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Evaluating Cognitive Relationships with Resting-State and
Task-driven Blood Oxygen Level-Dependent Variability

Peter R. Millar, Beau M. Ances, Brian A. Gordon, Tammie L. S. Benzinger,
John C. Morris, and David A. Balota

Abstract

■ Recent functional magnetic resonance imaging studies have
reported thatmoment-to-moment variability in the blood oxygen
level-dependent (BOLD) signal is positively associated with task
performance and, thus, may reflect a behaviorally sensitive signal.
However, it is not clear whether estimates of resting-state and
task-driven BOLDvariability are differentially related to cognition,
as they may be driven by distinct sources of variance in the BOLD
signal. Moreover, other studies have suggested that age differ-
ences in resting-state BOLD variability may be particularly sensi-
tive to individual differences in cardiovascular, rather than neural,
factors. In this study, we tested relationships between measures
of behavioral task performance and BOLD variability during both
resting-state and task-driven runs of a Stroop and an animacy

judgment task in a large, well-characterized sample of cognitively
normal middle-aged to older adults. Resting-state BOLD vari-
ability was related to composite measures of global cognition
and attentional control, but these relationships were eliminated
after correction for age or cardiovascular estimates. In contrast,
task-driven BOLD variability was related to attentional control
measured both inside and outside the scanner, and importantly,
these relationships persisted after correction for age and cardio-
vascular measures. Overall, these results suggest that BOLD
variability is a behaviorally sensitive signal. However, resting-
state and task-driven estimates of BOLD variability may differ in
the degree to which they are sensitive to age-related, cardiovas-
cular, and neural mechanisms. ■

INTRODUCTION

Functionalmagnetic resonance imaging (fMRI) has provided
a powerful tool for cognitive neuroscientists as a noninvasive
index of in vivo human brain function. Traditionally, fMRI
approaches have focused on mean-level changes in pat-
terns of the blood oxygen level-dependent (BOLD) signal
during task performance as a measure of task-related
activity. Moreover, there has also been considerable inter-
est in spatial correlation patterns of spontaneous BOLD
fluctuation reflecting functional connectivity among brain
regions (for a review, see Fox & Raichle, 2007). In addition
to these approaches, there is a growing interest in absolute
estimates of moment-to-moment variability in the BOLD
signal across a run as a potential signal of interest (for a
review, see Grady & Garrett, 2014; Garrett, Samanez-Larkin,
et al., 2013).
Interest in BOLD variability first emerged in the study of

human age differences. Initial studies reported that, in
comparison to younger adults, healthy older adults exhibit
reduced BOLD variability during brief fixation blocks
(Garrett, Kovacevic, McIntosh, & Grady, 2010), task perfor-
mance (Garrett, Kovacevic, McIntosh, & Grady, 2011), and
extended resting-state scans (Kielar et al., 2016). This pattern
is somewhat surprising, in part because one early neurocog-
nitive theory of aging predicted that neural variability or
noise should increase in older adults (Crossman & Szafran,

1956) and, moreover, that behavioral variability appears to
increase with age (for a review, see Balota & Duchek,
2015) and is associated with differences in resting-state net-
works (Meeker et al., in press; Duchek et al., 2013; Clare
Kelly, Uddin, Biswal, Castellanos, & Milham, 2008).
Although widespread patterns of age-related reductions in
BOLD variability have been observed spanning multiple
functional networks, some regional age-related increases in
variability have been reported in the same studies. Impor-
tantly, these extreme-group (i.e., college-aged students vs.
community-dwelling individuals over 60 years old) difference
patterns havebeen replicated in large, continuous aging sam-
ples as well (Millar, Petersen, et al., 2020; Nomi, Bolt, Ezie,
Uddin, & Heller, 2017; Hu, Chao, Zhang, Ide, & Li, 2014).

In addition to age differences, other studies have exam-
ined relationships with task performance, suggesting that
task-driven BOLD variability is indeed sensitive to individual
differences in performance within the scanner. Specifically,
in one study, BOLD variability in occipital, cingulate, angular
gyrus, and medial prefrontal regions during perceptual
matching, attention cuing, and delayed match-to-sample
tasks was positively associated with faster and more consis-
tent reaction time (RT) in those tasks (Garrett et al., 2011).
Similar positive relationships between task performance and
variability have also been reported in stop signal (Hu et al.,
2014), visual working memory (Guitart-Masip et al., 2016),
and sensorimotor control, vowel identification, and trait
judgment tasks (Grady & Garrett, 2018).Washington University in St. Louis
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Behavioral relationships have also been demonstrated
with resting-state variability. Specifically, greater resting-
state low-frequency fluctuations in precuneus and anterior
cingulate have been associated with faster and more
consistent performance as well as smaller congruency
estimates from a flanker task performed in a separate task
run (Mennes et al., 2011). Furthermore, in a larger sample
of older adults, resting-state variability in widespread
gray matter areas (including primary motor, frontal, cingu-
late, precuneus, occipital, and temporal regions) was pos-
itively associated with factor estimates of episodic memory
and fluid intelligence but negatively associated with a
vocabulary factor (Burzynska et al., 2015). These resting-
state findings suggest that behavioral relationships with
BOLD variability might reflect relatively stable individual
differences beyond associations with in-scanner task
performance.

Although these studies suggest a clear behavioral sensi-
tivity of BOLD variability in resting-state and task-driven
fMRI, the precise mechanisms underlying these behavioral
relationships remain uncertain. One proposal is that in-
creased BOLD variability might emerge in a neural system
that is optimized for environmental uncertainty (Garrett,
Samanez-Larkin, et al., 2013). Specifically, the presence of
variability in neural responses might allow neural popula-
tions to approachBayesian optimality by representingprob-
abilistic distributions of possible responses (Ma, Beck,
Latham, & Pouget, 2006). Such a systemmight avoid overly
deterministic responses, thus affording flexible processing
of unpredictable stimuli. Alternatively, BOLD variability
might reflect ongoing exploration of potential network
configurations or activation states (Deco, Jirsa, & McIntosh,
2011). This mechanism would similarly predict enhanced
processing of unexpected inputs as well as more flexible
responses. Support for these interpretations comes from
observations that BOLD variability parametrically increases
as a function of task demands. Specifically, previous studies
have shown that variability is (i) greater in task-driven, com-
pared to resting-state, estimates (Garrett, Kovacevic,McIntosh,
&Grady, 2013); (ii) greater during tasks requiring responses
to changing external stimuli (e.g., vowel judgment, visuo-
motor responses) versus tasks based on fixed internal
representations (e.g., trait judgments; Grady & Garrett,
2018); and (iii) modulated by difficulty in a perceptual
face-matching task (Garrett, McIntosh, & Grady, 2014).
However, there are also conflicting earlier reports that
variability and spontaneous activitymight be reduced during
task performance as compared to resting state (He, 2011,
2013; Bianciardi et al., 2009; Fransson, 2006), and so the con-
sistency of these effects remains unclear. Moreover, within-
participant modulations in BOLD variability across task
states have been shown to be less pronounced in older
adults and in low task performers (Grady & Garrett, 2018;
Garrett et al., 2014; Garrett, Kovacevic, et al., 2013). Hence,
the capacity of the system to modulate BOLD variability in
accordance with task demands may reflect the integrity of
the neural signal related to task performance.

Alternatively, BOLD variability may also relate to functional
connectivity or network organization. Specifically, simula-
tion studies suggest that low-frequency BOLD fluctuations
might be the outcome of spontaneous activity within a
differentially connected network of nodes (Honey, Kötter,
Breakspear, & Sporns, 2007). Under this framework, disrup-
tions in the network structure might produce reductions in
both the amplitude of these fluctuations (reduced BOLD
variability) and the magnitude of the correlations among
the fluctuations (reduced functional connectivity). Hence,
structural changes in the brain might simultaneously pro-
duce differences in both variability and functional connec-
tivity, suggesting that these two measures might be tightly
linked, rather than capturing distinct signals. Indeed, at
least one study has provided initial evidence for potential
links between BOLD variability and functional connectivity,
demonstrating that greater BOLD variability within func-
tional networks is associated with stronger functional inte-
gration (as defined as lower dimensionality) within those
networks (Garrett, Epp, Perry, & Lindenberger, 2018).
Under this view, BOLD variability could be related to cogni-
tion to the extent that it captures spontaneous activity con-
strained by a well-connected network structure, rather than
capturing ongoing processing within the network. This in-
terpretation might predict that BOLD variability should be
related to estimates of structural integrity and connectivity
and, moreover, that estimates of variability and their behav-
ioral relationships should be highly consistent within indi-
viduals, regardless of changes in states or task contexts,
similar to demonstrations ofwithin-individual stability in func-
tional connectivity estimates (Gratton et al., 2018). Other
studies have demonstrated relationships between BOLD
variability and structural estimates, including hippocampal
volume (Good et al., 2020, Millar, Ances, et al., 2020, Zhang
et al., 2020) and white matter integrity (Burzynska et al.,
2015). Indeed, one study has reported strong correlations
between resting-state and task-driven estimates of BOLD var-
iability (Grady&Garrett, 2018); however, these relationships
were demonstrated in relatively small samples of 15 older
and 20 younger adults. Furthermore, estimates of BOLD var-
iability show fair test–retest reliability over 3-year intervals, at
levels comparable to or greater than estimates of functional
connectivity (Millar, Petersen, et al., 2020).
Finally, it has also been suggested that resting-state BOLD

