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Abstract 
The automated Reaction Mechanism Generator (RMG), using rate parameters derived from ab initio 

CCSD(T) calculations, is used to build reaction networks for the thermal decomposition of di-tert-butyl 

sulfide. Simulation results were compared with data from pyrolysis experiments with and without the 

addition of a cyclohexene inhibitor. Purely free-radical chemistry did not properly explain the reactivity 

of di-tert-butyl sulfide, as the previous experimental work showed that the sulfide decomposed via first-

order kinetics in the presence and absence of the radical inhibitor. The concerted unimolecular 

decomposition of di-tert-butyl sulfide to form isobutene and tert-butyl thiol was found to be a key 

reaction in both cases, as it explained the first-order sulfide decomposition. The computer-generated 

kinetic model predictions quantitatively match most of the experimental data, but the model is 

apparently missing pathways for radical-induced decomposition of thiols to form elemental sulfur. 

Cyclohexene has a significant effect on the composition of the radical pool, and this led to dramatic 

changes in the resulting product distribution. 

Introduction 
Sulfur compounds are important in many aspects of life, including food, fuels, and the environment.1–3 

Sulfur in fuel sources can lead to problems in processing and usage. Sulfur in crude oil leads to some 

challenges, as a sufficient amount of these compounds must be removed during refinement to satisfy 

governmental regulations and prevent the release of toxic sulfur compounds into the environment and 

the poisoning of catalytic converters.4–6 In pyrolysis and steam cracking, sulfur compounds have a 

significant impact on the initiation, termination, and product distribution7, leading to undesired process 

variability. 

Because of the importance of these compounds, significant experimental efforts have been undertaken 

to understand their chemistry, from pyrolysis8–10 to oxidation11,12 to decomposition in aqueous and 



supercritical environments.13–16 Due to the complexity in building accurate mechanisms to model these 

phenomena, most of the available literature on sulfur chemistry includes only speculative mechanisms 

without quantitative product predictions. However, some detailed mechanisms have been developed 

for small sulfides. Vandeputte et al. studied dimethyl disulfide decomposition computationally and 

proposed a mechanism with satisfactory agreement with experiment.17 Zheng et al. have studied 

pyrolysis and oxidation of diethyl disulfide experimentally and computationally, and have proposed a 

detailed mechanism.18,19  

The development of automated reaction mechanism generation software20,21 has greatly aided in the 

effort to understand sulfur chemistry. Recently, Van de Vijver et al. have successfully used the 

automated kinetic model builder Genesys to build mechanisms for thermal decomposition of diethyl 

sulfide and ethyl methyl sulfide.22 The automated mechanism builder used in the present work, Reaction 

Mechanism Generator (RMG), has been successfully used to develop mechanisms for many systems,23–26 

but has thus far been largely limited to the study of C/H/O chemistry without sulfur. As demonstrated 

here, with extensions to the software and the availability of improved estimation methods for the 

thermochemistry and reaction rates of elementary organosulfur reactions,27–29 it is now possible to use 

this computational tool to shed mechanistic insight on experimental studies of sulfur chemistry. 

Martin et al. previously studied the pyrolysis of a variety of alkyl tert-butyl sulfides,30 and most of the 

observed product distributions supported the four-centered transition state suggested by Benson and 

Haugen,31 which is presented in Figure 1. Di-tert-butyl sulfide,8 which was pyrolyzed between 360 and 

413 °C with and without the presence of a supposed radical inhibitor, cyclohexene, was the main 

exception to the trend. The expected products of the four-center reaction were observed in the 

presence of cyclohexene, but significantly different product distributions were obtained in the case of 

neat pyrolysis. In this work, quantum chemistry calculations and kinetic mechanisms built by RMG are 

used to clarify the key reaction steps for the two cases. 

