

TITLE:

Details on the effect of very short dual antiplatelet therapy after drug-eluting stent implantation in patients with high bleeding risk: insight from the STOPDAPT-2 trial

AUTHOR(S):

Watanabe, Hirotoshi; Domei, Takenori; Morimoto, Takeshi; Natsuaki, Masahiro; Shiomi, Hiroki; Toyota, Toshiaki; Ohya, Masanobu; ... Furukawa, Yutaka; Nakagawa, Yoshihisa; Kimura, Takeshi

CITATION:

Watanabe, Hirotoshi ...[et al]. Details on the effect of very short dual antiplatelet therapy after drug-eluting stent implantation in patients with high bleeding risk: insight from the STOPDAPT-2 trial. Cardiovascular intervention and therapeutics 2021, 36: 91-103

ISSUE DATE: 2021

URL: http://hdl.handle.net/2433/261812

RIGHT:

This is a post-peer-review, pre-copyedit version of an article published in Cardiovascular intervention and therapeutics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s12928-020-00651-9.; This is not the published version. Please cite only the published version.; この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。

1	Details on the Effect of Very Short Dual Antiplatelet Therapy
2	after Drug-eluting Stent Implantation in Patients with High
3	Bleeding Risk;
4	Insight from the STOPDAPT-2 Trial
5	First author: Hirotoshi Watanabe, H.W.
6	Short title: Detail of STOPDAPT-2 HBR subgroup analysis
7	
8	Hirotoshi Watanabe ¹ , MD; Takenori Domei ² , MD; Takeshi Morimoto ³ , MD; Masahiro
9	Natsuaki ⁴ , MD; Hiroki Shiomi ¹ , MD; Toshiaki Toyota ⁵ , MD; Masanobu Ohya ⁶ , MD; Satoru
10	Suwa ⁷ , MD; Kensuke Takagi ⁸ , MD; Mamoru Nanasato ⁹ , MD; Yoshiki Hata ¹⁰ , MD; Masahiro
11	Yagi ¹¹ , MD; Nobuhiro Suematsu ¹² , MD; Takafumi Yokomatsu ¹³ , MD; Itaru Takamisawa ⁹ ,
12	MD; Masayuki Doi ¹⁴ , MD; Toshiyuki Noda ¹⁵ , MD; Hideki Okayama ¹⁶ , MD; Yoshitane Seino ¹⁷ ,
13	MD; Tomohisa Tada ¹⁸ , MD; Hiroki Sakamoto ¹⁸ , MD; Kiyoshi Hibi ¹⁹ , MD; Mitsuru Abe ²⁰ ,
14	MD; Kazuya Kawai ²¹ , MD; Koichi Nakao ²² , MD; Kenji Ando ² , MD; Kengo Tanabe ²³ , MD;
15	Yuji Ikari ²⁴ , MD; Keiichi Igarashi Hanaoka ²⁵ , MD; Yoshihiro Morino ²⁶ , MD; Ken Kozuma ²⁷ ,
16	MD; Kazushige Kadota ⁶ , MD; Yutaka Furukawa ⁵ , MD; Yoshihisa Nakagawa ²⁸ , MD; and

Takeshi Kimura¹, MD. On behalf of the STOPDAPT-2 investigators. 1 2 3 Affiliations ¹Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 4 Kvoto, Japan. ²Department of Cardiology, Kokura Memorial Hospital, Kitakvusvu, Japan. 5 6 ³Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan. ⁴Department of Cardiovascular Medicine, Saga University, Saga, Japan. ⁵Department of 7 8 Cardiovascular Medicine, Kobe City Medical Center General Hospital, Kobe, Japan. 9 ⁶Department of Cardiology, Kurashiki Central Hospital, Kurashiki, Japan. ⁷Department of 10 Cardiology, Juntendo University Shizuoka Hospital, Izunokuni, Japan. ⁸Department of 11 Cardiology, Ogaki Municipal Hospital, Ogaki, Japan. ⁹Department of Cardiology, Sakakibara Heart Institute, Fuchu, Japan.¹⁰Department of Cardiology, Minamino Cardiovascular Hospital, 12 Hachioji, Japan. ¹¹Department of Cardiology, Sendai Cardiovascular Center, Sendai, Japan. 13 14 ¹²Department of Cardiology, Saiseikai Fukuoka General Hospital, Fukuoka, Japan. ¹³Department of Cardiology, Mitsubishi Kyoto Hospital, Kyoto, Japan. ¹⁴Department of 15 Cardiology, Kagawa Prefectural Central Hospital, Takamatsu, Japan.¹⁵Department of 16 Cardiology, Gifu Prefectural General Medical Center, Gifu, Japan.¹⁶Department of Cardiology, 17

京都大学学術情報リボジトリ KURENAI にし Kyoto University Research Information Repository

1	Ehime Prefectural Central Hospital, Matsuyama, Japan. ¹⁷ Department of Cardiology, Hoshi
2	General Hospital, Koriyama, Japan. ¹⁸ Department of Cardiology, Shizuoka General Hospital,
3	Shizuoka, Japan. ¹⁹ Division of Cardiology, Yokohama City University Medical Center,
4	Yokohama, Japan. ²⁰ Department of Cardiology, National Hospital Organization Kyoto
5	Medical Center, Kyoto, Japan. ²¹ Department of Cardiology, Chikamori Hospital, Kochi, Japan.
6	²² Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, Kumamoto,
7	Japan. ²³ Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan. ²⁴ Department of
8	Cardiology, Tokai University Hospital, Isehara, Japan. ²⁵ Hanaoka Seishu Memorial
9	Cardiovascular Clinic, Sapporo, Japan. ²⁶ Department of Cardiology, Iwate Medical University
10	Hospital, Morioka, Japan. ²⁷ Department of Cardiology, Teikyo University Hospital, Tokyo,
11	Japan. ²⁸ Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu,
12	Japan.
13	
14	Correspondence to: Takeshi Kimura
15	Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
16	54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
17	TEL: +81-75-751-4254 FAX: +81-75-751-3289

- 1 Email: <u>taketaka@kuhp.kyoto-u.ac.jp</u>
- 2 Total Word Counts: 5862 words
- 3 (Title 25; Abstract 245; Text and Acknowledgement 2969; and Reference, Legends, Tables
- 4 2623)

5

- 6 **Journal Subject Terms:** antiplatelet therapy; high bleeding risk; coronary artery disease;
- 7 percutaneous coronary intervention.

8

9 **Funding:** STOPDAPT-2 is funded by Abbott Vascular Japan, Co., Ltd

京都大学学術情報リポジトリ KURENAI よし Kyoto University Research Information Repository

1 Abstract

2	Previously we briefly reported the effect of 1-month dual antiplatelet therapy (DAPT) for
3	patients with high bleeding risk (HBR) receiving percutaneous coronary intervention (PCI) in
4	the STOPDAPT-2 trial, but full analysis data has not been available. We conducted post-hoc
5	subgroup analysis regarding the effect of very short DAPT for HBR patients in
6	STOPDAPT-2 trial. The primary endpoint was a 1-year composite of cardiovascular
7	(cardiovascular death, myocardial infarction, definite stent thrombosis, or stroke) and
8	bleeding (TIMI major/minor bleeding) outcomes. Major secondary endpoints were 1-year
9	cardiovascular composite endpoint and bleeding endpoint. HBR was defined by the academic
10	research consortium (ARC) HBR criteria. Among the 3009 study patients, 1054 (35.0%) were
11	classified as HBR and 1955 (65.0%) were as non-HBR. There were no significant
12	interactions between HBR/non-HBR subgroups and the assigned DAPT group on the primary
13	endpoint (HBR; 3.48% vs. 5.98%, HR 0.57, 95%CI 0.32-1.03, and non-HBR; 1.81% vs.
14	2.36%, HR 0.78, 95%CI 0.42-1.45; P for interaction=0.48), the major secondary
15	cardiovascular endpoint (HBR; 3.07% vs. 4.03%, HR 0.77, 95%CI 0.40-1.48, and non-HBR;
16	1.41% vs. 1.61%, HR 0.89, 95%CI 0.43-1.84; P for interaction=0.77), and the major
17	secondary bleeding endpoint (HBR; 0.41% vs. 2.71%, HR 0.15, 95%CI 0.03-0.65, and

