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1
Introduction

“Finance is defined as the management of money and includes activities such as
investing, borrowing, lending, budgeting, saving, and forecasting.” (CFI, 2020)
Financial modelling is all about capturing financial data patterns and utilizing the
knowledge for financial benefits. By now, there is a consensus on a set of em-
pirical stylized facts about financial time series (see, for example, Pagan, 1996;
Shephard, 1996; Cont, 2001; Gourieroux and Jasiak, 2001). For examples, it
is well known that financial return time series exhibit unconditional and condi-
tional heavy tails, volatility clustering and time-varying cross-correlation which
will be discussed in Chapter 2, 3 and 4 respectively and some practical eco-
nomic/financial problems are addressed therein correspondingly.

Quantile regression is the major econometric tool that we work on across this dis-
sertation as it has been gradually emerging as a unified statistical methodology
for estimating models of conditional quantile functions. Classical least-squares
regressions are widely used for estimating models of conditional mean functions
which is the exclusive focus on response variables by least-squares regressions.
By complementing this exclusive focus of classical least-squares regressions,
quantile regressions offer a systematic way for examining how covariates influ-
ence statistical characteristics, such as the location, the scale or the shape, of the
entire response distribution so as to reveal information which, for instance, can
distinguish model performances, see Chapter 2. A brief introduction on quantile
regression is given below.
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Chapter 1

1.1 Quantile Regression

We know by name that quantile regression is to estimate a quantile of a random
variable (say X) or quantiles of random variable(s). The definition of the τ-th
(0 < τ < 1) quantile of random variable X is defined as follows:

Definition 1 (Quantile).
Suppose random variable X on a probability space (Ω,F ,P) is characterized
by a (right-continuous) distribution function denoted by F(·), i.e.,

F(x) = P{X ≤ x}.

For any 0 < τ < 1, the τ-th quantile of X is given by

F−1(τ) = inf{x : F(x)≥ τ}. (1.1)

Suppose we have n > 0 observations on X and would like to estimate the τ-
th quantile of X as a constant value. Denote the sample of these observations
as {xi}n

i=1. We can apply a simple quantile regression to estimate F−1(τ) by
minimizing

n

∑
i=1

ρτ(xi−u), (1.2)

where ρτ(u) := u(τ − 1{u<0}) is called check function in quantile
regressions (Koenker, 2005), and the indicator function 1{A } on a set A or a
logical statement A equals 1 if A is non-empty or true, otherwise 1{A } = 0.
So the quantile regression estimator of the τ-th quantile of X denoted by û is
given by

û := argmin
u∈R

n

∑
i=1

ρτ(xi−u). (1.3)

Quantile regression is a numerically efficient tool when particular quantiles of
random variables are of interest. For instance, value-at-risk (VaR) is a standard
risk measure for market risk management. The VaR of a company’s return vari-
able X at α ∈ (0,1) level is defined as

VaRα =−F−1(α), (1.4)

where F−1(α) is the α-th quantile of the return variable X , and we usually take
α = 5% or α = 1% . VaRα can be seen as the maximum possible loss on a
fixed asset over a fixed time horizon within confidence level (1−α). VaR is
widely employed in the financial industry for both internal control and regula-
tory reporting. Among many popular approaches for VaR estimation, quantile
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Section 1.2

regressions stand out for the advantages in semi-parametric specification and nu-
merical efficiency. The quantile regression family working for this measure has
been extended from static quantile regression models (QR, see Koenker and Bas-
sett Jr, 1978) to quantile autoregression models (QAR, see Koenker and Xiao,
2006), to conditional autoregressive value-at-risk models (CAViaR, see Engle
and Manganelli, 2004), to multivariate multi-quantile CAViaR models (MVMQ-
CAViaR, see White et al., 2015). In Chapter 3, we investigate performances of
CAViaR models from estimation to inference testing, and aim to address any
practical problems in CAViaR applications. Chapter 4 are based on MVMQ-
CAViaR models to measure systemic risks of big financial institutions.

1.2 Outline of This Dissertation

The remainder of this dissertation is structured as follows:

In Chapter 2, we introduce mixed causal and noncausal models and our research
background. We propose quantile autoregressions in the time reverse version
called quantile noncausal autoregressions (QNCAR) along with a generalized
asymptotic theorem in a stable law for both QCAR and QNCAR. A common
issue in the model selection through SRAR comparison is brought out. The use
of the aggregate SRAR over all quantiles as a new model selection criterion is
then proposed with the shape of SRAR curves being analysed. Furthermore,
we illustrate our analysis using hyperinflation episodes of four Latin American
countries.

In Chapter 3, conditions for CAViaR data generating processes (DGPs) to be
non-explosive are derived. We investigate the size performance of Wald tests for
CAViaR models and find large size distortions by the usual estimation strategy.
So we develop up a method called adaptive random bandwidth. An empirical
study is performed on stock returns.

In Chapter 4, we introduce the generic MVMQ-CAViaR model specification
first and propose to generalize it to the vector autoregressive model of VaR and
CoVaR. We also prove the estimation consistency and asymptotic normality in
this generalized model regression. We call this generalized model as systemic
MVMQ-CAViaR model. It follows that some inference tests are given in order
to infer the significance of contemporaneous terms in the CoVaR specification.
We illustrate on applying CoVaR returned by our generalized model to measure
the systemic risk of financial institutions. We construct quantile impulse re-
sponse functions in correspondence to our model and apply the local projection
with use of expansion of estimated terms for QIRF estimation. Some results of

3



Chapter 1

Monte Carlo simulations regarding systemic MVMQ-CAViaR models are pre-
sented. An empirical application is performed on big banks with the market
index S&P500.

In Chapter 5, we conclude this dissertation by providing a short summary of the
research results presented in this dissertation and an outlook of future research
based on my presented work.

4



2
Selecting between Causal and Noncausal

Models with Quantile Autoregressions

This chapter is based on the article ‘Selecting between causal and noncausal
models with quantile autoregressions’ by Hecq and Sun (2020), Studies in Non-
linear Dynamics & Econometrics, 1 (ahead-of-print).
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Chapter 2

Abstract
In Chapter 2, we propose a model selection criterion to detect purely causal from
purely noncausal models in the framework of quantile autoregressions (QAR).
We also derive asymptotic properties for the i.i.d. case with regularly varying
distributed innovations in QAR. This new modelling perspective is appealing for
investigating the presence of bubbles in economic and financial time series, and
is an alternative to approximate maximum likelihood methods. We illustrate our
analysis using hyperinflation episodes in Latin American countries.

6



Section 2.1

2.1 Motivation

Mixed causal and noncausal time series models have been recently used in or-
der (i) to obtain a stationary solution to explosive autoregressive processes, (ii)
to improve forecast accuracy, (iii) to model expectation mechanisms implied by
economic theory, (iv) to interpret non-fundamental shocks resulting from the
asymmetric information between economic agents and econometricians, (v) to
generate non-linear features from simple linear models with non-Gaussian dis-
turbances, (vi) to test for time reversibility. When the distribution of innovations
is known, a non-Gaussian likelihood approach can be used to discriminate be-
tween lag and lead polynomials of the dependent variable. For instance, the R
package MARX developed by Hecq, Lieb and Telg (2017) estimates univariate
mixed models under the assumption of a Student’s t−distribution with v de-
grees of freedom (see also Lanne and Saikkonen, 2011, 2013) as well as the
Cauchy distribution as a special case of the Student’s t when v = 1. Gouriéroux
and Zakoian (2016) privilege the latter distribution to derive analytical results.
Gouriéroux and Zakoian (2015), Fries and Zakoian (2017) provide an additional
flexibility to involve some skewness by using the family of alpha-stable distri-
butions. However, all those aforementioned results require the estimation of a
parametric distributional form. In this article we take another route.

The objective of this chapter is to select between causal and noncausal models
without using parametric distributional assumptions. To achieve that, we adopt a
quantile regression (QR) framework and apply quantile autoregressions (QCAR
hereafter) (Koenker and Xiao, 2006) on candidate models. Although we obvi-
ously also require non-Gaussian innovations in time series, we do not make any
parametric distributional assumption about the innovations. By using quantile
regressions, we consider a statistic called the sum of rescaled absolute residuals
(SRAR hereafter) to measure model performances and reveal properties of time
series. Remarkably we find that SRAR cannot always favour a model uniformly
along quantiles. This issue is common for time series of asymmetric distributed
innovations, which causes confusion in model selection and calls for a robust
statistic to meet the goal. Considering that, we propose to aggregate the SRAR
information over quantiles. It is worth mentioning that when coefficients are
constant in the underlying model with a symmetrically i.i.d. error term, the ag-
gregate SRAR criterion is equivalently to select between forward and backward
conditional mean models (termed by Gourieroux and Zakoian (2017)). However,
the aggregate SRAR is a measure based on the whole dynamics of the underly-
ing process, which is not dominated by the conditional mean information any
more. This characteristic of the aggregate SRAR criterion indeed makes it ro-
bust in model selection even for some general situations such as with asymmet-
ric distributed innovations. Another remark on this chapter is that our method
is restricted to the model framework of purely causal or noncausal autoregres-

7



Chapter 2

sions without other explanatory variables, thereby this method can be used to
questions like asset pricing of exchange rate where current exchange rate is as-
sociated with future exchange rates. However, it cannot be used to questions like
the Taylor (1993) rule which associates the dynamics of the nominal interest rate
with dynamics of some endogenous variables (eg., inflation).

The rest of this chapter is constructed as follows. Section 2.2 introduces mixed
causal and noncausal models and our research background. In Section 2.3, we
propose quantile autoregressions in the time reverse version called quantile non-
causal autoregressions (QNCAR) along with a generalized asymptotic theorem
in a stable law for both QCAR and QNCAR. Section 2.4 brings out a common
issue in the model selection through SRAR comparison. The use of the aggregate
SRAR over all quantiles as a new model selection criterion is then proposed with
the shape of SRAR curves being analysed. Furthermore, we illustrate our analy-
sis using hyperinflation episodes of four Latin American countries in Section 2.6.
Section 2.7 concludes this chapter.

2.2 Causal and Noncausal Time Series Models

Brockwell and Davis introduce in their texbooks (1991, 2002) a univariate non-
causal specification as a way to rewrite an autoregressive process with explosive
roots into a process in reverse time with roots outside the unit circle. This non-
causal process possesses a stable forward looking solution whereas the explosive
autoregressive process in direct time does not. This approach can be generalized
to allow for both lead and lag polynomials. This is the so called mixed causal-
noncausal univariate autoregressive process for yt that we denote MAR(r,s)

π(L)φ(L−1)yt = εt , (2.1)

where π(L) = 1− π1L− ...− πrLr, φ(L−1) = 1− φ1L−1− ...− φsL−s. L is the
usual backshift operator that creates lags when raised to positive powers and
leads when raised to negative powers, i.e., L jyt = yt− j and L− jyt = yt+ j. The
roots of both polynomials are assumed to lie strictly outside the unit circle, that
is π(z) = 0 and φ(z) = 0 for |z|> 1 and therefore

yt = π(L)−1
φ(L−1)−1

εt =
∞

∑
i=−∞

aiεt−i (2.2)

has an infinite two sided moving average representation. We also have that
E(|εt |δ ) < ∞ for δ > 01 and the Laurent expansion parameters are such that

1The errors do not necessarily have finite second order moments. For δ ≥ 2 the second order
moment exists, for δ ∈ [1,2) the errors have infinite variance but finite first order moment, for
δ ∈ (0,1) the errors do not have finite order moments.

8



Section 2.2

∞

∑
i=−∞

|ai|δ < ∞. The representation (2.2) is sometimes clearer than (2.1) to moti-

vate the terminology ”causal/noncausal”. Indeed those terms refer to as the fact

that yt depends on a causal (resp. noncausal) component
∞

∑
i=0

aiεt−i (resp. non-

causal
−1
∑

i=−∞

aiεt−i). With this in mind, it is obvious that an autoregressive process

with explosive roots will be defined as noncausal.

Note that in (2.1), the process yt is a purely causal MAR(r,0), also known as the
conventional causal AR(r) process, when φ1 = ...= φs = 0,

π(L)yt = εt , (2.3)

while the process is a purely noncausal MAR(0,s)

φ(L−1)yt = εt , (2.4)

when π1 = ...= πr = 0.

A crucial point of this literature is that innovation terms εt must be i.i.d. non-
Gaussian to ensure the identifiability of a causal from a noncausal specification
(Breidt, Davis, Lii and Rosenblatt, 1991). The departure from Gaussianity is not
as such an ineptitude as a large part of macroeconomic and financial time series
display nonlinear and non-normal features.

We have already talked in Section 2.1 about the reasons for looking at mod-
els with a lead component. Our main motivation in this chapter lies in the fact
that MAR(r,s) models with non-Gaussian disturbances are able to replicate non-
linear features (e.g., bubbles, asymmetric cycles) that previously were usually
obtained by highly nonlinear models. As an example, we simulate in Figure 2.1
an MAR(1,1) of (1− 0.8L)(1− 0.6L−1)yt = εt with εt

d∼ t(3) for 200 observa-
tions.2 One can observe asymmetric cycles and multiple bubbles.3

Once a distribution or a group of distributions is chosen, the parameters in
π(L)φ(L−1) can be estimated. Assuming for instance a non-standardized
t−distribution for the innovation process, the parameters of mixed
causal-noncausal autoregressive models of the form (2.1) can be consistently
estimated by the approximate maximum likelihood (AML) method. Let
(ε1, ...,εT ) be a sequence of i.i.d. zero mean t−distributed random variables,

2We use the package MARX develop in R by Hecq, Lieb and Telg (2017).
3MAR(r,s) models can be generated in two steps (see Gourieroux and Jasiak, 2016; Hecq, Lieb

and Telg, 2016). We propose in the Appendix an alternative method based on matrix represen-
tation that is very compact in code writing and intuitive in understanding.

9



Chapter 2

Figure 2.1: Simulation of a MAR(1,1) model, T=200

then its joint probability density function can be characterized as

fε(ε1, ...,εT |σ ,ν) =
T

∏
t=1

Γ(ν+1
2 )

Γ(ν

2 )
√

πνσ

(
1+

1
ν

(
εt

σ

)2
)− ν+1

2

,

where Γ(·) denotes the gamma function. The corresponding (approximate) log-
likelihood function conditional on the observed data yyy = (y1, ...,yT ) can be for-
mulated as

ly(φφφ ,ϕϕϕ,λλλ ,α|yyy) = (T − p)
[
ln(Γ((ν +1)/2))− ln(

√
νπ)− ln(Γ(ν/2))− ln(σ)

]
− (ν +1)/2

T−s

∑
t=r+1

ln(1+((π(L)φ(L−1)ytα)/σ)2/ν),

(2.5)
where p = r + s and εt = π(L)φ(L−1)yt −α is replaced by a nonlinear func-
tion of the parameters when expanding the product of polynomials. The distri-
butional parameters are collected in λλλ = [σ ,ν ]′, with σ representing the scale
parameter and ν the degrees of freedom. α denotes an intercept that can be in-
troduced in model (2.1). Thus, the AML estimator corresponds to the solution
θ̂θθ ML = argmaxθθθ∈Θ ly(θθθ |yyy), with θθθ = [φφφ ′,ϕϕϕ ′,λλλ ′]′ and Θ is a permissible param-
eter space containing the true value of θθθ , say θθθ 0, as an interior point. Since an
analytical solution of the score function is not directly available, gradient based
numerical procedures can be used to find θ̂θθ ML. If ν > 2, and hence E(|εt |2)< ∞,
the AML estimator is

√
T -consistent and asymptotically normal. Lanne and

Saikonen (2011) also show that a consistent estimator of the limiting covari-
ance matrix is obtained from the standardized Hessian of the log-likelihood. For
the estimation of the parameters and the standard innovations as well as for the
selection of mixed causal-noncausal models we can also follow the procedure

10



Section 2.3

proposed by Hecq, Lieb and Telg (2016).

However, the AML estimation is based on a parametric form of the innovation
term in (2.1), which makes this method not flexible enough to adapt uncommon
distributions as complex in reality. To be more practical and get rid of strong dis-
tribution assumptions on innovations, in next section we adopt quantile regres-
sion methods with some properties discussed there. This chapter only focuses on
purely causal and noncausal models.

2.3 QCAR & QNCAR
Koenker and Xiao (2006) have introduced a quantile autoregressive model of
order p denoted as QAR(p) which is formulated as the following form:

yt = θ0(ut)+θ1(ut)yt−1 + ...+θp(ut)yt−p, t = p+1, . . . ,T, (2.6)

where ut is a sequence of i.i.d. standard uniform random variables. In order
to emphasize the causal characteristic of this kind of autoregressive models, we
refer to (2.6) as QCAR(p) hereafter. Provided that the right-hand side of (2.6)
is monotone increasing in ut , the τ−th conditional quantile function of yt can be
written as

Qyt (τ|yt−1, ...yt−p) = θ0(τ)+θ1(τ)yt−1 + ...+θp(τ)yt−p. (2.7)

If an observed time series {yt}T
t=1 can be written into a QCAR(p) process, its pa-

rameters as in (2.7) can be obtained from the following minimization problem.

θ̂θθ(τ) = argmin
θθθ∈Rp+1

T

∑
t=1

ρτ(yt − xxx′tθθθ), (2.8)

where ρτ(u) := u(τ − 1{u<0}) is called check function in quantile
regressions (Koenker, 2005), and xxx′t := [1,yt−1, . . . ,yt−p], θθθ

′ := [θ0,θ1, . . . ,θt−p]
with the indicator function 1{·}. We define the sum of rescaled absolute
residuals (SRAR) for each pair of (τ,θθθ) as

SRAR(τ,θθθ) :=
T

∑
t=1

ρτ(yt − xxx′tθθθ). (2.9)

Substitute (2.9) into (2.8) and write the minimization problem (2.8) as

θ̂θθ(τ) = argmin
θθθ∈Rp+1

SRAR(τ,θθθ). (2.10)

The estimation consistency and asymptotic normality in the minimization prob-
lem (2.8) have been provided by Koenker and Xiao (2006). A modified simplex
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Chapter 2

algorithm proposed by Barrodale and Roberts (1973) can be used to solve the
minimization, and in practice parameters for each τ−th quantile can be obtained,
for instance, through the rq() function from the quantreg package in R or in
EViews.

2.3.1 QNCAR

A QNCAR(p) specification is introduced here as the noncausal counterpart of
the QCAR(p) model by reversing time, explicitly as follows:

Qyt (τ|yt+1, ...yt+p) = φ0(τ)+φ1(τ)yt+1 + ...+φp(τ)yt+p. (2.11)

Analogously to the QCAR(p), the estimation of the QNCAR(p) goes through
solving

θ̂θθ(τ) = argmin
θθθ∈Rp+1

SRAR(τ,θθθ)

with

xxx′t = [1,yt+1, . . . ,yt+p] ,

where for the simplicity of notations, we use θ̂θθ(τ) to denote the estimate in quan-
tile noncausal autoregression. Drawing on the asymptotics derived by Koenker
and Xiao (2006), we present the following theorem for QNCAR(p) based on
three assumptions which are made to ensure covariance stationarity of the time
series (by (A1) and (A2)) and the existence of quantile estimates (by (A3)).

Remark. There is an issue in the estimation consistency of QCAR(p) as re-
ported by Fan and Fan (2010). This is due to the violation on the monotonicity
requirement of the right side of (2.6) in ut but not exclusively the monotonicity
of θi(ut) in ut . So to recover an AR(p) process of coefficients θi(ut) (i = 0, . . . , p)
monotonic in ut , quantile autoregression is not a 100% match tool unless the
monotonicity requirement is met beforehand. This issue is also illustrated in
Section 2.4.1.

Theorem 2. A QNCAR(p) model can be written in the following vectorized
companion form:

x̃xxt = At x̃xxt+1 +ννν t , (2.12)

where x̃xx′t := [yt ,yt+1, . . . ,yt+p−1], xxx′t := [1, x̃xx′t ], At :=
[

φ1,t φ2,t . . . φp,t

Ip−1 000(p−1)×1

]
and ννν t :=

[
εt

000(p−1)×1

]
, satisfying the following assumptions:

12
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(A1) : {εt}n
t=1 are i.i.d. innovations with mean 0 and variance σ2 < ∞. The

distribution function of εt , denoted as F(·), has a continuous density f (·)
with f (ε)> 0 on U := {ε : 0 < F(ε)< 1}.

(A2) : The eigenvalues of E [At ⊗At ] have moduli less than one.

(A3) : Fyt |x̃xxt+1(·) := P [yt < · |yt+1,yt+2, . . . ,yt+p] has derivative fyt |x̃xxt+1(·) which
is uniformly integrable on U and non-zero with probability one.

Then,
ΣΣΣ
− 1

2
√

T
(

θ̂θθ(τ)−φφφ(τ)
)

d∼ Bp+1(τ), (2.13)

where ΣΣΣ :=ΣΣΣ
−1
1 ΣΣΣ0ΣΣΣ

−1
1 , ΣΣΣ0 :=E [xxxtxxx′t ], ΣΣΣ1 := limT−1

∑
T
t=1 fyt |x̃xxt+1

(
F−1

yt |x̃xxt+1

(
τ
))

xxxtxxx′t ,

φφφ(τ)′ :=
[
F−1(τ),φ1(τ), . . . ,φp(τ)

]
, Bp+1(τ) := N (000,τ(1− τ)Ip+1) with

sample size T and Ip+1 being the (p+1)× (p+1) identity matrix.

The above result can be further simplified into Corollary 3 by adding the follow-
ing assumption:

(A4): The coefficient matrix At in (2.12) is constant over time. (We denote A :=[
φ1 φ2 . . . φp

Ip−1 000(p−1)×1

]
for At under this assumption.)

Corollary 3. Under assumptions (A1), (A2), (A3) and (A4),

√
T f
(
F−1(

τ
))

ΣΣΣ
1
2
0

(
θ̂θθ(τ)−φφφ τ

)
d∼ Bp+1(τ), (2.14)

where φφφ τ :=
[
F−1(τ),φ1, . . . ,φp

]
.

As can be seen, QCAR(p) and QNCAR(p) generalize the classical purely causal
and purely noncausal models respectively by allowing random coefficients on
lag or lead regressors over time. Corollary 3 provides additional results when
the same coefficients except the intercept are used to generate each quantile.
However, the moment requirement in (A1) is very strict for heavy tailed time
series. In order to study noncausality by QAR in heavy tailed distributions, we
have to show its applicability when weakening the assumption (A1). This goal
is achieved by Theorem 4 which presents the asymptotic behaviour of the QAR
estimator for a classical purely noncausal model. Similarly, the asymptotics in a
classical purely causal model follows right after reversing time.

Theorem 4 (Asymptotics in regularly varying distributed innovations).
Under Assumption (A4), a purely noncausal AR(p) of the following form

φ(L−1)yt = εt ,

13
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where φ(L−1) = 1− φ1L−1− ...− φpL−p, also satisfies the following assump-
tions:

(A5) : {εt}n
t=1 are i.i.d. innovation variables with regularly vary tails defined

as
P(|εt |> x) = x−αL(x), (2.15)

where L(x) is slowly varying at ∞ and 0 < α < 2. There is a sequence
{aT} satisfying

T ·P{|εt |> aT x}→ x−α for all x > 0. (2.16)

with bT = E [εt I[|εt | ≤ aT ]] = 0.4 The distribution function of εt , denoted
as F(·), has continuous density f (·) with f (ε)> 0 on {ε : 0 < F(ε)< 1}
in probability one;

(A6) : The roots of the polynomial φ(z) are greater than one, such that yt can
be written into

yt =
∞

∑
j=0

c j εt+ j, (2.17)

where
∞

∑
j=0

j |c j|δ < ∞ for some δ < α,δ ≤ 1.

Then

f
(
F−1(τ)

)
·aT
√

T√
τ(1− τ)

(
θ̂θθ(τ)−φφφ τ

)
d∼[

1 000

000
(∫ 1

0 S2
α(s)ds ΩΩΩ

)−1

][
W (1),

∞

∑
j=0

c j

∫ 1

0
Sα(s)dW (s) , . . . ,

∞

∑
j=0

c j

∫ 1

0
Sα(s)dW (s)

]
(p+1)×1

.

(2.18)
where φφφ τ :=

[
F−1(τ)

aT
,φ1, . . . ,φp

]
, ΩΩΩ := [ωik] being a p× p matrix with entry

ωik :=
∞

∑
j=0

c j c j+|k−i| at the i-th row and the k-th column, {Sα(s)} being a process

of stable distributions with index α which are independent of Brownian motions
{W (s)}. In this theorem the intercept regressor in QNCAR(p) is changed to aT

such that xxx′t := [aT ,yt ,yt+1, . . . ,yt+p−1].

Proof. See Appendix 2.A.

Heuristically, next we restrict our focus on the classical models and explore con-
sequences of causality misspecification in quantile regressions.

4Without loss of generality, we assume bT to be zero in the derivation for the simplicity.
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2.3.2 Causal and noncausal models with Gaussian i.i.d.
disturbances

Suppose a causal AR(1) process {yt}T
t=1, yt = α +βyt−1 + εt , with for instance

[α,β ] = [1,0.5], i.i.d. standard normal {εt} and T = 200. Figure 2.2 displays a
simulated sample following this data generating process (DGP).

Figure 2.2: Simulation of a one-regime process with N(0,1) innovations, T = 200

The information displayed in Figure 2.3 is the SRAR(τ) of each candidate model
along quantiles, indicating their goodness of fit. The two SRAR curves almost
overlap at every quantile, which implies no discrimination between QCAR and
QNCAR in Gaussian innovations, in line with results in the OLS case. The
Gaussian distribution is indeed time reversible, weak and strict stationary. Its
first two moments characterize the whole distribution and consequently every
quantile. Note that we obtain similar results for a stationary noncausal AR(p)
process with i.i.d. Gaussian {εt}. The results are not reported to save space.

2.3.3 Causal and noncausal models with Student’s t distributed
innovations

Things become different if we depart from Gaussianity. Suppose now a causal
AR(1) process yt = α +βyt−1+εt with again [α,β ] = [1,0.5] but where {εt} are
i.i.d. Student’s t−distributed with 2 degrees of freedom (hereafter using short-
hand notation: t(2)). Figure 2.4 depicts a simulation in this AR(1) with T = 200.
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Figure 2.3: SRAR plot under an AR(1) with N(0,1) innovations, T = 200

Applying QCAR and QNCAR respectively on this series results in the SRAR
curves displayed in Figure 2.5. The distance between the two curves is obvi-
ous compared to the Gaussian case, favouring the causal specification at almost
all quantiles. Figure 2.6 is the SRAR plot of a purely noncausal process with
i.i.d. Cauchy innovations. The noncausal specification is preferred in the SRAR
comparison.

It seems now that applying the SRAR comparison at one quantile, such as the
median, is sufficient for model identification, but it is not true in general. In
Section 2.4, we will spot an identification issue in the SRAR plots, the true
model even having higher SRAR values at certain quantiles than the misspec-
ified model.

So far we have applied QCAR and its counterpart QNCAR on the classical purely
causal or noncausal models with symmetrically i.i.d. innovations. Within this
restricted scope, the conditional mean models of those data generating processes
only differ from their conditional quantile models in the intercept term. And we
see that model selection by the SRAR comparison gives uniform decisions along
quantiles. However, such a model selection is not always that clear in practice.
For example, in the empirical study later, we will encounter an identification
issue which can be seen by checking the SRAR plots. In the next section, we
will present this identification issue with some possible reasons, and propose a
robust model selection criterion called the aggregate SRAR to cope with this
issue.
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Figure 2.4: Simulation of an AR(1) with t(2) innovations, T = 200

Figure 2.5: SRAR plot under an AR(1) with t(2), T = 200

17
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Figure 2.6: SRAR plot under a noncausal model with Cauchy innovations, T = 200

Figure 2.7: Simulation of a noncausal model with Cauchy innovations, T = 200

18
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2.4 SRAR as a Model Selection Criterion
It is natural to think about SRAR as a model selection criterion since a lower
SRAR means a better goodness of fit in quantile regressions. However, SRAR is
a function of quantile, which raises a question on which quantile to be considered
for model selection. It is empirically common to see an identification problem
by checking the SRAR plots, which gives different model selections at certain
quantiles and makes a selection unreliable if only one quantile is considered. In
this section, we discuss this issue and propose a more robust model selection
criterion based on aggregating SRARs.

2.4.1 Identification issue spotted from the SRAR plots

First let us see some possible model settings causing the identification problem
in SRAR plots. The first case is linked to the existence of multi-regimes in
coefficients.

Suppose a regime-shift model is specified as follows:

yt = βt yt+1 + εt , (2.19)

where {εt} is an i.i.d. innovation process with cumulative probability function
F(·), and βt is defined as follows:

βt =

{
β1, if 0 < F(εt)≤ τ

∗;

β2, if τ
∗ < F(εt)≤ 1 ,

(2.20)

with τ∗ ∈ (0,1) and β1 < β2. In essence, the regime shift of βt depends on the
quantile occurrence of εt which is indexed by τt := F(εt) with {τt} being i.i.d.
in the standard uniform distribution.

If {yt} can be negative, then there is a problem in using QNCAR to recover
the coefficients in the underlying model (2.19) because the τ-th regime is not
necessary to produce the τ-th conditional quantile of yt . So the comonotonic-
ity condition of the linear quantile regressions (2.19) is not satisfied. However,
by restricting to the non-negative region of the covariate yt+1 (also see Fan and
Fan, 2010) we force the regression model to satisfy the comonotonicity require-
ment without losing its association with {τt}. The obtained estimator is also
consistent to the true coefficients in (2.19).5 QCAR (or QNCAR) with such a

5An alternative is to use simultaneous linear quantile regressions (see Tokdar and Kadane, 2011;
Liu, 2019) which assumes a base quantile function for all coefficients in a (reparametrized) re-
gression model. The dependence structure of these coefficients and priors on parameters in the
base quantile function are further assumed for simulation, model fitting and posterior distribu-
tion summary. We do not include this method here as this chapter aims to avoid assumptions
on parametrizing underlying conditional distributions in the model setting. Additionally, re-
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restriction, hereafter denoted as RQCAR (or RQNCAR) shorthand for restricted
quantile causal autoregression (or restricted quantile noncausal autoregression),
is formulated as follows:

θ̂θθ(τ) = argmin
θθθ∈Rp+1

T

∑
t=1

1{t∈T}ρτ(yt − xxx′tθθθ) (2.21)

where T is the set restricting the quantile regression on a particular information
set. The restriction is usually imposed in order for quantile regressions to meet
the comonotonicity condition. To study the regime-shift model (2.19), we restrict
the QNCAR on non-negative covariates, i.e., T= {t : xxxt ≥ 000}.

Figure 2.8 shows four SRAR curves estimated from QCAR, QNCAR,
RQCAR and RQNCAR. We consider a time series {yt}600

t=1 simulated from the
model (2.19) with τ∗ = 0.7,β1 = 0.2,β2 = 0.8 and i.i.d. innovation process in
t(3), i.e., F−1(·) = F−1

t(3)(·). Figure 2.8 illustrates such an identification issue in

Figure 2.8: Identification problem spotted in the SRAR plot for restricted quantile au-
toregressions

which the SRAR curve from a true model is not always lower than one from
misspecification. Applying restriction helps to enlarge the SRAR difference
between a true model and a misspecified time direction.

The second case we investigate is the presence of skewed distributed innova-
tions.

Let us consider a time series {yt} following a purely noncausal AR(1): yt =
0.8yt+1 + εt with {εt} i.i.d. in a demeaned skewed t distribution with skewing

garding the data in our empirical study, very few negative points are observed. So the concern
on losing data by such a restriction can be addressed.
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parameter γ = 2 and v = 3 degrees of freedom (hereafter t(v,γ) is the shorthand
notation for a skewed t-distribution). The probability density function of t(v,γ)
(see Francq and Zakoı̈an 2007) is defined as

f (x) =


2

γ + 1
γ

ft(γx) for x < 0

2
γ + 1

γ

ft(
x
γ
) for x≥ 0

(2.22)

where ft(·) is the probability density function of the symmetric t(v) distribu-
tion. Figure 2.9 shows four SRAR curves obtained from the estimation of the
QCAR, the QNCAR, the RQCAR and the RQNCAR respectively. The curves
from the QNCAR and the RQNCAR almost overlap each other, which confirms
our understanding that the monotonicity requirement is met in the true model.
The estimations and the corresponding SRAR curves should be the same unless
many observations are omitted by the restriction. On the other hand, the SRAR
curve gets enlarged from the QCAR to the RQCAR, which is very reasonable
as the feasible set in the QCAR is larger and the misspecification is not ensured
to satisfy the monotonicity requirement. Again we see this identification prob-
lem from the SRAR plot. Remarkably, the SRAR curve from a true model can
be higher at certain quantiles than the one from a misspecified model. Conse-
quently the SRAR comparison relying only on particular quantiles, such as the
least absolute deviation (LAD) method for the median only, is not robust in gen-
eral. Therefore, we propose a new model selection criterion in next subsection
by including the information over all quantiles.

