
Title SPECIALIZING WIDE ARONSZAJN TREES WITHOUT
ADDING REALS (Set Theory and Infinity)

Author(s) Switzer, Corey Bacal

Citation 数理解析研究所講究録 (2020), 2164: 117-131

Issue Date 2020-07

URL http://hdl.handle.net/2433/261457

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University



117

SPECIALIZING WIDE ARONSZAJN TREES WITHOUT ADDING 
REALS 

COREY BACAL SWITZER 
THE GRADUATE CENTER OF THE CITY UNIVERSITY OF NEW YORK 

ABSTRACT. We show that under certain circumstances wide Aronszajn trees can 
be specialized iteratively without adding reals. We then use this fact to study 
forcing axioms compatible with CH and list some open problems. 

1. INTRODUCTION 

The purpose of this note is to prove a technical strengthening of a theorem of 
Shelah's on specializing Aronszajn trees and connect it to some open problems in 
iterated forcing and the continuum hypothesis. Specializing Aronszajn trees iter-
atively without adding reals goes back to the work of Jensen separating CH from 
◇, see [6]. Reworking this result, in [10, Chapter V] Shelah introduced the class of 
dee-complete and <w1-proper forcing notions, an iterable class which does not add 
reals and showed that there is a forcing notion in this class that specializes Aron-
szajn trees. However the countability of the levels of the trees is essential in Shelah's 
proof in contrast to the ccc specializing forcing introduced in [4], which adds reals 
but where the width of the tree plays no role. Therefore it remains unclear when 
one can specialize wider trees without adding reals. In this note we provide a par-
tial solution to this problem by proving that under certain circumstances there are 
dee-complete and <w1-proper posets to specialize wide trees. Specifically we show 
the following. 

Theorem 1.1. Suppose Tis an w1 -tree (countable levels, but potentially uncountable 
branches) and SこTis a wide Aronszajn tree with the induced suborder. Then there 
is a forcing notion IP= IPs,T which specializes S and is dee-complete and <w1 -proper. 

Using this poset we give an application to forcing axioms compatible with CH. 

Theorem 1.2. Under the forcing axiom for dee-complete and <w1 -proper forcing 
notions, all w1 -trees are essentially special and therefore there are no K urepa trees. 

This latter theorem was shown by Shelah under the additional assumption that 
CH and 2N1 =応 holds. What's new here is that using the forcing notion from 
Theorem 1.1 we can remove the cardinal arithmetic assumption. 

The general question of when one can specialize a wide tree without adding reals 
turns out to be very interesting and there are many open questions still. The note 
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finishes with some brief further observations and open problems. In particular, a 
connection to cardinal characteristics is observed. 

2. PRELIMINARIES: DEE-COMPLETE FORCING, <w1-PROPERNESS AND TREES 

2.1. Strengthening Properness. Given a model N which elementarily embeds 
in some H。,a forcing notion IP'EN and a condition p E IP'write Gen(N,IP',p) for 
the set of匝genericfilters over N containing p. The following definitions come from 
[10, Chapter V] and a particularly good exposition is also given in [1]. What I call 
a completeness system here is called a "countably complete" completeness system 
in [10]. However, every completeness system considered in this note is countably 
complete so I omit the additional notation. 

Definition 2.1. A completeness system is a function ]D) defined on some set of triples 
(N, IP',p) such that N-< H。forsome 0, IP'E N is a forcing notion and p E IP'n N is 
a condition and the following hold: 

(1) IIJl(N,IP',p) is a family of sets, A, such that each A~Gen(N,IP',p). 
(2) If Ai E IIJl(N, IP',p) for each i < w then the intersection ni<w Ai is non-empty. 

If for a fixed IP'and some cardinal 0, if ]D) is defined on the set of all triples (N, IP', p) 
with p E IP'E N, p E N and N -< H。thenwe call ]D) a completeness system on 0 for 
匝

Completeness systems in general are quite easy to construct, which leads one to 
question their utility. In general we will only be interested therefore in ones which 
are "nicely defined", a notion Shelah refers to as simple. 

Definition 2.2. A completeness system ]D) is simple if there is a formula¢and 
a parameter s E Hw1 such that匝(N,旦） = {A;! 且pI u E匹}where A;!,11',p 
is defined as follows: for N -< H。,let N be the Mostowski collapse of N and 

町~: N → N the inverse of the Mostowski collapse. We let A 
-N,11',p 

u := {G E 

Gen(N濯―l(JP'),心(p))I Hw1 F </J(N, G, 7f-1(1P'), 誓 (p),u, s)}. Finally let Aが11',p
-N,11',p 

be the set of generics generated by町v"Gfor GE A 

Using this, I can define dee-completeness. 

