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Abstract

We introduce an online version of the multiselection
problem, in which ¢ selection queries are requested on
an unsorted array of n elements. We provide the first
online algorithm that is 1-competitive with offline al-
gorithm proposed by Kaligosi et al.[ICALP 2005] in
terms of comparison complexity. Our algorithm also
supports online search queries efficiently.

We then extend our algorithm to the dynamic set-
ting, while retaining online functionality, by support-
ing arbitrary insertions and deletions on the array.
Assuming that the insertion of an element is immedi-
ately preceded by a search for that element, we show
that our dynamic online algorithm performs an opti-
mal number of comparisons, up to lower order terms
and an additive O(n) term.

For the external memory model, we describe the
first online multiselection algorithm that is O(1)-
competitive. This result improves upon the work of
Sibeyn [Journal of Algorithms 2006] when ¢ > m,
where m is the number of blocks that can be stored in
main memory. We also extend it to support searches,
insertions, and deletions of elements efficiently.

1 Introduction

The multiselection problem asks for the elements of
rank @ = q1,¢2, ..., ¢ on an unsorted array A drawn
from an ordered universe of elements. We define
B(S,) as the information-theoretic lower bound on

*Supported by Project Regular Fondecyt number 1120054.

TSupported in part by the Butler Holcomb Awards grant.

fSupported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science and Technology (Grant number
2012-0008241).

the number of comparisons required in the compari-
son model to answer g queries, where S, = s; denotes
the queries ordered by rank. We define A; = s;41—s;,
where so = 0 and 5441 = n. Then,

B(Sq) = logn! — Zlog Ayl) EZA log——O( )1

Several papers have analyzed this problem. Dobkin
and Munro [DM81] gave a deterministic bound us-
ing 3B(S;) + O(n) comparisons. Prodinger [Pro95]
proved the expected comparisons with random
pivoting is 2B(S;)In2 + O(n).  Most recently,
Kaligosi et al. [KMMS05] showed a randomized al-
gorithm performing B(S;) + O(n) expected compar-
isons, along with a deterministic algorithm perform-
ing B(S,)+0(B(S,)+0(n) comparisons. Jiménez and
Martinez [JM10] later improved the number of com-
parisons in the expected case to B(S,)+n+o(n) when
q € o(y/n). Most recently, Cardinal et al. [CFJ109]
generalized the problem to a partial order production,
of which multiselection is a special case. Cardinal et
al. use the multiselection algorithm as a subroutine
after an initial preprocessing phase.

Kaligosi et al. [KMMS05] provide an elegant result
in the deterministic case based on tying the num-
ber of comparisons required for merging two sorted
sequences to the information content of those se-
quences. This simple observation drives an approach
where manipulating these runs both finds pivots that
are “good enough” and partitions with near-optimal
comparisons. The weakness of the approaches in in-
ternal memory is that they must know all of the
queries a priori.

IWe use the notation log, a to refer to the base b logarithm
of a. By default, we let b = 2. We also define In a as the base e
logarithm of a.



In the external memory model with parameters M
and B, we use N to denote the number of elements
in A. We also define n = N/B and m = M/B in
external memory. Sibeyn [Sib06] solves external mul-
tiselection using n + ng/m!'=¢ 1/Os, where € is any
positive constant. The first term comes from creat-
ing a static index structure using n I/Os, and the
reminder comes from the ¢ searches in that index. In
addition, his results also require the condition that
B € Q(log,, n). When ¢ = m, Sibeyn’s multiselection
algorithm requires O(nm¢) I/Os, whereas the opti-
mum is O(n) I/O0s. In fact his bounds are w(B,,(S,)),
for any g > m, where B,,(S,) is the lower bound on
the number of I/Os required (see Section 6.1 for the
definition).

1.1 Our Results

For the multiselection problem in internal memory,
we describe the first online algorithm that supports
a set @ of ¢ selection, search, insert, and delete op-
erations, of which ¢’ are search, insert, and delete,
using B(S,) +0(B(S,) +O(n+q logn) comparisons.>
Thus our algorithm is 1-competitive with the offline
algorithm of Kaligosi et al. [KMMSO05] in the number
of comparisons performed. We also show a random-
ized result achieving 1-competitive behavior with re-
spect to Kaligosi et al. [KMMSO05], while only using
O((logn)©M) sampled elements instead of O(n3/4).

For the external memory model [AVSS], we de-
scribe an online multiselection algorithm that sup-
ports a set @ of g selection queries on an unsorted
array stored on disk in n blocks, using O(B,,(S,))
I/0s, where B,,(Sy) is a lower bound on the number
of I/Os required to support the given queries. This
result improves upon the work of Sibeyn [Journal of
Algorithms 2006] when ¢ > m, where m is the num-
ber of blocks that can be stored in main memory. We
also extend it to support insertions and deletions of
elements using O(B,,(Sy)) + (N/m)) 1/Os.

1.2 Preliminaries

Given an unsorted array A of length n, the median is
the element x of A such that exactly [n/2] elements in
A are greater than or equal to x. It is well-known that
the median can be computed in O(n) comparisons,
and many [Hoa61, BFP*73, SPP76] have analyzed
the exact constants involved. Dor and Zwick [DZ99]

2For the dynamic result, we assume that the insertion of an
element is immediately preceded by a search for that element.
In that case, we show that our dynamic online algorithm per-
forms an optimal number of comparisons, up to lower order
terms and an additive O(n) term.

provide the best known constant, yielding a 2.942n +
o(n) comparisons.