variability might primarily reflect cardiovascular and/or neu-
rovascular factors, especially in the context of age differ-
ences. This suggestion is supported by recent evidence
that age-related differences in resting-state BOLD variability
are eliminated after correcting for measures of cardiovas-
cular health (CVH; i.e., pulse, heart rate variability, blood
pressure, whitematter hyperintensities [WMHs], and body
mass index [BMI]) and cerebral blood flow (Tsvetanov
et al., 2019). However, it is worth noting that there is also
evidence that the age relationships with BOLD variability
remain after correcting for cardiovascular (Tsvetanov et al.,
2015) or neurovascular (Garrett, Lindenberger, Hoge, &
Gauthier, 2017) factors alone. In light of these age-related
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results, it is possible that cardiovascular factors might also
contribute to behavioral relationships with BOLD variability,
which would question the above theoretical interpretations
of BOLD variability and task performance. Moreover, there
is growing interest in potential vascular influences on age-
related cognitive decline (for a review, see Abdelkarim
et al., 2019; Wåhlin & Nyberg, 2019; O’Brien et al., 2003).
Indeed, one recent report demonstrated that relationships
between resting-state BOLD variability and a global cogni-
tive composite were eliminated after correcting for similar
CVHmeasures (Millar, Petersen, et al., 2020).However, these
relationships have not been examined within specific cog-
nitive domains, so it is unclear whether potential car-
diovascular factors may be sensitive to domain-general or
domain-specific processing. Furthermore, although multiple
studies have considered the influence of cardiovascular fac-
tors in estimates of resting-state BOLD variability (Millar,
Petersen, et al., 2020; Tsvetanov et al., 2015, 2019; Garrett
et al., 2017), we are aware of only one study that has exam-
ined these factors in a task-driven context (Garrett et al., 2015).
Some insight into factors underlying behavioral relation-

ships with BOLD variability might be gained by comparing
behavioral relationships with variability across resting-state
versus task-driven sessions. Although, as discussed above,
behavioral relationships have been demonstrated with
both resting-state and task-driven variability, no studies
have directly compared these relationships. It is possible
that these two measures might capture distinct sources
of BOLD signal variance and, hence, might offer differential
sensitivity to behavioral measures taken inside or outside
the scanner. For instance, task-driven BOLD variability
might capture unique behaviorally relevant neural process-
ing elicited by the task, which is not present during resting
state. In contrast, resting-state BOLD variability captures
only spontaneous fluctuations in the BOLD signal, which
as mentioned above, may be in part sensitive to cardiovas-
cular sources of variance or network organization. Hence,
one might predict that task-driven BOLD variability should
bemore sensitive than resting-state variability to behavioral
measures—even those obtained outside the scanner—and
that behavioral relationships with resting-state BOLD vari-
ability should be more sensitive to cardiovascular factors.
Alternatively, to the extent that BOLD variability reflects
underlying network organization, one might expect to
see consistency in these estimates and their relationships
with behavior across resting-state and task-driven contexts.
In this study, we examined relationships between BOLD

variability and cognition, using a large, well-characterized
sample of cognitively normal middle-aged to older adults.
We obtained composite measures of global cognition, epi-
sodic memory, and attentional control, using standard neu-
ropsychological tests and well-established attentional
control tasks. Furthermore, we compared relationships of
these cognitive composites, aswell as in-scanner task perfor-
mance, to estimates of BOLD variability derived from both
resting-state and task-driven fMRI scans. Hence, we are able
to evaluate whether behavioral relationships with BOLD

variability reflect stable individual differences and whether
they are differentially sensitive to spontaneous versus task-
evoked sources of variance in the BOLD signal. In addition,
we examined the contribution of cardiovascular factors to
behavioral relationships with BOLD variability by correcting
formeasures of CVH, including pulse, blood pressure, BMI,
and WMH, and also carefully correcting for motion and
global signal artifacts in BOLD variability (see Millar,
Petersen, et al., 2020). Finally, in contrast to previous
studies, which most often have used a voxel-based or partial
least squares approach,we applied a network-basedmachine
learning approach to evaluate whether multivariate patterns
in BOLD variability offer predictive accuracy of behavioral
measures and, furthermore, whether these relationships
follow anatomically meaningful patterns at the level of
functional networks (see Millar, Petersen, et al., 2020).
Specifically, if BOLD variability reflects an important
property of neural processing or network organization,
we should expect these relationships to exhibit meaning-
ful anatomical patterns at the network level, especially in
those networks most relevant to task performance.

METHODS

Participants

As described previously (Millar, Petersen, et al., 2020), a sam-
ple of 190 older adult participants were selected from a larger
set of participants enrolled in the Adult Children Study (ACS)
and the Healthy Aging and Senile Dementia (HASD) cohorts
at the Charles and Joanne Knight Alzheimer Disease
Research Center at Washington University in St. Louis. The
sample was selected on the basis of having aminimum value
of usable resting-state fMRI data (see below); cognitive nor-
mality, as carefully assessed by trained clinicians using the
Clinical Dementia Rating (Morris, 1993); absence of severe
psychiatric conditions; low mean head motion (framewise
displacement [FD] < 0.20 mm; see Millar, Petersen, et al.,
2020); availability of four estimates of CVH (see below);
and availability of at least one cognitive composite measure
(see below). One participant was also excluded as a potential
outlier (>4 SDs from the sample mean), based on average
BOLD SD across all 298 regions of interest (ROIs; see
Calculation of BOLD Variability section).

A subset of 72 participants from the same ACS cohort also
completed a task-driven fMRI session, as previously described
(Gordon et al., 2015). This subset was selected using the
same criteria as the resting-state sample, as well as additional
criteria including native English speaker status andminimum
performanceon in-scanner behavioral tasks (seebelow).One
participant was also excluded as a potential outlier (>4 SDs
from the samplemean), basedon averageBOLD SD across all
ROIs. Table 1 provides a descriptive summary of both resting-
state and task-driven fMRI samples. Histograms displaying
the distribution of the critical variables are provided in
Figure 1. As shown in Table 1, the two samples were well
matched in demographic variables, including age, sex, educa-
tion, and race ( ps > .40, effect sizes < 0.12). All procedures
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Table 1. Demographic and Summary Measures of the Samples

Measure (Units)

Resting-State fMRI Sample Task-Driven fMRI Sample

t p Cohen’s dN Mean (SD) Range N Mean (SD) Range

Demographic Age (years) 190 65.05 (8.39) 46–88 72 64.1 (7.56) 49–79 0.84 .40 0.12

Sex (n; female/male) 190 116 / 74 NA 72 47 / 25 NA 0.40a .53a 0.04b

Education (years) 178 16.1 (2.42) 12–20 72 16.03 (3.07) 12–20 0.20 .84 0.03

Race (n; White/Black/Asian) 175 167 / 1 / 1 NA 71 69 / 1 / 1 NA 0.81a .67a 0.05b

Mean head motion (mm; FD) 190 0.13 (0.03) 0.06–0.2 72 0.14 (0.03) 0.07–0.2 −2.28 .02 −0.32

Psychometric MMSE (score) 156 29.29 (1.01) 26–30 63 29.43 (0.78) 27–30 −0.94 .35 −0.14

FCSR: Free Recall (score) 185 32.19 (5.12) 18–46 71 33 (5.93) 21–48 −1.09 .28 −0.15

WMS Associate Learning (score) 97 14.65 (3.79) 0–21 17 15.74 (3.58) 7–21 −1.09 .28 −0.29

WMS-R Logical Memory
Delayed Recall (score)

97 12.92 (3.95) 5–21 18 13.61 (4.45) 6–21 −0.67 .50 −0.17

WMS-III Logical Memory
Delayed Recall (score)

69 26.94 (7.29) 4–42 45 27.49 (5.4) 12–38 −0.43 .67 −0.08

Animal Naming (score) 185 22.72 (5.75) 9–41 71 23.44 (5.83) 12–39 −0.88 .38 −0.12

Trail Making A (score) 185 29.11 (10.64) 12–75 71 27.2 (9.6) 13–57 1.32 .19 0.19

Trail Making B (score) 184 71.51 (29.82) 28–210 71 60.61 (19.98) 28–139 2.84 .005 0.40

Cardiovascular Pulse (BPM) 190 68.02 (10.38) 41–108 72 67.67 (10.25) 44–96 0.25 .81 0.03

Systolic blood pressure (mmHg) 190 124.55 (15.66) 88–168 72 122.94 (14.26) 88–160 0.76 .45 0.11

BMI (kg/m2) 190 26.43 (4.43) 17–41 72 26.42 (4.59) 17–40 0.02 .99 0.002

WMH volume (mm3) 190 10760.25 (11530.16) 48–61263 72 7848.07 (8312.75) 651–37890 1.96 .05 0.27

MMSE = Mini-Mental State Examination; BPM = beats per minute. Bold values reflect statistically significant group differences.

a T and p values are from independent-samples t tests between the resting-state and task-driven samples, except for categorical variables tested by chi-square test (χ2), as noted by Footnote a.

b Effect sizes are reported as Cohen’s d, except for categorical variables reported as Cramer’s V, as noted by Footnote b.
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were approved by the Human Research Protection Office at
Washington University in St. Louis. All participants provided
informed consent before all procedures.