Definition 2.3. We say that IP'is dee-complete if for every sufficiently large 0 there 
is a simple completeness system ]D) on 0 for IP'such that whenever IP'E N -< H。,with 
N countable and p E IP'n N there is an A E IIJl(N, 『，p)such that for all召EAthere 
is a condition q E IP'so that q'.S r for all r E豆

Given a poset IP'we say that a (not necessarily simple) completeness system ]D) is 
a completeness system for IP'if it satisfies the requirements of the definition of dee-
completeness. Observe that the existence of a completeness system for IP'implies 
that IP'is proper and adds no new reals (or indeed w sequences of elements from V) 
since the condition q as in the definition of dee-completeness is an (N, IP')-generic 
condition and if a : 山→ vn皿 esan w-sequence, then there is a model N ぅaand 
a『-genericGover N which has a lower bound q so q decides a(n) for all n < w. 
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Definition 2.4 (a-Properness). Let 0 be a cardinal and a < w1. An a-tower for 

H。isa sequence N =〈Nili<a〉ofcountable elementary substructures of H。so
that for each /3 < a, we have〈NiIi::; 術 EN/3+1 and if入<a is a limit ordinal 
then凡=ui<入~- We say that IP'is a-proper if for all sufficiently large 0, all p E IP' 

and all a-towers N in H。sothat p, IP'E Ni。thereis a q ::; p w伍山ぉ如叫皿娼迅

(Ni, IP')-generic for every i < a. We say that IP'is <w1-proper if it is a-proper for all 

a< W1・

Note that properness is 1-properness. The point is the following iteration theorem 
due to Shelah, [10, Chapter V, Theorem 7.1]. 

Theorem 2.5. If〈(IP'a,〇） I a< v〉isa countable support iteration of some length 

v so that for each a < v, I五lP'。"Qais dee-complete and <叫-proper",then IP'v is 
dee-complete and <w1 -proper. In particular such iterations do not add reals. 

As an immediate consequence, we obtain, relative to a supercompact, the consis-
tency of DCFA, the forcing axiom for dee-complete and <w1-proper forcing notions 
and even its consistency with CH. Of course DCFA does not imply CH since PFA 
implies DCFA trivially. Very little attention has gone into DCFA as an axiom in its 
own right outside of [9]. However one notable exception is [3] where it is shown that 
DCFA + CH implies the P-Ideal Dichotomy. 

2.2. Trees. The main purpose of this note is to look at applications of dee-complete 
forcing to trees. Let me review some notation and terminology related to this here 
for reference. Recall that a tree T =〈T,::;分isa partially ordered set so that for 
each t E T the set of s臼 tis well ordered. A branch through a tree is a maximal 
linearly ordered subset. 

Definition 2.6. Let T be a tree, a an ordinal and K, and入cardinals.

(1) The ath-level of T, denoted孔 isthe set of all t ET so that {s Is <rt} has 

order type a. Also let T:,;a = LJさaTi and T<a = LJi<a T;. 
(2) The height of Tis the least a with Ta = (/J. 
(3) If a < /3 are ordinals, T is a tree of height at least /3 + 1 and t E T13 then 

denote by t「athe unique s E Ta so that s :::::r t. 
(4) We say that T is a K,-tree if it has height K, and each level has sizeく位

(5) T is a K, —Aronszajn tree if it is a K,-tree with no branch of size K,. If K, =~1 
we just say Aronszajn tree. 

(6) T is a (K,, ::;,¥)-Aronszajn tree if it is a tree of height K, with each level of 
size::; 入andno branch of size ,.,,_ An (州：：：：：入)-Aronszajn tree is called a wide 
Aronszajn tree if入isuncountable and the equality is witnessed at some level 
i.e. it is not a (w1, <叫tree1.

(7) A (wide) Aronszajn tree is special if it can be decomposed into countably 
many antichains. Equivalently if there is a specializing function f : T→ (Q+, 

1The use of the word "wide" appears to come from the recent (and fascinating) paper [7], though 
the concept has been in the literature for over 50 years. 
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the set of positive rationals so that f is strictly increasing on linearly ordered 
subsets of T. 

(8) A tree T of height w1 (potentially with branches) is essentially special if there 
is a function f : T→ (Q which is weakly increasing on chains and so that for 
alls'.Sr t, u if J(t) = J(s) = J(u) then t and u are comparable. 

(9) An 凸—tree is Kurepa if it has more than N1 many uncountable branches. It's 
a weak Kurepa tree if it is a tree of height and cardinality N1 with more than 
N1 many branches. 

Throughout this note I will only be considering normal trees: that is a tree T 
so that ITol = 1, every node is comparable with nodes on every level, and for each 
s, t E T of limit height a, if s # t there is a /3 < a so that s f /3 # t「/3.Unless 
otherwise specified, in what follows "tree" means "normal tree". 

Special trees were first investigated in connection with forcing in [4] where it was 
shown that the poset to add a specializing function with finite approximations is ccc 
and hence MA+,CH implies that all trees of height巡 cardinalityless than 2~。 and
no uncountable branch are special. This poset obviously adds reals. Specializing 
without adding reals is more delicate as we will see. 