In the external memory model, we consider only
two memory levels: the internal memory of size M,
and the (unbounded) disk memory, which operates
by reading and writing data in blocks of size B. We
refer to the number of items of the input by V. For
convenience, we define n = N/B and m = M/B
as the number of blocks of input and memory, re-
spectively. We make the reasonable assumption that
1 < B < M/2. In this model, we assume that each
I/O read or write is charged one unit of time, and
that an internal memory operation is charged no units
of time. To achieve the optimal sorting bound of
SortIO(N) € ©(nlog,, n) in this setting, it is nec-
essary to make the tall cache assumption [BFO03]:
M € Q(B'*¢), for some constant € > 0, and we will
make this assumption for the remainder of the paper.

2 A Simple Online Algorithm

Let A be an input array of m unsorted items. We
describe a simple version of our algorithm for han-
dling selection and search queries on array A. We say
that an element in array A at position i is a pivot if
All...i—1] <Al <Ali+1...n].

Bit Vector. Throughout all the algorithms in the
paper, we maintain a bitvector V of length n where
V[i] =1 if and ounly if it is a pivot.

Preprocessing. Create a bitvector V and set each
bit to 0. Find the minimum and maximum elements
in array A, swap them into A[1] and A[n] respectively,
and set V[1] = V[n| = 1.

Selection. We define the operation A.select(s) to
refer to the selection query s, which returns A[s] if A
were sorted. To compute this result, if V[s] = 1 then
return Afs] and we are done. If V[s] = 0, find a < s,
b > s, such that V]a] = V[b] = 1 but V[a+1...b—1] are
all 0. Perform quickselect [Hoa61] on Aja+1...b—1],
marking pivots found along the way in V. This gives
us A[s], with V[s] = 1, as desired.

Search. We define the operation A.search(p) re-
turns the position j, which satisfies p = A[j] if A were
sorted; if p & A, then j is the number of items in A
smaller than p.> Perform a binary search on A as if 4
were sorted. Let ¢ be the location in A we find from
the search; if along the way we discovered endpoints
for the subarray we are searching that were out of
order, stop the search and let ¢ be the midpoint. If

3The search operation is essentially the same as rank on
the set of elements stored in the array A. We call it search to
avoid confusion with the rank operation defined on bitvectors
in Section 5.



Ali] = p and V[§] = 1 return ¢ and we are done. Other-
wise, we have just identified the unsorted interval in
A that contains p if it is present. Perform a selection
query on this interval; choose which side of a pivot
on which to recurse based on the value of p (instead
of an array position as would be done in a normal
selection query). As above, we mark pivots in V as
we go; at the end of the recursion we will discover the
needed value j.

As queries arrive, our algorithm performs the same
steps that quicksort would perform, although not nec-
essarily in the same order. If we receive enough
queries, we will, over time, perform a quicksort on
array A. This also means that our recursive subprob-
lems mimic those from quicksort.

We have assumed, up to this point, that the last
item in an interval is used as the pivot, and a sim-
ple linear-time partition algorithm is used. We ex-
plore using different pivot and partitioning strategies
to obtain various complexity results for online selec-
tion and searching. The time to perform ¢ select and
search queries on an array of n items can easily be
shown to be O(nlog g+qlogn). We do not prove this
bound directly, since our main result is an improve-
ment over this bound. Now, we define terminology
for this alternate analysis.

2.1 Terminology

For now we assume that all queries are selection
queries, since search queries are selection queries with
a binary search preprocessing phase taking O(logn)
comparisons. We explicitly bound the binary search
cost in our remaining results.

Query and Pivot Sets. Let ) denote a sequence
of ¢ selection queries, ordered by time of arrival. Let
Sy = {s1,82,...,8:} denote the first ¢ queries from
@, sorted by position. We also include sy = 1 and
S¢+1 = n in Sy for convenience of notation, since the
minimum and maximum are found during preprocess-
ing. Let P, = {p;} denote the set of k pivots found
by the algorithm when processing Sy, again sorted by
position. Note that p1 = 1, pr = n, V[p;] = 1 for all
i, and St - Pt-

Pivot Tree, Recursion Depth, and Intervals.
The pivots chosen by the algorithm form a binary tree
structure, defined as the pivot tree T of the algorithm
over time.* Pivot p; is the parent of pivot p; if, after
p; was used to partition an interval, p; was the pivot

4Intuitively, a pivot tree corresponds to a recursion tree,
since each node represents one recursive call made during the
quickselect algorithm [Hoa61].

used to partition either the right or left half of that
interval. The root pivot is the pivot used to partition
A[2..n—1] due to preprocessing. The recursion depth,
d(p;), of a pivot p; is the length of the path in the
pivot tree from p; to the root pivot. All leaves in the
pivot tree are also selection queries, but it may be
the case that a query is not a leaf. Each pivot was
used to partition an interval in A. Let I(p;) denote the
interval partitioned by p; (which may be empty), and
let |I(p;)| denote its length. Intervals form a binary
tree induced by their pivots. If p; is an ancestor of
p; then I(pj) C I(p;). The recursion depth of an
array element is the recursion depth of the smallest
interval containing that element, which in turn is the
recursion depth of its pivot.

