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CHAPTER 1 INTRODUCTION

Many optimization problems appearing in applications can be formulated in the following

format of the composite optimization:

minimiz φ(x) + g(F (x)) over all x ∈ X, (1.1)

where φ : X→ R and F : X→ Y are continuously twice differentiable around the reference

points and g : Y → R := (−∞,+∞] is a lower semicontinuous (l.s.c.) convex function and

where X and Y are two finite-dimensional Hilbert spaces. By allowing g to take +∞, we can

incorporate constraints into problem (1.1). By letting g different convex function problem

(1.1) can cover different class of optimization problems. In the following we mention a

sequence of such class of optimization problems. Letting g(y) := δΘ(y) where δΘ is the

indicator function of the closed convex set Θ, which takes 0 on the set Θ and ∞ otherwise,

problem (1.1) comes out as the (conic) constrained optimization.

minimiz φ(x) subject to F (x) ∈ Θ, (1.2)

In particular, (1.1) covers three major classes of constrained optimization problems; 1-

Nonlinear programming, 2-Second-order cone programming and 3-Semidefinite cone pro-

gramming. For example if Θ := Rr
− × {0}m−r and F = (f1, f2, ..., fm) problem (1.1) reduces

to the nonlinear programming in the conventional format with equality and inequality con-

straints:

minimize φ(x) (1.3)

subject to fi(x) ≤ 0, i = 1, .., r

fi(x) = 0, i = r + 1, ...,m

Beyond the constrained optimization (1.2), there are many (nonsmooth) composite opti-

mization that can be formulated into framework (1.1), but not into framework (1.2). For
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example by letting g(y) = max{y1, ..., ym}+ δΘ(y), F = (f1, ..., fm) and φ = 0 problem (1.1)

reduces to the (constrained) min-max problem:

minimize max{f1, ..., fm} subject to F (x) ∈ Θ,

By letting

g(y) =: θZQ(y) = sup
z∈Z
{〈z,Qz〉 − 〈z, y〉}

where Q is positive semidefinite matrix and Z is a polyhedral convex set, problem (1.1)

reduces to the extended nonlinear programming (ENLP). In particular case, if F is affine

and φ is quadratic functions we get extended linear-quadratic programming (ELQP);

minimize 〈c, x〉+
1

2
〈x, Px〉+ θZQ(b− Ax) subject to x ∈ Rn (1.4)

This kind of model goes back to Rockafellar and Wets [53], where it was introduced for the

sake of penalty modeling and algorithm development in stochastic programming. The topic

was expanded in [50], where many special cases of ELQP were worked out and applications

were made to continuous-time optimal control. Another class of problems which falls into

(1.1) framework is minimal norm problems and problems having norm-penalty;

minimiz φ(x) + ‖Ax− b‖ subject to G(x) ∈ C (1.5)

where ‖‖ can be any norm on Rn. Indeed by setting F (x) :=
(
G(x), Ax−b

)
and g(y, z) = ‖z‖,

problem (1.1) reduces to the above optimization problems. Besides penalty techniques in

constrained optimization the latter problems covers two important optimization problems:

Least absolute shrinkage and selection operator (LASSO) which has applications in statistics

is formulated through following composite optimization problem:

minimize α‖b− Ax‖2
2 + β‖x‖1 subject to x ∈ Rn

here g(y) = β‖y‖1 and φ = α‖b − Ax‖2
2. The second example is Support vector machine
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(SVM) where we set g : R→ R with g(y) := max{0, y} :

minimize α‖x‖2
2 +

1

m

m∑
i=1

max{0 , ωi(〈x, zi〉 − β)} s.t (x, β) ∈ Rn+1

In last four previous optimization problems the function g shares an interesting geometric

feature. Indeed in last four previous examples function g is convex piecewise linear-quadratic.

Recall that g : Rm → R is piecewise linear-quadratic (PWLQ) if dom g = ∪si=1Ci with Ci

being polyhedral convex sets for i = 1, . . . , s, and if g has a representation of the form

g(x) = 〈x,Bix〉+ 〈bi, x〉+ βi for all x ∈ Ci,

where each Bi is symmetric n by n matrix, bi ∈ Rm, and βi ∈ R for all i = 1, . . . , s. This

great observation has been done by Rockafellar, [54, Theorem 11.14], who deeply investigated

the first- and second-order variational analysis of this class of problems. In this dissertation

we take a big step outside of this class of problems and develop first- and second-order

varitional analysis for composite optimization problem (1.1). Another important class of

optimization problems covered by (1.1) is eigenvalue optimization problem: denote λr(X)

by rth largest eigenvalue of the symmetric matrix X ∈ Sn×n. Then the optimization problem

in the following form

minimize λ1(X) + ...+ λr(X) subject to G(X) ∈ C

falls into (1.1) by letting F (X) := (X,G(X)), g(X, Y ) := λ1(X) + ... + λr(X), and Θ :=

Sn×C There are many other classes of optimization problems which fall into the composite

optimization framework (1.1), thus the analysis of problem (1.1) not only covers a broad

class of optimization problems but also it unifies all other (first/second-order) analysis for

different class of optimization problems. This dissertation carries out the latter analysis

and thus the obtained results are new even in each individual class of optimiztion problems.

Although we use variational analysis tools, our approach is different from ones in [33] and [54]

which leads us to stronger results in first-order theory and new results in second-order theory.
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Looking at the objective function of the optimization problem (1.1), the cumbersome comes

from the nonsmooth part, i.e. g ◦ F . The main aim of this paper this paper is developing

first- and second-order theory for the composition g ◦ F and then by applying it we aim to

obtain optimality conditions and numerical algorithm for solving the composite optimization

problems (1.1).

The rest of the dissertation is organized as follows. In Chapter 2 we review the basic

generalized differential tools of variational analysis used in formulations and proofs of the

main results. We introduce the metric subregularity constraint qualification for the problem

(1.1). We investigate the relationship between popular constraint qualifications. It turns

out that the metric subregularity constraint qualification is (so far) the weakest constraint

qualification under which the first-and second-order chain rules hold for the composition

g ◦ F . Indeed in Chapter 2 we establish first-order chain rules via both subderivative and

subdifferential under metric subregularity constraint qualification. We define subamenable

composition and verify its prox-regularity property. At the end of chapter 2 we apply the

obtained first-order calculus to derive first order optimality condition for the composite

optimization problem (1.1).

In Chapter 3 we recall the parabolic regularity from [54] which happens to be the key

for establishing the second-order chain rule for the strongly subamenable composition g ◦ F

via second-order subderivatives. In parallel way, we establish the second-order chain rule via

parabolic subderivative. This chapter also aims to provide a systematic study of the twice epi-

differentiability of extend-real-valued functions in finite dimensional spaces. In particular, we

pay special attention to the strongly subamenable compositions. As we mentioned earlier the

composite optimization problem (1.1) encompasses major classes of constrained and compos-

ite optimization problems including classical nonlinear programming problems, second-order

cone and semidefinite programming problems, eigenvalue optimizations problems [57], and
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fully amenable composite optimization problems [51], see Example 3.20 for more detail. Con-

sequently, the composite problem (1.1) provides a unified framework to study second-order

variational properties, including the twice epi-differentiability and second-order optimality

conditions, of the aforementioned optimization problems. As argued below, the twice epi-

differentiability carries vital second-order information for extend-real-valued functions and

therefore plays an important role in modern second-order variational analysis. A lack of

an appropriate second-order generalized derivative for nonconvex extended-real-valued func-

tions was the main driving force for Rockafellar to introduce in [48] the concept of the

twice epi-differentiability for such functions. Later, in his landmark paper [51], Rockafel-

lar justified this property for an important class of functions, called fully amenable, that

includes nonlinear programming problems but does not go far enough to cover other ma-

jor classes of constrained and composite optimization problems. Rockafellar’s results were

extended in [10, 23] for composite functions appearing in (1.1). However, these extensions

were achieved under a restrictive assumption on the second subderivative, which does not

hold for constrained optimization problems. Nor does this condition hold for other major

composite functions related to eigenvalue optimization problems; see [57, Theorem 1.2] for

more detail. Levy in [32] obtained upper and lower estimates for the second subderivative of

the composite function from (1.1), but fell short of establishing the twice epi-differentiability

for this framework.

The author, Mordukhovich and Sarabi observed recently in [39] that a second-order

regularity, called parabolic regularity (see Definition 3.3), can play a major role toward the

establishment of the twice epi-differentiability for constraint systems, namely when the outer

function g in (1.1) is the indicator function of a closed convex set. This vastly alleviated the

difficulty that was often appeared in the justification of the twice epi-differentiability for the

latter framework and opened the door for crucial applications of this concept in theoretical

and numerical aspects of optimization. Among these applications, we can list the following:
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� the calculation of proto-derivatives of subgradient mappings via the connection be-

tween the second subderivative of a function and the proto-derivative of its subgradient

mapping (see equation (4.2));

� the calculation of the second subderivative of the augmented Lagrangian function as-

sociated with the composite problem (1.1), which allows us to characterize the second-

order growth condition for the augmented Lagrangian problem (cf. [39, Theorems 8.3

& 8.4]);

� the validity of the derivative-coderivative inclusion (cf. [54, Theorem 13.57]), which has

important consequences in parametric optimization; see [40, Theorem 5.6] for a recent

application in the convergence analysis of the sequential quadratic programming (SQP)

method for constrained optimization problems.

Also In this chapter 3, we show that the twice epi-differentiability of the objective function

in (1.1) can be guaranteed under parabolic regularity. To achieve this goal, we demand that

the outer function g from (1.1) be locally Lipschitz continuous relative to its domain; see

the next section for the precise definition of this concept. Shapiro in [55] used a similar

condition but in addition assumed that this function is finite-valued. The latter does bring

certain restrictions for (1.1) by excluding constrained problems as well as piecewise linear-

quadratic composite problems. As shown in Example 3.20, major classes of constrained

and composite optimization problems, including ones mentioned in introduction, satisfy this

(relative) Lipschitzian condition. However, some composite problems such as the spectral

abcissa minimization (cf. [6]), namely the problem of minimizing the largest real parts of

eigenvalues, can not be covered by (1.1).

In Chapter 4 the main attention is given to study of the strong metric subregularity of

the KKT system of the constrained optimization problem

min
x∈Rn

ϕ(x) subject to F (x) ∈ Θ, (1.6)
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where ϕ : Rn → R and F : Rn → Rm are twice continuously differentiable functions around

reference points, where Θ is a closed and convex set in Rm. Following Chapter 3 the second-

order analysis of optimization problems requires certain second-order regularity condition

on the constraint set Θ. We will assume in this chapter that the set Θ is parabolically

regular; see Definition 3.3. Our first goal in this chapter is to provide a systematic study

of strong metric subregularity of the KKT system of (4.1) using the second-order analysis

conducted for parabolically regular sets in chapter 3.It is well-known [12] that for nonlinear

programs the latter property amounts to the uniqueness of Lagrange multipliers as well as

the second-order sufficient condition. Later it was observed in [13] that a similar result for

C2-cone reducible constrained problems, namely (4.1) with Θ being C2-cone reducible in the

sense of [4, Definition 3.135], can be established if the uniqueness of Lagrange multipliers

is replaced by the strong Robinson constraint qualification (see condition (4.9)). We show

that the well-known result for NLPs can be retrieved for parabolically regular constrained

problems if we assume further the multiplier mapping is calm. Moreover, our results reveal

that the combination of uniqueness of Lagrange multipliers and the calmness of the multiplier

mapping amounts to the strong Robinson constraint qualification. These illustrate that the

calmness of multiplier mapping, being automatically satisfied for NLPs, is a property that

is required in order to achieve a similar result as those in NLPs for the constrained problem

(4.1) in general. Such a calmness property was recently used in [42] in order to characterize

noncriticality of Lagrange multipliers for generalized KKT systems that encompass the KKT

system for the constrained optimization problem (4.1). Our second goal is to provide an

important application of the established characterizations of the strong metric subregularity

of the KKT system of (4.1) in the basic sequential programming method (SQP) for this

problem. For the NLPs framework, the sharpest result was achieved by Bonnans [1] in

which he showed that the combination of the uniqueness of Lagrange multipliers and the

second-order sufficient condition ensures that the basic SQP method can generate a sequence
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that is convergent and the rate of convergence is superlinear. We will show that Bonnans’

result can be extended for the parabolically regular constrained optimization problems if we

further assume that the multiplier mapping is calm.
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CHAPTER 2 FIRST-ORDER VARIATIONAL ANALYSIS

This chapter is devoted to the first-order variational analysis by paying essential attention

to the calculus rules for certain class of nonsmooth functions. The main sources of this

chapter are [35, 36,38].

2.1 Tools of Variational Analysis

In this section we briefly overview some basic constructions of generalized differentiation

in variational analysis, which are widely used in what follows. Then we define the metric

subregularity qualification condition associated to the composition f := g ◦ F . We provide

some sufficient conditions of this concept, in particular the Robinson Constraint Qualifica-

tion. In what follows, X and Y are finite-dimensional Hilbert spaces equipped with a scalar

product 〈·, ·〉 and its induced norm ‖ · ‖. By IB we denote the closed unit ball in the space in

question and by IBr(x) := x+ rIB the closed ball centered at x with radius r > 0. we denote

by R+ (respectively, R−) the set of non-negative (respectively, non-positive) real numbers.

Two important spaces we usually deal with in this thesis are the 1- Euclidean Rm and 2-the

space of symmetric matrices Sm equipped with the trace inner product.

Given a nonempty set Ω in X, in what follows we denote by dist(x,Ω) the distance between

x ∈ X and the set Ω. The notation coΩ stands for the convex hull of Ω. Furthermore, x
Ω→ x̄

indicates that x → x̄ with x ∈ Ω. For any set Ω in X, its indicator function is defined by

δΩ(x) = 0 for x ∈ Ω and δΩ(x) = ∞ otherwise. We write x(t) = o(t) with x(t) ∈ X for all

t ∈ R+ to mean that ‖x(t)‖
t

goes to 0 as t ↓ 0. Finally, we denote by R+ (respectively, R−) the

set of non-negative (respectively, non-positive) real numbers. For a function f : X→ Y, we

denote by ∇f(x̄) : X → Y the Fréchet derivative (Jacobian) of f at x̄, which is a bounded

linear operator. If F : X→ Y is twice differentiable at x̄, the second derivative of F which is

actually a linear operator from X to L(X,Y), can be equivalently identified by a continuous

bilinear map ∇2F (x̄) : X × X → Y. If F is either continuously twice differentiable around
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x̄ or X and Y are finite-dimensional, then the bilinear map ∇2F (x̄)(., .) is symmetric, i.e,

∇2F (x̄)(u, v) = ∇2F (x̄)(v, u) for all u, v ∈ X. In the latter case we have

F (x̄+ h) = F (x̄) + 〈∇F (x̄), h〉+
1

2
∇2F (x̄)(h, h) + o(‖h‖2)

see [4, Lemma 2.51] and [54, Theorem 13.2]. For the finite -dimensional case of X = Rn and

Y = Rm if F is twice differentiable then

∇2F (x̄)(w, v) =
(
〈∇2f1(x̄)w, v〉, . . . , 〈∇2fm(x̄)w, v〉

)
for all v, w ∈ Rn,

where F = (f1, . . . , fm) and ∇2fi(x̄) stands for the Hessian of fi at x̄. We begin with

recalling some of well-known tools of variational analysis that will be utilized throughout of

this paper. Given (Ωt)t>0 a the parameterized family of subsets of X define the outer and

inner limit of Ωt as t ↓ 0 respectively by

Lim sup
t↓0

Ωt := {x ∈ X | ∃ tk↓0, ∃xk → x with xk ∈ Ωtk},

Lim inf
t↓0

Ωt := {x ∈ X | ∀ tk↓0, ∃xk → x, ∃N ∈ IN, ∀k ≥ N with xk ∈ Ωtk}.

Following the above definitions, the parameterized family of sets Ωt is said to be convergent

to the (closed) set Ω as t ↓ 0, denoted by Ωt → Ω or Limt↓0 Ωt = Ω if the following equality

holds

Lim sup
t↓0

Ωt = Lim inf
t↓0

Ωt = Ω. (2.1)

Given a nonempty set Ω ⊂ X with x̄ ∈ Ω, the tangent/contingent cone TΩ(x̄) to Ω at x̄ ∈ Ω

is defined by

TΩ(x̄) :=
{
u ∈ X | ∃ tk↓0, uk → u as k →∞ with x̄+ tkuk ∈ Ω

}
.

We say that a tangent vector u ∈ TΩ(x̄) is derivable if there exists ξ : [0, ε]→ Ω with ε > 0,

ξ(0) = x̄, and ξ′+(0) = w, where ξ′+ signifies the right derivative of ξ at 0 defined by

ξ′+(0) := lim
t↓0

ξ(t)− ξ(0)

t
.
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The set Ω is geometrically derivable at x̄ if every tangent vector u to Ω at x̄ is derivable. The

geometric derivability can be equivalently described as when the outer and inner limits of

the parameterized family sets (Ω−x̄
t

)t>0 agree as t ↓ 0, in another words Limt↓0
Ω−x̄
t

= TΩ(x̄),

see [31, Theorem 4.1.24]. Let x̄ ∈ Ω, define the Dini-Hadamard normal cone by

N−Ω (x̄) := T ∗Ω(x̄) = {v ∈ X | 〈v, u〉 ≤ 0, for all u ∈ TΩ(x̄)}

The Dini-Hadamard normal cone is convex and closed subset of X. It is well-known that

in finite dimensions the Dini-Hadamard normal cone agrees with the well-known Fréchet

normal cone denoted by N̂ , and defined by

N̂Ω(x̄) :=
{
v ∈ X

∣∣∣ lim sup
x

Ω→x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0
}

Note that in a general infinite-dimensional space we only have the inclusion N̂Ω(x̄) ⊆ N−Ω (x̄).

If Ω is convex then the both above normal cones reduce to the standard normal cone in convex

analysis. We simply use the notation NΩ(x̄) for the normal cone to the case convex set Ω at

x̄.

Given the function f : X → R := (−∞,∞], its domain and epigraph are defined,

respectively, by

dom f =
{
x ∈ X| f(x) <∞

}
and epi f =

{
(x, α) ∈ X× R| f(x) ≤ α

}
.

Recall that a set-valued mapping S : X ⇒ Y is metrically regular around (x̄, ȳ) ∈ S if

there is ` ≥ 0 and neighborhoods U of x̄ and V of ȳ such that we have the distance estimate

dist
(
x ; S−1(y)

)
≤ ` dist

(
y ; F (x)

)
for all (x, y) ∈ U × V. (2.2)

If y = ȳ in (2.2), the mapping S is called to be metrically subregular at (x̄, ȳ). We end

this section by mentioning a beautiful result by Hoffman [21] in 1952, which shows metric

subregularity is automatic in many important situations. For a proof the Hoffman lemma

see [25, Theorem 8.33].
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Lemma 2.1 (Hoffman lemma) Let th be a convex polyhedral subset of Y. Let F : X→ Y

be a linear mapping. Then the set-valued mapping x→ F (x)− Θ in (uniformly) metrically

subregular at all points of X × {0}Y. In another words, there exists κ > 0 such that for all

x ∈ X we have:

dist
(
x ; F−1(Θ)

)
≤ κ dist

(
F (x) ; Θ

)
2.2 Qualification Conditions

In this section we investigate the qualification conditions associated to the composite

function

f := g ◦ F, (2.3)

where g is convex and lower semicontinous (l.s.c) and F is continuously differentiable around

the point x̄ ∈ Rn. I the next proposition investigate their relationships. We will see that

the generalized Abadie qualification condition serves as the weakest constraint qualification.

However, later we will see that the more suitable qualification condition is metric subregu-

larity qualification condition which enables us to remove the bar in (2.6). Another drawback

of Abadie qualification is that it is too weak to provide the required metric estimations in

analyzing of numerical algorithms.

Proposition 2.2 (relationships between qualification conditions) In the composi-

tion (3.4), let F : X→ Y be countinuously differentiable around x̄ ∈ X and let g : Y→ R be

convex, proper and continuous relative to its domain. Let f(x̄) be finite, then consider the

following conditions:

(i) Robinson qualification condition (RQC) holds at x̄:

0 ∈ int {F (x̄) +∇F (x̄)X− dom g}.
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(ii) The Basic qualification condition (BQC) holds at x̄:

Ndom g ∩ ker∇F (x̄)∗ = {0} (2.4)

(iii) The set-valued mapping x→ F (x)− dom g is metrically regular at (x̄, 0).

(iv) The set-valued mapping x→ F (x)− dom g is metrically subregular at (x̄, 0).

(v) The Abadie qualification condition (AQC) holds at x̄ that is

Tdom f (x̄) = {u ∈ X | ∇F (x̄)u ∈ Tdom g(F (x̄))} (2.5)

(vi) The limiting Guignard qualification condition holds at x̄:

N−dom f (x̄) = ∇F (x̄)∗Ndom g(F (x̄)) (2.6)

Then we always have (i)⇐⇒(ii)⇐⇒(iii) =⇒ (iv) =⇒ (v) =⇒ (vi).

Proof.

The equivalence (i) =⇒ (ii) can be obtained through convex separation argument in finite

dimensions see [4, Proposition 2.97]. For the proof (i) =⇒ (iii) see [4, Proposition 2.89].

The implication (iii) =⇒ (iv) is trivial. To prove the implication (iv) =⇒ (v) assume the

set-valued mapping x → F (x) − dom g is metrically subregular at (x̄, 0) which means the

following inequality holds for all x close enough to x̄ ;

dist(x ; dom f) ≤ κ dist(F (x) ; dom g).

Take u ∈ Tdom f (x̄). Therefore, x(t) := x̄ + tu + o(t) ∈ dom f , thus F (x(t)) ∈ dom g for all

sufficiently small t > 0. Since F is continuously differentiable around x̄, using the Taylor

expansion, we write

F (x(t)) = F (x̄) + t∇F (x̄)u+ o(t) ∈ dom g,

which tells us ∇F (x̄)u ∈ Tdom g(F (x̄)). To prove the other inclusion we use the metric
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subregularity assumption. Pick u ∈ X such that ∇F (x̄)u ∈ Tdom g(F (x̄)). Therefore, we have

F (x̄) + t∇F (x̄)u+ o1(t) ∈ dom g.

Using the Taylor expansion of F at x̄, we can write

F (x̄+ tu) = F (x̄) + t∇F (x̄)u+ o2(t).

Now by plugging x̄+tu into x in subregularity inequality for sufficiently small t > 0 we have:

dist(x̄+ tu ; dom f) ≤ κ dist(F (x̄+ tu) ; dom g)

≤ κ ‖(F (x̄) + t∇F (x̄)u+ o1(t))− (F (x̄) + t∇F (x̄)u+ o2(t))

≤ o(t).

Therefore, for all t > 0 sufficiently small, there exists x(t) ∈ dom f such that ‖x̄+tu−x(t)‖ ≤

o(t). This tells us that x(t) can be written in the form x(t) = x̄ + tu + o(t) ∈ dom f , thus

u ∈ Tdom f (x̄). To prove the last part of the proposition assume that (v) holds. First, let

v ∈ Ndom g(F (x̄)) and u ∈ Tdom f (x̄). From (v) we have ∇F (x̄)u ∈ Tdom g(x̄), this implies

that

〈∇F (x̄)u, v〉 = 〈u,∇F (x̄)∗v〉 ≤ 0.

Since the above holds for any arbitrary u ∈ Tdom f (x̄), we get that v ∈ N−dom f (x̄). This tells

us

∇F (x̄)∗Ndom g(F (x̄)) ⊆ N−dom f (x̄) =⇒ ∇F (x̄)∗Ndom g(F (x̄)) ⊆ N−dom f (x̄).

To prove the opposite inclusion, pick v ∈ N−dom f (x̄). Then 〈v, u〉 ≤ 0 for all u ∈ Tdom f (x̄).

Hence, by part (v) we obtain that

〈v, u〉 ≤ 0 for all u ∈ X with ∇F (x̄)u ∈ Tdom g(F (x̄)). (2.7)

Now we claim that v ∈ ∇F (x̄)∗Ndom gF (x̄). To prove the claim, assume by contrary that

v /∈ ∇F (x̄)∗Ndom g(F (x̄)). Since the set ∇F (x̄)∗Ndom g(F (x̄)) is closed and convex in X∗,
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by the convex separation theorem, there exist ξ ∈ X \ {0} and ε > 0 such that for all

y ∈ Ndom g(F (x̄)) we have

〈∇F (x̄)ξ, y〉 = 〈ξ,∇F (x̄)∗y〉 ≤ 〈ξ, v〉 − ε.

Since Ndom g(F (x̄)) is a cone, we get that 0 ≤ 〈ξ, v〉 − ε and

〈∇F (x̄)ξ, y〉 ≤ 0 for all y ∈ Ndom g(F (x̄)).

The above implies that ∇f(x̄)ξ ∈ Tdom g(F (x̄)). Therefore, by (2.7) we get 〈v, ξ〉 ≤ 0, which

is contradicting with ε ≤ 〈v, ξ〉. �

Looking at the proof of the Proposition 2.2, In the following example we show that the

closure in (2.6) cannot be removed. However, one sufficient condition that allows us to

remove the closure in (2.6) is when dom g is a polyhedral convex set in Y. In the latter case,

∇F (x̄)∗Ndom g(F (x̄)) becomes closed, even a polyhedral convex set.

Example 2.3 (Abadie QC is strictly weaker than metric subregularity QC) Let

Θ ⊂ Rm be closed convex cone, and let A be a n×m matrix such that AΘ is not closed in

Rm (Soon we will show that there exist such a Θ and A). In composition (3.4), let g = δΘ∗

and F (x) = A∗x, where Θ∗ := {y ∈ Rm | 〈y, c〉 ≤ 0 ∀c ∈ Θ}. Then the followings hold.

(i) The Abadie qualification condition (2.5) holds at x̄ := 0.

(ii) ∇F (x̄)∗Ndom g(F (x̄)) is not closed.

(iii) The set-valued mapping x 7→ F (x)− dom g is not metrically subregular at x̄ = 0.

Note that ∇F (x̄) = A∗, and TΘ∗(F (x̄)) = TΘ∗(0) = Θ∗ = dom g. To verify (i) we set

f := g ◦ F then

dom f = {x | A∗x ∈ Θ∗} = {x | ∇F (x̄)x ∈ TΘ∗(0)}
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Clearly dom f is a closed, convex cone. Therefore we have

Tdom f (x̄) = dom f = {x | ∇F (x̄)x ∈ TΘ∗(0) = Tdom g(F (x̄))}.

This proves that AQC holds at x̄ = 0 for composition (3.4). To verify that

∇F (x̄)∗Ndom g(F (x̄)) is not closed, first note that since Θ is closed convex cone, from standard

polarity argument we obtain that Ndom g(F (x̄)) = NΘ∗(0) = Θ. Therefore,

∇F (x̄)∗Ndom g(F (x̄)) = ANΘ∗(0) = AΘ,

which is not closed due to the choice of A and Θ. Turning to ((iii)), it is well known that in

finite dimensions under metric subregularity of the mapping x 7→ F (x)−dom g at x̄ = 0, we

have Ndom f (x̄) = ∇F (x̄)∗Ndom g(F (x̄)), see [17, Lemma 2.1] or Corollary 2.17 in the present

paper. Therefore, under metric subregularity condition we have the closedness of the set

AΘ = Ndom f (x̄), which is contradicting with the choice of A and Θ.

In order to show the correctness of the Example 2.3, it remains to construct a closed, convex

cone Θ, and a matrix A satisfying the requirements in the Example 2.3. We do it in two

stages. First note that there are closed convex cones Θ1, Θ2 in R3 such Θ1 + Θ2 is not

closed. Take Θ1 := {(x, r) ∈ R2 × R | ‖x‖ ≤ r}, the second-order cone (ice cream) in R3,

and Θ2 = {t(1, 0,−1) ∈ R3 | t ≥ 0}. In this case Θ1 + Θ2 is not closed because it does not

contain (0, 1, 0), but it contains

∈Θ1︷ ︸︸ ︷
(−t, 1 + t−1, t+

t−1 + 2t−2 + t−3

2
) +

∈Θ2︷ ︸︸ ︷
(t, 0,−t) = (0, 1 + t−1,

t−1 + 2t−2 + t−3

2
)

for all t > 0. Now define the linear transformation T : R3 × R3 → R3 by T (x, y) := x + y.

Observe that Θ1 × Θ2 is closed in R3 × R3, but T (Θ1 × Θ2) = Θ1 + Θ2 is not a closed set.

This completes Example 2.3. The following result is immediate from Proposition 2.2.

Corollary 2.4 In the framework of Proposition 2.2, if ∇F (x̄)∗Ndom g(F (x̄)) is closed subset
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of X, then the validity of Abadie qualification condition at x̄ yields

N−dom f (x̄) = ∇F (x̄)∗Ndom g(F (x̄)).

Example (2.3) shows that the (generalized) Abadie qualification condition is not a good

candidate as a constraint qualification beyond nonlinear programming problems, even in

the framework of nonlinear programming, it can not serve as a constraint qualification for

second-order necessary optimality condition. In this regard, we use the metric subregularity

property as a suitable qualification condition for our analysis in this thesis.

Definition 2.5 (metric subregularity qualification condition) We say that the com-

position function (3.4) satisfies the metric subregularity qualification condition (MSCQ) at

x̄ ∈ dom f with constant κ ∈ R+ if the set-valued mapping x 7→ F (x) − dom g is metrically

subregular at (x̄, 0) with constant κ.

The introduced MSCQ with constant κ for the composite function (3.4) can be equivalently

described as the existence of a neighborhood U of x̄ such that the distance estimate

dist(x ; dom f) ≤ κ dist
(
F (x) ; dom g

)
(2.8)

The metric subregularity qualification condition for the composition function (3.4) intro-

duced by author in [38] where authors investigated a comprehensive first-order and second-

order analysis of problem (1.1) for the case g is a convex piecewise linear-quadratic function.