Psychometric Composites of Global Cognition and
Episodic Memory Tasks

Each participant completed a 2-hr battery of neuropsycho-
logical tests. To investigate relationships between BOLD
variability, episodic memory, and global cognitive func-
tion, we examined performance on a subset of tasks across
multiple cognitive domains. Measures of episodicmemory
included the Free and Cued Selective Reminding Test
(FCSR) free recall score (Grober, Buschke, Crystal, Bang,
& Dresner, 1988), the Associate Learning subtest from the
Wechsler Memory Scale (Wechsler & Stone, 1973), and
delayed recall scores from two versions of the Logical
Memory test (Wechsler Memory Scale-Revised: Wechsler,
1987;Wechsler Adult Intelligence Scale [WAIS-III], Wechsler,
1997), which differed across the ACS and HASD cohorts. An
episodicmemory composite was calculated as the average of
standardized FCSR free recall, associate learning, and logical
memory delayed recall, as this composite has beenused as
a sensitive individual difference measure (Aschenbrenner

et al., 2015). As shown in Table 2, we observed strong posi-
tive relationships between all measures in the episodicmem-
ory composite (Pearson’s rs from .48 to .75). Because of
missing data in several of the behavioral tasks, we allowed
for up to one missing value in the calculation of each cogni-
tive composite.

We also examined a global cognitive composite, which
included measures of semantic fluency (Animal Naming:
Goodglass & Kaplan, 1983), processing speed (Trail
Making A: Armitage, 1946), and executive function (Trail
Making B: Armitage, 1946) as well as FCSR free recall. The
global cognitive composite was calculated as the average of
standardized FCSR free recall, Animal Naming, and reverse-
scored Trail Making A and B and has also been used as a
sensitive individual difference measure (Aschenbrenner,
Gordon, Benzinger, Morris, & Hassenstab, 2018). As shown
in Table 2, we observed moderate relationships in the
expected directions between all measures in the global
composite (absolute rs from .15 to .57).

Attentional Control Composite Tasks

In addition to the neuropsychological test batteries, partici-
pants also completed a battery of computerized attentional

Figure 1. Histograms of critical measures used in the present analyses includingmean BOLD SD across all ROIs (A), age (B), CVHmeasures (C–G), and
cognitive composite scores (H–J). Distributions of each variable are presented separately for the resting-state (white) and task-driven (gray) samples.
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control tasks. Participants completed a Stroop color-naming
task (Spieler, Balota, & Faust, 1996; Stroop, 1935), a Simon
spatial interference task (Castel, Balota, Hutchison, Logan,
& Yap, 2007; Simon, 1969), and a consonant–vowel/odd–
even (CVOE) task-switching task (Huff, Balota, Minear,
Aschenbrenner, & Duchek, 2015).

Briefly, in the Stroop task, participants viewed 36 con-
gruent color words (“blue,” “green,” “red,” or “yellow” pre-
sented in the corresponding color), 36 incongruent color
words (the same four color words presented in a non-
matching color), and 32 neutral words (“poor,” “deep,”
“bad,” or “legal” presented in one of the four colors).
Participants were instructed to vocally name the color of
each word into a microphone. Accuracy of each trial was
coded by an experimenter as correct, incorrect, or micro-
phone error.

In the Simon task, participants viewed 40 congruent
horizontal arrows (facing left or right and appearing on
the corresponding side of the screen), 40 incongruent
arrows (appearing on the opposite side of the screen as the
direction of the arrow), and 40 neutral arrows (appearing
in the center of the screen). Participants were instructed to
manually report the direction of the arrow (left or right) by
button press.

The CVOE task consisted of two task-pure blocks and a
task-switching block. During each pure block, participants
viewed 48 letter–number pairs (e.g., “D 06”) and were in-
structed tomanually classify either the letter (consonant or
vowel) or the number (odd or even) by button press.
During the switch block, participants were cued to make

letter or number classifications in alternating runs of two
trials for each classification type, resulting in 30 switch trials
(in which participants switched from one dimension to the
other) and 30 nonswitch trials (in which participants
repeated the same response dimension).
In each task, performance was assessed using the differ-

ence score of RTs between two conditions of interest. In all
tasks, we examined only RTs from accurate trials. To limit
the influence of extreme outliers, we excluded individual
trials with RTs less than 200 msec or greater than 3 SDs
above or below the individual participant’s mean RT on
each task. The Stroop and Simon effects (difference
between incongruent and congruent trials) are established
indices of selective attention or interference, whereas the
global switch effect (difference between nonswitch trials in
CVOE switch blocks and pure block trials) is thought to
reflect the cost of maintaining multiple task sets. Hence,
we calculated an attentional control composite as the aver-
age of the standardized Stroop effect, Simon effect, and
global CVOE switch cost measures. We have used a similar
composite of estimates from these same tasks as a sensitive
individual difference marker (Aschenbrenner et al., 2015).
As shown in Table 2, we observed moderate, significant
correlations betweenmost of the attentional control differ-
ence scores (rs from .19 to .39), except for the relationship
between Simon effect and global CVOE switch cost in the
smaller task-driven fMRI sample.1

It is possible that individual differences in processing
speedmight contribute to RT differences in the attentional
composite tasks. Hence, we used a standard estimate of

Table 2. Correlations among Neuropsychological and Cognitive Test Measures in the Resting-State fMRI Sample

FCSR:
Free Recall

Associate
Learning

Logical
Memory

Animal
Naming Trails A Trails B

Stroop
Effect

Simon
Effect

Global
Switch

FCSR:
Free Recall

.75*** .72*** .22† −.32** −.16 −.28* −.06 −.28*

Associate
Learning

.53*** .63** .21 −.69*** −.51* −.4 −.14 −.54*

Logical Memory .48*** .54*** .11 −.35 −.18 −.17 −.28 −.11

Animal Naming .41*** .24** .37*** −.15 −.17 −.22 .12 −.16

Trails A −.25*** −.21** −.05 −.29*** .5*** .3* .21† .11

Trails B −.28*** −.28*** −.2** −.3*** .57*** .31* .05 .28*

Stroop effect −.26** −.23† −.24* −.09 .33*** .37*** .27* .39**

Simon effect −.17** −.12 −.08 −.18** .45*** .23*** .27** .01

Global switch −.33*** −.24** −.24** −.36*** .35*** .32*** .19* .21***

Correlations in the resting-state sample are presented in the lower triangle. Correlations in the task-driven sample are presented in the upper triangle.
Bold values reflect correlations between measures assigned to a common a priori cognitive composite.

† p < .10.

* p < .05.

** p < .01.

*** p < .001.

284 Journal of Cognitive Neuroscience Volume 33, Number 2



processing speed (performance on Trails A) as a covariate
to control for the influence of processing speed on RT
difference scores (see Wolf et al., 2014). We present rela-
tionships with attentional control before and after residua-
lizing the composite for Trails A performance to examine
whether relationships with attentional control are ob-
served after correcting for processing speed.

CVH Measures

On the basis of recent demonstrations that BOLD variability
may be sensitive to individual differences in CVH (Millar,
Petersen, et al., 2020; Tsvetanov et al., 2019), we examined
available measures of CVH, including resting pulse, systolic
blood pressure, BMI, and WMH lesion volume. WMH
volumes were assessed with a fluid-attenuated inversion
recovery sequence, after segmentation using the Lesion
Segmentation Tool (Schmidt et al., 2012) for SPM8. We
used estimates of pulse, systolic blood pressure, BMI, and
WMH as CVH covariates in the analyses where indicated
below.2

Structural, Resting-State, and Task-Driven
Scanning Protocols

MRI data were obtained using two separate Siemens Trio
3-T scanners with a standard 12-channel head coil. To
examine the possibility that behavioral relationships with
resting-state BOLD variability might be confounded by
differences in the scanners, we also tested the results with
each composite after controlling for scanner as a factor of
noninterest. The observed relationships were consistent
after controlling for the scanner. Structural and functional
scans were acquired using methods described previously
(Millar, Petersen, et al., 2020; Brier et al., 2012). Structural
scans were acquired with a sagittal T1-weighted magnetiza-
tion prepared rapid gradient echo sequence (repetition time
[TR]=2400msec, echo time [TE]=3.16msec, flip angle=8°,
field of view = 256 mm, 1-mm isotropic voxels) as well as
an oblique T2-weighted fast spin echo sequence (TR =
3200 msec, TE = 455 msec, 256 × 256 acquisition matrix,
1-mm isotropic voxels).
Resting-state functional scans were acquired with an in-

terleaved whole-brain echo-planar imaging (EPI) sequence
(TR = 2200 msec, TE = 27 msec, flip angle = 90°, field of
view = 256 mm, 4-mm isotropic voxels). Participants com-
pleted two consecutive runs of resting-state functional im-
aging (6 min, 164 volumes each), during which they were
instructed to stay awake and fixate on a visual crosshair.
As described previously (Gordon et al., 2015), task-driven

functional scans were acquired in a separate session with
an interleaved whole-brain EPI sequence (TR = 2000 msec,
TE = 25 msec, flip angle = 90°, field of view = 256 mm,
4-mm isotropic voxels). Participants completed two runs
of an animacy judgment task (10 min 6 sec, 303 volumes
each), followed by two runs of a Stroop color-naming task
(9 min 50 sec, 295 volumes each).