Gaps and Entropy. Define the query gap Aft =
Si+1 — S; and similarly the pivot gap Af‘ = Pi+1 — Di-
Observe that each pivot gap is contained in a smallest
interval I(p). One endpoint of this gap is the pivot p
of interval I(p), and the other matches one of the
endpoints of interval I(p). By telescoping we have
SuAY =Y AP =n— 1

We will analyze the complexity of our algorithms
based on the number of element comparisons. The
lower bound on the number of comparisons required
to answer the selection queries in S; is obtained by
taking the number of comparisons to sort the entire
array, and then subtracting the comparisons needed
to sort the query gaps. We use B(S;) to denote this
lower bound.

t
BS) = > (Aft) log (n/ (Aft)) —O(n).
i=0
Note that B(S,) < nlogg: this upper bound is met
when the queries are evenly spaced over the input
array A. We can show that the simple algorithm per-
forms O(B(S,) + qlogn) for a sequence @ of ¢ select

and search queries on an array of n elements. We will
also make use of the following fact.

Fact 1. For all e > 0, there exists a constant c. such
that for all x > 4, logloglogx < elogx + c..

Proof. Since lim,_,~ (logloglog z)/(log x) = 0, there
exists a k. such that for all x > k., we know
that (logloglogz)/(logz) < e. Also, in the in-
terval [4, k], the continuous function logloglogz —
elog x is bounded. Let ¢, = logloglog k. — 2¢, which
is a constant. O



3 Analysis of the Simple Algo-
rithm

In this section we analyze the simple online multise-
lect algorithm of Section 2.

3.1 A Lemma on Sorting Entropy

Pivot Selection Methods. We say that a pivot selec-
tion method is good for the constant ¢ with 1/2 <
¢ < 1if, for all pairs of pivots p; and p; where p; is
an ancestor of p; in the pivot tree, then

[1(p))] < [1(py)] - )= +00),

Note that if the median is always chosen as the
pivot, we have ¢ = 1/2 and the O(1) term is in
fact zero. The pivot selection method of Kaligosi et
al. [KMMS05, Lemma 8] is good with ¢ = 15/16.

Lemma 1. If the pivot selection method is good as
defined above, then B(P;) € B(S;) + O(n).

Proof. We sketch the proof and defer the full details
to the full version of the paper. Consider any two con-
secutive selection queries s and s’, and let A = s’ — s
be the gap between them. Let Pa = (pr, pia1,---,Pr)
be the pivots in this gap, where p; = s and p, = .
Note that B(P;) = (nlogn — Zf:o Aft log Aft). We
define B(S;) similarly. The lemma follows from the
claim that B(Pa) € O(A), since

¢ K
B(P;) — B(St) ZAft log Aft - z Aft log Af‘

1=0 =0
t
= D _B(Ps)
1=0
t
- Yo (Af‘) € 0(n).
1=0

We now sketch the proof of our claim.

There must be a unique pivot p,, in Pa of min-
imal recursion depth. We split the gap A at pp,.
We define For brevity, we define D; = Zzi_ol A; and
D, =Y1"1 A, giving A = Dy + D,.

We consider the proof on the right-hand side D,
and proof for D; is similar. Since we use a good pivot
selection method, we can bound the total information
content of the right-hand side by O(D,.). This leads
to the claim, and the proof follows. O

Theorem 1 (Online Multiselection). Given an ar-
ray of n elements, on which we have performed a se-
quence @ of q online selection and search queries, of
which ¢’ are search, we provide

e a randomized online algorithm that performs the
queries using B(S,) + O(n + ¢'logn) expected
number of comparisons, and

e a deterministic online algorithm that performs
the queries using at most 4B(S,)+O0(n+q logn)
comparisons.

Proof. For the randomized algorithm, we use the
randomized pivot selection algorithm of Kaligosi et
al. [KMMSO05, Section 3, Lemma 2].) This algo-
rithm gives a good pivot selection method with ¢ =
1/2+0(1), and the time to choose the pivot is O(A%/4)
on an interval of length A, which is subsumed in the
O(n) term in the running time. Each element in an
interval participates in one comparison per partition
operation. Thus, the total number of comparisons is
expected to be the sum of the recursion depths of all
elements in the array. This total is easily shown to
be B(P,), and by Lemma 1, the proof is complete.
For the deterministic algorithm, we use the me-
dian of each interval as the pivot; the median-finding
algorithm of Dor and Zwick [DZ99] gives this to us
in under 3A comparisons. We add another compar-
ison for the partitioning, to give a count of compar-
isons per array element of four times the recursion
depth. This is at most 48(F,), which is no more
than 4B(S,) + O(n) from Lemma 1, and the result
follows. O

In Section 3.2, we describe how to get a good pivot
selection method with just 6(logn)3(log A)? samples,
instead of O(A3/*) samples.

3.2 Reducing the Samples Used by
the Randomized Algorithm

Our pivot-choosing method is simple and random-
ized. We choose 2m elements at random from an
interval of size A, sort them (or use a median-finding
algorithm) to find the median, and use that for our
pivot. We wish to set values of m and ¢ such that two
events happen:

o At least 2t elements are chosen in an interval of
size 2A/log A about the median of the interval.

e Between m — ¢t and m + t elements are chosen
less than the median.

e Between m — ¢t and m + t elements are chosen
larger than the median.

