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Abstract

We consider a gravitational perturbation of the Jackiw-Teitelboim (JT) gravity with an arbitrary dilaton 
potential and study the condition under which the quadratic action can be seen as a T T̄ -deformation of 
the matter action. As a special case, the flat-space JT gravity discussed by Dubovsky et al. [arXiv :1706 .
06604] is included. Another interesting example is a hyperbolic dilaton potential. This case is equivalent to 
a classical Liouville gravity with a negative cosmological constant and then a T T̄ -deformation of the matter 
action with a finite coupling is realized as a gravitational perturbation on AdS2.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

An intriguing subject is to understand T T̄ -deformations of 2D quantum field theory (QFT). 

An infinitesimal T T̄ -deformation is triggered by a composite operator α det
(
T

[0]
μν

)
, where T [0]

μν is 
the energy-momentum tensor of the original system and α is a constant parameter of dimension 
(length)2. Hence this is an irrelevant perturbation of QFT. It has been elucidated in a seminal 
paper by Sasha Zamolodchikov [1] that this determinant operator is well-defined in two di-
mensions and the expectation values of the operator for the arbitrary (non-degenerate) energy 
eigenstates exhibit the factorization property under some basic assumptions. The finite-version 
of T T̄ -deformation is described by the following T T̄ -flow equation [2,3]1:

dL[α]

dα
= −1

4
det
(
T [α]

μν

)
. (1.1)

Note here the energy-momentum tensor is for the deformed Lagrangian L[α]. For a nice review 
on the T T̄ -deformation, see [5].

Another interesting aspect of T T̄ -deformation is an intimate connection to a 2D dilaton grav-
ity (which is often called the Jackiw-Teitelboim (JT) gravity [6,7]2). In the work by Dubovsky et 
al. [10], it has been shown that a gravitational perturbation in the flat-space JT gravity can be seen 
as a T T̄ -deformation of the matter action with a finite coupling.3 Then, a generalization of the 
work [10] in flat space to AdS2 and dS2 has been discussed in [12]. However, the discussion in 
[12] is restricted to the conformal matter case and hence only the infinitesimal T T̄ -deformation 
has been discussed.

In this paper, we will explain how to remove this conformal matter condition. The point is 
to replace the dilaton potential utilized in [13] with the hyperbolic one considered in [14]. In 
particular, the hyperbolic dilaton potential model is equivalent to a classical Liouville gravity 
with a negative cosmological constant [15,16]. Hence, in other words, a gravitational perturbation 
in the classical Liouville gravity4 can be seen as a T T̄ -deformation of the matter action with a 
finite coupling defined on AdS2.

This paper is organized as follows. In section 2, we study a gravitational perturbation in the JT 
gravity with an arbitrary dilaton potential. The quadratic action can be regarded as an infinites-
imal T T̄ -deformation of the matter action with the conformal matter condition. This section 
contains a brief review of the work [12]. In section 3, we introduce the classical Liouville gravity 
with a negative cosmological constant and show that its gravitational perturbation can be seen as 

1 The closed form of T T̄ -deformation is discussed in [4].
2 For reviews on 2D dilaton gravity, see [8,9].
3 For the finite T T̄ -deformation in the flat space JT gravity, see [11].
4 Our analysis here is at the classical level. For the relation between T T̄ -deformation and non-critical string at the 

quantum level, see [11,17,18].
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a T T̄ -deformation without taking the conformal matter condition. Section 4 is devoted to con-
clusion and discussion. Appendix A explains how to derive a gravitationally dressed S-matrix. 
Appendix B introduces the general vacuum solution in the Liouville gravity with a cosmological 
constant.

2. JT gravity with conformal matter

In this section, we will consider a gravitational perturbation of the JT gravity with an arbitrary 
dilaton potential and derive the quadratic action. As a result, we can figure out the condition 
under which the gravitational perturbation can be seen as a T T̄ -deformation of the matter action. 
For example, for the constant dilaton potential, it can be seen as a T T̄ -deformation as shown in 
[10]. When the dilaton potential is given by a sum of the constant and a cosmological constant 
as utilized in [13], the conformal matter condition is necessary [12]. That is, an infinitesimal 
T T̄ -deformation is realized on AdS2 or dS2.

2.1. Our setup and notation

The classical action of the JT gravity in the Lorentzian signature is given by the sum of the 
dilaton gravity action Sdg[gμν, φ] (gμν : metric, φ: dilaton) and the matter action Sm[ψ, gμν, φ]
(ψ : matter):

S[gμν,φ,ψ] = Sdg[gμν,φ] + Sm[ψ,gμν,φ] , (2.1)

Sdg[gμν,φ] = 1

2κ

∫
d2x

√−g [φ R − U(φ) ] . (2.2)

Here xμ = (x0, x1) = (t, x) and κ ≡ 8πGN , where GN is 2D Newton constant. The dilaton 
potential U(φ) is an arbitrary scalar function now. The matter action Sm may include a non-
trivial dilaton coupling in general.

