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m Accurate and consistent sequence variant interpretation is critical to the correct diagnosis
and appropriate clinical management and counseling of patients with inherited genetic
* ClinGen PD-EP adap-
ted ACMG/AMP vari-
ant curation and
interpretation criteria
for ITGA2B and ITGBS3,
genes underlying
autosomal recessive GT.

disorders. To minimize discrepancies in variant curation and classification among different
clinical laboratories, the American College of Medical Genetics and Genomics (ACMG), along
with the Association for Molecular Pathology (AMP), published standards and guidelines for
the interpretation of sequence variants in 2015. Because the rules are not universally
applicable to different genes or disorders, the Clinical Genome Resource (ClinGen) Platelet
Disorder Expert Panel (PD-EP) has been tasked to make ACMG/AMP rule specifications for
inherited platelet disorders. ITGA2B and ITGB3, the genes underlying autosomal recessive
Glanzmann thrombasthenia (GT), were selected as the pilot genes for specification. Eight
types of evidence covering clinical phenotype, functional data, and computational/
population data were evaluated in the context of GT by the ClinGen PD-EP. The preliminary
specifications were validated with 70 pilot ITGA2B/ITGB3 variants and further refined.

In the final adapted criteria, gene- or disease-based specifications were made to 16 rules,

* Adapted criteria were
further refined through
validation using 70 pilot
ITGA2B/ITGBS3 var-
iants to produce final
GT-specific criteria.

including 7 with adjustable strength; no modification was made to 5 rules; and 7 rules were
deemed not applicable to GT. Employing the GT-specific ACMG/AMP criteria to the pilot

variants resulted in a reduction of variants classified with unknown significance from 29%
to 20%. The overall concordance with the initial expert assertions was 71%. These adapted
criteria will serve as guidelines for GT-related variant interpretation to increase specificity
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and consistency across laboratories and allow for better clinical integration of genetic
knowledge into patient care.
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Introduction

With the rapid advancements in sequencing technology in the
last 2 decades, most molecular diagnostic laboratories have
adopted next-generation sequencing (NGS) in clinical genetic
testing of inherited disorders. The broad genomic coverage and
high-throughput nature of NGS-based tests have led to acceler-
ated discoveries of new disease-causing genes and variants. An
enormous number of novel sequence variants continue to be
identified every day. Accurate interpretation of sequence variants is
of critical importance in the diagnosis, management, and genetic
counseling of patients with inherited disorders. Interlaboratory
discrepancies in variant classification methodologies and the high
complexity of the human genome were recognized as barriers
to consistent and accurate variant interpretation.' To address
this challenge, the American College of Medical Genetics and
Genomics (ACMG) and the Association for Molecular Pathology
(AMP) jointly made recommendations for the interpretation of
sequence variants in 2015.* This guideline report described
a process for classifying sequence variants into 5 interpretative
categories and recommended the use of a standard terminology
system: pathogenic, likely pathogenic, uncertain significance, likely
benign, and benign for variants identified in Mendelian disorders.
The guideline further recommended all assertions of pathogenicity
to be reported with respect to a condition and inheritance pattern.
The variant classification is based on evidence including population
data, computational data, functional data, and segregation data.
Two sets of interpretation criteria were provided: 1 for pathogenic
(P) evidence, and 1 for benign (B) evidence. Each pathogenic
criterion was weighted as very strong (PVS1), strong (PS1-4),
moderate (PM1-6), or supporting (PP1-5). Each benign criterion
was weighted as standalone (BA1), strong (BS1-4), or supporting
(BP1-6). The classification of variants of clinical significance is
based on the combination of fulfilled criteria. If a variant does not
fulfill criteria for clinical significance, or if the evidence for benign
and pathogenic classification is conflicting, the variant is classified
as a variant of uncertain significance (VUS). This set of consensus
recommendations advanced the field by defining standardized
criteria as well as categories of variant classification, reducing the
degrees of subjectivity and variability in variant interpretation.

To centralize knowledge and resources, ClinVar and the Clinical
Genome Resource (ClinGen) serve as a central database for
clinically classified variants and as a body for managing clinically
relevant genomic knowledge, respectively.® The landmark ACMG/
AMP guideline was designed to be universally applicable; however,
the categorization of variants using the guideline rules still showed
interlaboratory variation. Optimal application of the general guide-
lines to specific diseases and genes is enhanced by appropriate
adaptation of rules informed by clinical domain expertise. To meet
this need, ClinGen initiated the formation of Variant Curation Expert
Panels (EPs) to adapt the ACMG/AMP criteria to specific genes or
disorders.® By standardizing gene-specific variant curation guide-
lines, sharing data among expert members, and incorporating data
from existing disease databases, the working group aims to
decrease the number of VUSs and clarify prior designations based
on insufficient evidence, thereby improving the value of genetic
testing as a clinical diagnostic tool. The first Variant Curation EP in
the clinical domain of hemostasis/thrombosis, the Platelet Disorder
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EP (PD-EP), was supported by the American Society of Hematol-
ogy (ASH) and tasked to establish ACMG/AMP rule specifica-
tions for interpretation of variants resulting in inherited platelet
disorders (IPDs).

Inherited platelet disorders are a heterogeneous group of disorders
characterized by abnormal platelet function and/or number, with
variable bleeding.”® The expression of many IPD genes is not
restricted to platelets or the hematopoietic system; therefore, some
patients with IPDs present with syndromic features. Although the
well-characterized clinical and laboratory phenotypes of the major
platelet function disorders often enable the correct diagnosis to be
reached, for the more prevalent and often phenotypically milder
IPDs, diagnosis can be challenging.® Genetic testing is of great
clinical value in accurately identifying or efficiently confirming the
diagnosis, in turn informing optimal treatment, predicting disease
progression, and providing genetic counseling for the patients and
their families.®®

ITGA2B and ITGBS3, which underlie the prototypic platelet function
disorder Glanzmann thrombasthenia (GT), were the initial genes
selected by the PD-EP to develop variant interpretation rule
specifications, which will inform rule specifications for other IPDs.
GT is a disorder of platelet function, inherited in an autosomal
recessive pattern, resulting from quantitative or qualitative defects in
integrins «llb and B3 (forming platelet glycoprotein llb/llla) and
caused by homozygous or compound heterozygous pathogenic
genetic alterations in either ITGA2B or ITGB3.° Most patients with
GT present with severe mucocutaneous bleeding at an early age,
a specific pattern of abnormal platelet aggregation, and absent to
reduced platelet integrin allbB3 expression, but normal platelet
count, size, and granularity. GT is divided into 3 types: type 1 with
absent allbB3 expression (<5% of normal), type 2 with reduced
allbB3 expression (5% to 25% of normal), and type 3 with normal
levels (50% to 100%) but nonfunctional or dysfunctional allb@3.
More recently, ITGA2B/ITGB3-related macrothrombocytope-
nia has been described, in which pathogenic variants of these
genes cause spontaneous activation of allbf3 and interfere
with proplatelet formation, resulting in an autosomal dominant mild
to moderate thrombocytopenia with absent/mild bleeding.®'? Rule
specifications for this IPD phenotype will be considered separately
by the PD-EP.