Later this study was generalized to the present framework of this thesis in [37]. As mentioned

in Proposition 2.2, while metric regularity qualification can be fully characterized by Ba-

sic qualification condition(2.4), finding conditions under which metric subregularity holds is

rather challenging. When, however, the outer function ϑ is convex piecewise linear-quadratic

that yields the polyhedrality of dom g, Gfrerer [16, Theorem 2.6] achieved a rather simple

and verifiable second-order condition to ensure the validity of the metric subregularity (2.8).
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His second-order condition in the framework of Definition 2.5 demonstrates that if in addi-

tion F is twice differentiable at x̄ and if for every w ∈ X \ {0} with ∇F (x̄)w ∈ Tdom g(F (x̄))

and every λ ∈ Ndom g

(
F (x̄)

)
∩ ker∇F (x̄)∗ the implication

〈λ,∇2F (x̄)(w,w)〉 ≥ 0 =⇒ λ = 0 (2.9)

holds, then the mapping x 7→ F (x)− dom g is metrically subregular at (x̄, 0).

The following example provides two cases of the composite functions (3.4) with g being

convex piecewise linear-quadratic such that the metric regularity qualification condition fails

while the metric subregularity qualification condition is satisfied.

Example 2.6 (failure of metric regularity for composite functions) Consider the

class of extended-real-valued functions g : Rm → R defined by

g(y) := sup
z∈Z

{
〈y, z〉 − 〈Bz, z〉

}
, (2.10)

where Z is a polyhedral convex set, and where B is an m × m positive-semidefinite sym-

metric matrix. This type of penalty functions was introduced by Rockafellar [47], where

he formulated an important class of composite optimization problems under the name of

extended nonlinear programming (ENLP). It is not hard to see that g is a convex piecewise

linear-quadratic function.

(a) Consider the function g from (2.10) with m = 2,

Z := R2, and B :=

1 0

0 0


and define the constraint mapping F : R2 → R2 by F (x1, x2) := (x1 − x2, 0). It is easy to

check that dom g = {(y1, y2)| y2 = 0}. For x̄ := (0, 0) ∈ R2 we have

Ndom g

(
F (x̄)

)
∩ ker∇F (x̄)∗ =

{
(λ1, λ2) ∈ R2

∣∣ λ1 = 0
}
,

which shows that the metric regularity qualification condition (2.4) fails at x̄. On the other
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hand, MSQC (2.8) holds at x̄ since the mapping x 7→ F (x̄)− dom g is metrically subregular

at (x̄, 0). This follows from the aforementioned Hoffman lemma since F is an affine mapping

and dom g is a polyhedral convex set.

(b) Consider the function g from (2.10) with m = 3, Z := R3
+, and B := 0 ∈ R3×3.

Define the constraint mapping F : R3 → R3 by F = (f1, f2, f3) with x = (x1, x2, x3) ∈ R3

and

f1(x) := x1 − x2
2, f2(x) := x1 − x2

3, f3(x) := −x1 − x2
1 − x2

2 − x2
3.

Letting x̄ := (0, 0, 0) ∈ R3, deduce from dom g = R3
− that

Ndom g

(
F (x̄)

)
∩ ker∇F (x̄)∗ =

{
(λ1, λ2, λ3) ∈ R3

+

∣∣ λ1 + λ2 − λ3 = 0
}
, (2.11)

which implies that the metric regularity qualification condition (2.4) fails at x̄. For any λ =

(λ1, λ2, λ3) from (2.11) and any w = (w1, w2, w3) ∈ R3 \ {0} with ∇F (x̄)w ∈ Tdom g(F (x̄)) =

R3
− we conclude from the conditions

〈λ,∇2F (x̄)(w,w)〉 = −λ3w
2
1 − (λ1 + λ3)w2

2 − (λ2 + λ3)w2
3 ≥ 0

that λ = 0, which confirms that (2.9) is satisfied. This tells us that the constraint mapping

x 7→ F (x)− dom g is metrically subregular at (x̄, 0).

We close this section by the following lemma taken from [15, Proposition 2.1] which will

become handy later in the subdifferential section.

Lemma 2.7 In the composition function (3.4), let the mapping x→ F (x)−dom g be metri-

cally subregular at (x̄, 0). Then the mapping u→ ∇F (x̄)u−Tdom g(x̄) is metrically subrugular

at (0, 0) with same constant.

Proof.

The metric subregularity of the mapping x→ F (x)−dom g at (x̄, 0) with constant κ > 0
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amounts to the following inequality

dist
(
x ; dom f

)
≤ κ dist

(
F (x) ; dom g

)
for all x sufficiently close to x̄. Now by letting x = x̄+ tu for all t > 0 small enough, we can

write F (x) = F (x̄) + t∇F (x̄)u+ o(t), thus we have

dist(x̄+ tu ; dom f) ≤ κdist(F (x̄) + t∇F (x̄)u+ o(t) ; dom g) (2.12)

tdist
(
u ;

dom f − x̄
t

)
≤ tκ dist

(
∇F (x̄)u+

o(t)

t
;
dom g − F (x̄)

t

)
dist
(
u ;

dom f − x̄
t

)
≤ κ dist

(
∇F (x̄)u ;

dom g − F (x̄)

t

)
+
o(t)

t

Now letting t ↓ 0 (taking liminf) in both sides of above inequality we arrive at

dist
(
u ; Tdom f (x̄)

)
≤ κ dist

(
∇F (x̄)u ; Tdom g(F (x̄))

)
.

This finishes the proof. �

2.3 Subderivatives

In this section we recall the subderitives and the concept of epi-differentiability of func-

tions which are the functional counterpart of tangent vectors to sets and their derivability.

The main objective of this section is establishing an exact calculus for subderivatives under

metric subregularity qualification conditions. We begin with the definitions of the subderiva-

tive and epi-differentiability of proper functions, and we investigate some of their properties

which will be used later. For a function f : X → R and a point x̄ with f(x̄) finite, the

subderivative function df(x̄) : X→ [−∞,∞] is defined by

df(x̄)(ū) := lim inf
t↓0
u→ū

f(x̄+ tu)− f(x̄)

t
.

The above generalized directional derivative is sometimes called lower Dini directional

derivative or the Dini-Hadamard directional derivative in literature. However, we keep

the name ”subderivative" in order to be compatible with [54, Definition 8.1], where this
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construction is deeply investigated in finite dimensions.It is not difficult to verify that

Tepi f (x̄, f(x̄)) = epi df(x̄) and dom df(x̄) ⊆ Tdom f (x̄). The latter inclusion holds as equality

when f is Lipschitz continuous around around x̄ relative to its domain; in the mathematical

language there are ` > 0 and a neighborhood U of x̄ such that for all x, y ∈ dom f ∩ U we

have

|f(x)− f(y)| ≤ ` ‖x− y‖. (2.13)

Indicator functions and piecewise linear-quadratic functions are examples of relatively Lip-

schitz continuous functions. Recall that f : Rn → R is piecewise linear-quadratic (PWLQ)

if dom f = ∪si=1Ωi with Ωi being polyhedral convex sets for i = 1, . . . , s, and if f has a

representation of the form

f(x) = 〈x,Bix〉+ 〈bi, x〉+ βi for all x ∈ Ωi, (2.14)

where each Bi is symmetric n by n matrix, bi ∈ Rn, and βi ∈ R for all i = 1, . . . , s.

Lemma 2.8 (domain of subderivatives) Let f : X→ R be Lipschitz continuous relative

to dom f around x̄. Then df(x̄) : X→ R is finite, lower semicontinuous, and homogeneous

function with dom df(x̄) = Tdom f (x̄).

Proof.

homogeneity of df(x̄) is clear from definition. To prove the statement regarding the

domain of subderivative note that we always have dom df(x̄) ⊆ Tdom f (x̄). To prove the

other direction, take u ∈ Tdom f (x̄), note that from Lipschitzian property we get that for all

t > 0 sufficiently small and u′ ∈ X with x̄+ tu′ ∈ dom f we have

|f(x̄+ tu′)− f(x̄)

t
| ≤ `‖u′‖,

where ` is taken from (2.13). Thus we get |df(x̄)(u)| ≤ `‖u‖ for all u ∈ Tdom f (x̄), in

particular df(x̄)(0) = 0, this proves that f is finite and dom df(x̄) = Tdom f (x̄). The lower
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semicontinuity of dφ(x̄) comes from the fact that Tepi f (x̄, f(x̄)) = epi df(x̄). �

The function f is called epi-differentiable at x̄ if the parameterized family of sets

epi∆tf(x̄)(.) converges to epi df(x̄) as t ↓ 0 in the sense of set-convergence (2.1), where

∆tf(x̄)(u) :=
f(x̄+ tu)− f(x̄)

t
.

The function f is called properly epi-differentiable at x̄, if f is epidifferentiable at x̄ and

df(x̄)(.) is a proper function. It is not difficult to observe that Tepi f (x̄, f(x̄)) = epi df(x̄), and

that the epi-differentiabilty of f at x̄ amounts to geometric derivability of epi f at (x̄, f(x̄)).

Also observe that if f is epi-differentiable at x̄, then the set dom f is geometrically derivable

at x̄. Any convex function is epi-differentiable at all points of its domain. More generally if

a function is Clarke regular at x̄, then it is epi-differentiable at x̄; see [54, Theorem 6.26].

Still the epi-differentiability is a much weaker property than Clarke regularity. For example,

take the absolute value function in R, it is not difficult to observe that this function is

eppi-differentiable at x̄ = 0 but clearly is not Clarke regular at x̄.

The following lemma provides a simple characterization of proper epi-differentiability.

Lemma 2.9 Let f : X → R be finite at x̄ ∈ X, and let df(x̄)(.) be a proper function.

Then f is properly epi-differentiable at x̄ if and only if for every u ∈ X there exists a path

u(.) : [0, ε]→ X (not necessarily continuous) with the properties limt↓0 u(t) = u(0) = u and

df(x̄)(u) = lim
t↓0

f(x̄+ tu(t))− f(x̄)

t
(2.15)

Proof.

First we assume that f is epi-differentiable at x̄. Pick u ∈ X, if df(x̄)(u) = ∞, set

u(t) = u for all t ≥ 0 and observe that (2.15) holds. If df(x̄)(u) is a finite number,

then (u, df(x̄)(u)) ∈ Tepi f (x̄, f(x̄)). Since f is epi-differentiable at x̄, the pair (u, df(x̄)(u))

is a derivable tangent vector. This tells us that there exists a path ξ : [0, ε] → epi f
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with components ξ(t) = (ξ1(t), ξ2(t)) for all t ∈ [0, ε], and properties ξ(0) = (x̄, f(x̄)), and

ξ′+(0) = (u, df(x̄)(u)). Now setting u(t) := ξ1(t)−x̄
t

for all t ∈ (0, ε) and u(0) := u, from

ξ(t) ∈ epi f , we get that

f(x̄+ tu(t))− f(x̄)

t
≤ ξ2(t)− f(x̄)

t
.

Clearly, we have that ξ2(t)−f(x̄)
t

→ df(x̄)(u) as t ↓ 0, this forces the limit of the left side

exists and it is equal to df(x̄)(u). In order to prove the opposite implication, assume that

(2.15) holds. We need to show that every vector in Tepi f (x̄, f(x̄)) is a derivable tangent.

Take (u, α) ∈ Tepi f (x̄, f(x̄)) = epi df(x̄). Let u : [0, ε] → X be the path taken from (2.15).

By setting ξ : [0, ε]→ X with

ξ(t) := (x̄+ tu(t), f(x̄+ tu(t)) + t(α− df(x̄)(u))),

it is easy to check that ξ(t) ∈ epi f for all t ∈ [0, ε], ξ(0) = (x̄, f(x̄)), and ξ′+(0) =

(u, df(x̄)(u)). This completes the proof of the Lemma. �

The following Theorem is the main result of this section in which we establish a sub-

derivative chain rule for composition (3.4) under the Abadie qulaification condition. We also

establish the epi-differentiability of composition (3.4) under metric subregularity qualifica-

tion condition.

Theorem 2.10 (subderivative chain rule under metric subregularity) Let F : X→

Y be continuously differentiable around x̄ ∈ X, and let g : Y → R be Lipschitz continuous

around F (x̄) relative to its domain and it is epi-differentiable . Assume the Abadie qualifi-

cation condition(AQC) in (2.5) holds, then the following subderivative chain rule holds:

d(g ◦ F )(x̄)(u) = dg(F (x̄))(∇F (x̄)u). (2.16)

If we replace the AQC with the metric subregularity qualification condition (2.8), then

(2.16) holds and g ◦ F is epi-differentiable at x̄.
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Proof.

To prove (2.16), pick u ∈ X and observe that ∇F (x̄)u′ + o(t‖u′‖)
t
→ ∇F (x̄)u as t ↓ 0 and

u′ → u. This yields the relationships

d(g ◦ F )(x̄)(u) = lim inf
t↓0
u→ū

g(F (x̄+ tu′))− g(F (x̄))

t

= lim inf
t↓0
u→ū

g(F (x̄) + t∇F (x̄)u′ + o(t‖w′‖))− g(F (x̄))

t

= lim inf
t↓0
u→ū

g(F (x̄) + t(∇F (x̄)u′ + o(t‖w′‖)
t

))− g(F (x̄))

t

≥ dg(F (x̄))(∇F (x̄)u).

Turing to the proof of the opposite inequality, we conclude from the Lemma 2.8

that dg(F (x̄))(∇F (x̄)u) > −∞. Moreover, the latter inequality is obvious if

dg(F (x̄))(∇F (x̄)u) = ∞. So assume that dg(F (x̄))(∇F (x̄)u) is finite. Note that g is

epi-differentiable at F (x̄) and it is Lipschitz relative to dom g around F (x̄) these together

yield that g is properly epi-differentiable at F (x̄). Therefore, by Lemma (2.9) there exists a

path y(.) in Y with limt↓0 y(t) = ∇F (x̄)u such that

dg(F (x̄))(∇F (x̄)u) = lim
t↓0

g(F (x̄) + ty(t))− g(F (x̄))

t
. (2.17)

Since dg(F (x̄))(∇F (x̄)u) is finite, we can assume without lost of generality that F (x̄) +

ty(t) ∈ dom ν for all t ∈ [0, ε]. Moreover, ∇F (x̄)u ∈ dom dg(F (x̄)) = Tdom g(F (x̄)). Thus by

the assumption AQC (2.5) at x̄, we have u ∈ Tdom f (x̄). This also gives us sequences {uk} in

X and tk > 0 converging to u and 0 respectively such that x̄ + tkuk ∈ dom f for all k ∈ IN.

Using these two along with (2.17), leads us to

dg(F (x̄))(∇F (x̄)u) = lim
k→∞

[g(F (x̄+ tkuk))− g(F (x̄))

tk
+
g(F (x̄) + tky(tk))− g(F (x̄+ tkuk))

tk

]
≥ lim inf

k→∞

g(F (x̄+ tkuk))− g(F (x̄))

tk
− ` lim sup

k→∞
‖F (x̄+ tkuk)− F (x̄)

tk
− y(tk)‖

≥ d(g ◦ F )(x̄)(u)− ` lim sup
k→∞

‖∇F (x̄)uk +
o(tk)

tk
− y(tk)‖,
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where ` is a Lipschtiz constant of g around F (x̄) relative to its domain. Since y(tk) →

∇F (x̄)u, we get lim supk→∞ ‖∇F (x̄)uk + o(tk)
tk
− y(tk)‖ = 0. This proves the subderivative

chain rule (2.16).

Turing to the proof of the last part, we are going to show that f is epi-differentiable at x̄.

Assume that MSQC (2.8) holds at x̄. Since MSQC implies AQC at x̄ the subderivative chain

rule in (2.16) holds at x̄. Moreover, we conclude from Lemma 2.8, that dg(F (x̄))(∇F (x̄).) =

df(x̄)(.) is a proper function. To finish the proof by using Lemma 2.9 we only need verify

(2.15) for all u ∈ X. Thus we take u ∈ X with dg(F (x̄))(∇F (x̄)u) be finite. This yields

∇F (x̄)u ∈ Tdom g. Choose the path y(.) in Y such that (2.17) holds. Now applying MSQC

(2.8), with x := x̄+ tu for sufficiently small t > 0 we have

dist(x̄+ tu ; dom f) ≤ κ dist(F (x̄+ tu) ; dom g),

which in turn results in the relationships

dist(u ;
dom f − x̄

t
) ≤ κ

t
dist(F (x̄) + t∇F (x̄)u+ o(t) ; dom g)

≤ κ

t
‖F (x̄) + t∇F (x̄)u+ o(t)− F (x̄)− ty(t)‖

= κ ‖∇F (x̄)u− y(t) +
o(t)

t
‖.

Thus for all t > 0 sufficiently small, we find u(t) ∈ dom f−x̄
t

such that

‖u− u(t)‖ ≤ κ ‖∇F (x̄)u− y(t) +
o(t)

t
‖+ t.

This tells us that x̄ + tu(t) ∈ Ω for all t > 0 sufficiently small, and that limt↓0 u(t) = u.

Furthermore since g is Lipschitz continuous around F (x̄) relative to dom g we have

‖g(F (x̄) + ty(t))− g(F (x̄+ tu(t)))‖
t

= ` ‖∇F (x̄)u(t) +
o(t)

t
− y(t)‖ → 0. as t ↓ 0.
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Taking the above into consideration we arrive at

dg(F (x̄))(∇F (x̄)u) = lim
t↓0

[g(F (x̄+ tu(t)))− g(F (x̄))

t
+
g(F (x̄) + ty(t))− g(F (x̄+ tu(t)))

t

]
= lim

t↓0

g(F (x̄+ tu(t)))− g(F (x̄))

t
= lim

t↓0

f(x̄+ tu(t))− f(x̄)

t
≤ df(x̄)(u)

All above inequalities hold as equality due to (2.16), in particular this ensures (2.15) holds.

Thus the proof of the theorem is complete. �

As it can be seen in Theorem 2.10 the metric subregularity qualification condition, in

addition to the chain rule formula (2.16), ensures the epi-differentiability of the composite

function (4.35). In the next section we will see that the metric subregularity reveals a

stronger regularity property for the composition (3.4), called prox-regularity, which is a

crucial regularity for the second-order theory.

Corollary 2.11 (subderivative sum rule) Let f : X → R and h : X → R be finite at

x̄ and Lipschitz around x̄ relative to their domains. Let the following metric qualification

condition hold: there exist κ > 0 and U a neighborhood of x̄ such that for all x ∈ U one has

dist(x ; dom f ∩ domh) ≤ κ
(
dist(x; dom f) + dist(x, domh)

)
(2.18)

Then following subderivative sum rule holds at x̄

d(f + h)(x̄)(u) = df(x̄)(u) + dh(x̄)(u) for all u ∈ X

Furthermore, if both f and h are epi-differentiable at x̄, then f +h is epi-differentiable at x̄.

Proof.

Define g : X×X→ R with g(x, y) := f(x)+h(y), and F : X→ X×X, by F (x) := (x, x).

It is not difficult to check that the metric qualification condition in (2.18) is reduced to the

MSQC (2.8) at x̄ for the new composition g ◦ F . We claim g is epi-differentiable at (x̄, x̄).
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Pick (u, z) ∈ X× X clearly we have

∆tg(x̄, x̄)(u, z) = ∆tf(x̄)(u) + ∆th(x̄)(z).

Let u(.) and z(.) be the two paths satisfying epi-differentibility criteria in Lemma 2.9 for

functions f and h respectively. Then we have:

dg(x̄, x̄)(u, z) ≤ lim inf
t↓0

∆tψ(x̄, x̄)(u(t), z(t)) = lim inf
t↓0
{∆tf(x̄)(u(t)) + ∆th(x̄)(z(t))}

= lim
t↓0

∆tf(x̄)(u(t)) + lim
t↓0

∆th(x̄)(z(t))

= df(x̄)(u) + dh(x̄)(z).

Actually the inequality ≤ in above holds as equality because we always have

df(x̄)(u) + dh(x̄)(z) ≤ dg(x̄, x̄)(u, z).

This proves that ψ is epi-differentibal at (x̄, x̄). Now by applying Theorem 2.10 (ii), for all

u ∈ X we get that

d(f + h)(x̄)(u) = d(ψ ◦ F )(x̄)(u) = dψ(F (x̄))(∇F (x̄)u)

= dψ(x̄, x̄)(u, u) = df(x̄)(u) + dh(x̄)(u).

This finishes the proof the Corollary. �

Remark 2.12 We proved Theorem 2.10 under epi-differentiablity assumption on g. In

many applications g is a convex function which yields its epi-differentiability everywhere on

its domain. It is worth mentioning that in the composition structure (3.4) if g is convex

and F (x̄) ∈ ri dom g then g is Lipschitz continuous around F (x̄) relative to its domain. We

will see that the convexity of g plays a crucial role to obtaining the exact first and second-

order chain roule for the composition (3.4). For this reason and that the convexity of g is

not a restriction in applications, for the rest of the thesis we assume g is convex and lower

semicontinuous. We will see that the convexity of g together with the metric subregularity



28

qualification (2.8) ensures some useful regularity and the exact first-order chain rule for the

composition f = g ◦ F . Therefore, it is nice if we assign a name for such compositions.

We close this section with following definition.

Definition 2.13 (subamenabl functions) Let f : X → R be finite at x̄. We say f is

subamenable at x̄ if there exist functions g : Y→ R and F : X→ Y and an open neighborhood

U of x̄ such that the following properties hold:

(i) f(x) = g(F (x)) for all x ∈ U ,

(ii) F is continuously differentiable on U .

(iii) g is convex, l.s.c on U and Lipschitz relative to its domain around x̄ .

(iv) The metric subregularity qualification (2.8) holds at x̄.

We say the set Ω is subamenable at x̄ if δΩ is subamenable function at x̄. The functions f is

called strongly subamenable at x̄ if f is subamenable fucntion and F is twice-continuously dif-

ferentiable in (ii), furthermore, f is called fully subamenable at x̄ if f is strongly subamenable

where additionally g is piecewise linear quadratic function.

It is easy to observe that the subamenability is a robust property, in the sense that if f

is subamenable at x̄ then there exists a neighborhood U of x̄ such that f is subamenable

at all points in U ∩ dom f with the same Lipschitz and metric subregularity constants. By

Theorem 2.10 the subderivative of any subamenable function f can be fully written in terms

of it decomposition g and F . In particular, the subderivative function, df(x̄) : X → R is

convex and lower semicontinuous function. Furthermore it is finite everywhere if g is finite

around x̄.

The amenable, strongly amenable and fully amenable functions introduced by Rockafel-

lar [54, Definition 10.23], are defined in a similar way, the main difference is qualification
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condition. Indeed Rockafellar used the basic qualification (2.4) for amenable structures which

is strictly stronger than metric subregularity qualification condition. Luckily the composition

(3.4) is strongly subamenable in many applications such composite optimization examples

we mentioned in the introduction chapter.

2.4 Subdifferential

The main objective of this section is developing subdifferential calculus via Dini-

Hadamard subdifferential. The approach we use to develop first-order calculus fundamentally

differs from the exteremal principle used in [33] or penalization method in [54]. We assume

the reader is familiar with sum and chain rules of convex function via convex subdifferential,

denoted by ∂. We basically first establish this calculus under assumption the Lipschitzian,

then we relax this assumption to the relatively Lipschitzian. In particular, we establish exact

subdifferential chain rule for the composition the subamenable composition functions. We

start by recalling the definition of Dini-Hadamard subdifferential from [25, Definition 4.21].

Given the function f : X→ R, finite at x̄, the Dini-Hadamard subdifferential is defined by

∂−f(x̄) := {v ∈ X | 〈v, u〉 ≤ df(x̄)(u) for all u ∈ X}.

It is not difficult to see that

∂−f(x̄) = {v ∈ X | (v,−1) ∈ N−epi f (x̄, f(x̄))}

Dini-Hadamard subdifferential agrees with the well known Fréchet subdifferential in finite

dimensional spaces. It is clear that from definition we have

sup{〈v, u〉 | v ∈ ∂−f(x̄)} ≤ df(x̄)(u)

under some regularity conditions, such as Clarke regularity, equality holds. In particular

if f is convex then the above inequality holds as equality. It is not diffucult to show that

for any set Ω with x̄ ∈ Ω we have ∂−δΩ(x̄) = N−Ω (x̄). For convex cases the Dini-Hadamard
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subdifferential and normal cone reduce to thier counterpart in convex analysis. Throughout

this dissertation we use the notations ∂ and NΩ for the convex subdifferential and convex

normal cone respectively.

Example 2.14 (subdifferential of distance function) Let Ω be a closed set with x̄ ∈ Ω.

Define f(x) := dist(x; Ω). Then we have

df(x̄)(u) = dist(u ; TΩ(x̄)) ∂−f(x̄) = N−Ω (x̄) ∩ IB.

Proof.

Proof is straightforward; see [54, Example 8.53] �

The following lemma enables us to calculate the Dini-Hadamard subdifferential of suba-

menable functions through the convex subdifferential.

Lemma 2.15 Let f : X→ R is subamenable at x̄. Then df(x̄) : X→ R is convex and lower

semicontinous function and we have:

∂−f(x̄) = ∂[df(x̄)](0)

Proof.

As we discussed earlier the convexity of df(x̄) follows from subamenability of f at x̄ and

Theorem 2.10. To prove the formula we proceed by definition of Dini-Hadamard subdiffer-

ential in terms of normal cone.

v ∈ ∂−f(x̄)⇐⇒ (v,−1) ∈ N−((x̄, f(x̄)) ; epi f) = T ∗((x̄, f(x̄)) ; epi f) (2.19)

=
(
epi df(x̄)

)∗
= N((0, 0) ; epi df(x̄))

⇐⇒ v ∈ ∂[df(x̄)](0).

This completes the proof. �
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In the following we prove the chain rule subdifferential for subamenable composition

when the outer function g is finite around the reference point. Later in Theorem 2.19 we

drop the finitness assumption for g.

Theorem 2.16 Let f := g ◦ F be a subamenable composition at x̄. Furthure assume that

g : Y→ R is finite around F (x̄). Then the following chain rule formula holds:

∂−(g ◦ F )(x̄) = ∇F (x̄)∗∂g(F (x̄))

Proof.

To prove this chain rule we get help from convex subdifferential chain rule. Indeed we are

going to apply convex subdifferential chain rule for composition of the finite convex function

dg(F (x̄)) and the linear function u → ∇F (x̄)u. By Lemma 2.15 and Theorem (2.10) we

have:

∂−(g ◦ F )(x̄) = ∂[d(g ◦ F )(x̄)](0) = ∂[dg(F (x̄))(∇F (x̄) .)](0) (2.20)

= ∇F (x̄)∗∂[dg(F (x̄)](0)

= ∇F (x̄)∗∂g(F (x̄))

This completes the proof of the Theorem. �

Corollary 2.17 ( normal cone chain rule for constraint sets) Let the set Ω :=

{x | F (x) ∈ Θ} contain x̄. Assume Θ is closed convex set and F is continuously dif-

ferentiable around x̄. Furthur assume that the metric subregularity constraint qualification

holds at x̄, in the sense that there exist a κ > 0 and a neighborhood U of x̄ such that for all

x ∈ U we have

dist(x ; Ω) ≤ κ dist(F (x) ; Θ). (2.21)
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Then following normal cone chain rule holds:

N−Ω (x̄) = ∇F (x̄)∗NΘ(F (x̄))

In fact for each v ∈ N−Ω (x̄) there exists λ ∈ NΘ(F (x̄)) with ‖λ‖ ≤ κ ‖v‖.

Proof.

By defining f(x) = dist(x ; Ω) and h(x) = κ dist(F (x) ; Θ) then the metric subregularity

constraint qualification (2.21) comes out f(x) ≤ h(x) for all x ∈ U. This yields ∂−f(x̄) ⊆

∂−h(x̄). Therefore by Example 2.14, the latter inclusion comes out as

N−Ω (x̄) ∩ IB ⊆ NΘ(F (x̄)) ∩ κIB, (2.22)

which implies N−Ω (x̄) ⊆ NΘ(F (x̄)). The proof of the other inclusion is straightforward and

it does not need any constraint qualification. The proof of the last statement follows from

(2.22). �

In Theorem 2.16 the assumption that requires g be finite function is restrictive. Indeed,

to involve the constraint set in composite optimization we must let g get infinity value. Our

goal is to dropping the finiteness assumption on g in Theorem 2.16. In this regard we use

following lemma taken from [38].

Lemma 2.18 (extension of Lipschitz continuity) Let f : X→ R be a Lipschitz contin-

uous function around x̄ relative to its domain with constant ` ∈ R+. Then there exist a

number ε > 0 and a function h : X → R, which agrees with f on IBε(x̄) ∩ dom f and which

is Lipschitz continuous on X with the same constant `. If in addition f is convex, then the

function h can be chosen to be convex as well.

Proof.

The local Lipschitz continuity of f relative to dom f gives us ε > 0 such that f is Lipschitz
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continuous on the set Ω := IBε(x̄) ∩ dom f with constant `. Considering the function

h(x) := inf
u∈Ω

{
f(u) + `‖x− u‖

}
, x ∈ X,

we can easily check (see, e.g., Rockafellar and Wets [54, Exercise 9.12]) that h agrees with

f on Ω while being Lipschitz continuous on X with the same constant `. Furthermore, the

convexity of f clearly yields the convexity of the function

ψ(x, u) := f(u) + δΩ(u) + `‖x− u‖, (x, u) ∈ X× X,

with respect to both variables. Having the representation h(x) = infu∈X ψ(x, u), we deduce

directly from the definition that h is convex on X. �

Now we are ready establish the chain rule formula for subamenable compositions.

Theorem 2.19 (chain rule for subamenable composition) Let f := g ◦ F be a suba-

menable composition at x̄. then following chain rule composition holds:

∂−(g ◦ F )(x̄) = ∇F (x̄)∗∂g(F (x̄))

Proof.Recalling definition 2.13, g is Lipschitz continuous around x̄ relative to dom g. There-

fore, by Lemma 2.18 there exist a convex Lipscitz function h and a neighborhood V of F (x̄)

such that g(y) = h(y) + δdom g(y) for y ∈ V. Hence, by applying the lemma 2.15, Corollary

2.11 and standard convex subdifferential sum rule we get

∂−(g ◦ F )(x̄) = ∂ [d(g ◦ F )(x̄)](0) = ∂[d(h ◦ F )(x̄) + d(δdom g ◦ F )(x̄)](0) (2.23)

= ∂[d(h ◦ F )(x̄)](0) + ∂[d(δdom g ◦ F )(x̄)](0)

= ∂−(h ◦ F )(x̄) +N−dom f (x̄)

= ∇F (x̄)∗∂h(F (x̄)) +∇F (x̄)∗N−dom g(F (x̄))

= ∇F (x̄)∗∂
(
h+ δdom g

)
(F (x̄)) = ∇F (x̄)∗∂g(F (x̄))
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This finishes the proof of the Theorem. �

Below is a consequence of the obtained chain rules, where the metric subregularity quali-

fication condition (2.8) is automatically satisfied. These results cannot be deduced from the

other known qualification conditions formulated in [24,25,33,54].