Figure 2.9: Identification issue spotted from the SRAR plot for a skewed distribution
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2.4.2 The aggregate SRAR criterion

Based on the same number of explanatory variables in QCAR and QNCAR with
a fixed sample size in quantile regressions, the best model is supposed to exhibit
the highest goodness of fit among candidate models. Similarly to the R-squared
criterion in the OLS, when turning to quantile regressions, we are led to use
the SRAR criterion for model selection. The aggregate SRAR is regarded as an
overall performance of a candidate model over all quantiles such as:

aggregate SRAR :=
∫ 1

0
SRAR(τ)dτ.

There are many ways to calculate this integral. One way is to approximate the
integral by the trapezoidal rule. Another way is to sum up SRARs over a fine
enough quantile grid with equal weights. In other words, this aggregation is
regarded as an average of performances (SRAR(τ), τ ∈ (0,1)) of a candidate
model. In practice, there is almost no difference in model selection between the
two aggregation methods.

As equal weights are used on all quantiles in the aggregate SRAR above, people
may argue to use a different weighting scheme. The weighting scheme indeed
can be different as when weight being one for one quantile and zero for others is
to select a conditional quantile model. We agree that the weighting scheme can
be customized in justice of users’ purpose. The equal-weight scheme proposed
here is inspired to calculate the area under the SRAR curve over quantiles when
we check the SRAR plot. Intuitively, such areas are directly linked to model
performance when we concerns the whole dynamics of the underlying process.
And we compare models by viewing the gap between their SRAR curves, which
is the difference between the areas under their SRAR curves. This leads us to the
aggregate SRAR measure.

Performances of the SRAR model selection criteria in Monte Carlo simulations
are reported in Table 2.1. It shows the average frequencies with which we find
the correct model based on the SRAR criterion per quantile and the aggregate
SRAR criterion. The sample size T is 200 and each reported number is based on
2000 Monte Carlo simulations. Columns of Table 2.1 refer to as a particular dis-
tribution previously illustrated in this chapter. As observed, the aggregate SRAR
criterion performs very well even in situations with the identification issue. The
Gaussian distribution being weakly and strictly stationary we cannot obviously
discriminate between causal and noncausal specifications leading to an average
frequency of around 50% to detect the correct model.
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Table 2.1: Frequencies of selecting the correct model using the SRAR criteria

Quantiles Gaussian t(2) t(1) two-regime t(v = 3,γ = 2)
(Fig. 2.2) (Fig. 2.4) (Fig. 2.7) (Fig. 2.8) (Fig. 2.9)

0 0.698 0.678 0.601 0.787 0.476
0.05 0.516 0.416 0.653 0.044 1.000
0.10 0.51 0.677 0.763 0.059 1.000
0.15 0.519 0.858 0.841 0.095 1.000
0.20 0.512 0.948 0.907 0.167 1.000
0.25 0.513 0.981 0.947 0.305 1.000
0.30 0.488 0.992 0.978 0.487 1.000
0.35 0.487 0.998 0.996 0.654 1.000
0.40 0.486 0.999 0.996 0.798 1.000
0.45 0.487 1.000 0.996 0.892 1.000
0.50 0.5 1.000 0.995 0.950 1.000
0.55 0.499 0.999 0.995 0.974 0.994
0.60 0.492 0.999 0.995 0.988 0.533
0.65 0.478 0.997 0.995 0.991 0.018
0.70 0.467 0.994 0.979 0.996 0.001
0.75 0.49 0.984 0.951 0.998 0.000
0.80 0.493 0.954 0.903 0.999 0.000
0.85 0.481 0.862 0.858 1.000 0.000
0.90 0.469 0.72 0.791 1.000 0.000
0.95 0.484 0.454 0.668 0.997 0.000
1 0.653 0.58 0.595 0.780 0.420
aggregate SRAR 0.483 0.998 0.995 0.995 0.999

2.4.3 Shape of SRAR curves

By observing SRAR plots, we see that SRAR curves vary when the underling
distribution varies. It is interesting to investigate the reasons. In this subsection,
we will provide some insights on the slope and concavity of SRARyt (τ, θ̂θθ(τ))
curves under assumptions (A1), (A2), (A3) and (A4). Since ρτ(yt − xxx′tθθθ) is
a continuous function in θθθ ∈ R(p+1), by the continuous mapping theorem and
θ̂θθ(τ))

p→ φφφ τ , we know that

ρτ(yt − xxx′t θ̂θθ)
p→ ρτ(yt − xxx′tφφφ τ).

We also know that

ρτ(yt − xxx′tφφφ τ) = ρτ(εt −F−1(τ)).

Therefore instead of directly deriving the shape of a SRARyt (τ, θ̂θθ(τ)) curve,
we look at the properties of its intrinsic curve SRARεt (τ,F

−1(τ)). We derive
the first and second order derivatives of SRARεt (τ,F

−1(τ)) with respect to τ in
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order to determine the shape of SRARyt (τ, θ̂θθ(τ)).

The slope property

One major difference between SRAR curves in a plot is their slopes. We can
compute the first-order derivative of SRAR with respect to τ if the derivative
exists. Under the following assumption:

(A7): The inverse distribution function F−1(·) of innovation εt is continuous and
differentiable on (0,1) to the second order;

we can then take the first-order derivative of SRARεt (τ,F
−1(τ)) with respect to

τ .
Suppose 0 < τ < τ +∆τ < 1,∆τ > 0 and denote ∆F−1(τ) := F−1(τ +∆τ)−
F−1(τ).

SRARεt (τ +∆τ,F−1(τ +∆τ))−SRARεt (τ,F
−1(τ))

=
T

∑
t=1

(
ρτ+∆τ

(
εt −F−1(τ +∆τ)

)
−ρτ

(
εt −F−1(τ)

))
=

T

∑
t=1

((
εt −F−1(τ +∆τ)

)(
τ +∆τ−1{εt−F−1(τ+∆τ)≤0}

)
−
(
εt −F−1(τ)

)(
τ−1{εt−F−1(τ)≤0}

))
=

T

∑
t=1

(
εt

(
∆τ−1{F−1(τ)<εt≤F−1(τ+∆τ)}

)
+ τ
(
F−1(τ)−F−1(τ +∆τ)

)
−∆τ F−1(τ +∆τ)

+F−1(τ +∆τ)1{εt≤F−1(τ+∆τ)}−F−1(τ)1{εt≤F−1(τ)}

)
=

T

∑
t=1

(
∆τ
(
εt −F−1(τ +∆τ)

)
+
(
F−1(τ +∆τ)−F−1(τ)

) (
1{εt≤F−1(τ+∆τ)}− τ

)
+1{F−1(τ)<εt≤F−1(τ+∆τ)}

(
F−1(τ)− εt

))
.

(2.23)
Divide the above difference by ∆τ , and take the limit ∆τ ↓ 0. It gives us

lim
∆τ↓0

SRARεt (τ +∆τ,F−1(τ +∆τ))−SRARεt (τ,F
−1(τ))

∆τ

=
T

∑
t=1

(
εt −F−1(τ)+

dF−1(τ)

dτ

(
1{εt≤F−1(τ)}− τ

))
,

(2.24)

because

lim
∆τ↓0

∆τ
(
εt −F−1(τ +∆τ)

)
∆τ

= εt −F−1(τ),

lim
∆τ↓0

(
F−1(τ +∆τ)−F−1(τ)

) (
1{εt≤F−1(τ+∆τ)}− τ

)
∆τ

=
dF−1(τ)

dτ

(
1{εt≤F−1(τ)}− τ

)
,

lim
∆τ↓0

1{F−1(τ)<εt≤F−1(τ+∆τ)}
(
F−1(τ)− εt

)
∆τ

= 0.

(2.25)
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The last line is from{
1{F−1(τ)<εt≤F−1(τ+∆τ)}

(
F−1(τ)− εt

)
= 0, when εt 6∈

(
F−1(τ),F−1(τ +∆τ)

]
;(

F−1(τ)−F−1(τ +∆τ)
)
≤
(
F−1(τ)− εt

)
< 0, when εt ∈

(
F−1(τ),F−1(τ +∆τ)

]
;

(2.26)
and

0 = 1{F−1(τ)<εt≤F−1(τ)}
dF−1(τ)

dτ
≤ lim

∆τ↓0

1{F−1(τ)<εt≤F−1(τ+∆τ)}(F−1(τ)−εt)
∆τ

≤ 0. (2.27)

In analogue, the left-hand limit lim
∆τ↑0

SRARεt (τ+∆τ,F−1(τ+∆τ))−SRARεt (τ,F
−1(τ))

∆τ
gives

the same result. Therefore, we have the first-order derivative as below.

d SRARεt (τ,F
−1(τ))

dτ
=

T

∑
t=1

(
εt −F−1(τ)+

dF−1(τ)

dτ

(
1{εt≤F−1(τ)}− τ

))
.

(2.28)
To manifest this result with a fixed T , we take expectation and obtain

E
[

d SRARεt (τ,F
−1(τ))

d τ

]
= T

(
E [εt ]− F−1(τ)

)
, (2.29)

when E [εt ] exists. In practice, we are not strict with E [εt ]< ∞ since the mean of
an i.i.d. {εt}T

t=1 can be estimated empirically to replace E [εt ] in (2.29) without
affecting other terms.

Now we have the expectation of d SRARεt (τ,F
−1(τ))

d τ
which can be regarded as the

underlying guideline for the slope of a SRAR curve. Before interpreting this re-
sult, let us derive the second-order derivative of SRARεt (τ,F

−1(τ)) with respect
to τ and make an interpretation together.

The concave property

One empirically observed property of SRAR curves is their concavity which
can be explained through the second-order derivative of SRARεt (τ,F

−1(τ)) with
respect to τ under assumptions (A1), (A2), (A3), (A4) and (A7). Suppose 0 <
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τ < τ +∆τ < 1,∆τ > 0.

∆
2 SRARεt (τ,F

−1(τ)) :=

SRARεt (τ +∆τ,F−1(τ +∆τ))−2SRARεt (τ,F
−1(τ))+SRARεt (τ−∆τ,F−1(τ−∆τ))

=
T

∑
t=1

((
εt −F−1(τ)

)(
1{F−1(τ−∆τ)<εt≤F−1(τ)}−1{F−1(τ)<εt≤F−1(τ+∆τ)}

)
+ τ
(
2F−1(τ)−F−1(τ +∆τ)−F−1(τ−∆τ)

)
+∆τ

(
F−1(τ−∆τ)−F−1(τ +∆τ)

)
+
(
F−1(τ +∆τ)+F−1(τ−∆τ)−2F−1(τ)

)
1{εt≤F−1(τ−∆τ)}

+
(
F−1(τ +∆τ)−F−1(τ)

)
1{F−1(τ)<εt≤F−1(τ+∆τ)}

)
.

(2.30)
Divide the above second order central difference by ∆τ2, and take the limit ∆τ ↓
0. It gives us

d2 SRARεt (τ,F
−1(τ))

dτ2 = lim
∆τ↓0

∆2 SRARεt (τ,F
−1(τ))

∆τ2

=
T

∑
t=1

(
d2F−1(τ)

dτ2

(
1{εt≤F−1(τ)}− τ

)
−2

dF−1(τ)

dτ

)
,

(2.31)

the last line of which is obtained similarly to (2.25). To interpret this result, we
take expectation and get the following:

E
[

d2 SRARεt (τ,F
−1(τ))

d τ2

]
=−2

dF−1(τ)

dτ
T < 0. (2.32)

where the inequality holds with probability one since f (ε) > 0 with probability

one in the assumption (A1). Now we have the expectation of d2 SRARεt (τ,F
−1(τ))

d τ2

which can be regarded as the underlying guideline for the concavity of a SRAR
curve. Together with the slope information, it implies that SRAR curves are
always in arch shapes, going upward and then downward, with a peak point
at E [εt ] = F−1(τ). We can also know the skewness of εt from the location of
the peak point: εt is left-skewed when the SRAR curve reaches its peak in the
region τ < 0.5, or right-skewed when the peak in τ > 0.5. If εt is symmetrically
distributed, its SRAR curve is symmetric, and vice versa.

2.5 Binding Functions

Plotting SRAR is a way to present the goodness of fit in quantile regressions
for each candidate model. Quantile regressions are the path to get residuals for
SRAR calculation. As we know and provide unbiased consistent estimation for
true models. To study the estimation in misspecification we adopt the concept of
binding function (Dhaene, Gourieroux and Scaillet, 1998). Binding function is
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defined as a mapping from coefficients in the true model to pseudo-true coeffi-
cients in a misspecified model.

The estimator of a pseudo-true coefficient in quantile regression for a misspec-
ified QCAR(p) or QNCAR(p) converges to a limiting value which is charac-
terized into the binding function. It is difficult to derive the binding functions
explicitly in a general case so that they are studied by means of simulations (see
Gouriéroux and Jasiak, 2017). Suppose a noncausal AR(1): yt = π1yt+1 + εt ,
with {εt} i.i.d. t(ν) for v = 1,3,5 and 10. It is observed that the binding func-
tion in the misspecified QCAR(1) varies with two factors: (i) the distribution of
εt and (ii) the distance function in regression which is the check function ρτ(·)
in quantile regression. Figure 2.10, Figure 2.11 and Figure 2.12 illustrate the
effect of those factors. Each point is an average value of estimates based on
1000 simulations and 600 observations. Since t(ν) is symmetric, the estimation
results are in the same pattern for negative true coefficient region and (1− τ)th-
quantile regression as in these three figures. Sometimes the binding function is
not injective, which is evidenced in Figure 2.10 and Figure 2.11 for small ab-
solute true coefficients. The non-injectivity of the binding function for Cauchy
distributed innovations is also illustrated in Gouriéroux and Jasiak (2017) result
that disables encompassing tests. On the other hand, we see that on Figure 2.12
the injectivity of binding functions seems recovered at τ = 10%. In the case
of Cauchy distributed innovations, there are no binding functions from extreme
quantile regressions like 0.1th- or 0.9th-quantile regression because the estimate
is not convergent. Although a value for π1 ∈ (0,1) is plotted in Figure 2.12, it is
just the average of binding function estimates for π1 for illustration.

Figure 2.10: Binding function for a misspecified QCAR(1) in 0.5th-quantile regression
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Figure 2.11: Binding function for a misspecified QCAR(1) in 0.3th-quantile regression

Figure 2.12: Binding function for a misspecified QCAR(1) in 0.1th-quantile regression

28



Section 2.6

2.6 Modelling Hyperinflation in Latin America

2.6.1 The model specification

The motivation of our empirical analysis comes from the rational expectation
(RE) hyperinflation model originally proposed by Cagan (1956) and investigated
by several authors (see e.g. Adam and Szafarz, 1992; Broze and Szafarz, 1985).
We follow Broze and Szafarz (1985) notations with

md
t = α pt +βE(pt+1|It)+ xt . (2.33)

In (2.33), md
t and pt respectively denote the logarithms of money demand and

price, xt is the disturbance term summarizing the impact of exogenous factors.
E(pt+1|It) is the rational expectation, when it is equal to conditional expectation,
of pt+1 at time t based on the information set It . Assuming that the money supply
ms

t = zt is exogenous, the equilibrium md
t = ms

t provides the following equation
for prices

pt =−
β

α
[E(pt+1|It)]+

zt − xt

α
,

= φ [E(pt+1|It)]+ut .

Broze and Szafarz (1985) show that a forward-looking recursive solution of this
model exists when xt is stationary and |φ |< 1. The deviation from that solution
is called the bubble Bt with pt = ∑

∞
i=0 φ iE(ut+i|It)]+Bt . Finding conditions un-

der which this process has rational expectation equilibria (forward and or back-
ward looking) is out of the scope of our chapter. We only use this framework
to illustrate the interest of economists for models with leads components. Un-
der a perfect foresight scheme E(pt+1|It) = pt+1 we obtain the purely noncausal
model

pt = φ pt+1 + ε̃t , (2.34)

with ε̃t = ut . In the more general setting, for instance when E(pt+1|It) = pt+1+vt

with vt a martingale difference, the new disturbance term is ε̃t = vt +ut . Empir-
ically, a specification with one lead only might be too restrictive to capture the
underlying dynamics of the observed variables. We consequently depart from
the theoretical model proposed above and we consider empirical specifications
with more leads or lags. Lanne and Luoto (2013, 2017) and Hecq et al. (2017) in
the context of the new hybrid Keynesian Phillips curve assume for instance that
ε̃t is a MAR(r−1,s−1) process such as

ρ(L)π(L−1)ε̃t = c+ εt , (2.35)

where εt is iid and c an intercept term. Inserting (2.35) in (2.34) we observe that
if ε̃t is a purely noncausal model (i.e. a MAR(0,s−1) with ρ(L) = 1), we obtain
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a noncausal MAR(0,s) motion for prices

(1−φL−1)pt = π(L−1)−1(c+ εt),

(1−φL−1)(1−π1L−1− ...−πs−1L−(s−1))pt = c+ εt ,

We would obtain a mixed causal and noncausal model if ρ(L) 6= 1. Our guess that
the same specification might in some circumstances empirically (although not
mathematically as the lag polynomial does not annihilate the lead polynomial)
gives rise to a purely causal model in small samples when the autoregressive part
dominates the lead component.

The above illustration presents a context of pure causal and noncausal models
so that we can apply our approach to give an empirical analysis. It would be
interesting to extend our modelling to investigate theoretical models with both
forward and backward behaviours such as backward- and forward-looking Taylor
rule for instance. To do that however we have to introduce additional regressors
and extend the approach of Hecq, Issler and Telg (2020) to quantile regressions,
which can be further investigated by future research and is out of the scope of
this chapter.

2.6.2 The data and unit root testing

We consider seasonally unadjusted quarterly Consumer Price Index (CPI) se-
ries for four Latin American countries: Brazil, Mexico, Costa Rica and Chile.
Monthly raw price series are downloaded at the OECD database for the largest
span available (in September 2018). Despite the fact that quarterly data are di-
rectly available at OECD, we do not consider those series as they are computed
from the unweighted average over three months of the corresponding quarters.
Hence, these data are constructed using a linear filter, leading to undesirable
properties for the detection of mixed causal and noncausal models (see Hecq,
Telg and Lieb, 2017 on this specific issue). As a consequence, we use quar-
terly data computed by point-in-time sampling from monthly variables. The first
observation is 1969Q1 for Mexico, 1970Q1 for Chile, 1976Q1 for Costa Rica
and 1979Q4 for Brazil. Our last observation is 2018Q2 for every series. We do
not use monthly data in this chapter as monthly inflation series required a very
large number of lags to capture their dynamic feature. Moreover, the detection
of seasonal unit roots in the level of monthly price series was quite difficult.

Applying seasonal unit root tests (here HEGY tests, see Hylleberg et al., 1990)
with a constant, a linear trend and deterministic seasonal dummies, we reject
(see Table 2.2 in which a * denotes a rejection of the null unit root hypothesis at
a specific frequency corresponding to 5% significance level) the null of seasonal
unit roots in each series whereas we do not reject the null of a unit root at the
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zero frequency. The implementation of the unit root tests here is concerned with
conditional mean models of the raw data to ensure that we process the data and
use its weakly stationary time series in quantile regressions for analysis. The unit
root testing can also been done per quantile (Koenker and Xiao, 2004) to relate
short-term explosiveness of time series to unit-root quantile models, which is
an interesting perspective to treat explosive time series and alternative to causal
and noncausal modelling. We do not go deeper in the unit-root direction for this
chapter but with its outlook on future research.

The number of lags of the dependent variable used to whiten for the presence of
autocorrelation is chosen by AIC. From these results we compute quarterly in-
flation rates for the four countries in annualized rate, i.e. ∆ lnPi

t ×400. Next we
carry out a regression of ∆ lnPi

t ×400 on seasonal dummies to capture the poten-
tial presence of deterministic seasonality. The null of no deterministic seasonal-
ity is not rejected for the four series. Figure 2.13 displays quarterly inflation rates
and it illustrates the huge inflation episodes that the countries had faced. Among
the four inflation rates, Brazil and Mexico show the typical pattern closer to the
intuitive notion of what a speculative bubble is, namely a rapid increase of the
series until a maximum value is reached before the bubble bursts.

Figure 2.13: Quarterly inflation rate series plot for 4 Latin American countries
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Table 2.2: Seasonal HEGY unit root tests in the log levels of prices

Country H0 : π1 = 0 H0 : π2 = 0 H0 : π3 = π4 = 0 Sample
lnPBra

t −1.39 −5.75∗ 48.28∗ 1979Q4−2018Q2
lnPChi

t −2.98 −6.32∗ 20.13∗ 1970Q1−2018Q2
lnPCosta

t −1.80 −4.23∗ 7.81∗ 1976Q1−2018Q2
lnPMex

t −0.88 −11.92∗ 60.10∗ 1969Q1−2018Q2

2.6.3 Empirical findings and identification of noncausal models

Table 2.3 reports for each quarterly inflation rates the autoregressive model ob-
tained using the Hannan-Quinn information criterion. Given our results on the
binding function (see also Gouriéroux and Jasiak, 2017) it is safer to determine
the pseudo-true autoregressive lag length using such an OLS approach than us-
ing quantile regressions or using maximum likelihood method. Indeed there is
the risk that a regression in direct time from a noncausal DGP provides an un-
derestimation of the lag order for some distributions (e.g. the Cauchy) and some
values of the parameters.

Estimating autoregressive univariate models gives the lag length range from
p = 1 for Brazil to p = 7 for the Chilean inflation rate. The p− values of
the Breush-Pagan LM test (see column labeled LM[1− 2]) for the null of no-
autocorrelation after having included those lags show that we do not reject the
null in every four cases. On the other hand, we reject the null of normality
(Jarque-Bera test) in the disturbances of each series. We should consequently be
able to identify causal from noncausal models. From columns skew. and kurt.
it emerges that the residuals are skewed to the left for Brazil and Mexico and
skewed to the right for Chile and Costa Rica. Heavy tails are present in each
series. At a 5% significance level we reject the null of no ARCH (see column
ARCH[1−2]) for Brazil and Mexico. Gouriéroux and Zakoian (2017) have de-
rived the closed form conditional moments of a misspecified causal model ob-
tained from a purely noncausal process with alpha stable disturbances. They
show that the conditional mean (in direct time) is a random walk with a time
varying conditional variance in the Cauchy case. This result would maybe favour
the presence of a purely noncausal specification for Brazil and Mexico as the
null of no ARCH is rejected. But this assertion must be carefully evaluated and
tested, for instance using our comparison of quantile autoregressions in direct
and reverse time. The results by the Q(N)CAR are reported in Table 2.4, and
the RQ(N)CAR produces the same results. Each cell of Table 2.4 provides the
selection frequency of MAR(0, p) or MAR(p,0) identified by the SRAR at quan-
tiles 0.1, 0.3, 0.5, 0.7, 0.9 as well as the aggregated SRAR. Figure 2.14 displays
the SRAR curves from 0.05th-quantile to 0.95th-quantile by the Q(N)CAR for
the four economies respectively, similarly to the ones by the RQ(N)CAR with
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Table 2.3: Descriptive statistics for quarterly inflation rates

Country HQ BJ skew. kurt. LM[1−2] ARCH[1−2]
∆ lnPBra

t 1 < 0.001 −2.54 56.96 0.19 < 0.001
∆ lnPChi

t 7 < 0.001 2.84 22.45 0.09 0.09
∆ lnPCosta

t 4 < 0.001 1.01 8.73 0.47 0.30
∆ lnPMex

t 3 < 0.001 −0.40 13.81 0.20 < 0.001

restriction on non-negative regressors. As observed, the identification problem
is raised in the SRAR plots. Especially in the SRAR plot for Brazil, it is hard to
trust a model from evidence at single quantiles. However, the aggregate SRAR
criterion comes to help in this situation from an overall perspective. We con-
clude that Brazil, Mexico and Costa Rica are better characterized as being purely
noncausal while Chile being purely causal according to the aggregate SRAR cri-
terion.

Figure 2.14: SRAR plots of the inflation rates of four Latin American countries respec-
tively
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Table 2.4: SRAR identification results

Country SRARτ=0.1 SRARτ=0.3 SRARτ=0.5 SRARτ=0.7 SRARτ=0.9 SRARtotal

∆ lnPBra
t MAR(0,1) MAR(0,1) MAR(0,1) MAR(1,0) MAR(1,0) MAR(0,1)

∆ lnPChi
t MAR(7,0) MAR(7,0) MAR(7,0) MAR(0,7) MAR(0,7) MAR(7,0)

∆ lnPCosta
t MAR(0,4) MAR(0,4) MAR(0,4) MAR(4,0) MAR(4,0) MAR(0,4)

∆ lnPMex
t MAR(0,3) MAR(0,3) MAR(0,3) MAR(3,0) MAR(3,0) MAR(0,3)

2.7 Conclusions
This chapter introduces a new way to select between causal and noncausal mod-
els by comparing residuals from quantile autoregressions developed by Koenker
and Xiao (2006) and from the time-reverse specifications. To adapt to heavy
tailed distributions, we generalize the quantile autoregression theory for regu-
larly varying distributions. This also confirms the validity of quantile autore-
gressions in analysing heavy tailed time series, such as explosive or bubble-type
dynamics. It is natural to consider SRAR as a model selection criterion in the
quantile regression framework. However due to the identification problem spot-
ted in the SRAR plots as presented in this chapter, we propose to use the aggre-
gate SRAR criterion for model selection. The robustness in its performance has
been seen from all the results in this chapter. It is worth mentioning that when
coefficients are constant in the underlying model with a symmetrically i.i.d. error
term, the aggregate SRAR criterion is equivalently to select between forward and
backward conditional mean models (termed by Gourieroux and Zakoian (2017)).
However, the aggregate SRAR is a measure based on the whole dynamics of the
underlying process, which is not dominated by the conditional mean information
any more. This characteristic of the aggregate SRAR criterion indeed makes it
robust in model selection even for some general situations such as with asym-
metric distributed innovations. In the empirical study on the inflation rates of
four Latin American countries, we found that the purely noncausal specification
is favoured in three cases.

Finally some possible extensions of our approach can be to the identification
of mixed models in addition to purely causal and noncausal specifications, to
enhancing QCAR and QNCAR with some explanatory variables in order to in-
vestigate the Taylor (1993) rule, and to investigating the unit-root testing per
quantile for QCAR as well as QNCAR. Also, a formal testing on SRAR differ-
ences would require the application of a bootstrap approach which is beyond the
scope of this chapter but in our outlook for the future research.
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2.A Appendix

Alternative Way to Simulate MAR Models

Suppose that the DGP is a MAR(r,s) as in (2.1). First, we rewrite (2.1) into a
matrix representation as follows:

Myyy = εεε,

M :=


π(L)φ(L−1) 0 . . . 0

0 π(L)φ(L−1) . . . 0
. . .

0 0 . . . π(L)φ(L−1)

 ,
yyy :=

[
y1 y2 . . . yT

]′
,

εεε :=
[
ε1 ε2 . . . εT

]′
,

(2.36)

where M is T × T matrix and T is the sample size. The equivalence to (2.1)
holds by assuming y1−r,y2−r, . . . ,y0 and yT+1,yT+2, . . . ,yT+s are all zeros. This
assumption effect can be neglected by deleting enough observations from the
beginning and the end of a simulated sample, for instance, {yt}T−200

t=201 kept for
analysis from a first simulated {yt}T

t=1. Next, M can be decomposed into a prod-
uct of two diagonal matrices, denoted as L and U, of main diagonal entries being
π(L) and φ(L−1) respectively as follows.

L =


1 0 0 0 . . . 0
−π1 1 0 0 . . . 0
−π2 −π1 1 0 . . . 0

. . . . . .
0 . . . −πr . . . −π1 1

 ,

U =


1 −ψ1 . . . −ψs 0 . . . 0
0 1 −ψ1 . . . −ψs 0 . . . 0
. . . . . . . . .
0 . . . 0 . . . 1


(2.37)

Substitute (2.37) into (2.36). We get

LUyyy = εεε,

such as
yyy = U−1L−1

εεε . (2.38)

Given εεε , yyy can be obtained directly since L and U are positive definite triangu-
lar matrices. This MAR(r,s) simulating method can easily be generalized, for
instance, for an MAR(r,s) involving some exogenous independent variables pre-
sented by Hecq, Issler and Telg (2020). In practice this vector-wise simulation
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method is slower than the element-wise method because of the matrix creation
and storage in simulation.

Proof of Theorem 4

Proof.
First, we rewrite SRAR(τ, θ̂θθ(τ)) as follows:

SRAR(τ, θ̂θθ(τ)) =
T

∑
t=1

ρτ(yt − xxx′t θ̂θθ(τ))

=
T

∑
t=1

ρτ(yt − xxx′tφφφ τ + xxx′tφφφ τ − xxx′t θ̂θθ(τ))

=
T

∑
t=1

ρτ

(
utτ −

1
aT
√

T
ννν
′xxxt

)
,

(2.39)

where xxx′t := [aT ,yt+1, . . . ,yt+p], utτ := yt − xxx′tφφφ τ = εt − F−1(τ),

ννν := aT
√

T
(

θ̂θθ(τ)−φφφ τ

)
. We know from Davis and Resnick (1985) and Knight

(1989, 1991) that

1
aT

(
bT ·sc

∑
t=1

(εt −bT )

)
d∼ Sα(s),

1
aT
√

T

T

∑
t=1

(
yt −bT · sc

∞

∑
j=0

c jbT

)
d∼

∞

∑
j=0

c j

∫ 1

0
Sα(s)ds,

1
a2

T T

T

∑
t=1

(
yt · yt+h−bT · sc

∞

∑
j=0

c j c j+hb2
T

)
d∼

∞

∑
j=0

c j c j+h

∫ 1

0
S2

α(s)ds,

(2.40)

where t = bT · sc, and {Sα(s)} is a process of stable distributions with index α .
Without loss of generality, we assume bT = 0 for the proof below. In use of the
limiting behaviour information presented in (2.40), we get that

1
a2

t T

T

∑
t=1

xxxtxxx′t
d∼
[

1 000
000

∫ 1
0 S2

α(s)ds ΩΩΩ

]
(p+1)×(p+1)

(2.41)

where
ΩΩΩ :=

[
ωik
]

p×p,

ωik :=
∞

∑
j=0

c j c j+|k−i|,
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with ωik being the entry at ΩΩΩ’s i-th row and k-th column. ΩΩΩ is positive definite
symmetric. Note that θ̂θθ(τ) = argmin

θθθ∈Rp+1
SRAR(τ,θθθ) which also minimizes

ZT (ννν) :=
T

∑
t=1

[
ρτ

(
utτ −

1
aT
√

T
ννν
′xxxt

)
−ρτ (utτ)

]
. (2.42)

ZT (ννν) is a convex random function. Knight (1989) showed that if ZT (ννν) con-
verges in distribution to Z(ννν) and Z(ννν) has unique minimum, then the convexity
of ZT (ννν) ensures ν̂νν = argmin

ννν∈Rp+1
ZT (ννν) converging in distribution to argmin

ννν∈Rp+1
Z(ννν).