Combining all ITGA2B/ITGBS3 variants identified in the literature,
the Glanzmann Thrombasthenia Database,'® and ClinVar, the
PD-EP had identified a total of 719 variants (388 /ITGA2B
variants and 331 /TGBS3 variants) as of 13 October 2020. The
composition of variant types is: 61% single-nucleotide variants
within coding regions, 20% insertion/deletions, 11% canonical
splice site or deeper intronic variants, and 8% untranslated re-
gion variants. The prior reports on GT variants showed extreme
heterogeneity of genetic and physiological characterizations that
dampened confidence regarding claims of pathogenic variants. The
PD-EP, consisting of 21 professionals from 14 institutions and
5 countries with expertise in diagnosis and treatment of platelet
disorders, laboratory assays for platelet function testing, inherited
platelet disorder research, and molecular genetic diagnostics
and variant classification, developed ACMG/AMP rule specifi-
cations for interpreting /ITGA2B and /TGB3 variants and then
optimized the rules following pilot classifications. We herein report
the GT-specific sequence variant classification rules, the rationales
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for each modification of original ACMG/AMP criteria, and the
results of the pilot variant curation.

Methods
ClinGen PD-EP

In 2017, the ClinGen Hemostasis/Thrombosis Clinical Domain
Working Group assembled an executive committee of clinicians
and researchers with expertise in hemostasis and thrombosis who
prioritized the curation of genes and variants within several relevant
domains. EPs were developed to address both gene curation
(assessing the strength of association between a particular gene
and a disease phenotype) and variant curation (assessing the
pathogenicity of variants within selected genes with respect to
a specific phenotype). The pioneer Hemostasis/Thrombosis EP was
launched in 2018 when the PD-EP was organized with support
from ASH.

All PD-EP members disclosed potential conflicts of interest as
required by ClinGen. Approval of variant curation EPs is overseen
by ClinGen and consists of 4 steps: (1) defining the group/
members and scope of work, (2) developing gene/disease-specific
classification rules, (3) optimizing rules using pilot variants, and (4)
implementing specified variant curation in the ClinGen Variant
Curation Interface’* with submission of curated variants to the
ClinVar database."®

ACMG/AMP specifications for ITGA2B/ITGB3

Rule specification for ITGA2B and ITGB3 with respect to GT was
accomplished via monthly teleconferences and by convening at
the ASH Annual Meetings. Three subgroups were developed to
streamline the specification process: clinical phenotype, functional,
and computational/predictive/population data. Suggestions for
specification of each subgroup of criteria were gathered from all
PD-EP members by e-mail, followed by teleconference discussion
to reach consensus. PD-EP members proposed and discussed
changes to the existing ACMG/AMP criteria, including disease- or
gene-specific modifications, strength-level adjustments, and judgment
of criteria not applicable to ITGA2B/ITGB3 or GT. Recommendations
from the ClinGen Sequence Variant Interpretation (SVI) Working
Group were also incorporated.'®

Pilot variant classification and
specification refinement

The ITGA2B/ITGB3 GT-related specifications were validated with
70 pilot variants, representing 35 each for ITGA2B and ITGB3.
Variants were nominated by PD-EP members selecting from
ClinVar, the Glanzmann Thrombasthenia Database,'® and internal
laboratory data, with the objective of including a balance of known/
suspected pathogenic or benign variants (67%) and VUSs or
variants with conflicting assertions (33%; Figure 1). Additionally,
variants were selected to represent various types of alterations:
missense (56%), nonsense and frameshift (14%), splicing (9%),
inframe indel (3%), intronic (10%), and synonymous (9%). All pilot
variants are annotated using RefSeq IDs NM_000419.4 (ITGA2B),
NM_000212.2 (/ITGB3), and NC_000017.11 (GRCh38/hg38).

Each variant was assessed by a curator trained to perform variant
interpretation using the 2015 ACMG/AMP guidelines and the PD-
EP specifications. The curator selected the relevant criteria based
on the evidence provided by PD-EP members and data retrieved
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from published literature and databases. Curators used the ClinGen
Variant Curation Interface to document the applicable criteria and
evidence for each variant. Evidence used for interpretation was
presented to the full PD-EP for review and final classification based
on group consensus. Preliminary guideline specifications were
refined throughout the pilot curation process, with variants illustrative
of debated criteria used to facilitate additional guideline refinements.
Upon ClinGen step-4 approval, the classified ITGA2B/ITGB3
variants were submitted to ClinVar under a 3-star (expert panel-
reviewed) status as part of the US Food and Drug Administration—
recognized database. The first 115 interpretations are now available
in ClinVar and can be accessed online.'”

Results

ACMG/AMP criteria specification for ITGA2B/ITGB3

The PD-EP specifications to the ACMG/AMP variant curation
criteria for ITGA2B and ITGBS3 in relation to GT are summarized in
Table 1. Gene- or disease-based specifications were made to 16
ACMG/AMP criteria, including 7 specifying modifications of rule
strength based on the quantity or quality of available evidence.
Another 7 criteria were deemed not applicable because of lack of
relevance to /ITGA2B/ITGB3 or GT, and the remaining 5 criteria
were determined to be applicable as originally described without
further specification. One modification was made to the rules outlined
by ACMG/AMP for combining criteria to arrive at a classification:
a likely pathogenic classification can be reached if a variant satisfies
1 very strong criterion and 1 supporting criterion. Although not
included in the original guideline, this combination of 1 very strong
criterion and 1 supporting criterion is consistent with the posterior
probability >0.90 for likely pathogenic as described in the Bayesian
model of the classification framework.'®