1	non-HBR; 0.40% vs. 0.85%, HR 0.48, 95%CI 0.14-1.58; P for interaction=0.22). In
2	conclusion, the effects of 1-month DAPT for the primary and major secondary endpoints
3	were consistent in HBR and non-HBR patients without any significant interactions. The
4	benefit of 1-month DAPT in reducing major bleeding was numerically greater in HBR
5	patients.
6	(245/250 words)
7	
8	Keywords: antiplatelet therapy, coronary stent, bleeding, high bleeding risk, and percutaneous
9	coronary intervention.
10	Clinical trial registration: Short and Optimal duration of Dual Antiplatelet Therapy after
11	everolimus-eluting cobalt-chromium stent-2 [STOPDAPT-2]; NCT02619760
12	
13	

京都大学学術情報リポジトリ KURENAI よし Kyoto University Research Information Repository

1 **TEXT**

2	The current US and European guidelines recommend DAPT for at least 12 months in
3	acute coronary syndrome, and for at least 6 months in stable coronary artery disease, if not at
4	high bleeding risk (HBR) ^{1,2} . In HBR patients, the updated European guideline recommended
5	shorter DAPT for 6 months in acute coronary syndrome and for 1 month in stable coronary
6	artery disease ² . There were 3 clinical trials comparing different devices with abbreviated
7	DAPT durations targeting HBR patients, such as LEADERS FREE (the Prospective
8	randomized comparison of the BioFreedom biolimus A9 drug-coated stent versus the gazelle
9	BMS in patients at high bleeding risk), ZEUS (The Zotarolimus- eluting Endeavor sprint
10	stent in Uncertain DES Candidates), and SENIOR (SYNERGY II Everolimus elutiNg stent
11	In patients Older than 75 years under-going coronary Revascularization associated with a
12	short dual antiplatelet therapy) ³⁻⁵ . However, no previous study has compared different DAPT
13	durations in HBR patients, and thus, the optimal DAPT duration after PCI using DES in HBR
14	patients has not been yet adequately defined. We previously reported the result of the
15	STOPDAPT-2 (Short and optimal duration of dual antiplatelet therapy after
16	everolimus-eluting cobalt-chromium stent) trial, and the result showed the benefit of 1-month
17	DAPT over 12-month DAPT with reduction of bleeding events without increase in

1	cardiovascular events in an all-comer population ⁶ . This strategy might be particularly
2	beneficial in HBR patients to reduce bleeding events. Therefore, we conducted a post-hoc
3	subgroup analysis of the STOPDAPT-2 trial based on the recently proposed ARC (academic
4	research consortium) HBR criteria ⁷ . Recently, we published a brief report of this
5	STOPDAPT-2 HBR substudy ⁸ . However, the important information, whole baseline
6	characteristics and outcomes or time-to-event curves were missing in the brief report, and
7	herein, we report the full analysis data and the additional analysis about the bleeding site and
8	provide further discussion.
9	
10	Methods
10 11	Methods Study population
11	Study population
11 12	Study population STOPDAPT-2 is a prospective, multicenter, open-label, adjudicator blinded
11 12 13	Study population STOPDAPT-2 is a prospective, multicenter, open-label, adjudicator blinded randomized clinical trial conducted in Japan. The main objective of the STOPDAPT-2 study
11 12 13 14	Study population STOPDAPT-2 is a prospective, multicenter, open-label, adjudicator blinded randomized clinical trial conducted in Japan. The main objective of the STOPDAPT-2 study was to test the non-inferiority of 1 month of DAPT followed by clopidogrel monotherapy

京都大学学術情報リボジトリ KURENAI に Kyoto University Research Information Repository

1	and main results at 1-year follow-up of the STOPDAPT-2 were previously reported in detail ⁶ .
2	In brief, a total of 3045 patients with successful CoCr-EES implantation and without the plan
3	of staged procedure were enrolled and randomized in a 1-to-1 ratio either to the 1-month
4	DAPT group or 12-month DAPT group. During the initial 1-month (30- to 59-day), all the
5	patients were to receive DAPT with aspirin 81-200 mg/day and P2Y12 receptor blockers
6	(clopidogrel 75mg/day or prasugrel 3.75 mg/day at the discretion of the attending physicians).
7	In the 1-month DAPT group, antiplatelet therapy was switched to clopidogrel monotherapy at
8	1-month, while in the 12-month DAPT group, patients were to receive DAPT with aspirin and
9	clopidogrel up to 12-month. The study basically adopted an "all-comer" design with exclusion
10	criteria limited only to the use of oral anticoagulants, history of intracranial hemorrhage, or
11	known intolerance to clopidogrel. After exclusion of 36 participants who withdrew consent,
12	the final analysis set included 3009 patients comprising 1500 patients in the 1-month DAPT
13	group and 1509 patients in the 12-month DAPT group (Figure 1). Kyoto University Certified
14	Review Board approved the study protocol and written informed consents were obtained
15	from all patients.

京都大学学術情報リポジトリ KURENAI にし Kyoto University Research Information Repository

1 Application of ARC-HBR definition

2	In the present analysis, patients were divided into HBR or non-HBR based on the
3	ARC-HBR definitions ⁷ . Patients were regarded as HBR if having at least one major criterion or
4	two minor criteria. We modified the ARC-HBR definitions, because some criteria of
5	ARC-HBR were not exactly captured in the STOPDAPT-2 trial; medication of oral
6	anticoagulants at discharge from the index hospitalization was regarded as major criterion of
7	long-term oral anticoagulation. The usage of oral anticoagulants was one of the exclusion
8	criteria, but some patients receiving anticoagulation were enrolled (protocol violation) and
9	included in analysis; all previous bleeding history was regarded as minor criterion, because we
10	did not have information on the timing, requirement of hospitalization or transfusion, and
11	recurrence for previous history of spontaneous bleeding; liver cirrhosis was considered as
12	major criterion regardless of the presence of portal hypertension; malignancy was excluded
13	from the criteria for HBR, because we did not have information whether it was active or not;
14	history of stroke was regarded as minor criterion, because we did not have information on its
15	timing; history of intracranial bleeding was regarded as major criteria regardless of its etiology,
16	although we did not have information whether it was traumatic or spontaneous; planned major
17	surgery was included as major criteria, regardless of whether the procedure was deferrable or

京都大学学術情報リボジトリ KURENAI にし Kyoto University Research Information Repository

1	not. The information on bleeding diathesis, brain arterio-venous malformation, and recent
2	major trauma or surgery (major criteria), use of non-steroid anti-inflammatory drugs or steroids
3	(minor criteria) were not captured in this trial, and these criteria were regarded as absent. There
4	were missing values for serum creatinine in 10 patients, for platelet counts in 11 patients, and
5	for hemoglobin in 6 patients, and these patients were regarded as not having those HBR
6	criteria such as chronic kidney disease, thrombocytopenia, and anemia.
7	We also assessed thrombotic and bleeding risks of the individual patients by using
8	the Patterns of Non-Adherence to Anti-Platelet Regimen in Stented Patients (PARIS)
9	thrombotic/bleeding risk scores, and Coronary REvascularization Demonstrating Outcome
10	study in Kyoto (CREDO-Kyoto) thrombotic/bleeding risk scores ^{9,10} . Further, we also
11	evaluated the high-risk features of stent-driven recurrent ischemia derived from the 2017
12	European Society of Cardiology (ESC) focused update on DAPT ² .
13	
14	Outcome measures and definitions
15	The primary endpoint of the STOPDAPT-2 was a composite of cardiovascular and
16	bleeding outcomes, that is a composite of death from cardiovascular cause, myocardial
17	infarction (MI), definite stent thrombosis, ischemic or hemorrhagic stroke, and bleeding