 

Figure 1. Proposed reaction pathway for the decomposition of an alkyl tert-butyl sulfide.31 



Methods 
The new Python version of RMG was used to generate the mechanisms for this work.21,32 RMG uses an 

iterative, flux-based algorithm to build reaction mechanisms. With a user-supplied set of initial “core” 

species, RMG searches a database containing a set of specific reactions and a more general library of 

reaction recipes, to determine all possible reactions for the given species. The products of these 

reactions are then added to the model’s “edge” if they are not already present in the mechanism. The 

reaction mixture is then simulated with the user-specified conditions and initial concentrations, until an 

edge species reaches the required flux to be added into the core. This required flux is defined as a 

fraction of the characteristic flux of all of the reactants currently in the core (the fraction is provided by 

the user as the “move-to-core tolerance”.21 The database is then searched for reactions of the newly 

expanded core. The whole process repeats until the specified termination condition is reached without 

any of the edge species being formed at a significant rate, as defined above.  The final mechanism only 

contains the core species and reactions, and this is output as a CHEMKIN input file.33 

Two models were generated for this work, corresponding to the reactant mixtures and conditions of the 

experiments by Martin and Barroeta:8 One was built for pyrolysis of neat di-tert-butyl sulfide, and one 

for pyrolysis of a mixture of 40 mole% di-tert-butyl sulfide and 60 mole% cyclohexene. The RMG 

simulations were conducted for a reactor at a temperature of 380 °C and a pressure range of 15-217 

Torr. Given the relatively low temperature conditions, high-pressure-limit rate parameters were used. A 

goal reactant conversion of 60% was used for both cases, with a move-to-core tolerance of 0.05 for the 

neat pyrolysis model and 0.01 for the cyclohexene model. We were unable to verify the convergence of 

the neat pyrolysis model with respect to the tolerance, as the RMG simulation could not be run to 

completion with tighter tolerances. For the cyclohexene model, we confirmed convergence with respect 

to the tolerance, as tighter tolerances gave the same result. The resulting CHEMKIN input file was used 

to simulate the reactions at the experimental conditions used by Martin and Barroeta.8 

Thermochemical parameters were calculated using the group additivity values developed by Vandeputte 

et al.29 Kinetic parameters from the RMG database34 were used to estimate reaction rate constants. The 

database contains rate parameters for organosulfur reactions, including hydrogen abstraction,28,35,36 

beta-scission,37 and homolytic substitution reactions,38 most of which were computed at the CBS-QB3 

level of theory using transition state theory. 

Reactions found to be of particular importance in the model predictions were refined further by 

calculating single-point energies at the CCSD(T)-F12a/cc-pVDZ-F12 level of theory after geometry 



optimizations, scaled (0.99) harmonic frequency calculations, and hindered rotor scans using B3LYP/6-

311G(2d,d,p). As shown by Aguilera-Iparraguirre and co-workers, enthalpies computed using CCSD(T)-

F12a/cc-pVDZ-F12 typically agree within 2 kJ/mole with those computed using CCSD(T)-F12a/cc-pVTZ-

F12,39-42 so we estimate that they are within about 4 kJ/mole of the basis-set limit. While CCSD(T) is a 

very good quantum chemistry method, it is not perfect, and the geometries, frequencies, and hindered 

rotor calculations based on DFT calculations also introduce some uncertainty, so we estimate the true 

uncertainties in computed enthalpies and barrier heights are about 10 kJ/mole. A double-zeta basis set 

was chosen for this work because of the relatively large systems under consideration, which contain up 

to 10 heavy atoms. 

After quantum calculations were completed in Gaussian 0339 and Molpro,40 the open-source CanTherm 

software package41 was used to calculate TST rate constants between 300 and 2000 K, including 

hindered rotor corrections and a tunneling correction using the Eckart method.42 The rate constants 

were then fit to the modified Arrhenius form, 

𝑘(𝑇) = 𝐴𝑇𝑛exp(
−𝐸𝑎
𝑅𝑇

) 

where 𝑇 is the temperature in Kelvin, 𝑅 is the gas constant, 𝐴 and 𝑛 are fitted constants, and 𝐸𝑎 is the 

fitted activation energy, which is different from the zero-point-energy corrected reaction energy barrier 

Δ𝐸0. The full reaction mechanisms and all of the computed values are detailed in the Supporting 

Information. 

