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1 Introduction 

In recent years, the study of nonequilibrium polyatomic gas flows based on kinetic the-

ory becomes increasingly important in various applications, such as gas flows in high-

temperature circumstances. However, the original Boltzmann equation for a polyatomic 
gas is usually presented in rather abstract forms because of a lack of knowledge about 

intermolecular interactions. Therefore, it is impossible to apply it to practical problems 

immediately. To bypass this difficulty, some simplified and tractable models of the Boltz-

mann equation have been proposed. One of such models is the ellipsoidal statistical (ES) 
model proposed by Andries et al. [2] and rederived in a systematic way by Brull and 
Schneider [3]. 

In a previous paper by two of the present authors [4], this ES model was successfully 

applied to analyzing the structure of a plane shock wave in a polyatomic gas with large 

bulk viscosity. However, the ES model in [2] is for a polyatomic gas with constant specific 
heats (calorically perfect gas). In reality, for most of gases, the specific heats depend on 

the temperature even if they can be well approximated by ideal gases. The effect of the 

temperature dependence of the specific heats becomes important when the temperature 
variation in the gas is large, such as gas flows containing strong shock waves. 

For the reason described above, we have extended the ES model in [2] to the case of 
a polyatomic gas with temperature-dependent specific heats (thermally perfect gas) in 

our recent paper [5]. In the same reference, the new model equation was also applied to 
investigating the structure of a plane shock wave with special interest in CO2 gas, which 

is known to have a very large bulk viscosity. The numerical and asymptotic analyses 

there were performed in parallel to the previous paper [4] where a calorically perfect gas 
is considered. The present paper is intended to provide a summary of [5], so that only 

the results will be shown, and the details of the proofs and derivations will be omitted. 

2 Model Equation 

Let us consider a polyatomic rarefied gas. Let t be the time variable, X (or Xi) the 
position vector in the physical space, e (or~i) the molecular velocity, and£the energy 
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associated with the internal modes per unit mass. We denote the total mass of the gas 
molecules contained in an infinitesimal volume dXded£around a point (X, e, £) in the 
seven-dimensional space consisting of X, e, and£at time t by 

f(t, X, cE, £)dXdcEd£. (1) 

The ES model is the equation governing this f(t, X, e, £). In the present study, we 
consider the thermally perfect gas, for which the specific heat at constant volume Cv and 
that at constant pressure GP are both functions of the temperature T and propose a model 
Boltzmann equation for such a gas, which is a straightforward extension of the ES model 
for a gas with constant Cv and GP [2]. 
We first consider the equilibrium state and assume that the internal energy of the 
gas per unit mass E is a given (monotonically increasing) function of the temperature 

T, i.e., E = E(T). We also define a function D(T) as D(T) = 2E(T) / RT -3, where 
R is the gas constant per unit mass. Note that the relations Cv(T) = dE(T)/dT and 
Cp(T) = Cv(T) + R hold. Then, we extend E(T), D(T), Cv(T), andら(T)in the 
nonequilibrium case and use them in the definition of the new model equation, which is 
described as follows. 

with 

Here, 

of of 
ot +~'= Q(f), 
oXi 

Q(f) = Ac(T)p(Q -f). 

p£,J/2-1 
Q=  
(21r)3/2 [det(T)] 112 (RTre1)612「(J/2)

x exp (-~(T―1)墨—防）（も一％）一嘉），
(T);i = (1-0)[(1 -v)RTt心+vp;i/ p] + 0RT妬，

p = f /00 fd£de, 防＝―
゜

1 //00~dd£de, 
p 0 

Pii = J f 00 (~; ―防）（も一vj)Jd£de,

゜T = E-1(e), O = D(T) = 2e/ RT -3, 
れr= 2etr/3R, T,nt = 2eintf Ro, Trel = 0T + (l -0)九nt,

where e, etr, and eint are defined by 

e = etr + eint, 
1 00 

etr = -/ J le -vl2 f d£de, 
2p, 0 

国=i .f 100 EfdEde. 

(2) 

(3) 

(4a) 

(4b) 

(4c) 

(4d) 

(4e) 

(4£) 

(5) 
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In (2)―(5), pis the density, v (or v』isthe flow velocity, Pij is the stress tensor, e is the 
internal energy per unit mass, etr is that associated with the translational motion, eint 
is that associated with the internal modes, T is the temperature, Ttr is the temperature 
associated with the translational motion, に isthe temperature associated with the 
energy of the internal modes, de= d6dむd6,and the domain of integration with respect 
to e is the whole space of e. The symbol bij indicates the Kronecker delta, and v E 
[-1/2, 1) and 0 E [O, 1] are parameters. In addition, Ac(T) is a function of T such that 
Ac(T)p is the collision frequency of the gas molecules, f(z) is the gamma function, T is 
the 3 x 3 positive-definite symmetric matrix whose (i, j) component is defined by (4b), 
and det(T) and T-1 are, respectively, its determinant and inverse. 