Population data

BA1/BS1: allele frequency greater than expected for
disorder. GT is a rare disease, defined in the United States as
affecting <200000 individuals."® The exact incidence is un-
resolved but is estimated at 1 in 1 million worldwide.2° The reported
incidence is higher in certain ethnic groups in which consanguinity
is common, such as the French Manouche population,21 South
Indian Hindus,?? Iranians,®® Iragi Jews,?* and Jordanian nomadic
tribes.?® To set a sufficiently strict requirement for the BA1 criterion,
we considered the highest reported prevalence of 1 in 200 000
in the Iranian population.'® The Whiffen/Ware allele frequency
threshold calculator®2” was used with the following parameters:
prevalence of 1 in 200000, complete penetrance, conservative
allelic and genetic heterogeneity values of 100%, and 99%
confidence. Given these parameters, we recommend application
of BA1 to a variant for which =1 of the continental population
groups in gnomAD?® has an allele frequency =0.0024 (0.24%).
Accounting for the 2 known genes associated with GT by adjusting
genetic heterogeneity to 50%, the BS1 criterion can be applied for
a variant with an allele frequency =0.0014 (0.149%). The PD-EP
also adopted the recommendation by the SVI that the variant be
present in at least 5 alleles with a minimum number of 2000 alleles
analyzed within the population group to minimize the risk of
sequencing error or chance inclusion of an affected individual.

PM2: absent from population databases. With the availabil-
ity of ever-larger databases of exome and genome sequence data,
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Figure 1. Schematic representation of integrin allb33 major domains in relation to 70 pilot variants with their final PD-EP classification. Integrin allbf3

subunits allb (top) and B3 (bottom) each possess a signal peptide (SP), an extracellular domain involved in ligand binding (B propeller and Bl, respectively), a transmembrane

(TM) domain, and a cytoplasmic domain (C). Clinically actionable variants (PATH, LPATH) are shown above the protein schematics; VUS, LBEN, and BEN variants are

shown below.

the expectation that pathogenic variants will be entirely absent from
these databases is not consistent with all diseases. To use the PM2
criterion for ITGA2B/ITGB3, the PD-EP specifies that the variant
must be present in <1 in 10000 alleles in all gnomAD continental
population cohorts (allele frequency <0.0001 or 0.01%), and the
variant cannot be observed in the homozygous state in any
population. This threshold was proposed based on work from
Buitrago et al,®® showing that none of the established GT
pathogenic variants were identified in the 32000 alleles studied
and suggesting that pathogenic variants have allele frequencies
<0.01% in the studied populations. Furthermore, this value is
consistent with the highest allele frequency (0.01% in the East
Asian population) of the most common known pathogenic GT

€ blood advances 26 january 2021 - voLUME 5, NUMBER 2

variant (/TGA2B ¢.2915dup) in the gnomAD (version 2.1.1)
database. The PD-EP also adopted the recommendation by the
SVI that the strength of PM2 be modified to PM2_supporting.

Computational and predictive data

PVS1: predicted null variant in a gene where LOF is a
known mechanism of disease. The quantitative or qualita-
tive abnormalities of integrin allbB3, causative of GT, relate to
a loss-of-function (LOF) disease mechanism associated with
ITGA2B/ITGBS3. Variants can cause production of subunits allb
or B3 to be blocked or interfere with complex formation and/or
trafficking.2°® Although there is an extensive repertoire of missense
variants in GT, presumed LOF variants, including nonsense variants,
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Moderate Supporting Comments

Strong

Very
strong

Standalone

Specification

Original ACMG/AMP
criteria summary

Table 1. (continued)

ACMG/
AMP

criteria

€ blood advances

Do not use this rule as per SVI
recommendations

Use per original guidelines

N/A

N/A

N/A

/A
None N/A

sequence or the creation of
a new splice site AND the

nucleotide is not highly

algorithms predict no impact
conserved

for which splicing prediction
to the splice consensus

Reputable source recently
reports variant as benign
A synonymous (silent) variant

BP6
BP?7

26 JANUARY 2021 -

MAF, minor allele frequency; N/A, not applicable.
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small out-of-frame deletions and insertions, and splice variants that
disrupt the reading frame, are also observed. Of the 63 /ITGA2B/
ITGB3 variants classified in ClinVar as pathogenic or likely
pathogenic for GT (accession date 13 February 2020), 26
(41.3%) are presumed LOF, spanning across multiple exons of
both genes. For the predicted LOF variants in ITGA2B/ITGB3, the
PD-EP recommends the use of the PVS1 decision tree generated
by the SVI to guide curators on the applicable PVS1 strength level
depending on variant type and features.®* In general, PVS1 can be
considered for variants throughout the /TGA2B/ITGB3 genes,
because all exons are present in their respective biologically
relevant transcript, and no exons are enriched for high-frequency
LOF variants in the general population. The PD-EP has modified the
decision tree to reflect the particulars of ITGA2B/ITGB3 (Figure 2).
The logical flow diagram should be used to evaluate such variants
and the text provided here considered to provide context to that
diagram.

For any variant that generates a premature stop codon (ie, nonsense,
frameshift, or single/multiexon deletion/duplication/skipping), the
potential for NMD was considered to follow the general expectation
that any premature stop codon occurring before the 3’-most
50 nucleotides of the penultimate exon will lead to NMD.%°:%¢
When NMD is not predicted, one must assess whether the
truncated or altered protein product disrupts a region critical to
protein function. The PD-EP has identified 3 relevant domains,
indicated by experimental evidence to serve a critical role in the
shift of allbB3 from a low- to high-affinity state: (1) the cytoplasmic
domain of B3, (2) the transmembrane domains of allbB3, and
(3) the extracellular domains of allbB3 involved in ligand binding.
Binding of intracellular proteins to the cytoplasmic domains of
allbB3 prompts an unclasping of the intracellular and trans-
membrane domains, leading to a conformational change in the
extracellular domain (as reviewed by Huang et al®’). Diverse
platelet agonists can alter the 33 cytoplasmic domain and initiate
a conformational change,®® which is required for activation. In
contrast, loss of the allb cytoplasmic domain is not associated
with LOF but instead with gain of function.®® As such, only the
B3 cytoplasmic domain is considered the first critical region for
the interpretation of LOF variants associated with GT. Sub-
sequent separation of the transmembrane domains, the second
critical region of allbB3, is also indispensable for ligand-induced
signaling.3%*° The third critical region, the extracellular domains
involved in ligand binding, includes the B propeller domain of
allb and the Bl domain of 3. Upon activation, the conformation
of these 2 subunits is altered, which allows for high-affinity
interaction with fibrinogen, among other ligands (as reviewed
by Plow et al*'). Two distinct regions within the Bl domain
clearly contribute to the ligand binding function,***° whereas
in the B propeller domain, a role for the 7 N-terminal repeats has
been identified.*®*”