The equations of motion of this system are given by

R − U ′(φ) + 2κ√−g

δSm

δφ
= 0 , (2.3)

1

2
gμνU(φ) −

(
∇μ∇νφ − gμν∇2φ

)
= κ Tμν , (2.4)

and the one for the matter field. Here we have used the identity Rμν = 1
2gμνR for the second 

equation. The energy-momentum tensor Tμν for the matter field ψ is defined as

Tμν ≡ − 2√−g

δSm

δgμν
. (2.5)

When the matter action depends on the dilaton, Tμν also depends on the dilaton.
The trace of (2.4) is given by

∇2φ + U (φ) = κ gμνTμν ≡ κT . (2.6)

Here T is a trace of the energy-momentum tensor T μν . By using (2.6), the Einstein equation 
(2.4) can be rewritten as

−∇μ∇νφ − 1

2
gμν U (φ) = κ

(
Tμν − gμνT

)
. (2.7)
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4 S. Okumura, K. Yoshida / Nuclear Physics B 957 (2020) 115083

The vacuum solution. For later convenience, let us discuss the vacuum solution (i.e., Tμν = 0). 
When the matter action Sm is turned off, the equations of motion (2.3) and (2.4) reduced to

R̄ − U ′ (φ̄)= 0 , (2.8)

−∇̄μ∇̄νφ̄ + ḡμν∇̄2φ̄ + 1

2
ḡμν U

(
φ̄
)= 0 . (2.9)

Here we have denoted the vacuum solution as ḡμν and φ̄, and the covariant derivative ∇̄ is defined 
with ḡμν . The trace of (2.9) is given by

∇̄2φ̄ + U
(
φ̄
)= 0 . (2.10)

Since the dilaton potential U(φ) can be deleted from (2.9) by using (2.10), the resulting expres-
sion is

∇̄μ∇̄νφ̄ = 1

2
ḡμν∇̄2φ̄ . (2.11)

Given the explicit form of U(φ), the vacuum solution is also determined.

2.2. The quadratic action

Next, we shall consider a gravitational perturbation around the vacuum solution,

gμν = ḡμν + hμν , φ = φ̄ + σ , ψ = 0 + ψ , (2.12)

where hμν and σ are fluctuations of metric and dilaton, respectively, and ψ itself is regarded as a 
fluctuation around the trivial background ψ̄ = 0. In the following, the indices in the perturbations 
are raised, lowered, and contracted with the background metric ḡμν , say hμν ≡ ḡμρḡνσ hρσ .

Let us expand the classical action S[gμν, φ, ψ] in (2.1) in terms of the fluctuations (2.12):

S[gμν,φ,ψ] = S(0) + S(1) + S(2) + · · ·
= S

(0)
dg [ḡμν, φ̄] + S

(1)
dg [ḡμν, φ̄;hμν, σ ] + S

(2)
dg [ḡμν, φ̄;hμν, σ ]

+ S(1)
m [ḡμν;ψ] + S(2)

m [ḡμν;ψ,hμν] + · · · , (2.13)

where the superscript of S(n) denotes the order of fluctuation. The zeroth order part S(0)
dg is the 

classical value of Sdg with the vacuum configuration. The first order action S(1)
dg should vanish 

since the vacuum solution satisfies the equations of motion with ψ̄ = 0. For the matter sector, 
S

(1)
m describes the matter field action on the classical background ḡμν .

By expanding (2.3) and (2.7), the equations of motion for hμν and σ can be obtained as

∇̄μ∇̄νhμν − ∇̄2h − 1

2
U ′(φ̄) h − U ′′(φ̄)σ + 2κ√−ḡ

δS
(1)
m

δφ

(
φ̄
)= 0 , (2.14)

∇̄μ∇̄νσ + 1

2
ḡμν U ′(φ̄) σ

= −κ (T (0)
μν − ḡμν T (0)) − 1

2
U(φ̄)hμν + 1

2
∇̄ρφ̄

(∇̄μhρν + ∇̄νhρμ − ∇̄ρhμν

)
, (2.15)

where T (0)
μν is the energy-momentum tensor for the matter theory described by S(1)

m .
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Suppose that hμν takes the following form [12]:

hμν = −2κ(T (0)
μν − ḡμν T (0)) k , (2.16)

where k is a constant parameter with dimension (length)2 while κ is dimensionless. This is a 
covariant version of the one employed in the flat-space JT case [10].

As a result, the quadratic action S(2) is simplified as

S(2) =
∫

d2x
√−ḡ

[
1

4κ
U ′′ (φ̄)σ 2 − κ

(
k − k2

4
U
(
φ̄
))(

T (0)
μν T (0)μν − T (0)2

)]
. (2.17)

The second term is proportional to the T T̄ operator, though the coefficient depends on the back-
ground dilaton φ̄ and in general has space-time coordinate dependence.

Therefore, if U ′′(φ̄) = 0 and the metric fluctuation hμν satisfies the ansatz (2.16), the quadratic 
action can be regarded as a T T̄ deformation of the original matter action, up to the background 
dilaton dependence. However, we still need to check the existence of σ as a solution to the 
equations of motion.