Corollary 2.20 ( chain rules for convex piecewise linear-quadratic functions) Let

f : Rn → R be defined by f(x) := g(Ax + a), where g : Rm → R is a convex piecewise

linear-quadratic function, A is an m×n matrix, and a ∈ Rn. Then for any point x ∈ dom f

we have

df(x)(w) = dg(Ax+ a)(Aw) and ∂f(x) = A∗∂g(Ax+ a).

Proof.Since g is a convex piecewise linear-quadratic function, its domain is a polyhedral

convex set. Then the Hoffman lemma 2.1, tells us that metric subregularity (2.8) with

f(x) := Ax+ a holds automatically at any point x ∈ dom f . The claimed chain rules follow

now from Theorems 2.10 and 2.19. �

below we obtain the sum rule for subamenable functions from the chain rule in Theorem

2.19.

Theorem 2.21 (subdifferential sum rule for subamenable functions) Let f and h

be subamenable at x̄. Assume the metric qualification (2.18) holds at x̄. Then f + h is

subamenable at x̄ and we have:

∂−(f + h)(x̄) = ∂−f(x̄) + ∂−h(x̄)

Proof.

Suppose f and h admit subamenable composition representations f = g1 ◦ F1 and h =

g2 ◦ F2 respectively. Defining F := (F1, F2) and g := g1 + g2. Using (2.18), it is not difficult

to check the metric subregulaity qualification condition (2.8) holds at x̄. This makes g ◦ F
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a subamenable composition at x̄. Now by applying Theorem 2.19 we get that

∂−(g ◦ F )(x̄) = ∇F (x̄)∗∂g(F (x̄)) (2.24)

= (∇F1(x̄)∗,∇F2(x̄)∗) [∂−g1(F1(x̄)) , ∂−(F2(x̄))]>

= ∇F (x̄)∗∂−g1(F1(x̄)) +∇F2(x̄)∗∂−g2(F2(x̄))

= ∂−(g1 ◦ F1)(x̄) + ∂−(g2 ◦ F2)(x̄)

= ∂−f(x̄) + ∂−h(x̄).

This completes the proof. �

The next corollary plays a significant role in deriving subsequent second-order results.

It establishes the boundedness (with quantitative estimates) of dual elements under MSQC

(2.8). The latter is well known and rather easy to check under metric regularity.

Corollary 2.22 (bounded multipliers) Let f := g ◦ F be a subamenable composition at

x̄ in which the Lipschitz and metric subregularity constants are ` > 0 and κ > 0 respectively.

Then for every vector v ∈ ∂−(g ◦ F )(x̄) there exists λ ∈ ∂g(F (x̄)) such that

v = ∇F (x̄)∗λ with ‖λ‖ ≤ `+ κ‖v‖+ κ`‖∇F (x̄)‖. (2.25)

Proof.

Assume without lost of generality that g is Lipschitz continuous relative to its entire

domain. Applying Lemma 2.18 to the convex outer function g in composition (3.4), we

find a convex Lipschitz continuous function h : Y → R such that g = h + δdom g. Pick

v ∈ ∂−(g◦F )(x̄). It follows from (2.23) that there exist λ1 ∈ ∂h(F (x̄)) and λ2 ∈ Ndom g(F (x̄))

such that v = ∇F (x̄)∗(λ1 + λ2). Since h is Lipschitz continuous with the same constant `

due to Lemma 2.18, we have ‖λ1‖ ≤ `. On the other hand, we can deduce from Corollary

2.17 that the following condition

‖λ2‖ ≤ κ‖∇F (x̄)∗λ2‖ = κ‖v −∇F (x̄)∗λ1‖.
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holds. Setting now λ := λ1 + λ2 leads us to

λ ∈ ∂h
(
F (x̄)

)
+Ndom g

(
F (x̄)

)
= ∂g

(
F (x̄)

)
.

Furthermore, it follows from the above discussion that

‖λ‖ = ‖λ1 + λ2‖ ≤ ‖λ1‖+ κ‖v −∇F (x̄)∗λ1‖ ≤ `+ κ‖v‖+ κ` ‖∇F (x̄)‖,

which readily verifies representation (2.25).

�

In the next result we study the robustness of the Dini-Hadamard subdifferential of sub-

amenable functions. We show that the subdifferential of subamenable functions at a given

point agrees with its limiting version, thus it caries information from neiborhood of points.

The limiting Dini-Hadamard subdifferential of function f : X → R at x̄ ∈ dom f is defined

by

∂L−f(x̄) := {v ∈ X | ∃ seq vk → v, xk
f→ x̄ with vk ∈ ∂−f(xk)} (2.26)

Proposition 2.23 (robustness property of subamenable functions) Let f be a suba-

menable function at x̄. Then ∂−f(x̄) = ∂L−f(x̄)

Proof.

It is clear that ∂−f(x̄)(x̄) ⊂ ∂L−f(x̄), to prove the opposite inclusion pick v ∈ ∂L−f(x̄),

and find sequences xk
f→ x̄ and vk → v such that vk ∈ ∂−f(x̄)(xk). Suppose that f admits

the subamenable representation f = g ◦F around x̄. Then by Corollary 2.22 for each k ∈ IN

sufficiently large, we can find the multiplier λk ∈ ∂g(F (xk)) such that vk = ∇F (x̄)∗λ and

‖λk‖ ≤ ` + κ‖vk‖ + κ` ‖∇F (xk)‖. Moreover, the sequence {vk} is bounded so is {λk}.

By passing to a subsequence we may assume {λk} is convergent to a vector λ. Hence,
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v = ∇F (x̄)∗λ. Now we show that λ ∈ ∂g(F (x̄)), to this end first note that λk ∈ ∂g(F (xk))

for all indexes k. This tells us that for each k we have

〈λk, y − F (xk)〉 ≤ g(y)− g(F (xk)) for all y ∈ Y.

Letting k →∞, we get

〈λ, y − F (x̄)〉 ≤ g(y)− g(F (x̄)) for all y ∈ Y

thus λ ∈ ∂g(F (x̄)). Finally, by applying again the Theorem 2.19, we have

v = ∇F (x̄)∗λ ∈ ∇F (x̄)∗∂g(F (x̄)) = ∂−f(x̄).

This completes the proof. �

Remember that (in finite dimensions) Fréchet subdifferential agrees with Dini-Hadamard

subdifferential thus the limiting Dini-Hadamard subdifferential is same as the well known

Limiting Subdifferential, denoted by ∂M , introduced by Mordukhovich; see [33, Defini-

tion 1.18]. Latter is no longer true in infinite dimensions, indeed in any normed space

the inclusion ∂Mf(x̄) ⊆ ∂L−f(x̄) holds and there are examples where the inclusion is strict.

In the next proposition we show that the strongly subamenable functions are prox-regular

at (around) reference points. Recall that a function f is strongly subamenable at x̄ if

it admits the subamenable composition f = g ◦ F around the point x̄ additionally F is

twice continuously differentiable around x̄. Also a function f is called prox-regular at x̄ for

v̄ ∈ ∂−f(x̄) if there exist r > 0 and ε > 0 such that for all x, u ∈ dom f ∩ IBε(x̄) and

v ∈ ∂−f(x) ∩ IBε(v̄) with f(x) ≤ f(x̄) + ε we have

−r
2
‖u− x‖2 + 〈v, u− x〉 ≤ f(u)− f(x)

In many applications the condition f(x) ≤ f(x̄) + ε in above definition holds for free, more

generally if we have the Subdifferential Continuity property for many functions appearing

in application. Recall from [54, Definition 13.28], a function f : X→ R is called subdifferen-
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tially continuous at x̄ if v ∈ ∂−f(x̄) and whenever (xk, vk)→ (x̄, v) with vk ∈ ∂−f(xk), one

has f(xk)→ f(x̄).

Prox-regularity together with subdifferential continuity is a very important regularity for

the second-order analysis. It was first introduced by Poliquin and Rockafellar in [45]. Since

then it has played a significant role in second-order variational analysis, from this point

of view it is very important to see when this regularity is present. Note that the orginal

definition of prox/subdifferential regularity is slightly different from what we defined above.

Indeed the orginal definition uses the ∂M , however, two definitions are equivalent for the

class of strongly subamenable function which is studied in this chapter.

Proposition 2.24 (strongly subamenable functions are prox-regular) Let f : X →

R be strongly subamenable at x̄. then f is prox-regular at x̄ for all v ∈ ∂−f(x̄).

Proof.

Since f is strongly subamenbale at x̄ then it is strongly subamenable for all x ∈ U∩dom f ,

where U is an open neighborhood of x̄. Fix v̄ ∈ ∂−f(x̄), and let V be a bounded and open

neighborhood of v̄. Suppose f admits the strongly subamenable composition f = g ◦ F

around x̄. Then the Corollary 2.22 tells us that there is M > 0 such that for all x ∈ Ω ∩ U

and v ∈ ∂−f(x) ∩ V , there exists λ ∈ ∂g(F (x)) such that

v = ∇F (x)∗λ , ‖λ‖ ≤M. (2.27)

Since F is C2 around x̄, we may assume that U is sufficiently small such that on which F

can be represented by

F (u)− F (x) = ∇F (x)(u− x) + η(u, x),

for some mapping η : X2 → Y and constant M ′ > 0 with ‖η(u, x)‖ ≤ M ′ ‖u − x‖2 for all
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x, u ∈ U . Indeed by mean value theorem we can choose

η(u, x) := ∇2F (cxu)
(
(u− x), (u− x)

)
, where cxu ∈ [x, u].

Now, by taking any x, u ∈ dom f ∩ U , and v ∈ ∂−f(x) ∩ V with corresponding λ selected

in (2.27) we have

g(F (u))− g(F (x)) ≥ 〈λ, F (u)− F (x)〉

= 〈λ,∇F (x)(u− x)〉+ 〈λ, η(u, x)〉

= 〈v, u− x〉+ 〈λ, η(u, x)〉

≥ 〈v, u− x〉 −MM ′ ‖u− x‖2. (2.28)

by setting r := 2MM ′ we arrive at

−r
2
‖u− x‖2 + 〈v, u− x〉 ≤ f(u)− f(x).

This finishes the proof of prox-regularity part. To the prove subdifferential continuity take

the sequence {(xk, vk)}∞k=1 in gph ∂−f such that (xk, vk) → (x̄, v̄) ∈ gph ∂−f . Assume,

without lost of generality, by (2.27) λk ∈ ∂g(F (xk)) is a convergent sequence to λ ∈ ∂g(F (x̄))

such that vk = ∇F (xk)
∗λk. Then by letting k →∞ we get

vk = ∇F (xk)
∗λk → ∇F (x̄)λ ∈ vk = ∇F (x̄)∗∂g(F (x̄)) = ∂−f(x̄).

This finishes the proof of the Proposition.

�

One immediate consequence of Proposition 2.24 is that if f is strongly subamenable

at x̄ then ∂−f(x̄) = ∂pf(x̄), where ∂p stands for the proximal subdifferential. Recall that

v ∈ ∂pf(x̄) if and only if there exist r > 0 such that for all x ∈ X

− r

2
‖x− x̄‖2 + 〈v, x− x̄〉 ≤ f(x)− f(x̄) (2.29)

Therefore when one is dealing with strongly subamenable functions (in finite dimensions),
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the choice of subdifferential does not really matter as all well known subdifferentials coincide

in this class of functions; such as limiting, proximal, Clarke and Fréchet. Thus if is strongly

subamenable at x̄, the we have

∂pf(x̄) = ∂−f(x̄) = ∂L−f(x̄) = ∂cf(x̄).

2.5 First-Order Optimality Conditions

In this section we are going to derive the first-order necessary optimality condition for

the composite optimization problem (1.1). The main idea is as follow, if x̄ ∈ X is a local

optimal solution for the problem

minimiz f(x) over all x ∈ X,

then it is not difficult to check that 0 ∈ ∂−f(x̄). Hence if f := φ+g◦F for some functions φ,

g and F , then by subdifferential calculus developed in previous sections we can write ∂− fully

in terms of φ, g and F . The constraint qualification conditions in optimization problems are

nothing but he qualification conditions ensuring the aforementioned calculus. In this section

we consider following fairly general composite optimization problem;

minimize φ(x) + g(F (x)) over all x ∈ X, (2.30)

where φ : X→ R and F : X→ Y are continuously differentiable around x̄ ∈ X and g : Y→ R

is a lower semicontinuous (l.s.c.) convex function.

Theorem 2.25 ( first-order necessary optimalty conditions) Let x̄ be a local solution

for the composite problem (2.30). Further, assume the metric subregularity constraint quali-

fication holds at x̄ which amounts to the existence of κ > 0 such that (2.8) holds. Then the

necessary optimality conditions holds as follow:



41

there exists λ ∈ Y with


0 ∈ ∇φ(x̄) +∇F (x̄)∗λ

λ ∈ ∂g(F (x̄))

‖λ‖ ≤ `+ κ‖∇φ(x̄)‖+ κ`‖∇F (x̄)‖

(2.31)

where ` is a relatively Lipschiz constant for g taken from (2.13).

Proof.

Find U an open neighborhood of x̄ on which φ is continuosly differentiable and g ◦ F is

subamenable composition. Since x̄ is a local optimal solution we have

0 ∈ ∂−
(
φ+ g ◦ F

)
(x̄)

Hence, by sum rule, Theorem 2.21, we get

0 ∈ ∇φ(x̄) + ∂−(g ◦ F )(x̄) ⇒ −∇φ(x̄) ∈ ∂−(g ◦ F )(x̄).

By Corollary 2.22 we can find λ ∈ ∂g(F (x̄)) such that −∇φ(x̄) = ∇F (x̄)λk and

‖λ‖ ≤ `+ κ‖∇φ(x̄)‖+ κ`‖∇F (x̄)‖.

�

Now we look at the constraint optimization problems as special case of problem (2.30).

We consider following general conic programming problem:

minimize φ(x) over all F (x) ∈ Θ, (2.32)

where φ and F are continuously differentiable around x̄ and Θ is a closed convex set. We

denote the feasible set of the problem (2.32) by Ω that is Ω := {x | F (x) ∈ Θ}.

Corollary 2.26 (first-order optimality condition of conic programming) Let x̄ be

a local solution for the conic programming (2.32). Further, assume the metric subregularity
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constraint qualification holds at x̄ which amounts to the existence of κ > 0 such that:

dist(x ; Ω) ≤ κ dist(F (x) ; Θ).

Then the necessary optimality conditions holds as follow:

there exists λ ∈ Y with


0 ∈ ∇φ(x̄) +∇F (x̄)∗λ

λ ∈ NΘ(F (x̄))

‖λ‖ ≤ κ‖∇φ(x̄)‖

Proof.

In Theorem 2.25 take g = δΘ. Then clearly g is Lipschitz relative to its domain with

constant ` = 0. �

Nonlinear programming is an important special case of conic programming which is for-

mulated as follows:

minimize φ(x) (2.33)

subject to fi(x) ≤ 0, i = 1, .., r

fi(x) = 0, i = r + 1, ...,m

where each fi and φ is continuouslt differentiabl around x̄. Denote the set of feasible solution

by Ω. and define f+
i (x) := max{0, fi(x)} for each x ∈ Rn.

Corollary 2.27 ( KKT conditions for nonlinear programming) Let x̄Rn be a local

solution for the nonlinear programming (2.33). Further, assume the metric subregularity

constraint qualification holds at x̄ which amounts to the existence of κ > 0 such that:

dist(x ; Ω) ≤ κ
( r∑
i=1

f+
i (x) +

m∑
i=r+1

|fi(x)|
)

(2.34)
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Then the necessary optimality conditions holds as follow:

there exist scalars λ1, ..., λm ∈ R s.t


0 = ∇φ(x̄) +

∑r
i=1 λi∇fi(x) +

∑m
i=r+1 λi∇fi(x)

λi ≥ 0, λifi(x̄) = 0, i = 1, ..., r∑m
i=1 |λi| ≤

√
mκ‖∇φ(x̄)‖

(2.35)

Proof.

In Corollary 2.26 set F := (f1, ..., f2) and Θ := Rr
+ × {0}m−r. Then It is not difficult to

check that

dist
(
F (x) ; Θ

)
=

r∑
i=1

f+
i (x) +

m∑
i=r+1

|fi(x)|.

Thus the error estimate in (2.34) reduces to metric subregularity constraint qualification.

Now by applying the Corollary 2.26 we come up to the KKT conditions. Note that

NΘ(F (x̄)) = {λ = (λ1, ..., λr, ..., λm) ∈ Rm | λi ≥ 0, λifi(x̄) = 0, i = 1, ..., r}

and

m∑
i=1

|λi| ≤
√
m

√√√√ m∑
i=1

|λi| =
√
m ‖λ‖.

This completes the proof. �

Note that the bounded multiplier condition is not included in traditional KKT condition,

it is in fact a byproduct of metric subregularity constraint qualification. It is worth mention-

ing that metric subregularity constraint qualification (2.34) is implied by the well-recognized

Mangasarian–Fromovitz constraint qualification. Moreover Hoffman lemma 2.1 tells us that

the metric subregularity holds for free if each fi in (2.33) is affine function. It is also possible

to write the KKT optimality conditions under the weaker constraint qualification, Abadie

constraint qualification, however, in this case the bounded multiplier condition is missing

which is crucial from second-order analysis and algorithmic point of view; see [36].
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CHAPTER 3 SECOND-ORDER VARIATIONAL ANALYSIS

This chapter addresses the composite optimization problem (1.1), i.e :

minimize ϕ(x) + g ◦ F (x) subject to x ∈ X. (3.1)

With the focus on the second-order variational analysis on the nonsmooth part f = g ◦ F .

In this chapter we mostly assume the composition g ◦ F makes a strongly subamenable

composition; see Definition 2.13. We recall the parabolic regularity from [54] which hap-

pens to be the key for establishing the second-order chain rule for the strongly subamenable

composition g ◦ F via second-order subderivatives. In parallel way we establish the second-

order chain rule via parabolic subderivative. The chapter also aims to provide a systematic

study of the twice epi-differentiability of extend-real-valued functions in finite dimensional

spaces. In particular, we pay special attention to the strongly subamenable compositions.

As we mentioned in introduction section the composite optimization problem (1.1) encom-

passes major classes of constrained and composite optimization problems including classical

nonlinear programming problems, second-order cone and semidefinite programming prob-

lems, eigenvalue optimizations problems [57], and fully amenable composite optimization

problems [51], see Example 3.20 for more detail. Consequently, the composite problem

(1.1) provides a unified framework to study second-order variational properties, including

the twice epi-differentiability and second-order optimality conditions, of the aforementioned

optimization problems. As argued below, the twice epi-differentiability carries vital second-

order information for extend-real-valued functions and therefore plays an important role in

modern second-order variational analysis.

A lack of an appropriate second-order generalized derivative for nonconvex extended-

real-valued functions was the main driving force for Rockafellar to introduce in [48] the

concept of the twice epi-differentiability for such functions. Later, in his landmark paper [51],
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Rockafellar justified this property for an important class of functions, called fully amenable,

that includes nonlinear programming problems but does not go far enough to cover other

major classes of constrained and composite optimization problems. Rockafellar’s results were

extended in [10, 23] for composite functions appearing in (1.1). However, these extensions

were achieved under a restrictive assumption on the second subderivative, which does not

hold for constrained optimization problems. Nor does this condition hold for other major

composite functions related to eigenvalue optimization problems; see [57, Theorem 1.2] for

more detail. Levy in [32] obtained upper and lower estimates for the second subderivative of

the composite function from (1.1), but fell short of establishing the twice epi-differentiability

for this framework.

The author, Sarabi and Mordukhovich observed recently in [39] that a second-order

regularity, called parabolic regularity (see Definition 3.3), can play a major role toward the

establishment of the twice epi-differentiability for constraint systems, namely when the outer

function g in (1.1) is the indicator function of a closed convex set. This vastly alleviated the

difficulty that was often appeared in the justification of the twice epi-differentiability for the

latter framework and opened the door for crucial applications of this concept in theoretical

and numerical aspects of optimization. Among these applications, we can list the following:

� the calculation of proto-derivatives of subgradient mappings via the connection be-

tween the second subderivative of a function and the proto-derivative of its subgradient

mapping (see equation (4.2));

� the calculation of the second subderivative of the augmented Lagrangian function as-

sociated with the composite problem (1.1), which allows us to characterize the second-

order growth condition for the augmented Lagrangian problem (cf. [39, Theorems 8.3

& 8.4]);

� the validity of the derivative-coderivative inclusion (cf. [54, Theorem 13.57]), which has
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important consequences in parametric optimization; see [40, Theorem 5.6] for a recent

application in the convergence analysis of the sequential quadratic programming (SQP)

method for constrained optimization problems.

In this chapter, we show that the twice epi-differentiability of the objective function in

(1.1) can be guaranteed under parabolic regularity. To achieve this goal, we demand that

the outer function g from (1.1) be locally Lipschitz continuous relative to its domain; see

the next section for the precise definition of this concept. Shapiro in [55] used a similar

condition but in addition assumed that this function is finite-valued. The latter does bring

certain restrictions for (1.1) by excluding constrained problems as well as piecewise linear-

quadratic composite problems. As shown in Example 3.20, major classes of constrained and

composite optimization problems , including ones mentioned in introduction, satisfy this

(relative) Lipschitzian condition. However, some composite problems such as the spectral

abcissa minimization (cf. [6]), namely the problem of minimizing the largest real parts of

eigenvalues, can not be covered by (1.1). The key sources of this chapter are [37,39].

3.1 Second-Order Tools in Variational Analysis

In this section we first briefly review basic constructions of variational analysis and gener-

alized differentiation employed in this chapter; see [33,54] for more detail. Given a nonempty

set Ω ⊂ X with x̄ ∈ Ω, recall the tangent cone TΩ(x̄) to Ω at x̄ is defined by

TΩ(x̄) =
{
w ∈ X| ∃ tk↓0, wk → w as k →∞ with x̄+ tkwk ∈ Ω

}
.

We say a tangent vector w ∈ TΩ(x̄) is derivable if there exist a constant ε > 0 and an arc

ξ : [0, ε]→ Ω such that ξ(0) = x̄ and ξ′+(0) = w, where ξ′+ signifies the right derivative of ξ

at 0, defined by

ξ′+(0) := lim
t↓0

ξ(t)− ξ(0)

t
.
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The set Ω is called geometrically derivable at x̄ if every tangent vector w to Ω at x̄ is

derivable. The geometric derivability of Ω at x̄ can be equivalently described by the sets

[Ω− x̄]/t converging to TΩ(x̄) as t ↓ 0. Convex sets are important examples of geometrically

derivable sets. The second-order tangent set to Ω at x̄ for a tangent vector w ∈ TΩ(x̄) is

given by

T 2
Ω(x̄, w) =

{
u ∈ X| ∃ tk↓0, uk → u as k →∞ with x̄+ tkw +

1

2
t2kuk ∈ Ω

}
.

A set Ω is said to be parabolically derivable at x̄ for w if T 2
Ω(x̄, w) is nonempty and for each

u ∈ T 2
Ω(x̄, w) there are ε > 0 and an are ξ : [0, ε] → Ω with ξ(0) = x̄, ξ′+(0) = w, and

ξ′′+(0) = u, where

ξ′′+(0) := lim
t↓0

ξ(t)− ξ(0)− tξ′+(0)
1
2
t2

.

It is well known that if Ω ⊂ X is convex and parabolically derivable at x̄ for w, then the

second-order tangent set T 2
Ω(x̄, w) is a nonempty convex set in X (cf. [4, page 163]).

Recall form chapter one that v ∈ X is a proximal subgradient of f at x̄ if there exists

r ∈ R+ and a neighborhood U of x̄ such that for all x ∈ U we have

f(x) ≥ f(x̄) + 〈v, x− x̄〉 − r

2
‖x− x̄‖2. (3.2)

The set of all such v is called the proximal subdifferential of f at x̄ and is denoted by ∂pf(x̄).

By definitions, it is not hard to obtain the inclusions ∂pf(x̄) ⊆ ∂−f(x̄) and equality holds if

f is strongly subamenable at x̄; see proposition 2.24.

Consider a set-valued mapping S : X ⇒ Y with its domain and graph defined, respec-

tively, by

domS =
{
x ∈ X| S(x) 6= ∅

}
and gph S =

{
(x, y) ∈ X× Y| y ∈ S(x)

}
.
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The graphical derivative of S at (x̄, ȳ) ∈ gph S is defined by

DS(x̄, ȳ)(w) =
{
v ∈ Y| (w, v) ∈ TgphS(x̄, ȳ)

}
, w ∈ X.

The set-valued mapping S is called strongly metrically subregular at (x̄, ȳ) if there are a

constant κ ∈ R+ and a neighborhood U of x̄ such that the estimate

‖x− x̄‖ ≤ κ d(ȳ, S(x)) for all x ∈ U

holds. It is known (cf. [11, Theorem 4E.1]) that the set-valued mapping S is strongly

metrically subregular at (x̄, ȳ) if and only if we have

0 ∈ DS(x̄, ȳ)(w) =⇒ w = 0. (3.3)

Given a function f : X→ R and a point x̄ with f(x̄) finite, define the parametric family

of second-order difference quotients for f at x̄ for v̄ ∈ X by

∆2
tf(x̄, v̄)(w) =

f(x̄+ tw)− f(x̄)− t〈v̄, w〉
1
2
t2

with w ∈ X, t > 0.

If f(x̄) is finite, then the second subderivative of f at x̄ for v̄ is given by

d2f(x̄, v̄)(w) = lim inf
t↓0

w′→w

∆2
tf(x̄, v̄)(w′), w ∈ X.

Below, we collect some important properties of the second subderivative that are used

throughout this paper. The proof is elementary and straightforward; parts (i) and (ii) were

taken from [54, Proposition 13.5] and part (iii) was recently observed in [38, Theorem 4.1(i)].

Proposition 3.1 (properties of second subderivative) Let f : X → R and (x̄, v̄) ∈

X× X with f(x̄) finite. Then the following conditions hold:

(i) the second subderivative d2f(x̄, v̄) is a lower semicontinuous (l.s.c.) function;

(ii) if d2f(x̄, v̄) is a proper function, meaning that d2f(x̄, v̄)(w) > −∞ for all w ∈ X and
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its effective domain, defined by

dom d2f(x̄, v̄) =
{
w ∈ X| d2f(x̄, v̄)(w) <∞

}
,

is nonempty, then we always have the inclusion

dom d2f(x̄, v̄) ⊂
{
w ∈ X| df(x̄)(w) = 〈v̄, w〉

}
;

(iii) if v̄ ∈ ∂pf(x̄), then for any w ∈ X we have d2f(x̄, v̄)(w) ≥ −r‖w‖2, where r ∈ R+ is

taken from (3.2). In particular, d2f(x̄, v̄) is a proper function.

Following [54, Definition 13.6], a function f : X→ R is said to be twice epi-differentiable

at x̄ for v̄ ∈ X, with f(x̄) finite, if the sets epi∆2
tf(x̄, v̄) converge to epi d2f(x̄, v̄) as t ↓ 0.

The latter means by [54, Proposition 7.2] that for every sequence tk ↓ 0 and every w ∈ X,

there exists a sequence wk → w such that

d2f(x̄, v̄)(w) = lim
k→∞

∆2
tk
f(x̄, v̄)(wk). (3.4)

We say f is properly epi-differetiable at x̄ ∈ dom f for v̄ if f is epi-differetiable at x̄ for

v̄ and the mapping w → d2f(x̄, v̄)(w) is proper. Since we are mostly interested to proper

epi-differetiability we provide following characterization of it whose proof is straightforward

and goes same idea in the proof of Lemma 2.9.

Lemma 3.2 (charecterization of properly epi-diffferentiable functions) Let f be fi-

nite at x̄ and w → d2f(x̄, v̄)(w) is a proper function. Then f is properly epi-differentiable

at x̄ for v̄ if and only if for each w ∈ X there exists a path w(.) : [0, 1]→ X, not necessarily

continuous, such wt := w(t)→ w as t ↓ 0 and

d2f(x̄, v̄)(w) = lim
t↓0

f(x̄+ twt)− f(x̄)− t〈v̄, wt〉
1
2
t2

.

It is easy to observe that if f is twice differentiable in classical sense at x̄, [54, Definition a]
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then f is both twice epi-differentiable at x̄ (for ∇f(x̄)) and for all w ∈ Rn one has

d2f(x̄,∇f(x̄))(w) = 〈w,∇2f(x̄)w〉.

Unlike the first order subderivative df(x̄) the second-order subderivative d2f(x̄, v̄) does not

have a geometric tangent set counterpart via the known tangent sets so far. This is one of the

main reasons why getting the calculus rules for d2f(x̄, v̄) is a hard task and it requires pure

analytic approach rather than geometric approach. In this regard the parabolic subderivative,

introduced by Ben-Tal and Zowe in [2], fills this gap. For f : X → R, a point x̄ with f(x̄)

finite, and a vector w with df(x̄)(w) finite, the parabolic subderivative of f at x̄ for w with

respect to z is defined by

d2f(x̄)(w z) := lim inf
t↓0

z′→z

f(x̄+ tw + 1
2
t2z′)− f(x̄)− tdf(x̄)(w)

1
2
t2

.

Recall from [54, Definition 13.59] that f is called parabolically epi-differentiable at x̄ for w if

dom d2f(x̄)(w ·) =
{
z ∈ X| d2f(x̄)(w z) <∞

}
6= ∅,

and for every z ∈ X and every sequence tk ↓ 0 there exists a sequences zk → z such that

d2f(x̄)(w z) = lim
k→∞

f(x̄+ tkw + 1
2
t2kzk)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

. (3.5)

Parabolic subderivative has a nice geometric interpretation in terms of second-order tangent

set. Indeed by [54, Example 13.62] we have

epi d2f(x̄)(w .) = T 2
epi f

(
(x̄, f(x̄)), (w, df(x̄)(w)

)
and parabolic epi-differentiablity f at x̄ for w coincides with parabolic derivability epi f

at (x̄, f(x̄)) for (w, df(x̄)(w)). Thus parabolic epi-differentiability guarantees the existence

of a vector z such that d2f(x̄)(w z) < ∞, this however does not rule out the possi-

bility that d2f(x̄)(w .) ≡ −∞. It is easy to observe that for any function f we have
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dom d2f(x̄)(w .) ⊆ T 2
dom f (x̄, w) where equality holds under some conditions. We will clarify

this issue in proposition 3.12.