PM5: novel missense change at an amino acid residue
where a different pathogenic missense change has been
seen before. A strength modification was established for PM5:
PM5 is used when a different pathogenic missense change has
been seen previously at the same residue, and PM5_supporting is
used when the previously observed missense change at the same
residue is classified as likely pathogenic. Classification of the
alternate variant at the same codon must also be based on the
ACMG/AMP guidelines as specified by the PD-EP.
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Duplication (1
exon in size and

completely
contained within Nonsense
gene)
Proven not Presumed in Proven in

in tandem tandem tandem

Frameshift

GT--AG 1,2
Deletion: Splice sites: Initiation Codon
Single to multi Exon skipping or
exon deletion use of a cryptic
splice site

T

Creates a premature stop
codon <50bp from the
penultimate exon/intron

boundary:
ITGA2B >c.3011
ITGB3 >¢.2252

Altered reading frame does
not create a premature stop
codon:

ITGA2B -1/+2 at 2¢.2726 or
+1/-2 at >¢.3104
ITGB3 -1/+2 at >¢.2177 or
+1/-2 at >¢.2320

Reading frame is preserved,
e.g. deletion or skipping of the
following single exons:
ITGA2B 7,8, 10,12, 13, 15,
18, 21, 23, 25-30
ITGB3 6-9, 13, 15

Y

Exon is present in
biologically-
relevant transcript

Truncated/altered region is critical to protein function:
(1) Ligand binding extracellular domains of allbf3
ITGA2B c.136-1455; exons 1-15
ITGB3 ¢.403-591 & 709-720; exons 4-5

(2) allbB3 transmembrane domains
ITGA2B ¢.2980-3057; exon 29
ITGB3 ¢.2155-2223; exon 14
(3) B3 cytoplasmic domain
ITGB3 ¢.2224-2364; exons 14-15

L/ A A l L\ ¢

Y

No known alternative
start codon in other
transcripts

Role of region in

protein function is
unknown

LoF variants in this exon are
not frequent in the general
population and exon is upstream of closest

present in biologix.:ally» potential in-frame start
relevant transcript codon

>1 pathogenic variant

Variant removes >10% Variant removes <10%

of protein: of protein:
ITGA2B >104 AAs ITGA2B >104 AAs
ITGB3 >78 AAs ITGB3 >78 AAs
* \

PVS1_Moderate

PVS1_Moderate

Figure 2. PVS1 decision tree for ITGA2B/ITGB3 variants. Application of different levels of strength for PVS1 depending on the following factors: type of variant (light

blue), prediction of nonsense-mediated decay (NMD; gray), location within a known critical protein domain (green), and size of deletion (yellow). N/A, not applicable.

PP3: multiple lines of computational evidence support
a deleterious effect on the gene or gene product. This
criterion can be used to evaluate either missense variants or those
affecting splicing, other than canonical splice sites (PVS1). For
missense variants, the PD-EP specifies the use of the Rare Exome
Variant Ensemble Learner (REVEL) metapredictor tool; a REVEL
score of =0.7 is recommended. The REVEL score for an individual
missense variant can range from O to 1, with a higher score
reflecting greater likelihood that the variant is disease causing.
Across the genome, REVEL had the best overall performance (P <
10~ ") compared with any of 13 individual tool and 7 ensemble
methods.*® Substantiation for use of a REVEL score =0.7 to apply
the PP3 criterion was provided by a set of 50 missense ITGA2B/
ITGBS3 test variants classified without using in silico predictors,
resulting in 14 pathogenic and 12 benign classifications (supple-
mental Figure 1). Using a REVEL score of =0.7, 50% of pathogenic
variants met the PP3 criterion (REVEL score, 0.68 = 0.24),
whereas all benign variants (REVEL score =0.561) were excluded.

422 ROSS et al

For variants affecting splicing, the PD-EP specified that =2 in silico
splicing predictors in agreement would qualify for application of the
PP3 criterion. This includes missense variants or synonymous
variants in the first or last codon of an exon as well as intronic
variants other than canonical splice sites (PVS1). For this purpose,
the PD-EP used Human Splicing Finder*® (HSF) and Maximum
Entropy Scan®® (MaxEntScan) with the standard parameters
recommended by each predictor: (1) the threshold for a position
to be considered a splice site is =65 for HSF and =3 for
MaxEntScan, (2) a broken splice site is defined as a position that
has shifted below the threshold with a difference in score of less
than =10% for HSF or less than —30% for MaxEntScan, and (3)
a new splice site is defined as a position that has shifted above the
threshold where the difference in score is >10% for HSF or >30%
for MaxEntScan.

BP4: multiple lines of computational evidence suggest no
impact on the gene or gene product. Again, the PD-EP

26 JANUARY 2021 - VOLUME 5, NUMBER 2 & blood advances
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recommends that this criterion can be used to evaluate missense
variants with the REVEL metapredictor tool. A REVEL score of
=0.25 to apply the BP4 criterion was specified based on the same
set of 50 missense /ITGA2B/ITGB3 test variants (supplemental
Figure 1); 75% of benign variants met the BP4 criterion (REVEL
score 0.19 = 0.17), whereas all pathogenic variants (REVEL score
=0.268) were excluded, and VUSs were present across the range
(REVEL score, 0.118-0.972).

Functional data

PS3: well-established in vitro or in vivo functional studies
supportive of a damaging effect on the gene or gene
product. Functional studies can provide strong support of
pathogenicity, but only if the experimental assay evaluates the
function relevant to the disease mechanism. As such, the PD-EP
considered that GT can be caused by either quantitative or
qualitative defects in «llbB3 that cause loss of ligand (eg,
fibrinogen) binding function. All assays must be performed in an
animal model or heterologous cell line; analysis of expression and
receptor function in patient cells is considered within the PP4
criterion. In those assays with expression in heterologous cell lines,
the variant of interest from 1 gene (eg, ITGA2B) is coexpressed
with the opposite gene (eg, /TGB3) in its wild-type form.?! There are
2 classes of assays the PD-EP evaluated: those that directly inform
on the binding function, and those that report on the absent/
reduced expression that leads to impaired ligand binding. Other
complementary assays have been reported in the literature but were
not considered to fulfill PS3 by the PD-EP. Largely, these assays
have been used to evaluate intracellular activities such as subunit
synthesis, maturation, interaction, and stability.2>°>°® Although
these provide evidence for which step in production is affected,
they do not directly inform on the resulting quantitative (protein
level) or qualitative (ligand binding) defects on the cell surface.