In the following, let us see two examples, 1) the flat-space JT gravity and 2) the Almheiri-
Polchinski (AP) model.

1) The flat-space JT gravity. Let us first revisit the case of the flat-space JT gravity [10]. This 
case is realized by taking a constant dilaton potential

U(φ) = � : constant . (2.18)

In the Cartesian coordinates, a vacuum solution is obtained as

ḡμν = ημν = diag(−1,+1) , φ̄ = �

4
(t2 − x2) . (2.19)

Note here that the dilaton is non-trivial but the background metric is still 2D Minkowski space-
time.

The metric ansatz (2.16) satisfies (2.14) only if the matter action S(1)
m does not depend on the 

dilaton

δS
(1)
m

δφ
= 0 . (2.20)

The solution for σ is explicitly written down as a non-local solution [12]

σ(t, x) = a1 + a2 t + a3 x + σnon-local(t, x) , (2.21)

where a1,2,3 are arbitrary constants, and σnon-local is a non-local part of σ given by

σnon-local(t, x) = κ

2

[
k�

x∫
0

dx′ x′ T (0)
tt (t, x′) + k�

t∫
0

dt ′ t ′ T (0)
xx (t ′, x)

+ 2 (k� − 1)

t∫
0

dt ′
x∫

0

dx′ T (0)
tx (t ′, x′)
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6 S. Okumura, K. Yoshida / Nuclear Physics B 957 (2020) 115083

+ (k� − 2)

⎛⎜⎝ t∫
t1

dt ′
t ′∫

t2

dt ′′ T (0)
xx (t ′′,0) +

x∫
x1

dx′
x′∫

x2

dx′′ T (0)
tt (0, x′′)

⎞⎟⎠] .

(2.22)
By using this expression of σ , one can introduce dynamical coordinates explicitly and evaluate 
the gravitationally dressed S-matrix [10] (for the detail, see Appendix A).

2) The Almheiri-Polchinski model. A bit non-trivial example satisfying the condition U ′′(φ̄) =
0 is the Almheiri-Polchinski (AP) model [13] specified by the following dilaton potential:

U(φ) = � − 2

L2 φ , (2.23)

where L is the AdS radius. In comparison to the flat-space JT case, a negative cosmological 
constant is additionally included.

In the conformal gauge, the metric is parametrized as

d2s = ḡμνdxμdxν = −2e2ω̄dx+dx− , (2.24)

where the light-cone coordinates are defined as

x± ≡ 1√
2
(t ± x) . (2.25)

The general vacuum solution is given by [13]

e2ω̄ = 2L2

(x+ − x−)2 , φ̄ = �L2

2
+ a + b(x+ + x−) + c x+x−

x+ − x− , (2.26)

where a, b and c are arbitrary constants. In the following discussion, we will consider only 
constant dilaton case with a = b = c = 0 so as to drop off the coordinate dependence of the 
dilaton background.

By imposing the metric ansatz (2.16), the equation of motion (2.14) is rewritten as

T (0) k

L2 + 1√−ḡ

δS
(1)
m

δφ

(
φ̄
)= 0 . (2.27)

A solution is to employ a conformal matter which does not couple to the dilaton [12]:

T (0) = 0,
δS

(1)
m

δφ
= 0 . (2.28)

Notably, this conformal matter condition is not a unique solution and there may remain another 
possibility to take a particular dilaton dependence of the matter action. We will discuss this issue 
in the next section.

Let us solve the equation of motion for σ in (2.15). Due to the conformal matter condition 
and the conservation law for the energy-momentum tensor, T (0)

++ and T (0)
−− are holomorphic and 

anti-holomorphic functions, respectively. Each component of (2.15) is evaluated as

e2ω̄∂+
(

e−2ω̄∂+σ
)

= − κ T
(0)
++(x+) ,

e2ω̄∂−
(

e−2ω̄∂−σ
)

= − κ T
(0)
−−(x−) ,

∂+∂−σ + 2σ

(x+ − x−)2 =0 . (2.29)
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A solution to the equations in (2.29) is given by [12]

σ(x+, x−) ≡ I0(x
+, x−) + I+(x+, x−) − I−(x+, x−)

x+ − x− . (2.30)

Here I0 is the sourceless solution,

I0(x
+, x−) ≡ A + B (x+ + x−) + C x+x− , A, B, C: arbitrary real consts. , (2.31)

and I±(x+, x−) correspond to the non-local parts of dilaton:

I±(x+, x−) ≡κ

x±∫
u±

ds (s − x+)(s − x−) T
(0)
±±(s) , (2.32)

where u± are arbitrary constants.
We should emphasize that in comparison to the flat-space JT gravity, the conformal mat-

ter condition T (0) = 0 is necessary here. Because of the conformal matter condition, a general 
deformed system L(α) cannot be taken as the original matter action S(1)

m . Hence a finite T T̄ -
deformation cannot also be considered, though an infinitesimal T T̄ -deformation of a conformal 
field. This is a summary of the work [12].