Results and Discussion 

Unimolecular or Radical Decomposition Mechanism 
To better understand the decomposition of di-tert-butyl monosulfide, it may also be useful to consider 

the mechanism of the corresponding disulfide. Martin and Barroeta proposed a set of unimolecular 

reactions for the decomposition of di-tert-butyl disulfide to explain the formation of isobutene and 

hydrogen disulfide from the initial reactant, but these steps remained speculative and based on their 

experimental results.43 We found transition states using quantum chemistry methods for the 

unimolecular decompositions of di-tert-butyl disulfide and tert-butyl hydrodisulfide, and their 

geometries can be seen in Figure 2. The analogous mechanism is also possible in the pyrolysis of di-tert-

butyl monosulfide, and optimized transition states for these reactions are presented in Figure 3. 



 

     

Figure 2. Proposed reaction pathway39 (top) and optimized transition state geometries (bottom) for the molecular 

decomposition of di-tert-butyl disulfide. Distances (Å). 

 

     

Figure 3. Proposed reaction pathway (top) and optimized transition state geometries (bottom) for the molecular decomposition 

of di-tert-butyl monosulfide. Distances (Å). 

Table 1. Calculated rate constants (using CCSD(T)-F12/cc-pVDZ-F12) for molecular elimination reactions. A [s-1], n [unitless], Ea 
[kJ/mol], k [s-1]. 

  log10A n Ea k (380 °C) 

(1) 
 

12.91 1.04 214.5 4.7 × 10-2 

(2) 
 

13.66 0.39 233.8 1.2 × 10-4 

(3) 
 

13.77 0.89 239.4 1.4 × 10-3 

(4) 
 

13.83 0.36 256.0 2.3 × 10-6 



 

The calculated rate parameters are presented in Table 1. The activation energies in the disulfide 

mechanism (the first two reactions) are about 25 kJ/mol lower than their respective reactions in 

monosulfide decomposition, while the initial decomposition step of each mechanism, reactions (1) and 

(3), are entropically favored over subsequent reactions (2) and (4). While the calculated unimolecular 

rate constant for reaction (3) falls within the experimental uncertainty of the overall rate constant 

measured for di-tert-butyl monosulfide consumption,8 the calculated rate for reaction (1) is an order of 

magnitude slower than the total disulfide consumption rate observed experimentally.43 Calculations 

using a larger basis set might bring this prediction closer to the observation.  

However, it is also likely that there is an additional free radical pathway which also contributes to the 

total consumption rate while resulting in the same major products. The RMG database predicts C—S and 

S—S bond breaking to occur at roughly the same rate in the disulfide, at about one order of magnitude 

slower than the initial unimolecular decomposition reaction. The RMG database estimates an energy of 

284 kJ/mol and rate of 1.9x10-4 s-1 for S—S bond breaking, and a bond energy of 243 kJ/mol and rate of 

1.3x10-4 s-1 for C—S breaking in the disulfide. These reactions, and the ensuing propagation steps, will 

provide an appreciable amount of the disulfide decomposition. 

The overall trend in Table 1 provides some insight into the differences between the reaction 

mechanisms of di-tert-butyl monosulfide and di-tert-butyl disulfide. While di-tert-butyl disulfide 

undergoes the full molecular mechanism (with some contribution from the radical mechanism) to form 

isobutene and hydrogen disulfide—some of which can react further to form hydrogen sulfide—the 

elimination of H2S from tert-butyl thiol is slower than the other three reactions in Table 1 by two or 

more orders of magnitude, due to a higher activation energy and lower activation entropy. This suggests 

that the consumption of tert-butyl thiol may occur more quickly by a free-radical mechanism. This would 

explain the equal consumption rate of di-tert-butyl monosulfide with and without the radical inhibitor, 

with the cyclohexene inhibiting the radical pathway for H2S formation from tert-butyl thiol. The exact 

mechanism can be explored in more detail using RMG. 

Neat Pyrolysis of di-tert-Butyl Sulfide 
For the neat pyrolysis system, RMG generated a mechanism with 147 species and 996 reactions. The full 

mechanism including thermodynamic and kinetic parameters is included in the Supplementary 

Information in CHEMKIN format. The main reaction pathways are presented in Figure 4, with major 

products in boxes and intermediate products, which continue to form a variety of other minor products, 



in dashed boxes. Pathway (a), homolytic scission of a C—S bond, accounts for an appreciable amount 

(12%) of the overall sulfide decomposition, and it provides most of the predicted isobutane production. 

