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Abstract 

In this paper, we consider the estimation for the inverse matrix of a high-dimensional 
covariance matrix under the strongly spiked eigenvalue model. One of the well-known 
estimation methods is the principal orthogonal complement thresholding (POET) given 
by Fan et al. [5]. We show that the POET has consistency properties only under several 
severe conditions in high-dimensional settings. In order to overcome the difficulty, we 
consider applying the noise-reduction (NR) method given by Yata and Aoshima [8, 9] 
to the POET. We propose a new estimation of the inverse covariance matrix called the 
NR-POET. We compare the performance of the NR-POET with the POET by several 
simulations. 

1 Introduction 

One of the features of high-dimensional data is that the data dimension d is high, however, 

the sample size n is low. This is the so-called "HDLSS" or "large d, small n" data. Such 

data situations appear in many fields of modern science such as genetic microarrays, medical 

imaging, text recognition, finance, chemometrics, and so on. For HDLSS data, the sample 

covariance matrix does not have its inverse matrix. The estimation for the inverse matrix of a 

covariance matrix is a crucial issue for high-dimensional data analyses, especially for pathway 

analysis and graphical modeling. 

Bickel and Levina [4] gave a thresholding estimator for the inverse matrix of a covari-

ance matrix when the covariance matrix is sparse and its eigenvalues are bounded. However, 

such sparsity conditions are severe for actual data and often out of touch with reality. In 

fact, Aoshima and Yata [1, 2, 3] and Yata and Aoshima [8, 9] showed that the first sev-

eral eigenvalues diverge as d grows and the bounded-eigenvalues condition is quite strict for 

microarray data sets. Fan et al. [5] proposed a different thresholding estimator called the 

principal orthogonal complement thresholding (POET) under the assumption that the first 
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several eigenvalues diverge rapidly at the rate of d. Unfortunately, the assumption required 

in the POET cannot express the structure of actual data. 

Suppose we have a d x n data matrix X = [四...'叫， whereXi, i = 1, ... ,n (< d), 
are independent and identically distributed (i.i.d.) as ad-dimensional distribution with mean 

zero and covariance matrix~- We denote the eigen-decomposition of~by~= H AH仄
where A = diag(ふ，．．．，心） with eigenvalues入12:・・・2:入d2: 0 and H = [h1, ... , h』isan 

orthogonal matrix with eigenvectors h1, ... , hd corresponding to theふ，．．．，心.Let O"ij be 

the (i, j) element of~for i, j = 1, ... , d. We assume thatびJjE (0, oo) as d→ oo for all 
j. For a function, f(・), "f(d) E (0, oo) as d→ oo" implies that lim infd→ oo f(d) > 0 and 

limsupd→ 00 f(d) < oo. 
Let巧=HA112z1, where Zj = (z11, ... , z勾汀 isconsidered as a sphered data vector 

having the zero mean vector and identity covariance matrix. We assume that 

(C-i) limsupd→ 00E(かく oo for all r, and 

E(z;i点） =E(土）E(土） = 1 and E(zri如 ZtiZui)= 0 for all r =J s, t, u. 

When XjS are Gaussian, (C-i) naturally holds. 

The sample covariance matrix is given by S = n―1XXT. Letふミ・・・ 2入d2: 0 be the 
eigenvalues of S. Then, we denote the eigen-decomposition of S by 

d 
A A -T 

S=L研 ihi,
i=l 

where凡isa unit eigenvector corresponding to the入i・Thedual sample covariance matrix is 

given by Sv = n-1xrx. We have the eigen-decomposition of Sv by 

SD=文畑叫
i=l 

where柘 isa unit eigenvector corresponding to the入か
We assume the following spiked model for the eigenvalues of~: 

(C-ii) 入t

dl/2 
→ oo as d→ oo for i = 1, ... ,m, and入iE (O,oo) as d→ oo for all i 2 m十 L

Here, mis a positive and fixed integer. When m 2 2, 入1,…＇入 mare出就mは m血虹即

that 

liminf(入Jふー 1)> 0 for 1 Si < j Sm. 
d→00 

Note that (C-ii) is one of the strongly spiked eigenvalue models given by Aoshima and Yata 