3. SPECIALIZING A WIDE TREE 

In this section I work towards proving Theorem 1.1. The forcing notion used is 
very similar to the poset from [2, Section 4] which specializes a thin tree without 
adding reals. This is due to Abraham and Shelah, building on the original example 
of such a poset from [10, Chapter V, Theorem 6.1]. Throughout, fix an wi-tree T 
(possibly with uncountable branches) and let S~T be an (互$山)-Aronszajn tree 
with the induced suborder. Without loss we may assume that T~Hw1. The first 
step is to define the forcing JPl. The idea is to force with partial specializing functions 
f:S→ (Q but use the structure of T to control the forcing. 

I begin by defining the objects that will build up the conditions. Throughout there 
is a subtlety concerning partial functions from T to (Q that I want to address up front. 
Fix ordinals a < f3く叫. Often times I will be considering some function h which 
maps some subset of T13 to (Q and we would like to consider the projection of this 

function to level a i.e. a new function h so that for each t E dom(h) h(t「a)=h(t). 

The issue is that h as written may not be a function since several different t's on 

level /3 may haveA the same projection to level a. To avoid this I will use the following 

convention: let hJ t「a)=min{h(s) I s E dom(h) ands「a=t「a}if this number 

exists and leave h(t) undefined otherwise. Note that if the domain of h is finite the 
projections are always defined. When it will cause no confusion I will write h f a to 
denote the projection of h to a and omit the hat. 

Defimt10n 3.1. Recall that S~T are trees, T is thin, potentially with cofinal 
branches and S is wide, without cofinal branches. Throughout, unless otherwise 
noted, for a node t E S, I mean by t f a the projection oft to level a in the sense 
of T (as opposed to S). 
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(1) A partial specializing function of height a is a function f : T:,;a n S→ Q 
which is strictly increasing on linearly ordered chains. We write ht(!) = a 
to denote the height of f. 

(2) A (possibly partial) function h : Tr, → (Q projects into S if for each t E 
dom(h) there is an CY :::; (3 so that t f CY E S. We say that such an h bounds 
a partial specializing function if (3 2: CY + l and for all t in the domain of h 
whose projection to the CY+ pt level is in S we have that h(t) > f(t「CY+1). 

(3) A requirement H of height (3 and arity n = n(H) E w is a countably infinite 
family of finite functions h : Tr, → (Q which project into Sand whose domains 
h ave size n. 

(4) A partial specializing function f fulfills a requirement H if the height of f 
is at most the height of H and for every finite TこTr,,(3 the height of H, 
there is an h E H bounding f whose domain is disjoint from T. 

(5) A promise is a function r defined on a tail set of countable ordinals, the first 
of which we denote (3 = (3(r) so that for each 1 2: (3, r(r) is a countable set 
of requirements of height I and ifヅ2:1 then「(r)= r(r') I I i.e. every 
H E r(r) there is some H'E r(r') so that H'= {h「,'Ih E H}. Note 
that since each h is finite, each projection h f 11 is defined, however several 
distinct h's may have the same projection. 

(6) A partial specializing function f keeps a promise r if (3(f) 2: ht(!) and f 
fulfills every H E r(r) for all 1 2: (3. Note that by the projection property 
given in the definition of a promise, to keep a promise it suffices to fulfill the 
requirements at the first level. 

(7) The forcing notion IP =. IPr,s consists of pairs p = (f江 p)where fp is a 
partial specializing funct10n, じisa promise and fp keeps r. We write ht(p) 
for ht(f砂and(3(p) for (3(fp)-Finally we let p:::; q if JP :2 fq, (3(p) > (3(q) 
and for all 1 2: (3(p), 恥(r)こ旦(r).

The proof of Theorem 1.1 is broken up into a number of lemmas which collectively 
show that『hasthe properties advertized in the theorem. First let's show that any 
condition can be extended arbitrarily high up the tree. Note that this will imply 
that IP specializes S. 

Lemma 3.2. Suppose p E IP of height CY and let (3 2: CY. Then there is a qさpof 
height (3. Moreover, if g : Tr, → (Q is a finite function bounding fp then q can be 
found so that g bounds f q as well. 

Proof. The proof is by induction on (3. There are two cases. 
Case I: (3 is a successor ordinal. By induction assume th吐(3= CY + l. Thus 

there is a function fp : Ta→ (Q and we need to find an f : Tr, → (Q so that 
Up u f, rp ¥ rp(CY)) E『. I will define such an f in countably many stages, notmg 
that there are only countably many things that we need to account for. Indeed I 
will define finite functions f n for n < w so that fnこfn+1and the union will be 