The effect of the variant on receptor expression or total protein
content can be assessed by either flow cytometry or immunoblot,®*
and the strength of the PS3 criterion is dependent on the results
of the expression assay for the variant compared with a wild-type
control. Aside from the variants with qualitative defects, the level of
allbB3 surface expression correlates well with the level of ligand
binding®®; thus, a variant with <5% expression is considered to
be functionally null because the complex is either absent or
amounts are insufficient for meaningful fibrinogen binding to occur.
Consequently, an additional functional assay is not required to
reach the strong evidence level with expression <5%; however, at
5% to 25% expression, while still consistent with levels observed
in type Il GT patients, the receptor function may not be insignifi-
cant and the variant may or may not also cause a fibrinogen binding
defect.®® Therefore, the reduced-strength PS3_moderate criterion
should be applied for reduced surface expression (5% to 25%) in
the absence of a receptor function assay. A knock-in animal model
may be used in place of heterologous cells to meet the PS3
criterion based on the same expression thresholds.

For variants in /ITGA2B or ITGB3 where type Il (mild quantitative
deficiency) or type lll (qualitative/functional deficiency) patients are
being considered, functional assays in which flow cytometry is used
to measure the ability of allbB3 to bind its natural ligand, soluble
fibrinogen, or ligand mimetic antibody (eg, PAC-1) are applied.®®
However, the use of transfected heterologous cells has limitations
in this regard, and as defined by the PD-EP, PS3 evidence for

€ blood advances 26 january 2021 - voLUME 5, NUMBER 2

a functionally abnormal receptor requires a positive control with
wild-type genes. A variant shown to be functionally abnormal,
compared with wild type, by this class of assays meets the strong
requirement of PS3. Similarly, and understanding the differences
between allbB3 in mouse and humans, a knock-in mouse model
may also meet the PS3 criterion, with demonstration that knock-in
mouse platelets have either (1) minimal to no allbp3 function, as
shown by a fibrinogen (or ligand mimetic antibody, JON/A) binding
assay, or (2) abnormal aggregation of mouse platelets similar to
that observed in GT patients (PP4), with a normal response to
botrocetin.

BS3: well-established in vitro or in vivo functional studies
show no damaging effect on protein function or splicing.
Although the quantitative and qualitative aspects of ITGA2B/ITGB3
defects were considered individually for evidence of pathogenicity,
both must be considered in combination to determine if functional
evidence shows no damaging effect on protein function. A variant
expressed in a heterologous cell line may have normal expression,
but this alone should not be used as benign evidence, because the
variant may still cause a qualitative defect. Accordingly, the PD-EP
specifies that the BS3 criterion can be satisfied by either (1)
a heterologous cell line that exhibits both normal expression and
normal binding (description of these assays provided in PS3) or (2)
a knock-in mouse model with normal platelet aggregometry or
demonstration of both normal expression and normal ligand binding.

Segregation data

PP1: cosegregation with disease in multiple affected
family members in a gene definitively known to cause the
disease. Cosegregation of the variant of interest with disease in
1 proband plus 1 affected relative is considered sufficient to meet
the PP1 criterion at the supporting level. Of note, only individuals
well documented as having both GT and the variant are included
when counting segregations. All GT individuals within a family must
be of the same genotype, either homozygous or compound
heterozygous (with variants confirmed in trans). Additionally, the
PD-EP has adopted the approach taken by various ClinGen
EPs®57%° and supported by both the SVI and the Clinical
Sequencing Exploratory Research Consortium®' that additional
meioses support higher levels of evidence. Therefore, the PD-EP
specifies that a proband plus 2 affected relatives is sufficient for
PP1_moderate, and a proband plus =3 affected relatives meets
PP1_strong.

BS4: lack of segregation in affected members of a family.
Lack of segregation of a variant with a phenotype can provide
strong benign evidence but should be used prudently. For family
members who have a bleeding phenotype but are negative for
the variant in question, there is the possibility of an alterna-
tive explanation of the mucocutaneous bleeding. For instance,
rare coinheritance of GT with other bleeding disorders has been
reported.® To ensure only families with true lack of segregation
(=2 affected family members with at least 1 affected individual
not carrying the variant of interest) are included, the PD-EP
specifies that all affected family members must be well documented
as having GT based on both bleeding phenotype and appropriate
laboratory values (meeting the PP4_moderate criterion).
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De novo data

PS2/PMé6: de novo occurrence. In GT patients, as with other
disorders inherited in an autosomal recessive manner, de novo
variants are extremely rare; however, de novo occurrences have
been reported.63 In consideration of these rare cases, the PM6 de
novo, maternity and paternity not confirmed, and PS2 de novo,
paternity and maternity confirmed, criteria were specified for GT
with adoption of SVI recommendations (supplemental Table 1).
Using the SVI-recommended approach, the level of strength for
PM6/PS2 is based on confirmed vs assumed maternity/paternity
status, the number of de novo probands, and the phenotypic
consistency. To be scored at the highest level of phenotypic
consistency, phenotype highly specific for gene, the PD-EP has
specified that the patient must meet the PP4_moderate criteria.
Based on ACMG/AMP guidance, family history must be consistent
with a de novo event (ie, both parents must have tested negative for
the variant), and further PD-EP specification requires that the PS2/
PM®6 criteria are only applied when the proband harbors a second
pathogenic or likely pathogenic variant (as classified by the PD-
EP-specified ACMG/AMP guidelines) in addition to the de novo
variant.

Allelic data

PM3: for recessive disorders detected in trans with
a pathogenic variant in an affected patient. \When 2
heterozygous variants are identified in either ITGA2B or ITGB3,
and 1 variant is known to be pathogenic, then determining that the
other variant in the same gene is in trans, rather than in cis, can be
considered evidence for pathogenicity of the latter variant. Again,
a point-based system was recommended by the SVI in which each
proband with the variant of interest is awarded a point value, and
the combined point value determines the appropriate strength
level (supplemental Table 2). The strength of the in trans observation
is based upon confirmation of variant phasing and classification of the
variant occurring on the other allele (based on the PD-EP-specified
ACMG/AMP guidelines). Additionally, application of PM3 is contin-
gent on both variants (or the homozygous variant) in the proband
occurring at sufficiently rare allele frequencies that meet the PM2
threshold (<0.0001 or <0.01%).

