Title	A note on the asymptotic behavior of the twisted A lexander polynomials of \＄5＿2\＄knot（Intelligence of Low－dimensional Topology）
Author（s）	A so，A iri
Citation	数理解析研究所講究録（2020），2163：89－95
Issue Date	2020－07
URL	http：／hdl．handle．net／2433／261443
Right	Departmental Bulletin Paper
Type	publisher
Textversion	

A note on the asymptotic behavior of the twisted Alexander polynomials of 5_{2} knot

Airi Aso
Graduate School of Science, Tokyo Metropolitan University

1 Introduction

R. M. Kashaev conjectured that the asymptotics of the Kashaev invariants of a hyperbolic link gives the hyperbolic volume of its compliment [Kas]. H. Murakami and J. Murakami generalized Kashaev's conjecture for the N-dimensional colored Jones polynomial $J_{N}(K ; q)$.

Conjecture 1 (Volume conjecture $[\mathrm{MM}]$). The equality

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \mid J_{N}(K ; \exp (2 \pi \sqrt{-1} / N) \mid}{N}=\operatorname{Vol}\left(S^{3} \backslash K\right)
$$

would hold for any knot K, where $\operatorname{Vol}\left(S^{3} \backslash K\right)$ is the hyperbolic volume of $S^{3} \backslash K$.
H. Murakami, J. Murakami, M. Okamoto, T. Takata, and Y. Yokota proposed the following generalization of volume conjecture.

Conjecture 2 (Complexification of volume conjecture [MMTOY]). The equality

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log J_{N}(K ; \exp (2 \pi \sqrt{-1} / N)}{N}=\operatorname{Vol}\left(S^{3} \backslash K\right)+2 \pi^{2} \sqrt{-1} \mathrm{CS}\left(S^{3} \backslash K\right) \quad \bmod \pi^{2} \sqrt{-1} \mathbb{Z}
$$

would hold for any knot K, where $\operatorname{CS}\left(S^{3} \backslash K\right)$ is the Chern-Simons invariant of $S^{3} \backslash K$ with respect to some representation $\pi_{1}\left(S^{3} \backslash K\right) \rightarrow S L(2 ; \mathbb{C})$.

On the other hand, H. Goda showed the following relationship between hyperbolic volume and the twisted Alexander polynomials.
Theorem 3 ([Go]). Let K be a hyperbolic knot in the 3 -sphere. Then

$$
\lim _{n \rightarrow \infty} \frac{4 \pi \log \left|\mathcal{A}_{K, n}(1)\right|}{n^{2}}=\operatorname{Vol}\left(S^{3} \backslash K\right),
$$

where $\mathcal{A}_{K, 2 k}(t):=\frac{\Delta_{K, \rho_{2 k}}(t)}{\Delta_{K, p_{2}}(t)}$ and $\mathcal{A}_{K, 2 k+1}(t):=\frac{\Delta_{K, \rho_{2 k+1}}(t)}{\Delta_{K, p_{3}}(t)}$.

We would like to study a complexification of the left hand side of the equality in Theorem 3, i.e.

$$
\lim _{n \rightarrow \infty} \frac{4 \pi \log \mathcal{A}_{K, n}(1)}{n^{2}}
$$

To this end, we obsereve the asymptotic behavior of

$$
\frac{4 \pi \log \mathcal{A}_{K, n}(1)}{n^{2}}
$$

for 5_{2} knot by the help of Mathematica, and conjecture their limit value. At the time of my talk, this observation was in progress and a serious problem was pointed out by some audiences. We could fix the problem by considering a new operation, and we obtained a new nontrivial result for the complexification after the talk.