This reaction occurs much quicker than analogous bond-scissions of other hydrocarbons due to the 

weakness of the C—S single-bond; this one is particularly fast due to the production of a tertiary tert-

butyl radical in addition to the thiyl compound. 

Pathways (b) and (c) provide the majority of the main product, isobutene. Pathway (b), which starts with 

the molecular elimination reaction that directly forms tert-butyl thiol and isobutene, is predicted to 

account for 78% of sulfide conversion. This is a sensible result based on the experimental data, as this 

reaction would explain the overall first-order consumption of di-tert-butyl sulfide observed in the 

presence and absence of cyclohexene. Much of the thiol undergoes abstraction of the hydrogen bonded 

to the sulfur to form a thiyl radical. This radical is also produced in smaller amounts through pathway (c), 

which requires hydrogen abstraction from one of the six methyl groups on di-tert-butyl sulfide, prior to 

a beta-scission reaction that also forms isobutene. The tert-butyl thiyl radical undergoes intramolecular 

hydrogen abstraction from one of its own methyl groups, and the resulting radical species undergoes 

beta-scission to form the HS radical, which then abstracts hydrogen to form hydrogen sulfide. 

Comparisons between the experimental data and RMG predictions are presented in Figure 5 and Figure 

6. Martin and Barroeta used the C4 yield as a measure of reactant conversion, and calculated it based on 

the amount of carbon in the measured products.8 Here, we used the ratio of the product partial 

pressures to the initial reactant partial pressure to define C4 yield: 

C4Yield(%) =
𝑝𝐶4𝐻8 + 𝑝𝐶4𝐻10 + 𝑝𝐶4𝐻9𝑆𝐻

2 × 𝑝𝐷𝑇𝐵𝑆,𝑖
× 100 

These plots show excellent agreement between model and experimental data, as C4 yield is predicted 

within 10% of the experimental observation and the predicted pressure increase also matches very well. 

However, tert-butyl thiol is notably overpredicted. The experiments noted production of a yellow solid 

during pyrolysis, which was assumed to be elemental sulfur, primarily S8. Apparently, there is a process 

which converts most of the thiol to isobutane and sulfur on a timescale of approximately 20 minutes. 

However, the current model is missing pathways for S8 formation, as speculative pathways failed to 

predict appreciable formation of this product.  Thus, the discrepancy in the thiol prediction is likely a 

result of the lack of this desulfurization pathway. 



 

Figure 4. Major reaction pathways for neat pyrolysis of di-tert-butyl sulfide at 380 °C. Percentages represent total proportion of 

reacted sulfide proceeding through a pathway over 40 minutes, rounded to nearest percent. Pathways comprising less than 1% 

are not shown. 



 

Figure 5. Experimental8 and simulated results for a) C4 yield from neat di-tert-butyl sulfide at 380 C, and b) pressure increase at 

same conditions. 

 

Figure 6. Experimental8 and simulated results for major products of neat di-tert-butyl sulfide pyrolysis, presented in logarithmic 

scale as a fraction of initial reactant concentration. 

Pyrolysis of di-tert-butyl sulfide with Cyclohexene 
The final mechanism from the RMG simulation includes 69 species and 392 reactions, and the predicted 

overall fluxes over 40 minutes are presented in Figure 7. The same three major pathways are predicted 

as in the pyrolysis mechanism in the absence of cyclohexene. Again, the concerted reaction (b) 



dominates, so we would expect sulfide decomposition to follow the same first-order kinetics (with 

roughly the same rate) as in the absence of the inhibitor, and this is what was observed experimentally. 

 

Figure 7. Major reaction pathways for pyrolysis of di-tert-butyl sulfide in the presence of cyclohexene at 380 °C. Percentages 

represent total proportion of reacted sulfide proceeding through a pathway over 40 minutes, rounded to nearest percent. 

Pathways comprising less than 1% are not shown. 