If we can show that all events happen with prob-
ability 1 — O(1/n?), then we end up with the me-
dian of our 2m elements being a pivot at position
1/2(1 4+ O(1/log A)), which is a good pivot.



Note that the last two events are mirror images
of one another, and so have the same probability of
occurring.

First Event. This is the simpler of the two
to estimate. A randomly chosen element fails
to land in the middle interval with probability
1 —2/logA = exp[—2/log A(1 + o(1))]. If we
choose at least (1.1)log Alogn elements, all fail to
land in this middle interval with probability (1 —
2/log A)(1-1D1egAlogn — expl(2.2)1ogn(1 + o(1))] €
O(1/n?). Since we need 2t elements in the inter-
val, it suffices for 2m > (2.2)tlogAlogn, or m >
(1.1)tlog Alogn.

Second (and third) Event. We need a bound on the
sum of the first k£ binomial coefficients.

We use the following lemma to bound the summa-
tion of binomial coefficients:

Lemma 2 ([LPVO03]). Let 0 < k < m and define
2m 2m
c:= <k+1)/(m)' Then
k
2m C om
Z( i > <5 F
=0
Proof. Write k+1 =m —t. Define

ey ()

By the definition of ¢ we have

(m) =)

and, because the growth rate of one binomial coeffi-
cient to the next slows as we approach (27”), we have

2m < 2m
m—t—1 ¢ m—1
( 2m ) (2m)
L) <c .
m—t—7 m—]

for0<j<m-—t.

Thus it follows that the sum of any t consecutive
binomial coefficients is less than ¢ times the sum of
the next ¢ coefficients as long as we stay on the left-
hand side of Pascal’s triangle. Thus A < ¢B +c?B +
AB+ - < 1% B. We also have A + B < 2?1,
Combining these we have

and thus

c

c 2m—1 _
A<1 B< 1(2 A).

—c c—

Solving for A completes the proof. O

We then bound

2m
(mjt)
)
This can be derived from Stirling’s formula and Tay-

lor series estimates for the exponential and logarithm
functions. We then obtain that

< ot/ (mAt).

Lemma 3. Let 0 <t <m. Then

m—t—1 2
7

=0

Since choosing an element from an interval at ran-
dom and observing if it falls before or after the me-
dian is an event of probability 1/2, the event of choos-
ing 2m elements and having less than m —t fall below
the median occurs with probability at most

m—t—1

9-2m ; <2j‘>

By Lemma 3, this is bounded by (1/2) exp[—t?/(m +
t)]. Thus, the probability there are between m —t
and m + t elements below the median is at least 1 —
exp|—t?/(m+t)] by the symmetry of Pascal’s triangle.
To obtain 1 — O(1/n?) we need t2/(m +t) > 2logn,
or t > +/2mlogn(1l+ o(1).

Using our lower bound for m in terms of ¢ above,
we conclude that m = 6(logn)3(logA)? and t =
4(logn)? log A meet our needs.

Theorem 2. Given a list of elements of length A <
n, with A at least 6(logn)?(log A)2, with probability
at least 1 — O(1/n?), if we sample 6(logn)®(log A)?
of the A elements uniformly at random, then median
of the sample falls in position A/2 + A/log A in the
original list.

4 Optimal Online Multiselec-
tion
In this section we prove the following theorem.

Theorem 3 (Optimal Online Multiselection). Given
an unsorted array A of n elements, we provide a de-
terministic algorithm that supports a sequence Q) of q
online selection and search queries, of which ¢’ are
search, using B(Sq)(1 + o(1)) + O(n + ¢'logn) com-
parisons in the worst case.

Note that our bounds match those of the offline
algorithm of Kaligosi et al. [KMMS05] when ¢’ = 0
(i.e., there are no search queries). In other words,



we provide the first 1-competitive online multiselec-
tion algorithm. We explain our proof with three
main steps. In Section 4.1, we explain our algorithm
and describe how it is different from the algorithm
in [KMMSO05]. We then bound the number of com-
parisons from merging by B(S,)(1 + o(1)) + O(n) in
Section 4.2, and in Section 4.3, we bound the number
of comparisons from pivot finding and partitioning by

o(B(S,)) + O(n).

4.1 Algorithm Description

We briefly describe the deterministic algorithm from
Kaligosi et al. [KMMS05]. They begin by creating
runs, which are sorted sequences from A of length
roughly ¢ = log(B/n). Then, they compute the me-
dian m of the median of these sequences and partition
the runs based on m. After partitioning, they recurse
on the two sets of runs, sending select queries to the
appropriate side of the recursion. To maintain the
invariant on run length on the recursions, they merge
short like-sized runs optimally until all but ¢ of the
runs are again of length between ¢ and 2/.

We make the following modifications to the deter-
ministic algorithm of Kaligosi et al. [KMMS05]:

e The queries are processed online, that is, one at a
time, from @) without knowing which queries will
follow. To do this, we maintain the bitvector V
as described in Section 2.

e We admit search queries in addition to selection
queries; in the analysis we treat them as selec-
tion queries, paying O(¢'logn) comparisons to
account for binary search.

e Since we don’t know all of @) at the start, we
cannot know the value of B(S,) in advance.
Therefore, we cannot preset a value for ¢ as in
Kaligosi et al. [KMMSO05]. Instead, we set ¢ lo-
cally in an interval I(p) to 1+ [lg(d(p) + 1)].
Thus, ¢ starts at 1 at the root of the pivot
tree T', and since we use only good pivots, d(p) €
O(lgn). (Also, ¢ € loglogn + O(1) in the worst
case.) We keep track of the recursion depth of
pivots, from which it is easy to compute the re-
cursion depth of an interval. Also observe that ¢
can increase by at most one when moving down
one recursion level during a selection.

e We use a second bitvector R to identify the end-
points of runs within each interval that has not
yet been partitioned.