京都大学学術情報リポジトリ KURENAI にし Kyoto University Research Information Resositany

1	defined as Thrombolysis in Myocardial Infarction (TIMI) major or minor criteria ¹¹ . The
2	major secondary cardiovascular endpoint was a composite of death from cardiovascular cause,
3	MI, definite stent thrombosis, and ischemic or hemorrhagic stroke, and the major secondary
4	bleeding endpoint was the bleeding defined as TIMI major or minor. Other secondary
5	endpoints were described in the supplemental appendix. Bleeding events were also
6	adjudicated and classified with the Bleeding Academic Research Consortium (BARC) criteria
7	or Global Utilization of Streptokinase and TPA For Occluded Arteries (GUSTO), and
8	classified by locations or causes (intracranial, gastrointestinal, related with surgery, or
9	others) ^{12,13} . The definitions of MI, and stent thrombosis were derived from ARC, and stroke
10	was adjudicated if the neurological dysfunction lasted longer than 24 hours ¹⁴ . The
11	independent clinical event committee adjudicated the clinical events with blinded fashion
12	about the assigned group. Persistent DAPT discontinuation was defined as discontinuation of
13	either aspirin or P2Y ₁₂ receptor blockers according to the study protocol or discontinuation
14	lasting for >60 days in consistent with our previous studies ^{$15,16$} .
15	

16 Statistical Analysis

17 Categorical variables were presented as number and percentage and were compared

1	with χ^2 test. Continuous variables were expressed as mean +/- standard deviation (SD) or
2	median with interquartile range (IQR) and were compared using the Student t test or Wilcoxon
3	rank-sum test depending on their distributions. The cumulative incidence was estimated with
4	the Kaplan-Meier method and compared with log-rank test. Absolute difference of incidence
5	rate was calculated as the event rate in the 1-month DAPT group minus the event rate in the
6	12-month DAPT group. The hazard ratios (HR) for the endpoint events were calculated by the
7	Cox's proportional hazard model with 95% confidential interval (CI) calculated from Wald's
8	statistics.
9	Because the present study was post-hoc subgroup analysis, we did not make any
10	power calculation for the primary and major secondary endpoints, and all reported P values
11	were 2 tailed. P values <0.05 were considered statistically significant. All analysis was
12	performed with JMP version 14.0 software (SAS Institute Inc., Cary, NC).
13	
14	Results
15	HBR definitions and classification
16	Among the 3009 study patients, there were 1054 patients (35.0%) with HBR
17	(1-month DAPT group: N=496, and 12-month DAPT group: N=558), and 1955 patients 13

1	(65.0%) with non-HBR (1-month DAPT group: N=1004, and 12-month DAPT group:
2	N=951). Patients who met the ARC-HBR major criteria were not commonly found in this
3	randomized trial except for the small proportion patients with severe anemia (8.7%) and
4	end-stage CKD (5.5%), while the ARC-HBR minor criteria were much more prevalent
5	including age >=75 years old (31.5%), moderate CKD (29.4%), and moderate anemia
6	(21.6%) (Supplemental Table 1).
7	Baseline characteristics, and medications
8	When we compared HBR patients with non-HBR patients, patient characteristics
9	were totally different (Table 1). HBR patients were older, more often women, and less often
10	current smokers, and had lower body mass index than non-HBR patients. HBR patients more
11	often presented as stable coronary artery disease, and more often had prior PCI, and prior
12	first-generation DES implantation than non-HBR patients. Besides those included in the
13	ARC-HBR criteria, HBR patients more often had comorbidities such as hypertension,
14	diabetes, heart failure, peripheral artery disease, malignancy, left ventricular dysfunction, and
15	mitral regurgitation than non-HBR patients. HBR patients compared with non-HBR patients
16	more often had intermediate/high PARIS and CREDO-Kyoto thrombotic and bleeding risk
17	scores, as well as high-risk features of stent-driven recurrent ischemia derived from the 2017

京都大学学術情報リボジトリ KURENAI ドレ Kyoto University Research Information Repository

1	ESC focused update on DAPT. Procedural characteristics were also different between HBR
2	and non-HBR patients, with higher prevalence of femoral approach, longer stenting, targets
3	of left main coronary artery and right coronary artery, and multivessel targets in HBR patients.
4	However, the SYNTAX (Synergy between percutaneous coronary intervention with taxus and
5	cardiac surgery) score evaluated in 20 % of randomly selected patients were comparable
6	between HBR and non-HBR patients ¹⁷ . Regarding medications at discharge, HBR patients
7	more often received clopidogrel as the P2Y12 receptor blocker within 1-month than
8	non-HBR patients. Statins were less often prescribed in HBR patients than in non-HBR
9	patients, while the prevalence of proton pump inhibitor use was high and not different
10	between HBR and non-HBR patients (Table 1).
11	Baseline characteristics and medications were well balanced between the 1-month
12	DAPT and 12-month DAPT groups regardless of HBR and non-HBR patients (Supplemental
13	Table 2).
14	In the entire study population, DAPT was actually stopped in 150 patients (10.0%)
15	during the first 30 days, in 752 patients (50.1%) during the first 37 days, in 1090 patients
16	(72.7%) during the first 44 days, in 1286 patients (85.7%) during the first 51 days, and in 1428
17	patients (95.2%) during the first 60 days in the 1-month DAPT group, while DAPT was
	15

1	maintained in 1331 patients (88.2%) for 335 days, and in 848 patients (56.2%) for 365-day in
2	the 12-month DAPT group. The patterns of DAPT discontinuation were similar in HBR and
3	non-HBR patients (Supplemental Figure).
4	Clinical outcomes
5	In HBR patients, the primary endpoint occurred in 17 patients (3.48%) in the
6	1-month DAPT group and in 33 patients (5.98%) in the 12-month DAPT (absolute difference
7	-2.50%, 95%CI -5.06% to 0.06%, HR 0.57, 95%CI 0.32-1.03, P=0.06) (Figure 2a, 3, and
8	Table 2a). In non-HBR patients, the primary endpoint occurred in 18 patients (1.81%) in the
9	1-month DAPT group and in 22 patients (2.36%) in the 12-month DAPT group (absolute
10	difference -0.55%, 95%CI -1.83% to 0.73%, HR 0.78, 95%CI 0.42-1.45, P=0.43) (Figure 2a
11	and Table 2b). There was no significant interaction between HBR/non-HBR subgroups and
12	the effect of 1-month DAPT relative to 12-month DAPT on the primary endpoint (P for
13	interaction=0.48).
14	The major secondary cardiovascular endpoint occurred in 15 patients (3.07%) in
15	the 1-month DAPT group and in 22 patients (4.03%) in the 12-month DAPT group in HBR
16	patients (absolute difference -0.96%, 95%CI -3.21% to 1.29%, HR 0.77, 95%CI 0.40-1.48,
17	P=0.43) (Figure 2b and Table 2a). In non-HBR patients, the major secondary cardiovascular

1	endpoint occurred in 14 patients (1.41%) in 1-month DAPT group and in 15 patients (1.61%)
2	in the 12-month DAPT group (absolute difference -0.20%, 95%CI -1.28% to 0.88%, HR 0.89,
3	95%CI 0.43-1.84, P=0.75) (Figure 2b, 3, and Table 2b). There was no significant interaction
4	between HBR/non-HBR subgroups and the effect of 1-month DAPT relative to 12-month
5	DAPT on the major secondary cardiovascular endpoint (P for interaction=0.77).
6	The rate of the major secondary bleeding endpoint was significantly lower in the
7	1-month DAPT group (2 patients, 0.41%) than in the 12-month DAPT group (15 patients,
8	2.71%) in HBR patients (absolute difference -2.30%, 95%CI -3.77% to -0.83%, HR 0.15,
9	95%CI 0.03-0.65, P=0.01) (Figure 2c and Table 2a). In non-HBR patients, the major
10	secondary bleeding endpoint occurred in 4 patients (0.40%) in the 1-month DAPT group and
11	in 8 patients (0.85%) in the 12-month DAPT group (absolute difference -0.45%, 95%CI
12	-1.16% to 0.26%, HR 0.48, 95%CI 0.14-1.58, P=0.22) (Figure 2c and Table 2b). There was
13	no significant interaction between HBR/non-HBR subgroups and the effect of 1-month
14	DAPT relative to 12-month DAPT on the major secondary bleeding endpoint (P for
15	interaction=0.22). However, the benefit of 1-month DAPT over 12-month DAPT in reducing
16	major bleeding was numerically greater in HBR patients than in non-HBR patients.
17	In HBR patients, intracranial hemorrhage occurred in no patient (0%) in the