The main interest in parabolic subderivatives in this paper lies in its nontrivial connection

with second subderivatives. Indeed, it was shown in [54, Proposition 13.64] that if the

function f : X → R is finite at x̄, then for any pair (v̄, w) ∈ X × X with df(x̄)(w) = 〈w, v̄〉

we always have

d2f(x̄, v̄)(w) ≤ inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
. (3.6)

As it will be observed in the next section, equality in this estimate amounts to a very

important regularity in second-order variational analysis.

3.2 Twice Epi-Differetiability of Parabolically Regular Functions

This section aims to delineate conditions under which the twice epi-differenibility of

extend-real-valued functions can be established. To this end, we appeal to an important

second-order regularity condition, called parabolic regularity, which was recently exploited

in [39] to study a similar property for constraint systems. We begin with the definition of

this regularity condition.

Definition 3.3 (parabolic regularity) A function f : X → R is parabolically regular at

x̄ for v̄ ∈ X if f(x̄) is finite and if for any w such that d2f(x̄, v̄)(w) < ∞, there exist,

among the sequences tk ↓ 0 and wk → w with ∆2
tk
f(x̄, v̄)(wk)→ d2f(x̄, v̄)(w), those with the

additional property that

lim sup
k→∞

‖wk − w‖
tk

<∞. (3.7)

A nonempty set Θ ⊂ X is said to be parabolically regular at x̄ for v̄ if the indicator function

δΘ is parabolically regular at x̄ for v̄.
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Although the notion of parabolic regularity was introduced first in [54, Definition 13.65], its

origin goes back to [8, Theorem 4.4], where Chaney observed a duality relationship between

his second-order generalized derivative and the parabolic subderivative, defined in [2] by Ben-

Tal and Zowe. This duality relationship was derived later by Rockafellar [49, Proposition 3.5]

for convex piecewise linear-quadratic functions. As shown in Proposition 3.8 below, the latter

duality relationship is equivalent to the concept of parabolic regularity from Definition 3.3

provided that v̄, appearing in Definition 3.3, is a proximal subgradient. A different second-

order regularity was introduced by Bonnans, Comminetti, and Shapiro [5, Definition 3] for

sets, which was later extended in [4, Definition 3.93] for functions. It is not difficult to

see that parabolic regularity is implied by the second-order regularity in the sense of [5];

see [4, Proposition 3.103] for a proof of this result. Moreover, the example from [4, page 215]

shows that the converse implication may not hold in general.

We showed in [39] that important sets appearing in constrained optimization problems,

including polyhedral convex sets, the second-order cone, and the cone of positive semidefinite

symmetric matrices, are parabolically regular. Below, we add two important classes of

functions for which this property automatically fulfill. We begin first by convex piecewise-

linear quadratic functions and then consider eigenvalues functions. While the former was

justified in [54, Theorem 13.67], we provide below a different and simpler proof.

Example 3.4 (piecewise linear-quadratic functions) Assume that the function f :

X → R with X = Rn is convex piecewise linear-quadratic. Recall that f is called piece-

wise linear-quadratic if dom f = ∪si=1Ci with s ∈ IN and Ci being polyhedral convex sets for

i = 1, . . . , s, and if f has a representation of the form

f(x) = 〈Aix, x〉+ 〈ai, x〉+ αi for all x ∈ Ci,

where Ai is an n × n symmetric matrix, ai ∈ Rn, and αi ∈ R for i = 1, · · · , s. It was

proven in [54, Propsoition 13.9] that the second subderivative of f at x̄ for v̄ ∈ ∂f(x̄) can be
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calculated by

d2f(x̄, v̄)(w) =


〈Aiw,w〉 if w ∈ TCi

(x̄) ∩ {v̄i}⊥,

∞ otherwise,

(3.8)

where v̄i := v̄ − Aix̄ − ai. To prove the parabolic regularity of f at x̄ for v̄, pick a vector

w ∈ Rn with d2f(x̄, v̄)(w) < ∞. This implies that there is an i with 1 ≤ i ≤ s such that

w ∈ TCi
(x̄)∩{v̄i}⊥. Since Ci is a polyhedral convex set, we conclude from [54, Exercise 6.47]

that there exists an ε > 0 such that x̄+ tw ∈ Ci for all t ∈ [0, ε]. Pick a sequence tk ↓ 0 such

that tk ∈ [0, ε] and let wk := w for all k ∈ IN . Thus a simple calculation tells us that

∆2
tk
f(x̄, v̄)(wk) =

f(x̄+ tkwk)− f(x̄)− tk〈v̄, wk〉
1
2
t2k

=
1
2
〈Ai(x̄+ tkwk), x̄+ tkwk〉+ 〈ai, x̄+ tkwk〉+ αi − 1

2
〈Aix̄, x̄〉 − 〈ai, x̄〉 − αi − tk〈v̄, wk〉

1
2
t2k

= 〈Aiw,w〉+
tk〈wk, v̄ − Aix̄− ai〉

1
2
t2k

= 〈Aiw,w〉,

which in turn implies by (3.8) that ∆2
tk
f(x̄, v̄)(wk)→ d2f(x̄, v̄)(w) as k →∞. Since (3.7) is

clearly holds, f is parabolic regular at x̄ for v̄.

Example 3.5 (eigenvalue functions) Let X = Sn be the space of n × n symmetric real

matrices, which is conveniently treated via the inner product

〈A,B〉 := trAB

with trAB standing for the sum of the diagonal entries of AB. For a matrix A ∈ Sn, we

denote by A† the Moore-Penrose pseudo-inverse of A and by λ(A) = (λ1(A), . . . , λn(A)) the

vector of eigenvalues of A in nonincreasing order with eigenvalues repeated according to their

multiplicity. Given i ∈ {1, . . . , n}, denote by `i(A) the number of eigenvalues that are equal

to λi(A) but are ranked before i including λi(A). This integer allows us to locate λi(A) in
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the group of the eigenvalues of A as follows:

λ1(A) ≥ · · · ≥ λi−`i(A) > λi−`i(A)+1(A) = · · · = λi(A) ≥ · · · ≥ λn(A).

The eigenvalue λi−`i(A)+1(A), ranking first in the group of eigenvalues equal to λi(A), is

called the leading eigenvalue. For any i ∈ {1, . . . , n}, define now the function αi : Sn → R

by

αi(A) = λi−`i(A)+1(A) + · · ·+ λi(A), A ∈ Sn. (3.9)

It was proven in [57, Theorem 2.1] that ∂̂αi(A) = ∂αi(A) and that the second subderivative

of αi at A for any V ∈ ∂αi(A) is calculated for every W ∈ Sn by

d2αi(A, V )(W ) =


2〈V,W (λi(A)In − A)†W 〉 if dαi(A)(W ) = 〈X,W 〉,

∞ otherwise,

(3.10)

where In stands for the n × n identity matrix. Moreover, for any W ∈ Sn with

d2αi(A,H)(W ) < ∞ and any sequence tk ↓ 0, the proof of [57, Theorem 2.1] confirms

that

∆2
tk
αi(A, V )(Wk)→ d2αi(A, V )(W ) with Wk := W − tkW (λi(A)In − A)†W.

This readily verifies (3.7) and thus the functions αi, i ∈ {1, . . . , n}, are parabolically regular

at A for any V ∈ ∂αi(A). In particular, for i = 1, the function αi from (3.9) boils down to

the maximum eigenvalue function of a matrix, namely

λmax(A) := α1(A) = λ1(A), A ∈ Sn. (3.11)

So the maximum eigenvalue function λmax is parabolically regular at A for any V ∈ ∂λmax(A).

This can be said for any leading eigenvalue λi−`i(A)+1(A) since we have αi(B) = λi−`i(A)+1(B)

for every matrix B ∈ Sn sufficiently close to A. Another important function related to

the eigenvalues of a matrix A ∈ Sn is the sum of the first i components of λ(A) with
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i ∈ {1, . . . , n}, namely

σi(A) = λ1(A) + · · ·+ λi(A). (3.12)

It is well-known that the functions σi are convex (cf. [54, Exercise 2.54]). Moreover, we

have σi(A) = αi(A) + σi−`i(A)(A). It follows from [57, Proposition 1.3] that σi−`i(A) is twice

continuously differentiable (C2-smooth) on Sn. This together with the parabolic regularity

of αi ensures that σi are parabolically regular at A for any V ∈ ∂σi(A).

To proceed, let f : X → R and pick (x̄, v̄) ∈ gph ∂f . The critical cone of f at (x̄, v̄) is

defined by

Kf (x̄, v̄) :=
{
w ∈ X | df(x̄)(w) = 〈v̄, w〉

}
. (3.13)

When f is the indicator function of a set, this definition boils down to the classical definition

of the critical cone for sets; see [11, page 109]. It is not difficult to see that the set Kf (x̄, v̄)

is a cone in X. Taking into account Proposition 3.1(ii), we conclude that the domain of

the second subderivative d2f(x̄, v̄) is always included in the critical cone Kf (x̄, v̄) provided

that d2f(x̄, v̄) is a proper function. The following result provides conditions under which the

domain of the second subderivative is the entire critical cone.

Proposition 3.6 (domain of second subderivatives) Assume that f : X → R is finite

at x̄ with v̄ ∈ ∂pf(x̄) and that for every w ∈ Kf (x̄, v̄) we have dom d2f(x̄)(w ·) 6= ∅. Then

for all w ∈ Kf (x̄, v̄) we have

− r‖w‖2 ≤ d2f(x̄, v̄)(w) ≤ inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
<∞, (3.14)

where r ∈ R+ is a constant satisfying (3.2). In particular, we have dom d2f(x̄, v̄) = Kf (x̄, v̄).

Proof.

The lower estimate of d2f(x̄, v̄) in (3.14) results from Proposition 3.1(iii), which readily
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implies that d2f(x̄, v̄)(0) = 0. This tells us that the second subderivative d2f(x̄, v̄) is proper.

Employing now Proposition 3.1(ii) gives us the inclusion dom d2f(x̄, v̄) ⊂ Kf (x̄, v̄). The

upper estimate of d2f(x̄, v̄)(w) in (3.14) directly comes from (3.6). By assumptions, for

any w ∈ Kf (x̄, v̄), there exists a zw so that d2f(x̄)(w zw) < ∞. This guarantees that the

infimum term in (3.14) is finite. Pick w ∈ Kf (x̄, v̄) and observe from (3.14) that d2f(x̄, v̄)(w)

is finite. This yields the inclusion Kf (x̄, v̄) ⊂ dom d2f(x̄, v̄), which completes the proof. �

The following example, taken from [54, page 636], shows the domain of the second sub-

derivative can be the entire setKf (x̄, v̄) even if the assumption on the domain of the parabolic

subderivative in Proposition 3.6 fails. As shown in the next section, however, this condition

is automatically satisfied for composite functions appearing in (1.1).

Example 3.7 (domain of second subderivative) Define the function f : X → R with

X = R2 by f(x1, x2) = |x2 − x4/3
1 | − x2

1. As argued in [54, page 636], the subderivative and

subdifferential of f at x̄ = (0, 0), respectively, are

df(x̄)(w) = |w2| and ∂f(x̄) =
{
v = (v1, v2) ∈ R2| v1 = 0, |v2| ≤ 1

}
,

where w = (w1, w2) ∈ R2. It is not hard to see that v̄ = (0, 0) ∈ ∂pf(x̄). Moreover, the

second subderivative of f at x̄ for v̄ has a representation of the form

d2f(x̄, v̄)(w) =


−2w2

1 if w2 = 0,

∞ if w2 6= 0.

Using the above calculation tells us that Kf (x̄, v̄) = {w = (w1, w2)|w2 = 0}. Thus we have

dom d2f(x̄, v̄) = Kf (x̄, v̄). However, for any w = (w1, w2) ∈ Kf (x̄, v̄) with w1 6= 0 we have

d2f(x̄)(w z) =∞ for all z ∈ R2,

which confirms that the assumption related to the domain of the parabolic subderivative in

Proposition 3.6 fails.
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We proceed next by providing an important characterization of the parabolic regularity

that plays a key role in our developments in this paper.

Proposition 3.8 (characterization of parabolic regularity) Assume that f : X → R

is finite at x̄ with v̄ ∈ ∂pf(x̄). Then the function f is parabolically regular at x̄ for v̄ if and

only if we have

d2f(x̄, v̄)(w) = inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
(3.15)

for all w ∈ Kf (x̄, v̄). Furthermore, for any w ∈ dom d2f(x̄, v̄), there exists a z̄ ∈

dom d2f(x̄)(w ·) such that

d2f(x̄, v̄)(w) = d2f(x̄)(w z̄)− 〈z̄, v̄〉. (3.16)

Proof.

It follows from v̄ ∈ ∂pf(x̄) and Proposition 3.1(ii)-(iii) that the second subderivative

d2f(x̄, v̄) is a proper function and

dom d2f(x̄, v̄) ⊂ Kf (x̄, v̄). (3.17)

Assume now that f is parabolically regular at x̄ for v̄. If there exists a w ∈ Kf (x̄, v̄) \

dom d2f(x̄, v̄), then (3.15) clearly holds due to (3.6). Suppose now that w ∈ dom d2f(x̄, v̄).

By Definition 3.3, there are sequences tk ↓ 0 and wk → w for which we have

∆2
tk
f(x̄, v̄)(wk)→ d2f(x̄, v̄)(w) and lim sup

k→∞

‖wk − w‖
tk

<∞.

Since the sequence zk := 2[wk−w]/tk is bounded, we can assume by passing to a subsequence
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if necessary that zk → z̄ as k →∞ for some z̄ ∈ X. Thus we have wk = w + 1
2
tkzk and

d2f(x̄, v̄)(w) = lim
k→∞

f(x̄+ tkwk)− f(x̄)− tk〈v̄, wk〉
1
2
t2k

= lim
k→∞

f(x̄+ tkw + 1
2
t2kzk)− f(x̄)− tk〈v̄, w〉

1
2
t2k

− 〈v̄, zk〉

≥ lim inf
k→∞

f(x̄+ tkw + 1
2
t2kzk)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

− 〈v̄, z̄〉

≥ d2f(x̄)(w z̄)− 〈v̄, z̄〉.

Combining this and (3.6) implies that (3.15) and (3.16) hold for all w ∈ dom d2f(x̄, v̄). To

obtain the opposite implication, assume that (3.15) holds for all w ∈ Kf (x̄, v̄). To prove the

parabolic regularity of f at x̄ for v̄, let d2f(x̄, v̄)(w) <∞, which by (3.17) yields w ∈ Kf (x̄, v̄).

Employing now [54, Proposition 13.64] results in

d2f(x̄, v̄)(w) = inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
= lim inf

t↓0, w′→w

[w′−w]/t bounded

∆2
tf(x̄, v̄)(w′).

The last equality clearly justifies (3.7), and thus f is parabolically regular at x̄ for v̄.

This completes the proof. �

We next show that the indicator function of the cone of n × n positive semidefinite

symmetric matrices, denoted by Sn+, is parabolic regular. This can be achieved via [39,

Theorem 6.2] using the theory of C2-cone reducible sets but below we give an independent

proof via Proposition 3.8.

Example 3.9 (parabolic regularity of Sn+) Let Sn− stand for the cone of n× n negative

semidefinite symmetric matrices. For any A ∈ Sn−, we are going to show that f := δSn− is

parabolic regular at A for any V ∈ NSn−(A). Since we have Sn+ = −Sn−, this clearly yields

the same property for Sn+. Using the notation in Example 3.5, we can equivalently write

Sn− =
{
A ∈ Sn|λ1(A) ≤ 0

}
, (3.18)

which in turn implies that δSn−(A) = δR−(λ1(A)) for any A ∈ Sn. If A is negative definite, i.e.,
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λ1(A) < 0, then our claim immediately follows from NSn−(A) = {0} for this case. Otherwise,

we have λ1(A) = 0. Pick V ∈ NSn−(A) and conclude from (3.18) and the chain rule from

convex analysis that NSn−(A) = R+∂λ1(A), which implies that V = rB for some r ∈ R+

and B ∈ ∂λ1(A). If r = 0, we get V = 0 and parabolic regularity of δSn− at A for V follows

directly from the definition. Assume now r > 0 and pickW ∈ Kf (A, V ). The latter amounts

to

〈V,W 〉 = dδSn−(A)(W ) = 0 and W ∈ TSn−(A).

Employing now [4, Proposition 2.61] tells us that dλ1(A)(W ) ≤ 0. Since B ∈ ∂λ1(A) and

〈B,W 〉 = 0, we arrive at dλ1(A)(W ) = 0. We know from [54, Example 10.28] that

dλ1(A)(W ) = lim
t↓0

W ′→W

∆tλ1(A)(W ′) with ∆tλ1(A)(W ′) :=
λ1(A+ tW ′)− λ1(A)

t
.

Using direct calculations, we conclude for any t > 0 and W ′ ∈ Sn that

∆2
t δSn−(A, V )(W ′) = ∆2

t δR−(λ1(A), r)(∆tλ1(A)(W ′)) + r∆2
tλ1(A,B)(W ′),

which in turn results in

d2δSn−(A, V )(W ) ≥ d2δR−(λ1(A), r)(dλ1(A)(W )) + rd2λ1(A,B)(W ).

Since r > 0, λ1(A) = 0, and dλ1(A)(W ) = 0, we conclude from [39, Example 3.4] that

d2δR−(λ1(A), r)(dλ1(A)(W )) = δKR− (λ1(A),r)(0) = δ{0}(0) = 0.

Using this together with (3.10) brings us to

d2δSn−(A, V )(W ) ≥ −2r〈B,WA†W 〉 = −2〈V,WA†W 〉.

On the other hand, we conclude from (3.14) that

d2δSn−(A, V )(W ) ≤ −σT 2
Sn−

(A,W )(V ) = −2〈V,WA†W 〉,

where the last equality comes from [4, page 487] with σT 2
Sn−

(A,W ) standing for the support
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function of T 2
Sn−

(A,W ). Combining these confirms that

d2δSn−(A, V )(W ) = −σT 2
Sn−

(A,W )(V ) = −2〈V,WA†W 〉 for all W ∈ Kf (A, V ).

This together with Proposition 3.8 tells us that Sn− is parabolic regular at A for V .

We are now in a position to establish the main result of this section, which states that

parabolically regular functions are always twice epi-differentiable.

Theorem 3.10 (twice epi-differenitability of parabolically regular functions) Let

f : X → R be finite at x̄ and v̄ ∈ ∂pf(x̄) and let f be parabolically epi-differentiable at x̄

for every w ∈ Kf (x̄, v̄). If f is parabolically regular at x̄ for v̄, then it is properly twice

epi-differentiable at x̄ for v̄ with

d2f(x̄, v̄)(w) =


minz∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
if w ∈ Kf (x̄, v̄),

+∞ otherwise.

(3.19)

Proof.

It follows from the parabolic epi-differentiability of f at x̄ for every w ∈ Kf (x̄, v̄) and

Proposition 3.6 that dom d2f(x̄, v̄) = Kf (x̄, v̄). This together with (3.15) and (3.16) justifies

the second subderivative formula (3.19). To establish the twice epi-differentiability of f at

x̄ for v̄, we are going to show that (3.4) holds for all w ∈ X. Pick w ∈ Kf (x̄, v̄) and an

arbitrary sequence tk ↓ 0. Since f is parabolically regular at x̄ for v̄, by Proposition 3.8, we

find a z̄ ∈ X such that

d2f(x̄, v̄)(w) = d2f(x̄)(w z̄)− 〈z̄, v̄〉. (3.20)

By the parabolic epi-differentiability of f at x̄ for w, we find a sequence zk → z̄ for which

we have

d2f(x̄)(w z̄) = lim
k→∞

f(x̄+ tkw + 1
2
t2kzk)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

.
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Define wk := w + 1
2
tkzk for all k ∈ IN . Using this and w ∈ Kf (x̄, v̄), we obtain

∆2
tk
f(x̄, v̄)(wk) =

f(x̄+ tkwk)− f(x̄)− tk〈v̄, wk〉
1
2
t2k

=
f(x̄+ tkw + 1

2
t2kzk)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

− 〈v̄, zk〉.

This together with (3.8) results in

lim
k→∞

∆2
tk
f(x̄, v̄)(wk) = d2f(x̄)(w z̄)− 〈v̄, z̄〉 = d2f(x̄, v̄)(w),

which justifies (3.4) for every w ∈ Kf (x̄, v̄). Finally, we are going to show the validity of (3.4)

for every w /∈ Kf (x̄, v̄). For any such a w, we conclude from (3.19) that d2f(x̄, v̄)(w) = ∞.

Pick an arbitrary sequence tk ↓ 0 and set wk := w for all k ∈ IN . Thus we have

∞ = d2f(x̄, v̄)(w) ≤ lim inf
k→∞

∆2
tk
f(x̄, v̄)(wk) ≤ lim sup

t↓0
∆2
tk
f(x̄, v̄)(wk) ≤ ∞ = d2f(x̄, v̄)(w),

which again proves (3.4) for all w /∈ Kf (x̄, v̄). This completes the proof of the Theorem.

�

The above theorem provides a very important generalization of a similar result obtained

recently by the authors and Mordukhovich in [39, Theorem 3.6] in which the twice epi-

differentiability of set indicator functions was established. It is not hard to see that the

assumptions of Theorem 3.10 boils down to those in [39, Theorem 3.6]. To the best of our

knowledge, the only results related to the twice epi-differentiability of functions, beyond set

indicator functions, are [54, Theorem 13.14] and [57, Theorem 3.1] in which this property

was proven for the fully amenable and eigenvalue functions, respectively. We will derive

these results in Section 3.4 as an immediate consequence of our chain rule for the second

subderivative.

We proceed with an important consequence of Theorem 3.10 in which the proto-

differentiability of subgradient mappings is established under parabolic regularity. Recall

that a set-valued mapping S : X ⇒ Y is said to be proto-differentiable at x̄ for ȳ with
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(x̄, ȳ) ∈ S if the set S is geometrically derivable at (x̄, ȳ). When this condition holds for

the set-valued mapping S at x̄ for ȳ, we refer to DS(x̄, ȳ) as the proto-derivative of S at

x̄ for ȳ. The connection between the twice epi-differentiablity of a function and the proto-

differentiability of its subgradient mapping was observed first by Rockafellar in [52] for convex

functions and was extended later in [45] for prox-regular functions. Recall that a function

f : X → R is called prox-regular at x̄ for v̄ if f is finite at x̄ and is locally l.s.c. around x̄

with v̄ ∈ ∂−f(x̄) and there are constant ε > 0 and r ≥ 0 such that for all x ∈ IBε(x̄) with

f(x) ≤ f(x̄) + ε we have

f(x) ≥ f(u) + 〈v, x− u〉 − r
2
‖x− u‖2 for all (u, v) ∈ (gph∂−f) ∩ IBε(x̄, v̄).

Moreover, recall that f is subdifferentially continuous at x̄ for v̄ if (xk, vk) → (x̄, v̄) with

vk ∈ ∂−f(xk), one has f(xk) → f(x̄). Note that the original definitions of prox-regularity

and subdifferentially continuous in [54, Definition 13.27] require v to be taken from ∂L−f(x̄).

However, since in this chapter we mainly deal with strongly subamenable functions we keep

the above definition. For strongly subamenable fucntions we have ∂−f(x̄) = ∂L−f(x̄); see

Proposition 2.23.

Corollary 3.11 (proto-differentiability under parabolic regularity) Let f : X → R

be prox-regular and subdifferentially continuous at x̄ for v̄ and let f be parabolically epi-

differentiable at x̄ for every w ∈ Kf (x̄, v̄). If f is parabolically regular at x̄ for v̄, then the

following equivalent conditions hold:

(i) the function f is twice epi-differentiable at x̄ for v̄;

(ii) the subgradient mapping ∂f is proto-differentiable at x̄ for v̄.

Furthermore, the proto-derivative of the subgradient mapping ∂f at x̄ for v̄ can be calculated

by

D(∂−f)(x̄, v̄)(w) = ∂L−
(
d2f(x̄, v̄)

)
(w) for all w ∈ X. (3.21)
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Proof.

Note that v̄ ∈ ∂pf(x̄) since f is prox-regular at x̄ for v̄. Employing now Theorem 3.10

gives us (i). The equivalence between (i) and (ii) and the validity of (4.2) come from [54,

Theorem 13.40]. �

3.3 Variational Properties of Parabolic Subderivatives

This section is devoted to second-order analysis of parabolic subderivatives of extended-

real-valued functions that are locally Lipschitz continuous relative to their domains. We pay

special attention to functions that are expressed as a composition of a convex function and

a twice differentiable function. We begin with the following result that gives us sufficient

conditions for finding the domain of the parabolic subderivative.

Proposition 3.12 (properties of parabolic subderivatives) Let f : X→ R be finite at

x̄ and let f be Lipschitz continuous around x̄ relative to its domain with constant ` ∈ R+.

Assume that w ∈ Tdom f (x̄) and that f is parabolic epi-differentiable at x̄ for w. Then the

following conditions hold:

(i) dom d2f(x̄)(w ·) = T 2
dom f (x̄, w);

(ii) dom f is parabolically derivable at x̄ for w.

Proof.

Since w ∈ Tdom f (x̄), we conclude from Proposition 2.8 that df(x̄)(w) is finite. To prove

(i), observe first that by definition, we always have the inclusion

dom d2f(x̄)(w ·) ⊂ T 2
dom f (x̄, w). (3.1)

To obtain the opposite inclusion, take z ∈ T 2
dom f (x̄, w). This tells us that there exist se-

quences tk ↓ 0 and zk → z so that x̄ + tkw + 1
2
t2kzk ∈ dom f . Since f is parabolically
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epi-differentiable at x̄ for w, we have dom d2f(x̄)(w ·) 6= ∅. Thus there exists a zw ∈ X

such that d2f(x̄)(w zw) <∞. Moreover, corresponding to the sequence tk, we find another

sequence z′k → zw such that

d2f(x̄)(w zw) = lim
k→∞

f(x̄+ tkw + 1
2
t2kz
′
k)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

.

Since d2f(x̄)(w zw) <∞, we can assume without loss of generality that x̄ + tkw + 1
2
t2kz
′
k ∈

dom f for all k ∈ IN . Using these together with the Lipschitz continuity of f around x̄

relative to its domain, we have for all k sufficiently large that

f(x̄+ tkw + 1
2
t2kzk)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

=
f(x̄+ tkw + 1

2
t2kz
′
k)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

+
f(x̄+ tkw + 1

2
t2kzk)− f(x̄+ tkw + 1

2
t2kz
′
k)

1
2
t2k

≤
f(x̄+ tkw + 1

2
t2kz
′
k)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

+`‖zk − z′k‖.

Passing to the limit results in the inequality

d2f(x̄)(w z) ≤ d2f(x̄)(w zw) + `‖z − zw‖, (3.2)

which in turn yields d2f(x̄)(w z) <∞, i.e., z ∈ dom d2f(x̄)(w ·). This justifies the opposite

inclusion in (3.1) and hence proves (i).

Turning now to (ii), we conclude from (3.1) and the parabolic epi-differentiability of f

at x̄ for w that the second-order tangent set T 2
dom f (x̄, w) is nonempty. Moreover, it follows

from [54, Example 13.62(b)] that the parabolic epi-differentiability of f at x̄ for w yields the

parabolic derivability of epi f at (x̄, f(x̄)) for (w, df(x̄)(w)). The latter clearly enforces the

same property for dom f at x̄ for w and hence completes the proof. �

It is important to notice the parabolic epi-differentiability of f in Proposition 3.12 is

essential to ensure that condition (i) therein, namely the characterization of the domain of

the parabolic subderivative, is satisfied. Indeed, as mentioned in the proof of this proposition,
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inclusion (3.1) always holds. If the latter condition fails, this inclusion can be strict. For

example, the function f from Example 3.7 is not parabolic epi-differentiable at x̄ = (0, 0) for

any vector w = (w1, w2) ∈ Kf (x̄, v̄) with w1 6= 0 since dom d2f(x̄)(w ·) = ∅. On the other

hand, we have dom f = R2 and thus T 2
dom f (x̄, w) = R2 for any such a vector w ∈ Kf (x̄, v̄),

and so condition (i) in Proposition 3.12 fails.

Given a function f : X→ R finite at x̄, in the rest of this paper, we mainly focus on the

case when this function has a representation of the form

f(x) = (g ◦ F )(x) for all x ∈ O, (3.3)

where O is a neighborhood of x̄ and where the functions F and g are satisfying the following

conditions:

� F : X→ Y is twice differentiable at x̄;

� g : Y → R is proper, l.s.c., convex, and Lipschitz continuous around F (x̄) relative to

its domain with constant ` ∈ R+.

It is not hard to see that the imposed assumptions on g from representation (3.3) implies

that dom g is locally closed around F (x̄), namely for some ε > 0 the set (dom g)∩ IBε(F (x̄))

is closed. Taking the neighborhood O from (3.3), we obtain

(dom f) ∩ O =
{
x ∈ O| F (x) ∈ dom g

}
. (3.4)

It has been well understood that the second-order variational analysis of the composite

form (3.3) requires a certain qualification condition. we will see the metric subregularity

qualification condition (MSCQ) is enough for both first- and second-order analysis. For

convenience we recall the metric subregularity qualification condition below. We say that the

metric subregularity constraint qualification holds for the constraint set (3.4) (or composition
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(3.3)) at x̄ if there exist a constants κ ∈ R+ and a neighborhood U of x̄ such that

dist(x , dom f) ≤ κ d(F (x) , dom g) for all x ∈ U. (3.5)

Recall that from chapter 1, if the metric subregularity qualification condition holds at x̄

for the composition function (3.3) then f is called strongly subamenable at x̄ consequently

first-order subderivative /subdifferential chain chain rules hold at x̄; see Theorems 2.10 and

2.19. Moreover, f is prox-regular at x̄ for every v ∈ ∂−f(x̄); see Theorem 2.24. For the

convienence of the reader we gather above first-order result in the following proposition.