[1]. See Remark 1.2. We devide :E into :E1 = Lj=l入九h『and:E2 = LJ=m+l入九h『,SO 

that :E = :E1 + :E2. Here, :E1 is regarded as the signal and :E2 is regarded as the noise. 
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Remark 1.1. When we consider a spiked model such as 

入i= ai屈 (i=l,... ,m) and 入i=Ci(i=m+l, ... ,d) (1) 

with positive and fixed constants, ais, c.;s and ais. Note that (C-ii) is met when am > 0.5. 
For instance, when we analyze a microarray data set, we find several gene networks and each 

network consists of genes that are highly correlated to each other. The high correlation is one 

of the reasons why strongly spiked eigenvalues appear in high-dimensional data analyses. 

Remark 1.2. Aoshima and Yata [1] showed that the asymptotic normality of high-dimensional 

statistics cannot be established under the following model called the "strongly spiked eigen-

value (SSE) model": 

liminf { 
入1

d→ oo tr国）1/2} > o. 

They gave a data transformation technique from the SSE model to the non-SSE model. 

This paper is organized as follows: In Section 2, we consider the POET to construct an 

estimator of E-1 and show that the POET has consistency properties under several severe 

conditions. In Section 3, we introduce the noise-reduction (NR) method that was given by 

Yata and Aoshima [8, 9]. The NR method is a new PCA having consistency properties for 

high-dimensional data. In Section 4, we consider applying the NR method to the POET for 

the inverse matrix estimation. We propose a new estimation of the inverse covariance matrix, 

called the NR-POET. Finally, in Section 5, we compare the performance of the NR-POET 

with POET by several simulations. 

2 POET and it s asymptotic properties 

In this section, we introduce the principal orthogonal complement thresholding (POET) given 

by Fan et al. [5]. Let (J'2ij be the (i, j) element of~2- Let Td,h = maxi琴 dI:f=1 Iび2ij化for
。：：：：：： h::::; 1. Here, Td,h is the sparsity measure given by Bickel and Levina [4]. If Td,h is much 
smaller than d for a constant h E [O, 1), 昆 isconsidered as sparse in the sense that many 

elements of昆 arevery small. We assume lim supd→ oo 7d,hく oofor a constant h E [O, 1). 
Let入min(M)and入max(M)be the smallest and largest eigenvalues of any positive definite 

matrix, M. Note that入max(ユ） = O(Td,h) and limsupd→OO 入max(~2) く oo. We assume that 

liminfd→OO入min(飼>0. 
Let 

Wz = (wll,・・・,Wdl汀=(Jdー:凡h『叩 for l = l, ... ,n 

=d 如 ~(Wu,... ,Wa汀 ~(r, ー~.叫））叩 fm l~1, ... ,n 
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Let I(・) be the indicator function. A thresholding operator is defined by 

T(M) = [mij{I(i = j) + I(i =J j)I(lmijl::,. t叫｝］

for any symmetric matrix M = (mij) and tij > 0, i =J j. Fan et al. [5] considered estimating 

~2 by T(幻 with豆2=四'=1血吋/nand 

句 =Cぷ(d―1/2+~戸） for all i =J j. (2) 

Here, C(> 0) is a sufficeintly large constant and 0ij = n-1 L;=l他s'Wjs-n-l 江~=l 加叩）と
Then, they gave an estimator of :E by 

m 

jS=L凸見+T(幻 (3) 
j=l 

They assumed the following spiked model: 

入
(C-ii')二 E(0,oo) as d→ oo for i = 1, ... , m, and入iE (0, oo) as d→ oo for all i 2: m + 1. 

d 

Note that (C-ii') is met when am = 1 in (1). Thus (C-ii') is much stricter than (C-ii). Let 

v = min{ d, n }. We denote the frobenius and spectral norms by 11・I IF and 11・11, that is, 

IIMIIF = {tr(MTM)}1/2 and IIMII = {〉'max(MTM)}1/2 for any d x d matrix, M. Then, 

the following result was given by Fan et al. [5]. 