By using the following check function identity:

ρτ(v1− v2)−ρτ(v1) =−v2ξτ(v1)+(v1− v2)
(
1{0>v1>v2}−1{0<v1<v2}

)
=−v2ξτ(v1)+

∫ v2

0

(
1{v1≤s}−1{v1<0}

)
ds,

(2.43)
where ξτ(v) := τ−1{v<0}, we can rewrite ZT (ννν) into

ZT (ννν) =−
T

∑
t=1

1
aT
√

T
ννν
′xxxt ξτ(utτ)+

T

∑
t=1

∫ 1
aT
√

T
ννν ′xxxt

0

(
1{utτ≤s}−1{utτ<0}

)
ds

= Z(1)
T (ννν)+Z(2)

T (ννν),
(2.44)

where 
Z(2)

T (ννν) :=
T

∑
t=1

∫ 1
aT
√

T
ννν ′xxxt

0

(
1{utτ≤s}−1{utτ<0}

)
ds

Z(1)
T (ννν) :=−

T

∑
t=1

1
aT
√

T
ννν
′xxxt ξτ(utτ)

Further denote

ηt(ννν) :=
∫ 1

aT
√

T
ννν ′xxxt

0

(
1{utτ≤s}−1{utτ<0}

)
ds,

η̄t(ννν) := E [ηt(ννν)|xxxt ] ,

Z(2)
T (ννν) :=

T

∑
t=1

η̄t(ννν).
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By Assumption (A5) and small enough 1
aT
√

T
ννν ′xxxt , we further rewrite Z(2)

T (ννν) as
follows:

Z(2)
T (ννν) =

T

∑
t=1

E

[∫ 1
aT
√

T
ννν ′xxxt

0

(
1{utτ≤s}−1{utτ<0}

)
ds

∣∣∣∣∣xxxt

]

=
T

∑
t=1

∫ 1
aT
√

T
ννν ′xxxt

0

[∫ s+F−1(τ)

F−1(τ)
f (r)dr

]
ds

=
T

∑
t=1

∫ 1
aT
√

T
ννν ′xxxt

0

F
(
s+F−1(τ)

)
−F

(
F−1(τ)

)
s

sds

=
T

∑
t=1

∫ 1
aT
√

T
ννν ′xxxt

0
f
(
F−1(τ)

)
sds

=
1

2a2
T T

T

∑
t=1

f
(
F−1(τ)

)
ννν
′xxxtxxx′tννν +op(1)

=
1

2a2
T T

f
(
F−1(τ)

)
ννν
′

(
T

∑
t=1

xxxtxxx′t

)
ννν +op(1)

(2.45)

Using the limiting behaviour information presented in (2.40), we get the limiting
distribution for Z(2)

T (ννν) so as for Z(2)
T (ννν) as follows:

Z(2)
T (ννν)

d∼ 1
2

f
(
F−1(τ)

)
ννν
′
[

1 000
000

∫ 1
0 S2

α(s)ds ΩΩΩ

]
ννν , (2.46)

by the fact that Z(2)
T (ννν)− Z(2)

T (ννν)
p∼ 0 which can be proved by following the

arguments of Knight (1989).
The limiting distribution of Z(1)

T (ννν) can also be deduced in using (2.40) as fol-
lows.

−
T

∑
t=1

1
aT
√

T
ννν
′xxxt ξτ(utτ)

d∼

ννν
′

[
σξW (1),

∞

∑
j=0

c j σξ

∫ 1

0
Sα(s)dW (s) , . . . ,

∞

∑
j=0

c j σξ

∫ 1

0
Sα(s)dW (s)

]
(p+1)×1

,

(2.47)
where [. . .](p+1)×1 is a column vector of (p+1) elements,

∫
dW (s) is a stochas-

tic integral with Brownian motion {W (s)} independent of {Sα(s)} (see Knight
(1991)), and σξ is the standard deviation of ξτ(utτ) which equals

√
τ(1− τ).

Therefore by Davis and Resnick (1985) and Knight (1989, 1991),

Z(1)
T (ννν)

d∼ ννν ′
√

τ(1− τ)

[
W (1),

∞

∑
j=0

c j
∫ 1

0 Sα(s)dW (s) , . . . ,
∞

∑
j=0

c j
∫ 1

0 Sα(s)dW (s)

]
(p+1)×1

.

(2.48)

38



Section 2.1

Thus,

ZT (ννν)
d∼ Z(ννν) :=

ννν
′√

τ(1− τ)

[
W (1),

∞

∑
j=0

c j

∫ 1

0
Sα(s)dW (s) , . . . ,

∞

∑
j=0

c j

∫ 1

0
Sα(s)dW (s)

]
(p+1)×1

+
1
2

f
(
F−1(τ)

)
ννν
′
[

1 000
000

∫ 1
0 S2

α(s)ds ΩΩΩ

]
ννν .

(2.49)
and so

f
(
F−1(τ)

)
·aT
√

T√
τ(1− τ)

(
θ̂θθ(τ)−φφφ τ

)
d∼[

1 000

000
(∫ 1

0 S2
α(s)ds ΩΩΩ

)−1

][
W (1),

∞

∑
j=0

c j

∫ 1

0
Sα(s)dW (s) , . . . ,

∞

∑
j=0

c j

∫ 1

0
Sα(s)dW (s)

]
(p+1)×1

.

follows by setting the derivative of Z(ννν) to 0 and solving for ννν .
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3
Adaptive Random Bandwidth for

Inference in CAViaR Models

This chapter is based on the article ‘Adaptive Random Bandwidth for
Inference in CAViaR Models.’ by Hecq and Sun (2021), arXiv preprint
arXiv:2102.01636..
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Abstract
Chapter 3 investigates the size performance of Wald tests for CAViaR mod-
els (Engle and Manganelli, 2004). We find that the usual estimation strategy
on test statistics yields inaccuracies. Indeed, we show that existing density esti-
mation methods cannot adapt to the time-variation in the conditional probability
densities of CAViaR models. Consequently, we develop a method called adap-
tive random bandwidth which can approximate time-varying conditional prob-
ability densities robustly for inference testing on CAViaR models based on the
asymptotic normality of the model parameter estimator. This proposed method
also avoids the problem of choosing an optimal bandwidth in estimating proba-
bility densities, and can be extended to multivariate quantile regressions straight-
forward.

42



Section 3.1

3.1 Introduction

Financial risk management is at the heart of banks’ and financial institutions’ ac-
tivities to guide them in their investment plans, supervisory decisions, risk capi-
tal allocations and for external regulations. The use of quantitative risk measures
has become essential in financial risk management. One of the most popular
risk measures associated with financial portfolios is the value at risk (VaR here-
after). The VaR at probability τ ∈ (0,1) of a portfolio is defined as the minimum
potential loss that the portfolio may suffer in the worst τ portion of all possible
outcomes over a given time horizon. VaR is very intuitive (Duffie and Pan, 1997)
and has for instance been incorporated into the 1996 Amendment to the Capital
Accord for measuring the market risk in financial positions of each financial in-
stitution. Therefore, VaR is still a widely used risk measure even though many
approaches to measuring market and credit risks have been proposed in the liter-
ature.

Generally, there are three ways to estimate VaR: (i) historical simulations, (ii)
semi-parametric approaches and (iii) fully parametric frameworks. Within the
class of semi-parametric approaches, it typically includes extreme value theory
analyses and quantile regression techniques. In this chapter, we focus on quantile
regressions for the VaR estimation as quantile regressions are straightforward
in studying one quantile of interest and numerically efficient without imposing
parametric distributional assumptions.

Despite that the VaR is just a particular quantile of future portfolio losses con-
ditional on present information, it is essentially a part of the underlying condi-
tional distribution. VaR models are supposed to embrace features of the empir-
ical conditional distributions of returns, such as time-variation and conditional
heteroskedasticity. Drawing on (G)ARCH specifications which capture the pres-
ence of time-varying conditional heteroskedasticity in time series, Engle and
Manganelli (2004) have proposed to estimate conditional autoregressive value at
risk by regression quantiles (CAViaR). It is appealing to consider CAViaR mod-
els for estimating VaR as CAViaR models associate the conditional quantile of
interest with observable variables as well as the implicit information on lagged
conditional quantiles.

This chapter carefully investigates the size performance of Wald tests for
CAViaR models. Having an accurate test statistic is important to obtain reliable
models in financial applications. Several specifications are nested within a
CAViaR specification, such as static quantile regressive models and quantile
autoregressive models (see Koenker and Xiao, 2006; Hecq and Sun, 2020).
Moreover, there exists several models nested within the general CAViaR
specification that have been proposed in the literature. For instance, asymmetric
slope CAViaR models (Engle and Manganelli, 2004) that split the effect of
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positive and negative yesterday’s news shocks. Wald tests are used to test the
null of a symmetric news impact. However, we find that the usual estimation
strategy yields inaccuracies. Indeed, we show that existing density estimation
methods cannot adapt to the time-variation in the conditional probability
densities of CAViaR models. The method that we develop in this chapter is
able to adapt to time-varying conditional probability densities and produces
much more reliable results than the existing ones for inference testing on
CAViaR models based on the asymptotic normality of the model parameter
estimator. This proposed method also avoids the haunting problem of choosing
an optimal bandwidth in estimating probability densities, and can be extended
to multivariate quantile regressions straightforward in theory.

The remainder of this chapter is structured as follows. In Section 3.2, stability
conditions for CAViaR data generating processes (DGPs) to be non-explosive
are derived. In Section 3.3, we investigate the size performance of Wald tests for
CAViaR models and find large size distortions by the usual estimation strategy.
So we introduce a method called adaptive random bandwidth. An empirical
study on stock returns is performed in Section 3.4. Finally Section 3.5 concludes
this chapter.

3.2 CAViaR Models

Let us consider a stationary time series process {yt}T
t=1 for instance the return

of an asset or a portfolio, and denote xxxt a vector of observable variables at time
t and Ft the information set up to time t which is the σ -algebra generated by
{xxxt ,yt ,xxxt−1,yt−1, . . .}. The τ-th quantile (τ ∈ (0,1)) or the opposite VaRτ of yt

conditional on Ft−1 is denoted as ft(βββ τ ,xxxt−1) (or simply ft(βββ τ) when xxxt−1 is
taken in obviously). A generic CAViaR specification proposed by Engle and
Manganelli (2004) is

ft(βββ τ) = β0 +
q

∑
i=1

βi ft−i(βββ τ)+
r

∑
j=1

βq+ j l(xxxt− j), (3.1)

where βββ
′
τ := [β0,β1, . . . ,βp] collects the p = q+ r slope parameters, and l is a

function of a finite number of lagged observable variables, for instance the lagged
returns entering potentially with different weights for positive and negative past
lagged returns. As described in Engle and Manganelli (2004) the autoregressive
terms βi ft−i(βββ τ) can ensure that the quantile changes smoothly over time. The
quantile autoregressive model (QAR) of Koenker and Xiao (2006) is nested in
the CAViaR specification by restricting β1 = ... = βq = 0 in CAViaR. The role
of l(xxxt− j) is to account for the association of ft(βββ τ) with observable variables in
Ft−1. CAViaR models as a generalization of QAR models are able to capture the
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time-variation in the conditional quantile in a way similar to GARCH models in
explaining time-varying volatility and volatility clustering in financial time series
in addition to ARCH models.

The CAViaR model (3.1) is nonlinear in parameters as long as there exists a
nonzero βi, i ∈ {1, . . . ,q} which leads to ∂ ft(βββ τ )

∂βi
= ft−i(βββ τ)+βi

∂ ft−i(βββ τ )
∂βi

not in-
dependent of βi.1 The algorithm to estimate CAViaR models is given in Sec-
tion 3.2.2.

For illustration, we simulate samples from the following three CAViaR DGPs
in (3.2) and plot Figure 3.1 (a). 2 In Figure 3.1 (a), we see a decreasing trend in
CAViaR DGP 1.a mainly due to the negative term−0.5|yt−1| in ft(βββ τ) compared
with CAViaR DGP 1.b. Comparing CAViaR DGP 1.b with 1.c, we find that
CAViaR DGP 1.b has a larger spread due to a higher slope of ft−1(τ) in ft(βββ τ).
A similar finding further applies on Figure 3.1 (b) which plots simulated samples
of CAViaR DGP 2.a, 2.b and 2.c in (3.3) respectively.

CAViaR DGP 1.a: ft(βββ ut
) = F−1

t(3)(ut)+0.5 ft−1(βββ ut
)−0.5|yt−1|,

CAViaR DGP 1.b: ft(βββ ut
) = F−1

t(3)(ut)+0.5 ft−1(βββ ut
)−0.5yt−1,

CAViaR DGP 1.c: ft(βββ ut
) = F−1

t(3)(ut)−0.5yt−1,

(3.2)

where {ut} is i.i.d. in the standard uniform distribution (denoted as U (0,1))
and F−1

t(3)(·) is the inverse function of Student’s t-distribution with 3 degrees of
freedom (t(3) hereafter).


CAViaR DGP 2.a: ft(βββ ut

) = F−1
t(3)(ut)−0.5 ft−1(βββ ut

)+0.5|yt−1|

CAViaR DGP 2.b: ft(βββ ut
) = F−1

t(3)(τ)−0.5 ft−1(βββ ut
)+0.5yt−1

CAViaR DGP 2.c: ft(βββ ut
) = F−1

t(3)(ut)+0.5yt−1,

(3.3)

where ut
i.i.d.∼ U (0,1), t = 1,2, . . . ,T .

3.2.1 Stability conditions for CAViaR models

The stationarity of CAViaR time series is required for the model estimation con-
sistency (Engle and Manganelli, 2004). After simulating a CAViaR DGP, we can

1In Appendix 3.A, the gradient and the Hessian matrix of CAViaR models are illustrated to
emphasize that the nonlinearity of model parameters makes CAViaR models different from
other linear quantile regression models.

2All the simulations of CAViaR DGPs in this chapter follow the procedure given in Ap-
pendix 3.B.
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Figure 3.1: Time series plots of CAViaR DGP samples

view its behaviour such as explosiveness in the long run. We know that a time
series is explosive if and only if at least one conditional quantile of the time se-
ries with nonzero probability density to occur is explosive. So we derive stability
conditions for the conditional τ-th (τ ∈ (0,1)) quantile of a CAViaR DGP {yt}
specified as follows:

yt = ft(βββ ut
) = β0(ut)+

q

∑
i=1

βi(ut) ft−i(βββ ut
)+

r

∑
j=1

βq+ j(ut)yt− j, (3.4)

where ut
i.i.d.∼ U (0,1), and βββ

′
ut

:= [β0(ut),β1(ut), . . . ,βp(ut)] with p = q + r.
There is a monotonicity requirement on this model which is that ft(βββ ut

) is mono-
tonically increasing in ut so that the τ-th quantile (τ ∈ (0,1)) of yt conditional on
Ft−1 can be expressed as ft(βββ τ).

Assume the conditional τ-th quantile of {yt} follows the model (3.4) with
nonzero probability density to occur at each time. Without loss of generality,
there is a time t ∈ {1, . . . ,T} such that

yt = ft(βββ τ) = β0 +
q

∑
i=1

βi ft−i(βββ τ)+
r

∑
j=1

βq+ j yt− j.

Now let us derive the value of yt . First we have the following equation
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from (3.4).(
1−

r

∑
j=1

βq+ j L j

)
yt = β0 +

q

∑
i=1

βi ft−i(βββ τ)

= β0 +
q

∑
i=1

βi

(
β0 +

q

∑
i1=1

βi1 ft−i−i1(βββ τ)+
r

∑
j=1

βq+ j yt−i− j

)

= β0 +
q

∑
i=1

βi

(
β0 +

q

∑
i1=1

βi1 ft−i−i1(βββ τ)+
r

∑
j=1

βq+ j Li+ j yt

)

=

(
1+

q

∑
i=1

βi

)
β0 +

q

∑
i=1

q

∑
i1=1

βiβi1 ft−i−i1(βββ τ)+
q

∑
i=1

r

∑
j=1

βiβq+ j Li+ j yt ,

where the second line is obtained by substituting the specification (3.4) of
ft−i−i1(βββ τ) into the first line, and L is the lag operator. Further rewrite the above
equation, and we have(

1−
r

∑
j=1

β j L j−
q

∑
i=1

r

∑
j=1

βiβq+ j Li+ j

)
yt =

(
1+

q

∑
i=1

βi

)
β0 +

q

∑
i=1

q

∑
i1=1

βiβi1 ft−i−i1(βββ τ)

=

(
1+

q

∑
i=1

βi

)
β0 +

q

∑
i=1

q

∑
i1=1

βiβi1 ft−i−i1(βββ τ).

We continue to rewrite the lagged terms of ft(βββ τ) on the right-hand side of the
above equation, and then organize the equation such that only the left-hand side
contains terms of yt . Therefore, we obtain that(

1−
r

∑
j=1

βq+ j L j−
q

∑
i=1

r

∑
j=1

βiβq+ j Li+ j− . . .−
q

∑
i=1

q

∑
i1=1

. . .
q

∑
in=1

r

∑
j=1

βiβi1 . . .βinβq+ j Li+i1...+in+ j

)
yt

=

1+
q

∑
i=1

βi +

(
q

∑
i=1

βi

)2

+ . . .+

(
q

∑
i=1

βi

)n
β0

+
q

∑
i=1

q

∑
i1=1

. . .
q

∑
in+1=1

r

∑
j=1

βiβi1 . . .βin+1 ft−i−i1−...−in+1(βββ τ).

(3.5)
Now we can get the first necessary condition for {yt} to be nonexplosive, which
is ∣∣∣∣∣ q

∑
i=1

βi

∣∣∣∣∣< 1. (3.6)

Under the condition (3.6), we can simplify the equation (3.5) when letting n→∞

as follows: (
1−

r

∑
j=1

βq+ j L j
∞

∑
m=0

(
q

∑
i=1

βiLi

)m)
yt =

1

1−
q
∑

i=1
βi

β0.
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Now we obtain the autoregressive polynomial g(x) of yt which is

g(x) := 1−
r

∑
j=1

βq+ j x j
∞

∑
m=0

(
q

∑
i=1

βixi

)m

. (3.7)

So the second necessary condition for {yt} to be nonexplosive is that the
roots of g(x) are outside the unit circle. When there exists at least one
βi 6= 0, i ∈ {1, . . . ,q}, this second condition is equivalent to require that

the roots of g1(x) := 1 −
q
∑

i=1
βixi −

r
∑
j=1

βq+ j x j and the common roots of

g2(x) := 1−
q
∑

i=1
βixi and g3(x) := 1−

r
∑
j=1

βq+ j x j all are outside the unit circle.

More examples of CAViaR DGPs are illustrated in Appendix 3.D, among which
we can find explosive DGPs which break the condition on the roots of g1(x) but
meet the condition on the common roots of g2(x) and g3(x).

We can review Figure 3.1 with the above stability conditions. CAViaR DGP 1.b,
1.c, 2.b and 2.c meet the above conditions and we also see their nonexplosive
behaviours in the plots. The nonexplosiveness of CAViaR DGP 2.a can also be
ensured since it has a narrower spread in theory in comparison with CAViaR
DGP 2.b. On the other hand, we know that CAViaR DGP 1.a has a downward
trend due to the negative term −0.5|yt−1| and hence is explosive.

3.2.2 Estimation algorithm

The estimation for CAViaR models can be achieved by the differential evolu-
tionary genetic algorithm (Storn and Price, 1997) used by Engle and Manganelli
(2004). Suppose the model ft(βββ ) is specified as (3.1) for data {yt}T

t=1. We want
to obtain the parameter estimator β̂ββ by the following optimization:

β̂ββ = argmin
βββ∈Rp+1

ST (βββ )

ST (βββ ) :=
T

∑
t=1

ρτ (yt − ft(βββ ))
(3.8)

where ST (βββ ) is the objective function in quantile regressions, and ρτ(x) :=
x
(
τ−1{x<0}

)
is called check function (Koenker, 2005) with the indicator func-

tion 1{·}.

Following the steps below, we can obtain β̂ββ in (3.8).

Step 1: Generate n (say 104) trial vectors independently from a uniform distribu-
tion U (bbbL,bbbp) as n parameter initial trials, where bbbL and bbbp are (p+1)×1
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vectors roughly covering the lower and upper bounds of the true param-
eter vector βββ

o
τ of the underlying process in our belief. It is worth men-

tioning that the values of { f1−i(βββ τ), i = 1, . . . ,q} and
{

y1− j, j = 1, . . . ,r
}

acting as initial conditions are also input-demanded in order to calculate
{ ft(βββ )}T

t=1 for any βββ ∈ Rp+1. For instance, as used by Engle and Man-
ganelli (2004) f0(βββ τ) is given as the estimated τ-th quantle of {yt}b0.1Tc

t=1
and is fixed in the optimization.3

Step 2: Each parameter initial is used to kick off a minimization routine4 on the
objective function ST (βββ ), and the returned value of β̂ββ from the routine and
its objective function value are stored.

Step 3: Select m (say 10) returned vectors of β̂ββ which result in the lowest m values
among the n stored objective function values.

Step 4: Denote the m selected vectors as β̂ββ
(1)
, . . . , β̂ββ

(m)
and use them as initials

to restart the minimization routine individually, and update β̂ββ
(1)
, . . . , β̂ββ

(m)

with the newly returned vectors respectively.

Step 5: Repeat Step 4 a (say 5) times.

Step 6: Calculate ST (β̂ββ
(i)
), i = 1, . . . ,m. And set the solution to be

β̂ββ = argmin
i=1,...,m

ST (β̂ββ
(i)
).

We implement the above estimation algorithm throughout this chapter for
CAViaR model parameter estimations. There might be a concern if the artificial
input of the initial values { f1−i(βββ τ), i = 1, . . . ,q} and

{
y1− j, j = 1, . . . ,r

}
affects the parameter estimator. In fact, the effect usually is small and can be
neglected when the sample size is large enough because the fitted conditional
quantiles { ft(β̂ββ )}T

t=1 are kept close to the true ones { ft(βββ )}T
t=1 such that it can

minimize the objective function despite some burn-in period.

3.3 Adaptive Random Bandwidth Method for CAViaR
Covariance Matrix Estimation

Consistency and asymptotic normality of CAViaR model parameters have been
proved by Engle and Manganelli (2004). After regressing data onto a CAViaR
model, we would like to implement an inference testing on whether the model
is correctly specified. In this section we first investigate how we result in the

3b·c is known as the floor function (or the greatest integer function) and b·c : R→ Z of a real
number x denotes the greatest integer less than or equal to x.

4The Nelder Mead simplex algorithm is used in our minimization routine.
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asymptotic normality of CAViaR model parameter estimators. We focus on the
elements of the asymptotic covariance matrix to highlight their roles in connect-
ing sample elements with the corresponding limit behaviours. Next, we check
whether existing estimation strategies can perform robustly and satisfactorily for
Wald tests on CAViaR models. Finally, we propose a new method called adap-
tive random bandwidth for CAViaR models.

3.3.1 Asymptotics of CAViaR

Consider a time series {yt} of random variables yt on a complete prbability space
(Ω,F ,P) 5. For applying a generic CAViaR model (3.1) on {yt}, the consistency

and asymptotic normality of the estimator β̂ββ := argmin
βββ

T
∑

t=1
ρτ (yt − ft(βββ )) has

been derived out by Engle and Manganelli (2004):

Theorem 5 (Asymptotics given by Engle and Manganelli (2004)).
For a data generating process {yt} with its time t conditional τ-th quantile fol-
lowing a generic CAViaR model as (3.1) parametrized by βββ

o, it satisfies the reg-
ularity conditions (C0,. . . , C7, AN1,. . . , AN7) in the proof of Engle and Man-
ganelli (2004). Then

√
T A−1/2

T DT

(
β̂ββ −βββ

o
)

d∼ N(000, III(p+1)×(p+1)), (3.9)

where

β̂ββ := argmin
βββ∈Rp+1

T

∑
t=1

ρτ (yt − ft(βββ )) ,

AT := E

[
T−1

τ(1− τ)
T

∑
t=1

∇
′ ft(βββ

o)∇ ft(βββ
o)

]
,

DT := E

[
T−1

T

∑
t=1

ht (0|Ft−1)∇
′ ft(βββ

o)∇ ft(βββ
o)

]
,

ετ t := yt − ft(βββ
o),

(3.10)

and ht(0|Ft−1) is denoted as the probability density of ετ t evaluated at 0 condi-
tional on the information set Ft−1. III(p+1)×(p+1) is the (p+1)× (p+1) identity
matrix.

The above theorem is useful for quantile model (mis)specification tests. For in-
stance, Wald tests can be used to check whether the current model is correctly

5See the assumption C0 of Engle and Manganelli (2004). We also apply this assumption through-
out this chapter. That is to say, all the random variables considered in this chapter are assumed
on a complete prbability space (Ω,F ,P).
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specified by testing the validity of a more parsimonious nested model. To per-
form such a quantile model specification test, it often requires to estimate AT ,
ht(0|Ft−1) and DT . When using traditional estimates ÂT , {ĥt(0|Ft−1)}, D̂T of
AT , {ht(0|Ft−1)} and DT respectively, we found considerable size distortions
in inference tests on CAViaR models in general. We will show that the reason
lies in the inaccuracy of {ĥt(0|Ft−1)} in the next subsection. In order to spot
the discrepancy in approximating {ht(0|Ft−1)}, we need a clear picture on how
{ht(0|Ft−1)} comes up into the asymptotic normality of the model parameter es-
timator. Doing so, we can see the role of {ht(0|Ft−1)} and whether a sequence{

ĥt(0|Ft−1)
}

is capable to achieve the same role in practice. Let us review the
proof of Engle and Manganelli (2004) for Theorem 5 below.

The proof of Engle and Manganelli (2004) is obtained by applying Theorem 3

of Huber et al. (1967) onto T−1/2
T

∑
t=1

(
1{

yt≤ ft(β̂ββ )
}− τ

)
∇
′ ft(β̂ββ ) and the central

limit theorem onto T−1/2
T

∑
t=1

(
1{yt≤ ft(βββ

o)}− τ

)
∇
′ ft(βββ

o). Huber’s conditions are

verified in the proof before applying Huber’s theorem. Denote

Hitt(βββ ) := 1{yt≤ ft(βββ )}− τ,

gt(βββ ) := ∇ ft(βββ ).
(3.11)

Hitt(βββ ) gives value −τ every time yt exceeds ft(βββ ) and 1− τ otherwise. With
the true underlying parameter βββ

o, {Hitt(βββ
o)} is a martingale difference sequence

with respect to {Ft−1}. It is easy to get that T−1/2
T

∑
t=1

Hitt(βββ
o)gt(βββ

o) follows

the central limit theorem because
{

Hitt(βββ
o)gt(βββ

o)
}

is a martingale difference
sequence with the assumption AN1 of Engle and Manganelli (2004) on its uni-
formly bounded second moment. So we get that

T−1/2
T

∑
t=1

Hitt(βββ
o)gt(βββ

o)
d∼ N(0,AT ). (3.12)

It has also been proved by Engle and Manganelli (2004) that

T−1/2
T

∑
t=1

Hitt(β̂ββ )gt(β̂ββ ) = op(1). (3.13)

Next, we are going to manifest {ht(0|Ft−1)} in the proof in a way which makes
the appearance of {ht(0|Ft−1)} more intuitive. We rewrite Hitt(β̂ββ )gt(β̂ββ ) as fol-
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lows:

Hitt(β̂ββ )gt(β̂ββ ) =
(

Hitt(βββ
o)+Hitt(β̂ββ )−Hitt(βββ

o)
)

gt(β̂ββ )

= Hitt(βββ
o)gt(β̂ββ )+

(
Hitt(β̂ββ )−Hitt(βββ

o)
)

gt(β̂ββ ).
(3.14)

Take expectation on the both sides of Equation (3.14) and get

T−1/2
T

∑
t=1

E
[
Hitt(β̂ββ )gt(β̂ββ )

]
= T−1/2

T

∑
t=1

E
[
Hitt(βββ

o)gt(β̂ββ )+
(

Hitt(β̂ββ )−Hitt(βββ
o)
)

gt(β̂ββ )
]

= T−1/2
T

∑
t=1

E
[
E
[
Hitt(βββ

o)
∣∣Ft−1

]
gt(β̂ββ )

]
+T−1/2

T

∑
t=1

E
[(

Hitt(β̂ββ )−Hitt(βββ
o)
)

gt(β̂ββ )
]

= T−1/2
T

∑
t=1

E
[
E
[(

Hitt(β̂ββ )−Hitt(βββ
o)
)∣∣∣Ft−1

]
gt(βββ

o)
]

+T−1/2
T

∑
t=1

E
[
E
[(

Hitt(β̂ββ )−Hitt(βββ
o)
)∣∣∣Ft−1

](
gt(β̂ββ )−gt(βββ

o)
)]

= T−1/2
T

∑
t=1

E
[
E
[(

Hitt(β̂ββ )−Hitt(βββ
o)
)∣∣∣Ft−1

]
gt(βββ

o)
]

+T−1/2
T

∑
t=1

E
[
E
[(

Hitt(β̂ββ )−Hitt(βββ
o)
)∣∣∣Ft−1

]]
Op(‖β̂ββ −βββ

o‖∞),

(3.15)
where ‖·‖∞ is the supremum norm of vectors. And

E
[(

Hitt(β̂ββ )−Hitt(βββ
o)
)∣∣∣Ft−1

]
= P

{
yt ≤ ft(β̂ββ )

∣∣∣Ft−1

}
−P
{

yt ≤ ft(βββ
o)
∣∣Ft−1

}
= Ft

(
ft(β̂ββ )

∣∣∣Ft−1

)
−Ft

(
ft(βββ

o)
∣∣Ft−1

)
= F ′t

(
ft(βββ

o)
∣∣Ft−1

)(
ft(β̂ββ )− ft(βββ

o)
)
+Op

(
ft(β̂ββ )− ft(βββ

o)
)2

= ht(0|Ft−1)

((
β̂ββ −βββ

o
)′

∇ ft(βββ
o)+Op(‖β̂ββ −βββ

o‖2
∞)

)
+Op(‖β̂ββ −βββ

o‖2
∞)

=
(

β̂ββ −βββ
o
)′

ht(0|Ft−1)∇ ft(βββ
o)+Op(‖β̂ββ −βββ

o‖2
∞),

(3.16)
where Ft (·|Ft−1) is the probability density function of yt conditional on Ft−1,
and ht(0|Ft−1) = F ′t

(
ft(βββ

o)
∣∣Ft−1

)
. Substituting (3.16) into (3.15) gives

T−1/2
T

∑
t=1

E
[
Hitt(β̂ββ )gt(β̂ββ )

]
=
(

β̂ββ −βββ
o
)′
·T−1/2

T

∑
t=1

E
[
ht(0|Ft−1)∇ ft(βββ

o)∇′ ft(βββ
o)
]

+Op(T 1/2‖β̂ββ −βββ
o‖2

∞).

(3.17)
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Success in applying Huber’s theorem gives

T−1/2
T

∑
t=1

E
[
Hitt(β̂ββ )gt(β̂ββ )

]
=−T−1/2

T

∑
t=1

(
1{yt≤ ft(βββ

o)}− τ

)
∇
′ ft(βββ

o)+op(1)

(3.18)
Therefore, the asymptotic normality of T 1/2

(
β̂ββ −βββ

o
)

is obtained by substitut-
ing (3.12) and (3.17) into (3.18).

From the above derivation, it is clear that the role of ht(0|Ft−1) is actually an
approximation to F ′t

(
ft(β̄ββ )

∣∣∣Ft−1

)
in which β̄ββ is between βββ

o and β̂ββ . This role
comes to the surface of (3.16) using the fact that

Ft

(
ft(β̂ββ )

∣∣∣Ft−1

)
−Ft

(
ft(βββ

o)
∣∣Ft−1

)
= F ′t

(
ft(β̄ββ )

∣∣∣Ft−1

)(
∇
′ ft(βββ

o)
(

β̂ββ −βββ
o
))

(3.19)
by the Mean Value Theorem. This approximating role of ht(0|Ft−1) sets a clear
mission of any ĥt(0|Ft−1) supposed to achieve, which can be used to examine an
estimator for ht(0|Ft−1) as well as to propose an improved estimation method.
In next subsection, we are going to examine the performances of some existing
methods for estimating ht(0|Ft−1) and the role of ht(0|Ft−1) will help to find
out the intrinsic defects of those methods.