f. Let {(Hn, Tn) I n < w} enumerate all possible pairs of requirements H E rp(/3) 
and finite subsets T~Tr,. Also let Tr, n S = { tn I n < w}. Let f O be defined as 
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follows: by the definition of IP, for T = To C::: T13 there is an h E Hi。whichprojects 
into S and so that To is disjoint from the domain of h and h bounds fp• For each 
t E dom(h) n S, let f0(t) be any rational above fp(t「a)less than the value of 
h(t) and g(t) if the latter is defined. Then, if t。咲 dom(h),define fo(to) to be any 
value less than g(t0), again assuming this value is defined (again above fp)-This 
completes the construction of f0. Note that its domain is finite. Suppose now that 
we have defined Ji for all i :S: n so that for all i < n we have that Ji C::: Ji+1, ti (if it 
exists, note T13 n S could be finite) is in the domain of Ji and Ji is bounded by some 
h E Hi whose domain is disjoint from Ti. Moreover assume that Ji is bounded by 
g. Now I define f叫 1by performing the same procedure as described for Jo, except 
that冗+1is replaced by Tn+l U dom(Jn)-Note that this set is still finite so we can 

find a good h E Hn+l by the definition of a requirement. Now let J = Un<w Jn-
Clearly this function is defined on all of T13 and keeps the promise「(/3)so we are 
done. 
Case II: /3 is a limit ordinal. Fix a strictly increasing sequence〈f3nI n < W〉SO

that (30 = a and supnf3n = (3. The idea is to weave the procedure described in Case 
I to build a function on T13 n S with the inductive assumption that allows us to 
extend JP to each f3n. More concretely, as before let { (H n, T n) I n < w} enumerate 
all possible pairs of requirements from r p(/3) and finite subsets T C::: T13. Also let 
T13nS = {tn In< w }. Define Jo as in Case I: for each t E dom(h)nS, let J0(t) be any 
rational aboveん(t「a)less than the value of h(t) and g(t) if the latter is defined. 
Then, if t。tf-dom(h), define J0(t0) to be any value less than g(t0), again assuming 
this value is defined (again above JP). Now, using the inductive assumption, let 

Ji ::2 JP be a partial specializing function of height凡boundedby g U Jo. 
Now inductively suppose we have defined Ji for all i :S: n so that for all i < n we 

have that Ji C::: Ji+1, ti is in the domain of Ji (if ti exists) and Ji is bounded by some 
h E Hi whose domain is disjoint fro~ 冗.Moreover assume that Ji is bounded by g. 

Also suppose that we have defined Ji : T13; n S→ Q for all i :S: n so that for all i < n 

Ji+1 ::2 Ji and Jn is bounded by g U Jn-Now define fれ十1by performing the same 
procedure as described for Jo, except that Tn+1 is replaced by Tn十1U dom(f砂and

JP is replaced with fn-!hen we define Jr:_+1 exactly as in Case I, using fn in placed 

of JP and then extend Jn to a function Jn+1 : Tf3n+l n s→ Q bounded by g U Jn+1 
via the inductive assumpt~on. 

Finally let Jq = Un<w Jn U J n・This function is then defined on all of T:c:;13 and 
keeps all requisite promises and is bounded by g so we're done. ロ

Next I show how to add promises. Given two promises r and w I write w C::: r 
to mean that /3(f) 2: (3(w) and for all'Y 2: /3(f) we have that w('Y) C::: r('Y). Also, I 
will write r U w to mean the promise△ so that /3(△） = max{f3(r), (3(w)} and for 
all'Y 2: /3(△）△ b) = r('Y) u w('Y). 

Lemma 3.3. Suppose p E IP is oJ height a, f3 2: a and g: T13→ Q is a finite Junction 
bounding JP. Let w 9 be a promise so that (3(w 9) 2: f3 and Jar all H E w 9((3(w 9)) iJ 
h E H then Jar each t E dom(h) t「f3is in the domain oJ g and h(t) 2: g(t「/3).
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Then there is an extension q ::; p so that r q ;;;:? w 9. Moreover q can be chosen to 
have any height greater than or equal to a. 

Following [2, Lemma 4.4] we refer to the gin the above lemma as a basis for the 
promise W 9 and say that g generates W 9. 

Proof. Note that the promise恥 isconstructed so that any condition bounded by 
g keeps it. Thus in fact q = (! か片 U叱） is as needed. For the moreover part, now 
use Lemma 3.2 to strengthen further. ロ

Intuitively the previous lemma states that if g bounds some condition, it's not 
dense to insist that extensions are not bounded by g. In particular, we can always 
avoid growing above g. This is key for the proof of properness and it's from here 
that the need for promises stems. To prove that lP'is proper I will need the following 
lemma. 

Lemma 3.4. Let 0 be sufficiently large and let M --< H,。becountable containing 
T, S, JP', etc. Let p E『nM and let 8 = M n w1. Note that M n T = T8. Let D E M 
be a dense open subset of lP'and let h : T8→ Q be a finite function bounding f P. 

Then there is an extension q E D n M so that fq is also bounded by h. 

Implicit in the proof below is the following fact which follows from elementarity: 
for any 0 sufficiently large, and M --< H0 with S, T E M, Sn M is unbounded in 
TnM. 