Obviously, it is a significant issue to consider how to remove this conformal matter condition 
in the case of AdS2. In the next section, we will present another example supporting a non-
conformal matter.

3. Liouville gravity and T T̄ -deformation

So far, we have considered at most a linear potential like (2.23) in order to solve the condi-
tion U ′′(φ) = 0. Note however that the condition we have to solve is that U ′′(φ̄) = 0 and the 
argument is the background dilaton φ̄ rather than φ. Hence it is enough to consider the behavior 
of the dilaton potential around the vacuum solution and it is possible to take account of more 
complicated dilaton potentials.

As such an example, we will consider a classical Liouville gravity with a negative cosmolog-
ical constant.5 Remarkably, the quadratic action is recast into a T T̄ -deformation of the original 
matter action with a finite coupling (i.e., the conformal matter condition is not necessary).

3.1. Classical Liouville gravity

The classical action of the Liouville gravity with a negative cosmological constant is

S = 1

2κ

∫
d2x

√−G

(
φR(G) − 2η

L2 (∇(G)φ)2 − 1

2η
e

2η
(
�− 2

L2 φ
)
+ 1

2η

)
+ Sm

[
ψ, Gμν

]
,

(3.1)

where R(G) and ∇(G) are the Ricci scalar and covariant derivative, respectively, defined with the 
metric Gμν . Then η is a new constant parameter with dimension (length)2. When η is negative 
(η < 0), the kinetic term of the dilaton has the wrong sign and the potential of (3.1) is not bounded 
from below. Hence, we take η to be positive as a natural choice,

5 The classical Liouville gravity can be derived from pure Einstein gravity in 2 + ε dimensions [19].

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp
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η > 0 . (3.2)

In comparison to the action (2.2), the Liouville gravity action (3.1) has the dilaton kinetic 
term. Hence, in order to employ the argument in Section 2, we have to remove the dilaton kinetic 
term by performing an appropriate Weyl transformation.

Let us consider the following Weyl transformation depending on the dilaton [16],

Gμν = e
−η
(
�− 2

L2 φ
)
gμν . (3.3)

In the frame with gμν , the kinetic term has been removed as follows:

S = 1

2κ

∫
d2x

√−g

(
φR − 1

η
sinh

[
η

(
� − 2φ

L2

)])
+ Sm

[
ψ, e

−η
(
�− 2

L2 φ
)
gμν

]
. (3.4)

Thus the dilaton potential U(φ) in (2.2) is identified with the following hyperbolic potential:

U(φ) = 1

η
sinh

[
η

(
� − 2φ

L2

)]
. (3.5)

Note here that the matter action Sm now depends on the dilaton explicitly through the Weyl factor 
of the metric gμν .

Originally, this hyperbolic-type potential was introduced in [14] so as to support Yang-Baxter 
deformations [20–22] of AdS2, where η corresponds to the deformation parameter. In the η → 0
limit, the AP model (2.23) is reproduced.

It is known that the AdS2 metric with a constant dilaton is one of the vacuum solutions (for
the general solution, see Appendix B). In the conformal gauge (2.24), this solution is given by

e2ω̄ = 2L2

(x+ − x−)2 , φ̄ = �L2

2
. (3.6)

In the following, we will consider fluctuations around this vacuum solution. For this constant 
dilaton background, one can show that

U(φ̄) = 0 , U ′(φ̄) = − 2

L2 , U ′′(φ̄) = 0 . (3.7)

Thus this hyperbolic dilaton potential (3.5) indeed satisfies the condition U ′′(φ̄) = 0.

3.2. The quadratic action

Let us then consider the quadratic action for the hyperbolic potential (3.5). By supposing the 
ansatz (2.16), the equation in (2.14) is simplified as

2κ

L2 T (0) k + 2κ√−ḡ

δS
(1)
m

δφ

(
φ̄
)= 0 . (3.8)

The dilaton dependence in the matter action has been determined in (3.4), and the second term 
in (3.8) is replaced by the trace of the energy-momentum tensor as follows:

δS
(1)
m

δφ
(φ̄) = − 2η

L2 gμν δS
(1)
m

δgμν
= η

L2

√−ḡ T (0) . (3.9)

As a result, (3.8) reduces to a simple equation,
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2κ

L2 (k + η) T (0) = 0 . (3.10)

A possible solution is the conformal matter case T (0) = 0. Then the matter action Sm is invariant 
under the Weyl transformation and its dilaton dependence disappears. Hence, it is the same as 
the AP model case discussed in Section 2.

Unless the matter action is conformal, k is directly connected to η like

k = −η . (3.11)

Originally, k has been introduced as an arbitrary constant of the metric ansatz (2.16). In com-
parison to the flat-space JT case where k is completely free, in the present case k is determined 
completely by the initial set-up of the Liouville action.