Proposition 3.13 (first-order chain rules for strongly subamenable function)

Let f : X → R have the composite representation (3.3) at x̄ ∈ dom f and let the metric

subregularity qualification condition (3.5) hold for the composition (3.3) at x̄. Then the

following hold:

(i) for any w ∈ X, the following subderivative chain rule for f at x̄ holds:

df(x̄)(w) = dg(F (x̄))(∇F (x̄)w)

(ii) we have the chain rules

∂pf(x̄) = ∂−f(x̄) = ∇F (x̄)∗∂g(F (x̄)) and Tdom f (x̄) =
{
w ∈ X| ∇F (x̄)w ∈ Tdom g(F (x̄))

}
.

To proceed with our tangential second-order analysis, for each w ∈ Rn satisfying

∇F (x̄)w ∈ Tdom g(F (x̄)) define the parameterized set-valued mapping Sw : Y ⇒ X involving

the second-order tangent set (3.1) by

Sw(p) :=
{
u ∈ X

∣∣ ∇F (x̄)u+∇2F (x̄)(w,w) + p ∈ T 2
dom g

(
F (x̄),∇F (x̄)w

)}
. (3.6)

This mapping describes a canonically perturbed second-order tangential approximation of the

constraint system (3.4). The next result of its own interest proves under metric subregularity

constraint qualification the uniform outer/upper Lipschitz property of (3.6) in the sense of
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Robinson [46] broadly employed below.

Theorem 3.14 (uniform outer Lipschitzian property of Sw(.)) Let dom f ∩ O be a

constraint system represented by (3.4) around x̄ ∈ dom f , and let w ∈ Rn be such that

∇F (x̄)w ∈ Tdom g(F (x̄)). Assume that (3.5) holds at x̄ with modulus κ > 0. Then the

approximating mapping (3.6) satisfies the inclusion

Sw(p) ⊂ Sw(0) + κ‖p‖IB for all p ∈ Rm uniformly in w, (3.7)

which means the uniform outer Lipschitzian property of Sw at the origin.

Proof.

Fixing some p ∈ Y and u ∈ Sw(p), we get by (3.6) that

∇F (x̄)u+∇2F (x̄)(w,w) + p ∈ T 2
dom g

(
F (x̄),∇F (x̄)w

)
.

We deduce from definition (3.1) of second-order tangents that there exists a sequence tk ↓ 0

with

F (x̄) + tk∇F (x̄)w + 1
2
t2k
(
∇F (x̄)u+∇2F (x̄)(w,w) + p

)
+ o(t2k) ∈ Θ, k ∈ IN.

For any k sufficiently large we get by the twice differentiability of F at x̄ that

F
(
x̄+ tkw + 1

2
t2ku
)

= F (x̄) + tk∇F (x̄)w + 1
2
t2k
(
∇F (x̄)u+∇2F (x̄)(w,w)

)
+ o(t2k),

which in turn implies via MSCQ (3.5) that

dist
(
x̄+ tkw + 1

2
t2ku ; dom f

)
≤ κ dist

(
F (x̄+ tkw + 1

2
t2ku) ; dom g

)
≤ 1

2
κt2k

(
‖p‖+

o(t2k)

t2k

)
.

Thus there exists a vector yk ∈ dom f satisfying

‖dk‖ ≤
1

2
κ
(
‖p‖+

o(t2k)

t2k

)
with dk :=

x̄+ tkw + 1
2
t2ku− yk

t2k
.

Passing to a subsequence if necessary ensures the existence of d ∈ X such that dk → d as
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k →∞. This yields the estimate

‖d‖ ≤ 1
2
κ‖p‖. (3.8)

On the other hand, we can suppose without loss of generality that x̄+tkw+ 1
2
t2ku−t2kdk = yk ∈

Ω∩O for k sufficiently large, and hence it follows from (3.4) that f(x̄+ tkw+ 1
2
t2ku− t2kdk) ∈

dom g. Taking into account the representation

D
(
x̄+tkw+ 1

2
t2ku−t2kdk

)
= F (x̄)+tk∇F

(
x̄)w+ 1

2
t2k
(
∇F (x̄)(u−2dk)+∇2F (x̄)(w,w)

)
+o(t2k),

we readily arrive at the inclusion

F (x̄) + tk∇F (x̄)w +
1

2
t2k

(
∇F (x̄)(u− 2dk) +∇2F (x̄)(w,w) +

2o(t2k)

t2k

)
∈ dom g,

which in turn implies that ∇F (x̄)(u − 2d) + ∇2F (x̄)(w,w) ∈ T 2
dom g(F (x̄),∇F (x̄)w). The

latter reads as u− 2d ∈ Sw(0), which together with (3.8) justifies the claimed inclusion (3.7)

that gives us the uniform outer Lipschitzian property of the mapping Sw from (3.6) at p = 0.

�

Let us make some comments to the second-order result obtained in Theorem 3.14.

Remark 3.15 (discussions on the outer Lipschitzian property) The following hold:

(i) The result of Theorem 3.14 reduces to [17, Proposition 3.1] in the case where the

set Θ := dom g is a closed convex cone and F (x̄) = 0; neither of these conditions is in

our assumptions. Indeed, we can easily observe that the assumptions of [17] ensure that

T 2
Θ(F (x̄),∇F (x̄)w) = TΘ(∇F (x̄)w), which allows us to derive the result of [17, Proposi-

tion 3.1] from Theorem 3.14.

(ii) Although Theorem 3.14 is verified for vectors w ∈ X with ∇F (x̄)w ∈ TΘ(F (x̄)), it

is clear that the outer Lipschitzian property (3.7) holds in fact for all vectors w ∈ X. To

check (3.7) for w with ∇F (x̄)w 6∈ TΘ(F (x̄)), we observe directly from the definition that

T 2
Θ(F (x̄),∇F (x̄)w) = ∅ and hence Sw(p) = ∅ for all p ∈ Y. This clearly yields (3.7).
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(iii) Note finally that Theorem 3.14 implies the outer Lipschitzian property of the map-

ping

p 7→
{
w ∈ Rn

∣∣ ∇F (x̄)w + p ∈ TΘ

(
F (x̄)

)}
.

This can be easily deduced from Theorem 3.14 by letting w = 0 ∈ Rn and by observing that

T 2
Θ(F (x̄), 0) = TΘ(F (x̄)). This was already observed at [15, Proposition 2.1].

We are now ready to provide an application of Theorem 3.14 to establishing the parabolic

derivability of constraint systems (3.4) via a chain rule for second-order tangent sets under

MSQC (2.8). Such a chain rule for (3.4) was obtained in [54, Proposition 13.13] and also

in [4, Proposition 3.33] under the much stronger metric regularity condition for the mapping

x 7→ F (x)− dom g around (x̄, 0).

Proposition 3.16 (second-order tangent set chain rules) Let f : X → R have the

composite representation (3.3) at x̄ ∈ dom f where the function g from (3.3) is parabolically

epi-differentiable at F (x̄) for ∇F (x̄)w ∈ dom g. Finally assume the metric subregularity

constraint qualification condition (3.5) holds at x̄. Then w ∈ Tdom f (x̄) and we have

z ∈ T 2
dom f (x̄, w) ⇐⇒ ∇F (x̄)z +∇2F (x̄)(w,w) ∈ T 2

dom g

(
F (x̄),∇F (x̄)w

)
. (3.9)

Moreover, dom f is parabolically derivable at x̄ for w.

Proof.

We have w ∈ Tdom f (x̄) by Proposition 3.13 (ii). To prove the second-order tangent set

chain rule (3.9), by a close look at the proof of (3.9), which was given in [54, Proposition 13.13]

under the metric regularity property of the mapping x 7→ F (x) − dom g around (x̄, 0), we

can observe that it actually utilizes merely MSQC at this point. To verify the claimed

parabolic derivability of the constraint system (3.4) under the assumptions made, pick any

w ∈ TΩ(x̄) and recall that T 2
Ω(x̄, w) in (3.1) can be reformulated via the outer limit of the sets
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(dom f − x̄− tw)/1
2
t2 as t ↓ 0. The first requirement of parabolic derivability is to show that

this outer limit is actually achieved as the full set limit meaning that the outer and inner

limits agree. This again can be done by following the proof of [54, Proposition 13.13], which

basically works under MSQC. The second requirement of parabolic derivability is crucial: to

show that T 2
dom f (x̄, w) 6= ∅ for any tangent vector w ∈ Tdom f (x̄). The proof of the latter

fact given in [54] heavily exploits the metric regularity of the constraint mapping and does

not hold under MSQC. Now we provide a new proof for this property, which needs merely

MSQC.

To proceed, employ the imposed parabolic derivability of dom g at F (x̄) for ∇F (x̄)w to

conclude that T 2
dom g(F (x̄),∇F (x̄)w) 6= ∅. Picking z ∈ T 2

dom g(F (x̄),∇F (x̄)w) gives us the

inclusion

∇F (x̄)u+∇2F (x̄)(w,w)+p ∈ T 2
dom g

(
F (x̄),∇F (x̄)w

)
with p := z−∇F (x̄)u−∇2F (x̄)(w,w),

which can be equivalently expressed as u ∈ Sw(p) via the mapping Sw from (3.6). Now we

apply Theorem 3.14 and deduce from the outer Lipschitzian property (3.7) that there exists

a vector ũ ∈ Sw(0) such that ‖u− ũ‖ ≤ κ‖p‖. This tells us that

∇F (x̄)ũ+∇2F (x̄)(w,w) ∈ T 2
dom g

(
F (x̄),∇F (x̄)w

)
.

Using the chain rule (3.9) leads us to ũ ∈ T 2
dom f (x̄, w), which verifies the nonemptiness of

the second-order tangent set T 2
dom f (x̄, w). This completes the proof. �

We continue by establishing a chain rule for the parabolic subderivative, which is impor-

tant for our developments in the next section.

Theorem 3.17 (chain rule for parabolic subderivatives) Let f : X → R have the

composite representation (3.3) at x̄ ∈ dom f and w ∈ Tdom f (x̄) and let the metric sub-

regularity constraint qualification hold for the constraint set (3.4) at x̄. Assume that the

function g from (3.3) is parabolically epi-differentiable at F (x̄) for ∇F (x̄)w. Then the fol-
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lowing conditions are satisfied:

(i) for any z ∈ X we have

d2f(x̄)(w z) = d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z +∇2F (x̄)(w,w)); (3.10)

(ii) the domain of the parabolic subderivative of f at x̄ for w is given by

dom d2f(x̄)(w ·) = T 2
dom f (x̄, w);

(iii) f is parabolically epi-differentiable at x̄ for w.

Proof.

Pick z ∈ X and set u := ∇F (x̄)z + ∇2F (x̄)(w,w). We prove (i)-(iii) in a parallel way.

Assume that z /∈ T 2
dom f (x̄, w). As mentioned in the proof of Proposition 3.12, inclusion

(3.1) always holds. This implies that d2f(x̄)(w z) = ∞. On the other hand, by (3.9)

we get u /∈ T 2
dom g

(
F (x̄),∇F (x̄)w

)
. Employing Proposition 3.12(i) for the function g and

∇F (x̄)w ∈ Tdom g(F (x̄)) gives us

dom d2g(F (x̄))(∇F (x̄)w ·) = T 2
dom g(F (x̄),∇F (x̄)w). (3.11)

Combining these tells us that d2g(F (x̄))(∇F (x̄)w u) =∞, which in turn justifies (3.10) for

every z /∈ T 2
dom f (x̄, w). Consider an arbitrary sequence tk ↓ 0 and set zk := z for all k ∈ IN .

Then we have

d2f(x̄)(w z) ≤ lim inf
k→∞

f(x̄+ tkw + 1
2
t2kzk)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

≤ lim sup
k→∞

f(x̄+ tkw + 1
2
t2kzk)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

≤ ∞ = d2f(x̄)(w z),

which in turn justifies (3.5) for all z /∈ T 2
dom f (x̄, w).

Since g is parabolically epi-differentiable at F (x̄) for∇F (x̄)w, Proposition 3.12(ii) tells us

that dom g is parabolically derivable at F (x̄) for∇F (x̄)w. We conclude from Proposition 3.16
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that dom f is parabolically derivable at x̄ for w. In particular, we have

T 2
dom f (x̄, w) 6= ∅. (3.12)

Pick now z ∈ T 2
dom f (x̄, w) and then consider an arbitrary sequence tk ↓ 0. Thus, by definition,

for the aforementioned sequence tk, we find a sequence zk → z as k →∞ such that

xk := x̄+ tkw +
1

2
t2kzk ∈ dom f for all k ∈ IN. (3.13)

Moreover, since g is parabolically epi-differentiable at F (x̄) for ∇F (x̄)w, we find a sequence

uk → u such that

d2g(F (x̄))(∇F (x̄)w u) = lim
k→∞

g(F (x̄) + tk∇F (x̄)w + 1
2
t2kuk)− g(F (x̄))− tkdg(F (x̄))(∇F (x̄)w)

1
2
t2k

.

(3.14)

It follows from (3.9) that u ∈ T 2
dom g

(
F (x̄),∇F (x̄)w

)
. Combining this with (3.11) tells us

that d2g(F (x̄))(∇F (x̄)w u) <∞. This implies that yk := F (x̄)+tk∇F (x̄)w+ 1
2
t2kuk ∈ dom g

for all k sufficiently large. Remember that g is Lipschitz continuous around F (x̄) relative to

its domain with constant `. Using this together with Proposition 3.16(i), (3.13), and (3.14),

we obtain

d2f(x̄)(w z) ≤ lim inf
k→∞

f(x̄+ tkw + 1
2
t2kzk)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

≤ lim sup
k→∞

f(x̄+ tkw + 1
2
t2kzk)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

= lim sup
k→∞

g(F (xk))− g(F (x̄))− tkdg(F (x̄))(∇F (x̄)w)
1
2
t2k

≤ lim
k→∞

g(yk)− g(F (x̄))− tkdg(F (x̄))(∇F (x̄)w)
1
2
t2k

+ lim sup
k→∞

g(F (xk))− g(yk)
1
2
t2k

≤ d2g(F (x̄))(∇F (x̄)w u) + lim sup
k→∞

`‖∇F (x̄)zk +∇2F (x̄)(w,w)− uk +
o(t2k)

t2k
‖

= d2g(F (x̄))(∇F (x̄)w u). (3.15)

On the other hand, it is not hard to see that for any z ∈ X, we always have

d2g(F (x̄))(∇F (x̄)w u) ≤ d2f(x̄)(w z).
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Combining this and (3.15) implies that

d2f(x̄)(w z) = d2g(F (x̄))(∇F (x̄)w u)

and that

d2f(x̄)(w z) = lim
k→∞

f(x̄+ tkw + 1
2
t2kzk)− f(x̄)− tkdf(x̄)(w)

1
2
t2k

.

These prove (3.10) and (3.5) for any z ∈ T 2
dom f (x̄, w), respectively, and hence we finish the

proof of (i).

Next, we are going to verify (ii). We already know that inclusion (3.1) always

holds. To derive the opposite inclusion, pick z ∈ T 2
dom f (x̄, w), which amounts to u ∈

T 2
dom g

(
F (x̄),∇F (x̄)w

)
due to (3.9). By (i) and (3.11), we obtain

d2f(x̄)(w z) = d2g(F (x̄))(∇F (x̄)w u) <∞.

This tells us that z ∈ dom d2f(x̄)(w ·) and hence completes the proof of (ii).

Finally, to justify (iii), we require to prove the fulfillment of (3.5) for all z ∈ X and to show

that dom d2f(x̄)(w ·) 6= ∅. The former was proven above and so we proceed with the proof

of the latter. This, indeed, follows from (3.12) and the characterization of dom d2f(x̄)(w ·),

achieved in (ii), and thus completes the proof. �

It is worth mentioning that a chain rule for parabolic subderivatives for the composite

form (3.3) was achieved in [54, Exercise 13.63] and [4, Proposition 3.42] when g is merely a

proper l.s.c. function and the basic constraint qualification (2.4) is satisfied. Replacing the

latter condition with the significantly weaker condition (3.5), we can achieve a similar result

if we assume further that g is convex and locally Lipschitz continuous relative to its domain.

Another important difference between Theorem 3.17 and those mentioned above is that the

chain rule (3.10) obtained in [4, 54] does not require the parabolic epi-differentiability of g.

Indeed, the usage of the basic constraint qualification (2.4) in [4,54] allows to achieve (3.10)
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via a chain rule for the epigraphs of f and g similar to the one in (3.9), which is not con-

ceivable under (3.5). These extra assumptions on g automatically fulfill in many important

composite and constrained optimization problems and so do not seem to be restrictive in

our developments.

We continue by establishing two important properties for parabolic subderivatives that

play crucial roles in our developments in the next section. One notable difference between the

following results and those obtained in Proposition 3.12 and Theorem 3.17 is that we require

the parabolic subderivative be proper. This can be achieved if the parabolic subderivative

is bounded below. In general, we may not be able to guarantee this. It turns out, however,

that if the vector w in the pervious results is taken from the critical cone to the function

in question, which is a subset of the tangent cone to the domain of that function, this can

be accomplished via (3.14). Since we only conduct our analysis in the next section over the

critical cone, this will provide no harm. Below, we first show that the parabolic subderivative

of an extended-real-valued function, which is locally Lipschitz continuous relative to its

domain, is Lipschitz continuous relative to its domain.

Proposition 3.18 (Lipschitz continuity of of parabolic subderivatives) Let

ψ : X → R be finite at x̄ and v̄ ∈ ∂pψ(x̄), and let ψ be Lipschitz continuous around

x̄ relative to its domain with constant ` ∈ R+. Assume that w ∈ Kψ(x̄, v̄) and that ψ is

parabolically epi-differentiable at x̄ for w. Then the parabolic subderivative d2ψ(x̄)(w ·) is

proper, l.s.c., and Lipschitz continuous relative to its domain with constant `.

Proof.Since ψ is parabolically epi-differentiable at x̄ for w, we get dom d2ψ(x̄)(w ·) 6= ∅. Let

z ∈ dom d2ψ(x̄)(w ·). By Proposition 3.6, we find r ∈ R+ such that

− r‖w‖2 ≤ d2ψ(x̄, v̄)(w) ≤ d2ψ(x̄)(w z)− 〈z, v̄〉. (3.16)

This tells us that d2ψ(x̄)(w z) is finite for every z ∈ dom d2ψ(x̄)(w ·) and thus the
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parabolic subderivative d2ψ(x̄)(w ·) is proper. Pick now zi ∈ dom d2ψ(x̄)(w ·) for i = 1, 2.

By Proposition 3.12(i), we have zi ∈ T 2
domψ(x̄, w) for i = 1, 2. Letting z := z1 and zw := z2

in (3.2) results in

d2ψ(x̄)(w z1) ≤ d2ψ(x̄)(w z2) + `‖z1 − z2‖.

Similarly, we can let z := z2 and zw := z1 in (3.2) and obtain

d2ψ(x̄)(w z2) ≤ d2ψ(x̄)(w z1) + `‖z1 − z2‖.

Combining these implies that the parabolic subderivative is Lipschitz continuous relative

to its domain. By [54, Proposition 13.64], the parabolic subderivative is always an l.s.c.

function, which completes the proof. �

We end this section by obtaining an exact formula for the conjugate function of the

parabolic subderivative of a convex function.

Proposition 3.19 (conjugate of parabolic subderivatives) Let ψ : X→ R be an l.s.c.

convex function with ψ(x̄) finite, v̄ ∈ ∂ψ(x̄), and w ∈ Kψ(x̄, v̄). Define the function ϕ by

ϕ(z) := d2ψ(x̄)(w z) for any z ∈ X. If ψ is parabolically epi-differentiable at x̄ for w and

parabolically regular at x̄ for every v ∈ ∂ψ(x̄), then ϕ is a proper, l.s.c., and convex function

and its conjugate function is given by

ϕ∗(v) =


−d2ψ(x̄, v)(w) if v ∈ A(x̄, w),

∞ otherwise,

(3.17)

where A(x̄, w) := {v ∈ ∂ψ(x̄)| dψ(x̄)(w) = 〈v, w〉}.

Proof.

It follows from [54, Proposition 13.64] that ϕ is l.s.c. Using similar arguments as the

beginning of the proof of Proposition 3.18 together with (3.16) tells us that ϕ is proper.
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Also we deduce from [54, Example 13.62] that

epiϕ = T 2
epiψ

(
(x̄, ψ(x̄)), (w, dψ(x̄)(w))

)
,

and thus the parabolic epi-differentiability of ψ at x̄ for w amounts to the parabolic deriv-

ability of epiψ at (x̄, ψ(x̄)) for (w, dψ(x̄)(w)). The latter combined with the convexity of ψ

tells us that epiϕ is a convex set in X× R and so ϕ is convex.

To verify (3.17), pick v ∈ A(x̄, w). This yields v ∈ ∂ψ(x̄) = ∂pψ(x̄) and w ∈ Kψ(x̄, v),

namely the critical cone of ψ at (x̄, v). Using Proposition 3.8 and parabolic regularity of ψ

at x̄ for v implies that

d2ψ(x̄, v)(w) = inf
z∈X

{
d2ψ(x̄)(w z)− 〈z, v〉

}
= −ϕ∗(v),

which clearly proves (3.17) in this case. Assume now that v /∈ A(x̄, w). This means either

v /∈ ∂ψ(x̄) or dψ(x̄)(w) 6= 〈v, w〉. Define the parabolic difference quotients for ψ at x̄ for w

by

ϑt(z) =
ψ(x̄+ tw + 1

2
t2z)− ψ(x̄)− tdψ(x̄)(w)

1
2
t2

, z ∈ X, t > 0.

It is not hard to see that ϑt are proper, convex, and

ϑ∗t (v) =
ψ(x̄) + ψ∗(v)− 〈v, x̄〉

1
2
t2

+
dψ(x̄)(w)− 〈v, w〉

1
2
t

, v ∈ X.

Remember that by [54, Definition 13.59] the parabolic epi-differentiability of ψ at x̄ for w

amounts to the sets epiϑt converging to epiϕ as t ↓ 0 and that the functions ϑt and ϕ

are proper, l.s.c. and convex. Appealing to [54, Theorem 11.34] tells us that the former is

equivalent to the sets epiϑ∗t converging to epiϕ∗ as t ↓ 0. This, in particular, means that for

any v /∈ A(x̄, w) and any sequence tk ↓ 0, there exists a sequence vk → v such that

ϕ∗(v) = lim
k→∞

ϑ∗tk(vk).
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If v /∈ ∂ψ(x̄), then we have

ψ(x̄) + ψ∗(v)− 〈v, x̄〉 > 0.

Since ψ∗ is l.s.c., we get

lim inf
k→∞

ψ(x̄) + ψ∗(vk)− 〈vk, x̄〉
1
2
tk

+
dψ(x̄)(w)− 〈vk, w〉

1
2

≥ ∞,

which in turn confirms that

ϕ∗(v) = lim
k→∞

ϑ∗tk(vk) = lim
k→∞

1

tk

(ψ(x̄) + ψ∗(vk)− 〈vk, x̄〉
1
2
tk

+
dψ(x̄)(w)− 〈vk, w〉

1
2

)
=∞.

If v ∈ ∂ψ(x̄) but dψ(x̄)(w) 6= 〈v, w〉, we obtain 〈v, w〉 < dψ(x̄)(w). Since we always have

ψ(x̄) + ψ∗(vk)− 〈vk, x̄〉 ≥ 0 for all k ∈ IN,

we arrive at

ϕ∗(v) = lim
k→∞

ϑ∗tk(vk) ≥ lim
k→∞

dψ(x̄)(w)− 〈vk, w〉
1
2
tk

=∞,

which justifies (3.17) when v /∈ A(x̄, w) and hence finishes the proof. �

Proposition 3.19 was first established using a different method in [49, Proposition 3.5]

for convex piecewise linear-quadratic functions. It was extended in [10, Theorem 3.1] for

any convex functions under a restrictive assumption. Indeed, this result demands that the

second subderivative be the same as the second-order directional derivative. Although this

condition holds for convex piecewise linear-quadratic functions, it fails for many important

functions occurring in constrained and composite optimization problems including the set

indicator functions and eigenvalue functions. As discussed below, however, our assumptions

are satisfied for all these examples.

Example 3.20 Suppose that g : Y→ R is an l.s.c. convex function and z̄ ∈ Y.

(a) If Y = Rm, g is convex piecewise linear-quadratic (Example 3.4), and z̄ ∈ dom g, then

it follows from Example 3.4 and [54, Exercise 13.61] that g is parabolically regular at
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z̄ for every y ∈ ∂g(z̄) and parabolically epi-differentiable at z̄ for every w ∈ dom dg(z̄),

respectively, and thus all the assumptions of Proposition 3.19 are satisfied for this

function.

(b) If Y = Sm, g is either the maximum eigenvalue function λmax from (3.11) or the

function σi from (3.12), and A ∈ Sn, then by Example 3.5 g is parabolically regular

at A for every V ∈ ∂g(A). Moreover, we deduce from [56, Proposition 2.2] that g is

parabolically epi-differentiable at A for every W ∈ Sn and thus all the assumptions of

Proposition 3.19 are satisfied for these functions.

(c) If g = δΘ and z̄ ∈ Θ, where Θ is a closed convex set in Y that is parabolically derivable

at z̄ for every w ∈ TΘ(z̄) and parabolically regular at z̄ for every v ∈ NΘ(z̄), then g

satisfies the assumptions imposed in Proposition 3.19. This example of g was recently

explored in detail in [39] and encompasses important sets appearing in constrained

optimization problems such as polyhedral convex sets, the second-order cone, and the

cone of positive semidefinite symmetric matrices.

(d) Assume that g is differentiable at z̄ and that there exists a continuous function h :

Y→ R, which is positively homogeneous of degree 2, such that

g(z) = g(z̄) + 〈∇g(z̄), z − z̄〉+ 1
2
h(z − z̄) + o(‖z − z̄‖2).

Such a function g is called twice semidifferentiable (cf. [54, Example 13.7]) and often

appears in the augmented Lagrangian function associated with (1.1); see [39, Sec-

tion 8] for more detail. This second-order expansion clearly justifies the parabolic

epi-differentiability of g at z̄ for every w ∈ Y. Moreover, one has

d2g(z̄,∇g(z̄))(w) = h(w) = d2g(z̄)(w u)− 〈∇g(z̄), u〉 for all u,w ∈ Y,

which in turn shows that g is parabolically regular at z̄ for ∇g(z̄) due to Proposition

3.8.
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It is important to mention that the restrictive assumption on the second subderivative,

used in [10, Theorem 3.1], does not hold for cases (b)-(d) in Example 3.20.

3.4 Chain Rule for Parabolically Regular Functions

Our main objective in this section is to derive a chain rule for the parabolic regularity of

the composite representation (3.3). This opens the door to obtain a chain rule for the second

subderivative, and, more importantly, allows us to establish the twice epi-differentiability of

the latter composite form.

Taking into account representation (3.3) and picking a subgradient v̄ ∈ ∂−f(x̄), we define

the set of Lagrangian multipliers associated with (x̄, v̄) by

Λ(x̄, v̄) =
{
y ∈ Y| ∇F (x̄)∗y = v̄, y ∈ ∂g(F (x̄))

}
.

In what follows, we say that a function f : X → R with (x̄, v̄) ∈ ∂f and having the

composite representation (3.3) at x̄ satisfies the basic assumptions at (x̄, v̄) if in addition the

following conditions fulfill:

(H1) the metric subregularity constraint qualification holds for the constraint set (3.4) at x̄;

(H2) for any y ∈ Λ(x̄, v̄), the function g from (3.3) is parabolically epi-differentiable at F (x̄)

for every u ∈ Kg(F (x̄), y);

(H3) for any y ∈ Λ(x̄, v̄), the function g is parabolically regular at F (x̄) for y.

We begin with the following result in which we collect lower and upper estimates for the

second subderivative of f taken from (3.3).

Proposition 3.21 (properities of second subderivatives for composite functions)

Let f : X → R have the composite representation (3.3) at x̄ ∈ dom f , v̄ ∈ ∂f(x̄), and let

the basic assumptions (H1) and (H2) hold for f at (x̄, v̄). Then the second subderivative
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d2f(x̄, v̄) is a proper l.s.c. function with

dom d2f(x̄, v̄) = Kf (x̄, v̄). (3.18)

Moreover, for every w ∈ X we have the lower estimate

d2f(x̄, v̄)(w) ≥ sup
y∈Λ(x̄,v̄)

{
〈y,∇2F (x̄)(w,w)〉+ d2g(F (x̄), y)(∇F (x̄)w)

}
, (3.19)

while for every w ∈ Kf (x̄, v̄) we obtain the upper estimate

d2f(x̄, v̄)(w) ≤ inf
z∈X

{
− 〈z, v̄〉+ d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z +∇2F (x̄)(w,w))

}
<∞.(3.20)

Proof.

By Proposition 3.16(ii), we have ∂pf(x̄) = ∂f(x̄). Appealing now to Propositions 3.1(iii)

and 3.6 confirms, respectively, that d2f(x̄, v̄) is a proper l.s.c. function and that (3.18) holds.

The lower estimate (3.19) can be justified as [54, Theorem 13.14] in which this estimate was

derived under condition (2.4). To obtain (3.20), observe first that the basic assumption (H1)

yields

w ∈ Kf (x̄, v̄) ⇐⇒ ∇F (x̄)w ∈ Kg(F (x̄), y) (3.21)

for every y ∈ Λ(x̄, v̄). Pick w ∈ Kf (x̄, v̄). Since g is parabolically epi-differentiable at F (x̄)

for ∇F (x̄)w due to (H2), Theorem 3.17(iii) implies that f is parabolically epi-differentiable

at x̄ for w, and so dom d2f(x̄)(w ·) 6= ∅. This combined with (3.14) and (3.10) results in

(3.20) and hence completes the proof. �

While looking simple, the above result carries important information by which we can

achieve a chain rule for the second subderivative. To do so, we should look for conditions

under which the lower and upper estimates (3.19) and (3.20), respectively, coincide. This

motivates us to consider the unconstrained optimization problem

min
z∈X

−〈z, v̄〉+ d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z +∇2F (x̄)(w,w)). (3.22)
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When the basic assumptions (H1)-(H3) are satisfied, (3.22) is a convex optimization problem

for any w ∈ Kf (x̄, v̄). Using Proposition 3.19 allows us to obtain the dual problem of (3.22)

and then examine whether their optimal values coincide. We pursue this goal in the following

result.

