 

a number of groups to obtain better results with a range of machine learning methods 

and up to 160 risk variants did not succeed in obtaining a larger AUC (Daneshjou et 

al., 2017). In this context, the AUC of 0.63 for just the eight barrier integrity variants 

is remarkable. 
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Figure 4-7. Comparison of MANN performance in reproducing the output bacterial 

concentration Be with that of fully connected neural networks, for a sample cross-

validation set. Each point corresponds to a specific input genotype vector. A perfect 

model would have all points on the diagonal. For both the moderate and more 

strongly non-linear data, the MANN performs better than the fully connected 

networks. FCNN: Fully connected Neural Network, DMC: Disease mechanism 

circuit, MSE: Mean square error, MANN: Mechanism Architecture Neural Network.  

 

 

4.2.10 The Barrier Integrity MANN is able to learn node functions 

While it is useful that a MANN representation can capture the relationship between 

genotype inputs and the bacterial concentration, Be, and does so more robustly than a 

conventional neural network (Figure 4-7), the real advantage should be in also 

capturing aspects of a biological mechanism circuit that may not be known. To 

examine this, we next ask to what extent individual nodes in the trained Barrier 

Integrity MANN exhibit the same response to genotype inputs as the corresponding 

nodes in the DMC. That is, can the network effectively learn DMC node functions 

from the data? For this purpose, the output from each neuron representing a node is 

compared with the calculated output from the corresponding DMC node, for each 

input genotype vector. Figure 4-8 shows the results for the 10 nodes where the output 

is a physical quantity, for example, total protein production, P (F7), and the thickness 

of the mucosal layer, T (F11) (Table 4-1). For the five nodes in the top row of the 

plots, there are only three input values corresponding to the three possible risk 
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genotypes of  MUC1 (nodes M1, M2, and M3) or MUC2 (M5 and S5), and so only 

three points of comparison. Nevertheless, the node functions of two of these, M2 and 

M3, are exponentials so that capturing their behavior is non-trivial. For the five nodes 

in the second row of the plots, the consequences of combinations of input genotype 

vectors from multiple genes must be captured, so reproduction by the neural network 

is generally demanding. For example, the output from node M8, the total protein 

production ‘P’, is determined by the sigmoid function representing the unfolded 

protein response (the UPR), and input genotype combinations from six genes. The 

output behavior of this node is well reproduced, with correlations coefficients of 0.99 

and 0.96. The relatively poor correlation coefficients for nodes S3 and S4 (down to 

0.92) are a consequence of the single output from S3 providing the single input to S4. 

Although these two nodes represent distinct physical quantities (total mucosal protein 

abundance ‘𝑀′’ for S3 and mucosal layer thickness ‘𝑇′’ for S4) the simple coupling 

between them allows multiple combinations of node performance to satisfy the final 

output requirement. With this exception, the output node functions do faithfully 

capture the disease circuit behavior.  
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Figure 4-8. Relationship between output from nodes in the Barrier Integrity MANN 

and the model on which it was trained (model node functions are listed in Table 4-1). 

Each point represents a node output generated by a specific input genotype vector. ρ 

is the Pearson’s correlation coefficient. F numbers refer to the functions in Table 4-1 

and M and S to the nodes in the Disease Mechanism Circuit (figure 4-1) and the 

MANN (figure 4-6). The upper panel shows the results for the moderately non-linear 

model and the lower for the more strongly non-linear one. Results for a single 

bootstrap are shown, those for other bootstraps are similar. A MANN that perfectly 
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captures a disease circuit’s node properties would result in all points on the diagonal 

and a correlation coefficient of 1.0. The worse correlation coefficient is 0.92. 

 

 

4.2.11 The Barrier Integrity MANN is able to distinguish between alternative mechanism 

graph topologies 

In practice, the connectivity of a disease mechanism graph is often uncertain - there 

may be alternative hypotheses for particular steps in a mechanism and some aspects 

of the mechanism may be speculative or missing. As a result, mechanism graphs may 

have incorrect connections and missing connections or components. To evaluate 

whether a MANN can be used to distinguish between possible alternative topologies 

of this type, 300 alternate versions of the barrier integrity MANN were constructed. 

Each alternate topology was set up such that the input genotype vector to the network 

had the genotypes arranged in a different order than the one used for the original 

barrier integrity MANN. Changing the order feeds the input to the wrong nodes in the 

network. This is equivalent to creating and dropping an equal number of edges in the 

network. 300 randomly ordered input vectors were created to represent the alternate 

topologies. Each of the randomly ordered vectors was used to train the MANN using 

the protocol described above, on both the moderately and more strongly non-linear 

models. The average mean square error (MSE) for the test sets was used as a metric 

for choosing between topologies: In principle, the network with the correct topology 

should have the lowest MSE between the model and MANN generated bacterial 

concentrations, {Be}.  
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Figure 4-9A shows that the topologies trained on the moderately non-linear model 

have a very narrow range of MSE relative to the range of Be values (1 to 43, Figure 4-

2). The correct barrier integrity topology is ranked 20th among other topologies.  

Figure 4-9B shows a wider range of the MSE when the topologies are trained on the 

more strongly non-linear data. The correct barrier integrity topology model is ranked 

1st in this set with a MSE of 0.73. This result suggests that as non-linearity in the 

system increases, a MANN’s power to distinguish the correct topology improves.  

 

Figure 4-9. Ranking of alternative MANN topologies by performance. MSE: Mean 

Square Error. MANN: Mechanism Architecture Neural Network. Each point 

represents the MSE for a specific topology. The red bar shows the position of the 

correct barrier integrity mechanism graph topology. Figure 4-9A shows the 

performance of MANN topologies trained on the moderately non-linear model. 

Figure 4-9B shows the performance on the more strongly non-linear simulation data. 