Proof. Suppose the statement of the lemma is false and let M, T, S, p, D, h etc be a 
counter example. Let me fix that ht(p) = a. Note that if qさpand q E DnM, then 
q is not bounded by h. I will reach a contradiction by showing how to add a promise 
top as in Lemma 3.3 which ensures that any further extension is bounded by h. 
Let us enumerate the domain of h by t h h o, …, tn-l・Also, without loss, assume that all 
projections of each tf project into S since otherwise they do not matter. Since Tis 
normal, there is a least level 1 > a so that for all i < j < n the projections tf「1
and tJ「1in the sense of S (!!) are distinct. Let h, be the projection of h to this 
level. Note that h, E M (since it's finite), bounds fp and if q::; pis in Mn  D then 
q must not be bounded by h, since otherwise we would contradict our assumption. 
Thus we obtain that MF  "¥/q::; pif q ED  then q is not bounded by h,". Note by 
elementarity this is also true in V. Note also, that since the fact that I was least 
was not used, we could have chosen any 11 2 1 and the statement above would have 
held with I replaced by 11. Hence M thinks there are cofinally many 11 below 8 so 
that h,, is as in the statement M models above (this uses the fact mentioned before 
the start of this proof). 

Now, I want to use the property described of h, to define a collection of n-tuples 
of S. Let's say that an n-tuple s =〈so,…, Sn-l〉ofelements of S, all of the same 
heightミ1,is bad if its projection to level I is dom(hサ(saysi「'Y= tf「1)and 
the function加whosedomain is sand, to each si assigns the rational h(t?) bounds 
fp but is such that there is no q ::; p so that q E D and f q is bounded by加 In
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particular the domain of加 isbad for each 1'~'Y, but other sets, which are not 
the projection of the domain of h may also be bad. Let B~sn be the collection 
of all bad tuples. For simplicity we let B(i) be the collection of all bad tuples on 
level i < w1. Note that since M F "{ i <叫 IB(i) # 0} is unbounded" this is 
true in V. Also B is closed downwards above'Y in the sense that ifs E B(j) and 
'Y < i < j then s f i E B(j). If函，函 ESn let's write sj゚ こ函 ifthe elements of 
So are componentwise below the elements of函onthe tree. We define recursively 
B。=B, Bi+1 = {s E Bi I for uncountably many levels jヨ翌 EB心）s :s: 翌},and 
B入=ni<入凡 for入limit.Note that dom(hサEBi for every i. Also observe by 
construction that if i :S: j then Bi ;;;? B1. Let B00 =凡 wherep is the least so that 

BP= Bp+l・

Claim 3.5. Every s E B00 has two disjoint extensions under'.S in B00. 

This is essentially [8, Lemma 16.18], modified to the current context. 

Proof of Claim. Suppose not and let s E B00 be a counter example. I will use s to 
define a branch through S contradicting the fact that S is Aronszajn. Let W こBoo
be the collection of all i1 extending s and for each i < w1 let W (i) denote the set 
of tuples召EW of height i. Since every element of B00 has extensions on cofinally 
many levels, W has elements on all levels above the height of瓦 Let'sdenote this 
height by'Ys・Finally note that since we're assuming that s does not have disjoint 
extensions, given any匁く i< j < w1 we have that if? E W(i) and汐 EW(j) 

then it must be that there is a k, k'< n for which zl f i = 4,. 
Let U be an ultrafilter on W all of whose elements contains tuples unboundedly 

high up in S. For any x E S and k < n let Yx,k be the collection of all elements 
z E W so that x is comparable with the kth element of z. Notice by the above 

assumption, we get that w = Ul<n uk<n y; 吋，kwhere ? E W(i) for any i E (和叫）．
Since U is an ultrafilter, for any such i we must have that there is anし<n and a 

ki < n so that Y, 生ふ EU. But then for some k the set I= { i E bs, 団)lki=k}is 

uncountable. I claim that zfi'.Ss名forany i < j E I. To see this, note that since 
yi n Y~E U so there is a召EW of height入inthis intersection for some j <入
z'k 
li'Zり,k

and hence zf., z{'.Ss咋 sozf,, zf3 are comparable. But now the set { zf. I i E I} must 
generate a co final branch in S, contradiction. ロ

By bootstrapping the above argument, there is a level i so that B00(i) has infinitely 
many disjoint bad tuples. Let i be such a level. But now such a level generates a 
promise w whose basis is h,: Such a promise is in M, by running the argument 
above in M, and moreover, p keeps this promise so we can add it to p (in M). 
Concretely, the promise W is defined by looking at the set { hす I釘projectsinto A} 
for A~B00 (i) an infinite pairwise disjoint set and considering requirements at all 
higher levels projecting to this. Therefore there is a p':S: (fか応 Uw) in M by 
Lemma 3.3. But now let q'.Sp'be any element in D n M. Then q keeps the promise 
W but this contradicts the definition of a bad function. ロ
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Lemma 3.6. IP is proper. In fact, IP is dee-complete for some simple completeness 
system IDJ. 