Theorem 2.1 ([5]). Assume (C-i) and (C-ii'). Then, under some regularity conditions, for 

a sufficiently large constant C(> 0) it holds that as v→ OO 

ll:E-1;2~:E—1/2 -I II 
~-1 

d F/凶=op(l) and 11:E ー :E-111= op(l). 

It should be noted that (C-ii') is quite strict for high-dimensional data. 

3 NR  method and it s asymptotic properties 

In this section, we introduce the noise-reduction (NR) method given by Yata and Aoshima 

[8, 9]. Letら＝入―1江;=m+l入sinfor j = 1, ... , m. Aoshima and Yata [1] and Yata and J 
Aoshima [9] gave the following result when v→ 00. 

Proposition 3.1 ([1, 9]). Assume (C-i) and (C-ii). It holds for j = 1, ... , m, that入J八＝
1十釘 +Op(n―112)and (凡土）2 = (1 +も）ー1+ Op(n―112) as v→ 00. 

Ifも→ oo as v→ oo, 入jand凡arestrongly inconsistent in the sense thatふ八=op(l) 

and (h; hj)2 = op(l). See Jung and Marron [6] for the concept of the strong inconsistency. In 

order to overcome the curse of dimensionality, Yata and Aoshima [8, 9] proposed an eigenvalue 
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estimation called the noise-reduction (NR) method, which was brought about by a geometric 

representation of SD. If one applies the NR method, the入jis estimated by 

入j=ふ・―
, tr(S叫ー区{=1入l

(j = 1, ... , n -l). 
n-j 

(4) 

Note thatぶ2:0 w.p.l for j = 1, …, n -1, and the second term in (4) is an estimator of入ドj・

When applying the NR method to the PC direction vector, one obtains 

凡＝（心）―1;2x柘

for j = 1, …，n -1. Then, we have the following result. 

Proposition 3.2 ([1, 9]). Assume {C-i) and {C-ii). It holds for j = 1, …，k, that入］／ふ＝

1 + Op(n-1/2) and (h; h尼=1 + Op(い） as v→ 00. 

Thus, 入jand凡havethe consistency properties even whenも→ oo and (C-ii) is met. 

Remark 3.1. Wang and Fan [7] proposed the following estimator of~by using the NR 

method: 

m 

iS= I: 凸見+T(幻 (5) 
j=l 

They called this estimation method the Shrinkage-POET (S-POET). 

For estimating xfhj, Aoshima and Yata [1] showed that叶凡 andeven叶凡 involvea 

huge bias. In order to overcome the inconvenience, Aoshima and Yata [1] gave the modofied 

NR method. According to [1], we modify叶凡 as叶加 by

加＝口） ~Ujl = n 1/2 X Ujl 

n -l (凸）1/2 (n -1)入?'
where 

的＝（約1,... ,'Uj!-1, 0, 妬!+1,…, ％）刀

Note that~f=1 的/n = {(n -1)/n}丸.We give the following R-code to calculate叶加：
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xTh <-function(X, m, MeanZero=F){ 
d <-dim(X) [1] 

｝ 

n <-dim(X) [2] 
if (MeanZero){ 

r <-min(n-1, d) 
Sd <-t(X) %*% X / n 
eig <-eigen(Sd) 
dualval <-eig$values[1:m] 
dualvec <-eig$vectors 
ans<-matrix(O, n, m) 
c <-sqrt(n) / (n-1) 
for (i in 1 :m){ 

nrmval <-dualval[i] - (sum(diag(Sd)) -sum(dualval[1:i])) / (n-i) 
u_hat <-dualvec[, i] 
for (j in 1 : n){ 