Topologies are sorted by MSE. The figures show that the MANN is usually able to 

distinguish the correct barrier integrity topology model from alternatives.  
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4.3 Discussion 

4.3.1 Summary of the results 

This chapter presented a framework to build a quantitative model of mechanism for 

complex trait disease. The model was generated from a MecCog mechanism graph 

that qualitatively represents the mechanisms by which genetic variants cause disease 

phenotypes as a result of perturbation propagation across stages of biological 

organization. For the model, an explicit analytical function and parameters were 

added to each node in the mechanism graph, representing its physical properties. The 

node functions, together with the mechanism graph connectivity generate a circuit 

where output quantitative phenotype values can be computed from a given set of 

input disease-associated genetic variants. We used this Disease Mechanism Circuit to 

investigate the role of gut barrier integrity in Crohn’s disease. The circuit allowed us 

to address key questions concerning the interpretation of Genome-Wide Association 

Study (GWAS) data, specifically, the extent to which the effect size of a variant 

contributing to disease risk varies as a function of the genetic background in an 

individual and the extent to which averaging over a GWAS population masks 

epistatic effects between pairs of variants. We also implemented a hybrid neural 

network approach, including prior knowledge in a neural network. For this, we 

constructed a mechanism architecture neural network (MANN) by integrating the 

topology of the mechanism graph into the architecture of the neural network. We 

showed that a MANN can reproduce the relationship between input genotype vectors 

and the output barrier integrity phenotype as effectively as a fully connected neural 

network using simulated data and that is more effective than a fully connected 
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network using experimental genotype case-control data obtained from a large scale 

GWAS  for Crohn’s disease. We also showed that the MANN can learn individual 

complex node behavior from the data, and that it can also be used to address 

uncertainties in graph topologies. These results are for model systems but suggest a 

number of practical applications. Two of these are outlined below. 

 

4.3.2 Evaluating the effectiveness of drug targets 

Genetic background has been shown to play a role in the effectiveness of existing 

drugs (Madian et al., 2012; Mallah et al., 2020). A drug can be regarded as altering 

the function of a node in the mechanism graph for a disease, for example, by 

inhibiting the action of a protein. Our results suggest the MANN framework can be 

used to identify whether a drug will be effective for a particular individual, given 

their genetic variants. One possible case where this may be applied is for Mongersen 

(Sands et al., 2020), an antisense SMAD7 inhibitor. A clinical study found that only 

65% of Crohn’s patients respond to the drug (Monteleone et al., 2015), and given the 

large variation among risk variants in Crohn’s patients, at least some of that response 

variation is likely genetic. Mongersen acts to increase the anti-inflammatory TGB-

beta signaling by decreasing the abundance of SMAD7 protein, found to be elevated 

in Crohn’s patients (Monteleone et al., 2012). However, there are many other genes 

with Crohn’s risk variants (such as αvβ8 Integrin, STAT3, TLR4, SMAD2, SMAD3) 

that are part of the anti-inflammatory TGB-beta signaling pathway. A MANN 

representing the mechanism graph that links the risk variants of Mongersen relevant 

genes to the disease phenotype can be trained using the existing case/control data. 
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Then in each individual, the activity of the SMAD7 node is reduced, mimicking the 

action of the drug. The effect of this change on predicted disease risk should then 

provide an estimate of drug effectiveness. 

 

4.3.3 Coarse grain MANN 

Complex trait disease mechanism graphs can often be decomposed into semi-

autonomous subprocesses. For example, eleven subprocesses have been proposed for 

Crohn’s disease (Jostins et al., 2012). In each individual, the extent to which a 

subprocess is affected will vary. For example, the contribution of the barrier integrity 

subprocess circuit to overall disease risk is represented by the concentration of 

bacteria at the gut epithelial cell wall, Be . Our analysis shows this likely varies 

substantially from individual to individual, as a function of the eight associated risk 

variants. In choosing appropriate treatments it can be valuable to know which 

subprocesses are most involved in a patient. To this end, we propose the design of a 

coarse-grain MANN to investigate the contribution of subprocesses to complex trait 

disease risk. Figure 4-10 illustrates this concept.  
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Figure 4-10: Example of a coarse grain MANN architecture with three subprocesses. 

Each dot represents a neuron. Each subprocess is represented by a local neural 

network, with input genotype vectors. Outputs from these networks are feed into a 

neural network that produces a final phenotype value. 

 

 

The full network has two stages. The first stage has separate networks for each 

subprocess considered, three in this example. Each of these subnetworks has a 

conventional architecture, with one input node for each risk variant affecting that 

subprocess. An assumption here is that these subnetworks will be able to capture the 

non-linear interactions between variants within a subprocess. Outputs from the 

subnetworks are then fed into the second stage integrating network. This second stage 

network models the interactions between the subprocesses to output disease risk or 

another disease-related phenotype. Measuring the output from each subprocess 

network for an individual’s input genotype vector will provide an estimate of the 

contribution of each subprocess to the disease phenotype. 

 

4.4 Methods 

4.4.1 Node functions and parameter values 

Quantitative encoding of the barrier integrity mechanism graph was done by adding 

analytical functions for each substate perturbation and mechanism module in the 

graph. Functions are intended to capture the physics and chemistry represented by 

each node. Table 4-1 shows the node functions and parameter values of the barrier 

integrity model.  
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The node functions were defined as follows:  

M1: Decreased MUC1-MUC1 interactions 

The presence of MUC1 risk allele results in reduced glycosylation of the MUC1 

protein. In turn, that results in weaker interactions with other mucins and with the 

other MUC1 molecules (Hall et al., 2017b). The interaction strength is expressed in 

terms of the free energy change of binding, 𝛥𝐺, a negative number in units kcal/mol. 

The change in free energy resulting from the presence of risk variants is 𝛥𝛥𝐺, a 

positive quantity. With this assumption, 𝛥𝐺is computed as:   

𝛥𝐺 = 𝑎1 ∗ {1 − 𝑎2 ∗ 𝐺(𝑀𝑈𝐶1)} 

where G(MUC1) is the number of MUC1 risk variants (0, 1, or 2) and  𝑎1 and 𝑎2 are 

constants. The unperturbed value of  𝛥𝐺 is assumed to be 5 kcal/mol, so 𝑎1= 5. 𝑎2 is 

set to 0.10, so that each risk allele reduces the protein-protein interaction free energy 

by 10%.   

 

M3: Increased bacterial diffusion rate 

Weaker interactions between MUC1 protein molecules results in a higher fraction of 

the molecules dissociated from each other. 𝐾𝑑, the dissociation constant is related to 

the free energy of association between two MUC1 molecules by 𝐾𝑑 ∝ 𝑒−∆𝐺/𝑅𝑇. 

Assuming the rate of bacterial diffusion coefficient, D, is proportional to the fraction 

of unassociated MUC1 molecules, normalized 𝐷′ can be expressed as: 

𝐷′ ∝ 𝐾𝑑 ∝ 𝑒−∆𝐺/𝑅𝑇 

𝐷′ = 𝑎3 ∗ 𝑒
−𝛥𝐺
𝑅𝑇  
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where R is gas constant (1.985 X 10-3 kcal K-1 mol-1), T is body temperature (310.50 

K), and 𝑎3 is constant. 𝑎3 is chosen so that 𝐷′ = 1 when 𝛥𝐺 = 5.  