Proof. Work in the setting of Lemma 3.4. I want to prove the existence of a master 
condition for M. Let〈DnIn< W〉bean enumeration of the dense open subsets of 
IP in M. Let p E IP n M and let〈tiI i < w〉enumeratethe elements of乃 which
project into S and let〈TkI k < w〉enumerateall the finite subsets of T6. I want to 
define a sequence p 2: Po 2: P1 2: …2'. Pn 2'. …so that Pi E Di n M for all M and 
there is a condition q extending the union of the Pi's. Such a q defines a generic 
over M. The idea is to use Lemma 3.4 w-many times to make sure that the union of 
an M generic filter is bounded and hence can be extended into a further condition. 
I will then extract from the proof a definition of the generics bounded by such a q 
and this will be used to define a simple completeness system as needed. 

Fix an enumeration in order type w of all triples ez = (mz, nz, kz) so that mz, nz, kz E 

w and the first occurrence of m in the first coordinate is after the m th element of the 
enumeration and each such triple appears infinitely often. Now, using Lemma 3.4, 
recursively define conditions Pi十1and functions hi satisfying the following conditions: 

i) Pi+l ::; Pi and Pi+l E Di+l so that we ensure that Pi+l fulfills thenりrequirement
of Pm; with respect to Tk; (this uses Lemma 3.4). Let tみ+ibe the node of the tree 
that we bound Pi+l by in this step. We can assume mduct1vely that t・ 

み+1is not in 
the domain of hi. 

ii) hi has a finite domain consisting of all t。,…, ti and tj0, …, tj, which project into 
S, bounds Pi and is at most (f Pi (tJi I ht(pi)) + htJ) /2 where htJ, is the ratio叫 in

the range of the n戸requirementof r Pi (15) which corresponds to tj, and was chosen 
in the ith step of the process. 

iii) hi+l is a finite function from九 toQ bounding f応 1 which extends hi to 
include in its domain ti+l and tj叶 1 if these project into S (note potentially these 
nodes are the same). 

It's clear by what we have done that such a sequence can be constructed and 
generates a generic filter on M. I need to show that there is a lower bound, q. Note 
that Un<w f Pn is a partial specializing function defined on T <6. I claim that we can 
extend it to a function defined on乃 whichkeeps the promises Un<w「Pn"Indeed, 
let q(ti) = hふ） • This is defined, since we insisted that ti E dom(h』.Also, since 
hi bounded all Pi, q(t』isat least the supremum of the values of f n (ti「(3)for all 
f3 < 15. What needs to be checked is that fq actually keeps all the promises in the 
p/s. This is what was planned for though. If H E  fq(t5) then HE  rPi(tS) for some i 
and for any T~T0 finite, there was a stage where we ensured that fq was bounded 
by some加 whichincluded being bounded by some H on a node disjoint from T. 
Then, from that stage on, since all Pj's were bounded by this h, we get that f q keeps 
that instance of the promise. 

Thus we have shown that q is an (M, IP)-master condition so IP is proper. It 
remains to show that it is in fact dee-complete. To do this, we need some simple 
way of coding generics of countable models with lower bounds such as those found 
in the previous paragraph. To this end, I start by defining the types of codes that 
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are needed. Given a sufficiently large 0 and a countable transitive CY : M -< H0 so 
that CY(匝，T,S) = IP', T, S, let us say that an element u E Hw1 codes a suitable witness 

for可 and匝ifu codes a pair〈B,c〉sothat: 

(1) Bis a countable set of branches through訂 nT=乃 withc5 = (叫訂which
intersect S (so Bこ乃 andhence can be coded by a real). 

(2) C : 匝→ P(訂） is a function so that c(p) is a countable set of requirements 
of height c5 which are fulfilled by fp_ and project to the promise r i5・In other 
双ords,for each a < 8 and each H E r P(a) there is a H E c(p) so that 

H={h「aI h EH}. 

Note that coding a suitable witness is definable in Hw1. Now, if可-<H。and

u=〈B,c〉codesa suitable witness for訂 and『 andp E Jli5 n訂 letus say that 

a『-genericGぅpover訂 isgood for u if there is a function f : B→ (Q so that 
U臼い{f}is a partial specializing function (restricted to the elements of Tan S 

determined by B) satisfying the requirements c(p). Finally if M =が刃 thena 
IP'-generic G over M is good for u if G is generated by CY "G for a G which is good 
for u. Note that if u =〈B,c〉issuch that B contains the set of branches with 
upperbounds in T6 n S and G is good for u then G has a lower bound: the pair 
consisting of the partial specializing function ui'jEG rY(jq) u {f} and th e promise 

generated by c(p). Also, good generics exist for every condition and model by the 
argument for properness in the first half of this proof. 

Finally we can define our completeness system by letting IDJ(訂，尼p)be the set of 

Au for u E Hw1 where if u codes a suitable witness for訂 and匝thenAu is the set 
of generics which are good for u and if u does not code a suitable witness then Au is 
all generics. This is definable and satisfies the conditions of a completeness system. 
The only thing that is not immediately clear is the countable closure. This is why 
promises consist of countable sets of requirements: Suppose that {〈Bi,Ci〉Ii<w} 
all code suitable witnessess, B = LJ. Bi and let c be the function sending p→ i<w 

ui<w Ci (p). Then u =〈B,c〉isa code for a suitable witness and any generic that is 
good for u is good for all〈Bぃ叫 henceni<w A〈B,c,〉isnonempty. 