1	1-month DAPT group and in 3 patients (0.54%) in the 12-month DAPT group (Figure 3, and
2	Table 2).
3	
4	Discussion
5	The main findings of the present post-hoc subgroup analysis of the STOPDAPT-2
6	trial based on the ARC-HBR criteria were the followings; 1) The effects of 1-month DAPT
7	relative to 12-month DAPT for the primary and major secondary endpoints were consistent in
8	HBR and non-HBR patients without any significant interactions; 2) The benefit of 1-month
9	DAPT over 12-month DAPT in reducing major bleeding was numerically greater in HBR
10	patients than in non-HBR patients.
11	Recently, there is an increasing attention on HBR patients who undergo PCI. HBR
12	patients were often excluded or underrepresented in the randomized trials, and therefore, the
13	optimal antithrombotic management after PCI in HBR patients has not been yet well
14	established. Furthermore, HBR patients had not been well defined, and the definitions of
15	HBR patients were different among the HBR trials ³⁻⁵ . The ARC-HBR has been proposed to
16	standardize the definition of HBR from the literature review and by the consensus of experts ⁷ .
17	In the ARC-HBR initiative, HBR was arbitrarily defined as a BARC 3 or 5 bleeding >=4% at

京都大学学術情報リボジトリ KURENAI にし Kyoto University Research Information Repository

1	1-year or a risk of an intracranial hemorrhage $\geq 1\%$ at 1-year. In the present analysis, the
2	prevalence of ARC-HBR patients were high (35%) even if we excluded those with very high
3	bleeding risk such as those with use of oral anticoagulants and/or history of intracranial
4	hemorrhage. The rate of major bleeding with 12-month DAPT was substantially higher in
5	HBR patients than in non-HBR patients. In HBR patients, 1-month DAPT compared with
6	12-month DAPT was associated with significantly lower risk for major bleeding, and the
7	benefit of 1-month DAPT over 12-month DAPT in reducing major bleeding was numerically
8	greater in HBR patients than in non-HBR patients. Therefore, 1-month DAPT is an attractive
9	DAPT regimen particularly in HBR patients. In the previous HBR trials, the 1-year rates of
10	major bleeding remained high even with the abbreviated DAPT regimen (LEADERS FREE:
11	7.2%, ZEUS: 3.5-5%, and SENIOR: 3-4%) ³⁻⁵ , while the 1-year rate of major bleeding with
12	1-month DAPT in HBR patients was extremely low (0.41%) in the present study. In the
13	previous HBR trials, aspirin monotherapy was generally used after stopping DAPT. One of
14	the reasons for this very low rate of major bleeding in the present study might be related to
15	the use of clopidogrel monotherapy ^{18,19} . However, we did not test aspirin monotherapy after
16	stopping DAPT at 1-month. Further research would be important to define the optimal
17	antiplatelet monotherapy after stopping DAPT in HBR patients.

京都大学学術情報リボジトリ KURENAI ドレ Kyoto University Research Information Repository

1	One of the most important issues related to the adoption of very short DAPT
2	duration in HBR patients would be whether it might result in an increase in the
3	cardiovascular events. It is well known that HBR patients also have higher risk for ischemic
4	cardiovascular events ¹⁰ . Indeed, more than 70% of HBR patients in this study also had
5	high-risk features of stent-driven recurrent ischemia defined in the ESC focused update of
6	DAPT guideline ² . However, in the present study, 1-month DAPT in HBR patients was not
7	associated with an increase in cardiovascular event rates, but was associated with a numerical
8	decrease in cardiovascular event rates. Despite the positive results in the STOPDAPT-2 trial,
9	1-month DAPT has not been yet the generally accepted regimen after PCI using DES.
10	Nevertheless, 1-month DAPT followed by clopidogrel monotherapy would be an important
11	option in patients with very high bleeding risk, considering the substantial mortality impact
12	and iatrogenic nature of the bleeding events ^{20,21} .
13	There are several important limitations in current analysis. First, the majority of
14	patients enrolled in the STOPDAPT-2 trial had low/intermediate ischemic risk. The benefit of
15	very short DAPT should be confirmed in other populations such as patients with acute
16	coronary syndrome or with complex coronary artery disease. Furthermore, the STOPDAPT-2
17	trial enrolled those patients who did not have procedural complications, leading to

1	underestimation of the rate of major bleeding at 1-year. Second, the present post-hoc
2	subgroup analysis related to HBR/non-HBR patients was totally underpowered and
3	exploratory. Therefore, the favorable results of 1-month DAPT in HBR patients should be
4	regarded as hypothesis generating. Third, there were some uncaptured data for ARC-HBR
5	criteria. Fourth, it is well known that Japanese patients with coronary artery disease had lower
6	ischemic risk as compared with US/European patients ²²⁻²⁴ . In addition, the vast majority of
7	patients in this study underwent PCI guided by intracoronary imaging devices, which were
8	rarely used in US and Europe. Therefore, we should be cautious about extrapolating the current
9	study results outside Japan.
10	
11	Conclusion
12	In this post-hoc subgroup analysis of the STOPDAPT-2 trial based on the
13	ARC-HBR criteria, the effects of 1-month DAPT relative to 12-month DAPT for the primary
14	and major secondary endpoints were consistent in HBR and non-HBR patients without any
15	significant interactions. The benefit of 1-month DAPT over 12-month DAPT in reducing
16	major bleeding was numerically greater in HBR patients than in non-HBR patients.
17	

1 Acknowledgements

2	We appreciate the members of Research Institute for Production Development handling a
3	series of large clinical trials and the co-investigators for exaggeratedly enrolling patients,
4	collecting follow-up data, or adjudicating clinical events.
5	Funding
6	STOPDAPT-2 was funded by Abbott Vascular Japan. The study sponsor is not involved in
7	the implementation of the study, data collection, event fixation and statistical analysis.
8	However, approval of the study sponsor should be obtained for presentation in scientific
9	meetings and submission of papers.
10	Conflict of interests
11	Koichi Nakao has received a speaker honorarium from Sanofi and Daiichi-Sankyo. Kenji Ando
12	has received a speaker honorarium from Japan Lifeline, Medtronic Japan, Terumo, and
13	Biotronik Japan. Kengo Tanabe has received a speaker honorarium from Kaneka Medix. Yuji
14	Ikari received a research grant from Abbott Vascular Japan. Yoshihisa Nakagawa has received
15	a speaker honorarium from Daiichi-Sankyo, Bayer Yakuhin, and Bristol-Myers Squibb.
16	Takeshi Kimura serves as a advisory role to Abbott Vascular japan and received a research

1 grant from Daiichi-Sankyo. Others have no conflict of interest

- _
- 3

京都大学学術情報リポジトリ KURENAI よし Kyoto University Research Information Repository

1 References

2	1.	Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, et al. 2016
3		ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in
4		Patients With Coronary Artery Disease: A Report of the American College of
5		Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: An
6		Update of the. Circulation. 2016;134:e123-55.
7	2.	Valgimigli M, Bueno H, Byrne RA, Collet J-P, Costa F, Jeppsson A, et al. 2017 ESC
8		focused update on dual antiplatelet therapy in coronary artery disease developed in
9		collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary
10		artery disease of the European Society of Cardiology (ESC) and of the European. Eur
11		Heart J. 2018;39:213–260.
12	3.	Urban P, Meredith IT, Abizaid A, Pocock SJ, Carrié D, Naber C, et al. Polymer-free
13		Drug-Coated Coronary Stents in Patients at High Bleeding Risk. N Engl J Med.
14		2015;373:2038–47.
15	4.	Valgimigli M, Patialiakas A, Thury A, McFadden E, Colangelo S, Campo G, et al.
16		Zotarolimus-eluting versus bare-metal stents in uncertain drug-eluting stent candidates.
17		J Am Coll Cardiol. 2015;65:805–815.