With the condition (3.11), the quadratic action (2.17) leads to the form of T T̄ -deformation on 
the AdS2 background,

S(2) = κ η

∫
d2x

√−ḡ
(

T (0)
μν T (0)μν − T (0)2

)
. (3.12)

Note here that the deformation is measured by κ η. It is significant to see the signature of the 
deformation because it is sensitive to the physics of the deformed theory. Recall that both κ and 
η are positive. Hence the deformation (3.12) corresponds to the negative sign in the convention 
of [26]. Then the deformed theory should have a UV cut-off (at least) in the flat-space limit, 
because the energy becomes complex in the UV region. Hence the above result would have an 
intimate connection with the cut-off AdS geometry [23,24] or the random boundary geometry 
[25].

On the other hand, a negative η corresponds to a positive-sign T T̄ -deformation. Then the 
deformed theory does not have the UV cut-off. However, if η is negative, then the potential 
of the dilaton is not bounded from below and the dilaton becomes unstable. This case may be 
interpreted as a quantum Liouville theory and then be related to the Little String Theory scenario 
proposed in [26].

3.3. The explicit solution of σ

The remaining task is to derive a non-trivial solution to the equations of motion (2.14) and 
(2.15). For this purpose, let us start from considering some properties of the energy-momentum 
tensor.

The energy momentum tensor T (0)
μν should satisfy the conservation law.

∇̄μT (0)
μν = 0 . (3.13)

In the conformal gauge (2.24), the components of the conservation law are given by

∂−T
(0)
++ = −∂+T

(0)
+− − 2

x+ − x− T
(0)
+− , ∂+T

(0)
−− = −∂−T

(0)
+− + 2

x+ − x− T
(0)
+− . (3.14)

The trace of the energy-momentum tensor T (0)+− is not zero and gives rise to a no-trivial con-
tribution. Moreover, in comparison to the conformal matter case, the (++) component of the 
energy-momentum tensor T (0)++ is no longer a holomorphic function and it depends on x− as 
well. This is also the same for T (0)

−−.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



10 S. Okumura, K. Yoshida / Nuclear Physics B 957 (2020) 115083

Thus, the equations in (2.29) are rewritten as

e2ω̄∂+
(

e−2ω̄∂+σ
)

= − κ T
(0)
++(x+, x−) ,

e2ω̄∂−
(

e−2ω̄∂−σ
)

= − κ T
(0)
−−(x+, x−) ,

∂+∂−σ + 2

(x+ − x−)2 σ =κ T
(0)
+−(x+, x−) . (3.15)

It is useful to introduce a scalar function M(x+ , x−) as

σ = M(x+ , x−)

x+ − x− . (3.16)

The equations in (3.15) are further rewritten as

∂2+M = − κ (x+ − x−) T
(0)
++(x+, x−) ,

∂2−M = − κ (x+ − x−) T
(0)
−−(x+, x−) ,

(x+ − x−) ∂+∂−M + ∂+M − ∂−M =2κ (x+ − x−) T
(0)
+−(x+, x−) . (3.17)

The solution is given by

M(x+ , x−) = I0(x
+ , x−) + I+(x+, x−) − I−(x+, x−) , (3.18)

where I0(x
+ , x−) is the sourceless solution given in (2.31). I+(x+, x−) and I−(x+, x−) are 

defined as

I+(x+, x−) ≡ κ

2

x+∫
u+

ds (s − x+)(s − x−) T
(0)
++(s, x−) , (3.19)

I−(x+, x−) ≡ κ

2

x−∫
u−

ds (s − x+)(s − x−) T
(0)
−−(x+, s) . (3.20)

This solution resembles the one in the AP case (2.32). However, the energy-momentum tensor is 
not (anti-)holomorphic, hence be careful for calculating partial derivatives of I±.

It would be instructive to demonstrate, for example, the calculation of the partial derivative 
of I−:

∂+I−(x+, x−)

= κ

2

x−∫
u−

ds
[
−(s − x−)T

(0)
−−(x+, s) + (s − x+)(s − x−)∂+T

(0)
−−(x+, s)

]

= κ

2

x−∫
u−

ds
[
−(s − x−)T

(0)
−−(x+, s) − (s − x+)(s − x−)∂sT

(0)
+−(x+, s) − 2(s − x−)T

(0)
+−(x+, s)

]

= κ

2

x−∫
u−

ds
[
−(s − x−)T

(0)
−−(x+, s) − (x+ − x−)T

(0)
+−(x+, s)

]
. (3.21)
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From the second line to the third line, we have used the conservation law (3.14) and also assumed 
that the boundary terms vanish. Similarly, one can also evaluate the second-order derivative as 
follows:

∂2+I−(x+, x−)

= κ

2

x−∫
u−

ds
[
−(s − x−)∂+T

(0)
−−(x+, s) − T

(0)
+−(x+, s) − (x+ − x−)∂+T

(0)
+−(x+, s)

]

= κ

2

x−∫
u−

ds
[
−(s − x−)∂sT

(0)
+−(x+, s) − 2

(s − x−)

x+ − s
T

(0)
+−(s, x−)

− T
(0)
+−(x+, s) − (x+ − x−)∂+T

(0)
+−(x+, s)

]
= κ

2

x−∫
u−

ds (x+ − x−)
[
− 2

x+ − s
T

(0)
+−(x+, s) − ∂+T

(0)
+−(x+, s)

]
= κ

2
(x+ − x−)T

(0)
++(x+, x−) ,

∂+∂−I−(x+, x−) = κ

2

x−∫
u−

ds
[
T

(0)
−−(x+, s) − T

(0)
+−(x+, s)

]
. (3.22)

Thus, one can directly confirm the solution (3.18) satisfies the equations in (3.17).