ロ
Finally I prove that『isa-proper for all a < w1・

Lemma 3. 7. Let a < w1 and let N =〈Nili:s;a〉bea tower of length a for 
Ni -< H0, 0 sufficiently large with IP'E Ni。.Then for any p E Ni。nIP'there is a qさP
which is (Ni, IP')-generic simultaneously for every i :s; a. 

Proof. If a is a successor ordinal, this is just the proof of properness given above 
so assume that a is a limit ordinal. Pick an increasing sequence〈anIn< w〉with
supn<wan = a. Let 8 = w1 n Na. One can perform the same proof as when it was 
proved that IP'was proper, except now we insist (via the inductive assumption) that 
Pi be (Nj, IP')-generic for all j < i and Pi E Ni as opposed to Pi being in some specified 
dense open. Since, by the definition of a tower〈Njlj<i〉ENi this is possible 
(given the sequence, by elementarity, Ni can find a master condition). Moreover, 
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since, again by definition of a tower, the sequence of models is continuous and in 

particular, Na = Un<w心 theset { r E Na n ]ID IヨiPi ::; r} is (Na, JPl)-generic. The 
only thing to be careful about is that the union of the p/s can be extended to some 
q of height o. However, by iteratively applying Lemma 3.4 as in the previous proof 
this is easily accounted for. ロ

Therefore ]ID is dee-complete and <w1-proper, thus proving Theorem 1.1. We get 
as an immediate corollary the following. 

Corollary 3.8. Assume DCFA. Every wide Aronszajn tree which embeds into an 
w1 -tree is special. 

We can also iterate this forcing with countable support to obtain the following 
(with no consistency strength). Note that under CH the forcing notion ]ID has the 
N2-c.c. since any two conditions with the same partial specializing function are 
compatible. 

Corollary 3.9. It's consistent with CH that all wide Aronszajn trees which embed 
into an w1 -tree are special. 

I will give a concrete application of such a tree in the next section. Let me note 
first that the condition is not trivial: there are wide Aronszajn trees in ZFC which 
cannot be embedded into w1 trees. 

Lemma 3.10. (Essentially Todorcevic, see [11, Definition 3.2]} There is an (wぃ翌叫
Aronszajn tree which is ZFC-provably non-special, and cannot be specialized by any 
forcing not adding reals. 

Proof. Let E i::;;; 凸 bestationary co-stationary and let T(E) be the tree of attempts 
to shoot a club through E. In other words, elements of T are closed, bounded, 
countable initial segments of E ordered by end extension. This poset is well known 

to be a-distributive, hence the tree has height N1. Also, every element is a countable 
set of ordinals hence it can be coded by a real and therefore the tree has width 2N。.So 
we conclude that T(E) is an (w1, ::;2N。)-Aronszajn tree. However, it can't be special, 
since, as mentioned before, forcing with this tree does not add reals, so in particular, 
w1 is preserved. To see that it remains non-special in every forcing extension not 
adding reals,, note that, if ]ID does not add reals then the reinterpretation of T(E) in 

戸 isjust T(E) so it's still a-distributive and hence it must still not be special. ロ

Putting together this lemma and Theorem 1.1 we conclude the following odd result 
which may be of independent interest. Note that the theorem below is provable in 
ZFC. 

Theorem 3.11. For any stationary E i::;;; w1 the tree T(E) cannot be embedded into 
any w1 -tree. 

Proof. Suppose T(E) could be embedded into an wi-tree. Then, by forcing with the 
forcing from Theorem 1.1 we could make T(E) special without adding reals. But 
this contradicts Lemma 3.10. ロ
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Corollary 3.12. DCFA is consistent with the existence of non-special trees of size 

N1・

Proof. If CH holds, which it does in the natural model of DCFA, then the tree T(E) 
witnesses the corollary. ロ

4. KUREPA TREES 

I now use the forcing from the previous section to provide an application of DCFA. 
First let me note the following, which is Theorem 7.4 of [5] coupled with the remarks 
preceeding its statement on page 949 of the same article. 

Lemma 4.1. Every essentially special tree has at most N1 many cofinal branches. 

Proof. Suppose T is an essentially special tree as witnessed by f : T→ (Q. Let B 
be the set of uncountable branches through T. From f : T→ (Q we can define an 
injection g : B→ T as follows. For each b E B by pigeonhole there is some r E (Q 
so that {t Eb I f(t) = r} is cofinal in b. Pick such an rand let g(b) be the least 
t E b with f(t) = r (or indeed any such t). By the definition off, if b1ヂ的 then
g(b1) # g(b2). To see this, suppose that g(bリ=g(b2) = s, let f(s) = r and let 
t E b1 ¥ b2 with f(t) = r and u E的¥b1 with f(u) = r. Such t and u exist by 
the assumption on r. But this is a contradiction since we have that s :Sr t, u with 
f(s) = f(t) = f(u) and t and u are incomparable. Therefore g is an injection from 

B into T so IBI :S N1・ ロ

Theorem 4.2. Under DCFA all w1 -trees are essentially special and hence there are 
no Kurepa Trees. 