 

M2: Increased Loss of MUC1 protein at gut surface 

MUC1 protein molecules normally become detached from the mucosal layer as a 

result of peristaltic motion in the gut (Paone & Cani, 2020). Weaker interactions 

between the mucin molecules will result in a greater rate of detachment. 𝑘𝑜𝑓𝑓 

represents the rate at which mucin molecules become detached. We assume that 𝑘𝑜𝑓𝑓 

depends on the change in the free energy of association between two MUC1 

molecules carrying the risk variants: 

𝑘𝑜𝑓𝑓 ∝ 𝑒−∆𝐺/𝑅𝑇 

Thus, at steady state, the normalized abundance of MUC1 can be expressed as – 

𝑀1
′ = 1 − 𝑎4 ∗ 𝑒

−𝛥𝐺
𝑅𝑇  

where 𝑎4 is constant. For a non-risk allele status of MUC1, 𝑀1
′ = 0.9 and 𝛥𝐺 = 5.  

 

M5: Altered MUC2 protein internal interactions and S5: Increased misfolded 

MUC2 

 The MUC2 risk alleles are associate with decreased stability of the MUC2 protein 

(Heazlewood et al., 2008; Moehle et al., 2006), assumed to result in lower protein 

abundance. The normalized abundance of misfolded MUC2, 𝑁2
′ is assumed to be 

proportional to the number of risk alleles (0, 1, or 2):  

𝑁2
′ = 𝑎5 ∗ 𝐺(𝑀𝑈𝐶2)     

where 𝑎5 is a constant. The normalized abundance of folded MUC2 protein is                           



 

 

146 

 

𝑀2
′ = 1 − 𝑎5 ∗ 𝐺(𝑀𝑈𝐶2)                            

  

M10: Decreased autophagy 

As described earlier, risk alleles associated with four genes (ATG16L1, NOD2, 

IRGM, LRRK2) are expected to affect the efficiency of autophagy in removing 

unfolded/misfolded proteins. The functional dependency of autophagy and the 

interdependence between risk alleles for different genes is not known. A simple linear 

sum over the risk alleles is used, with separate weights for each gene. For ATG16L1 

the effect of risk variants is accentuated by a positive feedback loop - the presence of 

risk alleles increases the rate at which the protein is subject to proteolytic cleavage 

(Kaser & Blumberg, 2014). The rate of cleavage also depends on the extent of cell 

stress, and the lower the abundance of ATG16L1, the greater cell stress because of 

decreased autophagy. The impact of this loop is modeled by a parameter S that 

increases the co-efficient for ATG16L1.  

𝐴′ = 𝑎6 ∗ {𝑎7 ∗ 𝐺(𝑁𝑂𝐷2) + 𝑎8 ∗ 𝐺(𝐼𝑅𝐺𝑀) + 𝑎9 ∗ 𝐺(𝐿𝑅𝑅𝐾2) + 𝑎10

∗ 𝐺(𝐴𝑇𝐺16𝐿1) ∗ 𝑆)} 

 

where 𝐴′ is the relative abundance of unfolded protein due to impaired autophagy 

(zero for no risk allele in these genes), 𝑎7, 𝑎8, 𝑎9, 𝑎10 are the weight coefficients of the 

for each gene. 𝑎6 is such that when all risk alleles are present A= 0.9.  

 

M8: Increased unfolded protein response 

As described earlier, the unfolded protein response (UPR) is a mechanism by which a 

cell shuts down protein production if too much unfolded/misfolded protein 

accumulates. The URP is a threshold response – below some level of the 
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unfolded/misfolded protein there is no UPR, above that threshold, complete shut-

down of protein synthesis is triggered until conditions improve. The total protein 

production rate of the cell is modeled using a sigmoid function: 

𝑃 = 𝑎11 +
𝑎12

1 + 𝑒−𝑢(𝑎13∗𝑈− 𝑎14∗𝑈0
′) 

 

 where 𝑈 is the accumulated unfolded/misfolded protein, 𝑈0
′  is an offset of the UPR 

so there is no reduction in protein production at low levels of 𝑈, 𝑢 determines the 

steepness of the transition, and 𝑎11, 𝑎12, 𝑎13, 𝑎14 are constants.  

The threshold  𝑈0
′  is affected by risk variants in two UPR related genes, XBP1 and 

ORMDL3. We assume that these reduce the threshold for the onset of the UPR as a 

linear function of the risk variant genotypes:  

𝑈0
′ = 1 − {𝑎18 ∗ 𝐺(𝑋𝐵𝑃1) + 𝑎19 ∗ 𝐺(𝑂𝑅𝑀𝐷𝐿3)} + 𝑎15  

where 𝑎15,𝑎18, 𝑎19 are constants.  

The value of U is calculated as the sum of the abundance of the MUC2 misfolded 

protein (𝑁2
′) and the abundance of the unfolded proteins arising from impaired 

autophagy (𝐴′). 

 

S3: Decreased mucin abundance and S4: Thinner mucosal layer 

The normalized total mucin abundance (𝑀′) is determined by the overall relative rate 

of protein production, P, and the abundance of the principal mucin proteins, MUC1 

(𝑀1
′) and MUC2 (𝑀2

′ ). The normalized thickness (𝑇′) of the mucosal layer is assumed 

to be directly proportional to the total mucin abundance: 

𝑀′ = 𝑃 ∗ (𝑎20 ∗ 𝑀1
′ + 𝑎21 ∗ 𝑀2

′ ) 

𝑇′ = 𝒂𝟐𝟐 ∗ 𝑀 
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where 𝑎20, 𝑎21𝑎𝑛𝑑 𝑎22 are constants. As MUC2 is the secreted form of mucin and 

dominates the composition of the mucosal layer (Johansson et al., 2011), a higher 

weight (𝑎21 = 0.9) is assigned to it compared to MUC1 (𝑎20 = 0.1).  

 

S6: Higher bacterial concentration at the epithelial wall 

 

This node describes the perturbation of the concentration of bacteria at the epithelial 

cell wall arising from a thinner and less dense mucosal layer. The simplest model of 

this process is the diffusion of bacteria across a planer mucosal layer. According to 

this model, the influx of bacteria arriving at the epithelial cell wall is proportional to 

the diffusion constant 𝐷′ (output from node M3) and inversely proportional to the 

mucosal layer thickness 𝑇′ (output from node S4). Thus, we assume that at steady 

state, the bacterial concentration at the epithelial cell wall (Be) can be expressed as:  

𝐵𝑒 = 𝑎23

𝐷′

𝑇′
 

where 𝑎23 is a constant.  
 