4. Conclusion and discussion

In this paper, we have revisited gravitational perturbations of the JT gravity and discussed the 
condition under which those can be seen as T T̄ -deformations. In addition to the known examples 
like the flat-space JT gravity and the AP model, as a novel example, we have studied the Liouville 
gravity with a negative cosmological constant. The conformal matter condition is necessary for 
the AP model but not for the Liouville gravity.

The Liouville gravity can also be seen as a Yang-Baxter deformation of the AP model. 
Then the parameter measuring the Yang-Baxter deformation is connected with the one of T T̄ -
deformation, and also controls the behavior of the Liouville potential and the stability of the 
dilaton field. When the Liouville potential is bounded from below, the T T̄ -deformation is the 
negative sign T T̄ -deformation [23]. The positive sign case may be related to a non-critical string 
approach [11,17,18]. It is also interesting to study a quantum aspect of our result by following 
[27].

It is an open problem to consider our result in the context of NAdS2/NCFT1 [13,28–30]. As 
discussed in [14], the Yang-Baxter deformation breaks the SL(2) symmetry and changes the 
UV behavior of the AdS2 geometry. In particular, a singularity surface emerges at the middle of 
the bulk as a holographic screen and such a geometry would also be related to the cut-off AdS 
geometry proposed in [23]. It is nice to study the boundary behavior of our non-local solution of 
the dilaton to figure out the boundary dual for the Liouville gravity.
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Finally, it is known that a single-trace T T̄ -deformation is related to a Yang-Baxter deforma-
tion in the context of AdS3/CFT2 [31–35]. It is interesting to understand a relation between this 
fact and our result via the dimensional reduction. It is also nice to consider a supersymmetric 
version of our analysis by following [36–40].
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Appendix A. Derivation of the gravitationally dressed S-matrix

We shall derive here a gravitational dressing factor of the S-matrix. This was originally de-
rived in [10] in the light-cone coordinates without the explicit solution of σ . It is instructive to 
reproduce the factor by using our exact solution of σ with the Cartesian coordinates.

Introducing the dynamical coordinates. Let us first introduce the dynamical coordinates Xμ

defined as

Xμ ≡ − 2

�
∂μφ = xμ + Yμ , Yμ ≡ − 2

�
∂μσ . (A.1)

The components of Yμ are explicitly given by

Y t (t, x) = 2

�
a2 + κ k

[
x T

(0)
tx (t, x) + t T (0)

xx (t, x)
]

+ κ

�
(k� − 2)

⎛⎝ x∫
0

dx′ T (0)
tx (t, x′) +

t∫
t2

dt ′ T (0)
xx (t ′,0)

⎞⎠ , (A.2)

Yx(t, x) = − 2

�
a3 − κ k

[
x T

(0)
tt (t, x) + t T

(0)
tx (t, x)

]
− κ

�
(k� − 2)

⎛⎝ t∫
0

dt ′ T (0)
tx (t ′, x) +

x∫
x2

dx′ T (0)
tt (0, x′)

⎞⎠ , (A.3)

where the indices have been lowered in the right-hand side. Then Yμ satisfies

∂μY ν = − 2

�
∂μ∂νσ = 2κ

�

(
(1 − k�) − k�

2
xρ∂ρ

)
(T (0)ν

μ − δν
μT (0)) , (A.4)

where we have used (2.4).
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In the standard manner, the conserved charge is given by

Pμ ≡
∞∫

−∞
dx T

(0)
tμ (t, x) . (A.5)

The total energy Pt and momentum Px are given by, respectively,

Pt =
∞∫

−∞
dx T

(0)
tt (t, x) , Px =

∞∫
−∞

dx T
(0)
tx (t, x) . (A.6)

The conservation law of the energy momentum tensor is given as

∂μT (0)
μν = 0 . (A.7)

In the Cartesian coordinates, it is expressed as

∂tT
(0)
tt = ∂xT

(0)
tx , ∂tT

(0)
tx = ∂xT

(0)
xx . (A.8)

Using the relations in (A.8) and the invariance under the parity-transformation,

T
(0)
tx (t,∞) = T

(0)
tx (t,−∞) , T (0)

xx (t,∞) = T (0)
xx (t,−∞) , (A.9)

the conservation of the charges Pμ is shown as follows;

∂tPt =
∞∫

−∞
dx ∂xT

(0)
tx (t, x) = 0 , ∂tPx =

∞∫
−∞

dx ∂xT
(0)
xx (t, x) = 0 . (A.10)

Note here that Yμ still contains four arbitrary parameters a2, a3, t2 and x2. In order to fix the 
expression of Yμ definitely, we need to impose some boundary conditions for Yμ. Then, as a 
result, (A.2) and (A.3) can be expressed in terms of the conserved charges Pμ.