2 Main result of my talk

Let K be the 5_{2} knot. Then the results of the computation of

$$
\frac{4 \pi \log \mathcal{A}_{K, n}(1)}{n^{2}}
$$

for some natural number n are given as follows:

$$
\begin{array}{c|c}
n=4 & 1.785532667455748 \ldots+(0.48203336590870277 \ldots) i \\
n=5 & 1.9837366127137959 \ldots+(0.4391339851110024 \ldots) i \\
n=6 & 2.455852749246374 \ldots+(0.6980605748575335 \ldots) i \\
n=7 & 2.3613041487662985 \ldots-(0.7896254033565749 \ldots) i \\
n=8 & 2.566462552049248 \ldots-(0.11818019778518644 \ldots) i \\
n=9 & 2.5534559249168067 \ldots+(0.2655374217922101 \ldots) i \\
n=10 & 2.682769962219264 \ldots-(0.17418347408994717 \ldots) i \\
n=11 & 2.6439403339313885 \ldots+(0.18595103941561894 \ldots) i \\
n=12 & 2.719664770570517 \ldots-(0.020732353458557916 \ldots) i \\
n=13 & 2.6943772876900085 \ldots-(0.17140452705232556 \ldots) i \\
n=14 & 2.7512127179488877 \ldots+(0.18457327508837376 \ldots) i \\
n=15 & 2.729097097750846 \ldots+(0.09590995554889228 \ldots) i \\
n=16 & 2.7683209978452954 \ldots+(0.07791922234246355 \ldots) i \\
n=17 & 2.7501887958616393 \ldots+(0.06184125633682704 \ldots) i \\
n=20 & 2.7900248250429374 \ldots-(0.04560219657696698 \ldots) i \\
n=30 & 2.8111789937618563 \ldots+(0.03684965457608568 \ldots) i
\end{array}
$$

By these computations, we conjectured that

$$
\lim _{n \rightarrow \infty} \frac{4 \pi \log \mathcal{A}_{K, n}(1)}{n^{2}}=2.82812 \ldots=\operatorname{Vol}\left(S^{3} \backslash K\right)
$$

3 A new result for the complexification

It is pointed out that the results of the above computation is trivial since the imaginary parts of $\log \mathcal{A}_{K, n}(1)$ are given in $[-\pi, \pi]$ by Mathematica and

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Im}\left(\log \mathcal{A}_{K, n}(1)\right)}{n^{2}}=0
$$

Hence we tried a new operation to obtain the imaginary part after the talk.
If there exist real numbers α and β such that

$$
\lim _{n \rightarrow \infty} \frac{4 \pi \log \mathcal{A}_{K, n}(1)}{n^{2}}=\alpha+i \beta
$$

then we should have

$$
\lim _{n \rightarrow \infty} \frac{\pi}{2} \log \frac{\mathcal{A}_{K, n-2}(1) \mathcal{A}_{K, n+2}(1)}{\left(\mathcal{A}_{K, n}(1)\right)^{2}}=\alpha+i \beta
$$

Hence, we tried to compute

$$
\frac{\pi}{2} \log \frac{\mathcal{A}_{K, n-2}(1) \mathcal{A}_{K, n+2}(1)}{\left(\mathcal{A}_{K, n}(1)\right)^{2}}
$$

for some natural numbers n, and we obtained the following computations:

$$
\begin{array}{c|c}
n=6 & 2.00009 \ldots+(3.60568 \ldots) i \\
n=7 & 3.12694 \ldots+(3.86417 \ldots) i \\
n=8 & 3.52256 \ldots+(2.85486 \ldots) i \\
n=9 & 2.7451 \ldots+(2.46852 \ldots) i \\
n=10 & 2.41642 \ldots+(3.03596 \ldots) i \\
n=11 & 2.79327 \ldots+(3.31223 \ldots) i \\
n=12 & 3.03141 \ldots+(3.09112 \ldots) i \\
n=13 & 2.90802 \ldots+(2.88221 \ldots) i \\
n=14 & 2.73082 \ldots+(2.94575 \ldots) i \\
n=15 & 2.75758 \ldots+(3.08777 \ldots) i
\end{array}
$$

By the above results, now we conjecture that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{4 \pi \log \mathcal{A}_{K, n}(1)}{n^{2}} & =2.82812 \ldots+(3.02413 \ldots) i \\
& =\operatorname{Vol}\left(S^{3} \backslash K\right)+2 \pi^{2} \sqrt{-1} \operatorname{CS}\left(S^{3} \backslash K\right) \quad \bmod \pi^{2} \sqrt{-1} \mathbb{Z}
\end{aligned}
$$