 

 

Table 4-1. Analytical functions and parameters in the barrier integrity mechanism 

circuit.  

Node 
Physical 

Property 

Function 

Number 
Analytical Function 

Parameter 

Values 

M1: 

Decreased 

MUC1-

MUC1 

interactions 

Change in 

free energy 

of binding 

(𝛥𝐺′) 

F1 

𝛥𝐺
= 𝑎1 ∗ {1 − 𝑎2

∗ 𝐺(𝑀𝑈𝐶1)} 

a1 =5           

a2 =0.10 

M3: 

Increased 

bacterial 

diffusion rate 

Diffusion 

coefficient 

(𝐷′) 

F2 𝐷′ = 𝑎3 ∗ 𝑒
−𝛥𝐺
𝑅𝑇  

R = 

0.00198 

T = 

310.50 
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a3 

=3323.55 

M2: 

Increased 

Loss of 

MUC1 

protein at gut 

surface 

MUC1 

protein 

abundance 

(𝑀1
′) 

F3 𝑀1
′ = 1 − 𝑎4 ∗ 𝑒

−𝛥𝐺
𝑅𝑇  

a4 

=332.35            

M5: Altered 

protein 

internal 

interaction 

MUC2 

protein 

abundance 

(𝑀2
′ ) 

F4 𝑀2
′ = 1 − 𝑎5 ∗ 𝐺(𝑀𝑈𝐶2) a5 =0.10 

S5: Increased 

misfolded 

MUC2 

MUC2 

misfolded 

protein 

abundance 

(𝑁2) 

F5 𝑁2
′ = 𝑎5 ∗ 𝐺(𝑀𝑈𝐶2) a5 =0.10 

M10: 

Decreased 

autophagy 

Total 

unfolded 

protein 

abundance 

(A) 

F6 

𝐴′

= 𝑎6 ∗ {𝑎7 ∗ 𝐺(𝑁𝑂𝐷2) 
+ 𝑎8 ∗ 𝐺(𝐼𝑅𝐺𝑀) + 𝑎9

∗ 𝐺(𝐿𝑅𝑅𝐾2) + 𝑎10

∗ 𝐺(𝐴𝑇𝐺16𝐿1) ∗ 𝑆)} 

a6 = 0.28 

a7 = 0.50 

a8 = 0.25 

a9 = 0.25 

a10 = 0.25 

S = 2.50 

M8: 

Increased 

unfolded 

protein 

response 

Total Protein 

production 

rate (P) 

F7 

𝑃
= 𝑎11

+
𝑎12

1 + 𝑒−𝑢(𝑎13∗𝑈− 𝑎14∗𝑈0
′) 

 

 

 

a11 = 0.10 

a12 = 0.90 

a13 = 3.00 

a14 = 3.00 

u = (-1, -

6) 

Total 

abundance of 

unfolded and 

misfolded 

protein (U) 

F8 𝑈 = 𝑎16 ∗ 𝑁2
′ + 𝑎17 ∗ 𝐴′ 

a16 = 1.00 

a17 = 1.80 

Unfolded 

protein 

response 

threshold 

(𝑈0
′) 

F9 

𝑈0
′

= 1 − {𝑎18 ∗ 𝐺(𝑋𝐵𝑃1)

+ 𝑎19 ∗ 𝐺(𝑂𝑅𝑀𝐷𝐿3)}

+ 𝑎15  

a18 = 0.05 

a19 = 0.05 

a15 = 

0.017 

S3: 

Decreased 

Total mucin 

abundance 

(𝑀′) 
F10 

𝑀′ = 𝑃 ∗ (𝑎20 ∗ 𝑀1
′ +

𝑎21 ∗ 𝑀2
′ ) 

 

a20 = 0.10 

a21 = 0.90 
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mucin 

abundance 

S4: Thinner 

mucosal 

layer 

Mucosal 

layer 

thickness 

(𝑇′) 

F11 𝑇′ = 𝑎22 ∗ 𝑀′ a22 = 1.00 

S6: Higher 

bacterial 

concentration 

at the 

epithelial 

wall 

Bacterial 

concentration 

at epithelial 

cell wall (Be) 

F12 𝐵𝑒  = 𝑎23 ∗
𝐷′

𝑇′
 a23 = 1.00 

 𝐺(𝑌) represents the genotype of the risk variant affecting gene ‘Y’.  For example, 

𝐺(𝑀𝑈𝐶1) represents the genotype of the risk variant associated with MUC1.  

 

4.4.2 Training and testing the Barrier Integrity MANN 

Two types of datasets were used to train and test the MANN: First, the Disease 

Mechanism Circuit (DMC) generated Be values corresponding to each of the input 

6561 genotype vectors. Second, the experimental WTCCC genotype dataset (Burton 

et al., 2007) of 2000 Crohn’s cases and 2000 controls. For each of these datasets, the 

train-test divisions were generated by randomly dividing the dataset into a 75%-25% 

ratio using python’s scikit-learn train_test_split module (https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html). For 

cross-validation, 30 random train-test sets were generated. PyTorch modules were 

used to train the network using the Mean Square Error (MSE) loss function, the 

ADAM stochastic gradient descent algorithm as the optimizer, and a mini-batch size 

of 500. To evaluate the performance, the average of the mean square error (MSE) for 

the DMC dataset and ROC-AUC for the WTCCC dataset over the test portions of 30 

cross-validations was used. As controls for the DMC dataset, two versions of a fully 
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connected neural network (FCNN) were also trained. One is a single hidden layer (5 

neurons) network (61 parameters), and the other a two hidden layer network (4 

neurons in each layer) network (77 parameters). As a control for the WTCCC dataset, 

a two hidden layer network (4 neurons in each layer) network (77 parameters) was 

trained. The node configuration, training, and evaluation procedures for the fully 

connected networks were the same as used for the MANN. 
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Chapter 5: Conclusion  

In this dissertation, I developed computational methods to identify disease-causing 

variants from sequencing data, qualitatively represent the mechanism by which these 

variants cause the disease phenotype, and quantitatively encode the mechanism 

representations to analyze emergent properties in complex trait diseases. In the last 

chapter, I briefly summarize the conclusions of each project and discuss future 

directions in each area. 