1	5.	Varenne O, Cook S, Sideris G, Kedev S, Cuisset T, Carrié D, et al. Drug-eluting stents
2		in elderly patients with coronary artery disease (SENIOR): A randomised single-blind
3		trial. Lancet. 2018;391(10115):41–50.
4	6.	Watanabe H, Domei T, Morimoto T, Natsuaki M, Shiomi H, Toyota T, et al. Effect of
5		1-Month Dual Antiplatelet Therapy Followed by Clopidogrel vs 12-Month Dual
6		Antiplatelet Therapy on Cardiovascular and Bleeding Events in Patients Receiving PCI:
7		The STOPDAPT-2 Randomized Clinical Trial. JAMA. 2019;321:2414–2427.
8	7.	Urban P, Mehran R, Colleran R, Angiolillo DJ, Byrne RA, Capodanno D, et al.
9		Defining High Bleeding Risk in Patients Undergoing Percutaneous Coronary
10		Intervention. Circulation. 2019;140:240–261.
11	8.	Watanabe H, Domei T, Morimoto T, Natsuaki M, Shiomi H, Toyota T, et al. Very Short
12		Dual Antiplatelet Therapy after Drug-eluting Stent Implantation in Patients with High
13		Bleeding Risk: Insight from the STOPDAPT-2 Trial. Circulation. 2019 in press. doi:
14		10.1161/CIRCULATIONAHA.119.043613.
15	9.	Baber U, Mehran R, Giustino G, Cohen DJ, Henry TD, Sartori S, et al. Coronary
16		Thrombosis and Major Bleeding after PCI with Drug-Eluting Stents Risk Scores from
17		Paris. J Am Coll Cardiol. 2016;67:2224–2234.

1	10.	Natsuaki M, Morimoto T, Yamaji K, Watanabe H, Yoshikawa Y, Shiomi H, et al.
2		Prediction of Thrombotic and Bleeding Events After Percutaneous Coronary
3		Intervention: CREDO-Kyoto Thrombotic and Bleeding Risk Scores. J Am Heart Assoc.
4		2018;7:e008708.
5	11.	Rao AK, Pratt C, Berke A, Jaffe A, Ockene I, Schreiber TL, et al. Thrombolysis in
6		myocardial infarction (TIMI) trial-Phase I: Hemorrhagic manifestations and changes in
7		plasma fibrinogen and the fibrinolytic system in patients treated with recombinant
8		tissue plasminogen activator and streptokinase. J Am Coll Cardiol. 1988;11:1–11.
9	12.	Mehran R, Rao S V., Bhatt DL, Gibson CM, Caixeta A, Eikelboom J, et al.
10		Standardized bleeding definitions for cardiovascular clinical trials: A consensus report
11		from the bleeding academic research consortium. Circulation. 2011;123:2736–2747.
12	13.	The GUSTO investigators. An international randomized trial comparing four
13		thrombolytic strategies for acute myocardial infarction. N Engl J Med. 1993;329:673-
14		82.
15	14.	Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ, Van Es GA, et al. Clinical end
16		points in coronary stent trials: A case for standardized definitions. Circulation.
17		2007;115:2344–2351.

京都大学学術情報リボジトリ KURENAI ドレ Kyoto University Research Information Repository

1	15.	Kimura T, Morimoto T, Nakagawa Y, Tamura T, Kadota K, Yasumoto H, et al.
2		Antiplatelet therapy and stent thrombosis after sirolimus-eluting stent implantation.
3		Circulation. 2009;119:987–995.
4	16.	Kimura T, Morimoto T, Furukawa Y, Nakagawa Y, Kadota K, Iwabuchi M, et al.
5		Long-term safety and efficacy of sirolimus-eluting stents versus bare-metal stents in
6		real world clinical practice in Japan. Cardiovasc Interv Ther. 2011;26:234–245.
7	17.	Sianos G, Morel M-A, Kappetein AP, Morice M-C, Colombo A, Dawkins K, et al. The
8		SYNTAX Score: an angiographic tool grading the complexity of coronary artery
9		disease. EuroIntervention. 2005;1:219-227.
10	18.	CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin
11		in patients at risk of ischaemic events (CAPRIE). Lancet. 1996;348:1329-39.
12	19.	Capodanno D, Mehran R, Valgimigli M, Baber U, Windecker S, Vranckx P, et al.
13		Aspirin-free strategies in cardiovascular disease and cardioembolic stroke prevention.
14		Nat Rev Cardiol. 2018;15:480–496.
15	20.	Généreux P, Giustino G, Witzenbichler B, Weisz G, Stuckey TD, Rinaldi MJ, et al.
16		Incidence, Predictors, and Impact of Post-Discharge Bleeding After Percutaneous
17		Coronary Intervention. J Am Coll Cardiol. 2015;66:1036-45.

1	21.	Valgimigli M, Costa F, Lokhnygina Y, Clare RM, Wallentin L, Moliterno DJ, et al.
2		Trade-off of myocardial infarction vs. bleeding types on mortality after acute coronary
3		syndrome: Lessons from the Thrombin Receptor Antagonist for Clinical Event
4		Reduction in Acute Coronary Syndrome (TRACER) randomized trial. Eur Heart J.
5		2017;38:804–810.
6	22.	Taguchi I, Iimuro S, Iwata H, Takashima H, Abe M, Amiya E, et al. High-Dose Versus
7		Low-Dose Pitavastatin in Japanese Patients With Stable Coronary Artery Disease
8		(REAL-CAD). Circulation. 2018;137:1997–2009.
9	23.	LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart J-C, et al. Intensive
10		Lipid Lowering with Atorvastatin in Patients with Stable Coronary Disease. N Engl J
11		Med. 2005;352:1425–1435.
12	24.	Onuma Y, Kimura T, Räber L, Magro M, Girasis C, Van Domburg R, et al. Differences
13		in coronary risk factors, procedural characteristics, mortality and stent thrombosis
14		between two all-comers percutaneous coronary intervention registries from Europe and
15		Japan: A patient-level data analysis of the Bern-Rotterdam and j-Cypher.
16		EuroIntervention. 2015;11:533–540.

1 Figure legends

2 Figure 1. Study flow

- 3 HBR is defined by ARC-HBR definition.
- 4 ARC=Academic Research Consortium, DAPT=dual antiplatelet therapy, and HBR=high
- 5 bleeding risk.
- 6
- 7 Figure 2. Clinical Outcomes at 1-year stratified by HBR and non-HBR: 1-momth

8 versus 12-month DAPT

- 9 Time-to-event curves up to 1-year for (a) primary endpoint, (b) major secondary
- 10 cardiovascular endpoint, and (c) major secondary bleeding endpoint stratified by HBR and

11 non-HBR.

- 12 CI=confidence interval, HBR=high bleeding risk, HR=hazard ratio, MI=myocardial
- 13 infarction, PCI=percutaneous coronary intervention, and TIMI=Thrombolysis in Myocardial
- 14 Infarction.
- 15

16 Figure 3. Bleeding sites in HBR patients and non-HBR patients

17 Cumulative 1-year incidences of TIMI major or minor bleeding, and its breakdown classified

- 1 by the bleeding sites in HBR patients and non-HBR patients.
- 2 DAPT=dual antiplatelet therapy, GI=gastrointestinal, HBR=high bleeding risk,
- 3 ICH=intracranial hemorrhage, and TIMI=Thrombolysis in Myocardial Infarction.