3.3.2 Existing methods for CAViaR covariance matrix estimation

Based on the literature on quantile regressions, in general there are two ways to
estimate {ht (0|Ft−1)} in DT with {ετ t} being potentially non-i.i.d.. One is re-
ferred to as the Hendricks Koenker Sandwich Approach (Hendricks and Koenker,
1992; Koenker, 2005) analogous to the finite difference idea resulting in the esti-

mator ĥt
f d
(0|Ft−1) for ht(0|Ft−1) as follows:

ĥt
f d
(0|Ft−1) =

2∆τT

ft(βββ τ+∆τT
)− ft(βββ τ−∆τT

)
, (3.20)

where ∆τT is subject to 0 < τ±∆τT < 1 with ∆τT → 0 as T →∞. The other one
is referred to as the Powell Sandwich (Powell, 1991; Koenker, 2005) based on
the kernel density estimation idea resulting in the estimator ĥt

kernel
(0|Ft−1) for

ht(0|Ft−1) as follows:

ĥt
kernel

(0|Ft−1) =
P{yt ≤ ft(βββ τ)+ cT |Ft−1}−P{yt ≤ ft(βββ τ)− cT |Ft−1}

2cT

≈ 1
2cT

K
(

yt − ft(βββ τ)

2cT

) (3.21)
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where K(·) is a suitable kernel function with bandwidth 2cT and cT → 0 as
T → ∞. As we can see in (3.21), one kernel function is applied throughout {yt}
with yt − ft(βββ τ) being the only distinguishable information for ĥt

kernel
(0|Ft−1).

Therefore, this kernel method does not capture sufficient information to dis-
tinguish time-varying conditional distributions of {yt}, and consequently can-
not fully adapt to the time-variations. Additionally, the choice of the kernel
function K(·) and the bandwidth parameter cT are still in a lot of nettlesome
questions in practice. A similar issue in the Hendricks Koenker Sandwich Ap-
proach is on choosing ∆τT and extra error resulted from estimating ft(βββ τ+∆τT

)
and ft(βββ τ−∆τT

).

The estimation method adopted by Engle and Manganelli (2004) is a form of the
Powell Sandwich as follows:

ĥt
ker

(0|Ft−1) =
1{|yt− ft(β̂ββ τ )|<ĉT }

2cT
(3.22)

As suggested by Koenker (2005) and Machado and Silva (2013), the bandwidth
ĉT generally adopted is defined as follows:

ĉT = k̂T
[
Φ
−1(τ +mT )−Φ

−1(τ−mT )
]
, (3.23)

where mT is defined as

m̂T = T−
1
3

(
Φ
−1(1− 0.05

2
)

) 2
3
(

1.5(φ(Φ−1(τ)))2

2(Φ−1(τ))2 +1

) 1
3

, (3.24)

with Φ(·) and φ(·) being the cumulative distribution and probability density
functions of N(0,1) respectively. And k̂T is defined as the median absolute devi-
ation of the conditional τ-th quantile regression residuals.

Wald tests are applied in this subsection to check the performances of the above
estimation methods for CAViaR models.

First, we consider the following candidate model specifications for the condi-
tional τ-th (τ ∈ (0,1)) quantile of a time series {yt} with ft(βββ τ) denoted as the
τ-th quantile of yt conditional on the information set Ft−1.

• full specification:

ft(βββ
FM
τ ) = β

FM
0 (τ)+β

FM
1 ft−1(βββ

FM
τ )+β

FM
2 (yt−1)

++β
FM
3 (yt−1)

− ,
(3.25)

where the operators (·)+ and (·)− are defined as (x)+ = max(x,0),(x)− =
−min(x,0).
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• restrictive model 1:

ft(βββ
R1
τ ) = β0(τ)

R1 +β
R1
1 ft−1(βββ

R1
τ )+β

R1
2 |yt−1|

= β0(τ)
R1 +β

R1
1 ft−1(βββ

R1
τ )+β

R1
2 (yt−1)

++β
R1
2 (yt−1)

− .
(3.26)

• restrictive model 2:

ft(βββ
R2
τ ) = β

R2
0 (τ)+β

R2
1 ft−1(βββ

R2
τ )+β

R2
2 yt−1

= β
R2
0 (τ)+β

R2
1 ft−1(βββ

R2
τ )+β

R2
2 (yt−1)

+−β
R2
2 (yt−1)

− .
(3.27)

The models (3.26) and (3.27) are nested within model (3.25). Now let us con-
sider the Wald test on models (3.25) and (3.26) first. Simulate a time series {yt}
with its DGP specified as the model (3.26) with the underlying parameter vector
βββ

R1
ut

= [F−1
N(0,1)(ut),0.2,0.3]′, where {ut}

i.i.d.∼ U (0,1) and F−1
N(0,1)(·) is the inverse

standard normal probability distribution function. The sample size of each sim-
ulated sample is 4000. Conditional 50%-th quantiles are estimated for each of
total 1000 simulated samples in this DGP by regressing the sample onto the full
model (3.25). The Wald test implemented here consists of the null hypothesis of
the form H0 : Rβββ

FM
τ = γ , where R = [0,0,1,−1], γ = 0, and β̂ββ τ is the estimator

of the full model parameter vector in (3.25). The Wald test statistic denoted by
WT is formulated (Weiss, 1991) as follows:

WT = T
(

Rβ̂ββ τ − γ

)′ [
RD̂−1

T ÂT D̂−1
T R′

]−1(
Rβ̂ββ τ − γ

)
, (3.28)

where ÂT and D̂T are estimates for AT and DT in (3.10) respectively. It is
straightforward to obtain ÂT and D̂T by plugging in β̂ββ τ and

{
ĥt (0|Ft−1)

}
,

i.e., 
ÂT = T−1

τ(1− τ)
T

∑
t=1

∇
′ ft(β̂ββ τ)∇ ft(β̂ββ τ),

D̂T = T−1
T

∑
t=1

ĥt (0|Ft−1)∇
′ ft(β̂ββ τ)∇ ft(β̂ββ τ).

Notations on D̂T to distinguish different estimators used for {ht (0|Ft−1)} are
given by

D̂ker
T = (2T ĉT )

−1
T

∑
t=1

1{|yt− ft(β̂ββ τ )|<ĉT }
∇
′ ft(β̂ββ τ)∇ ft(β̂ββ τ), (3.29)

D̂ f d
T = (T )−1

T

∑
t=1

2∆τT

ft(βββ τ+∆τT
)− ft(βββ τ−∆τT

)
∇
′ ft(β̂ββ τ)∇ ft(β̂ββ τ), (3.30)
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where ĉT is determined as (3.23).

We are going to examine each element in the estimation of DT . The analytic
solution to ht (0|Ft−1) can be obtained as follows:

ht (0|Ft−1) =
∂τ

∂ ft(βββ τ)
=

1
∂β0(τ)

∂τ
+β1

∂ ft−1(βββ τ )
∂τ

=
1

∂β0(τ)
∂τ

n

∑
i=0

β
i
1 +β

n+1
1

∂ ft−n−1(βββ τ)

∂τ

= (1−β1)
1

β ′0(τ)

(3.31)

where β ′0(τ) := ∂β0(τ)
∂τ

. The last line is obtained by knowing |β1| < 1. The an-
alytic solution to ht (0|Ft−1) is used to help identify inaccurate elements in D̂T

by comparing the test performances of using D̂ker
T , D̂ f d

T and the following

D̂h0
T = (T )−1

T

∑
t=1

(1−β1)
1

β ′0(τ)
∇
′ ft(β̂ββ τ)∇ ft(β̂ββ τ). (3.32)

The test performances of using D̂ker
T , D̂ f d

T and D̂h0
T are shown in Table 3.1 and 3.2,

which are compared together with the Wald test result using the true underlying
parameter vector βββ

FM
τ = [F−1

N(0,1)(τ),0.2,0.3]
′,τ ∈ (0,1) into

D̂0
T = (T )−1

T

∑
t=1

(1−β1)
1

β ′0(τ)
∇
′ ft(βββ τ)∇ ft(βββ τ)

=
(1−0.2) φ(F−1

N(0,1)(τ))

T

T

∑
t=1

∇
′ ft(βββ

o
τ)∇ ft(βββ

o
τ),

(3.33)

where φ(·) is the probability density function of N(0,1).

The size performances of the Wald tests on the models (3.25) and (3.26) using
different DT estimators are listed in Table 3.1 in which each estimated size is ob-
tained by the percentage rejection rate among the 1000 samples of T = 4000 in
the DGP (3.26). Analogously, we implement the Wald test on models (3.25) and
(3.27) with the underlying DGP {yt} specified as the model (3.27) with the un-

derlying parameter vector βββ
R2
ut

= [F−1
N(0,1)(ut),0.2,0.3]′, where {ut}

i.i.d.∼ U (0,1).
The number of observations in each stimulated sample from this DGP is 4000.
Conditional 50%-th quantiles are estimated for each of 1000 simulated samples
by regressing the sample onto the full model (3.25). The Wald test implemented
in this case consists of the null hypothesis of the form H0 : Rβββ

FM
τ = γ , where

R = [0,0,1,1], γ = 0, and β̂ββ τ is the estimator of the full model regression (3.25).
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In result, the size performances of the Wald tests on (3.25) and (3.27) are listed
in Table 3.2.

From Table 3.1 and 3.2, we can see large size distortions with D̂ f d
T , unlike D̂ker

T ,
D̂h0

T or D̂0
T that are performing in line with the nominal size. This compari-

son points out the crucial element estimation to the accuracy of D̂T which is{
ĥt (0|Ft−1)

}
. To check whether {ĥt

ker
(0|Ft−1)} is capable to achieve the role

of {ht (0|Ft−1)} robustly for time-varying conditional probability densities, we
consider the following DGP:

yt = ft(βββ
R3
ut
) = β

R3
0 (ut)

√
(yt−1)

++β
R3
1 ft−1(βββ

R3
τ )+β

R3
2 |yt−1| (3.34)

= β
R3
0 (ut)

√
(yt−1)

++β
R3
1 ft−1(βββ

R3
τ )+β

R3
2 (yt−1)

++β
R3
2 (yt−1)

− ,

(3.35)

where {ut}
i.i.d.∼ U (0,1) and the underlying parameters are given as

βββ
R3
ut

= [F−1
N(0,1)(ut),0.2,0.3]′. The analytic form of the corresponding conditional

probability density ht (0|Ft−1) of yt at its τ-th quantile ft(βββ τ) given Ft−1 can
be derived out as follows:

ht (0|Ft−1) =

(
∂ ft(βββ τ)

∂τ

)−1

=

(
∂β0(τ)

∂τ

√
(yt−1)

++β1
∂ ft−1(βββ ut

)

∂τ

)−1

=

(
∂β0(τ)

∂τ

∞

∑
i=1

β
i−1
1

√
(yt−i)

+

)−1

,

(3.36)
where the first equation is obtained by iteratively rewriting ∂ ft−i(βββ τ )

∂τ
at each i

and knowing |β1| < 1. This analytic form of ht (0|Ft−1) in (3.34) shows that
{ht (0|Ft−1)} indeed is time-varying and nonzero with probability one.

We simulate 1000 samples from the DGP (3.34) with T = 5000, and estimate
the conditional 50%-th quantiles of each sample by regressing the sample onto
the full model specification (3.35). The Wald test described as (3.28) with R =
[0,0,1,−1] is performed on these 1000 samples and the size performance is pre-
sented in Table 3.3. We see a large size distortion with the kernel method D̂ker

T
in Table 3.3. More tests are conducted for different DGPs and together with the
results are presented in Appendix 3.E. Based on our test results, we see that the
kernel method for estimating {ht (0|Ft−1)} is not robust and cannot fully adapt
to time-varying conditional probability densities.

Estimating {ht (0|Ft−1)} robustly has to be achieved in order to ensure the reli-
ability of CAViaR analysis based on the asymptotic properties of CAViaR model
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parameter estimators. In seeking for improving the accuracy of
{

ĥt (0|Ft−1)
}

,
we bear in mind two guidances. One is the role of {ht (0|Ft−1)} on how it links
sample elements with the corresponding limit behaviours, see Section 3.3.1. The

other guidance is the fundamental flaws of {ĥt
ker

(0|Ft−1)} and {ĥt
f d
(0|Ft−1)}

in their accuracy. In terms of {ĥt
f d
(0|Ft−1)}, ∆τT needs to be determined prop-

erly and two more quantile regressions need to be preformed in order to obtain
β̂ββ τ+∆τT

and β̂ββ τ−∆τT
. The effect of this extra estimation error is crucial to the

performance of {ĥt
f d
(0|Ft−1)}. Although {ĥt

ker
(0|Ft−1)} does not need extra

quantile regressions, it still requires a proper choice on the kernel function K(·)
and the bandwidth ĉT . Remarkably, {ĥt

ker
(0|Ft−1)} does not differentiate the

observations within the bandwidth regardless of the number of the observations
in the bandwidth while using the kernel function 1{|yt− ft(β̂ββ τ )|<ĉT }

. Therefore, it
is desirable to get rid of choosing bandwidth ∆τT or cT and the kernel func-
tion K(·) in the estimation. In the next subsection, a robust estimation method
for {ht (0|Ft−1)} is developed up without the need in choosing a bandwidth or a
kernel function.

3.3.3 Adaptive random bandwidth method

We have noticed that the accuracy of the {ht(0|Ft−1)} estimation is crucial to
the performance of inference tests based on the asymptotic normality of CAViaR

model parameter estimators. It is also well known that {ĥt
f d
(0|Ft−1)} suffers

both from the error in estimating ft(βββ τ+∆τ) and ft(βββ τ−∆τ) and from choosing

a proper ∆τT . On the other hand, {ĥt
ker

(0|Ft−1)} has some fundamental prob-

lems. First of all, {ĥt
ker

(0|Ft−1)} cannot fully adapt to time-varying conditional
distributions of time series due to the fact that the same kernel function K(·) and
only timely information (yt− ft) are used in estimating ht(0|Ft−1) for all t. Sec-
ond, finding a proper kernel function K(·) with a proper bandwidth cT still faces
a lot nettlesome problems in practice. Neither of these two methods is practi-
cally robust. The goal in this subsection is to develop an estimation method for
{ht(0|Ft−1)}which can adapt to time-variation characteristics of CAViaR DGPs
and is robust in practice without the need to determine a proper bandwidth. We
name this estimation method as the adaptive random bandwidth (ARB) method
which can reliably bridge asymptotic properties of CAViaR models in theory
with CAViaR applications.

The idea of this method is inspired by viewing the role of {ht (0|Ft−1)} on
how it links sample elements with the corresponding limit behaviours, see Sec-
tion 3.3.1. Reviewing equation (3.16), we can explicitly formulate {ht (0|Ft−1)}
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as follows:

ht (0|Ft−1) = E
yt ,β̂ββ

 Hitt(β̂ββ )−Hitt(βββ
o)

∇′ ft(βββ
o)
(

β̂ββ −βββ
o
)
∣∣∣∣∣∣Ft−1

 , (3.37)

which actually is a conditional expectation taken with respect to random vari-
ables yt and β̂ββ . We use the subscript in E to clarify the expectation is taken
with respect to specific random variable(s) hereafter. Considering this role of
{ht (0|Ft−1)} as well as equation (3.19), we are enlightened to use random band-

width ∇′ ft(β̂ββ )
(

bbbi− β̂ββ

)
with

√
T
(

bbbi− β̂ββ

)
d∼ N(000,VVV ddd) and i = 1,2, . . . ,n. We

can set VVV ddd = I(p+1)×(p+1) to start with. After sufficient n times Monte Carlo

simulating bbbi− β̂ββ from N(000,VVV ddd), an estimator of ht (0|Ft−1) can be achieved as
follows:

ĥt(0|Ft−1) := n−1
n

∑
i=1

1{
yt≤ ft(β̂ββ )

}−1{
yt≤ ft(β̂ββ )+∇′ ft(β̂ββ )

(
bbbi−β̂ββ

)}
−∇′ ft(β̂ββ )

(
bbbi− β̂ββ

) . (3.38)

After achieving the above ĥt(0|Ft−1), we can estimate D̂T so as to update VVV ddd =

D̂−1
T ÂT D̂−1

T . Redo the simulation of {bbbi− β̂ββ}n
i=1 with the updated VVV ddd . We can

estimate ĥt(0|Ft−1) and D̂T again. This estimation repetition can mitigate the
influence of an arbitrary chosen ĥt(0|Ft−1) in ARB.

Compared to the Powell Sandwich estimation (3.21) with cT , our proposed
method uses random bandwidth ∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
and Monte Carlo simulations

such that it can adapt to time-varying conditional distributions of CAViaR DGPs
by approaching to the role of {ht (0|Ft−1)} as in (3.19) and in (3.37). The
adaptive random bandwidth method can remarkably outperform the Powell
Sandwich method in the applications on DGPs of time-varying conditional
distributions, as shown in Table 3.3. In theory, the adaptive random bandwidth
method is valid as long as bbbi− β̂ββ and βββ

o− β̂ββ have the same order of magnitude.
We formally establish this adaptive random bandwidth method in Theorem 6.

Theorem 6 (Adaptive Random Bandwidth Method).
Assume the conditions and the asymptotic normality result in Theorem 5. Choose
an arbitrary positive definite symmetric matrix VVV ddd . Under the condition that

√
T
(

bbbi− β̂ββ

)
i.i.d.∼ N(000,VVV ddd), i = 1, . . . ,n, (3.39)

and ∣∣∣∣∇′ ft(β̂ββ )(bbbi− β̂ββ

)∣∣∣∣ 6= 0,
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the adaptive random bandwidth estimator for ht(0|Ft−1) is formulated as fol-
lows:

ĥt(0|Ft−1) =


n−1

n

∑
i=1

1{
yt≤ ft(β̂ββ )+∇′ ft(β̂ββ )

(
bbbi−β̂ββ

)}−1{
yt≤ ft(β̂ββ )

}
∇′ ft(β̂ββ )

(
bbbi− β̂ββ

) , when yt 6= ft(β̂ββ ),

0, when yt = ft(β̂ββ ),
(3.40)

such that

E
yt ,β̂ββ

[
ĥt(0|Ft−1)

∣∣∣∣Ft−1

]
p−→ ht(0|Ft−1)

as n→ ∞. 6

Proof. See Appendix 3.C.

We separate the case of yt = ft(β̂ββ ) from others to maintain the convergence of the
ARB estimator due to limx→0

1
x = ∞. Zero given to ĥt(0|Ft−1) at yt = ft(β̂ββ ) also

enables the ARB estimator to approximate ht(0|Ft−1) from the left and from the
right in half weights respectively in expectation, see the proof of Theorem 6. The
convergence property of the partial sum in the sequence {ĥt(0|Ft−1)} by ARB
is given in Corollary 7.

Corollary 7. Under the conditions of Theorem 6, the adaptive random band-
width estimator {ĥt(0|Ft−1)} has the following property:

1
T

T

∑
t=1

ĥt(0|Ft−1)
m.s.−→ 1

T

T

∑
t=1

ht(0|Ft−1), (3.41)

as T,n→ ∞.

Proof. See Appendix 3.C.

It is clear that both ε̂t := yt − ft(β̂ββ ) and ∇′ ft(β̂ββ ) are taken into account by ARB
to approximate ht(0|Ft−1). In order to identify how ε̂t and ∇′ ft(β̂ββ ) jointly shape
ĥt(0|Ft−1), we would like to formulate ĥt(0|Ft−1) in Theorem 6 into an analytic

6We regard the least (p+1) absolute residuals in {|yt− ft(β̂ββ )|}T
t=1 as zeros. In fact, iterations of

a simplex-based direct search method like the Nelder–Mead method for optimizing (p+1) pa-
rameters terminates at the vertices of a simplex in the parameter space (Lagarias et al., 1998).
That is to say, the iterations in optimizing the τ-th quantile regression objective function termi-
nate with (p+1) elements of {(τ−1{yt− ft (βββ )<0})(yt− ft(βββ ))} solved to be zeros. Therefore,

we set ĥt(0|Ft−1) = 0 at the least (p+1) absolute residuals in {|yt− ft(β̂ββ )|}T
t=1 in all the tests

throughout this chapter.

60



Section 3.3

expression in terms of ε̂t and ∇′ ft(β̂ββ ) so as to manifest the relationship. The
analytic form of ĥt(0|Ft−1) by ARB described in Theorem 6 is presented in
Corollary 8.

Corollary 8. Under the conditions of Theorem 6, we can get the analytic form
of ĥt(0|Ft−1) as follows:

ĥt(0|Ft−1) =


1

2δ∇t

√
2π

E1

(
ε̂2

t

2δ 2
∇t

)
, when ε̂t 6= 0,

0, when ε̂t = 0,

(3.42)

where ε̂t := yt − ft(β̂ββ ), δ∇ :=
√

∇′ ft(β̂ββ )VVV ddd∇ ft(β̂ββ )
T = T−

1
2 ‖∇ ft‖2, and

E1(s) :=
∫

∞

s x−1e−xd x is a special integral known as the exponential integral or
the incomplete gamma function Γ(0,s).

Proof. See Appendix 3.C.

For visually checking the roles of ε̂t and δ∇t in the analytic ĥt(0|Ft−1) in Corol-
lary 8, we present a level plot of the analytic ĥt(0|Ft−1) over ε̂t and δ∇t in Fig-
ure 3.2 which uses colors to differentiate different ranges of ĥt(0|Ft−1). It is
straightforward to get that the analytic ĥt(0|Ft−1) is decreasing in |ε̂t | as also
shown in Figure 3.2. However, δ∇t , or say T−

1
2 ‖∇ ft‖2, can shift ĥt(0|Ft−1)

by reflecting on how rare an ε̂t is observed given the information set Ft−1 and
the model specification. That is how the information of δ∇t in ARB shapes
ĥt(0|Ft−1) adaptively to time-varying conditional probability densities.

The ARB estimator ĥt(0|Ft−1) via simulations in Theorem 6 performs as ro-
bustly as the analytic ARB estimator ĥt(0|Ft−1) in Corollary 8, as shown in
Table 3.1, 3.2 and 3.3. The analytic way is faster than the simulation one. How-
ever, the ARB estimator via simulations is more intuitive and more flexible to
adapt to a very different distribution for simulating {bbbi− β̂ββ}n

i=1.

DT need to be estimated consistently for inference tests on CAViaR models based
on the asymptotic normality of the model parameter estimator. {ĥt(0|Ft−1)} by
ARB facilitates our estimation on DT by just plugging in β̂ββ and {ĥt(0|Ft−1)}.
The resulted estimator D̂arb

T has the consistency property presented in Theo-
rem 9.

Theorem 9. Under the conditions of Theorem 6, we can get that

D̂arb
T

p−→DT , (3.43)
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Figure 3.2: Level plot for the analytic form of ĥt(0|Ft−1) by ARB in Corollary 8.

as T → ∞ and n→ ∞, where D̂arb
T := T−1

T

∑
t=1

ĥt (0|Ft−1)∇
′ ft(β̂ββ τ)∇ ft(β̂ββ τ) and

ĥt (0|Ft−1) is the adaptive random bandwidth estimator shown in (3.40).

Proof. See Appendix 3.C.

The adaptive random bandwidth (ARB) method is intuitive, robust and simple
in practice, which can adapt to time-varying conditional distributions without
a specific bandwidth or kernel function. A comparison of size performances of
Wald tests using ARB with other competing methods are presented in Tables 3.1,
3.2 and 3.3. We also find that updating VVV ddd improves the size performance with
use of α levels in the interquartile range around but not much for α levels like
1%,5%. More test results are presented in Appendix 3.E with changing sam-
ple size, quantile index and varying DGPs. The performance of ARB is robust.
ARB can also be easily generalized to apply on multivariate quantile regressions,
which is beyond the scope of this chapter but in the interest of multivariate quan-
tile regressions for future research. ARB also has the potential to achieve the
second-order accuracy to Wald tests of nonlinear restrictions (Phillips and Park,
1988; de Paula Ferrari and Cribari-Neto, 1993) in quantile regressions, which we
would like to leave for future research.
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Table 3.1: The size performances of the Wald test on the restricted model (3.26) to (3.25)
with different estimation methods for {ht(0|Ft−1)} (βββ R1

0.5 = [0,0.2,0.3,0.3],R =
[0,0,1,−1],T = 4000)

Tests size: α = 0.01 α = 0.05 α = 0.10 α = 0.20
Using D̂0

T 0.017 0.063 0.127 0.215
Using D̂h0

T 0.016 0.066 0.131 0.215
Using D̂arb

T (n = 104, VVV ddd = III4×4 with no update) 0.012 0.052 0.098 0.196
Using D̂arb

T (analytic, VVV ddd = III4×4 with no update) 0.012 0.052 0.102 0.198
Using D̂arb

T (n = 104, 2 times updating VVV ddd) 0.014 0.062 0.126 0.221
Using D̂arb

T (analytic, 2 times updating VVV ddd) 0.014 0.061 0.125 0.219
Using D̂ f d

T (∆τT = 10
T ) 0.080 0.150 0.201 0.272

Using D̂ker
T 0.017 0.069 0.129 0.223

Table 3.2: The size performances of the Wald test on the restricted model (3.27) to (3.25)
with different estimation methods for {ht(0|Ft−1)} (βββ R2

0.5 = [0,0.2,0.3,−0.3],R =
[0,0,1,1],T = 4000)

Tests size: α = 0.01 α = 0.05 α = 0.10 α = 0.20
Using D̂0

T 0.008 0.050 0.104 0.206
Using D̂h0

T 0.007 0.050 0.105 0.207
Using D̂arb

T (n = 104, VVV ddd = III4×4 with no update) 0.01 0.046 0.084 0.168
Using D̂arb

T (analytic, VVV ddd = III4×4 with no update) 0.009 0.044 0.083 0.168
Using D̂arb

T (n = 104, 2 times updating VVV ddd) 0.011 0.049 0.098 0.192
Using D̂arb

T (analytic, 2 times updating VVV ddd) 0.01 0.048 0.097 0.19
Using D̂ f d

T (∆τT = 10
T ) 0.049 0.104 0.153 0.229

Using D̂ker
T 0.011 0.05 0.094 0.203

Table 3.3: The size performances of the Wald test on the restricted model (3.34) to (3.35)
with different estimation methods for {ht(0|Ft−1)} (βββ R3

0.5 = [0,0.2,0.3,0.3],R =
[0,0,1,−1],T = 2000)

Tests size: α = 0.01 α = 0.05 α = 0.10 α = 0.20
Using D̂arb

T (n = 104, VVV ddd = III4×4 with no update) 0.024 0.052 0.095 0.169
Using D̂arb

T (analytic, VVV ddd = III4×4 with no update) 0.023 0.054 0.093 0.168
Using D̂arb

T (n = 104, 2 times updating VVV ddd) 0.021 0.055 0.095 0.188
Using D̂arb

T (analytic, 2 times updating VVV ddd) 0.022 0.055 0.098 0.186
Using D̂ker

T 0.067 0.118 0.16 0.256
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3.4 Empirical Results

We study four US stock prices which are the Dow Jones Composite Average
(DJCA), the NASDAQ 100 Index (NASDAQ100), the S&P 500, and the Wilshire
5000 Total Market Index (Will5000ind). We implement inference tests using the
adaptive random bandwidth method with n= 1000 and VVV ddd = III(p+1)×(p+1) which
is not updated in simulations in this section. Each stock price time series has
2448 daily prices, ranging from 8th April 2010 to 30th December 2019. The
price data were converted to return rates by multiplying 100 with the difference
of the natural logarithm of the daily prices. The obtained return time series of
each stock contains 2447 observations which of the last 400 observations are
used for the out-of-sample testing after the first 2047 observations are used to
estimate the model.

The 5% 1-day VaRs of a return time series are the opposite conditional 5% 1-day
quantiles of this time series. There are four different CAViaR models consid-
ered in this section to model the conditional quantiles of the stock return time
series. The 5% 1-day VaRs are estimated via the four different CAViaR spec-
ifications and the estimation results are shown in Table 3.4, 3.5, 3.6 and 3.7
respectively. Each table contains the estimated parameters in a specified model,
the corresponding standard errors obtained by the adaptive random bandwidth
method with n = 1000 and VVV ddd = III(p+1)×(p+1), the resulted two-sided p-values on
parameter significance, the optimized value of the quantile regression objective
function (RQ), the percentage of times the VaR is exceeded, and the p-values
of dynamic quantile (DQ) tests, both in-sample and out-of-sample. The model
estimations, the in-sample DQ tests as well as the out-of-sample DQ tests in this
empirical study are set up in the same way of Section 6 of Engle and Manganelli
(2004).

• Adaptive CAViaR:

ft(β1) = ft−1(β1)+β1

{
[1+ exp(G[yt−1− ft−1(β1))])]

−1− τ

}
, (3.44)

where τ is the quantile index of interest.

• Symmetric absolute value CAViaR:

ft(βββ ) = β0 +β1 ft−1(βββ )+β2 |yt−1|. (3.45)

• Asymmetric slope CAViaR:

ft(βββ ) = β0 +β1 ft−1(βββ )+β2 (yt−1)
++β3 (yt−1)

− . (3.46)
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• Indirect GARCH(1,1):

ft(βββ ) =−
√

β0 +β1 ft−1(βββ )2 +β2 y2
t−1. (3.47)

The above four CAViaR specifications have been defined as the adaptive
CAViaR, the symmetric absolute value CAViaR, the asymmetric slope CAViaR,
and the indirect GARCH(1,1) respectively in the Section 3 of Engle and
Manganelli (2004). In the implementation of the adaptive model in this emprical
study, we follow Engle and Manganelli (2004) and set G = 10.

Table 3.4: The Asymmetric Slope Model (τ = 0.05)

Stock Name DJCA NASDAQ100 S&P500 Will5000ind

β̂0 -0.0538 -0.1366 -0.0772 -0.0803
s.e.(β̂0) 0.0192 0.0324 0.0283 0.0259
p-value(β̂0) 0.0051* 0.0000* 0.0063* 0.0019*

β̂1 0.8913 0.8536 0.8651 0.8613
s.e.(β̂1) 0.0276 0.0356 0.0344 0.0344
p-value(β̂1) 0.0000* 0.0000* 0.0000* 0.0000*

β̂2 -0.0175 0.0381 0.0264 0.0158
s.e.(β̂2) 0.0325 0.0717 0.0732 0.0831
p-value(β̂2) 0.5918 0.5950 0.7179 0.8487

β̂3 -0.3069 -0.3626 -0.4249 -0.4226
s.e.(β̂3) 0.0667 0.0673 0.1214 0.1153
p-value(β̂3) 0.0000* 0.0000* 0.0005* 0.0002*

RQ 205.1100 253.9000 215.3800 219.3200
Exceedance in-sample ( %) 5.0166 5.0639 5.0166 5.0166
Exceedance out-of-sample % 4.7326 4.8746 4.5906 4.5433
DQ in-sample (p value) 0.4306 0.5140 0.3094 0.4425
DQ out-of-sample (p value) 1.0000 1.0000 1.0000 1.0000

Comparing with the results in Section 6 of Engle and Manganelli (2004), we can
see the standard errors obtained by the adaptive random bandwidth method is
much smaller relatively to the size of estimated parameters. We use significance
level 5% to reject a parameter equal to zero as well as DQ tests. “ * ” denotes
the rejections in Table 3.4, 3.5, 3.6 and 3.7. Each of the four models shows
almost the same rejection results for the stock return time series. Remarkably,
it is observed that the coefficient β1 of the VaR autoregressive term is highly
significant from zero in all the four models for each stock return time series.
This further supports the standpoint of CAViaR specifications, confirming that
the phenomenon of volatility clustering can be associated with the autoregressive
VaR behaviour. The VaR exceedance in percentage indicates the realized risk
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Table 3.5: The Symmetric Absolute Value Model (τ = 0.05)

Stock Name DJCA NASDAQ100 S&P500 Will5000ind

β̂0 -0.0507 -0.1310 -0.0544 -0.0521
s.e.(β̂0) 0.0405 0.0641 0.0430 0.0315
p-value(β̂0) 0.2103 0.0410* 0.2064 0.0984

β̂1 0.8546 0.8127 0.8495 0.8676
s.e.(β̂1) 0.0418 0.0629 0.0544 0.0324
p-value(β̂1) 0.0000* 0.0000* 0.0000* 0.0000*

β̂2 -0.2375 -0.2492 -0.2485 -0.2161
s.e.(β̂2) 0.0266 0.0785 0.0775 0.0311
p-value(β̂2) 0.0000* 0.0015* 0.0013* 0.0000*

RQ 210.7300 263.0400 223.5300 227.3200
Exceedance in-sample (%) 5.0166 5.0166 5.0166 5.0166
Exceedance out-of-sample (%) 5.3952 5.2532 4.9219 4.9692
DQ in-sample (p value) 0.2306 0.3548 0.0470* 0.1537
DQ out-of-sample (p value) 1.0000 1.0000 1.0000 1.0000

Table 3.6: The indirect GARCH(1,1) (τ = 0.05)

Stock Name DJCA NASDAQ100 S&P500 Will5000ind

β̂0 0.0651 0.2152 0.0878 0.0758
s.e.(β̂0) 0.0325 0.1069 0.0384 0.0414
p-value(β̂0) 0.0450* 0.0442* 0.0223* 0.0670

β̂1 0.8741 0.7930 0.8290 0.8566
s.e.(β̂1) 0.0247 0.0444 0.0261 0.0258
p-value(β̂1) 0.0000* 0.0000* 0.0000* 0.0000*

β̂2 0.2551 0.3775 0.3638 0.2964
s.e.(β̂2) 0.2169 0.2031 0.2096 0.2041
p-value(β̂2) 0.2395 0.0631 0.0826 0.1465

RQ 209.4600 262.4600 222.1100 226.5200
Exceedance in-sample (%) 4.9692 5.0166 5.0639 5.0639
Exceedance out-of-sample (%) 5.3005 5.2059 4.6853 4.8273
DQ in-sample (p value) 0.3678 0.4108 0.2887 0.4216
DQ out-of-sample (p value) 1.0000 1.0000 1.0000 1.0000
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Table 3.7: The Adaptive Model (τ = 0.05)

Stock Name DJCA NASDAQ100 S&P500 Will5000ind

β̂1 -0.6980 -0.7027 -0.9827 -1.5480
s.e.(β̂1) 0.0768 0.0760 0.0520 0.0014
p-value(β̂1) 0.0000* 0.0000* 0.0000* 0.0000*

RQ 213.4500 272.7100 226.9600 231.9700
Exceedance in-sample ( %) 4.4487 4.8746 4.6380 4.3067
Exceedance out-of-sample % 4.7799 5.1585 4.8746 4.4960
DQ in-sample (p value) 0.6518 0.9802 0.9545 0.2118
DQ out-of-sample (p value) 1.0000 1.0000 1.0000 1.0000

level in applications. Dynamic quantile (DQ) tests based on the independence
information regarding {Hitt} are used to test model misspecification. We see
a rejection in the in-sample DQ test on the symmetric absolute value model for
the S&P500 but the realized VaR exceedances (in-sample and out-of-sample) are
much close to 5% in Table 3.5. So it can be complementary to judge CAViaR
model specifications by looking at both VaR exceedances and inference tests like
DQ tests.