5.1 Interpreting causative variants in DNA sequencing tests  

In the first part of my dissertation, I developed a variant prioritization pipeline VarP 

to address an incompletely solved problem on building accurate computational 

methods for variant interpretation that can be used in DNA sequencing tests to 

provide the clinical diagnosis. We objectively assessed VarP on data from the John 

Hopkins DNA Diagnostic Laboratory as part of a CAGI gene panel challenge. The 

challenge assessment revealed that VarP performed the best among 17 other 

submissions, and correctly matched 36 out of 106 patients to one of the 14 monogenic 

disease classes, using sequence data for the 83 panel genes. The correctly matched set 

included 10 cases where the Hopkins pipeline could not find causative variants, but 

VarP was able to. We then investigated the incorrectly matched cases and found 17 

where VarP did find a causative variant and 53 undiagnosed cases where neither 

VarP nor the Hopkins pipeline could find any causative variant relevant to the tested 

disease class. Investigating the missed diagnosed cases revealed several sub-optimal 

features of VarP but one of the major contributing factors was placing too much trust 



 

 

153 

 

on variant pathogenicity annotations in the Human Gene Mutation Database 

(HGMD). In post-analysis, we showed that omitting the HGMD annotations increases 

the success rate of correctly matching disease class from 36 to 40. We then 

investigated sequencing artifacts in the data to check if these contributed to the high 

number of undiagnosed cases. We found that generally, the data was of high quality 

with rare artifacts such as zero coverage for exon-60 of the HYDIN gene for 78 

samples and an abnormally high homozygous/heterozygous ratio in one sample. 

These did not appear to make a large contribution to the missing diagnostic variants. 

Re-analyzing the incorrectly matched cases revealed seven patients where VarP 

found high confidence pathogenic variants in genes associated with a different 

disease class from the one referred for testing at the Hopkins laboratory. We speculate 

that these may be cases of incorrect clinical diagnosis. Lastly, we integrated protein 

structure data to the VarP pipeline to investigate if mechanistic insights could be 

derived for the putative causative variants. We found that ~50% of the missense 

variants with unknown clinical significance had structure coverage and analyzing the 

structures revealed potential molecular mechanisms of the variants. 

  

5.1.1 Improving genetic disease diagnosis 

The Hopkins laboratory dataset revealed that the clinical diagnosis for ~50% of the 

cases could not be confirmed because neither the Hopkins pipeline nor any of the 

CAGI methods found causative variants in the tested genes. Others (Clark et al., 

2018) have also reported that rare disease pipelines in general have a success rate 
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below 50%. There are several possible explanations for the low yield of diagnostic 

variants: 

A) The disease-causing gene list is incomplete as evidenced by the fact that many 

new genes are continually being discovered (Posey et al., 2019) and cataloged in 

crowdsourced resources such as the Genomic England PanelApp (Martin et al., 

2019). As a result, if causative variants are in genes that are not part of the panel 

sequencing gene list, they will be missed. For such undiagnosed cases, follow-up 

whole-exome sequencing can be performed to identify a larger set of genes hosting 

possible causative variants and investigating if any of these genes are related to the 

disease phenotype. Whole exome sequencing (WES) has helped to resolve cases of 

newborns with a severe combined immunodeficiency disease phenotype that were not 

solved using panel sequencing (Chan, Punwani, Kadlecek, Cowan, Olson, Mathes, 

Sunderam, Fu, et al., 2016; Mallott et al., 2013; Patel et al., 2015b). However, 

expanding the gene list for variant analysis can also be challenging in terms of time to 

analyze the data and chances of increasing false positives.   

B) The impact of coding variants might not be accurately estimated by the general in 

silico predictors (such as PolyPhen (Adzhubei et al., 2013), SIFT (Kumar et al., 

2009), or CADD (Smedley et al., 2016)). For example, in chapter 2 we showed a case 

of a missense variant (C603S in NR3C2 protein) where two out of four general 

predictors estimated it to be deleterious indicating a 50% chance of it being 

pathogenic. But analysis of protein structure revealed it to be a strong case of a 

protein destabilizing mutation. Similarly, variants disrupting existing splicing 

regulatory sequences, creating new ones, or activating the cryptic ones can be 
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overlooked by the general predictors. To this end, building advanced gene-specific 

predictors or mechanism-specific predictors that make use of the specialized features 

can be beneficial. In the recent CAGI, a gene-specific ensemble variant interpretation 

method (Yin et al., 2017a) and a sequence feature based-splicing impact prediction 

method (Cheng et al., 2019) have shown promising results.        

C) Causative variants can be in the non-coding region of a patient’s genome. But 

these variants are often not screened and if they are, they are ignored in the analysis 

because accurately interpreting their impact on the disease phenotype is difficult. As 

GWAS data shows that most disease-associated variants are mapped to the non-

coding region of the genome, it suggests that regulator elements can have a prominent 

role in genetic diseases (Farh et al., 2015; Hindorff et al., 2009). Given the recent 

availability of the regulatory data in GTEx (Lonsdale et al., 2013) and ENCODE 

(Dunham et al., 2012), steps can be taken to compile accurate and comprehensive 

annotations for the regions of the genome relevant for disease phenotypes. These 

high-quality annotations can then be integrated into the variant interpretation 

pipelines as well being used to develop impact prediction in silico tools for non-

coding variants.    

D) It may be possible that the DNA sequencing approach is adequate for diagnosing 

specific types of genetic diseases such as inborn errors of metabolism (IEM), and that 

biomarker-based approaches can yield better diagnostic power. A recent study 

(Adhikari et al., 2020) showed that WES is less effective in newborn screening for 

inborn metabolic disorders compared to the established tandem mass spectrometry 
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approach. Therefore, a strategy where the two approaches are used in conjugation 

may help to reduce the false positive and negative rates in diagnostic tests.  

 

5.1.2 Standardizing evidence of pathogenicity for causative variants 

The American College of Medical Genetics and Genomics (ACMG) and the 

Association for Molecular Pathology (AMP) have proposed different types of 

evidence that can be used to assess the impact of the clinically relevant variants. 