Note that [10, Chapter VII, Application G] proves the same thing under the 
additional assumptions that 2N。=N1 and 2N1 =応 Whatis new is that the 
cardinal arithmetic is unnecessary. The proof also gives more information since 
it shows that certain wide trees are special under DCFA. The proof of Theorem 
4.2 follows Baumgardner's original proof from PFA, however using the poset from 
Theorem 1. 1. The argument is sketched with the reader referred to [5, Section 7] 
for more details. 

Proof. Assume DCFA and let T be an w1-tree. Let入：：：：： N2 be the number of branches 
through T. First, force with Col(入， Ni),the <T-closed forcing to collapse入toN1. Note 
that, being <T-closed, this is dee-complete and <w1-proper. Work in the collapse 
extension. As noted in Lemma 7.11 of [5]び-closedforcing won't add uncountable 
branches to a tree of width < 2N。hence,in particular, there are no new branches 
added to to T in the extension so there are now at most N1 many branches. 

I use the following claim, due to Baumgartner, see [5, Lemma 7.7]. 

Claim 4.3. There is an uncountable subtree S~T with no uncountable branches 
and, by specializing it, we obtain that T is essentially special i.e. there is an f : 
T→ (Q which is {weakly) increasing on chains and for all s, t, u E T ifs :Sr t, u 
and f(s) = f(t) = f(u) then t and u are comparable. 
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Thus, by applying the specializing forcing lP'r,s from Theorem 1.1 to S and working 
in that extension we have that 5 is special and so Tis essentially special. Now, finally 
applying DCFA we can pull back to V and find an f : T→ Q witnessing that Tis 
essentially special, so we're done. 

ロ
In contrast with the case of PFA, note that Corollary 3.12 this result cannot be 

improved to trees of width吐

5. CARDINAL CHARACTERISTICS AND OPEN PROBLEMS 

The previous sections suggest some new directions for studying wide trees, par-
ticularly in connection with cardinal characteristics. While I leave an indepth in-
vestigation of these ideas for future research I want to finish this note by recording 
some easy observations and connecting them back to what has been shown. 

The main observation is that the behavior of trees is as much connected to their 
width and cardinality as to their height. This is obscured by the fact that the ccc 
forcing to specialize a tree works equally well regardless of the width of the tree. 
However, the trees of the form T(E) suggest that there is somethin~more subtle 
going on with regards to specializing wider trees. The following cardmals attempt 
to measure this. 

Definition 5.1. (1) ,st, the ,special tree number, is the least cardinal入suchthat 
there is a non-special (w1, ~.X)-Aronszajn tree of cardinality入．

(2) no, the no new reals number, is the least cardinal入ofan (w1, ~.X)-Aronszajn 
tree of cardinality入whichcan be forced to be special without adding reals. 

Let's make some easy observations. 

Ob servat10n 5.2. N1 < st< no< C 

Proof. That ,st is uncountable is essentially by definition. To see that ,stさ noit 
suffices to note that any special tree is obviously specializable without adding reals 
(by trivial forcing). Finally Todorcevic's tree T(E) defined above witnesses that 
there is always a tree of size continuum that cannot be specialized without adding 
reals. ロ

I do not know exactly what these cardinals can be. It's clear that ,st can remain 
N1 in models where many other cardinal characteristics are big since nearly all 
known cardinal characteristics can be made to have size continuum (-=J Nリwhile
preserving the existence of a Souslin tree since we can make all cardinals (except m) 
in the Cichon and Van Douwen diagrams large using CY-linked forcing. The following 
however is less clear. 

Question 1. What provable bounds exist between known cardinal invariants and st? 
For instance, is it provable that ,st~Z,? 

The number no seems even more mysterious. I do not even know if it can consis-
tently be less than the continuum. 
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Question 2. Is it consistent that no < c? Is it consistent that st< no? 

A potentially easier question, for which I conjecture the answer is "yes" is the 
following: 

Question 3. Does DCFA imply that no = c? 

Finally let me ask about extensions of the main theorem of this note. 

Question 4. Are there (in ZFC) trees which can be specialized without adding reals 
but are not embeddible into w1-trees? 

The use of forcing notions which specialize wide trees is key in several impor-
tant applications of PFA including failure of various square principles, and the tree 
property on w2. Therefore a natural question is whether the forcing IPr,s can be 
substituted in in these arguments. 

Question 5. What other consequences of DCFA (possibly with some additional car-
dinal arithmetic assumption) can be obtained using『r,s?Does DCFA + ,CH imply 
the tree property on w2? Does it imply the failure of weak square on wげ
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