Tables

Table 1. Background differences between HBR patients and non-HBR patients

	HBR	Non-HBR	Daalaa
	N=1054	N=1955	P value
Base background			
Age, years	75.8±8.6	64.8±9.7	<0.001
>=75	708 (67.2)	239 (12.2)	<0.001
Men	736 (69.8)	1601 (81.9)	<0.001
BMI, kg/m ²	23.5±3.5	24.7±3.5	<0.001
<25	721 (68.4)	1094 (56.0)	< 0.001
Presentation			
Acute coronary syndrome	310 (29.4)	838 (42.9)	<0.001
STEMI	139 (13.2)	422 (21.6)	<0.001
NSTEMI	41 (3.9)	139 (7.1)	<0.001
Unstable angina	130 (12.3)	277 (14.2)	0.16
Stable coronary artery disease	744 (70.6)	1117 (57.1)	<0.001

Past history

Prior PCI	464 (44.0)	568 (29.1)	<0.001
Prior first-generation DES	60 (5.7)	52 (2.7)	<0.001
Prior CABG	35 (3.3)	24 (1.2)	<0.001
Prior myocardial infarction	164 (15.6)	242 (12.4)	0.016
Prior stroke	149 (14.1)	37 (1.9)	< 0.001
Prior ischemic stroke			
Prior hemorrhagic stroke	8 (0.8)	0 (0)	<0.001
Prior bleeding	42 (4.0)	5 (0.3)	<0.001
Congestive heart failure	141 (13.4)	81 (4.1)	<0.001
Atrial fibrillation	33 (3.1)	24 (1.2)	<0.001
Severe anemia	263 (25.0)	0 (0)	< 0.001
Thrombocytopenia	31 (2.9)	0 (0)	<0.001
COPD	41 (3.9)	43 (2.2)	0.009
Liver cirrhosis	10 (1.0)	0 (0)	<0.001
Malignancy	147 (14.0)	109 (5.6)	<0.001

A Self-archived copy in Kyoto University Research Information Repository https://repository.kulib.kyoto-u.ac.jp 京都大学学術情報リボジトリ KURENAI にし Kyoto University Research Information Repository

Peripheral artery disease	134 (12.7)	62 (3.2)	< 0.001
Moderate CKD	595 (56.5)	288 (14.7)	< 0.001
Severe CKD	166 (15.8)	0 (0)	<0.001
eGFR<30 and not on dialysis	64 (6.1)	0 (0)	<0.001
Dialysis	102 (9.7)	0 (0)	<0.001
Hypertension	855 (81.1)	1366 (69.9)	<0.001
Dyslipidemia	765 (72.6)	1479 (75.7)	0.07
Diabetes mellitus	466 (44.2)	693 (35.5)	<0.001
Insulin-treated	95 (9.0)	107 (5.5)	<0.001
Current smoking	145 (13.8)	565 (28.9)	<0.001
Left ventricular ejection fraction	58.7±10.9	60.3±10.0	<0.001
<40%	55 (5.7)	60 (3.3)	0.004
Mitral regurgitation with grade 3/4	43 (4.1)	32 (1.6)	<0.001
PARIS thrombotic risk score	3.4±1.6	2.2±1.5	<0.001
Low	328 (31.1)	1159 (59.3)	<0.001
Intermediate	430 (40.8)	666 (34.1)	

A Self-archived copy in Kyoto University Research Information Repository https://repository.kulib.kyoto-u.ac.jp

High	296 (28.1)	130 (6.7)	
PARIS bleeding risk score	7.3±2.4	4.1±1.9	<0.001
Low	83 (7.9)	775 (39.6)	< 0.001
Intermediate	468 (44.4)	1090 (55.8)	
High	503 (47.7)	90 (4.6)	
CREDO-Kyoto thrombotic risk score	2.4±1.7	0.6±0.8	<0.001
Low	380 (36.1)	1718 (87.9)	<0.001
Intermediate	447 (42.4)	229 (11.7)	
High	227 (21.5)	8 (0.4)	
CREDO-Kyoto bleeding risk score	1.2±1.5	0.3±0.7	<0.001
Low	497 (47.2)	1495 (76.5)	<0.001
Intermediate	381 (36.2)	418 (21.4)	
High	176 (16.7)	42 (2.2)	
High-risk features of stent-driven	<u>807 (7(()</u>	496 (24.0)	<0.001
recurrent ischemia †	807 (76.6)	486 (24.9)	<0.001

Procedural background

Invasive FFR	162 (15.4)	253 (12.9)	0.07
Radial approach	785 (74.5)	1711 (87.5)	<0.001
Brachial approach	96 (9.1)	64 (3.3)	<0.001
Femoral approach	179 (17.0)	203 (10.4)	<0.001
Number of lesions	1.11±0.36	1.15±0.40	0.01
SYNTAX scores*	10.2±6.6	10.4±7.1	0.75
Minimal stent diameter, mm	2.96±0.47	2.98±0.49	0.23
<3.0	445 (42.2)	792 (40.5)	0.36
Total stent length, mm	31.6±17.7	29.7±16.2	0.003
>=28	574 (54.5)	955 (48.9)	0.003
Target vessel			
LMCA	44 (4.2)	36 (1.8)	<0.001
LAD	546 (51.8)	1136 (58.1)	0.001
СХ	195 (18.5)	378 (19.3)	0.58
RCA	342 (32.5)	504 (25.8)	<0.001
Graft	5 (0.5)	1 (0.1)	0.01

Target of CTO	38 (3.6)	84 (4.3)	0.35
Target of bifurcation	283 (26.9)	486 (24.9)	0.23
Bifurcation with 2 stents	7 (0.7)	7 (0.4)	0.25
Target of 2 vessels or more	98 (9.3)	118 (6.0)	0.001
Target of 3 vessels	5 (0.5)	6 (0.3)	0.48
Use of intravascular ultrasound	907 (86.1)	1649 (84.4)	0.21
Use of optical coherence tomography	141 (13.4)	302 (15.5)	0.12
Medication at discharge			
Aspirin	1051 (99.7)	1955 (100)	0.01
P2Y12 receptor blockers	1053 (99.9)	1954 (99.95)	0.66
Clopidogrel	713 (67.7)	1139 (58.3)	<0.001
Prasugrel	337 (32.0)	814 (41.6)	<0.001
Ticlopidine	3 (0.3)	1 (0.1)	0.1
Cilostazol	3 (0.3)	3 (0.2)	0.45
Oral anticoagulants	13 (1.2)	0 (0)	<0.001
Beta blockers	464 (44.0)	851 (43.5)	0.79

ACE inhibitors or ARB	668 (63.4)	1205 (61.6)	0.35
Statins	853 (80.9)	1782 (91.2)	<0.001
Proton pump inhibitors	818 (77.6)	1565 (80.1)	0.12

Values are means \pm SD or number (%). ACE=angiotensin converting enzyme,

ARB=angiotensin 2 receptor blockers, BMI=body mass index, CABG=coronary artery bypass grafting, CKD=chronic kidney disease, COPD=chronic obstructive pulmonary disease, CREDO-Kyoto=Coronary REvascularization Demonstrating Outcome study in Kyoto, CTO=chronic total occlusion, CX= left circumflex coronary artery, DAPT=dual antiplatelet therapy, DES=drug eluting stents, eGFR=estimated glomerular filtration rate, FFR=fractional flow reserve, HBR=high bleeding risk, LAD=left anterior descending coronary artery, LMCA=left main coronary artery, NSTEMI=Non ST-segment elevation myocardial infarction, PARIS=Patterns of Non- Adherence to Anti-Platelet Regimen in Stented Patients, PCI=percutaneous coronary intervention, RCA=right coronary artery, SD=standard deviation, STEMI=ST-segment elevation myocardial infarction, and SYNTAX=Synergy Between Percutaneous Coronary Intervention With Taxus. *SYNTAX scores were calculated at core laboratory of angiogram for randomly selected 571 patients.

† High-risk features of stent-driven recurrent ischemia were derived from 2017 ESC

focused update of on $DAPT^2$.