In contract to the significance of β1, the coefficient β2 of (yt−1)
2 is insignifi-

cant in the indirect GARCH(1,1) model for all the stock return time series, see
Table 3.6. And the coefficient β2 of (yt−1)

+ is insignificant in the asymmetric
slope model, see Table 3.4. Although the coefficient of yt−1 is significant in the
symmetric absolute model for all the stock return time series (see Table 3.5), it
is mainly due to the significant explanatory role of (yt−1)

− based on the results
of the asymmetric slope model which the symmetric absolute model is nested in.
The significance results of β1 in the adaptive model for each stock return time
series suggest that the 5% 1-day VaR can be associated with its 1-day lagged
VaR violation which equals one if yt−1 ≤ ft−1 and zero otherwise. The signifi-
cance results together implies that negative movements of a stock is significantly
influential on its 5% 1-day VaR in the next day.

In terms of the model goodness of fit, we look at the RQ results. The asymmet-
ric slope model presents the lowest RQ result for each stock return time series
among the four models despite that it has the most coefficients.

Overall, all the four stock return time series present the same strong associations
with the lagged 5% 1-day VaR in interpreting the present 5% 1-day VaR. The
asymmetric slope model and the adaptive CAViaR are satisfying for all the four
stock returns in terms of data interpretation and model performance concerns.
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3.5 Conclusions
We found that the inference test performance in CAViaR models is not robust
and unsatisfying due to the estimation of the conditional probability densities of
time series. We found that the existing density estimation methods cannot fully
adapt to time-varying conditional probability densities of CAViaR time series.
So in this chapter we have developed a method called adaptive random band-
width which can robustly approximate the time-varying conditional probability
densities of CAViaR time series by Monte Carlo simulations. This method not
only avoids the haunting problem of choosing an optimal bandwidth but also
ensures the reliability of CAViaR analysis based on the asymptotic normality
of the model parameter estimator. In theory, our proposed method can be ex-
tended to general quantile regressions including multivariate cases easily and ro-
bustly. This method also has the potential to achieve the second-order accuracy
to Wald tests of nonlinear restrictions (Phillips and Park, 1988; de Paula Ferrari
and Cribari-Neto, 1993) in quantile regressions.
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3.A Appendix: Nonlinearity of Parameters in CAViaR
Models

Nonlinearity of parameters in CAViaR models differentiates CAViaR from linear
quantile regressive models. In this appendix, we would like to illustrate the non-
linearity explicitly by showing the gradient, and the Hessian matrix of a CAViaR
model.

ft(βββ τ) = β0(τ)+β1 ft−1(βββ τ)+β2 (yt−1)
++β3 (yt−1)

− , (3.48)

where τ ∈ (0,1), and the operators (·)+ and (·)− are defined as
(x)+ = max(x,0),(x)− = −min(x,0). This model can be rewritten by
continuously substituting lagged conditional quantiles such as

ft(βββ τ) = β0(τ)+β1 ft−1(βββ τ)+β2 (yt−1)
++β3 (yt−1)

−

= β0(τ)+β1
(
β0(τ)+β1 ft−2(βββ τ)+β2 (yt−2)

++β3 (yt−2)
−)

+β2 (yt−1)
++β3 (yt−1)

−

=
β0(τ)

1−β1
+β2

∞

∑
j=1

β
j−1

1 (yt− j)
++β3

∞

∑
j=1

β
j−1

1 (yt− j)
− ,

(3.49)

where the last line comes from |β1| < 1. If β1 6= 0, (3.49) reveals explicitly
the nonlinear pattern of parameters in this CAViaR model. From this explicit
form, we can further get the gradient and the Hessian matrix of the CAViaR
model (3.48) to emphasize the roles of the parameters.

3.A.1 Gradient ∇ ft

The gradient of ft(βββ τ) at a conditional quantile index τ ∈ (0,1) of interest can
be derived as follows:

∇ ft(βββ τ) =


∂ ft(βββ τ )

∂β0
∂ ft(βββ τ )

∂β1
∂ ft(βββ τ )

∂β2
∂ ft(βββ τ )

∂β3

=


1+β1

∂ ft−1(βββ τ )
∂β0

ft−1(βββ τ)+β1
∂ ft−1(βββ τ )

∂β1

(yt−1)
++β1

∂ ft−1(βββ τ )
∂β2

(yt−1)
−+β1

∂ ft−1(βββ τ )
∂β3



=


1+β1

(
1+β1

∂ ft−1(βββ τ )
∂β0

)
ft−1(βββ τ)+β1

(
ft−2(βββ τ)+β1

∂ ft−2(βββ τ )
∂β1

)
(yt−1)

++β1

(
(yt−2)

++β1
∂ ft−2(βββ τ )

∂β2

)
(yt−1)

−+β1

(
(yt−2)

−+β1
∂ ft−2(βββ τ )

∂β3

)

=



1
1−β1

∞

∑
i=1

β
i−1
1 ft−i(βββ τ)

∞

∑
i=1

β
i−1
1 (yt−i)

+

∞

∑
i=1

β
i−i
1 (yt−i)

−


.

(3.50)
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By knowing (3.49), we substitute

ft−i(βββ τ) =
β0(τ)
1−β1

+β2

∞

∑
j=1

β
j−1

1 (yt−i− j)
++β3

∞

∑
j=1

β
j−1

1 (yt−i− j)
− ,

into ∇ ft(βββ τ) in (3.50) and get

∇ ft(βββ τ) =



1
1−β1

∞

∑
i=1

β
i−1
1

(
β0(τ)

1−β1
+β2

∞

∑
j=1

β
j−1

1 (yt−i− j)
++β3

∞

∑
j=1

β
j−1

1 (yt−i− j)
−
)

∞

∑
i=1

β
i−1
1 (yt−i)

+

∞

∑
i=1

β
i−i
1 (yt−i)

−



=



1
1−β1

β0(τ)
(1−β1)2 +β2

∞

∑
h=2

(h−1)β h−2
1 (yt−h)

++β3

∞

∑
h=2

(h−1)β h−2
1 (yt−h)

−

∞

∑
i=1

β
i−1
1 (yt−i)

+

∞

∑
i=1

β
i−1
1 (yt−i)

−


.

(3.51)
Now we can see the role of the parameters βββ τ explicitly. βββ τ shows up in all the
elements of the gradient in a nonlinear form which makes it doubtless that the
Hessian matrix does not fade out with βββ τ either.

3.A.2 Hessian matrix

The second partial derivatives of ft(βββ τ) exist as ∇ ft(βββ τ) does, which can be
seen from the derivation of the Hessian matrix HHH(βββ τ) of ft(βββ τ) as follows:

HHH(βββ τ) =



∂ 2 ft(βββ τ )

∂β 2
0

∂ 2 ft(βββ τ )
∂β0∂β1

∂ 2 ft(βββ τ )
∂β0∂β2

∂ 2 ft(βββ τ )
∂β0∂β3

∂ 2 ft(βββ τ )
∂β1∂β0

∂ 2 ft(βββ τ )

∂β 2
1

∂ 2 ft(βββ τ )
∂β1∂β2

∂ 2 ft(βββ τ )
∂β1∂β3

∂ 2 ft(βββ τ )
∂β2∂β0

∂ 2 ft(βββ τ )
∂β2∂β1

∂ 2 ft(βββ τ )

∂β 2
2

∂ 2 ft(βββ τ )
∂β2∂β3

∂ 2 ft(βββ τ )
∂β3∂β0

∂ 2 ft(βββ τ )
∂β3∂β1

∂ 2 ft(βββ τ )
∂β3∂β2

∂ 2 ft(βββ τ )

∂β 2
3



=



0 (1−β1)
−2 0 0

∞

∑
i=1

β
i−1
1

∂ ft−i(βββ τ)

∂β0

∞

∑
i=2

(i−1)β i−2
1 ft−i(βββ τ)+

∞

∑
i=1

β
i−1
1

∂ ft−i(βββ τ)

∂β1

∞

∑
i=1

β
i−1
1

∂ ft−i(βββ τ)

∂β2

∞

∑
i=1

β
i−1
1

∂ ft−i(βββ τ)

∂β3

0
∞

∑
i=2

(i−1)β i−2
1 (yt−i)

+ 0 0

0
∞

∑
i=2

(i−1)β i−2
1 (yt−i)

− 0 0


.

(3.52)
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Considering the rewritten form of, the gradient of, and the Hessian matrix of this
CAViaR model, it might raise a caution of estimating those variables by using es-
timated parameters because the persistent appearance of the parameters can give
a slow convergence rate. That is how in essence the nonlinearity of parameters in
CAViaR models differentiates CAViaR from linear quantile regressive models.

3.B Appendix: How to Simulate CAViaR Data
Generating Processes

Before estimating CAViaR models, we would like to provide a general way to
simulate a time series {yt} of all conditional quantiles following a CAViaR speci-
fication. To generate such a CAViaR data generating process (DGP), it is required
to get the information on the parameter specification for every possible quantile
so that the conditional distribution of {yt} at each time can be constructed no
matter which quantile is realized. Indeed, when studying a data set, we might
be interested in the 1%-th, 5%-th, 50%-th or 95%-th conditional quantiles. For
instance in the climate change literature, extreme positive events are also of in-
terest.

This requirement also applies when generating QAR DGPs. However, simu-
lating CAViaR models is more tedious than QAR simulations because the past
conditional distributions also need to be stored over time as they serve for the
CAViaR DGP simulation through the model VaR autoregressive terms each time.
Let us illustrate the simulation process through an example. First, we need to
specify a CAViaR DGP at all quantiles for instance of (3.4) as follows:

yt = ft(βββ ut
) = β0(ut)+

q

∑
i=1

βi(ut) ft−i(βββ ut
)+

r

∑
j=1

βq+ j(ut)yt− j,

where βββ
′
ut

:= [β0(ut),β1(ut), . . . ,βp(ut)] with p = q+ r, and {ut} is i.i.d. in the
standard uniform distribution (denoted as U (0,1)). There is a monotonicity
requirement on this model which is that ft(βββ ut

) is monotonically increasing
in ut so that the τ-th quantile (τ ∈ (0,1)) of yt conditional on Ft−1 can
be expressed as ft(βββ τ). The additional step before simulating {yt}T

t=1 is to
specify the initial conditional distributions and the initial observations, i.e.,
{ f1−i(βββ τ),τ ∈ (0,1), i = 1, . . . ,q} and

{
y1− j, j = 1, . . . ,r

}
. For example, we

can take f1−i(βββ τ) = F−1
N(0,1)(τ) for any τ ∈ (0,1), i = 1, . . . ,q and y1− j = 0 for

j = 1, . . . ,r, where F−1
N(0,1)(τ) is denoted as the inverse function of the standard

normal distribution.

With the above set-up, we can start the simulation by following the steps be-
low.
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Step 1: Simulate a sequence of {ut}T
t=1 independently and identically distributed

(i.i.d.) in U (0,1). ut indicates that yt is realized as its conditional ut-th
quantile.

Step 2: At time t = 1, yt is realized as its ut-th quantile which is equal to

ft(βββ ut
) = β0(ut)+

q

∑
i=1

βi(ut) ft−i(βββ ut
)+

r

∑
j=1

βq+ j(ut)yt− j.

Step 3: Store { ft(βββ ut+k
)}T

k=1 by

ft(βββ ut+k
) = β0(ut+k)+

q

∑
i=1

βi(ut+k) ft−i(βββ ut+k
)+

r

∑
j=1

βq+ j(ut+k)yt− j.

This step serves for generating {yt+k}T
k=1 later. For instance,

yt+k = ft+k(βββ ut+k
) is generated via the information on

ft+k−i(βββ ut+k
), i = 1, . . . ,q. Iteratively, it requires the conditional ut+k-th

quantiles of {yt+k−i}t+k−1
i=1 to be stored for generating yt+k.

Step 4: Repeat Step 2 and 3 for t = 2,3, . . . ,T until we get {yt}T
t=1.

Step 5: In order to leave out the influence of the given initial values in this simu-
lation, we have to delete the observations in the burn-in period. We delete
the first 200 observations and keep the rest {yt}T

t=201 as a suitable sample
for studying the DGP (3.4).

The above simulation procedure can be easily adapted to other CAViaR DGPs
of which model equations of ft(βββ τ) can be substituted into Step 2 with observed
values of any involved predetermined variables.

3.C Appendix: Proofs

3.C.1 Proof of Theorem 6

Proof.
First, since expectation is a linear function, we can rewrite
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E
yt ,β̂ββ

[
ĥt(0|Ft−1)

∣∣∣Ft−1

]
as follows:

E
yt ,β̂ββ

[
ĥt(0|Ft−1)

∣∣∣Ft−1

]
=n−1

n

∑
i=1

E
yt ,β̂ββ

1{yt≤ ft(β̂ββ )+∇′ ft(β̂ββ )
(

bbbi−β̂ββ

)}−1{
yt≤ ft(β̂ββ )

}
∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
∣∣∣∣∣∣Ft−1,yt 6= ft(β̂ββ )


=n−1

n

∑
i=1

E
yt ,β̂ββ

1{0<yt− ft(β̂ββ )≤∇′ ft(β̂ββ )
(

bbbi−β̂ββ

)}
∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
∣∣∣∣∣∣Ft−1


+n−1

n

∑
i=1

E
yt ,β̂ββ

1{∇′ ft(β̂ββ )
(

bbbi−β̂ββ

)
<yt− ft(β̂ββ )<0

}
−∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
∣∣∣∣∣∣Ft−1

 .
(3.53)

This equality holds when n goes to infinity by applying the dominated con-
vergence theorem as we regard the least (p + 1) absolute residuals in {|yt −
ft(β̂ββ )|}T

t=1 as zeros. Denote ε̂t := yt− ft(β̂ββ ). We rank {|ε̂t |}T
t=1 from the smallest

to largest into {|ε̂|(1), ·, |ε̂|(T )}. In fact, iterations of a simplex-based direct search
method like the Nelder–Mead method for optimizing (p+ 1) parameters termi-
nates at the vertices of a simplex in the parameter space (Lagarias et al., 1998).
That is to say, the iterations in optimizing the τ-th quantile regression objective
function terminate with (p + 1) elements of {(τ − 1{yt− ft(βββ )<0})(yt − ft(βββ ))}
solved to be zeros. Therefore, we set ĥt(0|Ft−1) at ε̂|(1), . . . , |ε̂|(p+1). And

|ĥt(0|Ft−1)| ≤
1

|ε̂|(p+2)
< ∞, (3.54)

where |ε̂|(p+2) 6= 0 for a well-defined convex function minimization.

Since {bbbi− β̂ββ}n
i=1 is i.i.d in N(000,VVV ddd) with restriction to ∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
6= 0,

we can get that for each t ∈ {1, . . . ,T},{
E

yt ,β̂ββ

[
1{yt≤ ft (β̂ββ )+∇′ ft (β̂ββ )(bbbi−β̂ββ)}−1{yt≤ ft (β̂ββ )}

∇′ ft(β̂ββ )
(

bbbi−β̂ββ

)
∣∣∣∣∣Ft−1,yt 6= ft(β̂ββ ),yt 6= ft(β̂ββ )

]}n

i=1

is a sequence of independent random variables with finite second moments by
the assumption of ‖∇′ ft(β̂ββ )‖ ≤ FFF000 < ∞ (see Assumption AN1(a) of Engle and
Manganelli (2004) ). Then we can use Kolmogorov’s strong Law of Large Num-
ber(see e.g. White, 2014, Corollary 3.9) and get that

E
yt ,β̂ββ

[
ĥt(0|Ft−1)

∣∣∣Ft−1

]
a.s.−→ E

yt ,β̂ββ ,bbbi

[
1{yt≤ ft (β̂ββ )+∇′ ft (β̂ββ )(bbbi−β̂ββ)}−1{yt≤ ft (β̂ββ )}

∇′ ft(β̂ββ )
(

bbbi−β̂ββ

)
∣∣∣∣∣Ft−1,yt 6= ft(β̂ββ )

]
,

(3.55)
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as n→ ∞ conditionally on Ft−1. And we can further get that

E
yt ,β̂ββ ,bbbi

1{yt≤ ft(β̂ββ )+∇′ ft(β̂ββ )
(

bbbi−β̂ββ

)}−1{
yt≤ ft(β̂ββ )

}
∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
∣∣∣∣∣∣Ft−1,yt 6= ft(β̂ββ )


= E

β̂ββ ,bbbi

Eyt

1{0<yt− ft(β̂ββ )≤∇′ ft(β̂ββ )
(

bbbi−β̂ββ

)}
∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
∣∣∣∣∣∣Ft−1

∣∣∣∣∣∣Ft−1


+E

β̂ββ ,bbbi

Eyt

1{∇′ ft(β̂ββ )
(

bbbi−β̂ββ

)
<yt− ft(β̂ββ )<0

}
−∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
∣∣∣∣∣∣Ft−1

∣∣∣∣∣∣Ft−1


= E

β̂ββ ,bbbi

Ft

(
ft(β̂ββ )+∇′ ft(β̂ββ )

(
bbbi− β̂ββ

))
−Ft

(
ft(β̂ββ )

)
∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
∣∣∣∣∣∣Ft−1,∇

′ ft(β̂ββ )
(

bbbi− β̂ββ

)
> 0


+E

β̂ββ ,bbbi

Ft

(
ft(β̂ββ )

)
−Ft

(
ft(β̂ββ )+∇′ ft(β̂ββ )

(
bbbi− β̂ββ

))
−∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
∣∣∣∣∣∣Ft−1,∇

′ ft(β̂ββ )
(

bbbi− β̂ββ

)
< 0



= E
β̂ββ ,bbbi

F ′t
(

ft(β̂ββ )
)

∇′ ft(β̂ββ )
(

bbbi− β̂ββ

)
+Op

((
bbbi− β̂ββ

)′
∇ ft(β̂ββ )∇′ ft(β̂ββ )

(
bbbi− β̂ββ

))
∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
∣∣∣∣∣∣∣∣Ft−1


= E

β̂ββ ,bbbi

[
F ′t
(

ft(β̂ββ )
)
+Op

(
∇
′ ft(β̂ββ )(bbbi− β̂ββ )

) ∣∣∣∣Ft−1

]
= E

β̂ββ ,bbbi

[
F ′t
(

ft(β̂ββ )
) ∣∣∣∣Ft−1

]
T→∞−→ ht(0|Ft−1),

(3.56)
where the last two lines are obtained by Taylor’s expansion for
Ft

(
ft(β̂ββ )+∇′ ft(β̂ββ )

(
bbbi− β̂ββ

))
at ft(β̂ββ ) and by knowing bbbi − β̂ββ = op(1) and

limT→∞ β̂ββ = βββ
o with F ′t ( ft(·)) being a continuous function (see AN1 and AN2

of (Engle and Manganelli, 2004)) respectively.

Therefore, we have Eyt

[
ĥt(0|Ft−1)

∣∣∣Ft−1)
]
−ht(0|Ft−1) = op(1) and conclude

this proof.

3.C.2 Proof of Corollary 7

Proof.
From Theorem 6, we can obtain that

E

[
1
T

T

∑
t=1

(
ĥt(0|Ft−1)−ht(0|Ft−1)

)]
= op(1) (3.57)
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because E
[
ĥt(0|Ft−1)−ht(0|Ft−1)

]
= op(1) when n→ ∞. And

1
T 2

T

∑
t=1

E
[(

ĥt(0|Ft−1)−ht(0|Ft−1)
)2
]

=
1

T 2

T

∑
t=1

E
[
ĥt

2
(0|Ft−1)−h2

t (0|Ft−1)
]
+op(1).

(3.58)

Denote ĥt,i :=
1{0<yt− ft (β̂ββ )≤∇′ ft (β̂ββ )(bbbi−β̂ββ)}

∇′ ft(β̂ββ )
(

bbbi−β̂ββ

) +
1{∇′ ft (β̂ββ )(bbbi−β̂ββ)<yt− ft (β̂ββ )<0}

−∇′ ft(β̂ββ )
(

bbbi−β̂ββ

) , i = 1, . . . ,n. We

can derive that

E
[
ĥt

2
(0|Ft−1)

]
= E

[
2
n2

n−1

∑
i=1

n

∑
j=i+1

ĥt,iĥt, j

]
+E

[
1
n2

n

∑
i=1

ĥ2
t,i

]

=
2
n2

n−1

∑
i=1

n

∑
j=i+1

E
[
ĥt, jĥt,i

]
+E

[
1
n2

n

∑
i=1

ĥ2
t,i

]

=
2
n2

n(n−1)
2

E
[
F
′2

t

(
ft(β̂ββ )

)
+Op

(
∇
′ ft(β̂ββ )(bbbi− β̂ββ )

)]
+E

[
1
n2

n

∑
i=1

ĥ2
t,i

]
T→∞−→ E

[
h2

t (0|Ft−1)
]
+

1
n
E
[
h2

t (0|Ft−1)
]
+op(1)+

1
n2

n

∑
i=1

E
[
ĥ2

t,i

]
= E

[
h2

t (0|Ft−1)
]
+Op(

1
n
),

(3.59)
which follows the reasoning of (3.56), and herein the last line is obtained by
knowing {ht(0|Ft)} and {ĥt(0|Ft)} is uniformly bounded by a finite constant
according to Assumption AN2 of Engle and Manganelli (2004) and (3.54) re-
spectively. Now substitute (3.59) back to (3.58) and get that

1
T 2

T

∑
t=1

E
[(

ĥt(0|Ft−1)−ht(0|Ft−1)
)2
]

=
1

T 2

T

∑
t=1

E
[
h2

t (0|Ft−1)−h2
t (0|Ft−1)

]
+Op(

1
T n

)

= Op(
1

T n
),

(3.60)

which leads to

1
T 2

T

∑
t=1

E
[(

ĥt(0|Ft−1)−ht(0|Ft−1)
)2
]

p→ 0 (3.61)
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when T,n→ ∞. Therefore, we obtain the mean square convergence (3.41) for
the mean of the adaptive random bandwidth estimator sequence {ĥt(0|Ft−1)}.

3.C.3 Proof of Corollary 8

Proof.
From the condition (3.39), we can know that

∇
′ ft(β̂ββ )

(
bbbi− β̂ββ

)
i.i.d.∼ N(000,

1
T

∇
′ ft(β̂ββ )VVV ddd ∇ ft(β̂ββ )), i = 1, . . . ,n,

and ∣∣∣∣∇′ ft(β̂ββ )(bbbi− β̂ββ

)∣∣∣∣ 6= 0.

Denote the probability distribution function of ∇′ ft(β̂ββ )
(

bbbi− β̂ββ

)
as F∇(·), δ∇ :=√

∇′ ft(β̂ββ )VVV ddd ∇ ft(β̂ββ )
T and ε̂t := yt − ft(β̂ββ ).

From (3.55) in the proof of Theorem 6, we know that

ĥt(0|Ft−1)
n→∞−→ Ebbbi

1{yt≤ ft(β̂ββ )+∇′ ft(β̂ββ )
(

bbbi−β̂ββ

)}−1{
yt≤ ft(β̂ββ )

}
∇′ ft(β̂ββ )

(
bbbi− β̂ββ

)
∣∣∣∣∣∣Ft−1,yt 6= ft(β̂ββ )


=
∫
R\[−|ε̂t |,|ε̂t |)

1{
yt≤ ft(β̂ββ )+x

}−1{
yt≤ ft(β̂ββ )

}
x

d Fv(x).

(3.62)
We can further rewrite (3.62) based on two cases in ε̂t , namely ε̂t > 0, ε̂t < 0
since ĥt(0|Ft−1) is set to be zero in ARB when ε̂t = 0.

When ε̂t > 0, we get

ĥt(0|Ft−1) =
∫
R\[−|ε̂t |,|ε̂t |)

1{
yt≤ ft(β̂ββ )+x

}−1{
yt≤ ft(β̂ββ )

}
x

d Fv(x)

=
∫
R\[−|ε̂t |,|ε̂t |)

1{ε̂t≤x}

x
d Fv(x)

=
∫

∞

ε̂t

1
x

1
δ∇t

√
2π

e
− x2

2δ2
∇ d x.

(3.63)
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Substitute u := x2

2δ 2
∇t

into (3.63) and get

ĥt(0|Ft−1) =
1

δ∇t

√
2π

1
2

∫
∞

ε̂2
t

2δ2
∇t

e−u

u
d u

=
1

2δ∇t

√
2π

E1

(
ε̂2

t

2δ 2
∇t

)
,

(3.64)

where E1(s) :=
∫

∞

s x−1e−xd x is a special integral known as the exponential inte-
gral or the incomplete gamma function Γ(0,s).

Analogously, when ε̂t < 0, we can also get

ĥt(0|Ft−1) =
1

2δ∇t

√
2π

E1

(
ε̂2

t

2δ 2
∇t

)
. (3.65)

Therefore, we conclude this proof.

3.C.4 Proof of Theorem 9

Proof.
Denote that

D̄T := T−1
T

∑
t=1

ht (0|Ft−1)∇
′ ft(β̂ββ τ)∇ ft(β̂ββ τ). (3.66)

Note that
D̂arb

T −DT = D̂arb
T − D̄T + D̄T −DT . (3.67)

It is straightforward to get that

D̂arb
T − D̄T = op (1) , (3.68)

since we know that

1
T

T

∑
t=1

ĥt(0|Ft−1)−
1
T

T

∑
t=1

ht(0|Ft−1) = op(1)

from 1
T

T

∑
t=1

ĥt(0|Ft−1)
m.s.−→ 1

T

T

∑
t=1

ht(0|Ft−1) given in Corollary 7 with

{∇ ft(βββ )∇′ ft(βββ )} being uniformly bounded in Rp+1 by Assumption AN1
of Engle and Manganelli (2004). And

D̄T −DT = op (1) , (3.69)
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since that ÂT −AT
p−→0 which has been proved in Theorem 3 of Engle and Man-

ganelli (2004) and {ht(·|Ft−1)} is uniformly bounded by a finite constant ac-
cording to Assumption AN2 of Engle and Manganelli (2004).

Therefore, we have that D̂arb
T −DT = op (1) and conclude this proof.
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3.D Appendix: Extra Figures

Figure 3.3: Time series plots of CAViaR DGP samples for illustration
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Figure 3.4: Time series plots of CAViaR DGP samples for illustration
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3.E Appendix: Extra Test Results

• Simulate 1000 samples from the following DGP:

yt = ft(βββ
R4
ut
) = β

R4
0 (ut)+β

R4
1 (ut) ft−1(βββ

R4
τ )+β

R4
2 (ut) |yt−1|

= β
R4
0 (ut)+β

R4
1 (ut) ft−1(βββ

R4
ut
)+β

R4
2 (ut) (yt−1)

++β
R4
2 (ut) (yt−1)

− ,

(3.70)
where {ut}

i.i.d.∼ U (0,1) and the underlying parameters change over ut as
follows: 

β
R4
0 (ut) =


3F−1

N(0,1) , 0 < ut ≤ 0.4;

F−1
N(0,1) , 0.4 < ut ≤ 0.6;

2F−1
N(0,1) , 0.6 < ut < 1,

β
R4
1 (ut) = 0.2, 0 < ut < 1,

β
R4
2 (ut) = 0.3, 0 < ut < 1,

(3.71)

where F−1
N(0,1)(·) is the inverse standard normal probability distribution

function. Conditional 5%-th, 30%-th, 50%-th quantiles are estimated for
each of the total 1000 simulated samples of sample size T by regressing
the sample onto the full model (3.25). The results of the Wald test using
the adaptive random bandwidth method and the kernel method (3.22) are
listed in Table 3.8 in which each estimated size is obtained by the percent-
age rejection rate among the 1000 samples of sample size T .

Table 3.8: The size performances of the Wald test on the restricted model (3.26) to (3.25)
(βββ R4

ut
= [F−1

N(0,1)(ut),0.2,0.3]′, R = [0,0,1,−1])
quantile index τ & sample size T methods size: α = 0.01 α = 0.05 α = 0.10 α = 0.20

τ = 0.05,T = 5000
D̂arb

T (n = 104, 0.016 0.054 0.091 0.179
2 times updating VVV ddd)
D̂ker

T 0.026 0.066 0.126 0.21

τ = 0.05,T = 2000
D̂arb

T (n = 104, 0.024 0.08 0.134 0.228
2 times updating VVV ddd)
D̂ker

T 0.036 0.107 0.176 0.288

τ = 0.3,T = 5000
D̂arb

T (n = 104, 0.01 0.045 0.085 0.168
2 times updating VVV ddd)
D̂ker

T 0.011 0.053 0.095 0.182

τ = 0.3,T = 2000
D̂arb

T (n = 104, 0.015 0.049 0.085 0.192
2 times updating VVV ddd)
D̂ker

T 0.009 0.036 0.091 0.197

τ = 0.5,T = 5000
D̂arb

T (n = 104, 0.014 0.056 0.087 0.18
2 times updating VVV ddd)
D̂ker

T 0 0 0.001 0.026

τ = 0.5,T = 2000
D̂arb

T (n = 104, 0.007 0.041 0.076 0.157
2 times updating VVV ddd)
D̂ker

T 0 0 0 0.006

• Simulate 1000 samples of the DGP {yt} specified as the model (3.26) with
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the underlying parameters are given as βββ
R1
ut

= [F−1
N(0,1)(ut),0.2,0.3]′, where

{ut}
i.i.d.∼ U (0,1) and F−1

N(0,1)(·) is the inverse standard normal probability
distribution function. Conditional 5%-th, 30%-th, 50%-th quantiles are
estimated for each of the total 1000 simulated samples of sample size T
by regressing the sample onto the full model (3.25). The results of the
Wald test using the adaptive random bandwidth method and the kernel
method (3.22) are listed in Table 3.9 in which each estimated size is ob-
tained by the percentage rejection rate among the 1000 samples of sample
size T .