These include variant segregation data, functional data, population data, and 

computational predictive data (Richards et al., 2015b). Despite this remarkable effort 

to standardize evidence assessment, several issues with its use have been recognized: 

A) Older clinically relevant databases like HGMD are not using these guidelines; 

instead it uses its evidence-based classification system that has resulted in erroneous 

labeling of disease-causing variants as shown in chapter 2 and by others (Cassa et al., 

2013); B) The ClinVar database uses the guidelines, but a recent study (Shah et al., 

2018) shows instability in the classification system, where a large fraction of variants 

previously labeled pathogenic become reclassified to uncertain significance and 

conflicting interpretation; C) Others (Nykamp et al., 2017) have been developing new 

guidelines based on the ACMG-AMP guidelines. This lack of convergence for 

evidence of pathogenicity is leading to an unclear definition of “known pathogenic” 

variants (van Rooij et al., 2020). We propose that a possible solution for evidence 

assessment can be implemented in two steps: 1) Developing an expert-sourced 

evidence of pathogenicity ontology that will contain a comprehensive collection of all 

the relevant evidence types that can help to interpret a variant’s impact. Variants can 
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be tagged with appropriate ontology terms based on the available evidence. Such an 

idea has been implemented in the Gene Ontology community, where the Evidence 

and Conclusion Ontology (ECO) (Chibucos et al., 2017) has been developed to 

describe the evidence supporting gene annotations. 2) Developing an expert-sourced 

variant impact classification scheme that makes use of the evidence types described in 

the above ontology. Software for this can be distributed as executable for easy 

integration into existing clinically relevant resources.  

 

5.2 Systems-level representation of mechanisms by which genetic variants cause 

disease phenotypes  

In the second part of my dissertation, I co-developed the theory of a graphical 

representation framework for genetic disease mechanisms called MecCog, based on 

concepts in the philosophy of biology and computational biology. Next, I 

implemented it as a web-based platform to manually build integrated systems-level 

representations (a.k.a., mechanism schemas) of mechanisms by which a genetic 

variant causes a disease phenotype. The MecCog platform facilitates the integration 

of mechanism information in terms of perturbation propagation across stages of 

biological organization, evaluation of the evidence related to that information, and 

identification of the uncertainties, ambiguities, and ignorance in that information. The 

platform provides functionalities to create, store, browse, and search schemas. I have 

designed graphical notations and curated ontology-informed class terms so as to 

consistently and intuitively represent the types of mechanism components found in 

schemas. The schema visualizer in the platform is interactive and tightly integrates 
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the graphics, text, and hyperlinks to evidence sources. We have built MecCog 

schemas to describe mechanisms in monogenic disease (cystic fibrosis), cancer 

(Lynch syndrome), and complex trait disease (Crohn’s disease). We have also tested 

and shown that the MecCog formalism can be used to create mechanism graphs by 

combining multiple schemas to describe interactions between genetic variants. Lastly, 

I have equipped the MecCog platform with features to support expert-sourcing for 

schema construction. 

 

5.2.1 Scaling mechanism schemas in MecCog 

The manual construction of the MecCog schemas relies on human understanding to 

extract and infer causal connections between mechanism components from the 

literature. The scattered and incomplete nature of the mechanistic information in the 

literature makes this process complex and requires a combination of prior biological 

knowledge together with searching for, assimilating, and assessing new facts and 

evidence from the literature. This makes schema construction labor-intensive. To 

achieve scale, some degree of automation in the construction process is needed. A 

combination of the following strategies can help in this regard: 

A) A lot of biological information is already represented in a structured format such 

as pathways (KEGG (M Kanehisa & Goto, 2000), Reactome (Fabregat et al., 2017)), 

networks (STRING (Szklarczyk et al., 2018)), relational databases (UniProt (Bateman 

et al., 2017), PDB (Burley et al., 2017)), and knowledge graphs (Hetionet (Daniel 

Scott Himmelstein et al., 2017)). It is possible to extract the information from these 

resources in the form of triplets of subject-predicate-object (SPO). As the elementary 
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SSP-MM-SSP units of a schema are a subset of SPO triplets, parts of the schema can 

be automatically generated this way. Nevertheless, an assessment needs to be done as 

to what extent these extracted triplets represent the disease mechanism space, and 

devise strategies to shortlist high confidence and relevant triplets for a schema. B) To 

mine biological information from literature, BioCreative (Critical Assessment of 

Information Extraction systems in Biology) has identified a series of Natural 

Language Processing (NLP)-based tools 

(http://biocreative.sourceforge.net/bionlp_tools_links.html) for the bio-entity 

recognition and relationship extraction tasks. Using these tools, databases of SPO 

triplets from PubMed such as SemMedDB (https://skr3.nlm.nih.gov/SemMedDB) 

(Kilicoglu et al., 2012) are being generated. Such NLP-based tools and databases can 

also be explored to retrieve connections between mechanism components in a 

schema. However, a potential caveat of these automatically generated triplets can be 

that they will miss out on the biological knowledge whose information is spread out 

across paragraphs in literature and so, would need a reasoning strategy to piece them 

together for creating the triplets. C) One of the critical activities while building a 

schema is to find and analyze all the evidence of a particular component to assess its 

relevance for the disease mechanism description. A first and important step for this is 

to find all the papers that discuss the component in the context of the disease 

phenotype. Unsupervised machine learning techniques like Topic modeling 

(http://machinelearningtext.pbworks.com/w/file/fetch/47924743/BleiLafferty2009.pd

f) can be helpful in this case, inferring the latent topical structure of a collection of 

documents and identifying word-groups or expressions that best characterize the 
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document set. This technique can be used to automatically identify the set of PubMed 

articles that are characterized by the words relating directly or indirectly to the 

mechanism component. 

 

5.3 Quantitative representation of mechanisms relating genetic variants and complex 

trait disease  

In the third part of my dissertation, I developed a framework to quantitatively 

represent and analyze the mechanism described in the MecCog mechanism graph 

format. Using a subsystem on the role of gut barrier integrity in Crohn’s disease, we 

demonstrated that a mechanism graph can be transformed into a computable circuit 

by assigning appropriate node functions and parameters that represent the behavior of 

the graph components. We also showed that the degree of non-linearity in the circuit 

can be altered by the choice of parameter values. We then investigated the use of the 

circuit to get insights for interpreting GWAS data which otherwise would require a 

demanding experimental setup. The circuit showed: A) The effect size of a GWAS 

risk variant can change drastically as the function of the specific risk allele-load in the 

genetic background; B) The size of the epistatic effect between pairs of GWAS risk 

variants can get diluted by averaging the effects across genetic backgrounds. Next, we 

demonstrated that the node functions and parameters can be learned in a data-driven 

manner using a Mechanism Architecture Neural Network (MANN) – a sparse neural 

network wired based on the topology of the mechanism graph. We also showed 

MANNs can be used to address uncertainties in mechanism graph topologies.  
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5.3.1 Complex trait disease risk assessment using MANN  

MANN provides a novel way to quantitatively encode a systems-level representation 

of mechanism by which genetic variants cause disease phenotype. The inclusion of 

prior biological knowledge in the form of the neural network topology provides a 

number of practical advantages such as a decreased number of training parameters 

compared to a fully connected neural network, a need for fewer training data, more 

interpretable, and easy testing of multiple topologies. In addition, as these sparse 

neural networks can also facilitate analysis of how a genotypic profile can influence 

disease phenotype, they can be a useful system to study many diagnostic and 

therapeutic aspects of complex trait diseases. One of these areas is risk prediction. 