The selection algorithm to perform a selection query
is as follows:

e As described earlier in this paper, we use bitvec-
tor V to identify the interval from which to be-
gin processing. The minimum and maximum are
found in preprocessing.

e If the current interval has length less than 4¢2, we
sort the interval to complete the query (setting
all elements as pivots). The cost for this case is
bounded by Lemma 7.

e Asin Kaligosi et al. [KMMS05], we compute the
value of ¢ for the current interval, merge runs so
that there is at most one of each length < ¢,
and then use medians of those runs to compute
a median-of-medians to use as a pivot. We then
partition each run using binary search.

We can borrow much of the analysis done
in [KMMSO05]. We cannot use their work wholesale,
because we don’t know B in advance. For this reason,
we cannot define £ as they have, and their algorithm
depends heavily on its use. To finish the proof of our
theorem, we show how to modify their techniques to
handle this complication.

4.2 Merging
Kaligosi et al. [KMMS05, Lemmas 5—10] count the

comparisons resulting from merging. Lemmas 5, 6,
and 7 do not depend on the value of £ and so we can
use them in our analysis. Lemma 8 shows that the
median-of-medians built on runs is a good pivot se-
lection method. Although the proof clearly uses the
value of /, its validity does not depend on how large
¢ is; only that there are at least 4/ items in the in-
terval, which also holds for our algorithm. Lemmas
9 and 10 together will bound the number of com-
parisons by B(Sy)(1 + o(1)) + O(n) if we can prove
Lemma 4, which bounds the information content of
runs in intervals that are not yet partitioned.

Lemma 4. Let a run v be a sorted sequence of el-
ements from A in a gap Af)t, where |r| is its length.
Then,

k
Y. D Irllglrl € o(B(Sy)) + O(n).

=0 TEAft

Proof. In a gap of size A, ¢ € O(logd) where d the
recursion depth of the elements in the gap. This
gives > o |rlog|r| < Alog(2l) € O(Aloglogd),
since each run has size at most 2¢. Because we
use a good pivot selection method, we know that
the recursion depth of every element in the gap

is O(log(n/A)).  Thus, Yr o> arlrlloglr| <



> Aslogloglog(n/A;). Recall that B(S;) = B(P:)+
O(n) C >, A;log(n/A;) + O(n). Using Fact 1, the
proof is complete. O

4.3 Pivot Finding and Partitioning

Now we prove that the cost of computing medians and
performing partition requires at most o(B(S,))+O0(n)
comparisons. The algorithm computes the median m
of medians of each run at a node v in the pivot tree T.
Then, it partitions each run based on m. We bound
the number of comparisons at each node v with more
than 4¢2 elements in Lemmas 5 and 6. We bound the
comparison cost for all nodes with fewer elements in
Lemma 7.

Terminology. Let d be the current depth of the
pivot tree T' (defined in Section 2.1), and let the root
of T have depth d = 0. In tree T, each node v is
associated with some interval I(p,) corresponding to
some pivot p,. We define A, = |I(p,)| as the number
of elements at node v in T'.

Recall that £ =1+ |log(d + 1)]. Recall that a run
is a sorted sequence of elements from A. We define a
short run as a run of length less than ¢. Let Sn be
the number of comparisons required to compute the
exact median for n elements, where 3 is a constant
less than three [DZ99]. Let ¢ be the number of short
runs at node v, and let 7 be the number of long runs.

Lemma 5. The number of comparisons required to
find the median m of medians and partition all runs
at m for any node v in the pivot tree T is at most

B —1)+ Llogl+ B(AL/0) + (A, /) 1log(20).

Proof. We compute the cost (in comparisons) for
computing the median of medians. For the rj < /-1
short runs, we need at most (¢ — 1) comparisons per
node. For the rl < A, /¢ long runs, we need at most
B(A/0).

Now we compute the cost for partitioning each run
based on m. We perform binary search on each run.
For short runs, this requires at most Zf;ll logi <
{log ¢ comparisons per node. For long runs, we need
at most (A, /¢)log(2¢) comparisons per node. O

Since our value of ¢ changes at each level of the
recursion tree, we will sum the above costs by level.
The overall cost in comparisons at level d is at most

2980 4 2% log £ + (n/€)B + (n/€) log(2¢).
We can now prove the following lemma.

Lemma 6. The number of comparisons required to
find the median of medians and partition over all

nodes v in the pivot tree T with at least 402 elements
is within o(B(S)) + O(n).

Proof. For all levels of the pivot tree up to level £/ <
log(B(P;)/n), the cost is at most

log(B(P%)/n)

>

d=1

2%0(B +log €) + (n/€)(B + log(20)).