Theorem 3.22 (duality relationships) Let f : X→ R have the composite representation

(3.3) at x̄ ∈ dom f , v̄ ∈ ∂−f(x̄), and let the basic assumptions (H1)-(H3) hold for f at (x̄, v̄).

Then for each w ∈ Kf (x̄, v̄), the following assertions are satisfied:

(i) the dual problem of (3.22) is given by

max
y∈Y

〈y,∇2F (x̄)(w,w)〉+ d2g(F (x̄), y)(∇F (x̄)w) subject to y ∈ Λ(x̄, v̄); (3.23)

(ii) the optimal values of the primal and dual problems (3.22) and (3.23), respectively, are

finite and coincide; moreover, we have Λ(x̄, v̄, w) ∩ (τIB) 6= ∅, where Λ(x̄, v̄, w) stands

for the set of optimal solutions to the dual problem (3.23) and where

τ := κ`‖∇F (x̄)‖+ κ‖v̄‖+ ` (3.24)

with ` and κ taken from (3.3) and (3.5), respectively.

Proof.

Pick w ∈ Kf (x̄, v̄) and observe from (4.13) that ∇F (x̄)w ∈ Kg(F (x̄), y) for all y ∈

Λ(x̄, v̄). This together with Proposition 3.19 ensures that the parabolic subderivative of g

at F (x̄) for ∇F (x̄)w is a proper, l.s.c., and convex function. Using this combined with [54,

Example 11.41] and (3.17) tells us that the dual problem of (3.22) is

max
y∈Y

〈y,∇2F (x̄)(w,w)〉+ d2g(F (x̄), y)(∇F (x̄)w) subject to y ∈ Λ(x̄, v̄) ∩ D,

where D := {y ∈ Y| dg(F (x̄))(∇F (x̄)w) = 〈y,∇F (x̄)w〉}. Since ∇F (x̄)w ∈ Kg(F (x̄), y) for
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all y ∈ Λ(x̄, v̄), we obtain

y ∈ Λ(x̄, v̄) ∩ D ⇐⇒ y ∈ Λ(x̄, v̄).

Combining these confirms that the dual problem of (3.22) is equivalent to (3.23) and thus

finishes the proof of (i). To prove (ii), consider the optimal value function ϑ : Y→ [−∞,∞],

defined by

ϑ(p) = inf
z∈X

{
−〈v̄, z〉+ d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z+∇2F (x̄)(w,w) + p)

}
, p ∈ Y. (3.25)

We proceed with the following claim:

Claim.We have ∂ϑ(0) 6= ∅.

To justify the claim, we first need to show ϑ(0) ∈ R. To do so, observe that v̄ ∈ ∂f(x̄) =

∂pf(x̄) due to Proposition 3.16(ii). Thus, it follows from Proposition 3.1(iii) and (3.20) that

there is a constant r ∈ R+ such that for any w ∈ Kf (x̄, v̄) we have

−r‖w‖2 ≤ d2f(x̄, v̄)(w) ≤ ϑ(0) <∞,

which in turn implies that ϑ(0) ∈ R. Next, we are going to show that

ϑ(p) ≥ ϑ(0)− τ‖p‖ for all p ∈ X, (3.26)

where τ is taken from (3.24). To this end, take (p, z) ∈ Y× X such that

up := ∇F (x̄)z +∇2F (x̄)(w,w) + p ∈ dom d2g(F (x̄))(∇F (x̄)w ·).

By (3.11), we get up ∈ T 2
dom g(F (x̄),∇F (x̄)w). Define now the set-valued mapping Sw : Y ⇒

X by

Sw(p) :=
{
z ∈ X| ∇F (x̄)z +∇2F (x̄)(w,w) + p ∈ T 2

dom g(F (x̄),∇F (x̄)w)
}
, p ∈ Y.

So, we get z ∈ Sw(p). It was shown that in Theorem (3.14) that the mapping Sw enjoys the

uniform outer Lipschitzian property at 0 with constant κ taken from (3.5), namely for every
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p ∈ Y we have

Sw(p) ⊂ Sw(0) + κ‖p‖IB.

This combined with z ∈ Sw(p) results in the existence of z0 ∈ Sw(0) and b ∈ IB such that

z = z0 + κ‖p‖b. It follows from (3.11) and z0 ∈ Sw(0) that

∇F (x̄)z0 +∇2F (x̄)(w,w) ∈ dom d2g(F (x̄))(∇F (x̄)w ·).

Since we have

up −
(
∇F (x̄)z0 +∇2F (x̄)(w,w)

)
= p+ κ‖p‖∇F (x̄)b,

and since the parabolic subderivative d2g(F (x̄))(∇F (x̄)w ·) is Lipschitz continuous relative

to its domain due to Proposition 3.18, we get the relationships

−〈v̄, z〉+ d2g(F (x̄))(∇F (x̄)w up) ≥ −〈v̄, z0〉+ d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z0 +∇2F (x̄)(w,w))

−` ‖p+ κ ‖p‖∇F (x̄)b ‖ − κ‖p‖〈v̄, b〉

≥ ϑ(0)−
(
`κ‖∇F (x̄)‖+ κ‖v̄‖+ `

)
‖p‖,

which together with (3.24) justify (3.26). Remember that the parabolic subderivative of g

at F (x̄) for ∇F (x̄)w is a proper and convex function. This implies that the function

(z, p) 7→ −〈v̄, z〉+ d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z +∇2F (x̄)(w,w) + p)

is convex on X×Y. Using this together with [54, Proposition 2.22] tells us that ϑ is a convex

function on Y. Thus, we conclude from (3.26) and [39, Proposition 5.1] that there exists a

subgradient ȳ of ϑ at 0 such that

ȳ ∈ ∂ϑ(0) ∩ (τIB), (3.27)

which completes the proof of the claim.

Employing now (3.27) and [4, Theorem 2.142] confirms that the optimal values of the
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primal and dual problems (3.22) and (3.23), respectively, coincide and that

Λ(x̄, v̄, w) = ∂ϑ(0).

This together with (3.27) justifies (ii) and hence completes the proof. �

The above theorem extends the recent results obtained in [39, Propositions 5.4 & 5.5]

for constraint sets, namely when the function g in (3.3) is the indicator function of a closed

convex set. We should add here that for constraint sets, the dual problem (3.23) can be

obtained via elementary arguments. However, for the composite form (3.3) a similar result

requires using rather advanced theory of epi-convergence.

Remark 3.23 (duality relationship under metric regularity) In the framework of

Theorem 3.22, we want to show that replacing assumption (H1) with the strictly stronger

qualification condition (2.4) allows us not only to drop the imposed Lipschitz continuity of

g from (3.3) but also to simplify the proof of Theorem 3.22. To this end, let w ∈ Kf (x̄, v̄)

and define the function

ψ(u) := d2g(F (x̄))(∇F (x̄)w u), u ∈ X.

By Proposition 3.19, ψ is a proper, l.s.c., and convex function. Employing [54, Proposi-

tion 13.12] tells us that

Tepi g(p) + T 2
epi g

(
p, q) ⊂ T 2

epi g

(
p, q) = epiψ, (3.28)

where p :=
(
F (x̄), g(F (x̄))

)
and q :=

(
∇F (x̄)w, dg(F (x̄))(∇F (x̄)w)

)
and where the equality

in the right side comes from [54, Example 13.62(b)]. We are going to show that the validity

of (2.4) yields

Ndomψ(u) ∩ ker∇F (x̄)∗ = {0} (3.29)

for any u ∈ domψ. To this end, pick u ∈ domψ and conclude from (3.28) and [54, Exer-
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cise 6.44] that

Nepiψ

(
u, ψ(u)

)
⊂ NTepi g(p)(0) ∩Nepiψ

(
u, ψ(u)

)
= Nepi g(p) ∩Nepiψ

(
u, ψ(u)

)
.

This together with (2.4) and the relationship Ndomψ(u) = ∂∞ψ(u) stemming from the con-

vexity of ψ confirms the validity of (3.29). Appealing now to [4, Theorem 2.165] gives another

proof of Theorem 3.22 when assumption (H1) therein is replaced with the strictly stronger

constraint qualification (2.4).

The established duality relationships in Theorem 3.22 open the door to derive a chain rule

for parabolically regular functions and to find an exact chain rule for the second subderivative

of the composite function (3.3) under our basic assumptions.

Theorem 3.24 (chain rule for parabolic regularity) Let f : X → R have the compos-

ite representation (3.3) at x̄ ∈ dom f , v̄ ∈ ∂−f(x̄), and let the basic assumptions (H1)-(H3)

hold for f at (x̄, v̄). Then f is parabolically regular at x̄ for v̄. Furthermore, for every w ∈ X,

the second subderivative of f at x̄ for v̄ is calculated by

d2f(x̄, v̄)(w) = max
y∈Λ(x̄,v̄)

{
〈y,∇2F (x̄)(w,w)〉+ d2g(F (x̄), y)(∇F (x̄)w)

}
(3.30)

= max
y∈Λ(x̄,v̄)∩ (τIB)

{
〈y,∇2F (x̄)(w,w)〉+ d2g(F (x̄), y)(∇F (x̄)w)

}
,

where τ is taken from (3.24).

Proof.

It was recently observed in [38, Corollary 3.7] that the Lagrange multiplier set Λ(x̄, v̄)

enjoys the following property:

Λ(x̄, v̄) ∩ (τIB) 6= ∅. (3.31)

Take w ∈ Kf (x̄, v̄). By (3.19) and Theorem 3.22(ii), we obtain

max
y∈Λ(x̄,v̄)

{
〈y,∇2F (x̄)(w,w)〉+ d2g(F (x̄), y)(∇F (x̄)w)

}
≤ d2f(x̄, v̄)(w). (3.32)
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On the other hand, using (3.14), (3.10), and Theorem 3.22(ii), respectively, gives us the

inequalities

d2f(x̄, v̄)(w) ≤ inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
= inf

z∈X

{
− 〈z, v̄〉+ d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z +∇2F (x̄)(w,w))

}
= max

y∈Λ(x̄,v̄)∩ (τIB)

{
〈y,∇2F (x̄)(w,w)〉+ d2g(F (x̄), y)(∇F (x̄)w)

}
.

These combined with (3.32) ensure that the claimed second subderivative formulas for f at

x̄ for v̄ hold for any w ∈ Kf (x̄, v̄) and that

d2f(x̄, v̄)(w) = inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
for all w ∈ Kf (x̄, v̄).

Appealing now to Proposition 3.8, we conclude that f is parabolically regular at x̄ for v̄.

What remains is to validate the second subderivative formulas for w /∈ Kf (x̄, v̄). It follows

from Theorem 3.17(iii) that f is parabolically epi-differentiable at x̄ for every w ∈ Kf (x̄, v̄)

and thus dom d2f(x̄)(w ·) 6= ∅ for every w ∈ Kf (x̄, v̄). So, by Proposition 3.6 we have

dom d2f(x̄, v̄) = Kf (x̄, v̄). Since the second subderivative d2f(x̄, v̄) is a proper function, we

obtain d2f(x̄, v̄)(w) =∞ for all w /∈ Kf (x̄, v̄). On the other hand, we understand from (4.13)

that w /∈ Kf (x̄, v̄) amounts to ∇F (x̄)w /∈ Kg(F (x̄), y) for every y ∈ Λ(x̄, v̄). Combining the

basic assumption (H2) and Proposition 3.6 tells us that for every y ∈ Λ(x̄, v̄) we have

d2g(F (x̄), y)(∇F (x̄)w) = ∞ whenever w /∈ Kf (x̄, v̄). This together with (3.31) confirms

that both sides in (3.30) are ∞ for every w /∈ Kf (x̄, v̄) and thus the claimed formulas for

the second subderivative of f hold for this case. This completes the proof. �

A chain rule for parabolic regularity of the composite function (3.3), where g is not

necessarily locally Lipschitz continuous relative to its domain, was established in [4, Propo-

sition 3.104]. The assumptions utilized in the latter result were stronger than those used in

Theorem 3.24. Indeed, [4, Proposition 3.104] assumes that g is second-order regular in the

sense of [4, Definition 3.93] and the basic constraint qualification (2.4) is satisfied and uses



87

a different approach to derive this result. When g is a convex piecewise linear-quadratic,

parabolic regularity of the composite function (3.3) was established in [54, Theorem 13.67]

under the stronger condition (2.4). Theorem 3.24 covers the aforementioned results and

shows that we can achieve a similar conclusion under the significantly weaker condition

(3.5).

As an immediate consequence of the above theorem, we can easily guarantee the twice

epi-differentiability of the composite form (3.3) under our basic assumptions.

Corollary 3.25 (chain rule for twice epi-differentiability) Let the function f from

(3.3) satisfy all the assumptions of Theorem 3.24. Then f is twice epi-differentiable at x̄

for v̄.

Proof.

By Theorem 3.17(iii), f is parabolically epi-differentiable at x̄ for every w ∈ Kf (x̄, v̄).

Employing now Theorems 3.24 and 3.10 implies that f is twice epi-differentiable at x̄ for v̄.

�

Remark 3.26 (discussion on twice epi-differentiability) Corollary 3.25 provides a

far-going extension of the available results for the twice epi-differentiability of extended-

real-valued functions. To elaborate more, suppose that f : X → R has a composite form

(3.3) at x̄ ∈ dom f . Then the following observations hold:

(a) If X = Rn, Y = Rm, and g in (3.3) is convex piecewise linear-quadratic, then Rockafellar

proved in [49] that under the fulfillment of the basic constraint qualification (2.4), f

is twice epi-differentiable. This result was improved recently in [38, Theorem 5.2],

where it was shown that using the strictly weaker condition (3.5) in the Rockafellar’s

framework [49] suffices to ensure the twice epi-differentiability of f . Taking into account

Example 3.20(a) tells us both these results can be derived from Corollary 3.25.
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(b) If X = Rn, Y = Sm, and g is either the maximum eigenvalue function λmax from

(3.11) or the function σi from (3.12), then we fall into the framework considered by

Turki in [57, Theorems 2.3 & 2.5] in which he justified the twice epi-differentiability of

f . Since in this framework we have dom g = Sm, both conditions (2.4) and (3.5) are

automatically satisfied. By Example 3.20(b), the twice epi-differentiability of f can be

deduced from Corollary 3.25.

(c) If X = Rn, Y = Rm, and g = δΘ with the closed convex set Θ taken from Exam-

ple 3.20(c), we fall into the framework considered in [39]. In this case, Corollary 3.25

can cover the twice epi-differentiability of f obtained in [39, Corollary 5.11].

(d) If X = Rn, Y = Rm, and g is a proper, convex, l.s.c., and positively homogeneous,

then we fall into the framework, considered by Shapiro in [55]. In this case, the

composite form (3.3) is called decomposable; see [34, 55] for more detail about this

class of extended-real-valued functions. It was proven in [34, Lemma 5.3.27] that for

this case of g, the composite form (3.3) is twice epi-differentiable if it is convex and

if the nondegeneracy condition for this setting holds; see [34, Definition 5.3.1] for the

definition of this condition. In this framework, by the positive homogeneity of g and

F (x̄) = 0, coming from [34, Definition 5.3.1], we can easily show that g is parabolically

regular. Moreover the assumed nondegeneracy condition in [34, Lemma 5.3.27] yields

the validity of condition (2.4). As pointed out in Remark 3.23, the Lipschitz continuity

of g in the composite form (3.3) can be relaxed when condition (2.4) is satisfied. Since

the nondegeneracy condition implies that the set of Lagrange multipliers Λ(x̄, v̄) is

a singleton, we can use estimates (3.19) and (3.20) to justify parabolic regularity of

the composite form (3.3) in the framework of [34]. This together with Corollary 3.25

allows to recover [34, Lemma 5.3.27]. Furthermore, we can drop the convexity of the

composite form (3.3), assumed in [34].
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3.5 Second-Order Optimality Conditions for Composite Problems

In this section, we focus mainly on obtaining second-order optimality conditions for the

composite problem (1.1), where ϕ : X → R and F : X → Y are twice differentiable and the

function g : Y→ R is an l.s.c. convex function that is locally Lipschitz continuous relative to

its domain. The latter means that for any y ∈ dom g, the function g is Lipschitz continuous

around y relative to its domain. Important examples of constrained and composite optimiza-

tion problems can be achieved when g is one of the functions considered in Example 3.20.

For any pair (x, y) ∈ X× Y, the Lagrangian associated with the composite problem (1.1) is

defined by

L(x, y) = φ(x) + 〈F (x), y〉 − g∗(y),

where g∗ is the Fenchel conjugate of the convex function g. We begin with the following result

in which we collect second-order optimality conditions for (1.1) when our basic assumptions

are satisfied. Recall that a point x̄ ∈ X is called a feasible solution to the composite problem

(1.1) if we have F (x̄) ∈ dom g.

Theorem 3.27 (second-order optimality conditions) Let x̄ be a feasible solution to

problem (1.1) and let f := g ◦ F and v̄ := −∇φ(x̄) ∈ ∂−f(x̄) with ϕ, g, and F taken

from (1.1). Assume that the basic assumptions (H1)-(H3) hold for f at (x̄, v̄). Then the

following second-order optimality conditions for the composite problem (1.1) are satisfied:

(i) if x̄ is a local minimum of (1.1), then the second-order necessary condition

max
y∈Λ(x̄,v̄)

{
〈∇2

xxL(x̄, y)w,w〉+ d2g(F (x̄), y)(∇F (x̄)w)
}
≥ 0

holds for all w ∈ Kf (x̄, v̄);



90

(ii) the validity of the second-order condition

max
y∈Λ(x̄,v̄)

{
〈∇2

xxL(x̄, y)w,w〉+ d2g(F (x̄), y)(∇F (x̄)w)
}
> 0 for all w ∈ Kf (x̄, v̄) \ {0}

(3.33)

amounts to the existence of constants ` > 0 and ε > 0 such that the second-order

growth condition

ψ(x) ≥ ψ(x̄) + `
2
‖x− x̄‖2 for all x ∈ IBε(x̄) (3.34)

holds, where ψ := φ+ g ◦ F .

Proof.

To justify (i), note that since x̄ is a local minimum of (1.1), it is a local minimum of

ψ = φ + f . Moreover, −∇φ(x̄) ∈ ∂−f(x̄) amounts to 0 ∈ ∂ψ(x̄). Thus, by definition, we

arrive at d2ψ(x̄, 0)(w) ≥ 0 for all w ∈ X. Since ϕ is twice differentiable at x̄, we obtain the

following sum rule for the second subderivatives:

d2ψ(x̄, 0)(w) = 〈∇2φ(x̄)w,w〉+ d2f(x̄, v̄)(w) for all w ∈ X. (3.35)

Combing these with the chain rule (3.30) proves (i).

Turing now to (ii), we infer from [54, Theorem 13.24(c)] that d2ψ(x̄, 0)(w) > 0 for all

w ∈ X \ {0} amounts to the existence of some constants ` > 0 and ε > 0 for which the

second-order growth condition (3.34) holds. Remember from (3.18) and (3.35) that

dom d2ψ(x̄, 0) = dom d2f(x̄, v̄) = Kf (x̄, v̄). (3.36)

Using these, the chain rule (3.30), and the sum rule (3.35) proves the claimed equivalence in

(ii) and thus finishes the proof. �

Now we consider the constrained optimization problem (1.2)

minimiz φ(x) subject to F (x) ∈ Θ, (3.37)



91

as a particular case of composite optimization when g = δΘ. we assume φ and F are countin-

uouly twice differentiable around x̄ and Θ is closed convex set. We set Ω := {x| F (x) ∈ Θ}

then for v̄ ∈ NΩ(x̄) It is easy to observe that

KΩ(x̄, v̄) := KδΩ(x̄, v̄) = TΩ(x̄) ∩ {v̄}⊥.

Note if the set-valued mapping x→ F (x)−Θ is metrically subregular at x̄ then by Propo-

sition 3.13 we have NΩ(x̄) = ∇F (x̄)∗NΘ(F (x̄)) and for all λ ∈ Λ(x̄, v̄) we have

w ∈ KΩ(x̄, v̄) if and only if ∇F (x̄)w ∈ KΘ(F (x̄), λ).

In order to facilitate our presentation in this section, we list our basic assumptions that we

often impose on the convex set Θ from (4.1) at the point x̄ with F (x̄) ∈ Θ:

(H1) for every λ ∈ Λ(x̄), the set Θ is parabolically derivable at F (x̄) for all vectors of the

form ∇F (x̄)w in KΘ(F (x̄), λ);

(H2) the set Θ is parabolically regular at F (x̄) for every λ ∈ Λ(x̄, v̄).

It was shown in [39] that both assumptions (H1) and (H2) hold for important convex sets

appearing in constrained optimization problems including polyhedral convex sets, the second-

order cone, and the cone of symmetric and positive semidefinite matrices. Indeed, it was

proven in [39, Proposition 5.14] that any C2-cone reducible is satisfying these assumptions.

Imposing these assumptions on the set Θ opens the door for deriving second-order opti-

mality conditions for the constrained optimization problem (4.1). In the following Corollary

we derive the second-order optimality condition for the constrained problem (1.2). The

Larangian function associated to the problem is defined by

L(x, λ) = φ(x) + 〈λ, F (x)〉.
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Corollary 3.28 (second-order optimality conditions of constrained optimization)

Let the basic assumptions (H1) and (H2) hold for Θ from (4.1) and v̄ = −∇ϕ(x̄). As-

sume further that the mapping x 7→ F (x) − Θ is metrically subregular at (x̄, 0). Set

Ω := {x ∈ Rn|F (x) ∈ Θ}. Then we have the following second-order optimality conditions

for the constrained problem (4.1):

(i) If x̄ is a local minimum of (4.1), then the second-order necessary condition

max
λ∈Λ(x̄)

{
〈∇2

xxL(x̄, λ)w,w〉+ d2δΘ(F (x̄), λ)(∇F (x̄)w)
}
≥ 0

holds for all w ∈ KΘ(x̄, v̄).

(ii) The validity of the second-order condition for all w ∈ KΘ(x̄, v̄) \ {0}

max
λ∈Λ(x̄)

{
〈∇2

xxL(x̄, λ)w,w〉+ d2δΘ(F (x̄), λ)(∇F (x̄)w)
}
> 0

amounts to the existence of constants ` > 0 and ε > 0 such that the growth condition

φ(x) ≥ φ(x̄) +
`

2
‖x− x̄‖2 for all x ∈ IBε(x̄) ∩ Ω

holds.

Proof.

In Theorem 3.27 let g = δΘ. �

An important class of constrained optimization is nonlinear programming (2.33):

minimize φ(x) (3.38)

subject to fi(x) ≤ 0, i = 1, .., r

fi(x) = 0, i = r + 1, ...,m

where φ : Rn → R and each fi : Rn → R is continuously twice differentiable. Denote by Ω

the feasible solution of the above nonlinear programming. x̄ ∈ Ω is called stationary point

of the above problem if there exists a vector λ = (λ1, , , , , λm) - called Lagrangian multiplier
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- such that

∇xL(x̄, λ) = 0 , λfi(x̄) = 0, λi ≥ 0 such that i = 1, ..., r (3.39)

where L(x, λ) = φ(x) +
∑m

i=1 λifi(x). Denote Λ(x̄) The set of all Lagrangian multipliers

associated to the point x̄ ∈ Ω. The critical cone at x̄ for this problems reduces to

KΩ(x̄) := {w ∈ Rn| 〈∇fi(x̄), w〉 ≤ 0, i ∈ I(x̄) 〈∇f(x̄), w〉 = 0 for i = r+1, ...,m 〈w,∇φ(x̄)〉 = 0}

where I(x̄) is the set of active index associated to x̄ ∈ Ω.

Corollary 3.29 (second-order optimality conditions of nonlinear programming )

Let x̄ be satisfying (2.35) for the above nonlinear programming. Assume the metric subreg-

ularity constraint qualification (2.34):

(i) If x̄ is a local minimum, then for w ∈ KΩ(x̄) we have

max
λ∈Λ(x̄)

{
〈∇2

xxL(x̄, λ)w,w〉} ≥ 0

holds.

(ii) If the above inequality holds strictly for all w ∈ KΩ(x̄), then x̄ is a local minimizer

of the nonlinear programming. Actually the latter case amounts to the existence of

constants ` > 0 and ε > 0 such that the quadratic growth condition

φ(x) ≥ φ(x̄) +
`

2
‖x− x̄‖2 for all x ∈ IBε(x̄) ∩ Ω

Proof.

In Corollary 3.28 set Θ := Rr
−×{0}m−r and F := (f1, ..., f2). Note that x̄ satisfies (2.35)

thus it is a staitiory point which means

Λ(x̄) = {λ ∈ Rm| ∇xL(x̄, λ) = 0, λ ∈ NΘ(F (x̄))} 6= ∅.

�
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If we impose the stronger constraint qualification (LICQ) in Corollary 3.29, we can expect

a stronger results. The next corollary addresses this issue. Recall that the point x̄ ∈ Ω

satisfies the linearly independent constraint qualification (LICQ) for the above nonlinear

programming if the set

{∇fi(x̄) for i ∈ I(x̄), ∇fi(x̄) for i = r + 1, ...,m}

is linearly independent. Also recall that under any constraint qualification the tangent cone

at x̄ to the feasible solution of the problem nonlinear programming can be written as follow

TΩ(x̄) = {w ∈ Rn | ∇〈fi(x̄), w〉 ≤ 0 for i ∈ I(x̄), 〈fi(x̄), w〉 = 0 for i = r + 1, ...,m}.

Corollary 3.30 (second-order optimality conditions under LICQ) Let x̄ be satisfy-

ing (2.35) for the above nonlinear programming with the Lagrangian multiplier λ̄ =

(λ̄1, ..., λ̄m). Assume the linearly independent constraint qualification holds at x̄:

(i) If x̄ is a local minimum, then for w ∈ TΩ(x̄) we have

〈∇2
xxL(x̄, λ̄)w,w〉 ≥ 0

holds.

(ii) If the above inequality holds strictly for all w ∈ TΩ(x̄), then x̄ is a local minimizer of the

nonlinear programming. Actually the latter case amounts to the existence of constants

` > 0 and ε > 0 such that the quadratic growth condition

φ(x) ≥ φ(x̄) +
`

2
‖x− x̄‖2 for all x ∈ IBε(x̄) ∩ Ω.

Proof.

Note that under LICQ the set of Lagrangian multipiler is unique, thus we have Λ(x̄) =

{λ̄}. Furthermore, it is not difficult to check that TΩ(x̄) ⊆ {∇φ(x̄)}⊥. Therefore the results

follows from Corollary 3.29. �
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Remark 3.31 (discussion on second-order optimality conditions) The second-

order optimality conditions for composite problems were established in [4, Theorems 3.108

& 3.109] for (1.1) by expressing (1.1) equivalently as a constrained problem and then

appealing to the theory of second-order optimality conditions for the latter class of

problems. While not assuming that g is locally Lipschitz continuous relative to its domain,

theses results were established under condition (2.4) and the second-order regularity in

the sense of [4, Definition 3.93] that are strictly stronger than condition (3.5) and the

parabolic regularity, respectively, we imposed in Theorem 3.27. Another major difference is

that we require that g be parabolically epi-differentiable (assumption (H2)), which was not

assumed in [4]. This assumption plays an important role in our developments and has two

important consequences: 1) it makes the parabolic subderivative be a convex function and

help us obtain a precise formula for the Fenchel conjugate of the parabolic subderivative

in our framework; 2) it allows to establish the equivalence between (4.3) and the growth

condition in Theorem 3.27. These facts were not achieved in [4]; indeed, [4, Theorem 3.109]

was written in terms of the conjugate of the parabolic subderivative and only states that

condition (4.3) implies the growth condition therein.As discussed in Remark 3.23, if we

replace condition (3.5) with the stronger condition (2.4), the imposed Lipschitz continuity

of g can be relaxed in our developments. It is worth mentioning that the imposed Lipschitz

continuity of g relative to its domain, utilized in this paper, does not seem to be restrictive

and allows us to provide an umbrella under which second-order variational analysis for

composite problems can be carried out under condition (2.4) in the same level of perfection

as those for constrained problems. We believe that if we strengthen condition (2.4) to the

metric subregularity of the epigraphical mapping (x, α) 7→ (F (x), α) − epi g, the imposed

Lipschitz continuity of g can be relaxed in our developments.

Cominetti [10, Theorem 5.1] established second-order optimality conditions for the com-

posite problem (1.1) similar to Theorem 3.27 without making a connection between (4.3)
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and the growth condition (3.34). As mentioned in our discussion after Example 3.20, the

results in [10] were established under condition (2.4) and a restrictive assumption on the sec-

ond subderivative, which does not hold for important classes of composite problems. When

we are in the framework of Remark 3.26(a), Theorem 3.27 was first achieved by Rockafellar

in [51, Theorem 4.2] under condition (2.4) and was improved recently in [38, Theorem 6.2] by

replacing the latter condition with (3.5). For the framework of Remark 3.26(b), the second-

order optimality conditions from Theorem 3.27 were obtained in [57, Theorem 4.2]. Finally,

if we are in the framework of Remark 3.26(c), Theorem 3.27 covers our recent developments

in [39].

We end this section by obtaining a characterization of strong metric subregularity of the

subgradient mapping of the objective function of the composite problem (1.1).

Theorem 3.32 (strong metric subregularity of the subgradient mappings) Let x̄

be a feasible solution to problem (1.1) and let f := g ◦ F and v̄ := −∇ϕ(x̄) ∈ ∂−f(x̄)

with ϕ, g, and F taken from (1.1). Assume that the basic assumptions (H1)-(H3) hold for f

at (x̄, v̄) and that both ϕ and F are C2-smooth around x̄. Then the following conditions are

equivalent:

(i) the point x̄ is a local minimizer for ψ = ϕ + f and the subgradient mapping ∂ψ is

strongly metrically subregular at (x̄, 0);

(ii) the second-order sufficient condition (4.3) holds.

Proof.