Most often, the genetic risk of an individual is assessed through the polygenic risk 

score (PRS), a weighted sum of the number of risk alleles an individual carries (C. M. 

Lewis & Vassos, 2020). This summing across variants strategy in PRS assumes an 

additive genetic architecture of complex trait diseases, with independence of risk 

variants. It does not consider possible nonlinear interactions between variants that can 

influence the disease phenotype. A few studies have compared PRS with machine 

learning (ML) algorithms that can model non-linearity (such as support vector 

machines, random forests, gradient boost) and interestingly found that PRS performs 

better than the ML algorithms (Gola et al., 2020; Vivian-Griffiths et al., 2019). Going 

ahead, a subject for investigation is performance comparison between PRS and 

MANN. 
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Appendix 
 

Varant 

Varant is an open-source genetic variant annotation tool (written in Python, 

http://compbio.berkeley.edu/proj/varant). Varant provides five categories of 

annotation based on 17 data sources: variant identity and frequency, experimentally-

defined genomic features, predicted genomic features, variant/gene phenotypes, and 

prediction of mutation impact. It has been used in a number of clinical research 

studies (Chan, Punwani, Kadlecek, Cowan, Olson, Mathes, Sunderam, Man Fu, et al., 

2016; Patel et al., 2015a; Punwani et al., 2016). 

 

QC Analysis Results 

Supp. Fig. S2A shows that the Ts/Tv ratios for all the samples are clustered between 

2.2 and 3.2. For the human genome based on 1000Genomes data, Wang et al. 2015 

have shown that the Ts/Tv ratio is ~3 for SNVs inside exons and ~ 2 elsewhere. Since 

the capture regions cover more than just exons (1350 exonic and 39 intronic regions 

for 83 genes), the Ts/Tv ratio for SNVs is expected to lie between 2 and 3, consistent 

with the plot and the pattern is very similar for the 1000 Genomes samples. The 

Het/Hom ratios for all samples except one (P8) are clustered between 1.1 and 2.6. P8 

is an outlier and carries more homozygous SNPs. It is established that on a genome-

scale, the Het/Hom ratio is close to 1.5 (McKernan et al., 2009; Schuster et al., 2010) 

but it also depends on whether a population incorporates recent admixture (skewing 

towards heterozygosity) or inbreeding (skewing towards homozygosity). The 
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Het/Hom ratio range here is similar to that of the 1000Genomes sample. Thus, by 

these measures, the data, with the exception of P8, are of good quality.  

Supp. Fig. S2B shows that for the capture v01 samples have 1200 to 2000 low quality 

and 200 to 940 no call sites. The captures v02 samples have 230 to 330 low quality 

and 90 to 180 no call sites. We expect that if any causative variant falls on one of 

these no call or low-quality sites it will be completely missed.  

Supp. Fig. S2C shows that the number of common SNVs per sample cluster between 

232 and 312 for the 96 samples sequenced using Capture v01 and between 132 and 

175 for the 10 samples sequenced using Capture v02, consistent with Capture v02 

covering 19 fewer genes than Capture v01. Non-African samples have a lower rare 

variant load (ranging from 8 to 33) than the African samples (ranging from 19 to 80). 

This pattern is also seen in the samples from 1000Genomes samples and has been 

previously reported in the literature (Durbin et al., 2010; Zawistowski et al., 2014). 

The novel (i.e. not found in 1000 Genomes and ExAC) SNV count is in the range of 0 

to 8 with a median of 1 per sample and is similar to the count observed in the 1000 

Genomes dataset where the range is 0 to 12 with a median of 2 per sample. These 

novel variants be present in the patient’s family or be de novo in the patient but it is 

not possible to distinguish these two situations given only the patient’s variant data.  

Supp. Fig. S2D shows that for the 96 Capture v01 samples, the common Indel count 

is between 5 and 16 whereas for the 10 Capture v02 samples the count is 3 to 6 per 

sample. We observe that the distributions of the rare Indel is between 0 and 12 and 

novel Indel is between 0 and 4. Two African samples (P2 and P83) are identified as 

outliers carrying more rare Indels compared to rest of the Hopkins samples and 1000 
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Genomes dataset. However, the Indel counts are similar to the 1000 Genomes dataset. 

By all these measures, the Hopkins data appears to be of high quality. 

Supp. Fig. S3 shows the distribution of average read depth for 83 genes across all 

samples. Average read depth varies more substantially across the 106 samples 

(horizontal variation) than across the 83 genes (vertical). Genes not included (blue 

boxes) in the 10 capture v02 samples are evident. Though there is variation in the 

gene coverage across samples, from 107X to 983X, even the lowest coverage should 

be adequate for diagnostic analysis and confirmatory testing as shown by Strom et al. 

2014.   

We identified nine capture regions (occurring in eight genes) with anomalous read 

depth in more than 90 of the 106 samples (Supp. Table S1). One of these has very 

high coverage and the others have low coverage. Two of these regions lie in the major 

isoform of one gene, HYDIN, one high (Exon 53) and one low (Exon 60). Exon 53 

has greater than 600X coverage in 70 samples (Supp. Fig. S4). Exon 60 has no 

coverage in 78 samples and less than 20X coverage in three more samples. The other 

anomalous regions are unlikely to affect downstream analysis because they are either 

deep intron, present in a minor isoform of the gene or the actual coverage of the 

region is at least 100X in most of the samples.  
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Figure S1. Relationship between the fraction of methods that agree on a deleterious 

assignment for variants and the positive predictive value, PPV (fraction of predicted 

deleterious variants that are deleterious), for 10695 HGMD missense mutations and 

10240 interspecies variants with available predictions for at least two out of the four 

methods (SNPs3D Profile, SIFT, Polyphen2 and CADD). By this measure, 77% of 

variants for which at least 3 of 4 methods predict deleterious are in fact deleterious. 
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Figure S2. Comparison of variant calling quality for 106 Hopkins samples versus 

2,504 1000Genomes samples across the 83 genes in the panel. Only high-quality calls 

are included. HS: Hopkins Samples, KGS: 1000 Genomes samples, KGS_AFR: 

African samples in 1000Genomes, KGS_NonAFR: Non-African samples in 1000 

Genomes. Circles represent HS sequenced using Capture v01 and triangles represent 

the HS sequenced using Capture v02. African samples are blue, Non-African are 

brown. Figure S2A shows the distribution of Transition vs. Transversion (Ts/Tv) and 

Heterozygous SNVs vs. Homozygous SNVs (HetALT/HomALT). By both measures, 

HS and KGS data are similar, except for the for HetALT/HomALT ratio of sample 
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P8, an outlier with an excess of homozygous SNVs. Figure S2B shows the 

distribution of no call sites versus low-quality sites (not PASS in the gVCF file). 