Briefly, during each task run, participants alternated
between five blocks of rest (30 sec each) and four blocks
of task performance (114 sec each for animacy; 110 sec
for Stroop). During rest intervals, participants fixated on
a visual crosshair. During each animacy task block, partici-
pants viewed a randomly intermixed sequence of 24 words
(12 living and 12 nonliving), which were balanced for
length, frequency, and orthographic neighborhood. On
each trial, participants were instructed to manually report
via a keypress whether the word represented a living or
nonliving thing. During each Stroop task block, partici-
pants viewed a randomly intermixed sequence of 12 con-
gruent color words (e.g., “red” in red), 12 incongruent
color words (e.g., “blue” in red), and 12 neutral words
(e.g., “deep” in red). On each trial, participants were in-
structed to manually report via a keypress whether the
word was presented in a red or blue color. In both tasks,
each word appeared for 1 sec, followed by a jittered inter-
trial interval of 1, 3, 5, or 9 sec. Participants completed prac-
tice trials of both tasks before entering the scanner.

Functional Preprocessing

Because we have demonstrated that estimates of BOLD var-
iability are influenced by differences in head motion (Millar,
Petersen, et al., 2020), we conservatively controlled for
artifact-related influences in the current data set using global
signal regression (GSR), censoring of high-motion frames,
and exclusion of individuals with high mean head motion.
Initial preprocessing for both resting-state and task-driven
fMRI data followed conventional methods, as described
previously (Millar, Ances, et al., 2020; Brier et al., 2012;
Shulman et al., 2010). Briefly, these steps included frame
alignment, debanding, rigid body transformation, bias field
correction, and mode 1000 normalization. Transformation
to an age-appropriate atlas template in 711-2B space was
performed using a composition of affine transforms con-
necting the functional volumes with the T2-weighted and
magnetization prepared rapid gradient echo images. Head
movement correction was included in a single resampling
that generated a volumetric time series in isotropic 3-mm
atlas space.

As described previously (Millar, Petersen, et al., 2020;
Fox, Zhang, Snyder, & Raichle, 2009), additional processing
was performed to allow for nuisance variable regression.
First, masks of whole brain, gray matter, white matter,
and CSF were generated from T1 images in FreeSurfer 5.3
(Fischl, 2012). Second, two indices of framewise motion
were calculated across the BOLD time series, including
FD (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012)
and derivative of root mean squared variance over voxels
(DVARS) root mean squared. Third, BOLD data were sub-
jected to a temporal band-pass filter (0.005Hz< f<0.1Hz).
Fourth, BOLD data were subjected to nuisance variable
regression, including six motion parameters, time series
from the whole brain (global signal), CSF, ventricle, and
white matter masks, as well as the derivatives of these
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signals. Task-driven fMRI data were subjected to additional
nuisance regressors of the task block design within runs
(Fair et al., 2007). Finally, BOLD data were spatially blurred
(6-mm full width at half maximum).

Preprocessed BOLD data were subjected to framewise
censoring based on motion estimates. Specifically, vol-
umes were censored if FD exceeded 0.2 mm or if DVARS
exceeded 2.5 SDs from the participant’s mean. Motion-
related differences in the number of censored frames
might confound the magnitude and/or reliability of BOLD
variability estimates. Moreover, differences in the number
of usable frames may bias BOLD variability estimates be-
tween the resting-state and task-driven scans, which were
of different lengths. Thus, we analyzed BOLD variability
during resting-state within a subset of 200 randomly se-
lected usable frames from either resting-state run for each
participant. Participants with fewer than 200 usable frames
were excluded. Similarly, we analyzed task-driven BOLD
variability within a subset of 200 randomly selected usable
task block frames for each participant (100 from animacy
task blocks, 100 from Stroop task blocks).3 Finally, we an-
alyzed BOLD variability during fixation blocks between
task blocks within a subset of 100 randomly selected us-
able frames. To control for mean differences across
blocks, we subtracted the voxelwise block means from
the time series data before concatenating task or fixation
blocks (Garrett et al., 2010). We also examined variability
estimates from each task separately (using 200 randomly
selected frames per task) but found evidence of multivar-
iate relationships between BOLD variability and head mo-
tion in both tasks even after applying GSR and framewise
censoring (R2s from SVR models’ prediction head motion
= .162, .117; ps ≤ .003; cf. Millar, Petersen, et al., 2020).4

Hence, to minimize the potential confounding influence
of motion, we focus on variability from the concatenated
task blocks including both animacy and Stroop perfor-
mance, in which the multivariate sensitivity was eliminat-
ed (R2 = .016, p= .276). BOLD variability estimates in 298
ROIs (see Calculation of BOLD Variability section) during
Stroop and animacy tasks were highly correlated (average
r = .78, range = .53–.95).

Calculation of BOLD Variability

As described previously (Millar, Petersen, et al., 2020), final
BOLD time series data were averaged across voxels within
298 ROIs from an expanded version of a previously defined
atlas (Seitzman et al., 2020; Power et al., 2011), including
two hundred forty-three 10-mm cortical spheres, twenty-
eight 8-mm subcortical spheres, and twenty-seven 8-mm
spheres in the cerebellum (see Seitzman et al., 2020, for a
figure). Importantly, each ROI was assigned to 1 of 13 net-
works, including somatomotor (SM), lateral SM (SML),
cingulo-opercular (CO), auditory (AUD), default mode
(DMN), parietalmemory (PMN), visual (VIS), frontoparietal
(FPN), salience (SAL), subcortical (SUB), ventral attention
(VAN), dorsal attention (DAN), and cerebellum (CER). In

each ROI, we calculated the SD of the BOLD signal over
the 200 selected usable resting-state frames, 200 usable
task-driven frames, or 100 fixation frames in the residualized
time series data after applying nuisance regression and fra-
mewise censoring. These SD values served as our regional
estimates of BOLD variability.5

Support Vector Regression

Support vector regression (SVR) analyses were conducted
using the e1071 package in R (Meyer et al., 2017). Briefly,
SVR is a supervised machine learning technique in which a
model is trained to identify multivariate relationships
between a set of features (i.e., resting-state or task-driven
BOLD SDs in the 298 ROIs) and a continuous label (e.g.,
composites of global cognition, episodicmemory, or atten-
tional control). We performed epsilon-insensitive SVR, as
described previously (Millar, Petersen, et al., 2020; Nielsen,
Greene, et al., 2019; Dosenbach et al., 2010). Briefly, in each
training fold, a regression line is fit in multivariate space be-
tween the feature set values and the label values. A tube of
width epsilon is defined around the regression line. Data
points outside this tube are penalized, whereas points inside
the tube are not. The penalty factor C determines the trade-
off between training error and model complexity. All SVR
analyses were performed with ε= 0.00001 and C= infinity,
based on previous reports predicting age from functional
connectivity (Nielsen, Greene, et al., 2019; Dosenbach et al.,
2010) and BOLD variability (Millar, Petersen, et al., 2020).
Importantly, the SVR model is trained on a subset of

cases (the training set), allowing for the assessment of
model prediction in an unseen set of cases (the testing
set). Specifically, we evaluated predictive accuracy using
10-fold cross-validation. For each of the 10 folds, a nonover-
lapping set of 10% of the sample served as the testing set.
The remaining 90% served as the training set. Thus, across
the 10 folds, the SVRmodel predicted a label value for each
participant. We quantified predictive accuracy as R2

between the model-predicted and true label values for
each participant. We tested the predictive accuracy of
SVR models trained on the full feature set of BOLD SD
values from all 298 ROIs. Specifically, we tested the perfor-
mance of these models to predict cognitive composites
and measures of in-scanner behavioral performance as
labels of interest. Thus, the SVR approach evaluates the
predictive sensitivity of BOLD SD for domain-specific cog-
nitive estimates in untrained observations, which has not
been assessed in previous studies of BOLD variability.

Assessment of Network Specificity of Relationships

Network specificity of relationships with BOLD SD was
assessed in two ways. First, univariate regional correlations
were calculated between the measure of interest and BOLD
SD within each of the 298 ROIs. Significance of network-
level relationships was tested using a bootstrap approach
with 10,000 samples by resampling the data set with re-
placement. In each bootstrap sample, we calculated the
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correlation with the measure of interest in each ROI and
then averaged the correlation values across ROIs within
each network. Across bootstrap samples, we then calculated
the empirical 95% confidence interval for each network-
level correlation.
Second, we assessed the multivariate predictive accuracy

of networks using feature selection. Specifically, SVR
models predicted a measure of interest from a limited fea-
ture set of regions restricted to a single network. Because
larger networks should perform better simply because of a
greater number of features, which might capture a related
signal by chance, we compared SVR performance for
network-specific feature sets to a bootstrapped distribu-
tion of 10,000 randomly selected feature sets (i.e., random
regions from any network), which were matched in the
number of features. Hence, this distribution is an appro-
priate null model to test whether signals are localized to
specific networks or instead broadly distributed through-
out the brain (Nielsen, Barch, Petersen, Schlaggar, &
Greene, 2020).

RESULTS

Comparison of Resting-State and Task-Driven
BOLD Variability Estimates

To examine BOLD variability in resting-state versus task-
driven scans, we first compared estimates of BOLD SDwith-
in each network as a function of scan type (resting-state vs.
task-driven) using a subset of 40 participants who had us-
able scans of both types collected on the same day. We
tested for main effects of scan type and network as well as
the Scan × Network interaction using a repeated-measures
analysis of variance (ANOVA). Overall, we observed a main

effect of scan type (F= 9.05, p= .005, ηp
2 = .19), such that

on average, resting-state BOLD SD (M = 1.79) was greater
than task-driven BOLD SD (M=1.61). Thismain effect was
further characterized by a significant Scan × Network in-
teraction (F = 31.60, p < .001, ηp

2 = .44). As shown in
Figure 2A, resting-state BOLD SD was significantly greater
than task-driven BOLD SD in most networks (SM, SML,
DMN, PMN, VIS, FPN, SAL, SUB, VAN, and DAN networks;
ps ≤ .021, Cohen’s ds from 0.38 to 1.38), although task-
driven BOLD SD was significantly greater in the CER net-
work ( p < .001, Cohen’s d = 1.19).