4 How to calculate

For the 5_{2} knot K, its knot group $G(K)=\pi_{1}\left(S^{3} \backslash K\right)$ is given by

$$
G(K)=\langle a, b \mid b[a, b][a, b]=[a, b] a\rangle
$$

Then its holonomy representation $\rho: G(K) \rightarrow S L(2 ; \mathbb{C})$ is given by

$$
\rho(a)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \rho(b)=\left(\begin{array}{cc}
1 & -\frac{1}{x^{2}} \\
0 & 1
\end{array}\right)
$$

where $x^{3}-x-1=0$.

4.1 Computation of ρ_{n}

It is known that the pair of the vector space

$$
V_{n}=\operatorname{span}_{\mathbb{C}}\left\langle x^{n-1}, x^{n-2} y, \ldots, x y^{n-2}, y^{n-1}\right\rangle \subset \mathbb{C}[x, y]
$$

and the the action of $A \in S L(2 ; \mathbb{C})$ expressed as

$$
A \cdot p\binom{x}{y}:=p\left(A^{-1}\binom{x}{y}\right)
$$

gives an n-dimensional irreducible representation $\sigma_{n}: S L(2 ; \mathbb{C}) \rightarrow S L(n ; \mathbb{C})$, where $p\binom{x}{y}$ is a homogeneous polynomial of degree $n-1$. Then, composing the holonomy representation ρ with σ_{n}, we obtain the representation

$$
\rho_{n}: G(K) \rightarrow S L(n ; \mathbb{C})
$$

Example 4. By $\rho(a)=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, we have

$$
\left(\rho_{3}(a)\right)\left(p\binom{x}{y}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdot p\binom{x}{y}=p\binom{x}{y-x} .
$$

If we write $p\binom{x}{y}=\alpha x^{2}+\beta x y+\gamma y^{2}(\alpha, \beta, \gamma \in \mathbb{C})$, then we have

$$
\left(\rho_{3}(a)\right)\left(p\binom{x}{y}\right)=(\alpha-\beta+\gamma) x^{2}+(\beta-2 \gamma) x y+\gamma y^{2} .
$$

Hence we have

$$
\rho_{3}(a)=\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right) .
$$

Lemma 5. Write $\rho(s)^{-1}=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ for some $\alpha, \beta, \gamma, \delta \in \mathbb{C}$. Then

$$
\rho_{n}(s)=\left[s_{i j}\right]=\left[\sum_{k} \frac{(n-j)!(j-1)!\alpha^{k} \beta^{n-j-k} \gamma^{n-i-k} \delta^{i+j-n+k-1}}{k!(n-j-k)!(n-i-k)!(i+j-n+k-1)!}\right]
$$

where

$$
\begin{cases}0 \leq k \leq n-j & i \leq j, n+1 \leq i+j \\ 0 \leq k \leq n-i & j \leq i, n+1 \leq i+j \\ n-i-j+1 \leq k \leq n-j & i \leq j, i+j \leq n+1 \\ n-i-j+1 \leq k \leq n-i & j \leq i, i+j \leq n+1\end{cases}
$$

Since we have $\rho(a)=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$,

$$
A_{n}:=\rho_{n}(a)=\left[a_{i j}\right],
$$

where

$$
a_{i j}= \begin{cases}\frac{(j-1)!}{(i-1)!(j-i)!}(-1)^{j-i} & i \leq j, \\ 0 & i>j .\end{cases}
$$

Similarly, since $\rho(b)=\left(\begin{array}{cc}1 & -\frac{1}{x^{2}} \\ 0 & 1\end{array}\right)$, we have

$$
B_{n}:=\rho_{n}(b)=\left[b_{i j}\right],
$$

where

$$
b_{i j}= \begin{cases}0 & i<j \\ \frac{(n-j)!}{(n-i)!(i-j)!} x^{-2(i-j)} & i \geq j\end{cases}
$$