Table 2. Clinical outcomes stratified by HBR and non-HBR

(a) HBR stratum

	No. (ev	vent %)		
	1M-DAPT 12M-DAPT		Hazard ratio (95% CI)	P value
	(N=496)	(N=558)	(5570 CI)	
Primary endpoint				
Cardiovascular death, MI, Definite				
ST, Stroke, or TIMI major or minor	17 (3.48%)	33 (5.98%)	0.57 (0.32-1.03)	0.06
bleeding				
Major secondary endpoints				
Cardiovascular death, MI, Definite	15 (2.070/)	22 (4.029/)	0.77 (0.40.1.48)	0.43
ST, or Stroke	15 (3.07%)	22 (4.03%)	0.77 (0.40-1.48)	0.45
TIMI major or minor bleeding	2 (0.41%)	15 (2.71%)	0.15 (0.03-0.65)	0.01
Other endpoints				
Death	13 (2.67%)	12 (2.16%)	1.22 (0.56-2.67)	0.62

Cardiac death	5 (1.02%)	6 (1.09%)	0.94 (0.29-3.08)	0.92
Cardiovascular death	5 (1.02%)	8 (1.44%)	0.70 (0.23-2.15)	0.54
Non-cardiovascular death	8 (1.66%)	4 (0.73%)	2.25 (0.68-7.48)	0.18
MI	6 (1.24%)	3 (0.55%)	2.25 (0.56-9.01)	0.25
Large MI (CKMB>=10*ULN)	1 (0.21%)	0 (0.00%)	-	-
Small MI (CKMB<10*ULN)	5 (1.04%)	2 (0.36%)	2.82 (0.55-14.52)	0.22
MI without CKMB elevation	0 (0.00%)	1 (0.18%)	-	-
MI without measurement of CKMB	0 (0.00%)	0 (0.00%)	-	-
Definite ST	0 (0.00%)	0 (0.00%)	-	-
Definite or Probable ST	1 (0.20%)	0 (0.00%)	-	-
Stroke	5 (1.03%)	12 (2.24%)	0.47 (0.16-1.33)	0.15
Ischemic	5 (1.03%)	11 (2.07%)	0.51 (0.18-1.47)	0.21
Hemorrhagic	0 (0.00%)	1 (0.18%)	-	-
Bleeding				
TIMI major	0 (0.00%)	10 (1.81%)	-	-
TIMI minor	2 (0.41%)	5 (0.91%)	0.45 (0.09-2.31)	0.34

BARC 3 or 5	3 (0.61%)	18 (3.26%)	0.19 (0.05-0.63)	0.007
BARC 5	1 (0.20%)	3 (0.54%)	0.38 (0.04-3.61)	0.4
BARC 5b	1 (0.20%)	2 (0.36%)	0.56 (0.05-6.21)	0.64
BARC 5a	0 (0.00%)	1 (0.18%)	-	-
BARC 3	2 (0.41%)	15 (2.72%)	0.15 (0.03-0.65)	0.01
BARC 3c	0 (0.00%)	2 (0.37%)	-	-
BARC 3b	0 (0.00%)	7 (1.27%)	-	-
BARC 3a	2 (0.41%)	7 (1.27%)	0.32 (0.07-1.54)	0.16
GUSTO moderate/severe	2 (0.41%)	15 (2.72%)	0.15 (0.03-0.65)	0.01
GUSTO severe	1 (0.20%)	7 (1.27%)	0.16 (0.02-1.30)	0.09
GUSTO moderate	1 (0.20%)	8 (1.45%)	0.14 (0.02-1.12)	0.06
Intracranial bleeding	0 (0.00%)	3 (0.54%)	-	-
Gastrointestinal bleeding	3 (0.61%)	13 (2.35%)	0.26 (0.07-0.90)	0.03
Revascularization	41 (8.58%)	38 (7.10%)	1.21 (0.78-1.89)	0.39
TLR	15 (3.10%)	10 (1.88%)	1.70 (0.76-3.78)	0.19
CD-TLR	10 (2.07%)	7 (1.32%)	1.61 (0.61-4.23)	0.33

Non-TLR	30 (6.31%)	30 (5.59%)	1.12 (0.68-1.86)	0.65
CABG	2 (0.44%)	2 (0.37%)	1.13 (0.16-8.01)	0.9
Death or MI	17 (3.48%)	15 (2.70%)	1.28 (0.64-2.56)	0.49
Cardiovascular death or MI	10 (2.05%)	11 (1.99%)	1.02 (0.43-2.41)	0.96
MACE (Cardiac death, MI, or	15 (3.08%)	14 (2.58%)	1.21 (0.58-2.50)	0.61
CD-TLR)				

(b) Non-HBR stratum

	1M-DAPT	12M-DAPT	Hazard ratio	
Patients without HBR	(N=956)	(N=956) (N=890)		P Value
Primary endpoint				
Cardiovascular death, MI,				
Definite ST, Stroke, or TIMI	18 (1.81%)	22 (2.36%)	0.78 (0.42-1.45)	0.43
major or minor bleeding				
Major secondary endpoints				
Cardiovascular death, MI,	14 (1.41%)	15 (1.61%)	0.89 (0.43-1.84)	0.75

Definite ST, or Stroke

TIMI major or minor bleeding	4 (0.40%)	8 (0.85%)	0.48 (0.14-1.58)	0.22
Other endpoints				
Death	8 (0.81%)	6 (0.64%)	1.27 (0.44-3.66)	0.66
Cardiac death	3 (0.30%)	2 (0.22%)	1.43 (0.24-8.54)	0.7
Cardiovascular death	4 (0.40%)	3 (0.32%)	1.27 (0.28-5.67)	0.75
Non-cardiovascular death	4 (0.40%)	3 (0.32%)	1.27 (0.28-5.68)	0.75
MI	7 (0.71%)	8 (0.87%)	0.83 (0.30-2.30)	0.72
Large MI (CKMB>=10*ULN)	4 (0.41%)	2 (0.21%)	1.90 (0.35-10.39)	0.46
Small MI (CKMB<10*ULN)	2 (0.20%)	3 (0.33%)	0.63 (0.11-3.80)	0.62
MI without CKMB elevation	1 (0.10%)	1 (0.11%)	0.96 (0.06-15.28)	0.97
MI without measurement of	0 (0 000()	2 (0.210/)		
СКМВ	0 (0.00%)	2 (0.21%)	-	-
Definite ST	2 (0.20%)	1 (0.11%)	1.90 (0.17-20.97)	0.6
Definite or Probable ST	3 (0.30%)	1 (0.11%)	2.85 (0.30-27.39)	0.36
Stroke	3 (0.30%)	4 (0.42%)	0.71 (0.16-3.18)	0.66

Ischemic

4 (0.42%)

3 (0.30%)

0.71 (0.16-3.18)

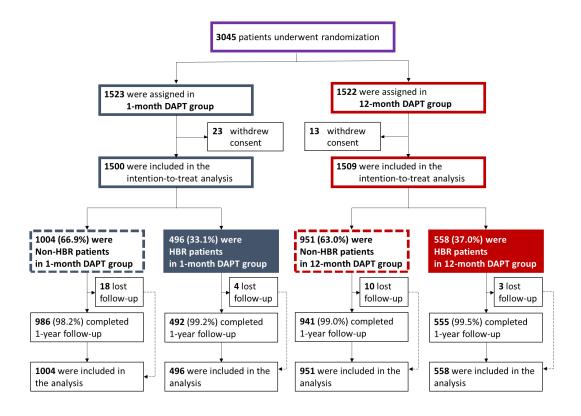
0.66

isenenne	5 (0.5070)	1 (0.1270)	0.71 (0.10 5.10)	0.00
Hemorrhagic	0 (0.00%)	0 (0.00%)	-	-
Bleeding				
TIMI major	3 (0.30%)	6 (0.64%)	0.48 (0.12-1.90)	0.29
TIMI minor	1 (0.10%)	2 (0.21%)	0.48 (0.04-5.24)	0.54
BARC 3 or 5	5 (0.50%)	9 (0.96%)	0.53 (0.18-1.57)	0.25
BARC 5	0 (0.00%)	0 (0.00%)	-	-
BARC 5b	0 (0.00%)	0 (0.00%)	-	-
BARC 5a	0 (0.00%)	0 (0.00%)	-	-
BARC 3	5 (0.50%)	9 (0.96%)	0.53 (0.18-1.57)	0.25
BARC 3c	2 (0.20%)	2 (0.21%)	0.95 (0.13-6.76)	0.96
BARC 3b	1 (0.10%)	4 (0.42%)	0.24 (0.03-2.12)	0.2
BARC 3a	2 (0.20%)	3 (0.32%)	0.63 (0.11-3.79)	0.62
GUSTO moderate/severe	4 (0.40%)	8 (0.85%)	0.48 (0.14-1.58)	0.22
GUSTO severe	3 (0.30%)	4 (0.43%)	0.71 (0.16-3.19)	0.66
GUSTO moderate	1 (0.10%)	4 (0.42%)	0.24 (0.03-2.12)	0.2