Table 3.9: The size performances of the Wald test on the restricted model (3.26) to (3.25)
(βββ R1

ut
= [F−1

N(0,1)(ut),0.2,0.3]′, R = [0,0,1,−1])
quantile index τ & sample size T methods size: α = 0.01 α = 0.05 α = 0.10 α = 0.20

τ = 0.05,T = 4000
D̂arb

T (n = 104, 0.018 0.06 0.101 0.187
2 times updating VVV ddd)
D̂ker

T 0.017 0.064 0.131 0.235

τ = 0.05,T = 2000
D̂arb

T (n = 104, 0.019 0.054 0.107 0.19
2 times updating VVV ddd)
D̂ker

T 0.035 0.085 0.14 0.245

τ = 0.3,T = 4000
D̂arb

T (n = 104, 0.01 0.058 0.103 0.187
2 times updating VVV ddd)
D̂ker

T 0.013 0.053 0.103 0.202

τ = 0.3,T = 2000
D̂arb

T (n = 104, 0.021 0.061 0.11 0.184
2 times updating VVV ddd)
D̂ker

T 0.014 0.058 0.111 0.2

τ = 0.5,T = 4000
D̂arb

T (n = 104, 0.014 0.062 0.126 0.221
2 times updating VVV ddd)
D̂ker

T 0.017 0.069 0.129 0.223

τ = 0.5,T = 2000
D̂arb

T (n = 104, 0.025 0.064 0.1 0.194
2 times updating VVV ddd)
D̂ker

T 0.02 0.065 0.118 0.206

• Simulate 1000 samples of the DGP {yt} specified as the model (3.34) with
the underlying parameters are given as βββ

R3
ut

= [F−1
N(0,1)(ut),0.2,0.3]′, where

{ut}
i.i.d.∼ U (0,1) and F−1

N(0,1)(·) is the inverse standard normal probability
distribution function. Conditional 5%-th, 30%-th, 50%-th quantiles are
estimated for each of the total 1000 simulated samples of sample size T
by regressing the sample onto the full model (3.25). The results of the
Wald test using the adaptive random bandwidth method and the kernel
method (3.22) are listed in Table 3.10 in which each estimated size is ob-
tained by the percentage rejection rate among the 1000 samples of sample
size T .
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Table 3.10: The size performances of the Wald test on the restricted model (3.34)
to (3.25) (βββ R3

ut
= [F−1

N(0,1)(ut),0.2,0.3]′, R = [0,0,1,−1])
quantile index τ & sample size T methods size: α = 0.01 α = 0.05 α = 0.10 α = 0.20

τ = 0.05,T = 5000
D̂arb

T (n = 104, 0.032 0.069 0.096 0.17
2 times updating VVV ddd)
D̂ker

T 0.082 0.137 0.199 0.287

τ = 0.05,T = 2000
D̂arb

T (n = 104, 0.052 0.093 0.127 0.19
2 times updating VVV ddd)
D̂ker

T 0.143 0.221 0.271 0.341

τ = 0.3,T = 5000
D̂arb

T (n = 104, 0.032 0.071 0.121 0.207
2 times updating VVV ddd)
D̂ker

T 0.073 0.137 0.207 0.3

τ = 0.3,T = 2000
D̂arb

T (n = 104, 0.031 0.063 0.123 0.204
2 times updating VVV ddd)
D̂ker

T 0.092 0.156 0.216 0.308

τ = 0.5,T = 5000
D̂arb

T (n = 104, 0.021 0.055 0.095 0.188
2 times updating VVV ddd)
D̂ker

T 0.067 0.118 0.16 0.256

τ = 0.5,T = 2000
D̂arb

T (n = 104, 0.034 0.069 0.118 0.208
2 times updating VVV ddd)
D̂ker

T 0.088 0.158 0.212 0.311
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Abstract
In Chapter 4, we generalize multivariate multi-quantile CAViaR models
(MVMQ-CAViaR, see White et al., 2015) by incorporating CoVaR specification
(see Adrian and Brunnermeier, 2011) into the model specification. The
proposed model presents a vector-autoregression (VAR) of financial institutions’
value-at-risk (VaR) as well as their CoVaR. This model generalization is able to
capture contemporaneous tail dependence of financial institutions and market
indexes so that we can interpret the systemic risks of the institutions over
time. We provide consistency and asymptotic normality of the generalized
model estimator as well as some relevant inference tests. For tracing the
transmission of a single shock to a financial institution in the financial system,
we also construct quantile impulse response functions (QIRF) accordingly
using the local projection idea (Jordà, 2005) and expansion of estimated terms.
Applications to real data shows strong evidence of contemporaneous effects of
big banks on the market index S&P 500, and supports this methodology.
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4.1 Introduction

Value-at-Risk (VaR) is a standard risk measure for market risk management with
defining risk as loss on a fixed asset over a fixed time horizon. It is widely em-
ployed in the financial industry for both internal control and regulatory report-
ing. Among many popular approaches for VaR estimation, quantile regressions
stand out for the advantages in semi-parametric specification and numerical ef-
ficiency. The quantile regression family working for this measure has been ex-
tended from static quantile regression models (QR, see Koenker and Bassett Jr,
1978) to quantile autoregression models (QAR, see Koenker and Xiao, 2006),
to conditional autoregressive value-at-risk models (CAViaR, see Engle and Man-
ganelli, 2004), to multivariate multi-quantile CAViaR models (MVMQ-CAViaR,
see White et al., 2015). This evolution can be hinted by the specification test-
ing summarized by Chernozhukov and Umantsev (2001) with regard to checking
the conditionality and the functional form validity of quantile regression models,
which enlightens us to see that each model generation in the quantile regression
evolution can be viewed as a consequence from the inability of its predecessors
in the conditional information sufficiency or in the functional form validity.

MVMQ-CAViaR is capable of measuring the individual tail risk as well as the
tail dependence of financial institutions by modelling the VaR of their stock re-
turns in a vector-autoregressive way. We notice that only predetermined (i.e.,
lagged and exogenous) information is accounted in the MVMQ-CAViaR spec-
ification (White et al., 2015) which cannot measure the contemporaneous tail
dependence among financial assets or cover the CoVaR specification (Adrian
and Brunnermeier, 2011) for measuring systemic risk of financial institutions.
As we always see clear contemporaneous comovement patterns between market
portfolios and some big financial institutions, we question if MVMQ-CAViaRs
are sufficient to explain this pattern.

In this chapter we propose to generalize the vector-autoregressive VaR in the
generic MVMQ-CAViaR specification by incorporating the CoVaR specification
of a financial market portfolio. In this chapter, we would like to see if we can
find significant contemporaneous tail dependence between the financial market
portfolio and some financial institutions so as to measure their systemic risk. We
will also provide the estimation consistency and asymptotic normality proofs of
this generalized model along with some testing methods to infer the significance
of the contemporaneous tail dependence between a market portfolio/index and
some big financial institutions. This model generalization also can allow us to
study the links across the whole financial market network and to trace the trans-
mission of a single shock to a financial institution in the financial system by
using quantile impulse response functions (QIRF) which we will construct in
this chapter accordingly with the use of the local projection idea (Jordà, 2005)
and expansion of estimated terms.
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The remainder of this chapter is organized as follows. In Section 4.2, we in-
troduce the generic MVMQ-CAViaR model specification first and propose to
generalize it to the vector autoregressive model of VaR and CoVaR along with
the proofs on the estimation consistency and asymptotic normality of this gener-
alized model. We also call this generalized model as systemic MVMQ-CAViaR
model. It follows that in Section 4.2.3 some inference tests are given in order to
infer the significance of contemporaneous terms in the CoVaR specification. In
Section 4.3, we illustrate on applying CoVaR returned by our generalized model
to measure the systemic risk of financial institutions. In Section 4.4, we con-
struct quantile impulse response functions in correspondence to our model and
apply the local projection with use of expansion of estimated terms for QIRF es-
timation. Some results of Monte Carlo simulations regarding systemic MVMQ-
CAViaR models are presented in Section 4.5. Section 4.6 presents an empirical
application to real data. Section 4.7 concludes this chapter.

4.2 Model Generalization to Systemic MVMQ-CAViaR
In Section 4.2.1, we first introduce the generic MVMQ-CAViaR model specifi-
cation which is also refered to as VAR for VaR (see White et al., 2015). Being
motivated to measure the systemic risk of some financial institutions and to mea-
sure the contemporaneous tail dependence among financial assets, we propose to
generalize MVMQ-CAViaR models to the vector autoregressive model of VaR
and CoVaR in Section 4.2.2. In Section 4.2.3 some inference tests are proposed
in order to infer the significance of the contemporaneous tail dependence.

4.2.1 MVMQ-CAViaRs (VAR for VaR)

White et al. (2015) proposed the framework of multivariate multi-quantile
CAViaR (MVMQ-CAViaR) models and established the theoretical validity in
its application by proving its estimation consistency and asymptotic normality
under some regularity conditions. In essense, this framework is based on
autoregressing the VaR of multiple random variables onto their lags so as
to measure their tail dependence, which can be regarded as an extension to
CAViaR models which are autoregressions of univariate VaR. The generic
MVMQ-CAViAR specification given by White et al. (2015) is shown below.

Suppose YYY := [Y1,Y2, . . . ,Yn]
′ is a vector of n random variables of interest,

with its multivariate time series {YYY t := [y1,t , . . . ,yn,t ]
′}T

t=1. We consider
a vector of explanatory exogenous variables denoted by XXX whose first
element is one, with time series {XXX t}T

t=1. We consider p quantile indexes
denoted by θi,1, . . . ,θi,p and 0 < θi,1 < .. . ,< θi,p < 1 for each Yi, i = 1, . . . ,n.
Define the information set Ft until time t to be the σ -algebra generated
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by Z(t) := {XXX t+1,XXX t ,YYY t ,XXX t−1,YYY t−1, . . .}, i.e., Ft := σ(Z(t)), t = 1, . . . ,T .
Denote the cumulative distribution function of yi,t conditional on Ft−1
by Fit(·)1. The θi j-th quantile of yi,t conditional on Ft−1, denoted by
qi, j,t := inf

{
y : Fit(y)≥ θi j

}
, can be specified by a generic MVMQ-CAViaR as

follows:

qi, j,t = Ψ
′
tβββ i j +

m

∑
τ=1

qqq′t−τγγγ i, j,τ , i = 1, . . . ,n; j = 1, . . . , p, (4.1)

where {Ψt} is a sequence of k × 1 variables with Ψt predetermined
to YYY t and being Ft−1-measurable. And we use the notations that
qqqt−τ := [q1,1,t−τ , . . . ,q1,p,t−τ , . . . ,qn,1,t−τ , . . . ,qn,p,t−τ ]

′, βββ i j := [βi, j,1, . . . ,βi, j,k]
′

being a k× 1 real vector, and γγγ i, j,τ := [γγγ ′i, j,τ,1, . . . ,γγγ
′
i, j,τ,n]

′ with each γγγ i, j,τ,k

being a p× 1 real vector. Let γγγ i j := [γγγ ′i, j,1, . . . ,γγγ
′
i, j,m]

′, ααα i j := [βββ ′i j,γγγ
′
i j]
′ and

ααα := [ααα ′11, . . . ,ααα
′
1p, . . . ,ααα

′
n1, . . . ,ααα

′
np]
′, where ααα ∈ A and A is a compact set of

Rlr with lr := np(k+npm).

MVMQ-CAViaR is capable of measuring the individual tail risk as well as the
tail dependence of financial institutions. However, due to the conditional limita-
tion in MVMQ-CAViaR, MVMQ-CAViaR models cannot measure the contem-
poraneous tail dependence among financial assets or cover the CoVaR specifi-
cation (Adrian and Brunnermeier, 2011) for measuring systemic risk of finan-
cial institutions. As we always see clear contemporaneous comovement patterns
between market portfolios and some big financial institutions, we question if
MVMQ-CAViaRs are sufficient to explain this pattern. This question makes
sense as it is often believed that information is rapidly reflected into stock prices.
Neglecting contemporaneous return spillovers probably leads to underestimation
of systemic risk contributions or exposures. Appealed to the systemic feature of
financial systems, in the following we are going to generalize MVMQ-CAViaR
models by incorporating the CoVaR specification on a financial market portfolio
return.

4.2.2 Systemic MVMQ-CAViaR (VAR for VaR and CoVaR)

The financial market can react to news rapidly and extensively. One type of
news deemed to be influential on the market is regarding ‘too big to fail’ finan-
cial institutions due to their systemic risk. Systemic risk in the financial market
is defined as the risk that an event at the company level triggers severe instability

1White et al. (2015) specified the dependence of Fit(·) on each ω ∈ Ω by denoting Fit(·) more
specifically as Fit(ω, ·). In this chapter, we do not specify explicitly the role of each ω ∈ Ω

as ω ∈ Ω cannot be extracted explicitly to formulate its role and its influence can be exerted
partially or fully through the conditional set Ft−1 each time.
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or collapse of an entire industry or even the economy. The ‘too big to fail’ finan-
cial institutions are highly interconnected with the financial market both directly
and indirectly. The direct links can happen through contractual commitments
and counterparty credit risk exposures. The indirect links are, for instance, price
effects and liquidity spirals. Such interconnection the ‘too big to fail’ financial
institutions possess in the financial market is also accompanied with their sys-
temic risk to the whole market. With the objective to measure the systemic risk
and contemporaneous tail dependence of financial institutions, we would like to
generalize MVMQ-CAViaR models by incorporating the CoVaR specification
(see Adrian and Brunnermeier, 2011) into the autoregressive model (4.1) as fol-
lows which presents to us a vector-autoregressive model of financial institutions’
VaR as well as their CoVaR.

A generic systemic MVMQ-CAViAR model specification given below in (4.2)
is based on the set-up of the generic MVMQ-CAViaR model specification (4.1)
with generalization to measure the contemporaneous tail-dependence of response
variables. It is worth mentioning that the contemporaneous dependence direction
is predetermined by our expertise and belief.2


qi, j,t = Φ

′
tβββ i j +

m

∑
τ=1

qqq′t−τγγγ i, j,τ i = 1, j = 1, . . . , p,

qi, j,t = Φ
′
tβββ i j +

m

∑
τ=1

qqq′t−τγγγ i, j,τ +gi, j (sssi, j,uuui,t) , i = 2, . . . ,n, j = 1, . . . , p,
(4.2)

where

uuui,t :=


[y1,t −q1,1,t , . . . ,y1,t −q1,p,t ]

′ ,

when i = 2;

[y1,t −q1,1,t , . . . ,y1,t −q1,p,t , . . . ,yi−1,t −qi−1,1,t , . . . ,yi−1,t −qi−1,p,t ]
′ ,

when i = 3, . . . ,n.

And parameters sssi, j ∈ Si j which are compact sets of Rdi j for i = 2, . . . ,n and j =
1, . . . , p with di j being nonnegative integers. The mapping gi, j : Si j×R(i−1)p→
R, accounts for the contemporaneous effect on qi, j,t due to the realization uuui,t .
Intuitively speaking, gi, j intends to capture the influence of contemporaneous
news due to y1,t , . . . ,yi−1,t onto the conditional quantiles of yi,t so as to measure
their contemporaneous tail dependence and the systemic risk of y1,t , . . . ,yi−1,t if
Yi is a market index return variable. Some functional form examples of gi, j are
given below. For instance,

gi, j (sssi, j,uuui,t) = sss′i, j uuui,t =
ki=i−1,k j=p

∑
ki,k j=1

ski,k j(yki,t −qki,k j,t)

2Identifying the contemporaneous dependence direction is beyond the scope of this chapter.
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is intended to explain the comovement of qi, j,t with y1,t , . . . ,yi−1,t and uuui,t , where
sssi, j = [s1,1, . . . ,si−1,p] ∈ R(i−1)p. Another example is that

gi, j (sssi, j,uuui,t) =
ki=i−1,k j=p

∑
ki,k j=1

ski,k j,1

{[
1+ exp(ski,k j,2[yki,t −qki,k j,t ])

]−1−θki,k j

}
is intended to explain the θki,k j -th quantile violation of yki,t shifting qi, j,t so as to
affect yi,t .

For the ease of notations, we stack the parameters of (4.2) into
ααα := [ααα ′11, . . . ,ααα

′
1p, . . . ,ααα ′n1, . . . ,ααα

′
np] where ααα ∈ Θ := A× S21 × . . .× Snp,

a compact set of Rls with γγγ i j := [γγγ ′i, j,1, . . . ,γγγ
′
i, j,m]

′,ααα i j := [βββ ′i j,γγγ
′
i j,sss
′
i j]
′,

ls := np(k + npm) +
p

∑
j=1

n

∑
i=2

di j. To estimate true parameters αααo, we apply the

quasi-maximum likelihood method by optimizing the objective function S̄T (ααα)
and obtain the quasi-maximum likelihood estimator (QMLE) α̂αα as shown
below.

α̂αα = argmin
ααα∈Θ

S̄T (ααα),

S̄T (ααα) := T−1
T

∑
t=1

{
n

∑
i=1

p

∑
j=1

ρθi j(yi,t −qi, j,t(ααα))

}
,

(4.3)

where ρθ (ε) = ε(θ−1{ε<0}) is known as check function in quantile regressions.
Denote ψθ := (θ −1{ε<0}).

To prove the consistency and asymptotic normality of the generic systemic
MVMQ-CAviaR (4.2), we impose some assumptions below on the
contemporaneous terms gi, j (sssi, j,uuui,t) in addition to all the assumptions on
MVMQ-CAViaRs given by White et al. (2015).

Assumption 10 (Contemporaneous terms).

G1: For each sssi, j ∈ Si j, a compact sets of Rdi j (i = 2, . . . ,n, j = 1, . . . , p),
gi, j (sssi, j, ·) is measurable with respect to an updated in-
formation set Ft,i−1 which is the σ -algebra generated by
Z(t,i−1) := {YYY t [1 : (i−1)],XXX t+1,XXX t ,YYY t ,XXX t−1,YYY t−1, . . .}, i.e.,
Ft,i−1 := σ(Z(t,i−1)), t = 1, . . . ,T . 3

G2: For any ω ∈ Ft,i−1, gi, j (·,ω) is continuous on Si j, i = 2, . . . ,n,
j = 1, . . . , p.

3YYY t [1 : (i−1)] are the vector containing the first (i−1) elements of YYY t , i = 1,2, . . . ,n. And when
i = 1, YYY t [1 : (i−1)] = 0.
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G3: For any 1≤ t ≤ T , E

[
sup

sssi j∈Si j

gi, j (sssi, j,uuui, j,t)

]
<∞, i= 2, . . . ,n, j = 1, . . . , p.

G4: For any ω ∈ Ft,i−1, gi, j (·,ω) is differentiable in Si j, i = 2, . . . ,n; j =
1, . . . , p.

Theorem 11 (Consistency). Suppose that the assumptions of Theorem 1 of White
et al. (2015) and Assumptions G1-3 hold. Then we have

α̂αα
a.s.→ ααα

o, (4.4)

where α̂αα is the quasi-likelihood estimator (QML) obtained in (4.3) for estimating
the true parameter vector αααo in the underlying systemic MVMQ-CAViaR process
{YYY t}.

Proof. See Appendix 4.B.

Theorem 12 (Asymptotic normality). Suppose that the assumptions of Theo-
rem 2 of White et al. (2015) and Assumptions G1-4 hold. Then the asymptotic
distribution of the QML estimator α̂αα obtained from (4.3) is as follows:

√
T
(
α̂αα−ααα

o) d∼ N
(
000,Q−1V Q−1) , (4.5)

where

Q :=
n

∑
i=1

p

∑
j=1

E
[

fi, j,t(0)∇qi, j,t(ααα
o)∇′qi, j,t(ααα

o)
]
,

V := E
[
ηηη

o
t (ηηη

o
t )
′]

ηηη
o
t :=

n

∑
i=1

p

∑
j=1

E [∇qi, j,t(ααα
o)ψ(εi, j,t)] ,

εi, j,t := yi,t −qi, j,t(ααα
o),

(4.6)

and fi, j,t(·) is the continuous density of εi, j,t conditional on Ft,i−1, and αααo is the
true parameter vector in the underlying systemic MVMQ-CAViaR process {YYY t}.

Proof. See Appendix 4.B.

Theorem 13. Suppose that the assumptions of Theorem 3 of White et al. (2015)
and Assumptions G1-4 hold. To estimate V in Theorem 12, V̂T is obtained by
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plugging the QMLE α̂αα into (4.6) as follows:

V̂T =
1
T

T

∑
t=1

η̂ηη t η̂ηη
′
t

η̂ηη t =
n

∑
i=1

p

∑
j=1

∇qi, j,t(α̂αα)ψ(ε̂i, j,t),

ε̂i, j,t = yi,t −qi, j,t(α̂αα).

(4.7)

Then we have
V̂T

p→V. (4.8)

Proof. See Appendix 4.B.

We can also know that the conditional probability density of yi,t at its conditional
j-th quantile qi, j,t is fi, j,t(0), i = 1, . . . ,n, j = 1, . . . , p, t = 1, . . . ,T . We apply the
adaptive random bandwidth method (Hecq and Sun, 2021) to estimate fi, j,t(0)
(i = 1, . . . ,n, j = 1, . . . , p, t = 1, . . . ,T ) as follows.

Theorem 14 (Adaptive random bandwidth method).
Given the conditions and the asymptotic normality result in Theorem 12 and
assuming the condition that

√
T
(
αααz− α̂αα

) d∼ N(000, IIIls), z = 1, . . . ,N,

with ls := np(k+npm)+
p

∑
j=1

n

∑
i=2

di j and the exclusion of αααz such that

∇
′qi, j,t(α̂αα)

(
αααz− α̂αα

)
= 0,

we can get the following estimator of fi, j,t(0):

f̂i, j,t(0) =


1
N

N

∑
z=1

1{yi,t≤qi, j,t(α̂αα)+∇′qi, j,t(α̂αα)(αααz−α̂αα)}−1{yi,t≤qi, j,t(α̂αα)}
∇′qi, j,t(α̂αα)

(
αααz− α̂αα

) , when yi,t 6= qi, j,t(α̂αα),

0, when yi,t = qi, j,t(α̂αα),
(4.9)

and
Eyi,t ,α̂αα

[
f̂i, j,t(0)

∣∣∣Ft,i−1

]
p−→ fi, j,t(0), (4.10)

as N→ ∞ for i = 1, . . . ,n, j = 1, . . . , p, t = 1, . . . ,T . 4

4We regard the least ls absolute residual elements in {|ε̂i, j,t |, i = 1, . . . ,n; j = 1, . . . , p; t =

1, . . . ,T.} as zeros, see Theorem 6. Therefore, we set f̂i, j,t(0) = 0 at the least (p+1) absolute
residual elements in {|ε̂i, j,t |, i = 1, . . . ,n; j = 1, . . . , p; t = 1, . . . ,T.} in all the tests throughout
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Theorem 15. Suppose that the assumptions of Theorem 3 of White et al. (2015)
and Assumptions G1-4 hold. To estimate Q in Theorem 12, Q̂T is obtained by
plugging the QMLE α̂αα into (4.6) as follows:

Q̂T :=
1
T

T

∑
t=1

n

∑
i=1

p

∑
j=1

f̂i, j,t(0)∇qi, j,t(α̂αα)∇′qi, j,t(α̂αα), (4.11)

where f̂i, j,t(0) is obtained by the adaptive random bandwidth method (Hecq and
Sun, 2021) in Theorem 14. Then we have

Q̂T
p→ Q. (4.12)

Proof. See Appendix 4.B.

Here we would like to show a very basic data generating process (DGP) example
on the proposed systemic MVMQ-CAViaR (4.2). We want to use this exam-
ple to compare MVMQ-CAViaR with the systemic one in their conditions on
ensuring the estimation consistency as well as to see their linkage. Suppose a
bivariate time series {YYY t := [y1,t ,y2,t ]

′}T
t=1 follows a systemic bivariate CAViaR

DGP specified as follows:[
1 0

so
2,1 1

][
y1,t
y2,t

]
=

[
β o

10
β o

20

]
+

[
β o

11 β o
12

β o
21 β o

22

][
y1,t−1
y2,t−1

]
+

[
γo

11 γo
12

γo
21 γo

22

][
q1,t−1
q2,t−1

]
+

[
ε1,t
ε2,t

]
,

(4.13)
where {ε1,t} and {ε2,t} are independently distributed to each other as well as
within their own processes with [P{ε1,t ≤ 0|Ft,0},P{ε2,t ≤ 0|Ft,1}] = [θ ,θ ].
q1,t and q2,t are the θ -th quantiles of y1,t and y2,t conditional on Ft,0 and Ft,1
respectively, i.e., [P{y1,t ≤ q1,t |Ft,0},P{y2,t ≤ q2,t |Ft,1}] = [θ ,θ ]. Under the
assumptions of Theorem 11, we can get its QML estimator α̂αα

(s) consistent to its
true parameter vector denoted as αααo(s).5

If we ignore the contemporaneous effect and just regress {YYY t := [y1,t ,y2,t ]
′}T

t=1
onto the bivariate CAViaR without contemporaneous terms, a correct quantile
specification condition has to be imposed further as follows in order to ensure
the estimation consistency in this regression.[

P{ε1,t ≤ 0|Ft,0}
P{ε2,t − s2,1 · ε1,t ≤ 0|Ft,0}

]
=

[
θ

θ

]
(4.14)

this chapter.
5The subscript ‘(s)’ is used to distinguish the parameters for systemic MVMQ-CAViaR models

with the ones for MVMQ-CAViaR models which can be deemed in the reduced-form so use
subscript ‘(r)’ .
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With this correct quantile specification condition, we also have
[P{y1,t ≤ q1,t |Ft,0},P{y2,t ≤ q2,t |Ft,0}] = [θ ,θ ] as well as get consistent
estimator α̂αα

(r) to the true reduced-form one denoted as αααo(r) consisting of the
following elements.

βββ
o(r) :=

[
1 0
−so

2,1 1

]
βββ

o(s) =

[
1 0
−so

2,1 1

][
β o

10 β o
11 β o

12
β o

20 β o
21 β o

22

]
,

γγγ
o(r) =

[
1 0
−so

2,1 1

]
γγγ

o(s) =

[
1 0
−so

2,1 1

][
γo

11 γo
12

γo
21 γo

22

]
.

(4.15)

From this example, we can see the condition (4.14) is a linkage which realizes
the transition between the bivariate CAViaR estimator and the systemic one. On
the other hand, such transitions are not always applicable to ensure the estima-
tion consistency of MVMQ CAViaR regressions on systemic MVMQ CAViaR
processes. And the benefits of the systemic estimator are that we can check if
there is significant contemporaneous effect to be accounted for and measure the
systemic risk of Y1 if Y2 is a market index return variable. For inferring the sig-
nificance of the contemporaneous terms in systemic MVMQ CAViaR models,
we are going to provide some testing tools in the following.

4.2.3 Inference Testing

In this subsection, some inference tests are proposed in order to indicate if the
contemporaneous terms in systemic MVMQ CAViaR models are significant
enough so as to favour MVMQ CAViaR models or the systemic ones. There
are some ways to design such tests. If we run MVMQ CAViaR regression first,
it is rigours to consider if one response variable has some contemporaneous
explanatory power on the conditional quantile of another response variable.
Considering that, the first test proposed in Section 4.2.3 takes the way to test if
the quantile coverage of the latter response variable has a significant difference
between with conditioning on the contemporaneous quantile violation of the
first response variable and without the contemporaneous conditioning. We can
also test if the first response variable or its functional forms, like its disturbance
term, has significant contemporaneous explanatory power on the latter response
variable. This path is taken by the second test proposed in Section 4.2.3 based
on dynamic quantile (DQ) tests developed by Engle and Manganelli (2004). DQ
tests play the same role as misspecification Lagrange multiplier (LM) tests in
regressions models. So we apply DQ tests as quantile model misspecification
tests to check whether other variables should be considered into the model. If
we run systemic MVMQ CAViaR regression first, it is also rigours to see if
involved contemporaneous terms are significant enough. Wald tests typically
can fulfil this testing role and are presented at last in Section 4.2.3.
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Conditional Coverage Method

The conditional coverage method is commonly used for VaR backtesting. Unlike
the unconditional coverage method which only focuses on the the frequency of
VaR exceedance, the conditional coverage method (Christoffersen, 1998) is to
perform tests on the conditional VaR coverage which is estimated by the condi-
tional frequency of the VaR exceedance of a univariate time series. The condi-
tional coverage in the tests is set to equal the unconditional one under the null
hypothesis so that we can see if the conditional variables can significantly affect
the probability of the VaR exceedance.

We adopt this method to test if the occurrence of one asset loss rate (−y1t) ex-
ceeding its VaRα (−q1t) significantly affects the probability of a financial market
index loss rate (−y2t) exceeding its VaRα (−q2t) at the same time. To serve this
purpose, the testing hypothesis is stated as follows:{

Ho : E
[
1{y2t≤q2t}

∣∣1{y1t≤q1t}=1
]
= α, for all t;

HA : E
[
1{y2t≤q2t}

∣∣1{y1t≤q1t}=1
]
6= α, for all t.

(4.16)

Count the frequencies of four possible outcomes of 1{y2t≤q2t}×1{y1t≤q1t} over
t = 1,2, . . . ,T , and summarize it into the following table:

frequency in {yt}T
t=1 1{y1t≤q1t} = 0 1{y1t≤q1t} = 1

1{y2t≤q2t} = 0 n00 n10
1{y2t≤q2t} = 1 n01 n11

For testing the above hypothesis in VaR backtesting, the conditional coverage
method provides a likelihood ratio statistic as follows:

LRcc =−2 log
(

L(α,T )
L(n00,n01,n10,n11,T )

)
=−2 log

(
(1−α)n00+n10αn01+n11

(1− n01
n00+n01

)n00( n01
n00+n01

)n01(1− n11
n10+n11

)n10( n11
n10+n11

)n11

)
d∼ χ

2(2),
(4.17)

where χ2(v) is denoted as the chi-square distribution with v degree(s) of free-
dom.
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DQ Tests

Dynamic quantile (DQ) tests proposed by Engle and Manganelli (2004) are in-
tended to test if there is significant explanatory power of some omitted variables
on the conditional quantile of a response variable over time. It can also serve for
testing the hypothesis (4.16). DQ tests are analogous to the specification test il-
lustrated by Chernozhukov and Umantsev (2001) for quantile regressions. Com-
pared with the conditional coverage method, DQ tests are more flexible in testing
omitted variables and can also perform in-sample tests by taking the asymptotic
distribution of QML estimator α̂αα into account.

To test the contemporaneous explanatory power of yic,t on the θi, j-th quantile
qi, j,t of yi,t conditional on Ft,0 with 1 ≤ ic < i < n and 1 ≤ j ≤ p, the testing
hypothesis in our DQ tests is stated as follows:{

Ho : P
{

εi, j,t ≤ 0
∣∣yic,t

}
= θ for all t,

HA : P
{

εi, j,t ≤ 0
∣∣yic,t

}
6= θ for all t,

(4.18)

where εi, j,t := yi,t −qi, j,t .

For testing the above hypothesis, the in-sample and the out-of-sample DQ test
statistics are given in Theorem 16 and 17 respectively along with their asymptotic
distributions.

Theorem 16 (In-sample DQ test statistic). Suppose that the assumptions of The-
orem 3 of White et al. (2015) and the Ho hypothesis in (4.18) hold. The in-sample
DQ test statistic denoted as DQIS is given below with its asymptotic distribution.

DQIS =

1
T θ(1−θ)

(
T

∑
t=1

yic,t

(
1{yi,t≤qi, j,t(α̂αα)}−θi, j

))2(
Ĝ′T Q̂−1

T

n

∑
i=1,i 6=2

∂ q̂i, j,t

∂ α̂αα

∂ q̂i, j,t

∂ α̂αα
′ Q̂−1

T ĜT +
1
T

T

∑
t=1

(
yic,t −

∂qi, j,t(α̂αα)

∂ α̂αα
′ Q̂−1

T ĜT

)2
)−1

d∼ χ
2(1),

(4.19)
where

ĜT :=
1
T

T

∑
t=1

yic,t f̂i, j,t(0)
∂ q̂i, j,t

∂ α̂αα
, (4.20)

f̂i, j,t(0) is the estimate of the probability density function fi, j,t of εi, j,t at 0 con-
ditional on Ft,0, obtained by the adaptive bandwidth method, and α̂αα , ∂ q̂i, j,t

∂ α̂αα
and

Q̂T are obtained as instructed in the above theorems.