Phenotypic data

PP4: patient’s phenotype or family history is highly specific
for a disease with a single genetic etiology. The pathogenic
criterion PP4 can be applied when the patient's phenotype meets
both clinical and laboratory criteria for GT. In addition to a diagnosis
of GT established by a clinician, the PD-EP has defined 3 criteria
for assessing the relevance of the PP4 criterion: (1) at least 1
mucocutaneous bleeding phenotype (eg, epistaxis, petechiae, easy
bruising, oral bleeding, gastrointestinal bleeding, or menorrhagia);
(2) normal ristocetin-induced platelet agglutination but minimal
to no platelet aggregation with all tested physiological agonists,
at a minimum of 2; and (3) demonstration of a quantitative or
qualitative defect of allbB3 in patient cells by either absent or
reduced (=25% compared with normal) surface expression of
allbB3 established by flow cytometry or total protein measured
by immunoblotting or functional flow cytometry to demonstrate
lack of fibrinogen binding to activated allbB3. Fulfillment of all 3
criteria provides sufficient clinical and laboratory detail to satisfy
PP4_strong (Figure 3). An additional requirement for the use of
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PP4_strong is full coding sequencing (all exons and intron-exon
boundaries) of both ITGA2B and ITGB3 to minimize the possibility
that other plausibly causative variants are present. Given the high
specificity of the combined clinical and laboratory phenotype, in
combination with the high penetrance of GT, a Bayesian analysis
was completed to demonstrate that this is a strong level of
evidence. The PD-EP determined that the likelihood ratio that
biallelic variants identified in a phenotype-positive individual are
pathogenic is 91:1 (95% CI, 32:1-255:1), consistent with the
>18.7:1 ratio required for a strong level of evidence in the Bayesian
model of the classification framework (supplemental Figure 2).'®
For individuals lacking criterion 3, demonstration of a quantitative or
qualitative defect in allbB3 or with only partial sequencing, PP4
would be downgraded to a moderate level of evidence. Accompa-
nying normal results are expected for routine tests of a patient with
abnormal bleeding. Evaluation of the peripheral blood smear by light
microscopy should show normal platelet count and platelet size,
and coagulation screening tests such as prothrombin and activated
thromboplastin times should be normal. Although these normal
results are expected for a GT patient, the PD-EP does not require
this information to apply PP4 in variant interpretation.

BS2: observed in a healthy adult individual with full
penetrance expected at an early age. Observation of the
homozygous state of a particular variant in a healthy adult individual
is considered strong evidence for a benign interpretation, but the
healthy status must be carefully considered. Children are often
diagnosed with GT before the age of 5 years, but because the
diagnosis is rare and generally undertaken only in specialist centers,
it may go undiagnosed or misdiagnosed.®* As such, the PD-EP has
specified this criterion such that the variant must be identified in >1
homozygous unaffected individual who has been assessed for GT
by at least platelet aggregometry; population data (ie, gnomAD) are
not sufficient as evidence. This criterion will aid in assessment of
variants identified in the setting of gene panel testing, where an
individual with a different bleeding or platelet phenotype is found to
be homozygous for a variant in either ITGA2B or ITGBS3.

Criteria considered not applicable

Of the original 28 published ACMG/AMP criteria, 4 of the 16
criteria for pathogenic evidence and 3 of the 12 criteria for benign
evidence were deemed not applicable for ITGA2B/ITGB3 with
respect to GT. Because of the rarity of GT and the lack of
appropriate studies to validate the criterion, use of PS4 (prevalence
of the variant in affected individuals is significantly increased
compared with the prevalence in controls) is not recommended.
With regard to both PM1 (located in mutational hotspot and/or
critical domain without benign variation) and PP2 (missense variant
in a gene that has a low rate of benign missense variation), ITGA2B
and /ITGB3 are highly polymorphic®® with benign variants present
across all domains.®®>®® Truncating variants make up only a small
portion of GT disease-causing variants, whereas missense variants
make up the largest class at 47.6% of all pathogenic or likely
pathogenic /TGA2B/ITGB3 variants in ClinVar; as such, BP1
(missense variant in a gene with primarily truncating variants) does
not apply. The PD-EP also determined that the BP5 criterion (variant
found in a case with an alternate molecular basis for disease) should
not be used for GT because it is a recessive disorder, and an
individual with an alternative basis for a given clinical phenotype can
still be a carrier of a single unrelated pathogenic variant in ITGA2B/
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Figure 3. PP4 decision tree for GT patients. Application
of different levels of strength for PP4 depending on bleeding
and laboratory phenotypes, analysis of alloB3 expression or

function, and sequencing coverage.
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ITGB3. Furthermore, having GT as the result of biallelic pathogenic
ITGA2B variants would not preclude an individual from being
a carrier of a single pathogenic /TGB3 variant. In the case of PP5
(reputable source reports as pathogenic) and BP6 (reputable
source reports as benign), these criteria were removed based on
recommendation from the SVI.%7

Validation of the GT ITGA2B/ITGB3-specific ACMG/
AMP variant interpretation guidelines

To ensure the clarity and applicability of rule specifications, the PD-
EP evaluated variants encompassing a wide breadth of evidence.
The most used criteria for variant interpretation were PM2, PP4,
PM3, and PP3 (Figure 4). In addition, 16 variants were predicted to
be LOF, meeting the PVS1 criterion, and 15 variants have data from
in vitro functional studies, allowing the use of PS3. The commonly
used benign criteria were allele frequency criterion BA1 or BS1 and
computational/predictive criterion BP7 or BP4. Additionally, 4
variants had in vitro functional studies meeting BS3, and 2 variants
were identified in cis (BP2) with pathogenic variants.