京都大	学学神	情報	リボシ	トリ	5
ΚL	JR	RE	N.	ΑI	紅
					Repository

Intracranial bleeding	2 (0.20%)	2 (0.21%)	0.95 (0.13-6.76)	0.96
Gastrointestinal bleeding	3 (0.30%)	6 (0.64%)	0.47 (0.12-1.90)	0.29
Revascularization	57 (5.87%)	38 (4.18%)	1.45 (0.96-2.18)	0.08
TLR	20 (2.03%)	13 (1.43%)	1.48 (0.73-2.97)	0.27
CD-TLR	16 (1.62%)	12 (1.32%)	1.28 (0.60-2.70)	0.52
Non-TLR	41 (4.24%)	30 (3.28%)	1.31 (0.82-2.10)	0.26
CABG	4 (0.41%)	3 (0.32%)	1.27 (0.28-5.68)	0.75
Death or MI	15 (1.51%)	14 (1.51%)	1.02 (0.49-2.11)	0.96
Cardiovascular death or MI	11 (1.11%)	11 (1.19%)	0.95 (0.41-2.20)	0.91
MACE (Cardiac death, MI, or	23 (2.32%)	18 (1.97%)	1.22 (0.66-2.27)	0.52
CD-TLR)	23 (2.3270)	10 (1.7770)	1.22 (0.00-2.27)	0.32

BARC=the Bleeding Academic Research Consortium, CABG=Coronary Artery Bypass Grafting, CD-TLR=Clinically-driven Target Lesion Revascularization, CKMB=Creatine Kinase-MB, DAPT=Dual Antiplatelet Therapy, GUSTO=Global Utilization of Streptokinase and TPA For Occluded Arteries, HBR= High bleeding risk, MACE=Major Adverse Cardiac Event, MI=Myocardial Infarction, ST=Stent thrombosis, TIMI=Thrombolysis in Myocardial



Infarction, TLR=Target Lesion Revascularization, and ULN=Upper limit of Normal.

Figures.

Figure 1.

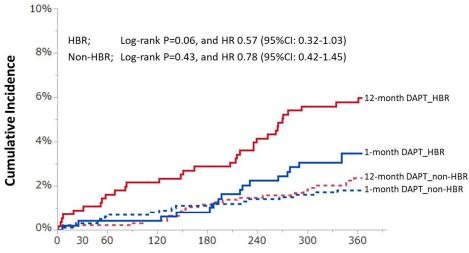


Figure 2.

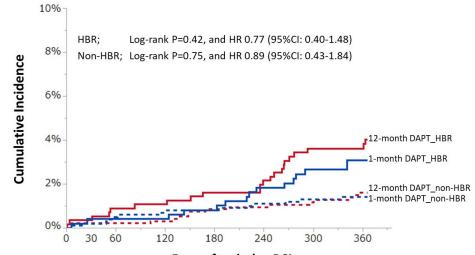
UPD notionto

(a)

Primary endpoint (A composite of cardiovascular death, MI, definite stent thrombosis, stroke, or TIMI major or minor bleeding)

Days after index PCI

0							
0	30	60	120	180	240	300	365
	5	9	12	16	23	31	33
558	553	546	543	538	530	521	424
	0.9	1.6	2.2	2.9	4.1	5.6	6.0
0	30	60	120	180	240	300	365
	2	2	2	4	11	15	17
496	493	490	488	486	478	471	385
	0.4	0.4	0.4	0.8	2.2	3.1	3.5
	558	558 553 0.9 30 2 496 493	5 9 558 553 546 0.9 1.6 0 30 60 2 2 496 493 490	5 9 12 558 553 546 543 0.9 1.6 2.2 0 30 60 120 2 2 2 2 496 493 490 488	5 9 12 16 558 553 546 543 538 0.9 1.6 2.2 2.9 0 30 60 120 180 2 2 2 4 496 493 490 488 486	5 9 12 16 23 558 553 546 543 538 530 0.9 1.6 2.2 2.9 4.1 0 30 60 120 180 240 2 2 2 4 11 496 493 490 488 486 478	5 9 12 16 23 31 558 553 546 543 538 530 521 0.9 1.6 2.2 2.9 4.1 5.6 0 30 60 120 180 240 300 2 2 2 4 11 15 496 493 490 488 486 478 471


Non-HBR patients								
12-month DAPT	0	30	60	120	180	240	300	365
Number of patients with event		2	2	4	11	14	18	22
Number of patients at risk	951	948	940	938	931	928	921	735
Cumulative incidence (%)		0.2	0.2	0.4	1.2	1.5	1.9	2.4
1-month DAPT	0	30	60	120	180	240	300	365
Number of patients with event		3	6	8	11	14	16	18
Number of patients at risk	1004	1001	989	987	982	975	970	766
Cumulative incidence (%)		0.3	0.6	0.8	1.1	1.4	1.6	1.8

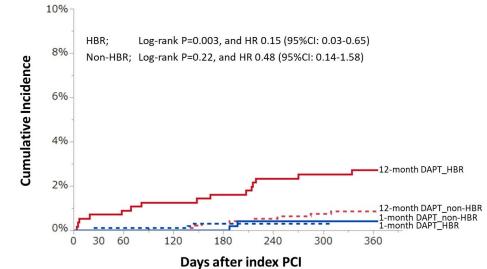
京都大学学術情報リボジトリ KURENAI に Kutha Laburath Research Information Repository

(b)

Major Secondary Cardiovascular Endpoint (A composite of cardiovascular death, MI, definite stent thrombosis, or stroke)

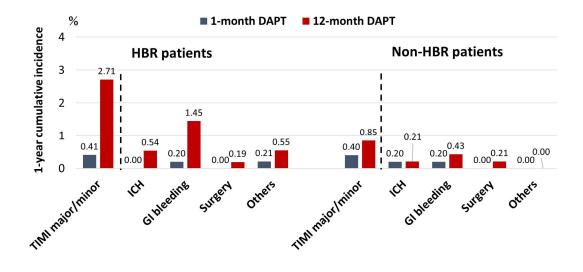
Days after index PCI

HBR patients	Days after index PCI								
12-month DAPT	0	30	60	120	180	240	300	365	
Number of patients with event		2	5	6	9	12	20	22	
Number of patients at risk	558	556	550	549	545	540	531	431	
Cumulative incidence (%)		0.4	0.9	1.1	1.6	2.2	3.6	4.0	
1-month DAPT	0	30	60	120	180	240	300	365	
Number of patients with event		2	2	2	4	9	13	15	
Number of patients at risk	496	493	490	488	486	480	473	387	
Cumulative incidence (%)		0.4	0.4	0.4	0.8	1.8	2.7	3.1	


12-month DAPT	0	30	60	120	180	240	300	365
Number of patients with event		2	2	3	8	9	12	15
Number of patients at risk	951	948	940	939	934	933	927	741
Cumulative incidence (%)		0.2	0.2	0.3	0.9	1.0	1.3	1.6
1-month DAPT	0	30	60	120	180	240	300	365
Number of patients with event		2	5	7	8	11	13	14
Number of patients at risk	1004	1002	990	988	985	978	973	770
Cumulative incidence (%)		0.2	0.5	0.7	0.8	1.1	1.3	1.4

(c)

Major Secondary Bleeding Endpoint (TIMI major or minor bleeding)



HBR patients n Number of patients with event Number of patients at risk Cumulative incidence (%) 1-month DAPT 0.7 0.9 1.3 1.6 2.4 2.5 2.7 365 Number of patients with event Number of patients at risk 0.0 Cumulative incidence (%) 0.0 0.0 0.0 0.4 0.4 0.4 Non-HBR patients

non non patiente								
12-month DAPT	0	30	60	120	180	240	300	365
Number of patients with event		0	0	1	3	5	7	8
Number of patients at risk	951	950	942	941	938	935	930	744
Cumulative incidence (%)		0.0	0.0	0.1	0.3	0.5	0.7	0.9
1-month DAPT	0	30	60	120	180	240	300	365
Number of patients with event		1	1	1	3	3	3	4
Number of patients at risk	1004	1001	992	992	988	984	978	773
Cumulative incidence (%)		0.1	0.1	0.1	0.3	0.3	0.3	0.4

Figure 3.

