

Wayne State University

Medical Student Research Symposium

School of Medicine

January 2021

Using Machine Learning to Generate a Core Set of Echocardiographic Indices for Pediatric Research: A Sub-study in the PCS2 Cohort

Thomas S. Przybycien Wayne State University, go0028@wayne.edu

Brigitte Mueller Ted Rogers Centre for Heart Research

Steven Fan Ted Rogers Centre for Heart Research

Paul C. Nathan Division of Hematology/Oncology, Dept. of Pediatrics, The Hospital for Sick Children, paul.nathan@sickkids.ca

Cedric Manlhiot Ted Rogers Centre for Heart Research

For the age of a control of the second secon

🗸 Part of the Medicine and Health Sciences Commons

Recommended Citation

Przybycien, Thomas S.; Mueller, Brigitte; Fan, Steven; Nathan, Paul C.; Manlhiot, Cedric; and Mertens, Luc, "Using Machine Learning to Generate a Core Set of Echocardiographic Indices for Pediatric Research: A Sub-study in the PCS2 Cohort" (2021). *Medical Student Research Symposium*. 97. https://digitalcommons.wayne.edu/som_srs/97

This Research Abstract is brought to you for free and open access by the School of Medicine at DigitalCommons@WayneState. It has been accepted for inclusion in Medical Student Research Symposium by an authorized administrator of DigitalCommons@WayneState.

Authors

Thomas S. Przybycien, Brigitte Mueller, Steven Fan, Paul C. Nathan, Cedric Manlhiot, and Luc Mertens

This research abstract is available at DigitalCommons@WayneState: https://digitalcommons.wayne.edu/som_srs/97

Using Machine Learning to Generate a Core Set study in the PCS² Cohort

of Echocardiographic Indices for Pediatric Research: A Sub-Thomas S. Przybycien¹, Brigitte Mueller², Steven Fan², Paul C. Nathan³, Cedric Manlhiot², and Luc Mertens⁴

¹ Wayne State University School of Medicine, Detroit MI, ²Cardiovascular Data Management Centre, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, The Hospital for Sick Children, Toronto ON, ⁴ Division of Cardiology, T

Question and Introduction

- With a multitude of echo parameters at a clinician's disposal and clinical efficiency paramount, what are the most reliably measured and clinically relevant pediatric echo indices?
- No studies have determined the most clinically relevant and reliable groupings echo parameters in pediatric patient populations
- Using the PCS² (Preventing Cardiac Sequelae in Pediatric Cancer Survivors) cohort of childhood cancer survivors and clustering analysis, a machine learning (ML) method, we identify related echo parameters that represent a similar dimension of the variance in a pediatric echocardiographic study

Goal

• Use machine learning to cluster echo parameters by dimensionality of information, assess reproducibility and clinical relevance to identify a core set of echo indices to guide pediatric clinical care and research

Contact: thomas.przybycien@med.wayne.edu

Figure 1: Dendrogram of echo parameters. The two main groups are 1) all variables between pulmonary vein S/D ratio and velocity of circumferential fiber shortening, and 2) all remaining variables. Variables that are next to each other are similar, for example mean blood pressure and diastolic blood pressure. The variables listed after the main variables and separated with a | are highly (>0.8) correlated with the main variable. Linear combinations are indicated with an asterisk, i.e. pulse pressure was identified as a linear combination of diastolic and systolic blood pressure. Coloured nodes represent levels of clusters that will be ranked in order of clinical relevance.

- and intra-rater analyses

Using clustering analysis, clinical relevance rankings, and reliability we have identified 10 core echo indices that together recapitulate the information generated from the standard study set of 94 parameters.

Funding: This research study is being conducted with support from the Canadian Institutes of Health Research (CIHR, TCF118696), Ontario Institute for Cancer Research (OICR), Children's Cancer and Blood Disorders Council (C17), Canadian Cancer Society (CCS), Pediatric Oncology Group of Ontario (POGO) and the Garron Family Heart Centre at the Hospital for Sick Children

Results

	Red: level 2 Blue: level 4
sion z-score	Lorac. lever i
ole) z-score	
- S.	
ptum valve A-veloc	
e A-veloc	
ptum valve S-veloc	
e S-veloc	
alve S-veloc	
alve A-veloc	
alve E-veloc	
ptum valve E-veloc	
e E-veloc	
Noc Mitral Valve E-veloc Puln	n venous veloc diast Pulm venous veloc syst Mitral Valve A-vel
1	
nonening corrected for HK	
bod Fraction	
nonening	
rate system	
no	
Dawline DT Deceler	
or boppier	
tion LL of Van End Sud Dimon	ing I toll Man Mass
sion Lent ven End Syst Dimens	acri i celt vell'indas
End Sustain	
End Systole	
nine -	
nsion z-score	
nsion	
II Thickness (end diast) z-score	LVPWD/LVEDD
Dimension (end diast) z-score	
Dimension (end diast) Left Ver	Mass M-mode Left Ven Post Wall Thickness (end diast)
in	
Norma and	
mance Index	
train Avg Global Longi Strain	
Avg Global Longi Strain	
C) Avg Global Longi Strain	

presented as well as mean bias. *Indicates significant bias (p≤0.05) by Wilcoxon signed-rank

 \geq 73% of all scored parameters had good (0.60-0.74) or excellent (\geq 0.75) ICC in the inter-

Using highly reliable (>0.65 ICC) and available (>80% scored) parameters, we presented clusters of parameters to (5) pediatric cardiologists to rank within cluster clinical relevance Mean within cluster ranks identified a core set of 10: EF, pulmonary vein S/D ratio, auto EF A4C, tissue doppler mitral valve A-velocity, tissue doppler tricuspid valve S-velocity, mitral valve E/A ratio, mean LV A4C longitudinal strain rate systole, LV end diastolic dimension, m-mode LV posterior wall thickness (end diastole), average global longitudinal strain

Conclusions and Future Directions

We aim to use these 10 parameters to guide pediatric echocardiographic research and clinical care.

Figure 2: Selected B-A plots of 16 echo parameters used in the intra-rater analysis. A denotes S1 intra-rater and B denotes S2 intra-rater. Upper and lower limits of agreement are