Since ¢ = |log(d 4+ 1)] + 1, the first term of the sum-
mation is bounded by (B(FP;)/n)loglog(B(P;)/n) =
o(B(P;)). The second term can be easily upper-
bounded by

nlog(B(P;)/n)(log log log(B(P,) /n)/ log log (B(P,) /n))

which is o(B(P;)). Using Lemma 1, the above two
bounds are o(B(S;)) + O(n).

For each level ¢ with log(B(P;)/n) < ¢ <
loglogn + O(1), we need to bound the remaining
cost. It is easy to bound each node v’s cost by o(A,),
but this is not sufficient—though we have shown
that the total number of comparisons for merging is
B(S;) + O(n), the number of elements in nodes with
A, > 402 could be w(B(Sy)).

We bound the overall cost as follows, using the re-
sult of Lemma 5. Since node v has A, > 42 ele-
ments, we can rewrite the bounds as O(A, /¢ log(2¢)).
Recall that ¢ € logd + O(1) C log(O(log(n/A,))) C
loglog(n/A,) + O(1), since we use a good pivot se-
lection method. Summing over all nodes, we get
Yo, (Ay/0)log(20) < Y, Aylog(2) € o(B(P)) +
O(n), using Fact 1 and recalling that B(P) =
Yo Aylog(n/A,). Finally, using Lemma 1, we ar-
rive at the claimed bound for queries. O

Now we show that the comparison cost for all
nodes v where A, < 4¢? is at most o(B(S;)) + O(n).

Lemma 7. For nodes v in the pivot tree T
where A, < 402, the total cost in comparisons for
all operations is at most o(B(S¢)) + O(n).

Proof. We observe that nodes with no more than 4¢2
elements do not incur any cost in comparisons for
median finding and partitioning, unless there is (at
least) one associated query within the node. Hence,
we focus on nodes with at least one query.

Let z = (loglogn)?logloglogn+0O(1). We sort the
elements of any node v with A, < 4¢? elements using
O(z) comparisons, since ¢ € loglogn + O(1). We set
each element as a pivot. The total comparison cost
over all such nodes is no more than O(t¢z), where ¢
is the number of queries we have answered so far. If
t < n/z, then the above cost is O(n).



Otherwise, t > n/z. Then, we know that B(P;) >
(n/z)log(n/z), by Jensen’s inequality. (In words,
this represents the sort cost of n/z adjacent queries.)
Thus, tz € o(B(P;)). Using Lemma 1, we know that
B(P;) € B(S;) + O(n), thus proving the lemma. O

5 Optimal Online
Multiselection

Dynamic

In this section, we extend our results for the case of
the static array by allowing insertions and deletions
in the array, while supporting the selection queries.
We are originally given the unsorted list A. To sup-
port insert and delete efficiently, we maintain newly-
inserted elements in a separate data structure, and
mark deleted elements in A. These insert and delete
operations are occasionally merged to make the ar-
ray A up-to-date. Let A’ denote the current array with
length n’. We support two additional operations:

e insert(a), which inserts a into A’, and;

e delete(i), which deletes the ith sorted entry
from A’.

5.1 Preliminaries

Our solution uses dynamic  bitvector of
Hon et al. [HSS03]. This structure supports
the following operations on a dynamic bitvector V.
The rank (i) operation tells the number of b bits up
to the ith position in V. The selecty(i) operation
gives the position in V of the ith b bit. The insert,(i)
operation inserts bit b in the ith position. The
delete(i) operation deletes the bit in the ith position.
The flip(i) operation flips the bit in the ith position.
Note that one can determine the ith bit of V by
computing rankq (i) — rank1 (i —1). (For convenience,
we assume that ranky(—1) = 0.) The result of Hon
et al. [HSS03, Theorem 1] can be re-stated as follows,
for the case of maintaining a dynamic bit vector (the
result of [HSS03] is stated for a more general case).

the

Lemma 8 ([HSS03]). Given a bitvector V of length
n, there exists a data structure that takes n+o(n) bits
and supports ranky, and selecty, in O(log, n) time, and
insert, delete and flip in O(t) time, for any t where
(log n)o(l) <t <n. This structure assumes access to
a precomputed table of size n®, for any fixed € > 0.

The elements in the array A swapped during the
queries and insert and delete operations, to create
new pivots, and the positions of these pivots are
maintained as before using the bitvector V. In addi-
tion, we also maintain two bitvectors, each of length

n': (i) an nsert bitvector I such that I[i] =1 if and
only if A’[{] is newly inserted, and (ii) a delete bitvec-
tor D such that if D[i] = 1, the ith element in A has
been deleted. If a newly inserted item is deleted, it
is removed from I directly. Both I and D are imple-
mented as instances of the data structure of Lemma 8.

We maintain the values of the newly inserted ele-
ments in a balanced binary search tree T'. The inorder
traversal of the nodes of T' corresponds to the increas-
ing order of their positions in A’. We support the fol-
lowing operations on this tree: (i) given an index 4,
return the element corresponding to the ¢th node in
the inorder traversal of T, and (ii) insert/delete an
element at a given inorder position. By maintaining
the subtree sizes of the nodes in T, these operations
can be performed in O(logn) time without having to
perform any comparisons between the elements.

Our preprocessing steps are the same as in the
static case. In addition, bitvectors I and D are each
initialized to n 0s. The tree T is initially empty.

After performing |A| insert and delete operations,
we merge all the elements in T with the array A,
modify the bitvector B appropriately, and reset the
bitvectors I and D (with all zeroes). This increases
the amortized cost of the insert and delete operations
by O(1), without requiring additional comparisons.