For pilot testing, 14 benign or likely benign variants, 17 VUSs, 33
pathogenic or likely pathogenic variants, and 6 conflicting variants
(within ClinVar or between ClinVar and initial expert assertions)
were recommended for inclusion by PD-EP members based on
initial expert-based assertions of pathogenicity before the use of
GT-specified guidelines (supplemental Tables 3 and 4). Using the
ITGA2B/ITGB3-specific guidelines, 15 validation variants were
classified by the PD-EP as benign or likely benign, 14 were VUSs,
and 41 were pathogenic or likely pathogenic (Figure 1;
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supplemental Tables 3 and 4). A list of all pilot variants, the variant
classification of the ClinVar submitters, and the initial and final
classifications made by the PD-EP (with the criteria used) are
presented in supplemental Tables 3 and 4. Initial expert assertions
(made before disease/gene specification of the ACMG/AMP
guidelines) for all 70 pilot variants were compared with the final
classifications based on GT-specific guidelines. There was 71%
clinical concordance between initial expert assertions and classi-
fication based on the PD-EP-specified criteria (Figure 5). Thirty of
34 variants initially asserted as pathogenic or likely pathogenic by
the PD-EP submitters remained at that assertion after applying the
GT-specific guidelines. The remaining 4 variants were downgraded
to VUSs because of insufficient pathogenic evidence. Thirteen of
16 variants initially asserted as benign or likely benign remained
at that assertion after applying the GT-specific guidelines. The
remaining 3 variants were reclassified as VUSs because of
insufficient and conflicting evidence. Twenty variants were initially
interpreted as VUSs by our EP members; 2 of these 20 were
classified as benign or likely benign based on population
frequencies, 7 remained VUSs because of insufficient evidence,
and 11 were classified as pathogenic or likely pathogenic. Applying
the GT-specific ACMG/AMP criteria to the pilot variants resulted in
a reduction in VUS classification from 29% to 20%.

In addition to validating the PD-EP ITGA2B/ITGB3 GT guideline
specifications against initial expert assertions, ClinVar interpreta-
tions were also considered. Of the 70 ITGA2B/ITGBS3 pilot
variants, 34 had interpretations in ClinVar, 76% of which were
in clinical concordance with the classification made with
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55 Figure 4. Summary of the variant interpretation
| Stand Alone criteria applied to the 70 ITAG2B/ITGB3 validation
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PD-EP-specified guidelines (supplemental Tables 3 and 4),
increasing to 100% concordance for variants with noncon-
flicting interpretations from multiple submitters in ClinVar.
Nine pilot variants had clinically discordant interpretations
either within ClinVar or between ClinVar and the final PD-EP
classifications. One pilot variant with ClinVar-conflicting interpreta-
tions (likely benign and VUS) was classified by the PD-EP as benign
using the GT-specific guidelines, and 4 ClinVar VUSs were
reclassified to pathogenic or likely pathogenic and 2 to benign
or likely benign (Table 2). The 2 remaining discordant variants,
with likely pathogenic and likely benign ClinVar interpretations,
respectively, were not able to reach classification with the
PD-EP-specified guidelines and were considered VUSs. Overall,
of the 34 variants with ClinVar interpretations, 1 with conflicting
interpretations and 6 with VUS interpretations were reclassified
to the appropriate pathogenic, likely pathogenic, benign, or likely
benign category (21%), whereas only 2 variants were moved to the
VUS classification (6%).

Discussion

Accurate detection and appropriate interpretation of pathogenicity
of genetic variants are crucial in the diagnosis, management, and
counseling of patients with inherited disorders. The large number of
genomic variants in human populations renders the assessment of
variant pathogenicity a highly complex and challenging task. Rather
than relying on individual laboratories’ internally developed variant
interpretation criteria, the 2015 ACMG/AMP publication repre-
sented a great leap forward in the field of clinical genetics by
providing a set of standardized guidelines. Nevertheless, even
armed with these guidelines, significant improvements in the
consistency of variant classifications made by different laboratories
were not immediately achieved. The inconsistency was revealed in
a Clinical Sequencing Exploratory Research Consortium study in
2016,2 which found that inconsistency in variant classification could
be at least partially attributed to the degree of subjectivity allowed
by the criteria. In the conclusion, recommendations were made to
help increase the consistency in the use of ACMG/AMP rules, and
most of these involved disease- or gene-specific criteria.? Sub-
sequently, ClinGen established EPs to adapt ACMG/AMP rules for
specific genes or diseases. One of the pioneer EP efforts was made
by the ClinGen Cardiovascular Clinical Domain Working Group in
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adapting rules for MYH?7-associated inherited cardiomyopathies.
These adapted rules, together with expert review and clinical
judgment, successfully increased specificity for interpreting MYH7
variants.

In the domain of platelet disorders, the ClinGen PD-EP adopted
a similar overall framework as the MYH7 project including 3 phases:
development of draft modifications, validation through pilot variants,
and refinement and finalization of the adapted rules for ITGA2B/
ITGBS3. The set of rule specifications described herein serve as the
expert recommendations for interpreting /ITGA2B/ITGB3 variants
with respect to GT in the future. The variants curated and classified
by the PD-EP will be submitted to ClinVar with a 3-star rating
denoted.

During the validation process, we came across several challenges
related to the applicability of certain criteria, and these limitations
may also be encountered by others performing variant curation.
First, the clinical phenotype and testing results of some patients
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Figure 5. Comparison of initial expert assertions and final PD-EP classi-
fications of the 70 ITAG2B/ITGB3 validation variants. The total height of
each bar represents the number of variants with each initial assertion. The
colored segments of each bar represent the final PD-EP classification (legend on
the right).
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Table 2. ITGA2B/ITGB3 variants with discordant initial and final classifications