We conclude from (3.35) and (3.36) that (4.3) amounts to the fulfillment of the condition

d2ψ(x̄, 0)(w) > 0 for all w ∈ X \ {0}. (3.40)

If (i) holds, we conclude from the local optimality of x̄ that d2ψ(x̄, 0)(w) ≥ 0 for all w ∈ X.
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Since (ii) is equivalent to (3.40), it suffices to show that there is no w ∈ X \ {0} such that

d2ψ(x̄, 0)(w) = 0. Suppose on the contrary that there exists w̄ ∈ X\{0} satisfying the latter

condition. This means that w̄ is a minimizer for the problem

minimize 1
2
d2ψ(x̄, 0)(w) subject to w ∈ X.

Since both ϕ and F are C2-smooth around x̄, we can show using similar arguments as

Proposition 2.24 that ψ is prox-regular and subdifferentially continuousat x̄ for 0, and we

have ∂−φ = ∂L−φ = ∂pφ. These together with the Fermat stationary principle and (4.2)

results in

0 ∈ ∂L−
(

1
2
d2ψ(x̄, 0)

)
(w̄) = D(∂−ψ)(x̄, 0)(w̄). (3.41)

Since ∂ψ is strongly metrically subregular at (x̄, 0), we deduce from (3.3) that w̄ = 0, a

contradiction. This proves (ii).

To justify the opposite implication, assume that (ii) holds. According to Theorem 3.27(ii),

x̄ is a local minimizer for ψ. Pick now w ∈ X such that 0 ∈ D(∂−ψ)(x̄, 0)(w). To

obtain (i), we require by (3.3) to show that w = 0. Employing now (3.41) yields

0 ∈ ∂L−
(

1
2
d2ψ(x̄, 0)

)
(w). This combined with [9, Lemma 3.7] confirms that d2ψ(x̄, 0)(w) =

〈0, w〉 = 0. Remember that (ii) is equivalent to (3.40). Combining these results in w = 0

and thus proves (i). �

The above result was first observed in [11, Theorem 4G.1] for a subclass of nonlinear pro-

gramming problems and was extended in [9, Theorem 4.6] for C2-cone reducible constrained

optimization problems and in [39, Theorem 9.2] for parabolically regular constrained op-

timization problems. The theory of the twice epi-differentiability, obtained in this paper,

provides an easy path to achieve a similar result for the composite problem (1.1).

It is worth mentioning that similar characterizations as [39, Theorem 4.2] can be achieved

for the KKT system of (1.1). Furthermore, Corollary 3.11 provides a systematic method to
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calculate proto-derivatives of subgradient mappings of functions enjoying the composite form

(3.3), a path we will pursue in our future research.
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CHAPTER 4 APPLICATIONS IN THE SQP METHOD

The main attention of this chapter is given to study of the strong metric subregularity

of the KKT system of the constrained optimization problem

min
x∈Rn

ϕ(x) subject to F (x) ∈ Θ, (4.1)

where ϕ : Rn → R and F : Rn → Rm are twice continuously differentiable functions around

reference points, where Θ is a closed and convex set in Rm. Following Chapter 3 the second-

order analysis of optimization problems requires certain second-order regularity condition on

the constraint set Θ. We will assume in this chapter that the set Θ is parabolically regular;

see the next section for the definition of such a set.

Our first goal in this chapter is to provide a systematic study of strong metric subregular-

ity of the KKT system of (4.1) using the second-order analysis conducted for parabolically

regular sets in chapter 3. It is well-known [12] that for nonlinear programs the latter prop-

erty amounts to the uniqueness of Lagrange multipliers as well as the second-order sufficient

condition. Later it was observed in [13] that a similar result for C2-cone reducible constrained

problems, namely (4.1) with Θ being C2-cone reducible in the sense of [4, Definition 3.135],

can be established if the uniqueness of Lagrange multipliers is replaced by the strong Robin-

son constraint qualification (see condition (4.9)). We show that the well-known result for

NLPs can be retrieved for parabolically regular constrained problems if we assume further the

multiplier mapping is calm. Moreover, our results reveal that the combination of uniqueness

of Lagrange multipliers and the calmness of the multiplier mapping amounts to the strong

Robinson constraint qualification. These illustrate that the calmness of multiplier mapping,

being automatically satisfied for NLPs, is a property that is required in order to achieve a

similar result as those in NLPs for the constrained problem (4.1) in general. Such a calmness

property was recently used in [42] in order to characterize noncriticality of Lagrange mul-

tipliers for generalized KKT systems that encompass the KKT system for the constrained



100

optimization problem (4.1).

Our second goal is to provide an important application of the established characteriza-

tions of the strong metric subregularity of the KKT system of (4.1) in the basic sequential

programming method (SQP) for this problem. For the NLPs framework, the sharpest result

was achieved by Bonnans [1] in which he showed that the combination of the uniqueness of

Lagrange multipliers and the second-order sufficient condition ensures that the basic SQP

method can generate a sequence that is convergent and the rate of convergence is superlinear.

We will show that Bonnans’ result can be extended for the parabolically regular constrained

optimization problems if we further assume that the multiplier mapping is calm. The main

source of this chapter is [40].

A mapping S : X ⇒ Y is called calm at (x̄, ȳ) ∈ S if there are ` ≥ 0 and neighborhoods

U of x̄ and V of ȳ such that

S(x) ∩ V ⊂ S(x̄) + `‖x− x̄‖IB for all x ∈ U

holds. The mapping S is called isolated calm at (x̄, ȳ) if there are ` ≥ 0 and neighborhoods

U of x̄ and V of ȳ for which we have

S(x) ∩ V ⊂
{
ȳ
}

+ `‖x− x̄‖IB for all x ∈ U.

It is well-known that the calmness and isolated calmness of a set-valued mapping S at (x̄, ȳ)

amount to the metric subregularity and strong metric subregularity, respectively, of S−1 at

(ȳ, x̄).

We recall below an important consequence of parabolic regularity that was recently ob-

served in chapter 3. Recall that a set-valued mapping S : X ⇒ Y is called proto-differentiable

at x̄ for ȳ with (x̄, ȳ) ∈ S if the set S is geometrically derivable at (x̄, ȳ). When this condition

holds for the set-valued mapping S at x̄ for ȳ, we refer to DS(x̄, ȳ) as the proto-derivative
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of F at x̄ for ȳ.

Proposition 4.1 (proto-differentiability of normal cone mappings) Let Θ be a

closed convex set in Rn and let x̄ ∈ Θ and v̄ ∈ NΘ(x̄). Assume further that Θ is parabolically

derivable at x̄ for every vector w ∈ KΘ(x̄, v̄), and that Θ is parabolically regular at x̄ for v̄.

Then the following equivalent conditions hold:

(i) the indicator function δΘ is twice epi-differentiable at x̄ for v̄;

(ii) the normal cone mapping NΘ is proto-differentiable at x̄ for v̄ and

DNΘ(x̄, v̄)(w) = ∂
[1
2

d2δΘ(x̄, v̄)
]
(w) for all w ∈ Rn. (4.2)

Furthermore, we have dom d2δΘ(x̄, v̄) = KΘ(x̄, v̄) and the second subderivative d2δΘ(x̄, v̄) is

a proper convex function.

Proof.

The validity and equivalence of (i) and (ii) follows from Corollary 3.11 by setting f = δΘ.

Finally, it follows from [54, Proposition 13.20] that the second subderivative d2δΘ(x̄, v̄) is

proper convex. �

We provide a simple but useful consequence of the above result in which the proto-

derivative of the normal cone mapping will be calculated at the origin.

Corollary 4.2 (proto-derivatives of parabolically regular sets) Let Θ ⊂ Rn satisfy

the assumptions of Proposition 4.1. Then we have

DNΘ(x̄, v̄)(0) = NKΘ(x̄,v̄)(0) =
(
KΘ(x̄, v̄)

)∗
. (4.3)

Proof.

It follows from (4.2) that

DNΘ(x̄, v̄)(0) = ∂
[
d2δΘ(x̄, v̄)

]
(0).
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Let u ∈ DNΘ(x̄, v̄)(0) and thus get u ∈ ∂
[
d2δΘ(x̄, v̄)

]
(0). Since the second subderivative

d2δΘ(x̄, v̄) is a convex function and d2δΘ(x̄, v̄)(0) = 0, we obtain

〈u,w − 0〉 ≤ 1

2
d2δΘ(x̄, v̄)(w)− 1

2
d2δΘ(x̄, v̄)(0) =

1

2
d2δΘ(x̄, v̄)(w) for all w ∈ Rn.

By Proposition 4.1, we have dom d2δΘ(x̄, v̄) = KΘ(x̄, v̄). Let t > 0 and w ∈ KΘ(x̄, v̄).

Since the second subderivative d2δΘ(x̄, v̄) is positive homogeneous of degree 2, we obtain

d2δΘ(x̄, v̄)(tw) = t2d2δΘ(x̄, v̄)(w), which results in

t〈u,w〉 ≤ 1

2
d2δΘ(x̄, v̄)(tw) =

t2

2
d2δΘ(x̄, v̄)(w).

This along with w ∈ dom d2δΘ(x̄, v̄) confirms that 〈u,w〉 ≤ 0 and hence u ∈
(
KΘ(x̄, v̄)

)∗
.

This gives us the inclusion ‘⊂’ in (4.3). Assume now u ∈
(
KΘ(x̄, v̄)

)∗
. So we have 〈u,w〉 ≤ 0

for all w ∈ KΘ(x̄, v̄). This leads us to

〈u,w〉 ≤ 0 ≤ 1

2
d2δΘ(x̄, v̄)(w) =

1

2
d2δΘ(x̄, v̄)(w)− 1

2
d2δΘ(x̄, v̄)(0) for all w ∈ KΘ(x̄, v̄).

If w /∈ KΘ(x̄, v̄), then by Proposition 4.1, we have d2δΘ(x̄ v̄)(w) =∞, which clearly implies

that the above inequality holds for such w. Consequently we arrive at u ∈ ∂
[

1
2
d2δΘ(x̄, v̄)

]
(0)

and therefore u ∈ DNΘ(x̄, v̄)(0). This gives the inclusion ‘⊃’ in (4.3) and hence completes

the proof. �

Considering the constrained problem (4.1), we define its KKT system by the equations

∇xL(x, λ) = ∇ϕ(x) +∇F (x)∗λ = 0, λ ∈ NΘ

(
F (x)

)
, (4.4)

where L(x, λ) := ϕ(x) + 〈F (x), λ〉 is the Lagrangian associated with problem (4.1) and

(x, λ) ∈ Rn×Rm. Given a point x̄ ∈ Rn, we define the set of Lagrange multipliers associated

with x̄ by

Λ(x̄) :=
{
λ ∈ Rm

∣∣ ∇xL(x̄, λ) = 0, λ ∈ NΘ

(
F (x̄)

)}
. (4.5)

Having (x̄, λ̄) as a solution to the KKT system (4.4) always yields λ̄ ∈ Λ(x̄). It is not hard
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to see that if λ̄ ∈ Λ(x̄), then x̄ is a stationary point of the KKT system (4.4) in the sense

that it satisfies the condition

0 ∈ ∂−
(
ϕ+ δΘ ◦ F

)
(x̄).

In order to facilitate our presentation in this section, we list our basic assumptions that

we often impose on the convex set Θ from (4.1) at the point x̄ with F (x̄) ∈ Θ:

(H1) for every λ ∈ Λ(x̄), the set Θ is parabolically derivable at F (x̄) for all vectors of the

form ∇F (x̄)w in KΘ(F (x̄), λ);

(H2) the set Θ is parabolically regular at F (x̄) for every λ ∈ Λ(x̄).

It was shown in [39] that both assumptions (H1) and (H2) hold for important convex sets

appearing in constrained optimization problems including polyhedral convex sets, the second-

order cone, and the cone of symmetric and positive semidefinite matrices. Indeed, it was

proven in [39, Proposition 5.14] that any C2-cone reducible is satisfying these assumptions.

Imposing these assumptions on the set Θ opens the door for deriving second-order optimality

conditions for the constrained optimization problem (4.1). In the following we recall the

second-order optimality condition for the constrained optimization problem established in

Chapter 3, Theorem 3.28.

Theorem 4.3 (second-order optimality conditions) Let the basic assumptions (H1)

and (H2) hold for Θ from (4.1) and v̄ = −∇ϕ(x̄). Assume further that the mapping

x 7→ F (x) − Θ is metrically subregular at (x̄, 0). Set Ω := {x ∈ Rn|F (x) ∈ Θ}. Then

we have the following second-order optimality conditions for the constrained problem (4.1):

(i) If x̄ is a local minimum of (4.1), then the second-order necessary condition

max
λ∈Λ(x̄)

{
〈∇2

xxL(x̄, λ)w,w〉+ d2δΘ(F (x̄), λ)(∇F (x̄)w)
}
≥ 0

holds for all w ∈ KΩ(x̄, v̄).
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(ii) The validity of the second-order condition

max
λ∈Λ(x̄)

{
〈∇2

xxL(x̄, λ)w,w〉+ d2δΘ(F (x̄), λ)(∇F (x̄)w)
}
> 0 for all w ∈ KΩ(x̄, v̄) \ {0}

amounts to the existence of constants ` > 0 and ε > 0 such that the growth condition

f(x) ≥ f(x̄) +
`

2
‖x− x̄‖2 for all x ∈ IBε(x̄)

holds, where f := ϕ+ δΘ ◦ F .

As argued in [39], the above second-order necessary and sufficient conditions for parabol-

ically regular problem (4.1) boils down the well-know second-order conditions for C2-cone

reducible constrained problems obtained in [4].

Given a point x̄ ∈ Rn, we define the multiplier mapping Mx̄ : Rn×Rm ⇒ Rm associated

with x̄ by

Mx̄(v, w) :=
{
λ ∈ Rm

∣∣ (v, w) ∈ G(x̄, λ)
}

with (v, w) ∈ Rn × Rm, (4.6)

where the mapping G : Rn × Rm ⇒ Rn × Rm is defined by

G(x, λ) :=

 ∇xL(x, λ)

−F (x)

+

 0

N−1
Θ (λ)

 . (4.7)

It is easy to observe that Mx̄(0, 0) = Λ(x̄), where Λ(x̄) the set of Lagrange multipliers at x̄

from (4.5). We collect some important properties of the multiplier mapping in the following

result.

Theorem 4.4 (properties of multipliers mappings) Let (x̄, λ̄) be a solution to the

KKT system (4.4). Then following properties of the multiplier mapping Mx̄ are equivalent:

(i) the multiplier mapping Mx̄ is calm at ((0, 0), λ̄) and Λ(x̄) = {λ̄};

(ii) the multiplier mapping Mx̄ is isolated calm at ((0, 0), λ̄);
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(iii) the dual qualification condition

DNΘ(F (x̄), λ̄)(0) ∩ ker∇F (x̄)∗ = {0} (4.8)

holds.

In addition, if the convex set Θ from (4.1) satisfy the basic assumptions (H1) and (H2), then

the above conditions are equivalent to the following one:

(iv) The strong Robinson constraint qualification holds:

∇F (x̄)Rn +
[
TΘ(F (x̄)) ∩ {λ̄}⊥

]
= Rm. (4.9)

Proof.

The equivalence between (i), (ii), and (iii) was already achieved in [42, Theorem 3.1].

Moreover, it was shown in [42, Proposition 4.3] that conditions (iii) and (iv) equivalent for any

C2-cone reducible set. The same argument together with DNΘ(F (x̄), λ̄)(0) = NKΘ(F (x̄),λ̄)(0),

resulted from Corollary 4.2, can be utilized to get the same equivalence for sets satisfying

the basic assumptions (H1) and (H2). �

We end this section by comparing the dual condition (4.8) with the well-known Robinson

constraint qualification for the constrained optimization problem (4.1).

Proposition 4.5 Let (x̄, λ̄) be a solution to the KKT system (4.4), and let Θ from (4.1)

satisfy the basic assumptions (H1) and (H2). If the dual condition (4.8) is satisfied, then the

following conditions hold:

(i) the basic constraint qualification

NΘ(F (x̄)) ∩ ker∇F (x̄)∗ = {0} (4.10)

holds;
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(ii) for any vector w ∈ Rn with ∇F (x̄)w ∈ KΘ(F (x̄), λ̄), we have

NKΘ(F (x̄),λ̄)(∇F (x̄)w) ∩ ker∇F (x̄)∗ = {0}.

Proof.

It follows from the basic assumptions (H1) and (H2) together with Proposition 4.1 that

δΘ is twice epi-differentiable at F (x̄) for λ̄. Using this and (4.3) gives us DNΘ(F (x̄) λ̄)(0) =

NKΘ(F (x̄),λ̄)(0). Since we always have the inclusion

NΘ(F (x̄)) ⊂ cl (NΘ(F (x̄)) + Rλ̄) =
(
KΘ(F (x̄), λ̄)

)∗
= NKΘ(F (x̄),λ̄)(0),

we conclude from the dual condition (4.8) that the basic constraint qualification (4.10) holds,

which proves (i).

Turning to (ii), pick w ∈ Rn such that ∇F (x̄)w ∈ KΘ(F (x̄), λ̄). It is easy to see that

NKΘ(F (x̄),λ̄)(∇F (x̄)w) ⊂ NKΘ(F (x̄),λ̄)(0) = DNΘ(F (x̄), λ̄)(0).

Appealing now to (4.8) proves (ii) and thus completes the proof. �

Since our analysis in this paper will be conducted under the basic assumptions (H1) and

(H2) and since the primal and dual conditions (4.8) and (4.9), respectively, are equivalent

under these conditions, we will refer to both conditions as the strong Robinson constraint

qualification.

4.1 Critical Multipliers for Composite Optimization Problems

This section aims to investigate the strong metric subregularity of the KKT system

(4.4). It has been well-known that such a property play a prominent role in the study of

the rate of convergence of numerical algorithms for optimization problems. The study of

the aforementioned property of the KKT system (4.4) is pertinent to analyzing the solution

mapping S : Rn × Rm ⇒ Rn × Rm, defined by

S(v, w) :=
{

(x, λ) ∈ Rn × Rm | (v, w) ∈ G(x, λ)
}

with (v, w) ∈ Rn × Rm (4.11)
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via the set-valued mapping G from (4.7). This, indeed, is the solution map to the canonical

perturbation of (4.4) and so can be seen as the KKT system of the canonically perturbed

problem

min
x∈Rn

ϕ0(x)− 〈v, x〉 subject to F (x) + w ∈ Θ. (4.12)

Below we first reveal the relationship between isolated calmness of S and noncriticality of

Lagrange multipliers being important for the subsequent results. Recall the concept of critical

and noncritical Lagrange multipliers for the KKT system (4.4) from [41, Definition 3.1]: Let

(x̄, λ̄) be a solution to the KKT system (4.4). The Lagrange multiplier λ̄ ∈ Λ(x̄) is said

critical for (4.4) if there is a nonzero w ∈ Rn satisfying the inclusion

0 ∈ ∇2
xxL(x̄, λ̄)w +∇F (x̄)∗DNΘ(F (x̄)), λ̄)(∇F (x̄)w).

The Lagrange multiplier λ̄ ∈ Λ(x̄) is noncritical for (4.4) when the above generalized equation

admits only the trivial solution ξ = 0.

The above definition is a generalization of the same concept introduced by Izmailov in [26]

for nonlinear programs with equality constraints. A characterization of this concepts can

be found in [28, Proposition 1.43] for NLPs and in [42, Theorem 4.1] for C2-cone reducible

constrained problems.

Proposition 4.6 (characterization of isolated calmness via noncriticality) Let

(x̄, λ̄) be a solution to the KKT system (4.4). Consider the following statements:

(i) the Lagrange multiplier λ̄ is noncritical for (4.4);

(ii) the mapping S from (4.11) is isolated calm at ((0, 0), (x̄, λ̄)).

Then the following hold:

(a) the implication (ii) =⇒ (i) always holds;
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(b) if Λ(x̄) = {λ̄} and the multiplier mapping Mx̄ is calm at ((0, 0), λ̄), then we have

(i) =⇒ (ii).

Proof.

It is not hard to see from the definition of noncriticality that the Lagrange multiplier λ̄

is noncritical if and only if the following implication holds:
∇2
xxL(x̄, λ̄)w +∇F (x̄)∗u = 0,

u ∈ DNΘ(F (x̄), λ̄)(∇F (x̄)w)

=⇒ w = 0. (4.13)

However, from the well-known criterion for the characterization of the isolated calmness of

S (see, e.g., [11, Theorem 4G.1]), we know that the solution mapping S is isolated calm

at ((0, 0), (x̄, λ̄)) if and only if DS((0, 0), (x̄, λ̄))(0, 0) = {0, 0)}. This can be equivalently

expressed as 
∇2
xxL(x̄, λ̄)w +∇F (x̄)∗u = 0,

u ∈ DNΘ(F (x̄), λ̄)(∇F (x̄)w)

=⇒ w = 0, u = 0. (4.14)

Let (ii) be satisfied. Thus (4.14) holds and so does implication (4.13), which proves (a).

To prove (b), assume that (i) is satisfied. This results in the validity of implication (4.13).

Moreover, Theorem 4.4 ensures that the condition (4.8) is satisfied. Pick (w, u) satisfying

the left side equations of implication (4.14). By (4.13) we obtain w = 0. This implies that

u ∈ DNΘ(F (x̄), λ̄)(0) ∩ ker∇F (x̄)∗.

Appealing next to (4.8) confirms that u = 0, which tells us that (4.14) holds and hence

completes the proof. �

It is important to notice that calmness of the multiplier mapping is essential for im-

plication (i) =⇒ (ii) in Proposition 4.6(b). Indeed, [42, Example 4.8] provides a simple

semidefinite program in which the calmness of the Lagrange multiplier mapping Mx̄ fails



109

while the unique Lagrange multiplier therein is noncritical but the solution mapping S is

not isolated calm. However, when Θ is a polyhedral convex set, noncriticality along with

uniqueness of Lagrange multipliers does result in the isolated calmness of S. This falls out

of Proposition 4.6 because in this case the multiplier mapping Mx̄ is automatically calm as

a direct consequence of the Hoffman lemma.

We proceed with deriving a characterization of the isolated calmness of the solution map

S from (4.11) via the second-order sufficient condition.

Theorem 4.7 (characterization of isolated calmness for KKT systems) Let (x̄, λ̄)

be a solution to the KKT system (4.4) and let the basic assumptions (H1) and (H2) hold.

Then the following conditions are equivalent:

(i) the mapping S from (4.11) is isolated calm at ((0, 0), (x̄, λ̄)) and x̄ is local minimum

of (4.1).

(ii) the second-order sufficient condition
〈∇2

xxL(x̄, λ̄)w,w〉+ d2δΘ(F (x̄), λ̄)(∇F (x̄)w) > 0

for all w ∈ Rn \ {0} with ∇F (x̄)w ∈ KΘ(F (x̄), λ̄).

(4.15)

holds, the multiplier mapping Mx̄ is calm at ((0, 0), λ̄), and Λ(x̄) = {λ̄}.

(iii) the second-order sufficient condition (4.15) and the strong Robinson constraint quali-

fication (4.8) are satisfied.

(iv) the Lagrange multiplier λ̄ from (4.5) is noncritical for (4.4), x̄ is local minimum of

(4.1), the multiplier mapping Mx̄ is calm at ((0, 0), λ̄), and Λ(x̄) = {λ̄}.

Proof.

We begin with proving implication (i) =⇒ (iv). Since S is isolated calm at ((0, 0), (x̄, λ̄))

and Λ(x̄) is convex, we obtain Λ(x̄) = {λ̄}. The calmness of the Lagrange multiplier mapping
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Mx̄ is calm at ((0, 0), λ̄) is a direct consequence of the isolated calmness of S at ((0, 0), (x̄, λ̄)).

Finally, by Proposition 4.6(a), λ̄ is noncritical and so we get (iv).

Turning now to implication (iv) =⇒ (ii), assume that (iv) holds and hence by Theorem 4.4

deduce that (4.8) is satisfied. This along with Proposition 4.5(i) implies that the basic

constraint qualification (4.10) holds. Employing now Theorem 3.27(i) and using Λ(x̄) = {λ̄}

tell us that the second-order necessary condition

〈
∇2
xxL(x̄, λ̄)w,w

〉
+ d2δΘ(F (x̄), λ̄)(∇F (x̄)w) ≥ 0 for all w ∈ KΩ(x̄,−∇ϕ(x̄)) (4.16)

fulfills, where Ω := {x ∈ Rn|F (x) ∈ Θ}. Moreover, we deduce from (4.10) that

w ∈ KΩ(x̄,−∇ϕ(x̄)) ⇐⇒ ∇F (x̄)w ∈ KΘ(F (x̄), λ̄).

To prove the second-order sufficient condition (4.15), we need to show that the above in-

equality is strict for any w 6= 0. Suppose by contradiction that there is a w̄ 6= 0 such

that

〈
∇2
xxL(x̄, λ̄)w̄, w̄

〉
+ d2δΘ(F (x̄), λ̄)(∇F (x̄)w̄) = 0 with ∇F (x̄)w̄ ∈ KΘ(F (x̄), λ̄).

Consider now the optimization problem

min
w∈Rn

1

2

[〈
∇2
xxL(x̄, λ̄)w,w

〉
+ d2δΘ(F (x̄), λ̄)(∇F (x̄)w)

]
. (4.17)

It follows from (4.16) that w̄ is an optimal solution to (4.17). Since ∇F (x̄)w̄ ∈ KΘ(F (x̄), λ̄),

by Proposition 4.5(ii), we have the following chain rule:

∂w
(1

2
d2δΘ(F (x̄), λ̄)(∇F (x̄)·)

)
(w̄) = ∇F (x̄)∗∂

[1
2

d2δΘ(F (x̄), λ̄)
]
(∇F (x̄)w̄).

Applying the subdifferential Fermat principle to the latter problem and then using the above

chain rule yield

0 ∈ ∇2
xxL(x̄, λ̄)w̄ +∇F (x̄)∗∂

[1
2

d2δΘ(F (x̄), λ̄)
]
(∇F (x̄)w̄)

= ∇2
xxL(x̄, λ̄)w̄ +∇F (x̄)∗DNΘ(F (x̄), λ̄)(∇F (x̄)w̄),
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where the last equality comes from (4.2). Since w̄ 6= 0, this inclusion justifies that λ̄ is

critical, a contradiction. Thus the inequality in (4.16) is strict, which yields the validity of

the second-order sufficient condition (4.15) and hence proves (ii).

To justify (ii) =⇒ (i), suppose that (ii) is satisfied. We are going to prove that λ̄ is

noncritical. To do so, it suffices to show that implication (4.13) is satisfied. Pick (w, u)

satisfying on the left side equations of the latter implication. This brings us to

〈∇2
xxL(x̄, λ̄)w,w〉+ 〈u,∇F (x̄)w〉 = 0 and u ∈ DNΘ(F (x̄), λ̄)(∇F (x̄)w). (4.18)

The second relationship together with (4.2) yields u ∈ ∂
[

1
2
d2δΘ(F (x̄), λ̄)

]
(∇F (x̄)w). Thus

we have ∇F (x̄)w ∈ dom d2δΘ(F (x̄), λ̄) = KΘ(F (x̄), λ̄). Moreover, since d2δΘ(F (x̄), λ̄) is a

convex function due to Proposition 4.1, by the definition of the subdifferential from convex

analysis we obtain for all v ∈ Rm that

〈u, v −∇F (x̄)w〉 ≤ 1

2
d2δΘ(F (x̄), λ̄)(v)− 1

2
d2δΘ(F (x̄), λ̄)(∇Frchet(x̄)w).

Let ε ∈ (0, 1) and set v := (1 ± ε)∇F (x̄)w. Since the second subderivative is positive

homogeneous of degree 2, we arrive at

±〈u,∇F (x̄)w〉 ≤ ε± 2

2
d2δΘ(F (x̄), λ̄)(∇F (x̄)w).

Letting ε ↓ 0 clearly gives us the equality d2δΘ(F (x̄), λ̄)(∇F (x̄)w) = 〈u,∇F (x̄)w〉. Combin-

ing this and (4.18) ensures that

〈∇2
xxL(x̄, λ̄)w,w〉+ d2δΘ(F (x̄), λ̄)(∇F (x̄)w) = 0, ∇F (x̄)w ∈ KΘ(F (x̄), λ̄),

which results in w = 0 due to the second-order condition (4.3) and thus λ̄ is noncritical. Ap-

pealing now to Proposition 4.6(b) tells that the mapping S is isolated calm at ((0, 0), (x̄, λ̄)).

We also conclude from (4.15), Λ(x̄) = {λ̄}, and Theorem 3.28(ii) that x̄ is a local minimum

of (4.1), which proves that (i) holds.

Finally, the equivalence between (ii) and (iii) is a direct consequence of Theorem 4.4.
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This completes the proof. �

The equivalence between (i) and (iii) Theorem 4.7 was obtained in [13, Theorem 24] for

a C2-cone reducible set Θ using a different approach. It is important to notice that our

proof is deeply rooted into our developments in chapter 3 regarding parabolic regularity

and its important consequences in second-order variational analysis. Parts (ii) and (iv) in

Theorem 4.7 did not appear in [13, Theorem 24] and are new to the best our knowledge.

These parts highlight a significant difference for dealing with the KKT system (4.4) when

Θ is a nonpolyhedral set. In the case that Θ is a polyhedral convex set in (4.4), (4.1) boils

down to a nonlinear programming problem. It is well-known that for the latter framework

(cf. [12, Theorem 2.6]) the uniqueness of Lagrange multipliers together with (4.15) amounts

to the isolated calmness of the solution mapping S from (4.11). It was argued in [13] that a

similar result for constrained optimization problems in general can not be expected and then

shown that if we replace the uniqueness of Lagrange multipliers with the strong Robinson

constraint qualification (4.9), then a similar result can be justified (cf. [13, Theorem 24]).

However, the authors in [13] did not address the question that why such a result may fail for

a constrained optimization problem with a nonpolyhedral set Θ. Theorem 4.7(ii) answers

the latter question by revealing that, indeed, the calmness of the multiplier mapping Mx̄ is

essential in order to derive such an equivalence. In the framework of nonlinear programming,

the latter calmness property is automatically satisfied by the Hoffman Lemma. However, it

may fail for constrained optimization problems as shown in [42, Example 3.4] for a semidef-

inite programming problem. Moreover, [42, Example 4.8] shows that for the latter example

the isolated calmness property of S fails while the set of Lagrange multipliers is a singleton.