Then, for simplicity, we put

$$
A B_{n}:=\left[A_{n}, B_{n}\right]=A_{n} B_{n} A_{n}^{-1} B_{n}^{-1}
$$

4.2 Computation of $\mathcal{A}_{K, n}(t)$

Recall that

$$
\begin{aligned}
\mathcal{A}_{K, 2 k}(t) & :=\frac{\Delta_{K, \rho_{2 k}}(t)}{\Delta_{K, \rho_{2}}(t)}, \\
\mathcal{A}_{K, 2 k+1}(t) & :=\frac{\Delta_{K, \rho_{2 k+1}}(t)}{\Delta_{K, \rho_{3}}(t)} .
\end{aligned}
$$

Definition 6. Let K be a knot in S^{3} and

$$
G(K)=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{n-1}\right\rangle
$$

the knot group of K. Then, the twisted Alexander polynomial of K associated to a representation $\rho: G(K) \rightarrow S L_{n}(\mathbb{F})$ is given by

$$
\Delta_{K, \rho}(t)=\frac{\operatorname{det} A_{\rho, k}}{\operatorname{det}\left[(\rho \otimes \mathfrak{a}) \circ \phi\left(x_{k}-1\right)\right]}
$$

where $\mathfrak{a}: \mathbb{Z} G(K) \rightarrow \mathbb{Z}\left[t, t^{-1}\right]$ is the abelianization of the group ring $\mathbb{Z} G(K)$ and $\phi: \mathbb{Z} \Gamma \rightarrow$ $\mathbb{Z} G(K)$ is the natural ring homomorphism of the free group Γ generated by x_{1}, \cdots, x_{n}. We put

$$
A_{i, j}=(\rho \otimes \mathfrak{a}) \circ \phi\left(\frac{\partial r_{i}}{\partial x_{j}}\right),
$$

where $\frac{\partial}{\partial x_{j}}: \mathbb{Z} \Gamma \rightarrow \mathbb{Z} \Gamma$ denotes the Fox derivative with respect to x_{j}. Then, $A_{\rho, k}$ is the $d(n-1) \times d(n-1)$ matrix defined by

$$
\left(\begin{array}{cccccc}
A_{1,1} & \cdots & A_{1, k-1} & A_{1, k+1} & \cdots & A_{1, n} \\
\vdots & & \vdots & \vdots & & \vdots \\
A_{n-1,1} & \cdots & A_{n-1, k-1} & A_{n-1, k+1} & \cdots & A_{n-1, n}
\end{array}\right)
$$

Since

$$
G(K)=\langle a, b \mid b[a, b][a, b]=[a, b] a\rangle,
$$

we have

$$
\Delta_{K, \rho_{n}}(t)=\frac{N_{n}}{D_{n}}
$$

where

$$
\begin{aligned}
& N_{n}:=\left|-t^{-1} B_{n}^{-1}\left(A B_{n}+E\right)+t^{0}\left(B_{n}^{-1} A B_{n} B_{n}+E+A B_{n}\right)-t^{1}\left(A B_{n}+E\right) A B_{n} B_{n}\right|, \\
& D_{n}:=\left|t A_{n}-E\right| .
\end{aligned}
$$

Computing N_{n} and D_{n} by the help of Mathematica, we obtained $\mathcal{A}_{K, n}(t)$ for $n=4,5, \cdots, 17$, 20, 30 .

5 Acknowledgement

The author would like to thank Professor H. Akiyoshi and Professor J. Murakami for pointing out a serious problem of the computation in Section 2.

References

[Kas] R. M. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys., 39(1997), 269-275.
[MM] H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math., 186 (2001), 85-104.
[MMOTY] H. Murakami, J. Murakami, M. Okamoto, T. Takata and Y. Yokota, Kashaev's conjecture and the Chern-Simons invariants of knots and links, Experiment. Math., 11 (2002), 427-435.
[Go] H. Goda, Twisted Alexander invariants and hyperbolic volume, Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 7, 61-66.

Depertment of Mathematical sciences
Graduate School of Science
Tokyo Metropolitan University
1－1 Minamiohsawa，Hachioji－shi，Tokyo，192－0397 JAPAN
E－mail address：aso－airi＠ed．tmu．ac．jp