Let us first impose a boundary condition for the energy momentum tensor as follows:

x T (0)
μν (t, x) → 0 (x → ±∞) . (A.11)

By using the conservation of T (0)
μν in (A.8), one can obtain the following relations:

t∫
t2

dt ′ T (0)
xx (t ′,0) =

0∫
−∞

dx′ T (0)
tx (t, x′) −

0∫
−∞

dx′ T (0)
tx (t2, x

′) +
t∫

t2

dt ′ T (0)
xx (t ′,−∞) , (A.12)

t∫
0

dt ′ T (0)
tx (t ′, x) =

x∫
−∞

dx′ T (0)
tt (t, x′) −

x∫
−∞

dx′ T (0)
tt (0, x′) +

t∫
0

dt ′ T (0)
tx (t ′,−∞) . (A.13)

Then Yμ can be rewritten as

Y t (t, x) = 2

�
a2 + κ k

[
x T

(0)
tx (t, x) + t T (0)

xx (t, x)
]

+ κ

�
(k� − 2)

⎛⎝ x∫
−∞

dx′ T (0)
tx (t, x′) −

0∫
−∞

dx′ T (0)
tx (t2, x

′)

⎞⎠ , (A.14)
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Yx(t, x) = − 2

�
a3 − κ k

[
x T

(0)
tt (t, x) + t T

(0)
tx (t, x)

]
− κ

�
(kλ − 2)

⎛⎝ x∫
−∞

dx′ T (0)
tt (t, x′) −

x2∫
−∞

dx′ T (0)
tt (0, x′)

⎞⎠ . (A.15)

Now the unknown constants a2 and a3 are determined by using the boundary condition (A.11)
as follows:

a2 = κ

2
(k� − 2)

0∫
−∞

dx′ T (0)
tx (t2, x

′) + �

2
Y t

(−) , (A.16)

a3 = −κ

2
(k� − 2)

x2∫
−∞

dx′ T (0)
tt (0, x′) − �

2
Yx

(−) , (A.17)

where we have defined Yμ

(±) ≡ Yμ|x→±∞. Using these expressions of a2,3, we find that

Y t (t, x) = Y t
(−) + κ k

[
x T

(0)
tx (t, x) + t T (0)

xx (t, x)
]
+ κ

�
(k� − 2)

x∫
−∞

dx′ T (0)
tx (t, x′) ,

(A.18)

Yx(t, x) = Yx
(−) − κ k

[
x T

(0)
tt (t, x) + t T

(0)
tx (t, x)

]
− κ

�
(k� − 2)

x∫
−∞

dx′ T (0)
tt (t, x′) .

(A.19)

Taking x → ∞ and using (A.6) leads to the following relations:

Y t
(+) − Y t

(−) = κ

�
(k� − 2)Px , Y x

(+) − Yx
(−) = − κ

�
(k� − 2)Pt . (A.20)

By employing a parity symmetric prescription, we obtain that

Y t
(±) = ∓ κ

2�
(k� − 2)Px , Y x

(±) = ± κ

2�
(k� − 2)Pt . (A.21)

It is useful to introduce a new quantity P̃μ defined as

P̃μ ≡ 2

x∫
−∞

dx T
(0)
tμ (t, x) − Pμ . (A.22)

In the spacial infinity region x → ±∞, P̃μ becomes the conserved charge P̃μ → ±Pμ.

Finally, the dynamical coordinates in (A.1) are expressed in terms of T (0)
μν as follows:

Xμ = xμ − κ k (T (0)μ

ν − δμ
ν T (0)) xν − κ

2�
(k � − 2) εμνP̃ν . (A.23)

Here εμν is an antisymmetric tensor normalized as εtx = −1. For simplicity, we will set k = 0 in 
the following discussion. Then, the metric fluctuation hμν and the quadratic action vanish while 
σ does not. The dynamical coordinates in (A.23) are simplified as

Xμ = xμ + κ

�
εμνP̃ν . (A.24)

This corresponds to the one obtained in [10].
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The gravitationally dressed S-matrix. A significant implication of the dynamical coordinates in 
(A.23) is the gravitationally dressed S-matrix [10].

Let us consider a scattering process in a scalar field theory. Here the detail of the interaction 
potential is not necessary. In the infinite past t → −∞, Nin particles are prepared and each of 
them has a momentum p(i). Then the asymptotic field (in-field) is given by

ψ =
∫

dp√
2E

1

2π

[
a

†
in(p) e−ipμxμ + h.c.