Causative variants falling on any these sites will probably be missed. Figure S2C 

shows the distribution for common, rare and novel SNV types. For the common and 

rare SNV types, the HS and KGS distributions are similar. The lower counts of HS 

common SNVs for capture 2 reflects the fact that only 64 genes are included. There is 

a similar effect for rare variants, obscured by the crowding of points (medium 20 

counts for capture v01 and 15 for v02).  The rare variant distribution for both HS and 

KGS reflects the fact that Non-African samples have a lower rare variant load than 

the African samples. The novel variants load (between 0 and 8 variant with a median 

of 1 per sample) in HS is much lower than the rare variants. Figure S2D shows the 

distribution for common, rare and novel Indels. The distribution of common and rare 

Indels in HS is similar to the KGS distribution. Like SNVs, the lower counts of HS 

common indels for capture 2 is evident, in the plot. Two African samples (P2 and 

P83) are seen to carry more rare Indels and are outliers compared to the 

1000Genomes dataset. For six samples there is a slightly higher number of rare than 

novel Indel in HS.   
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Figure S3. Heat-map of average read depth for 83 genes across the 106 samples, 

color-coded red (low depth: ~100) to green (high: ~950). Blue indicates the 

corresponding gene was not captured. Each column is for a different sample, and 

there are 83 rows, one for each gene.  It is evident that coverage varies substantially 

across samples, from a low of 107X to a high of 983X. 
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Figure S4. Exon-wise read depth for the HYDIN gene. Each purple line represents 

one sample and each rectangle represents one exon. The red rectangle indicates exons 

with anomalous coverage. The plot shows that Exon 53 has very high coverage and 

Exon-60 has very low coverage or no coverage for many samples compared to other 

exons in the gene.  The inset shows a zoomed-in view of the read depth for Exon 59, 

Exon 60 and Exon 61. 
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Figure S5. Distribution of correct and incorrect assignments of pathogenicity for 

patients based on missense mutations, as a function of the assigned probability of 

pathogenicity. 

 

 

Table S1. The nine regions with anomalous average read depth observed in more 

than 90 of the 106 samples. The eight “LOW COVERAGE” capture regions have low 

average read depth compared to other regions in the same gene. The one “HIGH 

COVERAGE” capture region has high read depth compared to other regions in the 

same gene. The “# of Samples” column is subdivided into coverage bins from no 

coverage to high coverage for “LOW COVERAGE” regions and from high to very 

high for “HIGH COVERAGE” regions. The HYDIN gene has two anomalous capture 

regions – 1. Low coverage, no reads in 78 samples and 2. A very high coverage of  > 

600X in 70 samples. The other anomalous regions are either deep intron, or present 

only in a minor isoform or actual coverage of the region is at least greater than or 

equal to 50X in all the samples.     
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Table S2. Five cases where two pairs of Indels in the CCDC40 gene were selected to 

satisfy a compound heterozygous model and leading to incorrect disease assignments. 

Each pair of Indels is very close to each other suggesting possible false variants 

arising from realignment errors or errors near repeat regions in the genome.  

 

 

Table S3. Number of distinct variants that led to disease class prediction in 106 

patients. 105 distinct potentially causative variants occurred only once in 78 patients. 

14 potentially causative variants occurred twice or more in the remaining 28 patients. 

AD: Autosomal Dominant, HR: Homozygous Recessive, and CH: Compound 

Heterozygous. 
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Table S4. Percentage of correct disease assignments in each of the three variant 

selection categories after removing HGMD from the method. Accuracy increases 

compared to the pipeline with HGMD. Overall trends remain the same - as expected, 

accuracy is highest in Category-1, then Category-2, then Category-3., and novel 

variant assignments are more accurate than for rare variants. 
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Figure S6. Variation in risk variant effect size as a function of the genetic 

background for the barrier integrity model for all genes. Each panel shows the effect 

size distribution of a specific risk variant against genetic backgrounds. Figure 4A 

shows the effect size distributions for the moderately non-linear simulation model and 

Figure 4B for the more strongly non-linear model. The X-axis of each plot is sorted 

by the risk-allele load in the genetic background (ranging from 0 where no other risk 

alleles are present to 14 where the seven other genes have homozygous risk alleles, 

Red points are for the genetic backgrounds found in the WTCCC study population 

dataset and blue points cover all possible backgrounds (2187).  
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Figure S7. Variation in the size of the epistatic effect size as a function of the genetic 

background in the moderately non-linear barrier integrity model for all gene pairs. 
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Each panel shows the epistatic effect size distribution for a variant pair against 

genetic backgrounds. The X-axis of each plot is sorted by the risk-allele load in the 

background (ranging from 0 where no other risk alleles are present to 12 where the 

six other genes have homozygous risk alleles, in a total of 729 combinations). The 

load was calculated as the linear sum of the genotype values in the background. Red 

points are for genetic backgrounds found in the WTCCC study population dataset and 

blue points cover all possible backgrounds. The average epistatic effect size over all 

backgrounds and the WTCCC backgrounds is shown above the plots.  
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Figure S8. Variation in the size of the epistatic effect size as a function of the genetic 

background in the more strongly non-linear barrier integrity model for all gene pairs. 
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Each panel shows the epistatic effect size distribution for a variant pair against 

genetic backgrounds.  The X-axis of each plot is sorted by the risk-allele load in the 

background (ranging from 0 where no other risk alleles are present to 12 where the 

six other genes have homozygous risk alleles, in a total of 729 combinations). The 

load was calculated as the linear sum of the genotype values in the background. Red 

points are for genetic backgrounds found in the WTCCC study population dataset and 

blue points cover all possible backgrounds. The average epistatic effect size over all 

backgrounds and the WTCCC backgrounds is shown above the plots.  
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