We also compared estimates of BOLD SD in each net-
work as a function of block type (fixation vs. animacy vs.
Stroop) using a subset of 71 participants who had usable
SD estimates for each block (100 concatenated usable
frames per block type). We tested the main effects and
interaction of block type and network, using a repeated-
measures ANOVA. We observed a main effect of block type
(F = 72.68, p < .001, ηp

2 = .51). Post hoc comparisons
revealed that, on average, BOLD SD during fixation (M =
1.81) was significantly greater than BOLD SD during the
animacy task (M = 1.62, t = 9.17, p < .001, Cohen’s d =
1.09) and also greater than BOLD SD during Stroop (M =
1.62, t = 11.03, p < .001, Cohen’s d = 1.31). This main
effect was also characterized by a significant Block ×
Network interaction (F = 9.31, p < .001, ηp

2 = .12). As
shown in Figure 2B, BOLD SD in each network was signif-
icantly greater during fixation than during the animacy
blocks ( ps < .001, Cohen’s ds from 0.69 to 1.40) or during
the Stroop blocks ( ps < .001, Cohen’s ds from 0.68 to
1.73). In contrast, differences in network estimates of
BOLD SD between the animacy and Stroop blocks were
smaller and in no consistent direction. Specifically, vari-
ability was significantly greater during animacy than

Figure 2. Network-level BOLD SD as a function of scan type (A; resting-state vs. task-driven) and block type within the task-driven scan (B; fixation vs.
animacy vs. Stroop). Error bars display SEM.
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Stroop in the VAN ( p = .02, Cohen’s d = 0.28), but other
networks were at most marginally different between tasks
( ps ≥ .08, Cohen’s ds from 0.04 to 0.21).

In addition, we assessed the consistency of BOLD vari-
ability estimates across scans by calculating the regional cor-
relations between resting-state and task-driven BOLD
variability within the same subset of participants. The corre-
lations between resting-state and task-driven BOLD SD esti-
mates were surprisingly low (average r= .30, range=−.19
to .80). Of course, this low correlation could be because of
low reliability of the task-driven or resting-state BOLD SD
estimates. As noted, BOLD variability estimates during
Stroop and animacy tasks were highly correlated with each
other (average r= .78, range = .53–.95). Hence, it appears
that the task-drivenBOLD SD is stable, at least between runs
within one session. In addition, as reported in an overlap-
ping subset of the current sample by Millar and colleagues
(2020), the test–retest reliabilities of the resting-state BOLD
SD estimates are quite stable, as reflected by moderate
correlations over a 3-year longitudinal follow-up (average
r = .46, range = .18–.71) and indeed were comparable to
intranetwork connectivity estimates in this same sample
(average r = .45, range = .30–.60).

Relationships with Cognitive Composite Measures

Global Cognition

As shown in Table 3, SVR models were able to successfully
predict global cognition scores from the full feature set of
resting-state BOLD SD using all 298 ROIs (R2 = .045, p =
.004). We evaluated the multivariate relationship between
global cognition and resting-state BOLD SD in terms of spe-
cific networks using network-driven feature selection. As
shown in Figure 3A, BOLD SD estimates within the DAN
(R2 = .014) and DMN (R2 = .011) were relatively successful
in predicting global cognition, compared to other networks.
This level of performance might be expected in the
DMN, because it includes a large number of individual
ROIs and may capture related signal by chance. Hence,
we tested the specificity of these network relationships
by comparing SVR performance from the DAN and DMN
to bootstrapped distributions of 10,000 randomly selected
regions of equal set size from any network. SVR perfor-
mance from the DAN did not outperform the matched
bootstrapped distribution (empirical p = .232), nor did
the DMN (empirical p = .619). Indeed, SVR performance
from all networks fell within the range expected by ran-
domly selected regions. Hence, the multivariate relation-
ship between BOLD SD and global cognition is likely
spread throughout networks with little anatomical speci-
ficity (Figure 3).

However, global cognition did not relate to BOLD SD in
the task-driven fMRI sample. As shown in Table 3, SVR
models were not able to predict global cognitive scores
from task-driven BOLD SD (R2 = .025, p = .188). Thus,
the global cognitive relationships observed during

resting-state do not replicate in estimates of task-driven
BOLD SD.6

Episodic Memory

As shown in Table 3, SVR models were not able to predict
episodic memory scores from resting-state BOLD SD (R2 =
.007, p = .279). In the task-driven fMRI sample, the slope
between true episodicmemory composite scores and values
predicted by the SVR model was significantly negative (r=
−.395, R2 = .156, p= .001; see Table 3), suggesting that the
model was not able to accurately predict episodic memory
based on estimates of task-driven BOLD SD.

Attentional Control

As shown in Table 3, SVR models were able to successfully
predict attentional control from resting-state BOLD SDusing
all 298 ROIs (R2 = .106, p < .001). We evaluated the multi-
variate relationship between the attention composite and
resting-state BOLD SD in terms of specific networks using
network-driven feature selection. As shown in Figure 3B,
BOLD SD estimates within the VIS network (R2= .060)were
relatively successful in predicting the attention composite,
compared to other networks, and marginally outperformed
a matched bootstrapped distribution (empirical p = .062).
Hence, the multivariate relationship between BOLD SD
and attentional control may be particularly strong in the
VIS network.
As noted, raw RT difference scores in the attentional

control tasks may be influenced by individual differences
in processing speed. Hence, we sought to test BOLD SD
relationships with the attentional control composite after
residualizing performance on Trails A to control for pro-
cessing speed. SVR models were marginally successful in
predicting the corrected attentional control scores from
resting-state BOLD SD (R2 = .020, p = .067; see Table 2).
Hence, after correcting for processing speed, resting-state
BOLD SD may still capture a small portion of variance in
estimates of attentional control.
Turning now to task-driven BOLD SD, we found that the

attentional control composite was again related to BOLD
SD. As shown in Table 3, SVR models were able to success-
fully predict attentional control from task-driven BOLD SD
(R2 = .135, p= .002). Again, we evaluated the multivariate
relationship between attention and task-drivenBOLD SD in
terms of specific networks using network-driven feature
selection. As shown in Figure 3C, BOLD SD estimates
within the CO network (R2 = .201) were particularly
successful in predicting attentional control, compared to
other networks, and significantly outperformed a matched
bootstrappeddistribution (empirical p= .036). SVR perfor-
mance from other networks fell within the range expected
by randomly selected regions (empirical ps≥ .222). Hence,
the multivariate relationship between task-driven BOLD
SD and attentional control may be particularly strong in
the CO network.
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As shown in Table 3, SVR models were also able to pre-
dict attentional control from task-driven BOLD SD after
correcting for processing speed in estimates residualized
for Trails A performance (R2 = .141, p = .002). Hence,
relationships with attentional control observed in the
resting-state estimates were generally consistent in task-
driven BOLD SD.

Age-related Influences on Cognitive Relationships

Although the observed behavioral relationshipswith resting-
state and task-driven BOLD variability are consistent with

previous studies (e.g., Garrett et al., 2011), it is possible that
these relationships might be sensitive to age-related vari-
ability. As noted, we and others have demonstrated that
BOLD variability is associated with age (e.g., Garrett
et al., 2010), including within a mostly overlapping sample
(see Millar, Petersen, et al., 2020). Moreover, there were
indeed significant age relationships with the global (r =
−.42, p < .001) and attentional (r = .36, p < .001) com-
posite measures. Thus, in the current sample, BOLD vari-
ability might only relate to cognition to the extent it is
sensitive to age in general. Hence, we sought to test the
observed relationships between cognitive composite

Figure 3. Performance of SVR models predicting global cognition (A), attentional control (B and C), and in-scanner incongruent Stroop ZRT (D)
across a range of feature sets (from 5 to 295). Models in A and B use resting-state BOLD SD as inputs, whereas models in C and D use task-driven
BOLD SD. Colored diamonds denote anatomical feature selection schemes, in which features included only ROIs from a specific network. Each
network-specific model was compared to 10,000 simulated models using randomly selected feature sets from any functional network. For simplicity,
only 25 of the simulated models are plotted for each feature set size (black dots). (E) Color key for network identities.
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scores and residual BOLD SD estimates during both resting-
state and task-driven runs after controlling for age as a
continuous covariate using a regression approach.

As shown in Table 3 and Figure 4 (left column), most
relationships between cognitive composites and resting-
state BOLD SD were eliminated after controlling for age.
Specifically, global cognition was not associated with
BOLD SD in any network (see Figure 4A), nor were SVR
models successful in predicting global cognition from
corrected resting-state BOLD SD estimates (R2 < .001;
see Table 3). In addition, episodic memory was not associ-
ated with resting-state BOLD SD in any network, (see
Figure 4C), nor were SVR models successful in predicting
episodic memory (R2 = .018; see Table 3).

Turning to the attentional control composite, negative
relationships with resting-state BOLD SD were eliminated
in all networks after correcting for age (see Figure 4E and
G). SVRmodels were unsuccessful in predicting attentional
control after correcting for age (R2s ≤ .002; see Table 3).