5.2 Dynamic Online Multiselection

We now describe how to support A'.insert(a),
A . delete(i), A .select(i), and A'.search(a) operations.

A insert(a). First, we search for the appropriate un-
sorted interval [¢, r] containing a using a binary search
on the original (unsorted) array A. Now perform
A.search(a) on interval [¢,r] (choosing which subin-
terval to expand based on the insertion key a) until
a’s exact position j in A is determined. The origi-
nal array A must have chosen as pivots the elements
immediately to its left and right (positions j — 1
and j in array A); hence, one never needs to con-
sider newly-inserted pivots when choosing subinter-
vals. Insert a in sorted order in T among at position
I.select1(j) among all the newly-inserted elements.
Calculate j' = I.selectg(j), and set a’s position to
j" = 3" —D.rank1(j’). Finally, we update our bitvec-
tors by performing I.inserty(j”) and D.inserto(;”).
Note that, apart from the search operation, all other
operations in the insertion procedure do not perform
any comparisons between the elements.

A .delete(i). Compute ¢ = D.selecto(). If ' is
newly-inserted (i.e., I[i'] = 1), then remove the node
(element) with inorder number I.rankq (i) from T.



Perform I.delete(i’) and D.delete(i’). If instead ¢’ is
an older entry, perform D.flip(i'). In other words, we
mark position ¢’ in A as deleted even though the cor-
responding element may not be in its proper place.’

N .select(i). If I[i] = 1, return the element corre-
sponding to the node with inorder number I.rankq(7)
in T. Otherwise, compute ¢ = I.ranko(i) —
D.rank1 (%), and return A.select(i')).

A .search(a). Search for the unsorted interval [¢,r]
containing a using a binary search on the original
(unsorted) array A. Then perform A.search(a) on in-
terval [¢,r] until a’s exact position j is found. If a
appears in A (which we discover through search), we
need to check whether it has been deleted. We com-
pute j' = I.selecto(j) and j” = j' — D.rankq(j').
If D[j'] = 0, return j”. Otherwise, it is possible
that the item has been newly-inserted. Compute
p = I.rank1(j’), which is the number of newly-
inserted elements that are less than or equal to a.
If T'[p] = a, then return j”; otherwise, return failure.

We show that the above algorithm achieves the fol-
lowing performance.

Theorem 4 (Online Dynamic Multiselection).
Given a dynamic array A of n original elements,
there exists a dynamic online data structure that can
support ¢ € O(n) select, search, insert, and delete
operations, of which q' are search, insert, and delete,
we provide a deterministic online algorithm that uses
at most B(Sq)(140(1))+O(n+¢' logn) comparisons.

Proof. Let A’ denote the current array of length n’, af-
ter a sequence of queries and insertions. Let @) be the
sequence of ¢ selection operations performed (either
directly or indirectly through other operations) on 4’,
ordered by time of arrival. Let S, be the queries of @,
ordered by position. We now analyze the number of
comparisons performed by a sequence of queries and
insert and delete operations.

We consider the case when the number of insert
and delete operations is less than n. In other words,
we are between two rebuildings of our dynamic data
structure. If ¢’ is the number of search, insert,
and delete operations in the sequence, then we per-
form O(q'logn’) comparisons to perform the required
searches. Note that our algorithm does not per-
form any comparisons for delete(i) operations, until
some other query is in the same interval as ¢. The
deleted element will participate in the other costs

5If a user wants to delete an item with value a, one could
simply search for it first to discover its rank, and then delete
it using this function.

(merging, pivot-finding, and partitioning) for these
other queries, but its contribution can be bounded
by O(logn), which we have as a credit.

Since a delete operation does not perform any addi-
tional comparisons beyond those needed to perform a
search, we assume that all the updates are insertions
in the rest of this section. Since each inserted element
becomes a pivot immediately, it does not contribute
to the comparison cost of any other select operation.
Also, note that in the algorithm of Theorem 3, no
pivot is part of a run and hence cannot effect the
choice of any future pivot.

Since @ is essentially a set of ¢ selection queries,
we can bound its total comparison cost for selec-
tion queries by Theorem 3, which gives a bound of
B(S,)(14+0(1))4+O(n). This proves the theorem. [

6 External Multiselection

Suppose we are given an unsorted array A of length
N stored in n = N/B blocks in the external mem-
ory. Sorting A in the external memory model requires
©(nlog,, n) I/0s. The techniques we use in internal
memory are not immediately applicable to the exter-
nal memory model. In the extreme case where we
have ¢ = N queries, the internal memory solution
would require O(nlog,(n/m)) I/Os. This compares
poorly to the optimal O(nlog,, n) I/Os performed by
the external mergesort algorithm.

A Lower Bound for Multiselect in
External Memory

6.1

As in the case of internal memory, the lower bound on
the number of I/Os required to perform a given set
of selection queries can be obtained by subtracting
the number of I/Os required to sort the elements be-
tween the ‘query gaps’ from the sorting bound. More
specifically, let Sy = {s;} be the first ¢ queries from a
query set @, sorted by position, and for 1 <1 <, let
AZ-St = s;41 — S; be the query gaps, as defined in Sec-
tion 2.1. Then the lower bound on the number of
I/0s required to support the queries in S is given by
Bou(S)) € nlogy,n — S _o(A%/B)log,, (A% /B) ~
O(n), where we assume that log,, (Aft/B) =0

when Aft < mB = M in the above definition. Note
that B,,(S:) € Q(n) for all t > 1.