This says that if the calmness of the multiplier mappingMx̄ is not satisfied, the equivalences

in Theorem 4.7 may fail in general.

Finally, we want to add to this discussion that [13, Theorem 24] assume the basic con-
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straint qualification (4.10). However, our proof shows that the latter condition can be

dropped without any harm.

4.2 Superlinear Convergence of The SQP Method

This section is devoted to establish the primal-dual superlinear convergence of the basic

SQP method for the constrained optimization problem (4.1). The SQP has been among the

most effective methods for solving nonlinear constrained optimization problems. The princi-

pal idea of the SQP is to solve a sequence of quadratic approximations, called subproblems,

whose optimal solutions converge to that of the original problem under some appropriate

assumptions.

Given the current iterate xk, the generic SQP subproblems for the constrained optimiza-

tion problem (4.1) are formulated as
min
x∈Rn

ϕ(xk) + 〈∇ϕ(xk), x− xk〉+
1

2
〈Hk(x− xk), x− xk〉

subject to F (xk) +∇F (xk)(x− xk) ∈ Θ,

(4.19)

where Hk ∈ Rn×n for all k ∈ IN . The KKT system of this subproblem can be formulated as

the generalized equation 0

0

 ∈
 ∇xL(xk, λk)

−F (xk)

+

 Hk ∇F (xk)
∗

−∇F (xk) 0


 x− xk

λ− λk

+

 0

N−1
Θ (λ)

 . (4.20)

The generic SQP method for problem (4.1) is therefore as follows:

Algorithm 4.8 (SQP method) Choose (xk, λk) ∈ Rn × Rm and set k = 0.

(1) If (xk, λk) satisfies the KKT system (4.4), then stop.

(2) Choose aHk ∈ Rn×n and compute (xk+1, λk+1) as a solution to the generalized equation

(4.20).

(3) Increase k by 1 and then go back to Step (1).
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In quasi-Newton SQP methods, Hk is chosen as a quasi-Newton approximation of

∇2
xxL(xk, λk). An efficient method to construct Hk is the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) method; see [28, page 212] for more detail about this method. Some

interesting discussion and suggestions on how to construct a quasi-Newton SQP approxi-

mation can be found in [3, Chapter 18]. In what follows, as [28, page 229], we refer to the

basic SQP method when we let

Hk = ∇2
xxL(xk, λk). (4.21)

As it is well-known the basic SQP method can be viewed as a natural extension of the

Newton method that is implemented for generalized equations rather than equations. Indeed,

we can equivalently express this system as the generalized equation 0

0

 ∈
 ∇xL(x, λ)

−F (x)

+

 0

N−1
Θ (λ)

 . (4.22)

Employing the Newton method for this generalized equation brings us to the aforementioned

basic SQP method for the constrained problem (4.1); see [28, Section 3.1] for more detail.

The Newton method for generalized equations has been investigated extensively since the

late 1970s; see [11,28] and references therein. Josephy’s observation in [29] was significantly

advanced the topic by showing that strong regularity can ensure the superlinear convergence

of the Newton method for variational inequalities. Considering nonlinear programming prob-

lems, Robinson [44, Theorem 4.1] showed that strong regularity can be guaranteed under a

stronger form of the second-order sufficient condition (4.15) together with the linear indepen-

dence constraint qualification. The next improvement in the latter framework was achieved

by Bonnans in [1], where he showed that for nonlinear programming problems (NLPs) the

basic SQP method converges superlinearly if the second-order sufficient condition (4.15)

with Θ being a polyhedral set holds and the set of Lagrange multipliers is a singleton. In
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this section, we are going to extend this result for the constrained problem (4.1). As our

results in pervious section reveals, such an extension requires one extra assumption, namely

the calmness of the multiplier mapping. To achieve our goal, we utilize [28, Theorem 3.2] in

which superlinear convergence of the Newton method for the generalized equation was estab-

lished under two assumptions. For the generalized equation (4.22), the assumptions utilized

in [28, Theorem 3.2] reads as the solution mapping S from (4.11) being isolated calm (this

property was called semistability in [28]) and another property called hemistability. Recall

from [28, Definition 3.1] that a solution x̄ to the generalized equation

0 ∈ f(x) + F (x)

with f : Rn → Rm and F : Rn ⇒ Rm is called hemistable if for any x close to x̄ the

generalized equation

0 ∈ f(x) +∇f(x)η + F (x+ η)

has a solution ηx such that ηx → 0 as x→ x̄. Below, are going to show that if the solution

mapping S from (4.11) is isolated calm at ((0, 0), (x̄, λ̄)), then the solution (x̄, λ̄) to (4.22) is

hemistable.

Assume that P is a finite dimensional space. For the constrained optimization problem

(4.1), we consider the perturbed problem

min
x∈Rn

ϕ̃(x, p) subject to F̃ (x, p) ∈ Θ, (4.23)

where the functions ϕ̃ : Rn × P → R and F̃ : Rn × P → Rm are twice continuously

differentiable with respect to both x and p. The first part of the following result is an

extension of [28, Theorem 1.21], which was proved for a nonlinear programming problem.

While the proof exploits a similar argument as the latter result, we provide a short argument

for the readers’ convenient. In what follows, we refer to a local minimizer that is isolated as

a strict local minimizer.
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Proposition 4.9 (stability properties of perturbed problems) Let (x̄, λ̄) be a solu-

tion to the KKT system (4.4) and let the basic assumptions (H1) and (H2) hold. If for

the parameter p̄ ∈ P we have

ϕ̃(x̄, p̄) = ϕ(x̄), ∇xϕ̃(x̄, p̄) = ∇ϕ(x̄), F̃ (x̄, p̄) = F (x̄), ∇xF̃ (x̄, p̄) = ∇F (x̄), (4.24)

then the following conditions hold:

(i) if x̄ is a local strict minimum of (4.23) for p = p̄ and if the basic constraint qualification

(4.10) holds, then for any p ∈ P sufficiently close to p̄, problem (4.23) attains a local

minimum xp converging to x̄ as p→ p̄;

(ii) if the second-order sufficient condition (4.15) and the strong Robinson constraint qual-

ification (4.8) are satisfied, and

∇2
xxϕ̃(x̄, p̄) +∇2

xx〈λ̄, F̃ 〉(x̄, p̄) = ∇2
xxL(x̄, λ̄), (4.25)

then there exist constants ε > 0 and ` ≥ 0 such that Υ(p) ∩ IBε(x̄, λ̄) 6= ∅ for all

p ∈ IBε(p̄) and that

Υ(p) ∩ IBε(x̄, λ̄) ⊂ {(x̄, λ̄)}+ `‖p− p̄‖ for all p ∈ IBε(p̄), (4.26)

where Υ : Painlev ⇒ Rn × Rm is the solution mapping to the KKT system of (4.23)

defined by

Υ(p) :=
{

(x, λ) ∈ Rn × Rm
∣∣∣
 0

0

 ∈
 ∇xϕ̃(x, p) +∇xF̃ (x, p)∗λ

−F̃ (x, p)

+

 0

N−1
Θ (λ)

}.
Proof.

Since x̄ is a strict local minimum of (4.23) for p = p̄, we obtain an ε > 0 such that x̄ is

the unique minimizer for the problem

min
x∈Rn

ϕ̃(x, p̄) subject to F̃ (x, p̄) ∈ Θ, x ∈ IBε(x̄). (4.27)
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Consider now the problem

min
x∈Rn

ϕ̃(x, p) subject to F̃ (x, p) ∈ Θ, x ∈ IBε(x̄). (4.28)

It follows from (4.10) and (4.24) that

NΘ(F̃ (x̄, p̄)) ∩ ker∇xF̃ (x̄, p̄)∗ = {0} (4.29)

holds. This, indeed, is equivalent to the Robinson constraint qualification for constraint

system Φ̃(x, p) ∈ C at (x̄, p̄), namely the condition

0 ∈ int (F̃ (x̄, p̄) +∇xF̃ (x̄, p̄)Rn −Θ).

Thus we conclude from [4, Theorem 2.86] that for all (x, p) sufficiently close to (x̄, p̄) the

estimate

d(x,Γ(p)) = O(d(F̃ (x, p) , Θ)) (4.30)

holds, where Γ(p) := {x ∈ Rn| F̃ (x, p) ∈ Θ}. This guarantees that for p sufficiently close to

p̄, the feasible region of (4.28), namely Γ(p), is nonempty. Appealing now to the Weierstrass

Theorem, we deduce that (4.28) attains a minimum, denoted x̄p, for p sufficiently close to

p̄. Now we claim that x̄p → x̄ as p → p̄. Indeed, if this fails, we find a sequence pk → p̄

for which x̄pk , an optimal solution of (4.28) for p = pk, does not converge to x̄ as k → ∞.

Since x̄pk ∈ IBε(x̄), we can find a subsequence of x̄pk that converges to some x̃ ∈ IBε(x̄) with

x̃ 6= x̄. Without relabeling, we assume without loss of generality that x̄pk → x̃. By (4.30),

we find x̃pk ∈ Γ(pk) such that

‖x̃pk − x̄‖ = O(d(F̃ (x̄, pk) , Θ)) = O(‖pk − p̄‖).

By pk → p̄, we can assume with no harm that x̃pk ∈ IBε(x̄). Since x̄pk is an optimal solution

of (4.28) for p = pk, we get F̃ (x̄pk , pk) ≤ φ(x̃pk , pk). Passing to the limit brings us to

ϕ̃(x̃, p̄) ≤ ϕ̃(x̄, p̄), a contradiction to x̄ being the unique minimum of (4.27).
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Turing now to (ii), pick ε > 0 such that (i) holds for any p ∈ IBε(p̄). We claim now that

the set of Lagrange multipliers for (4.23) at (x̄, p̄) is {λ̄}. This, in fact, can be deduced from

condition (4.8), Theorem 4.4, and (4.24). We conclude from this and (4.25) and from the

second-order sufficient condition (4.15) and Theorem 3.27(ii) that x̄ is a strict local minimum

of problem (4.23) for p = p̄. Thus, according to (i), for any such a p, problem (4.23) admits a

local minimum xp with xp → x̄ as p→ p̄. It follows from condition (4.8), Proposition 4.5(i),

and (4.24) that the basic constraint qualification (4.29) is satisfied. Shrinking the closed ball

IBε(p̄) if necessary, we assume without loss of generality that the basic constraint qualification

holds for (4.29) holds at (xp, p) for all p ∈ IBε(p̄). This results in the existence of a Lagrange

multiplier λp associated with the local minimizer xp for (4.23) for all p ∈ IBε(p̄). Again

by shrinking the ball IBε(p̄), we can assume that the Lagrange multipliers λp are uniformly

bounded for all p ∈ IBε(p̄).

As argued above, the set of Lagrange multipliers for (4.23) at (x̄, p̄) is {λ̄}. Using this

and the boundedness of λp for all p ∈ IBε(p̄), we arrive at λp → λ̄ as p → p̄. This justifies

that (xp, λp) is a solution to the KKT system of (4.23), namely (xp, λp) ∈ Υ(p). Since

(xp, λp) → (x̄, λ̄) as p → p̄, by shrinking ε if necessary we get Υ(p) ∩ IBε(x̄, λ̄) 6= ∅ for all

p ∈ IBε(p̄).

Finally, to justify (4.26), observe first that by (4.24) we have (x̄, λ̄) ∈ Υ(p̄). Employing

[11, Corollary 4E.3], (4.24), and (4.25) tells us that the mapping Υ is isolated calm at

(p̄, (x̄, λ̄)) if the implication
∇2
xxL(x̄, λ̄)w +∇F (x̄)∗u = 0,

u ∈ DNΘ(F (x̄), λ̄)(∇F (x̄)w)

=⇒ w = 0, u = 0

holds. To prove this implication, we can use a similar argument as implication (ii) =⇒ (i) in

Theorem 4.7 to show that the second-order sufficient condition (4.15) together with condition



119

(4.8) ensures the validity of the aforementioned implication. This completes the proof. �

The properties established in Proposition 4.9(ii) were investigated before for nonlinear

programming problems in [12, Theorem 2.6]. It was extended for C2-cone reducible con-

strained problems in [13, Theorem 24] when the perturbed problem (4.23) has the canonically

perturbed form (4.12), meaning that p = (v, w) ∈ Rn × Rm and

ϕ̃(x, p) = ϕ(x)− 〈v, x〉 and F̃ (x, p) = F (x) + w.

The properties in Proposition 4.9(ii) were called in [13] the robust isolated calmness. Accord-

ing to Theorem 4.7, the imposed assumptions in Proposition 4.9(ii) amounts to the solution

mapping from (4.11) being isolated calm at ((0, 0), (x̄, λ̄)). Combining this with Proposi-

tion 4.9(ii) tells us that for canonically perturbed form (4.12) the isolated calmness of S

at ((0, 0), (x̄, λ̄)) yields the robust isolated calmness of S at this point. Since the opposite

statement obviously holds, we conclude that for such a particular perturbation, the isolated

calmness and the robust isolated calmness of S are equivalent. The main reason to consider

such a general perturbation as in (4.23) and justify the robust isolated calmness for its KKT

system as we did in Proposition 4.9(ii) is that it allows us to verify the solvability of sub-

problems in the basic SQP method. That does not seem to be achieved via the canonically

perturbed form (4.12).

Finally, it is worth mentioning that assumptions (4.24) and (4.25) were imposed in Propo-

sition 4.9 since they are automatically satisfying for our main purpose in this paper, ad-

dressed in Proposition 4.10, which is to justify the solvability of subproblems in the basic

SQP method. The basic constraint qualification condition (4.10), the second-order condi-

tion (4.15), and condition (4.8) in Proposition 4.9 are in terms of the initial data of (4.1).

Adjusting them for the perturbed problem (4.23) allows us to drop assumptions (4.24) and

(4.25).

Next we are going to show that the basic SQP subproblem (4.31) has always an optimal
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solution under certain assumptions. The proof follows similar arguments as the case of NLPs

that can be found in [28, Proposition 3.37].

Proposition 4.10 (solvability of subproblems in the basic SQP method) Let

(x̄, λ̄) be a solution to the KKT system (4.4) and let the basic assumptions (H1) and (H2)

hold. Then if the second-order sufficient condition (4.15) and the strong Robinson constraint

qualification (4.8) are satisfied, then there is an ε > 0 such that for all (x̃, λ̃) ∈ IBε(x̄, λ̄) the

following conditions hold:

(i) the optimization problem
min
x∈Rn

ϕ(x̃) + 〈∇ϕ(x̃), x− x̃〉+
1

2
〈∇2

xxL(x̃, λ̃)(x− x̃), x− x̃〉

subject to F (x̃) +∇F (x̃)(x− x̃) ∈ Θ,

(4.31)

admits a local minimum.

(ii) The KKT system of (4.31), which can be formulated as 0

0

 ∈
 ∇xL(x̃, λ̃)

−F (x̃)

+

 ∇2
xxL(x̃, λ̃) ∇Φ(x̃)∗

−∇F (x̃) 0


 x− x̃

λ− λ̃

+

 0

N−1
Θ (λ)

 ,
(4.32)

has a solution (x, λ) that converges to (x̄, λ̄) as (x̃, λ̃)→ (x̄, λ̄).

Proof.

Set p := (x̃, λ̃) and p̄ := (x̄, λ̄). Then (4.31) can be equivalently written as the parametric

optimization problem

min
x∈Rn

ϕ̃(x, p) subject to F̃ (x, p) ∈ Θ, (4.33)

where

ϕ̃(x, p) := ϕ(x̃) + 〈∇ϕ(x̃), x− x̃〉+
1

2
〈∇2

xxL(x̃, λ̃)(x− x̃), x− x̃〉
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and F̃ (x, p) := F (x̃) + ∇F (x̃)(x − x̃) for any (x, p) ∈ Rn × Painlev. We claim now that

x := x̄ is a strict local minimizer for (4.33) associated with p̄. To this end, observe first that

the KKT system of (4.33) associated with p̄ has a representation of the form 0

0

 ∈
 ∇ϕ(x̄) +∇2

xxL(x̄, λ̄)(x− x̄) +∇F (x̄)∗λ

−F (x̄)−∇F (x̄)(x− x̄)

+

 0

N−1
Θ (λ)

 .
Clearly, (x̄, λ̄) is a solution to this KKT system, which therefore implies that x̄ is a stationary

point for (4.33) associated with p̄ and that λ̄ is a Lagrange multiplier associated with x̄ for

the latter problem. Moreover, it is not hard to observe from this KKT system for (4.33)

associated with p = p̄ that the set of Lagrange multipliers for the latter problem at (x̄, p̄)

coincides with that of problem (4.1) at x̄. Combining these results in the set of Lagrange

multipliers for (4.33) at (x̄, p̄) being {λ̄}. Since we have

∇2
xxϕ̃(x̄, p̄) +∇2

xx〈λ̄, F̃ 〉(x̄, p̄) = ∇2
xxL(x̄, λ̄) and ∇xF̃ (x̄, p̄) = ∇F (x̄),

and since the second-order sufficient condition (4.15) holds for (4.1) at (x̄, λ̄), we have

〈[
∇2
xxϕ̃(x̄, p̄) +∇2

xx〈λ̄, F̃ 〉(x̄, p̄)
]
w,w

〉
+ d2δΘ(F̃ (x̄, p̄), λ̄)(∇xF̃ (x̄, p̄)w)

=
〈
∇2
xxL(x̄, λ̄)w,w

〉
+ d2δΘ(F (x̄), λ̄)(∇F (x̄)w) > 0,

for all w ∈ Rn \ {0} with ∇xF̃ (x̄, p̄)w = ∇F (x̄)w ∈ KΘ(F (x̄), λ̄).

This tells us that the second-order sufficient condition for (4.33) at
(
(x̄, p̄), λ̄

)
fulfills. Em-

ploying now Theorem 3.27(ii) results in x̄ being a strict local minimizer for (4.33) for p = p̄.

We conclude from Proposition 4.9(i) that there is an ε > 0 such that for all (x̃, λ̃) = p ∈ IBε(p̄)

the parametric problem (4.33) admits a local minimum xp such that xp → x̄ as p→ p̄, and

so justifies (i).

Turing now to (ii), observed first that the KKT system of (4.31) is the same is the KKT

system of the parametric problem (4.33). By Proposition 4.9(ii), for any p = (x̃, λ̃) close

to p̄ := (x̄, λ̄) the generalized equation (4.32) admits a solution (xp, λp). Moreover, (4.26)
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ensures that (xp, λp)→ (x̄, λ̄) as p→ p̄, which completes the proof of (ii). �

The solvability of subproblems in the basic SQP for problems of nonlinear programming

was established first by Robinson [43, Theorem 3.1] when in addition to the second-order

sufficient condition (4.15) the linear independence constraint qualification and the strict

complementarity condition hold. This was improved by Bonnans [1, Proposition 6.3] for this

class of problems when the second-order sufficient condition (4.15) is satisfied and the set

of Lagrange multipliers is a singleton. Proposition 4.10 extends Bonnans’s result for any

parabolically regular constrained optimization problems.

We are now in a position to derive the superlinear convergence of the basic SQP method.

Assume a sequence xk converges to x̄. We say that convergence is Q-superlinear if ‖xk+1 −

x̄‖ = o(‖xk − x̄‖) as k → ∞. In what follows, we drop the letter Q and simply talk about

superlinear convergence of a sequence.

Theorem 4.11 (superlinear convergence of the basic SQP method) Let (x̄, λ̄) be a

solution for the KKT system (4.4) and let the basic assumptions (H1) and (H2) hold. If

the second-order sufficient condition (4.15) is satisfied at (x̄, λ̄), the multiplier mapping Mx̄

is calm at ((0, 0), λ̄), and Λ(x̄) = {λ̄}, then for any starting point (x0, λ0) ∈ Rn × Rm

sufficiently close to (x̄, λ̄), Algorithm 4.8 with Hk from (4.21) generates an iterative sequence

(xk, λk) ∈ Rn × Rm that converges to (x̄, λ̄), and the rate of convergence is superlinear.

Proof.

The claimed results come as a direct consequence of [28, Theorem 3.2] for the KKT system

(4.4) that can equivalently written as the generalized equation (4.22). So the semistability

and hemistability of (x̄, λ̄) utilized in [28, Theorem 3.2] are the isolated calmness of the

solution map S and the property in Proposition 4.10(ii), respectively, which both fulfill here

due to Theorem 4.7 and Proposition 4.10, respectively. This completes the proof. �
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The above result extends the sharpest currently known local convergence result, obtained

in [1, Theorem 5.1], for NLPs to any parabolically regular constrained optimization problems.

A similar result was established for second-order cone programming problems in [?,30] under

the strong regularity of the KKT system (4.4) that is strictly stranger than the imposed

assumptions in Theorem 4.11.

The calmness of the multiplier mapping Mx̄ holds automatically for NLPs due to the

Hoffman lemma. Moreover, we showed in [42, Theorem 5.10] that the latter property is

satisfied when the convex set Θ in (4.1) is the second-order cone or the cone of positive

semidefinite symmetric matrices if the strict complementarity condition is satisfied for the

KKT system (4.4). Recall from [4, Definition 4.74] that the strict complementarity condition

holds for (4.4) at x̄ if there is a λ ∈ Λ(x̄) such that λ ∈ riNΘ(F (x̄)).

The superlinear convergence of a generated sequence (xk, λk) (but not the existence of

such a sequence) by the basic SQP method in Theorem 4.11 can be derived from [7, The-

orem 6.4] in which the superlinear convergence of the Newton method for the generalized

equation

0 ∈ f(x) + F (x)

with f : Rn → Rm and F : Rn ⇒ Rm was obtained when the mapping f + F is strongly

metrically subregular. Adopting the latter result to our framework – the generalized equation

(4.22) – the assumed strong metric subregularity is equivalent to the isolated calmness of the

solution mapping S from (4.11). Furthermore, by Theorem 4.7 we can equivalently translate

the imposed assumptions in Theorem 4.11 as the solution mapping S satisfying isolated

calmness and the point x̄ being a local minimizer for (4.1). This tells that in contrast

with [7] we impose one more assumption, namely the local optimality of x̄, and so one may

think it would be possible to drop this condition with no harm. However, that can not be

happened since [7, Theorem 6.4] assumes the existence of iterations (xk, λk) – solvability of
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subproblems – which always stay in a neighborhood of (x̄, λ̄). As the following example, taken

from [28, Example 3.3], reveals, the isolated calmness of the solution mapping S alone is not

enough to guarantee the solvability of subproblems in our setting and the local optimality

of x̄ is an essential assumption.

Example 4.12 (failure of solvability of subproblems in the basic SQP method)

Consider the nonlinear program

min−1

2
x+

1

6
x3 subject to x ≥ 0. (4.34)

Taking the definition of the solution map S from (4.11) for this problem, we have

S(v, w) =
{

(x, λ)| v = −x+
1

2
x2 + λ and x+ w ∈ NR−(λ)

}
,

where (v, w) ∈ R×R. Set (x̄, λ̄) := (0, 0) and observe that (x̄, λ̄) ∈ S(0, 0). It is not hard to

see that Λ(x̄) = {λ̄} and that x̄ is not a local minimizer for problem (4.34) – indeed, x = 1

is the unique minimizer for this problem. We show, however, the solution map S is isolated

calm at
(
(0, 0), (x̄, λ̄)

)
. To this end, we prove that the mapping G from (4.7), adopted for

problem (4.34), is strongly metrically subregular at
(
(x̄, λ̄), (0, 0)

)
using (4.14). Since the

mapping G for this framework can be formulated as

G(x, λ) =

 −x+ 1
2
x2 + λ

−x

+

 0

NR−(λ)

 ,
we obtain

DG((x̄, λ̄), (0, 0))(ξ, η) =

 −1 1

−1 0


 ξ

η

+

 0

DNR−(λ̄, x̄)(η)

 .
Since DNR−(λ̄, x̄)(η) = NR−(η), we get

(0, 0) ∈ DG((x̄, λ̄), (0, 0))(ξ, η) ⇐⇒ ξ = η and ξ ∈ NR−(η),

from which we clearly obtain ξ = η = 0. By (4.14), the mapping G is strongly metrically
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subregular at
(
(x̄, λ̄), (0, 0)

)
. We are going to show the generalized equation (4.32) has no

solution for all (x̃, λ̃) ∈ IB1/2(x̄, λ̄) with x̃ 6= x̄. To furnish this, pick (x̃, λ̃) ∈ IB1/2(x̄, λ̄) with

x̃ 6= x̄ and observe that the generalized equation (4.32) for problem (4.34) has a representa-

tion of the form 0

0

 ∈
 −x̃+ 1

2
x̃2 + λ̃

−x̃

+

 −1 + x̃ 1

−1 0


 x− x̃

λ− λ̃

+

 0

NR−(λ)

 .
This brings us to the following relationships:

λ =
1

2
x̃2 − x(x̃− 1), xλ = 0, x ≥ 0, λ ≤ 0.

From the second relation, we conclude that either x = 0 or λ = 0. If the former holds, we

deduce from the first equation that λ = 1
2
x̃2 > 0, a contradiction. If the latter holds, we

get x =
1
2
x̃2

x̃− 1
< 0, a contradiction. This justifies that the KKT system associated with

subproblems of the basic SQP for problem (4.34) has no solution for such a pair (x̃, λ̃).

Since we have Λ(x̄) = {λ̄}, the Robinson constraint qualification (4.10) fulfills. So if the

subproblems (4.31), adopted for problem (4.34), has a local optimal solution associated with

(x̃, λ̃), then we will end up having a solution for the generalized equation (4.32), which it is

not possible.

We would like to add here that if we assume the metric regularity of the mapping G from

(4.7) (remember that G = S−1), then the solvability of the SQP method can be ensured

by [11, Theorem 6D.2]. Such a result as well as a stronger version of that under the strong

metric regularity can be found in [11, Chapter 6]. However, we will show below that in

our framework the metric regularity yields the strong metric subregularity of the mapping

G, which is, indeed, equivalent to isolated calmness of solution mapping S from (4.11). As

Example 4.12 shows, the isolated calmness of S alone does not provide assurance for the

existence of the SQP iterations. In order to proceed, we recall that the limiting (Dini-
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Hadamard / Mordukhovich) normal cone to Ω ⊂ Rn at x̄ is defined by

NL−
Ω (x̄) =

{
v ∈ Rn | ∃xk→x̄, vk → v with vk ∈ N−Ω (xk)

}
,

and that the coderivative of a set-valued mapping F : Rn ⇒ Rm is defined by

D∗F (x̄, ȳ)(u) :=
{
w ∈ Rn | (w,−u) ∈ Ngph F (x̄, ȳ)

}
, u ∈ Rm.

Proposition 4.13 Let (x̄, λ̄) be a solution for the KKT system (4.4) and let the basic as-

sumptions (H1) and (H2) hold. If the mapping G from (4.7) is metrically regular around

((x̄, λ̄), (0, 0)), then it is strongly metrically subregular at this point.

Proof.

According the coderivative criterion for the characterization of metric regularity (see,

e.g., [33, Theorem 3.3]), the mapping G enjoys the latter property around ((x̄, λ̄), (0, 0)) if

and only if

(0, 0) ∈ D∗G((x̄, λ̄), (0, 0))(w, u) =⇒ w = 0, u = 0. (4.35)

It is not hard to see that for any (w, u) ∈ Rn × Rm the coderivative of G can be calculated

by

D∗G((x̄, λ̄), (0, 0))(w, u) =

 ∇2
xxL(x̄, λ̄)w −∇F (x̄)∗u

∇F (x̄)w +D∗N−1
Θ (λ̄, F (x̄))(u)

 .
Similarly, it is well-known that (see, e.g., [11, Theorem 4G.1]) G is strongly metrically

subregular at ((x̄, λ̄), (0, 0)) if and only if

(0, 0) ∈ DG((x̄, λ̄), (0, 0))(w, u) =⇒ w = 0, u = 0. (4.36)
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Moreover we have

DG((x̄, λ̄), (0, 0))(w, u) =

 ∇2
xxL(x̄, λ̄)w +∇F (x̄)∗u

−∇F (x̄)w +DN−1
Θ (λ̄, F (x̄))(u)

 ,
where (w, u) ∈ Rn×Rm. By the the basic assumptions (H1) and (H2) and Proposition 4.1(ii),

the normal cone mapping NC is proto-differentiable at Φ(x̄) for λ̄. The latter together

with [54, Theorem 13.57] gives us the derivative-coderivative inclusion

DNΘ(F (x̄), λ̄)(η) ⊂ D∗NΘ(F (x̄), λ̄)(η) for all η ∈ Rm.

Pick (w, u) ∈ Rn ×Rm satisfying the left side of implication (4.36). This and the aforemen-

tioned the derivative-coderivative inclusion tell us that (w,−u) satisfies in the equations in

the left side of implication (4.35), which results in w = 0 and u = 0. This confirms (4.36)

and thus G is strongly metrically subregular at ((x̄, λ̄), (0, 0)). �

A similar result as the above result was obtained for NLPs in [11, Lemma 4F.8] by using

the characterization of the isolated calmness via the graphical derivative. It was extended

later in [13, Corollary 25] for C2-cone reducible constrained optimization problems using a

result obtained by Fusek [14]. The above proposition extends the aforementioned results for

any parabolically regular constrained problems using a different proof based on a derivative-

coderivative inclusion.
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The dissertation is devoted to the study of the first- and second-order variational analysis

of the composite functions with applications to composite optimization. By considering a

fairly general composite optimization problem, our analysis covers numerous classes of opti-

mization problems such as constrained optimization; in particular, nonlinear programming,

second-order cone programming and semidefinite programming(SDP). Beside constrained op-

timization problems our framework covers many important composite optimization problems

such as the extended nonlinear programming and eigenvalue optimization problem. In first-

order analysis we develop the exact first-order calculus via both subderivative and subdiffer-

ential. For the second-order part we develop calculus rules via second subderivatives (which

was a long standing open problem). Furthermore, we establish twice epi-differentiability of

composite functions. Then we apply our results to composite optimization problem to obtain

first- and second-order order optimality conditions under the weakest constraint qualifica-

tion, the metric subregularity constraint qualification. Finally we apply our results to verify

the super linear convergence in SQP methods for constrained optimization.
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