In contrast to the resting-state results, correction for age
had a much smaller influence on cognitive relationships
with task-driven BOLD SD. Estimates of task-driven BOLD
SD were largely unrelated to global cognition (Figure 4B)
and episodic memory (Figure 4D) after correcting for age
(see Table 3). However, as noted above, minimal relation-
ships were observedwith thesemeasures in the uncorrected
task-driven BOLD SD estimates, and thus, no relationships
should be expected in the age-corrected estimates.

Most importantly, as shown in Figure 4F and H, we
continued to observe marginal to significant negative rela-
tionships between the attentional control composite and

task-driven BOLD SD after correcting for age. Specifically,
greater task-driven BOLD SD estimates in several networks
(including CO, DMN, PMN, VIS, FPN, SAL, VAN, DAN, and
CER) were associated with reduced attentional control
costs. In addition, these relationships were consistent
even after further correcting for individual differences in
processing speed. Furthermore, SVR prediction was still
successful for the attention composite both before (R2 =
.141, p = .002) and after (R2 = .139, p = .002) correcting
for processing speed (see Table 3). Hence, although cogni-
tive relationships with resting-state BOLD variability may be
influenced by age-related variability, relationships with task-
driven variability remain after correcting for age and, thus,
may be sensitive to distinct sources of variance.

Cardiovascular Influences on
Cognitive Relationships

One potential mechanism through which age may influ-
ence cognitive relationships with BOLD variability is
CVH. Recent studies have demonstrated that age relation-
ships with BOLD variability are attenuated after correcting
for individual differences inCVHand/or cerebral blood flow
(Millar, Petersen, 2020; Tsvetanov et al., 2019). However, it is
unclear whether cardiovascular mechanisms might contrib-
ute to domain-specific cognitive relationships with BOLD
variability. Hence, we sought to test the observed relation-
ships between cognitive composite scores and residual
BOLD SD estimates after controlling for cardiovascular
factors. As noted above, we used individual estimates of

Table 3. Performance of SVR Models (R2 Statistic) Predicting Cognitive Composite Measures

Data Set Cognitive Composite
SVR R2

(Uncorrected)
SVR R2

(Partial Age)
SVR R2

(Partial CVH)

Resting-state fMRI Global .045** <.001 .005

Episodic memory .007 .018 .021

Attentional control .106*** .002 .007

Attentional control
(corrected for Trails A)

.020† <.001 <.001

Task-driven fMRI Global .025 .024 .002

Episodic memory .156 .133 .178

Attentional control .135** .141** .062*

Attentional control
(corrected for Trails A)

.141** .139** .093*

Performance is presented for uncorrected models, as well as after statistically controlling for age and CVH variables as covariates in BOLD SD esti-
mates. Italics denote negative slopes between true and predicted values.

† p < .10.

* p < .05.

** p < .01.

*** p < .001.
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Figure 4. Boxplots of the distribution of bootstrapped distributions of network average Pearson correlations between BOLD SD and global cognition
(A and B), episodic memory (C and D), attentional control (E and F), and attentional control corrected for Trails A (G and H) after controlling for age.
Relationships are shown for both resting-state (left column; A, C, E, and G) and task-driven (right column; B, D, F, and H) fMRI sessions. Distributions
in which the 95% confidence interval (red lines) excludes 0 (dotted black line) reflect significant network-level relationships.
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pulse, systolic blood pressure, BMI, and WMH as covar-
iates to control for individual differences in CVH.

As shown in Figure 5 (left column) and Table 3, most
relationships between cognitive composites and resting-
state BOLD SD were eliminated after controlling for CVH
measures, similar to the effect of controlling for age.
Specifically, global cognition was not associated with
BOLD SD in any network (see Figure 5A), nor were SVR
models successful in predicting global cognition from
corrected resting-state BOLD SD estimates (R2 = .005;
see Table 3), consistent with a previous report from a
mostly overlapping sample (Millar, Petersen, et al., 2020).
In addition, episodic memory was not associated with
resting-state BOLD SD in any network after controlling for
CVH (see Figure 5C and D), nor were SVR models success-
ful in predicting episodic memory (R2 = .021; see Table 3).

Turning to the attentional control composite, negative
relationships with resting-state BOLD SD were eliminated
in all networks after correcting for CVH (see Figure 5E
and G). Furthermore, SVR models were unsuccessful in
predicting the attention composite after correcting for
CVH (R2s ≤ .007; see Table 3).

Similar to the age corrections, however, correction for
CVH had a much smaller influence on cognitive relation-
ships with task-driven BOLD SD. Estimates of task-driven
BOLD SD were largely unrelated to global cognition
(Figure 5B) and episodic memory (Figure 5D) after cor-
recting for CVH (see Table 3). However, as noted above,
minimal relationships were observed with these measures
in the uncorrected task-driven BOLD SD estimates, and thus,
no relationships should be expected in the cardiovascular-
corrected estimates.

Most importantly, as shown in Figure 5F andH,marginal
to significant negative relationships between the attention-
al control composite and task-driven BOLD SD were again
consistently observed in similar networks after correcting
for CVH. Specifically, greater task-driven BOLD SD esti-
mates in CO, DMN, PMN, VIS, FPN, SAL, DAN, and CER
networks were associated with reduced attentional control
costs. Again, these relationships were also consistent after
controlling for Trails A performance. Furthermore, SVR pre-
diction of the attention composite was consistently success-
ful, although somewhat reduced, after correcting for CVH
both before (R2 = .062, p = .041) and after (R2 = .093,
p = .012) additionally correcting for processing speed
(see Table 3). Hence, although cognitive relationships with
resting-state BOLD variability may be influenced by CVH,
attentional control relationships with task-driven variability
remain after correcting for these measures and, thus, may
be sensitive to distinct sources of variance.

Relationships with In-scanner Task Performance

Moving beyond the cognitive composite estimates, which
were collected in a separate session from the resting-state
and task-driven fMRI sessions, we also evaluated whether
BOLD SD was sensitive to behavioral performance in tasks

completed within the fMRI scanner. Because the atten-
tional control composite (which notably included a differ-
ent Stroop task) was particularly related to BOLD SD
during both resting-state and task-driven blocks, we fo-
cused on relationships with Stroop performance in the
task-driven fMRI session. Although the composite mea-
sures operationalized attentional control using difference
score costs in RT, as noted, these estimates are less reliable
than simpler point estimates (Lord, 1956). The composite
score approach we used might successfully compensate
for the low reliability of difference score estimates when
multiple attentional control tasks are available, but this
approach is limited in the case of in-scanner task perfor-
mance, because participants only completed a single
Stroop task and an animacy judgment task. Hence, to
improve the reliability of our in-scanner behavioral esti-
mate, we focused on the average standardized RT (ZRT)
of incongruent Stroop trials only. By standardizing incon-
gruent RT in SD units above or below a participant’s overall
mean RT, this measure also corrects for individual differ-
ences in overall processing speed (Faust, Balota, Spieler,
& Ferraro, 1999).
Indeed, as shown in Figure 6A, we observed negative

relationships such that greater task-driven BOLD SD was
associated with less relative slowing on incongruent Stroop
trials (i.e., faster Stroop incongruent ZRT). Specifically,
marginal negative relationships were observed in SM, VIS,
and DAN networks. These relationships in the VIS and
DAN networks are consistent with the networks in which
task-driven BOLD SD was found to relate to attentional
composite estimates. Furthermore, as shown in Figure 6B,
SVR models were marginally successful in predicting incon-
gruent Stroop ZRT from task-driven BOLD SD (R2 = .051,
p = .057).
Again, we evaluated the multivariate relationship be-

tween incongruent Stroop ZRT and task-driven BOLD SD
in terms of specific networks using network-driven feature
selection. As shown in Figure 3D, BOLD SD estimates
within the VIS network (R2 = .172) were particularly
successful in predicting incongruent ZRT, compared to
other networks, and significantly outperformed a matched
bootstrappeddistribution (empirical p= .014). SVR perfor-
mance from other networks fell within the range expected
by randomly selected regions (empirical ps≥ .251). Hence,
the multivariate relationship between task-driven BOLD
SD and incongruent Stroop ZRT might be particularly
strong in the VIS network but is otherwise widely distrib-
uted throughout networks.7

Importantly, the correlations with incongruent Stroop
ZRT also remain after correction for age or CVH. As shown
in Figure 6C and E, marginal negative relationships with
Stroop performance were observed in consistent networks
after controlling for age and CVH. Furthermore, SVR
models weremarginally successful in predicting incongruent
Stroop ZRT after correcting for age (R2 = .052, p = .054),
although they were unsuccessful after controlling for CVH
(R2 = .019, p = .246).
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Figure 5. Boxplots of the distribution and 95% confidence interval (red lines) of bootstrapped distributions of network average Pearson correlations between
BOLD SD and global cognition (A and B), episodic memory (C and D), attentional control (E and F), and attentional control corrected for Trails A (G and H)
after controlling for CVHmeasures. Relationships are shown for both resting-state (left column; A, C, E, and G) and task-driven (right column; B, D, F, and H)
fMRI sessions. Distributions in which the 95% confidence interval (red lines) excludes 0 (dotted black line) reflect significant network-level relationships.
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Finally, one possible interpretation of task-driven
BOLD SD is that these estimates might largely capture
task event-related modulations in the BOLD signal
evoked by the task stimuli and performance. Thus, it is
unclear whether task-driven BOLD SD might capture dis-
tinct fluctuations that are not captured in a traditional
contrast comparison or event-related model of task

activation. To examine this possibility, we tested the rela-
tionships between incongruent Stroop ZRT and task-
driven BOLD variability after regressing the task event
model from the BOLD time series data. Specifically, we
included timing parameters for the event-related design
of each trial type as nuisance regressors during BOLD
preprocessing.