} } 

} else { 

u_hat [j] <-0 
nrmvec_self <-c * X %*% u_hat / sqrt(nrmval) 
ans[j, i] <-as.numeric(t(nrmvec_self) %*% X[, j]) 
u_hat <-dualvec [, i] 

r <-min(n-2, d) 
X <-sweep(X, 1, apply(X, 1, mean),' —') 
Sd <-t(X) %*% X / (n-1) 
eig <-eigen(Sd) 
dualval <-eig$values[1:m] 
dualvec <-eig$vectors 
ans<-matrix(O, n, m) 
c <-sqrt(n-1) / (n-2) 
for (i in 1 :m){ 

nrmval <-dualval[i] - (sum(diag(Sd)) -sum(dualval[1:i])) / (n-i 
-1) 

u_hat <-dualvec[, i] 
for (j in 1 : n){ 

} } } 

return(ans) 

u_hat [j] <-0 
nrmvec_self <-c * X %*% u_hat / sqrt(nrmval) 
ans[j, i] <-as.numeric(t(nrmvec_self) %*% X[, j]) 
u_hat <-dualvec [, i] 
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4 NR-POET 

In this section, we propose a new estimation of~-l by applying the NR method to the POET. 

By using the modified NR method in Section 3, we estimate wz by 

m 

心l= (加，．．．，面dl汀=(Id ー〗凡砂）叩・

We consider estimating :E2 by T(t2), where t2 =区恥wzw「/nand 

匂 =C~(d―1/2 +~) for all i # j (6) 

with 0;j = n―1~:=1(砒s叱s-n―1~I=1 巫t加）2. We denote the eigen-decomposition of 
--

T(昆） by 
d 

T(幻 = L凸砂
J=l 

C) , where入jSare eigenvalues of T :E2 havingふ 2:... 2: 入d2: 0 and hj is a unit eigenvector 

corresponding to the心Notethat 

m d 

~-1 = L>...ilh叫 +Lザh叫・
j=l j=m+l 

Finally, by applying the NR method to the sig叫 partand the noise part, we propose to 
estimate~-l by 

豆＝芦入-;i i,,1屈+(1dー芦凡見）（戸叩h/in(1dー芦凡見） (7) 

Note that the signal and noise parts are orthogo叫 Wecall this new estimation method the 

"NR-POET". In the next section, we compare the performance of the NR-POET with the 
POET by several simulations. 

5 Simulation studies 

In this section, we compare the performance of the NR-POET with the POET and S-POET 

by using computer simulations. We considered the following covariance matrix: 

>:~C'': ぷ,,,r''~"''' 
0 0 11, り(p))'



18

where d(ll + dc2J + d(3) = d, に＝び(It+1心） with lt = (1, ... , lf and叫 p)= 

Bt(plHl113)Bt with Bt = diag[{0.5 + 1/(t + 1)}112, ... , {0.5 + t/(t + 1)}112]. Note that 

入max(rt,砂＝び(t+1) and its other eigenvalues are O". Also, note that [>•max{Ot(P)} ]2 /tr[{Ot(P)}門＝
o(l) as t→ oo for IPI < 1. We set (d(1),d(2)) = (「d/31,「d/31),where「xl denotes the smallest 

integer 2 x. We set (町1)叫 2))= (1, d―113). Note that (入1,入2)~(d/3,d213 /3), so that (C-ii) 

is satisfied while (C-ii') is not. We set d = 200(200)1400, n =「d3/5land p = 0.3. 
We fixed C = 5 in (2) and (6). We considered two cases: 

(S-i) xis are generated from Nd(O, :E); 

(S-ii)屯 sare generated from Zri = (Yri -2)/2 (r = 1, ... , d) in which YriS are i.i.d as the 

chi-squared distribution with 2 degrees of freedom. 

For each case, we estimated :E-1 by using the POET in (3), S-POET in (5) and NR-POET 

in (7). We calculated the average loss and its standard deviation by 2000 (= R, say) times 

replications for each estimator. Under a fixed scenario, let幻 bethe r-th estimation of 

ェ—1- Let IIMIIE = II炉 M:E112IIF/V ー^1d. In the above simulations, Ell:E -:E-111E was 

estimated by R-1 L似 II~―1 一^1-:E-1IIE-We denote the standard deviation of 11:E ーェ—1IIE

by SDll:E —ェ—111E・In the above simulations, SDII~ ―-:E-111E was estimated by the 

一^1standard deviation of I l:Er ―:E-11に， r= 1, ... , R. We displayed the results for (S-i) in Figure 

1 and for (S-ii) in Figure 2. We observed that the NR-POET gave better performances than 

the POET and S-POET both for (S-i) and (S-ii). 
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