The main difference between the predicted reaction mechanisms for the two cases is seen in the 

relative rate of pathway (c). Cyclohexene traps active radicals and readily donates hydrogen atoms to 

reverse reaction (c), causing the overall flux to be much lower. Cyclohexene also provides hydrogen in 

the production of H2S and isobutane, resulting in a resonance-stabilized radical, which can further 

donate hydrogen atoms to eventually form a small amount of benzene. These compounds will also 



donate hydrogen atoms to the thiyl radical produced through pathway (a), so instead of thiol producing 

thiyl, the process runs in reverse. Due to this prevention of the secondary decomposition of the thiol, 

this compound is predicted to have a concentration roughly equal to isobutene, consistent with the 

experiments. 

A comparison of the experimental and predicted C4 yield and reactor pressure increase is presented in 

Figure 8, and the product predictions are compared with experiments in Figure 9. C4 yield and pressure 

increase are predicted with good accuracy, with the C4 yield being within 25% of the experimental 

results. The pressure increase calculation neglects the initial pressure of cyclohexene, as was done by 

Martin and Barroeta.8 Major products are also predicted reasonably accurately. The production of 

isobutane is underpredicted, and the overall C/H ratio of the C4 products is larger than was observed 

experimentally, indicating that the net amount of hydrogens donated by cyclohexene is under-predicted 

by the model. The ratio of isobutane to isobutene is most sensitive to the two primary decomposition 

pathways of di-tert-butyl sulfide: molecular elimination and CS bond scission. The molecular pathway 

does not lead to significant hydrogen abstraction, while the radical pathway leads to two additional 

hydrogen abstraction steps which can increase the overall C/H ratio. Unfortunately, the experimental 

work did not report the yields for C6 and heavier products. 

The large difference in the tert-butyl thiol yield between the inhibited and uninhibited cases suggests 

that the process to produce elemental sulfur is driven by active free radicals and so is quenched by 

cyclohexene. This is supported by the noted absence of solid sulfur produced in the experimental study. 

 

Figure 8. Experimental8 and simulated results for a) conversion of di-tert-butyl sulfide in the presence of cyclohexene at 380 C, 

and b) pressure increase for same conditions. 



 

Figure 9. Experimental8 and simulated results for products of di-tert-butyl sulfide pyrolysis in the presence of cyclohexene, 

presented in logarithmic scale as a fraction of initial sulfide concentration. 

Mechanism Comparison 
As seen in the previous section and in the experimental work, the addition of a cyclohexene inhibitor 

has little effect on the overall sulfide decomposition rate, as the dominating reaction for this process is 

the unimolecular decomposition reaction to form isobutene and tert-butyl thiol. This is further 

emphasized using sensitivity analysis, which shows this reaction as the most sensitive for sulfide 

decomposition by a wide margin. However, carbon-sulfur bond cleavage, which produces radicals, is 

only one order of magnitude slower, and the radical chemistry (which is strongly affected by the 

cyclohexene inhibitor) has a significant effect on the resulting product distributions. The major radical 

species concentrations are plotted in Fig. 10 for the two cases. While the total concentration of radical 

compounds is similar in the two cases, the presence of cyclohexene suppresses the concentration of 

radicals other than cyclohexenyl. The resonance-stabilized cyclohexenyl radicals abstract hydrogen more 

slowly than others, leading to slower radical-induced decompositions; this is particularly important for 

the thiol. 



 

Figure 10. Major radical species present during pyrolysis of di-tert-butyl sulfide, with and without cyclohexene. 

Conclusions 
In this work, we have demonstrated the ability of automated mechanism generation software to 

propose and validate a detailed mechanism for pyrolysis of a tertiary sulfide. In particular, RMG was able 

to identify the most important reaction controlling the rate of di-tert-butyl sulfide decomposition in the 

presence and absence of a compound expected to inhibit the reaction rate. Coupled-cluster calculations 

suggested that the non-radical 4-center unimolecular decomposition pathway could almost fully account 

for the decomposition rate of di-tert-butyl sulfide. However, radical reactions have a significant effect on 

the product distribution. RMG was used to elucidate the reaction mechanism for di-tert-butyl sulfide, 

giving details on the important free radical pathways in the decomposition of tert-butyl thiol and 

explaining the drastic slowing of this decomposition pathway in the presence of the radical inhibitor, 

cyclohexene. The results obtained here suggest RMG may be a useful tool for understanding and 

predicting other organosulfur chemistry. 
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