Figure 6. Relationships between task-driven BOLD SD and in-scanner incongruent (Inc.) Stroop ZRT. Boxplots (left column; A, C, and E) display the
distribution and empirical 95% confidence interval (red lines) of bootstrapped distributions of network average Pearson correlations. Scatterplots
(right column; B, D, and F) display in-scanner behavioral measures predicted by SVR model as a function of true score. Relationships are shown for
uncorrected BOLD SD (A and B), as well as after controlling for age (C and D) and CVH estimates’ composite (E and F).
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As shown in Figure 7A, negative relationships between
incongruent Stroop ZRT and BOLD SD were observed
in consistent networks after controlling for the task
event model. SVR models were still able to marginally
predict Stroop performance (R2 = .047, p = .069; see
Figure 7B). Moreover, the network-level correlations and

SVR performance were largely unchanged in estimates of
task-driven BOLD SD corrected for age (see Figure 7C
and D) and CVH (see Figure 7E and F). Hence, task-
driven BOLD SD may capture task-relevant fluctuations
in the BOLD signal that are distinct from task-related
events.

Figure 7. Relationships between task-driven BOLD SD and in-scanner incongruent (Inc.) Stroop ZRT after regressing out the model of task-related
events. Boxplots (left column; A, C, and E) display the distribution and empirical 95% confidence interval (red lines) of bootstrapped distributions of
network average Pearson correlations. Scatterplots (right column; B, D, and F) display in-scanner behavioral measures predicted by SVR model as a
function of true score. Relationships are shown for uncorrected BOLD SD (A and B) as well as after controlling for age (C and D) and CVH estimates
(E and F).
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DISCUSSION

This study offers several noteworthy findings. First, we
demonstrated that BOLD variability was greater during
resting-state than during task-driven scans. Second,
resting-state BOLD variability (but not task-driven BOLD
variability) was related to better performance on a global
cognitive composite measured outside the scanner.
Third, BOLD variability estimates during both resting-state
and task-driven runs were related to composite estimates
of costs of attentional control demands. Fourth, task-driven
BOLD variability was similarly related with less attentional
control on in-scanner Stroop performance. Finally, the
attentional relationships with task-driven BOLD variability
remained after correction for age or CVH, whereas atten-
tional and global cognitive relationships with resting-state
variability did not. We now discuss each of these findings
in turn, as we focus on interpretations of BOLD variability
as a potential signal in relation to cognition, as well as how
these findings extend upon previous reports in the
literature.

Comparison of Resting-State vs. Task-Driven
BOLD Variability

We observed significant modulations in BOLD variability
estimates, such that variability was greater during resting-
state than during task-driven runs. In addition, BOLD
variability during brief fixation blocks was significantly
greater than variability during task performance. Thus,
the present results consistently suggest that variability
is elevated in off-task states during both relatively short
(30 sec) and long (360 sec) timescales. These results con-
flict with recent reports that task-driven BOLD variability
is increased in comparison to resting-state (Grady &
Garrett, 2018; Garrett, Kovacevic, et al., 2013). Rather,
the direction of the present result is more consistent with
earlier demonstrations that task-driven BOLD variability
and spontaneous activity are reduced during task perfor-
mance (He, 2011; Bianciardi et al., 2009; Fransson, 2006).
The direction of this effect might be explained by a neg-
ative interaction between spontaneous and task-evoked
activity, such that greater spontaneous activity at baseline
might be associated with reduced task activation (He, 2013).
However, this effect might also be influenced by other fac-
tors, including the type of behavioral task performed, the
timing of task-related events, and the sequential ordering
of resting-state, task-driven, and fixation blocks. Hence, addi-
tional studies should further examine the influence of task
performance on regional estimates of BOLD variability.
Furthermore, we also found that BOLD variability estimates
were highly correlated across different tasks, but correlations
were surprisingly low between task-driven and resting-state
estimates. Together, these patterns suggest that task-driven
BOLD variability estimates may be sensitive to distinct
sources of variance from resting-state estimates and that
these signals may be relatively consistent across tasks.

Behavioral Sensitivity of BOLD Variability

Global Cognition

Consistent with recent findings in a mostly overlapping
sample (Millar, Petersen, et al., 2020), performance on a
global cognitive composite of episodic memory (FSCR free
recall), semantic fluency (Animal Naming), processing speed
(Trail Making A), and executive function (Trail Making B)
was associated with resting-state BOLD variability. The
multivariate pattern of variability across networks captured
a small, but significant, portion of variance in global cogni-
tion. Importantly, however, multivariate prediction of
global cognition from individual networks did not outper-
formmatched, randomly selected regions. Hence, associa-
tions between resting-state BOLD variability and global
cognition are likely supported by a mechanism spread
diffusely across functional networks.
However, relationships with global cognition did not

replicate in a task-driven fMRI subsample. This difference
was consistent after quantifying and controlling for differ-
ences in the time interval between behavioral task batte-
ries and the resting-state and task-driven fMRI sessions
(see Footnote 6). It is possible that BOLD variability during
resting-state and task-driven runs might reflect qualita-
tively different signals. The presence of sensory input,
demands of task performance, and motor responses
likely elicit distinct sources of variance in the BOLD signal,
which could augment or suppress spontaneous fluctua-
tions observed during resting state. Under this view, the
cognitive sensitivity of a BOLD variability estimate might
change depending on the nature of the task being per-
formed, as suggested by previous demonstrations of
state-dependent modulations in BOLD variability (e.g.,
Grady & Garrett, 2018).

Episodic Memory

In comparison to measures of global cognition and atten-
tional control, we found very little support for associations
between BOLD variability and episodic memory. This re-
sult was surprising considering a prior demonstration that
resting-state BOLD variability was positively associated
with a factor estimate of similar episodicmemorymeasures
(including logical memory, free recall, and paired associate
tasks) in a similar, large sample of cognitively normal older
adults (Burzynska et al., 2015). However, it is noteworthy
that the emphasis in this prior study was on voxel-level var-
iability as opposed to network-level variability.

Attentional Control

The strongest behavioral relationships with BOLD vari-
ability were observed in measures of attentional control.
Specifically, we found that smaller RT costs on a com-
posite of attentional control tasks were associated with
greater BOLD variability during both resting-state and task-
driven runs in several sensory and association networks.
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Interestingly, some of the most consistent and robust
relationships with attentional control were observed in
the VIS network. Notably, our composite measures of
attentional control included all visually presented stimuli.
Hence, greater variability in visual areas (either during
resting-state or task-driven runs) may reflect more flexible
or efficient processing of randomly presented visual inputs
(e.g., color processing of Stroop trials). This finding is
consistent with several other associations between
resting-state or task-driven BOLD variability in visual areas
and performance on visually mediated tasks (Grady &
Garrett, 2018; Guitart-Masip et al., 2016; Burzynska et al.,
2015; Garrett et al., 2011, 2014). Together, these results
suggest that BOLD variability in visual areas is associated
with more efficient processing of visual inputs, although
it is unclear whether this relationship may be sensitive
to mechanisms related to neural population coding of
Bayesian optimal probability distributions (Ma et al.,
2006), exploration of possible activation states (Deco
et al., 2011), dynamic range of processing areas, or some
other potential mechanisms.
Interestingly, although the attentional control composite

was associated with BOLD variability in many of the same
networks during resting-state and task-driven fMRI sessions,
there were additional networks that only showed atten-
tional relationships during task-driven runs: specifically the
CO, DMN, DAN, VAN, and CER networks. Notably, many of
these networks are associated with the initiation and main-
tenance of goal-directed attentional control as well as the
detection of and orienting to salient stimuli (Dosenbach,
Fair, Cohen, Schlaggar, & Petersen, 2008; Corbetta &
Shulman, 2002). It is possible that variability in these net-
works might reflect modulation driven by control-related
signals that were not elicited during the resting state.
Under this interpretation, task-driven BOLD variability
may offer qualitatively different insights into behaviorally
relevant, network-level neural processing, compared to
resting-state variability.
After correcting for individual differences in processing

speed based on Trails A performance, relationships with
task-drivenBOLD variability estimates are highly consistent,
although relationships with resting-state BOLD variability
were clearly reduced. Specifically, the SVR prediction of
attentional control was reduced by over 80% in comparison
to the raw RT difference scores. Hence, multivariate rela-
tionships between resting-state BOLD variability and per-
formance costs on the attentional control tasks may be
sensitive in part to individual differences in processing
speed (see Faust et al., 1999; Salthouse, 1996; Myerson,
Hale, Wagstaff, Poon, & Smith, 1990). In contrast, relation-
ships between attentional control and task-driven BOLD
variability were robust to correction for processing speed.
Thus, these task-driven estimates appear to be relatively
sensitive to attentional selection processes above and
beyond overall processing speed.
Beyond the attentional composite measures, greater

task-driven BOLD variability was also associated with less

slowing on incongruent Stroop trials completed in the
scanner. These relationships were observed in similar
networks that were related to the attentional composite
estimates, including VIS and DAN networks, but with addi-
tional relationships in the SM network. As noted, we used a
ZRT estimate of performance that expresses incongruent
RT in SD units above or below the participant’s mean RT
and, thus, corrects for individual differences in processing
speed. Hence, these associations with BOLD variability
might be attributable to attentional control processes,
beyond simple processing speed.