Proof. See Appendix 4.B.
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Theorem 17 (Out-of-sample DQ test statistic). Suppose that the assumptions of
Theorem 3 of White et al. (2015) and the Ho hypothesis in (4.18) hold. Denote
the number of in-sample observations as TR and the number of out-of-sample
observations as NR. The subscript R indicates the dependence of TR and NR on
R with the following properties:

lim
R→∞

NR

TR
= 0,

lim
R→∞

TR = ∞,

lim
R→∞

NR = ∞.

(4.21)

Then the out-of-sample DQ test statistic denoted as DQOOS is given below with
its asymptotic distribution.

DQOOS

=
1

NRθ(1−θ)

(
TR+NR

∑
t=TR+1

yic,t

(
1{yi,t≤qi, j,t(α̂αα)}−θ

))2(
1

NR

NR

∑
t=1

y2
ic,t

)−1

d∼ χ
2(1),

(4.22)

where qi, j,t(α̂αα) is obtained by plugging the QMLE α̂αα of the in-sample {YYY t}TR
t=1

into qi, j,t(·).

Proof. See Appendix 4.B.

Wald Tests

If we run systemic MVMQ CAViaR regression first and have the concern on the
significance of the involved contemporaneous terms, Wald tests are adopted here
to check if the contemporaneous terms are significant enough to remain in the
model.

To test the significance of the contemporaneous term gi, j (sssi, j,uuui,t) in the generic
model (4.2), the testing hypothesis in our Wald tests is stated as follows:{

Ho : sssi, j = 000,

HA : sssi, j 6= 000.
(4.23)

For testing the above hypothesis, the Wald test statistic denoted by WT is given
as follows:

WT = T ŝss′i, j
[
RQ̂−1

T V̂T Q̂−1
T R′

]−1
ŝssi, j

d∼ χ
2(di j) (4.24)
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where R is a di j× ls matrix indicating the location of each element of sssi, j in ααα

such that Rααα = sssi, j, and ŝssi, j, Q̂T and V̂T are the estimates of sssi, j, Q and V in (4.6)
respectively.

4.3 Measuring Systemic Risk via CoVaR

The European Central Bank (ECB) (2010) defines systemic risk in the financial
market as a risk of financial instability so widespread that it impairs the function-
ing of a financial system to the point where economic growth and welfare suffer
materially. CoVaR, a systemic risk measure proposed by Adrian and Brunner-
meier (2011), is defined as the VaR of the financial system conditional on insti-
tutions being under distress. We generalized MVMQ-CAViaR models into the
proposed systemic specification in order to incorporate the CoVaR specification
on financial index return variables. Therefore, we can use systemic MVMQ-
CAViaR models to measure the systemic risk of financial institutions of interest,
and this application is elaborated below.

Given two asset return variables Y1 and Y2, CoVaR2|C(Y1)
θ

is formulated by Adrian
and Brunnermeier (2011) as the θ -th quantile of the institution 2 (or the financial
system) conditional on some event C(Y1) of the institution 1, which fits in the
following property:

P
{

Y2 ≤ CoVaR2|C(Y1)
θ

∣∣∣C(Y1)
}
= θ . (4.25)

Suppose the bivariate time series {YYY t = [y1,t ,y2,t ]
′}T

t=1 follows the DGP as (4.13)
and we run the following systemic bivariate CAViaR regression:

YYY t = βββ 0 +βββ 1YYY t−1 + γγγqqqt−1 +

[
0
s

]
y1,t , (4.26)

where βββ 0, βββ 1, γγγ are 2×1, 2×2 and 2×2 parameter matrices. After the regres-
sion, we estimate CoVaR2|Y1

θ
in use of the estimates β̂ββ 0, β̂ββ 1, γ̂γγ, ŝ as follows:

ĈoVaR
2|Y1

θ ,t = β̂20 + β̂21 y1,t−1 + β̂22 y2,t−1 + γ̂21 q1,t−1 + γ̂22 q2,t−1 + ŝ y1,t . (4.27)

And

ĈoVaR
2|y1,t=q̂1,t

θ ,t

=
(

β̂20 + ŝ β̂10

)
+
(

β̂21 + ŝ β̂11

)
y1,t−1 +

(
β̂22 + ŝ β̂12

)
y2,t−1 +(γ̂21 + ŝ γ̂11)q1,t−1

+(γ̂22 + ŝ γ̂12)q2,t−1.
(4.28)
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If we also model the conditional 50%-th quantile q(50%)
1,t of y1,t into the above

systemic bivariate CAViaR model and get estimate q̂(50%)
1,t . ∆CoVaR2|1

θ ,t defined
by Adrian and Brunnermeier (2011) as the part of institution 1’s systemic risk
that can be attributed to Y2 can be estimated as follows:

∆CoVaR2|1
θ ,t := ĈoVaR

2|y1,t=q̂1,t

θ ,t − ĈoVaR
2|y1,t=q̂(50%)

1,t
θ ,t . (4.29)

Unlike the situation above which we know everything for certain, in reality we do
not know the true model specification on an underlying DGP or precise contem-
poraneous terms to be involved. Considering that, we would like to give a rig-
orous application procedure here for studying contemporaneous tail dependence
and CoVaR in use of systemic MVMQ-CAViaRs. In general, at first we would
like to run an MVMQ-CAViaR regression based upon our knowledge on the
multivariate time series of our interest. If we consider over some possible con-
temporaneous terms on explaining the conditional quantile of a response variate,
DQ tests are implemented to check the significance of their explanatory power
so that we can convincingly implement the systemic MVMQ-CAViaR regres-
sion when seeing the significance. After running the systemic MVMQ-CAViaR
regression, Wald tests are applied to check if all the explanatory terms in the
model are significant enough to be kept. After the Wald tests, the confirmed
model specification is used to measure the systemic risk of involved financial
institutions via their CoVaR as well as to measure contemporaneous tail depen-
dence of involved financial assets. We will implement the above procedure in
Section 4.5 with results presented correspondingly to each step.

4.4 Quantile Impulse Response Functions

The literature on quantile impulse response functions (QIRF) is scarce. We
have a brief review here. White et al. (2015) presented a concept called pseudo
quantile impulse response function in order to study how a shock to the present
variable yt influences the quantile (denoted as qt+h|t) of its future variable yt+h
at h-th (h ≥ 1) step ahead given the current information set Ft . Actually,
pseudo quantile impulse functions derived by White et al. (2015) strongly
assume that the intermediate future variables (yt+1, . . . ,yt+h−1) right before
the h-th step are fixed and not affected by the shock. Instead of fixing the
intermediate future values (yt+1, . . . ,yt+h−1), Montes-Rojas (2019) considered
quantile paths of yt+1, . . . ,yt+h−1 for forecasting qt+h. However, the way
that Montes-Rojas (2019) tackles the randomness of future quantile paths in
forecasting qt+h|t is by fixing a specific future quantile path, such as assuming
all median occurrences in the path. Although a future quantile path can be
freely chosen to match some senario, the way of Montes-Rojas (2019) in
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forecasting qt+h|t can still not adapt to distributional characteristics of yt+h|Ft

(short for yt+h conditional on Ft), let alone qt+h|t . The local projection method
proposed by Jordà (2005) for estimating mean impluse response functions
is also touched upon by Montes-Rojas (2019) to linearly regress qt+h|t+h−1
on a specific quantile path of yt+1, . . . ,yt+h−1 and variables measurable to
Ft . Chavleishvili and Manganelli (2019) still used a quantile specification of
yt |Ft−1 to represent the specification of the quantile of yt+h|Ft , and obtained
the QIRF by manipulating the part of intermediate disturbances into zeros.
Analogously to the fixed-intermediate (White et al., 2015) or specific future
quantile path (Montes-Rojas, 2019) ideas, Han et al. (2019) and Jung and
Lee (2019) used expectation of intermediate variables to define quantile
impulse response functions, and adopted the local projection Jordà (2005) for
estimation.

We aim in this section to define quantile impulse response function in a general
way which can adapt to distributional characteristics of yt+h|Ft , and then to
adopt the local projection idea with expansion of estimated terms to estimate
quantile impulse response functions.

Considering a multivariate time series {YYY t} in a DGP as (4.2), let us discuss on
how to forecast YYY t+h|Ft . Without loss of generality, we take a bivariate time
series {YYY t := [y1,t ,y2,t ]

′}T
t=1 with its model specification as follows:[

y1,t
y2,t

]
=

[
β10
β20

]
+

[
β11 β12
β21 β22

][
y1,t−1
y2,t−1

]
+

[
γ11 γ12
γ21 γ22

][
q1,t−1
q2,t−1

]
+

[
ε1,t
ε2,t

]
, (4.30)

where

qqqt :=
[

q1,t
q2,t

]
is the θ−th quantile of YYY t :=

[
y1,t
y2,t

]
conditional on Ft−1 which is the σ -algebra

generated by
{

YYY t−1,qqqt−1,YYY t−2,qqqt−2, . . .
}

with[
P{ε1,t ≤ 0|Ft−1}
P{ε2,t ≤ 0|Ft−1}

]
=

[
θ

θ

]
. (4.31)

Therefore,[
q1,t
q2,t

]
=

[
β10
β20

]
+

[
β11 β12
β21 β22

][
y1,t−1
y2,t−1

]
+

[
γ11 γ12
γ21 γ22

][
q1,t−1
q2,t−1

]
. (4.32)

Denote

βββ 0 :=
[

β10
β20

]
βββ 1 :=

[
β11 β12
β21 β22

]
γγγ :=

[
γ11 γ12
γ21 γ22

]
. (4.33)
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Suppose the above model specification is known for {YYY t}. And we want to fore-
cast the quantile (denoted as qt+h|t) of yt+h (h ≥ 1) given Ft now. At the first
step, we need to rewrite the specification (4.30) of YYY t+h by iteratively substitu-
tions until manifesting εεε t and qqqt as follows:

YYY t+h = βββ 0 +βββ 1YYY t+h−1 + γγγqqqt+h−1 + εεε t+h

= βββ 0 +βββ 1(qqqt+h−1 + εεε t+h−1)+ γγγqqqt+h−1 + εεε t+h

= βββ 0 +(βββ 1 + γγγ)qqqt+h−1 +(εεε t+h +βββ 1εεε t+h−1)

= βββ 0 +(βββ 1 + γγγ)
(
βββ 0 +βββ 1YYY t+h−2 + γγγqqqt+h−2

)
+(εεε t+h +βββ 1εεε t+h−1)

=
h

∑
i=1

(βββ 1 + γγγ)i−1
βββ 0 +(βββ 1 + γγγ)h−1

βββ 1YYY t +(βββ 1 + γγγ)h−1
γγγqqqt + εεε t+h +

max{h−1,1}

∑
i=1

(βββ 1 + γγγ)i−1
βββ 1εεε t+h−i

=
h

∑
i=1

(βββ 1 + γγγ)i−1
βββ 0 +(βββ 1 + γγγ)h qqqt + εεε t+h +

h

∑
i=1

(βββ 1 + γγγ)i−1
βββ 1εεε t+h−i,

(4.34)
where h ∈ {1,2, . . .}.

It is worth mentioning that based on (4.34), there is an alternative way to rewrite
YYY t+h into a function of {εεε t+h,εεε t+h−1, . . .}:

(III− (βββ 1 + γγγ)L)YYY t+h = βββ 0 +(III− γγγL)εεε t+h,

⇐⇒ YYY t+h = (III− (βββ 1 + γγγ))−1
βββ 0 +

(
∞

∑
i=0

(βββ 1 + γγγ)i Li

)
(III− γγγL)εεε t+h

= (III− (βββ 1 + γγγ))−1
βββ 0 + εεε t+h +

∞

∑
i=1

(βββ 1 + γγγ)i−1
βββ 1εεε t+h−i

(4.35)
where L is the lag operator, and it holds under the condition that the spectral
radius of (βββ 1 + γγγ) is less than one . However, the first rewriting way (4.34)
is more generally applicable to systemic MVMQ-CAViaR DGPs, which also
reduces the number of explanatory variables in the consideration for forecasting
qt+h|t .

Following the result (4.34) from the first step, we now can get the preliminary
predetermined part in qt+h|t as follows:

qt+h|t := Quantθ (YYY t+h|Ft)

=
h−1

∑
i=1

(βββ 1 + γγγ)i−1
βββ 0 +(βββ 1 + γγγ)h qqqt +(βββ 1 + γγγ)h−1

βββ 1εεε t

+Quantθ

(
εεε t+h +

h−1

∑
i=1

(βββ 1 + γγγ)i−1
βββ 1εεε t+i

∣∣∣∣∣Ft

)
.

(4.36)

Based on our assumptions before,

(
εεε t+h +

h−1

∑
i=1

(βββ 1 + γγγ)i−1
βββ 1εεε t+i

)
is not neces-
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sary to be independent of qqqt or εεε t unless {εεε t} is independently distributed. The

distribution of

(
εεε t+h +

h−1

∑
i=1

(βββ 1 + γγγ)i−1
βββ 1εεε t+i

)
can vary with the information on

{εεε t , pppt ,εεε t−1, pppt−1, . . . ,
}

so as to influence the distributional characteristic qt+h|t .
In order to forecast qt+h|t and study the effect of εεε t , we draw on the local projec-
tion idea of Jordà (2005) and consider to run the θ -th quantile regression of YYY t+h
onto some explanatory variables measurable to Ft . Based on the result (4.36),
we know at least we should use explanatory variables qqqt and YYY t . We do not use εεε t

directly because it is not observed and has the same role as YYY t in qt+h|t when we
include qqqt as another explanatory variable. However, we do not observe qqqt either.
Using estimated qqqt brings its estimation error in the quantile regression and can
make the regression result unreliable. So to mitigate the effect of its estimation
error on the regression, we expand qqqt to have more observed terms and use its
expansion terms along with YYY t into the local quantile regression. Specifically,
we expand qqqt as follows:

qqqt = βββ 0 +βββ 1YYY t−1 + γγγqqqt−1, (4.37)

= (βββ 0 + γγγβββ 0)+βββ 1YYY t−1 + γγγβββ 1YYY t−2 + γγγ
2qqqt−2. (4.38)

So we can use explanatory variables
{

YYY t−1,qqqt−1
}

in replacement of qqqt to miti-
gate the estimation error effect of qqqt , or use variables

{
YYY t−1,YYY t−2,qqqt−2

}
to fur-

ther mitigate the estimation error effect as long as the spectral radius of γγγ is
smaller than one because any v (denoted as an estimation error) will get vanished
by limn→∞ γγγnvvv= 000. Simulation results in next section show that the local quantile
regression result on the coefficient of YYY t become much more reliable when we
replace the explanatory variable qqqt with

{
YYY t−1,qqqt−1

}
or
{

YYY t−1,YYY t−2,qqqt−2
}

.6

Now we come to defining θ -th quantile response function of {YYY t} given a shock
δδδ to εεε t by taking the difference between Quantθ

(
YYY ∗t+h

∣∣εεε∗t := εεε t +δδδ ,Ft−1
)

and
Quantθ (YYY t+h|εεε t ,Ft−1) as follows:

QIRFh (θ ,δδδ |εεε t ,Ft−1)

= Quantθ
(
YYY ∗t+h

∣∣εεε∗t := εεε t +δδδ ,Ft−1
)
−Quantθ (YYY t+h|εεε t ,Ft−1)

= Quantθ
(
YYY ∗t+h

∣∣YYY ∗t := YYY t +δδδ ,Ft−1
)
−Quantθ (YYY t+h|YYY t ,Ft−1) ,

(4.39)

where we can notice that

Quantθ (εεε
∗
t |Ft−1) = δ

due to the shock, but Quantθ
(
εεε∗t+i

∣∣εεε∗t+i−1, . . . ,εεε
∗
t ,Ft−1

)
= 0 (i = 1, . . . ,h) ac-

cording to the correct specification assumption (4.31).

6The optimal number of explanatory variables in replacing qt is out of scope of this chapter.
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QIRFh (θ ,δδδ |εεε t ,Ft−1) can be obtained by the local θ -quantile regression of Yt+h
onto

{
YYY t ,YYY t−1,qqqt−1

}
or onto

{
YYY t ,YYY t−1,YYY t−2,qqqt−2

}
as follows:

QIRFh (θ ,δδδ |εεε t ,Ft−1) = λδ , (4.40)

where λ is the coefficient of Yt in the local θ -quantile regression of Yt+h
onto

{
YYY t ,YYY t−1,qqqt−1

}
or onto

{
YYY t ,YYY t−1,YYY t−2,qqqt−2

}
. We can also use higher

moments of YYY t as explantory variables in the local quantile regression, and
QIRFh (θ ,δδδ |εεε t ,Ft−1) can easily obtained by plugging the local quantile
regression result into the definition (4.39).

4.5 Simulations

In this section, we are going to generate multivariate time series in an MVMQ-
CAViaR DGP and a systemic MVMQ-CAViaR DGP, and implement the appli-
cation procedure proposed in Section 4.3 on both DGPs to study their perfor-
mances.

The MVMQ-CAViaR DGP that we simulate in this section is the bivariate
CAViaR DGP specified below in which a bivariate time series sample is denoted
as {YYY (r)

t }.

YYY (r)
t :=

[
y(r)1,t

y(r)2,t

]
=

[
F−1

t(3)(0.3)
F−1

t(3)(0.3)

]
+

[
0.3 0.2
0.2 0.3

][
y(r)1,t−1

y(r)2,t−1

]
+

[
0.2 0
0 0.1

][
q(r)1,t−1

q(r)2,t−1

]
+

[
ε
(r)
1,t

ε
(r)
2,t

]
,

(4.41)
or equivalently

YYY (r)
t = Ai +AyYYY

(r)
t−1 +Aqqqq(r)t−1 + εεε

(r)
t , (4.42)

where

Ai :=

[
F−1

t(3)(0.3)
F−1

t(3)(0.3)

]
, Ay :=

[
0.3 0.2
0.2 0.3

]
, Aq :=

[
0.2 0
0 0.1

]
, (4.43)

qqq(r)t := Quant0.3(YYY
(r)
t |Ft−1), and {εεε(r)

t −Ai} is i.i.d. in Student’s t-distribution
with 3 degrees of freedom ( t(3) as the shorthand notation thereafter) with
Quant0.3(εεε

(r)
t − Ai|Ft−1) = [0,0]′ for all t and F−1

t(3)(·) denoted as the inverse
probability distribution function of t(3) .

The systemic MVMQ-CAViaR DGP that we simulate in this section is the sys-
temic bivariate CAViaR DGP specified below in which a bivariate time series
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sample is denoted as {YYY (s)
t }.[

1 0
−0.5 1

][
y(s)1,t

y(s)2,t

]
=

[
F−1

t(3)(0.3)
F−1

t(3)(0.3)

]
+

[
0.3 0.2
0.2 0.3

][
y(s)1,t−1

y(s)2,t−1

]
+

[
0.2 0
0 0.1

][
q(s)1,t−1

q(s)2,t−1

]
+

[
ε
(s)
1,t

ε
(s)
2,t

]
,

(4.44)
or equivalently

AsYYY (s)
t = Ai +AyYYY

(s)
t−1 +Aqqqq(s)t−1 + εεε

(s)
t , (4.45)

where

As =

[
1 0
−0.5 1

]
, (4.46)

with Ai,Ay,Aq as defined in (4.43), qqq(s)t := [Quant0.3(y
(s)
1,t |Ft,0),Quant0.3(y

(s)
2,t |Ft,1)]

′,

and {εεε(s)
t −Ai} is i.i.d. in t(3) with Quant0.3(εεε

(s)
t −Ai|Ft−1) = [0,0]′ for all t.

It is easy to simulate samples from these two DGPs. Specifically on simulating
a sample in the bivariate DGP (4.42) with its sample size denoted as T , we first
generate a sample of {εεε(r)

t −Ai}
d∼ t(3) in sample size T + 200. And simulate{

YYY (r)
t

}T+200

t=1
based on the following equation:

YYY (r)
t =

t−1

∑
i=1

(Ay +Aq)
i−1Ai +(Ay +Aq)

t−1 qqq1 +εεε t +
t−1

∑
i=1

(Ay +Aq)
i−1Ayεεε

(r)
t−i (4.47)

with setting the initial value qqq(r)1 = [0,0]′. Delete the first 200 observations due
to the burn-in effect of the initial value qqq(r)1 = [0,0]′ in the simulation, and return{

YYY (r)
t

}T+200

t=201
as the generated sample in the DGP (4.42). Analogously, we simu-

late a sample in the systemic bivariate DGP (4.45) by the following equation:

YYY (s)
t =

t−1

∑
i=1

(A−1
s Ay +A−1

s Aq)
i−1A−1

s Ai +
(
A−1

s Ay +A−1
s Aq

)t−1
qqq(s)1

+ εεε t +
t−1

∑
i=1

(A−1
s Ay +A−1

s Aq)
i−1A−1

s AyA−1
s εεε

(s)
t−i

(4.48)

with the same set-up that qqq(s)1 = [0,0]′ and the burn-in period of 200 observa-
tions.7

We can visually compare YYY (r) and YYY (s) by a plot of their samples as shown in
Figure 4.1. As can be seen in Figure 4.1, {YYY (r)

t } is quite smooth , not as bumpy
or comovement-like as {YYY (s)} which is due to the fact that in the systemic DGP
the movement of y1,t immediately influences the conditional distribution of y2,t

7The length of burn-in periods chosen in this chapter is based on our experience, and it can be
adjusted for each specific DGP based on readers’ expertise.
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so as to be reflected in y2,t .

Figure 4.1: Compare YYY (r) and YYY (s).

After obtaining samples {YYY (r)
t } and {YYY (s)

t } of sample size T = 5000 from the
DGPs (4.42) and (4.45) respectively, we regress both {YYY (r)

t } and {YYY (s)
t } onto the

bivariate CAViaR model specification (4.42) of quantile index 0.3. After regres-
sions, we run the DQ tests to check if y1,t still has significant contemporaneous
explanatory power on the conditional 0.3-th quantile of y2,t with the hypothesis
statement as in (4.18). We use two methods to estimate the asymptotic covari-
ance matrix of the bivariate CAViaR model for {YYY (r)

t }, namely the adaptive ran-
dom bandwidth method (Hecq and Sun, 2021) and the kernel method with the
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optimal bandwidth used by White et al. (2015). From the size performances of
these two methods in the DQ test of {YYY (r)

t } (see Table 4.1), we found that the
adaptive random bandwidth (ARB) can well adapt to multivariate CAViaR mod-
els and robust in estimating the model asymptotic covariance matrix for various
inference tests. Hereafter we only show test results in use of the adaptive ran-
dom bandwidth method. The size performances of the DQ tests of {YYY (r)

t } and
{YYY (s)

t } are shown in Table 4.1. We can see that the DQ test works robustly in
indicating if some contemporaneous terms are significant to be involved into the
modelling.

Table 4.1: Rejection rates (Size performances) of DQ tests (4.18) after regressing both
YYY (r) and YYY (s) onto the bivariate CAViaR model specification (4.42)

DQ Tests significance level: α = 0.01 α = 0.05 α = 0.1 α = 0.2 α = 0.3
YYY (r) (ARB) 0.010 0.0470 0.0790 0.1900 0.2980
YYY (r) (kernel) 0.001 0.0340 0.0700 0.1580 0.2670
YYY (s) (ARB) 1.000 1.000 1.000 1.000 1.000

Now we regress both {YYY (r)
t } and {YYY (s)

t } onto the systemic bivariate CAViaR
model specification (4.45) of quantile index 0.3. After regressions, we run the
Wald tests to check if y1,t is significant enough in explaining the conditional
0.3-th quantile of y2,t with the hypothesis statement as in (4.23). The Wald test
performances are shown in Table 4.2. We can see that the Wald test works ro-
bustly on confirming if some contemporaneous terms are significant enough to
be kept in the model.

After confirming the systemic model specification for YYY (s), we can use the sys-
temic model regression result to measure the systemic risk of Y1 by estimating
CoVaR2|y1,t=q1,t

0.3,t as instructed in Section 4.3. Figure 4.2 shows a sample of YYY (s)

with its q̂qq(s), −ĈoVaR
2|y1,t=q̂1,t

0.3,t . We plot −ĈoVaR
2|y1,t=q̂1,t

0.3,t not ĈoVaR
2|y1,t=q̂1,t

0.3,t

with YYY (s) because we regard YYY (s) as return variables so that we can compara-

tively view YYY (s) with its q̂qq(s) and −ĈoVaR
2|y1,t=q̂1,t

0.3,t in one plot.

Now we confirm the bivariate CAViaR model for YYY (r) and the systemic model
for YYY (s). And we study their 0.3-th quantile impulse response functions (QIRFs)
by the local 0.3-th quantile regression of YYY t+h (h ≥ 1) onto vector regressors

Table 4.2: Rejection rates (Size performances) of Wald tests (4.23) after regressing both
YYY (r) and YYY (s) onto the systemic bivariate CAViaR model specification (4.45)

Wald Tests (4.23) significance level: α = 0.01 α = 0.05 α = 0.1 α = 0.2 α = 0.3
YYY (r) (ARB) 0.0260 0.0680 0.1120 0.1980 0.2860
YYY (s) (ARB) 1.000 1.000 1.000 1.000 1.000
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Figure 4.2: Time series plot of sample YYY (s) with its q̂qq(s), −ĈoVaR
2|y1,t=q̂1,t
0.3,t

{
YYY t ,YYY t−1,YYY t−2, q̂qqt−2

}
. Figure 4.3 and 4.4 compare the QIRF results among us-

ing explanatory variables {YYY t , q̂qqt} and
{

YYY t ,YYY t−1,YYY t−2, q̂qqt−2
}

with the true QIRF
of YYY , in which we can see that using the expansion terms of q̂qqt is more robust
over using q̂qqt directly. In fact, the outperformance of using q̂qqt is more obvious for
tail quantile indexes like 0.1 with the sample size being relatively large enough
compared to the number of coefficients to be estimated in a local quantile regres-
sion.

In next section, we are going to implement the above application procedure on
some empirical data and analyse the results for our empirical knowledge.
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Figure 4.3: QIRF of YYY (r) estimated by the local 0.1-th quantile regression
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Figure 4.4: QIRF of YYY (s) estimated by the local 0.1-th quantile regression
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4.6 Empirical Applications

We apply the above systemic modelling procedure to study the systemic risks
of JPMorgan Chase & Co., the Bank of America Corporation, Wells Fargo &
Company, the Goldman Sachs Group, Inc., Citigroup Inc. and Morgan Stanley
which are the six largest bank holding companies in the United States ranked by
total assets of March 31, 2020 per the Federal Financial Institutions Examination
Council. Systemic risk of large financial intuitions can be as scary as the Great
Recession that occurred between 2007 – 2009 in national economies globally.
Before Lehman Brothers Holdings Inc. filed for bankruptcy in 2008, it was the
fourth-largest investment bank in the United States. After Lehman Brothers filed
for bankruptcy, global markets immediately plummeted and investors lost con-
fidence, which caused bank runs, funding liquidity shortage, high haircuts, fire
sales of assets and high counterpart credit risk in financial markets. The distress
was spreading over financial institutions globally, and triggered the financial cri-
sis of 2007—2008 which sparked the Great Recession (2007 – 2009), the most
severe global recession since the Great Depression (1929-1933). Therefore, we
are concerned about systemic risk of big financial intuitions and would like to
measure the systemic risk of the six largest bank holding companies by our pro-
posed method.

We use the S&P500 as the market index of interest which is deemed vulnerable
to the systemic risks of those big banks. We downloaded daily adjusted closing
stock prices of these six banks and the S&P500 from Yahoo! Finance, and each
stock price time series has 3189 daily prices, ranging from 31-Dec-2006 to 01-
Sep-2019. The price data were converted to percentage returns by multiplying
100 with the difference of the natural logarithm of the daily prices. The obtained
return time series of each stock contains 3188 observations in the period of 01-
Jan-2007 to 01-Sep-2019. In each return time series, the last 300 observations
are used for the out-of-sample testing after the first 2888 observations are used
to estimate the model.

We measure the systemic risk of each of these six banks individually by bivariate
CAViaR models with the S&P500 daily returns. The bivariate CAViaR models
used for estimating the conditional 5% quantiles of a big bank and the S&P500
daily returns are (4.30) and (4.13) for bivariate CAViaR and systemic bivariate
CAViaR regressions respectively.

We set up inference tests in the same way as we did in the preceding sections.
The inference testing results based on our systemic modelling procedure for the
conditional 5% quantiles of the six banks’ and the S&P500 daily returns are pre-
sented in Table 4.3 for in-sample tests and Table 4.4 for out-of-sample tests. The
DQ p-value (MVMQ) columns of Table 4.3 and 4.4 provide strong evidence of
contemporaneous (daily) spillovers of financial distress at individual financial

111



Chapter 4

Table 4.3: In-sample test results on the empirical data (quantile index=0.05)
Banks VaR exceedance rates (MVMQ) DQ p-value VaR exceedance rates (SMVMQ) Wald p-value

[bank, the S&P500] (MVMQ) [bank, the S&P500] (SMVMQ)
BAC [0.0502, 0.0499] 0 [0.0495, 0.0495] 0
C [0.0506, 0.0502] 0 [0.0502, 0.0506] 0
GS [0.0516, 0.0509] 0 [0.0519, 0.0492] 0
JPM [0.0502, 0.0533] 0 [0.0499, 0.0488] 0
MS [0.0512, 0.0506] 0 [0.0509, 0.0519] 0
WFC [0.0499, 0.0561] 0 [0.0495, 0.0495] 0

institutions to the S&P500 index return. There is further evidence that the in-
volved contemporaneous terms are significant in the systemic bivariate CAViaR
models according to the Wald p-value (SMVMQ) columns. From the results of
the out-of-sample tests in Table 4.4 for VaR5% backtesting, we see that we can
not reject the systemic model of Goldman Sachs and the S&P500 which even
has VaR5% exceedance rates close to the risk level 5%. Other systemic models
are rejected by the out-of-sample DQ tests which means that those banks still
have significant explanatory power on conditional 0.5-th quantiles of the market
index which is not revealed by the in-sample estimation. There are many possi-
ble reasons behind those model rejections. One reason can be the inappropriate
functional form of the contemporaneous terms in banks’ returns we considered
in those models. Another possible reason is that those rejected models omitted
some other significant contemporaneous terms such as Goldman Sachs. The re-
sults in Table 4.3 and 4.4 let us confirm the systemic model of Goldman Sachs
and the S&P500 first so as to measure the systemic risk of Goldman Sachs, and
also gives us some clues to explore the functional forms of the contemporaneous
effect of the banks on the market index. For example, we can run the systemic
model on one of the five banks in model rejections with Goldman Sachs so that
we count out the common contemporaneous effect of that bank on the market
index with Goldman Sachs and focus on their idiosyncratic parts for the contem-
poraneous effects and the proper functional forms. We are not going to measure
the systemic risks of these six banks together by a seven-variate CAViaR model
in this chapter. Since systemic MVMQ-CAViaR models are directional, we have
to decide on the contemporaneous influence direction among these seven stocks.
However, the results above of the (systemic) bivariate CAViaR models can be
the starting point to build a proper seven-variate CAViaR model and then study
their systemic risks in a whole system, which involves an enumeration of model
estimations and inference tests and is left for future research.

After confirming the systemic model specification for the conditional 5%-th
quantiles of Goldman Sachs and the S&P500, we can use the systemic model
regression result to measure the systemic risk of Goldman Sachs by estimating
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Table 4.4: Out-of-sample test results on the empirical data (quantile index=0.05)
Banks VaR exceedance rates (MVMQ) DQ p-value VaR exceedance rates (SMVMQ) DQ p-value

[bank, the S&P500] (MVMQ) [bank, the S&P500] (SMVMQ)
BAC [0.0733, 0.0367] 0 [0.0833, 0.0733] 0
C [0.0667, 0.0367] 0 [0.0867, 0.0800] 0
GS [0.0500, 0.0400] 0 [0.0567, 0.0700] 0.4576
JPM [0.0167, 0.0400] 0 [0.0167, 0.0767] 0.0005
MS [0.0267, 0.0433] 0 [0.0467, 0.0700] 0
WFC [0.0367, 0.0433] 0 [0.0467, 0.0833] 0.0015

CoVaRSP500|yGS,t=qGS,t(5%)
5%,t as instructed in Section 4.3.