]
. (A.25)

It is known that a T T̄ -deformed QFT on the undeformed background is equivalent to the unde-
formed QFT with the dynamical coordinates [10,41–43]. This statement means that the defor-
mation effect for the asymptotic state can be evaluated by replacing the original coordinates xμ

with the dynamical ones Xμ.
As a result, a creation operator a†

in gets an extra-phase factor eipμYμ
and a dressed creation 

operator can be defined as

A
†
in(p) ≡ a

†
in(p) eipμYμ

. (A.26)

By employing this dressed operator A†
in(p) (instead of a†

in(p)), the associated dressed in-state 
can be defined as

∣∣{p(i)}, in
〉
dressed ≡

Nin∏
i=1

A
†
in(p(i)) |0〉

= exp

⎛⎝i

Nin∑
i=1

p(i)μYμ(x(i))

⎞⎠∣∣{p(i)}, in
〉
. (A.27)

In the infinite past, Yμ(x(i)) can be evaluated as follows:

Yμ(x(i)) = κ

�
εμν

⎡⎣2

x(i)∫
−∞

dx′ T (0)
tν (t, x′) − Pν

⎤⎦
= κ

�
εμν

⎡⎣2

⎛⎝1

2
p(i)ν +

∑
j<i

p(j)ν

⎞⎠−
Nin∑
i=1

p(i)ν

⎤⎦
= κ

�
εμν

⎛⎝p(i)ν +
∑
j<i

p(j)ν
−
∑
j>i

p(j)ν

⎞⎠ . (A.28)

From the first line to the second line, we have assumed the mid-point prescription. Finally, one 
can write the dressed state in terms of p(i).

∣∣{p(i)}, in
〉
dressed = exp

⎛⎝2i
κ

�

Nin∑
i=1

∑
i<j

εμνp(i)μp(j)ν

⎞⎠∣∣{p(i)}, in
〉
. (A.29)

The phase factor in front of the original in-state is nothing but the gravitational dressing factor. 
Similarly, the phase factor for the out-state can be evaluated and then the dressed S-matrix can 
be derived as shown in [10].
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Appendix B. The vacuum solution in the deformed AP model

Here, we introduce the general vacuum solution in the Yang-Baxter deformed AP model (3.5). 
This is a short review of the result obtained in [14].

In the conformal gauge (2.24), the vacuum equations of motion (2.8) and (2.9) can be decom-
posed into a copy of two Liouville equations and a constraint condition as follows:

2 ∂+∂−ω̄1 + 1

L2 e2ω̄1 = 0 , (B.1)

2 ∂+∂−ω̄2 + 1

L2 e2ω̄2 = 0 , (B.2)

−e2ω̄∂±
(

e−2ω̄∂±φ̄
)

= 0 . (B.3)

Here ω̄1,2 are defined as

ω̄1 ≡ ω̄ + η

(
2

L2 φ̄ − �

)
, ω̄2 ≡ ω̄ − η

(
2

L2 φ̄ − �

)
. (B.4)

The general solutions for each of the Liouville equations (B.1) and (B.2) are given by, respec-
tively,

e2ω̄1 = 2L2 ∂+X+
1 ∂−X−

1(
X+

1 − X−
1

)2 , e2ω̄2 = 2L2 ∂+X+
2 ∂−X−

2(
X+

2 − X−
2

)2 . (B.5)

Here X+
1,2 (X−

1,2) are arbitrary holomorphic (anti-holomorphic) functions. Moreover, X±
1,2 must 

satisfy the condition (B.3). Since (B.3) can be rewritten by using the Schwarzian derivative 
Sch{ , },

Sch{X±
1 , x±} − Sch{X±

2 , x±} = 0 , (B.6)

X±
1 and X±

2 are the same functions up to an SL(2) transformation. Finally, the general vacuum 
solution in terms of ω̄ and φ̄ are given by ω̄1,2 as

e2ω̄ = eω̄1+ω̄2 , φ̄ = �L2

2
+ L2

4η
(ω̄1 − ω̄2) . (B.7)

Example. As an example, let us consider the following parametrization:

X+
1 (x+) = (1 − ηβ)x+ − 2ηα

−2ηγ x+ + (1 + ηβ)
, X−

1 (x−) = x− ,

X+
2 (x+) = (1 + ηβ)x+ + 2ηα

2ηγ x+ + (1 − ηβ)
, X−

2 (x−) = x− , (B.8)

where α, β and γ are real constants. This vacuum solution describes the Yang-Baxter deforma-
tions of AdS2 as follows:

e2ω̄ = 2L2 [1 − η2(β2 + 4αγ )]
(x+ − x−)2 − η2

(
2α + β(x+ + x−) − 2γ x+x−)2 ,

φ̄ = �L2

2
+ L2

4η
log

∣∣∣∣x+ − x− + η (2α + β(x+ + x−) − 2γ x+x−)

x+ − x− − η (2α + β(x+ + x−) − 2γ x+x−)

∣∣∣∣ . (B.9)

By taking the undeformed limit η → 0, this solution reduces to the general solution in the original 
AP model (2.26).
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