Sources of Variance in the BOLD Signal

Critically, we found that cognitive relationships with BOLD
variability during resting state were eliminated after cor-
recting for age or CVH, but in contrast, relationships with
task-driven variability remained after correction for these
factors. This inconsistency might suggest a qualitative
distinction between the sources of variance captured by
resting-state versus task-driven BOLD variability. Specifically,
although resting-state BOLD variability indeed appears to
be a behaviorally sensitive signal, this relationship might
be limited to more general influences on cognition. For
instance, resting-state BOLD variability may only be sensi-
tive to global cognition or attentional control insofar as it is
sensitive to age or CVH rather than neural processing. This
interpretation would be consistent with recent demonstra-
tions that age differences in resting-state BOLD variability
may be sensitive, at least in part, to cardiovascular and neu-
rovascular factors (Millar, Petersen, et al., 2020; Tsvetanov
et al., 2015, 2019; but see Garrett et al., 2017). Moreover,
these findings are also in line with proposals that vascular
influences are an important factor in age-related cognitive
decline (for a review, see Abdelkarim et al., 2019; Wåhlin &
Nyberg, 2019; O’Brien et al., 2003).

In contrast, task-driven BOLD variability appears to be
sensitive to additional sources of variance in the BOLD
signal above and beyond age and CVH. Because the task-
driven fMRI session included a Stroop task and an animacy
judgment task, which both required a degree of sustained
attention, it is possible that task-driven estimates of vari-
ability might capture functional neural processing specifi-
cally relevant for the engagement and maintenance of
attentional control. Thus, estimates of BOLD variability
during attentional task performance may be particularly
sensitive to measures of attentional control both inside
and outside the scanner and, furthermore, should be
robust to individual differences in age and CVH. As noted,
this interpretation also leads to the prediction that behav-
ioral relationships with estimates of BOLD variability might
vary depending on the cognitive demands of the task
performed in the scanner, which is consistent with the
present and previous demonstrations that BOLD variability
change as a function of task demands (Grady & Garrett,
2018; Garrett et al., 2014).
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Finally, we observed that relationships between task-
driven BOLD variability and in-scanner Stroop perfor-
mance were largely consistent after regressing out the task
event model from BOLD time series data. This result is
consistent with the proposal that the BOLD variability esti-
mates capture distinct aspects of brain function beyond
traditional mean-based task activation (Zhang et al.,
2018). Furthermore, these correlations also remained after
correction for age and CVH. Hence, task-driven BOLD var-
iability, particularly in SM, VIS, and DAN networks, might
be sensitive to behaviorally relevant sources of BOLD vari-
ance above and beyond task event-related responses and
age-related or vascular factors.

Limitations and Future Directions

As noted, our results suggest that the behavioral relevance
of BOLD variability estimates might vary depending on the
nature of the task performed in the scanner. However, we
examined a limited task-driven data set, which included
only an animacy judgment task and a Stroop task. Future
studies should explore these relationships using fMRI tasks
that engage a broader range of cognitive domains. BOLD
variability during these tasks might yield different patterns
of behavioral sensitivity to measures of performance both
inside and outside the scanner.

In addition, although resting-state and task-driven fMRI
sessions were run (in most cases) on the same scanner
and were processed through a matching pipeline, these
sessions used different (but similar) functional imaging
sequence parameters. Moreover, task-driven fMRI sessions
were only run on a relatively small subset of the full resting-
state fMRI cohort. Thus, a direct comparison between the
resting-state and task-driven BOLD variability estimates
derived from these samples should be interpreted with
caution and should be further examined in matched
data sets.

In contrast to this study, many other studies of BOLD
variability have controlled for artifacts using independent
component analysis (ICA) denoising. However, compari-
sons of processing pipelines have demonstrated that ICA
is insufficient for removing motion-related artifacts in
functional connectivity estimates, unless combined with
GSR (Ciric et al., 2017). We have demonstrated that GSR
is effective in minimizing motion relationships with BOLD
SD estimates (Millar, Petersen, et al., 2020). However, no
studies have directly compared the impact of ICA and
GSR on estimates of BOLD variability (cf. Ciric et al.,
2017). Hence, it is unclear whether behavioral relationships
may be influenced by the choice of denoising procedures.

Finally, although we demonstrated that controlling for
age or CVH eliminates behavioral relationships with
resting-state BOLD variability, these analyses were limited
to cross-sectional relationships among these variables.
Thus, although the results are consistent with proposals
that vascular influences may contribute to age-related

cognitive decline (for a review, see Abdelkarim et al.,
2019; Wåhlin & Nyberg, 2019; O’Brien et al., 2003), we can-
not assume that they reflect causal contributions to cogni-
tive relationships, as they may be simply driven by
accounting for shared variance among the measures. For
instance, cross-sectionally controlling for other age-related
variables, such as bone density, might similarly reduce the
relationships. Hence, the sensitivity of these brain–behavior
relationships to broader age- and vascular-related mecha-
nisms should be further examined in longitudinal samples.

Conclusions

In summary, this study supports the proposal that BOLD
variability is a behaviorally sensitive signal. In particular,
BOLD variability throughout a wide range of functional
networks, including sensory, motor, and control networks,
appears to be sensitive to performance on established
measures of attentional control and, to some extent, global
cognitive measures as well. However, our results also
suggest important dissociations between resting-state
and task-driven BOLD variability. Specifically, behavioral
relationships with resting-state BOLD variability were not
maintained after correcting for age or estimates of CVH,
suggesting that these relationships may be sensitive to
more general mechanisms. In contrast, behavioral relation-
ships with task-driven BOLD variability remained after
correction for these factors, suggesting that variability
during task performance might be uniquely sensitive to
distinct sources of variance above and beyond age and/or
CVH. Of course, we can only draw limited interpretations
regarding the contributions of age andCVH given the cross-
sectional design (Lindenberger, von Oertzen, Ghisletta, &
Hertzog, 2011), but future longitudinal designs might test
these contributions more formally.
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Notes

1. Although the correlations among attentional control esti-
mates were relatively low compared to the global and episodic
memory measures, this pattern is unsurprising because the at-
tentional control tasks are based on difference scores, which
are less reliable than point estimates (Lord, 1956). Thus, there
should be a lower limit of expected correlations among the at-
tentional control estimates than among the global or episodic
memory measures, which were based on point estimates.
2. Visual examination of the CVHmeasures revealed that WMH
estimates were highly skewed (see Figure 1C), and thus, cases in
the tail of the distribution may disproportionately influence
results when usingWMH as a covariate. Thus, in addition to using
the raw WMH volumes, we repeated the analyses using log-
transformed WMH (Figure 1D) along with the other CVH covari-
ates. Associations between BOLD variability and the cognitive
composites were consistent for both the raw and log-transformed
approaches (data not shown).
3. There were very strong correlations between estimates of
BOLD SD derived from the complete usable time series and ran-
domly selected frames (resting-state rs ≥ .989, task-driven rs ≥
.952) and between different random samples of frames (resting-
state rs ≥ .978, task-driven rs ≥ .911). Thus, these randomly
sampled frames are representative of variability present in the full
time series.
4. The increased sensitivity of the task-driven variability esti-
mates to head motion might be attributable to the ordering of
the functional scans. Specifically, inmost cases when resting-state
and task-driven scans were performed in the same session, the
resting-state scan preceded the task-driven scan. Thus, motion
and its related artifacts might be more prominent in the task-
driven scans because of greater participant fatigue.
5. By averaging the BOLD time series across voxels within each
ROI, it is possible that variability in voxels that are out of phasewill
cancel each other out. Thus, in addition to the mean-based ROI
approach, we also estimated variability in a concatenated time
series of each individual voxel within the given ROIs. Regional
variability estimates of the concatenated voxelwise ROI time
series were very strongly correlated with variability estimates of
the mean ROI time series for both resting-state (mean r = .979,
range = .940–.996) and task-driven (mean r = .949, range =
.874–.990) estimates. Hence, variability captured in the averaged
ROI time series is largely representative of variability in the indi-
vidual voxels.
6. One possible reason for the inconsistency between the
resting-state and task-driven relationships is a difference in the
time intervals between the global cognitive composite measures
and the separate fMRI sessions. Indeed, the interval between the
psychometric battery and the fMRI session was greater for the
task session than it was for the resting-state session (t = 2.234,
p= .026). Thus, the larger interval might introduce greater mea-
surement error in any relationships between behavior and BOLD
variability. Hence, for all cognitive composites, we additionally
corrected for the signed interval between behavioral and fMRI
sessions, which was standardized across resting-state and
task-driven sessions, as a regressor of noninterest. All reliable be-
havioral relationships with resting-state and task-driven BOLD
variability were consistent after controlling for the time interval.

7. Because we examined cognitive relationships with BOLD
variability at the level of functional networks, it is possible that
our results might be influenced by the set of ROIs and network
assignment scheme. Thus, we additionally analyzed relationships
with variability using an independent set of ROIs and network
assignments (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius,
2012). These results suggested that (i) correlations with cognitive
measures were observed in corresponding networks between
the two parcellations; (ii) SVR models identified consistent multi-
variate relationships with cognitive measures after controlling for
age and CVH; and (iii) although there were some subtle differ-
ences in the multivariate network-level relationships identified
using the two parcellation schemes, there was overall agreement
that BOLD SD estimates in visual and visuospatial networks were
particularly sensitive to attentional control estimates (data not
shown). Hence, our primary conclusions from these analyses
are supported by results using two independent network assign-
ment schemes.
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