∆CoVaRSP500|yGS,t
5%,t := CoVaRSP500|yGS,t=qGS,t(5%)

5%,t −CoVaRSP500|yGS,t=qGS,t(50%)
5%,t

is defined by Adrian and Brunnermeier (2011) as the part of Goldman Sachs’
systemic risk that can be attributed to the S&P500. To view ∆CoVaRSP500|yGS,t

5%,t ,
we also need to model and estimate the conditional 50%-th quantiles of Goldman
Sachs’ returns. Analogously, we regress the returns of Goldman Sachs and the
S&P500 onto the bivariate CAViaR (4.30) and the systemic bivariate CAViaR
model (4.13) of quantile index 0.50 respectively, and perform the inference tests
as we did before which results in Table 4.5 and 4.6.

Table 4.5: In-sample test results on the returns of Goldman Sachs and the S&P500
(quantile index=0.50)

Bank VaR exceedance rates (MVMQ) DQ p-value VaR exceedance rates (SMVMQ) Wald p-value
[bank, the S&P500] (MVMQ) [bank, the S&P500] (SMVMQ)

GS [0.5000, 0.4997] 0 [0.4997, 0.4997] 0

Table 4.6: Out-of-sample test results on the returns of Goldman Sachs and the S&P500
(quantile index=0.05)

Bank VaR exceedance rates (MVMQ) DQ p-value VaR exceedance rates (SMVMQ) DQ p-value
[bank, the S&P500] (MVMQ) [bank, the S&P500] (SMVMQ)

GS [0.5133, 0.5033 ] 0 [0.5233, 0.4700] 0.5607

As we can see that the systemic model is not rejected for the conditional 0.5-th
quantiles of Goldman Sachs’ and the S&P500 returns so that we can use its
estimated conditional 0.5-th quantiles of Goldman Sachs’ returns to calculate
CoVaRSP500|yGS,t=qGS,t(50%)

5%,t so for us to view ∆CoVaRSP500|yGS,t
5%,t . The estimated

conditional 0.05-th and 0.5-th quantiles of Goldman Sachs’ and the S&P500
returns are plotted in Figure 4.8 and 4.9 respectively, see Appendix 4.A.
Figure 4.5 shows the returns of the S&P500 index, −CoVaRSP500|yGS,t=qGS,t(5%)

5%,t

and −CoVaRSP500|yGS,t=qGS,t(50%)
5%,t . We plot −CoVaRSP500|yGS,t=qGS,t

0.05,t not
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CoVaRSP500|yGS,t=qGS,t
0.05,t with the returns so that we can comparatively view the

returns of the S&P500 index with −CoVaRSP500|yGS,t=qGS,t
0.05,t in one plot. Figure 4.6

reflects the part of Goldman Sachs’ systemic risk attributed to the S&P500
index over time by plotting {∆CoVaRSP500|yGS,t

5%,t }. We can see from Figure 4.6
that the part of Goldman Sachs’ systemic risk attributed to the S&P500 index
was cumulating after Lehman Brothers filed for bankruptcy on September 15,
2008, and reached unprecedentedly high until mid-2009. Figure 4.6 is quite
story-telling and links almost every peak in the figure to a distress event of
Goldman Sachs, which can be informative for financial market regulators in
systemic risk management.

The 0.05-th QIRF coefficients of Goldman Sachs on the S&P500 is obtained by
the local 0.05-th quantile regressions (see Section 4.4) in use of the expansion
terms up to 3-step lagged return vector variables, which is plotted in Figure 4.7.
The 0.05-th QIRF coefficient drawn at h = 0 in Figure 4.7 is the estimated coeffi-
cient of the contemporaneous term in Goldman Sachs’ return on the conditional
0.05-th quantile of the S&P500 return by the systemic model regression (4.13).8

Figure 4.7 says that a shock to Goldman Sachs’ return at h = 0 contemporane-
ously shifts the conditional 0.05-th quantile of the S&P500 return in tandem con-
siderably, and in the rest of days the conditional 0.05-th quantile of the S&P500
returns are less memorable of this shock.

From the empirical application above, we have seen that the contemporaneous
effects of the big banks’ returns are significant on conditional quantiles of the
S&P500 returns, and it is informative to use systemic MVMQ CAViaR models
proposed in this chapter with the systemic modelling procedure (see Section 4.3)
to analyse and monitor the systemic risks of big financial institutions.

8When we used the expansion terms up to 4-step lagged return vector variables in the local 0.05-
th quantile regression, we got a similar result to the 0.05-th QIRF coefficients in Figure 4.7.
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Figure 4.5: CoVaR plot of Goldman Sachs on the S&P500
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Figure 4.6: ∆CoVaR
SP500|yGS,t
5%,t plot over time

Figure 4.7: 0.05-th QIRF coefficient of Goldman Sachs on the S&P500
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4.7 Conclusions
We generalized multivariate multi-quantile CAViaR models (MVMQ-CAViaR,
see White et al., 2015) by incorporating CoVaR specification (see Adrian and
Brunnermeier, 2011) into the model specification in this chapter. The proposed
systemic MVMQ-CAViaR model presents a vector-autoregressive (VAR) spec-
ification of financial institutions’ value-at-risk (VaR) as well as their CoVaR.
This model generalization is able to capture contemporaneous tail dependence
of financial institutions and market indexes so that we can interpret the systemic
risks of the institutions over time. The consistency and asymptotic normality
proofs of this generalized model are provided in this chapter along with some
relevant inference tests, for which we implemented simulation tests and showed
robust model performances. For tracing the transmission of a single shock to a
financial institution in the financial system, we also constructed quantile impulse
response functions (QIRF) accordingly in use of the local projection idea (Jordà,
2005) and expansion of estimated terms. Based on our simulation results, we can
see that using the expansion terms of q̂qqt is more robust than directly using q̂qqt in
the local quantile regression for the QIRF estimation. Applications to real data
provided empirical support to this methodology.
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4.A Appendix: Extra Figures

Figure 4.8: Time series plot of the returns of Goldman Sachs with its fitted condi-
tional 0.05-th and 0.5-th quantiles by the systemic MVMQ CAViaR regression with the
S&P500
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Figure 4.9: Time series plot of the returns of the S&P500 with its fitted conditional 0.05-
th and 0.5-th quantiles by the systemic MVMQ CAViaR regression with Goldman Sachs
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4.B Appendix: Proofs

Proof of Theorem 11.
The proof builds on Engle and Manganelli (2004)’s Thoerem 1 and White et al.
(2015)’s Theorem 1, and can be obtained immediately by following the proof
of White et al. (2015)’s Theorem 1 on pp. 184.

Proof of Theorem 12.
The proof builds on Engle and Manganelli (2004)’s Thoerem 2 and White et al.
(2015)’s Theorem 2, and can be obtained by following the proof of White et al.
(2015)’s Theorem 2 on pp. 186.

Proof of Theorem 13.
The proof builds on Engle and Manganelli (2004)’s Thoerem 3 and White et al.
(2015)’s Theorem 3, and can be obtained immediately by following the proof
of White et al. (2015)’s Theorem 3 on pp. 186.

Proof of Theorem 14.
First, since expectation is a linear function, we rewrite Eyi,t ,α̂αα

[
f̂i, j,t(0)

∣∣∣Ft,i−1

]
as

follows:

Eyi,t ,α̂αα

[
f̂i, j,t(0)

∣∣∣Ft,i−1

]
=N−1

N

∑
z=1

Eyi,t ,α̂αα

[
1{yi,t≤qi, j,t(α̂αα)+∇′qi, j,t(α̂αα)(αααz−α̂αα)}−1{yi,t≤qi, j,t(α̂αα)}

∇′qi, j,t(α̂αα)
(
αααz− α̂αα

) ∣∣∣∣∣Ft−1,i−1, yi,t 6= qi, j,t

]
(4.49)

This equality holds when N goes to infinity by applying the dominated
convergence theorem as we regard the least ls absolute residual elements
in {|ε̂i, j,t |, i = 1, . . . ,n; j = 1, . . . , p; t = 1, . . . ,T.} as zeros, see Theorem 6.
We rank {|ε̂i, j,t |, i = 1, . . . ,n; j = 1, . . . , p; t = 1, . . . ,T.} from the smallest
to largest into {|ε̂|(1), ·, |ε̂|(npT )}. In fact, iterations of a simplex-based direct
search method like the Nelder–Mead method for optimizing ls parameters
terminates at the vertices of a simplex in the parameter space (Lagarias
et al., 1998). That is to say, the iterations terminate with ls elements of
{|ε̂i, j,t |, i = 1, . . . ,n; j = 1, . . . , p; t = 1, . . . ,T.} solved to be zeros. Therefore,
we get

| f̂i, j,t(0)| ≤
1

|ε̂|(ls+1)
< ∞, (4.50)

where |ε̂|(ls+1) 6= 0 for a well-defined convex function minimization.
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Since {(αααz− α̂αα)}N
z=1 is i.i.d in N(000, IIIls), we can get that for each t ∈ {1, . . . ,T},{

Eyi,t ,α̂αα

[
1{yi,t≤qi, j,t (α̂αα)+∇′qi, j,t (α̂αα)(αααz−α̂αα)}−1{yi,t≤qi, j,t (α̂αα)}

∇′qi, j,t(α̂αα)(αααz−α̂αα)

∣∣∣∣Ft−1,i−1, yi,t 6= qi, j,t

]}N

z=1

is a sequence of independent random variables with finite second moments by
Assumption 5(iii) of White et al. (2015) that

D1,t := max
i=1,...,n

max
j=1,...,p

max
s=1,...,ls

sup
α∈Θ

∣∣∣∣∂qi, j,t(ααα)

∂αs

∣∣∣∣ ,
E[D1,t ]< ∞,

E[D2
1,t ]< ∞.

(4.51)

Hence, we can use the strong Law of Large Number to get that

N−1
N

∑
z=1

Eyi,t ,α̂αα

[
1{yi,t≤qi, j,t(α̂αα)+∇′qi, j,t(α̂αα)(αααz−α̂αα)}−1{yi,t≤qi, j,t(α̂αα)}

∇′qi, j,t(α̂αα)
(
αααz− α̂αα

) ∣∣∣∣∣Ft−1,i−1, yi,t 6= qi, j,t

]
a.s.−→ Eyi,t ,α̂αα,αααz

[
1{yi,t≤qi, j,t(α̂αα)+∇′qi, j,t(α̂αα)(αααz−α̂αα)}−1{yi,t≤qi, j,t(α̂αα)}

∇′qi, j,t(α̂αα)
(
αααz− α̂αα

) ∣∣∣∣∣Ft−1,i−1, yi,t 6= qi, j,t(α̂αα)

]
,

(4.52)
as N → ∞. Denote Fi,t(·) and fi,t(·) as the probability distribution function and
the probability density function of yi,t conditional on Ft,i−1 respectively. By As-
sumption 2(i) and 3(ii) of White et al. (2015) that Fi,t(·) and fi,t(·) are continuous
in R and qi, j,t(·) is continuously differential on Θ with the conditional probabil-
ity density of yi,t at its conditional θi, j-th quantile qi, j,t(ααα

o) being fi, j,t(0), we
can get that

Eyi,t ,α̂αα,αααz

[
1{yi,t≤qi, j,t(α̂αα)+∇′qi, j,t(α̂αα)(αααz−α̂αα)}−1{yi,t≤qi, j,t(α̂αα)}

∇′qi, j,t(α̂αα)
(
αααz− α̂αα

) ∣∣∣∣∣Ft−1,i−1, yi,t 6= qi, j,t(α̂αα)

]

= Eα̂αα,αααz

[
Eyi,t

[
1{yi,t≤qi, j,t(α̂αα)+∇′qi, j,t(α̂αα)(αααz−α̂αα)}−1{yi,t≤qi, j,t(α̂αα)}

∇′qi, j,t(α̂αα)
(
αααz− α̂αα

) ∣∣∣∣∣Ft−1,i−1,yi,t 6= qi, j,t(α̂αα)

]∣∣∣∣∣Ft−1,i−1

]

= Eα̂αα,αααz

[
Fi,t
(
qi, j,t(α̂αα)+∇′qi, j,t(α̂αα)

(
αααz− α̂αα

))
−Fi,t

(
qi, j,t(α̂αα)

)
∇′qi, j,t(α̂αα)

(
αααz− α̂αα

) ∣∣∣∣∣Ft−1,i−1

]

= Eα̂αα,αααz

 fi,t(qi, j,t(α̂αα))∇′qi, j,t(α̂αα)
(
αααz− α̂αα

)
+Op

((
αααz− α̂αα

)′
∇qi, j,t(α̂αα)∇′qi, j,t(α̂αα)

(
αααz− α̂αα

))
∇′qi, j,t(α̂αα)

(
αααz− α̂αα

)
∣∣∣∣∣∣Ft−1,i−1


= Eα̂αα,αααz

[
fi,t(qi, j,t(α̂αα))+Op

(
∇
′qi, j,t(α̂αα)(αααz− α̂αα)

)∣∣Ft−1,i−1
]

= fi, j,t(0),
(4.53)

where the last line is obtained by applying the dominated convergence theorem
as αααz− α̂αα = op(1) and limT→∞ α̂αα = αααo with assuming fi,t(·) being a continuous
function and E[D1,t ]< ∞.

Therefore, we have that Eyi,t ,α̂αα

[
f̂i, j,t(0)

∣∣∣Ft,i−1

]
p→ fi, j,t(0) for t ∈ {1,2, . . . ,T}
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as N→ ∞, and conclude this proof.

Proof of Theorem 15.
Denote that

Q̄T :=
1
T

T

∑
t=1

n

∑
i=1

p

∑
j=1

f̂i, j,t(0)∇qi, j,t(ααα
o)∇′qi, j,t(ααα

o), . (4.54)

Note that
Q̂T −Q = Q̂T − Q̄T + Q̄T −Q. (4.55)

It is straightforward to get that

Q̂T − Q̄T = op (1) , (4.56)

because it is easy to get 1
T

T

∑
t=1

f̂i, j,t(0) converges in probability to 1
T

T

∑
t=1

fi, j,t(0),

i.e, 1
T

T

∑
t=1

f̂i, j,t(0)−
1
T

T

∑
t=1

fi, j,t(0) = op (1) by following the proof of Corollary 7

with Assumption 5(iii) of White et al. (2015) as shown in (4.51).
And we can get that

Q̄T −Q = op (1) , (4.57)

since that V̂T
p−→V in Theorem 13 and qi, j,t(·) is bounded so as for continuous

function fi,t(qi, j,t(·)).

Therefore, we have that Q̂T −Q = op (1) and conclude this proof.

Proof of Theorem 16.
To prove this theorem, we need to find out the limiting distribution of

1√
T

T

∑
t=1

yic,t

(
1{yi,t≤qi, j,t(α̂αα)}−θi, j

)
. First we define



Hiti, j,t(ααα) := 1{yi,t≤qi, j,t(ααα)}−θi, j,

Hiti,t(ααα) := [Hiti,1,t(ααα), . . . ,Hiti,p,t(ααα)]′,

Hitt(ααα) := [Hit′1,t(ααα), . . . ,Hit′n,t(ααα)]′,

qqqi,t(ααα) := [qi,1,t(ααα), . . . ,qi,p,t(ααα)]′,

qqqt(ααα) := [qqq′1,t(ααα), . . . ,qqq′n,t(ααα)]′,

(4.58)
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and start to derive the the limiting behaviour of 1√
T

T

∑
t=1

yic,t

(
1{yi,t≤qi, j,t(α̂αα)}−θi, j

)
as follows:

1√
T

T

∑
t=1

yic,t

(
1{yi,t≤qi, j,t(α̂αα)}−θi, j

)
=

1√
T

T

∑
t=1

yic,t
(
Hiti, j,t(α̂αα)−Hiti, j,t(αααo)+Hiti, j,t(αααo)

)
=

1√
T

T

∑
t=1

yic,t
(
Hiti, j,t(α̂αα)−Hiti, j,t(αααo)

)
+

1√
T

T

∑
t=1

yic,tHiti, j,t(αααo).

(4.59)

Use the result proved by Engle and Manganelli (2004) that

Hit⊕i, j,t(ααα) :=
(

1+ exp
(

yi,t −qi, j,t(ααα)

cT

))−1

−θi, j,

1√
T

T

∑
t=1

yic,tHit⊕i, j,t(ααα
o)− 1√

T

T

∑
t=1

yic,tHiti, j,t(αααo) = op(1),

1√
T

T

∑
t=1

yic,tHit⊕i, j,t(α̂αα)− 1√
T

T

∑
t=1

yic,tHiti, j,t(α̂αα) = op(1),

(4.60)

where cT is a nonstochastic sequence such that lim
T→∞

cT = 0. We can approximate

the first term in the last line of (4.59) as follows:

1√
T

T

∑
t=1

yic,t
(
Hiti, j,t(α̂αα)−Hiti, j,t(αααo)

)
=

1√
T

T

∑
t=1

yic,t

(
Hit⊕i, j,t(α̂αα)−Hit⊕i, j,t(ααα

o)
)
+op(1)

=
1√
T

T

∑
t=1

yic,t fi, j,t(0)
∂qi, j,t(ααα

o)

∂αααo′ (α̂αα−ααα
o)+op(1)

=
√

T (α̂αα−ααα
o)′

1
T

T

∑
t=1

yic,t fi, j,t(0)
∂qi, j,t(ααα

o)

∂αααo′ +op(1)

=− 1√
T

(
T

∑
t=1

n

∑
i=1

Hit′t(ααα
o)

∂qqqt(ααα
o)

∂αααo′

)
Q−1G+op(1),

(4.61)

where G := 1
T

T

∑
t=1

yic,t fi, j,t(0)
∂qi, j,t(ααα

o)

∂αααo′ , and the third and last lines are obtained
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by respectively applying (B.5) of Engle and Manganelli (2004) on pp. 379 and

√
T (α̂αα−ααα

o)′ =− 1√
T

(
T

∑
t=1

n

∑
i=1

Hit′t(ααα
o)

∂qqqt(ααα
o)

∂αααo′

)
Q−1 +op(1)

d∼ N(000,Q−1V Q−1)

(4.62)

which is in the proof of White et al. (2015) on pp.187. So we substitute(4.61)
back into (4.59) and get

1√
T

T

∑
t=1

yic,t

(
1{yi,t≤qi, j,t(α̂αα)}−θi, j

)
=− 1√

T

(
T

∑
t=1

n

∑
i=1

Hit′t(ααα
o)

∂qqqt(ααα
o)

∂αααo′

)
Q−1G+

1√
T

T

∑
t=1

yic,tHiti, j,t(αααo)+op(1).

(4.63)
Apply Assumption 5(i)-(iii) of White et al. (2015), the ergodic theorem and the
martingale difference central limit theorem (see Theorem 3.35 and 5.24 of White
(2001)) on (4.63) and obtain that

1√
T

T

∑
t=1

yic,t

(
1{yi,t≤qi, j,t(α̂αα)}−θi, j

)
d∼ N(000,

1
T

θi, j(1−θi, j))

[
G′Q−1′

T

∑
t=1

N

∑
i6=ic

∂qi, j,t(ααα
o)

αααo
∂qi, j,t(ααα

o)

αααo′ Q−1G

]
.

(4.64)
And we know that

Q̂T
p→ Q,

f̂i, j,t(0)− fi, j,t(0) = op(1),

∂qi, j,t(α̂αα)

∂ α̂αα
′

p→
∂qi, j,t(ααα

o)

∂αααo′ ,

(4.65)

where Q̂T is the estimator given in Theorem 15, f̂i, j,t(0) is the estimator given in
Theorem 14, and the last equality is obtained because that ∂qi, j,t(ααα)

∂ααα
is continuous

in Θ and α̂αα
p→ αααo. So we also have that

ĜT :=
1
T

T

∑
t=1

yic,t f̂i, j,t(0)
∂qi, j,t(α̂αα)

∂ α̂αα
′

p→ G, (4.66)

and
DQIS

d∼ χ
2(1),

which concludes this proof.

Proof of Theorem 17.
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As in the proof of Theorem 16, we apply the approximation result (4.60) to derive

the limiting distribution of 1√
NR

TR+NR

∑
t=TR+1

yic,t

(
1{yi,t≤qi, j,t(α̂αα)}−θ

)
as follows:

lim
R→∞

1√
NR

TR+NR

∑
t=TR+1

yic,t

(
1{yi,t≤qi, j,t(α̂αα)}−θ

)
= lim

R→∞

1√
NR

TR+NR

∑
t=TR+1

yic,t
(
Hiti, j,t(α̂αα)−Hiti, j,t(αααo)+Hiti, j,t(αααo)

)
= lim

R→∞

1√
NR

TR+NR

∑
t=TR+1

yic,t

(
Hit⊕i, j,t(α̂αα)−Hit⊕i, j,t(ααα

o)+Hiti, j,t(αααo)
)

= lim
R→∞

1√
NR

TR+NR

∑
t=TR+1

yic,t fi, j,t(0)
∂qi, j,t(ααα

o)

∂αααo′ (α̂αα−ααα
o)+ lim

R→∞

1√
NR

TR+NR

∑
t=TR+1

yic,tHiti, j,t(αααo),

= lim
R→∞

√
NR

TR

√
TR(α̂αα−ααα

o)′
1

NR

TR+NR

∑
t=TR+1

yic,t fi, j,t(0)
∂qi, j,t(ααα

o)

∂αααo + lim
R→∞

1√
NR

TR+NR

∑
t=TR+1

yic,tHiti, j,t(αααo),

= lim
R→∞

1√
NR

TR+NR

∑
t=TR+1

yic,tHiti, j,t(αααo).

(4.67)
Apply Assumption 5(i)-(iii) of White et al. (2015), the ergodic theorem and the
martingale difference central limit theorem (see Theorem 3.35 and 5.24 of White
(2001)) on (4.67) and obtain that

lim
R→∞

1√
NR

TR+NR

∑
t=TR+1

yic,t

(
1{yi,t≤qi, j,t(α̂αα)}−θ

)
d∼ N

(
000,

θi, j(1−θi, j)

NR

NR

∑
t=1

y2
ic,t

) (4.68)

which leads to
DQOOS

d∼ χ
2(1), (4.69)

and concludes this proof.
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5
Summary and Outlook

This chapter provides a brief summary of this dissertation. Following up this
summary of our research work so far, an outlook of possible extensions to our
work is also provided in the end.

This dissertation studies financial time series by quantile regressions. Quantile
autoregressions (Koenker and Xiao, 2006) are applied in Chapter 2. Specifically,
Chapter 2 introduced a new way to select between causal and noncausal models
by comparing residuals from quantile autoregressions developed by Koenker and
Xiao (2006) and from the time-reverse specifications. To adapt to heavy tailed
distributions, we generalize the quantile autoregression theory for regularly vary-
ing distributions. This also confirms the validity of quantile autoregressions in
analysing heavy tailed time series, such as explosive or bubble-type dynamics. It
is natural to consider SRAR as a model selection criterion in the quantile regres-
sion framework. However due to the identification problem spotted in the SRAR
plots as presented in this chapter, we propose to use the aggregate SRAR crite-
rion for model selection. The robustness in its performance has been seen from
all the results in this chapter. It is worth mentioning that when coefficients are
constant in the underlying model with a symmetrically i.i.d. error term, the ag-
gregate SRAR criterion is equivalently to select between forward and backward
conditional mean models (termed by Gourieroux and Zakoian, 2017). However,
the aggregate SRAR is a measure based on the whole dynamics of the under-
lying process, which is not dominated by the conditional mean information any
more. This characteristic of the aggregate SRAR criterion indeed makes it ro-
bust in model selection even for some general situations such as with asymmetric
distributed innovations.

In Chapter 3, we found that the inference test performance in CAViaR models is
not robust and unsatisfying due to the estimation of the conditional probability
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densities of time series. We found that the existing density estimation methods
cannot fully adapt to time-varying conditional probability densities of CAViaR
time series. So in this chapter we have developed a method called adaptive ran-
dom bandwidth which can robustly approximate the time-varying conditional
probability densities of CAViaR time series by Monte Carlo simulations. This
method not only avoids the haunting problem of choosing an optimal bandwidth
but also ensures the reliability of CAViaR analysis based on the asymptotic nor-
mality of the model parameter estimator.

In Chapter 4, we generalized multivariate multi-quantile CAViaR models
(MVMQ-CAViaR, see White et al., 2015) by incorporating CoVaR specification
(see Adrian and Brunnermeier, 2011) into the model specification in this chapter.
The proposed systemic MVMQ-CAViaR model presents a vector-autoregressive
(VAR) specification of financial institutions’ value-at-risk (VaR) as well as
their CoVaR. This model generalization is able to capture contemporaneous tail
dependence of financial institutions and market indexes so that we can interpret
the systemic risks of the institutions over time. The consistency and asymptotic
normality proofs of this generalized model are provided in this chapter along
with some relevant inference tests, for which we implemented simulation tests
and showed robust model performances. For tracing the transmission of a single
shock to a financial institution in the financial system, we also constructed
quantile impulse response functions (QIRF) accordingly in use of the local
projection idea (Jordà, 2005) and expansion of estimated terms. Based on
our simulation results, we can see that using the expansion terms of q̂qqt is
more robust than directly using q̂qqt in the local quantile regression for QIRF
estimation. An empirical application performed on big banks with the market
index S&P500 shows the significant contemporaneous effects of the big banks
on S&P500 so supports our methodology.

I would like to point out some possible extensions to our work for future re-
search. Regarding Chapter 2, the aggregate SRAR is proposed as a new model
criterion but no asymptotic behaviours or theoretical validity of this criterion has
been established yet. Bootstrapping can be a potential tool to estimate the under-
lying noncausal model selection rate given a time series. So a hypothesis testing
can be preformed accordingly with the null hypothesis being that the model se-
lection result is false. In addition, mixed causal and noncausal models are still
underdeveloped because of model estimators’ consistency issue. It is worth find-
ing out a way to obtain consistent estimators for mix causal noncausal models so
that model selection in mixed causal and noncausal models can be investigated as
a generalization. Regarding Chapter 3, the adaptive random bandwidth method
can be extended to general quantile regressions including multivariate cases in
theory. Test performances can be checked for this method in high-dimensional
cases to see its robustness. This method also has the potential to achieve the
second-order accuracy to Wald tests of nonlinear restrictions (Phillips and Park,
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1988; de Paula Ferrari and Cribari-Neto, 1993) in quantile regressions. Regard-
ing Chapter 4, the proposed systemic MVMQ-CAViaR model requires a prede-
termined contemporaneous effecting order. An automatic way of determining
the contemporaneous dependence direction can be considered to develop up in
theory. Moreover, the functional form of a contemporaneous term has not been
commonly on consensus or developed enough to pass most model specification
tests. An investigation on the functional form of contemporaneous effects in
financial markets can be helpful.
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d’Économie et de Statistique, (123/124):307–331.

Hecq, A., Lieb, L., and Telg, S. (2017a). Simulation, estimation and selection of
mixed causal-noncausal autoregressive models: The marx package. Available
at SSRN 3015797.

Hecq, A. and Sun, L. (2020). Selecting between causal and noncausal models
with quantile autoregressions. Studies in Nonlinear Dynamics & Economet-
rics, 1(ahead-of-print).

Hecq, A. and Sun, L. (2021). Adaptive random bandwidth for inference in caviar
models. arXiv preprint arXiv:2102.01636.

Hecq, A., Telg, S., and Lieb, L. (2017b). Do seasonal adjustments induce non-
causal dynamics in inflation rates? Econometrics, 5(4):48.

Hendricks, W. and Koenker, R. (1992). Hierarchical spline models for con-
ditional quantiles and the demand for electricity. Journal of the American
statistical Association, 87(417):58–68.

133



Herce, M. A. (1996). Asymptotic theory of” lad” estimation in a unit root process
with finite variance errors. Econometric Theory, pages 129–153.

Homm, U. and Breitung, J. (2012). Testing for speculative bubbles in stock mar-
kets: a comparison of alternative methods. Journal of Financial Econometrics,
10(1):198–231.

Huber, P. J. et al. (1967). The behavior of maximum likelihood estimates under
nonstandard conditions. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1, pages 221–233. University
of California Press.

Hylleberg, S., Engle, R. F., Granger, C. W., and Yoo, B. S. (1990). Seasonal
integration and cointegration. Journal of econometrics, 44(1-2):215–238.
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Impact Paragraph

The value of research is in why and how it can benefit our society. Realizing
the value of a research result can be direct through applications in the research
context or be potential by researchers’ insights on the work. In this chapter, we
discuss the values of the research results in this dissertation.

Quantile regressions are applied throughout this dissertation and used to study-
ing a particular quantile of our interest. You might ask that when we care about a
particular quantile. The answer is that when we care about an outcome and know
the outcome is in uncertainty so we want to find a threshold of this random out-
come for securing our position when it happens. For individuals, we can concern
about how much cash to be kept during a trip. If you are careless between cash
and bank cards, you still somehow concern about your financial positions. You
might think about how much you can invest in an asset based on your household
balance sheets in the future. If you are at the standing point of a group, it is
necessary to secure the financial position of the whole group so that the group
can be still functioning at an optimal chance and cost while an adverse outcome
happen. Besides financial positions, groups might also concern about other wel-
fare positions, such as capacity for urgent patients in a hospital. We can see that
quantiles are common in our concerns. And the tool of quantile regressions is
straightforward for achieving a quantile of our interest.

Next, we are going to discuss about what we have researched with regard to
quantile regressions in this dissertation, what information we can convey for
benefiting our society, and what tools we provide for the society to reliably apply
quantile regressions in their applications.

Chapter 2 introduces a new way to select between causal and noncausal models
by comparing residuals from quantile autoregressions developed by Koenker and
Xiao (2006) and from the time-reverse specifications. When a noncausal model
is selected for a time series, it seems that the future of the time series leads its
movement. Actually, this noncausal model selection can be interpreted as the
time series moved recklessly due to some external force. And it got dragged
back by its intrinsic force until the intrinsic force surpasses the external one as
the time series deviated far enough or long enough from its intrinsic level. This
rule is not hard to understand with elastic bands. After identifying this noncausal
characteristic and the external force in the time series, we can better cooperate
with the time series at our positions. For instance, when a noncausal model is
selected for a country’s inflation rate time series, the local policy-maker should
regulate and censor carefully such external forces in order to keep the inflation
stable.
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In Chapter 3, we found that the inference test performance in CAViaR mod-
els is not robust and unsatisfying always due to the inaccuracy in estimating
the conditional probability densities of time series. We found that the existing
density estimation methods cannot fully adapt to time-varying conditional prob-
ability densities of CAViaR time series. Implementing probabilistic modelling
but without reliable inference testing, such as Wald tests for model specification
testing, can be misleading. So we have developed up a method called adap-
tive random bandwidth (ARB) which can robustly approximate the time-varying
conditional probability densities of CAViaR time series by Monte Carlo simula-
tions. This method is a success in avoiding the haunting problem of choosing
an optimal bandwidth and ensures the reliability of any CAViaR analysis based
on the asymptotic normality of the model parameter estimator. This proposed
method can be extended to general quantile regressions including multivariate
cases easily and robustly. Having an accurate test statistic is important to obtain
reliable models in financial applications. This ARB tool indeed helps our soci-
ety to ensure reliability in analysing quantile regressions so as in the obtained
quantiles for applications.

In Chapter 4, we generalized multivariate multi-quantile CAViaR models
(MVMQ-CAViaR, see White et al., 2015) by incorporating CoVaR specification
(see Adrian and Brunnermeier, 2011) into the model specification. This model
generalization is able to capture contemporaneous tail dependence of financial
institutions and market indexes so that we can interpret the systemic risks of the
institutions over time. Systemic risk should be carefully managed and censored
over time as we know that it is a major contributor to the financial crisis of 2008.
The consistency and asymptotic normality proofs of this generalized model are
provided along with some relevant inference tests, for which we implemented
simulation tests and showed robust model performances. For tracing the
transmission of a single shock to a financial institution in the financial system,
we also constructed quantile impulse response functions (QIRF) accordingly in
use of the local projection idea (Jordà, 2005) and expansion of estimated terms.
Based on our simulation results, we can see that using the expansion terms
of q̂qqt is more robust than directly using q̂qqt in the local quantile regression for
QIRF estimation. The research work in this chapter helps policy-makers to take
the contemporaneous effect in account for measuring the systemic risk of a
financial institution, and also provides complementary statistical tools for them
to better supervise the financial institution based on the systemic risk to the
financial market therein.
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