ClinVar Initial expert Final PD-EP
Gene cDNA Amino acid assertion assertion classification Criteria applied
ClinVar/initial assertion
conflicting
ITGA2B 3060+2T>C VUS Pathogenic Likely pathogenic PVS1_S, PM2_P, PM3_P, PP4_M
ITGA2B 2965G>A Ala989Thr VUS Likely benign Likely benign BS1, BP2, BP4
ITGA2B 891+12del VUS Benign Benign BA1, BP7
ITGB3 565C>T Pro189Ser Likely pathogenic VUS Pathogenic PS3_M, PM2_P, PM3_S, PP1, PP3, PP4
ITGB3 1960G>A Glu654Lys VUS and likely benign ~ VUS Benign BA1
ITGB3 1902C>T Cys634= Likely benign VUS Benign BA1, BP7
Reclassified from VUS
ITGA2B 1234G>A Gly412Arg VUS VUS Pathogenic PM2_P, PM3_S, PP3, PP4_S
ITGA2B 257T>C Leu86Pro N/A vUS Pathogenic PS3_M, PM2, PM3_P, PP3, PP4_S
ITGA2B 460_462del Glu154del N/A VUS Likely pathogenic =~ PM2_P, PM3_P, PM4, PP4_M
ITGB3 362-1G>A vUS vuUSs Likely pathogenic ~ PVS1, PM2_P
ITGB3 187C>T Arg63Cys VUS VUS Likely pathogenic ~ PS3_M, PM2_P, PM3_P, PP3, PP4_M
ITGB3 448A>G Met150Val N/A VUS Likely pathogenic ~ PM2_P, PM3, PP3, PP4_M
ITGB3 629G>C Cys210Ser N/A VUS Likely pathogenic ~ PS3, PM2_P, PP1, PP3, PP4_M
ITGB3 1458C>G Cys486Trp N/A VUS Likely pathogenic ~ PM2_P, PM3, PP3, PP4_S
ITGB3 1594T>C Cys532Arg N/A VUS Likely pathogenic ~ PM2_P, PM3, PP3, PP4_S
ITGB3 1595G>A Cys532Tyr N/A VUS Likely pathogenic ~ PM2_P, PM3_P, PM5_P, PP3, PP4_M
Reclassified to VUS
ITGA2B 2852_2853delinsC ~ Asp951AlafsTer?  N/A Likely pathogenic ~ VUS PVS1_S, PM2_P
ITGA2B 889G>C Ala297Pro N/A Likely pathogenic ~ VUS PM2_P, PM3_P, PP1, PP4_M
ITGA2B 1821G>A Thré07= Likely benign Likely benign VUS PP3
ITGA2B 2728-19T>C N/A Likely benign VUS BP7, PM2_P
ITGB3 1366A>C Thr456Pro Likely pathogenic Pathogenic VUS PM2_P, PM3_P
ITGB3 953 T>C Leu318Ser N/A Likely pathogenic VUS PM2_P, PM3_P, PP3, PP4_M
ITGB3 1125+29G>C N/A Benign VUS BP7, PM2_P

Criteria applied with a modified strength are denoted by the criteria followed by _P for supporting, _M for moderate, _S for strong, and _VS for very strong.

cDNA, complementary DNA; N/A, not applicable.

reported in the literature are incomplete, and therefore, the
diagnosis of GT could not be clearly ascertained. Although it is
possible to contact the authors to request additional information for
verification, the PD-EP decided to not pursue this option on
a regular basis because it does not mimic the routine practices in
a majority of clinical laboratories during variant curation. Therefore,
the evidence from these publications was evaluated but often was
insufficient to apply certain rules. For this reason, the PD-EP
recommends in future workup of patients with suspected GT to
acquire the clinical and laboratory information needed for definitively
applying the adapted variant classification rules (supplemental
Table 5). Second, the PD-EP established relatively stringent
acceptance criteria for the types of laboratory or experimental
studies to ensure the quality of evidence. Because some older
studies in the literature did not meet these criteria, they were
deemed ineligible for use during variant curation. The knowledge of
laboratory or experimental methods in combination with expert
judgment played an important role in the evaluation of this evidence.

Although a majority (71%) of pilot variants had final classifications in
clinical concordance with initial expert assertions, several were

€ blood advances 26 january 2021 - voLUME 5, NUMBER 2

reclassified (Table 2). Three variants, identified in heterozygosity
in patients not diagnosed with GT, were initially asserted as
benign or likely benign but were reclassified to VUSs, including 1
intronic variant each in ITGA2B (c.2728-19T>C) and /TGB3
(c.1125+29G>C). Both of these variants may ultimately prove
to be benign; however, they are currently classified as VUSs,
meeting only the BP7 (no predicted effect on splicing and not
a highly conserved nucleotide) and PM2_supporting (rare in
population databases) criteria, highlighting the need for benign
evidence beyond predictive information to make a clinically
significant classification for variants not meeting benign pop-
ulation thresholds (BA1/BS1). For this purpose, among other
benign criteria, the PD-EP has specified how functional studies
can be used for the application of BS3. Four variants, identified
in GT patients and initially asserted as pathogenic or likely
pathogenic, were also reclassified to VUSs. The ITGA2B variant
c.2852_2853delinsC met the PVS1_strong criterion because of
an alteration of the entire transmembrane domain and was
absent from population databases (PM2_supporting); however,
the variant had insufficient clinical information to fulfill the PP4 of
PMa3 criteria. The remaining 3 were missense variants in ITGA2B
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(Ala297Pro) and /ITGB3 (Thr456Pro and Leu318Ser) with clinical
information provided on the patients; however, they had no reported
functional studies meeting the PS3 criteria. This highlights the
importance of functional studies in variant classification, particularly for
missense variants found in only 1 proband, as commonly occurs in GT.

Conversely, 11 variants initially considered VUSs were reclassified
as pathogenic or likely pathogenic. One splice variant, /TGB3
c.362-1G>A, was initially considered a VUS based on the fact
that this variant has only been observed in heterozygosity in an
ostensibly healthy population; however, PD-EP-specified thresh-
olds for PM2 allowed for application of PVS1 and PM2_supporting,
classifying the variant as likely pathogenic. An additional variant was
an inframe single amino acid deletion, and the remaining 9 variants
were all missense. These variants largely benefited from additional
reports in the literature and GT database. There were reports in
multiple probands that allowed for PM3 to be applied with an
adjustable strength for most variants (9 of 10) and several
classifications (4 of 10) were further aided by functional studies
meeting the specifications of the PD-EP for the PS3 criterion. The
establishment of these standards for variant interpretation should
serve to stimulate the field to perform more detailed evaluations of
variants and patients and fully report these data so that they can be
used in variant interpretation.

In summary, the ClinGen PD-EP effort is the first systematic,
rigorous, and validated classification of GT variants. We generated
variant interpretation rules that are specific for autosomal recessive
GT. Moving forward, these new rules should be taken as the
reference for assessment of presumed GT patients, although we
acknowledge that technological advances may require us to
update the rules in the future. As the next steps, the PD-EP will
curate and classify the rest of the ClinVar GT variants, which
will be denoted with a 3-star rating and receive the US Food
and Drug Administration approval label. The PD-EP also plans to
develop rule specifications for the gain-of-function ITGA2B/ITGB3
variants, which cause autosomal dominant macrothrombocytope-
nia, encompassing a different phenotype, inheritance pattern, and
functional defect. After completion of the ITGA2B/ITGB3 variant
curation project, the PD-EP plans to adapt the ACMG/AMP rules
for additional platelet disorders, including Bernard-Soulier syndrome.
In the long term, we hope that these efforts will help hematologists
to better interpret clinical genetic panels and therefore improve
diagnosis and treatment of platelet disorders.
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