6.2 Partitioning in External Memory

The main difference between our algorithms for in-
ternal and external memory is the partitioning pro-
cedure. In the internal memory algorithm, we parti-



tion the values according to a single pivot, recursing
on the half that contains the answer. In the external
memory algorithm, we modify this binary partition
to a d-way partition, for some d € ©(m), by finding
a sample of d “roughly equidistant elements.” The
next lemma describe how to find such a sample, and
then partition the range of values into d+ 1 subranges
with respect to the sample.

As in [AV88], we assume that B € Q(log,, n)—
which allows us to store a pointer to a memory block
of the input using a constant number of blocks. This
is similar to the word-size assumption for the trans-
dichotomous word RAM model [FW93]. In addition,
the algorithm of Sibeyn [Sib06] only works under this
assumption, though this is not explicitly mentioned.

Lemma 9. Given an unsorted array A containing N
elements in external memory and an integer param-
eter d < m/2, one can perform a d-way partition in
O(n+d) I/0s, such that the size of each partition is
in the range [n/(2d),3n/(2d)).

Proof. Let s |v/m/4]. We perform the s-
way partition described in [AV88] to obtain s + 1
super-partitions. We reapply the s-way partitioning
method to each super-partition to obtain d < m/2
partitions in total.

Finally, our algorithm scans the data, keeping one
input block and d+ 1 output blocks in main memory.
An output block is written to external memory when
it is full, or when the scan is complete. The algorithm
performs n I/0 to read the input, and at most (n +
d+ 1) I/Os to write the output into d 4+ 1 partitions,
thus showing the result. O

6.3 Achieving O(B,,(S5,)) 1/Os

We now show that our lower bound is asymptotically
tight, by describing an O(1)-competitive algorithm.

Theorem 5. Given an unsorted array A occupying n
blocks in external memory, we provide a determinis-
tic algorithm that supports a sequence @ of q online
selection queries using O(Bm(Sq))) 1/0s under the
condition that B € Q(log,, n).

Proof. Our algorithm uses the same approach as the
internal memory algorithm, except that it chooses
d — 1 pivots at once. In other words, each node v of
the pivot tree T' containing A, elements has a branch-
ing factor of d. We subdivide its A, elements into d
partitions using Lemma 9. This requires O(d, + d)
I/0s, where 6, = A, /B.

We also maintain the bitvector V of length IV, as
described before. For each A.select(i) query, we ac-
cess position V[i]. If V[i] = 1, return A[é], else scan left
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and right from the ith position to find the endpoints
of this interval I; using |I;|/B I/Os. The analysis of
the remaining terms follows directly from the inter-
nal memory algorithm, giving O(B,,(S5,)) + O(n) =
O(B:(S4)) 1/0s. O

To add search, instead of taking O(log N) time per-
forming binary search on the blocks of V, we build
a B-tree T maintaining all pivots from A. (During
preprocessing, we insert A[1] and A[n] into T.) The
B-tree T' will be used to support search queries in
O(logp N) 1/0s instead of O(log N) I/Os. We mod-
ify the proof of Theorem 5 to obtain the following:

Corollary 1. Given an unsorted array A occupying
n blocks in external memory, we provide a determin-
istic algorithm that supports a sequence @ of q on-
line selection and search queries using O(B,(Sq) +
qlogg N) I/Os wunder the condition that B €
Q(log,, n).

Proof. The first two terms follow directly from the
proof of Theorem 5. Now we explain the source of
the last term.

We build a B-tree T' maintaining all pivots from A.
(During preprocessing, we insert A[1] and A[n] into T'.)
Naively, for g queries, we must insert ¢gm log,,, N new
pivots into T'. The B-tree construction for these piv-
ots would require O(min{gm(log,, N), N}(logz N))
I/0s, which is prohibitive.

Instead, we notice that the pivots for an individual
query z are all inserted in some unsorted interval I, =
[, 7], where [ and r are consecutive leaves of the pivot
tree T' (in left-to-right level order). For z, we may
spend log g (min{gm(log,, N), N}) € O(logg N) I/Os
navigating to I, using T. Our approach is to insert
all O(mlog,, N) € O((M/B)log,, N) = O(M) piv-
ots within I, in a single batched manner. This pro-
cess can easily be done in a bottom-up fashion by
merging nodes in the tree T of an implicit B-tree T"
for the O(M) pivots using O(m) 1/0s.

Thus, we have O(min{gmlog,, N, N} pivots in T,
and using the batched insertion process above, we can
do this using only O(min{gm(log,, N)/B,N/B}) =
O(min{gm,n}) I/Os. We must also add O(qlogy N)
I/Os to navigate to the correct interval for each query.

Overall, for ¢ queries, the algorithm takes
O(Bon(S,)) + O(n) + Olglog N) = O(Bu(S,) +
glogg N) I/0s, matching the result. O

Note that if ¢ € O(B,,(S,)/logg N), then Corol-
lary 1 requires only O(B,,(S;)) I/Os, matching the
bounds from Theorem 5. Hence, our result is asymp-
totically optimal when B,,(S,)/q = logg N.
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