Note that all the macroscopic quantities contained in g are generated from f. To 
be more specific, (i) p, v, Pij, etr, eint, and e are obtained by (4c), (4d), and (5); (ii) 
T and then 6 are determined by (4e) using the inverse function E-1 of the function 

E; (iii) Ttr, T,nt, and Trel are determined by (4f), and then T is established by (4b). 

Since e = etr + eint = (3几+6T,nt)R/2 and also e = (3十b)RT/2, we have the relation 
T = (3Ttr +が八nt)/(3+ 6) [note that 6 depends on T: cf. (4e)]. 
The pressure p and the heat-flow vector qi are given by 

p=RpT, 

qi= J 1°"(ふーvi)(蒻— vl2 +£) fd£d€, 

where (6a) is the equation of state. 

3 Basic Properties 

(6a) 

(6b) 

In the following, we summarize the basic properties that follow from the model equation 
(2). Some properties are different when the parameter 0 is equal to zero. 

Proposition 1 (conservation for 0 =J 0): For an arbitrary function f(t, X, e, £), the 
following relation holds: 

!Joo叫 (f)d£d{= 0, 
゜where f.Pr (r = 0 4) 
.. 

, …, are the colhs10n mvanants, 1.e., 

や0= 1, やi=~i (i = 1, 2, 3), 
1 

四＝—|む+£.
2 

(7) 

(8) 

Proposition 1'(conservation for 0 = 0): For an arbitrary function f(t, X, e, £), the 
following relation holds: 

J /00'PrQ(J)dEd{ = 0, 
• 0 

(9) 
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where'Pr (r = 0, …， 5) are the collision invariants, i.e., 

匹=1, 'Pi=(; (i = 1, 2, 3), 
1 

四＝うぼ， 四=£. (10) 

Proposition 2 (equilibrium 0 =/ 0): The vanishing of the collision term Q(f) = 0 is 
equivalent to the fact that f is the following local equilibrium distribution: 

f 
厖J/2-1

eq = (2国）3/2(Rf')吋 (J/2)exp (—り訊12 -fr), (11) 

where p, v, and f'are arbitrary functions oft and X, and c5 = D(T). 

Proposition 2'(equilibrium for 0 = 0): The vanishing of the collision term Q(f) = 0 
is equivalent to the fact that f is the following local equilibrium distribution: 

feq =り_n子、幻~~~:ー 1ヽi,/?17("f'"ヽ exp(-1~ ご-RfnJ' (12) 

where p, v, 九， and'Lntare arbitrary functions of t and X, and i5 and T are determined 
by the following coupled equations: 

J = D(T), T = E-1(3R九/2+訂Rflnt/2). (13) 

The solution (J, T) of (13) exists. In particular, it is unique when 内nt~九．

Proposition 3: For an arbitrary function f(t, X, e, £), the following inequality holds: 

J 100 (1n£"い） Q(f)d£de ::; 0, (14) 

and the equality sign holds if and only if f = feq in (11) (0ヂ0)or (12) (0 = 0). 

Proposition 4 (H theorem for spatially homogeneous case): Let H5(J) be defined 

by 

凡(f)= f !00 fln£o~-l d£d{. 

゜
(15) 

If f does not depend on X, the following ineq叫 ityholds: 

dH0/dtさ0, (16) 

and the equality sign holds if and only f = feq in (11) (0ヂ0)or (12) (0 = 0). 

On the basis of the model equation (2) with 0ヂ0,one can carry out the Chapman-
Enskog expansion to derive the compressible Navier-Stokes equations and the explicit 

expressions of the transport coefficients. The latter coefficients are summarized as follows: 
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Proposition 5 (Transport coefficients for 0ヂ0):Letμ, μb, and入bethe viscosity, 
bulk-viscosity, and thermal-conductivity coefficients, respectively, and let I and Pr be 
the ratio of specific heats and the Prandtl number, defined respectively by 1 = Cp/Cv = 

(Cv + R)/Cv and Pr= Gpμ/入.Then, μ, μb, 入， andPr are expressed as follows: 

μ(T) = Pr 
RT 1 5μ(T)  
Ac(T)' 肛(T)= 0 [3― ,(T)] Pr' 

入(T)= 
,(T)R RT 1 

,(T) -1ふ(T)'
Pr= 
1-V + 0v' 

(17) 

where the fact thatμ, μb, 入， and, depend on the temperature is explicitly shown. 

4 Application to Shock-Wave Structure 

In this section, we apply the model equation proposed in Sect. 2 to the problem of shock-

wave structure. The shock wave is a compression wave across which the physical quantities 

undergo rapid changes over a distance of some tens of the mean free path. Therefore, 

to describe the structure inside the shock wave, one has to use kinetic theory or the 
Boltzmann equation. In fact, the structure of a standing plane shock wave is one of the 

most fundamental problems in kinetic theory and has been investigated by many authors. 

Motivated by some recent and interesting results based on extended thermodynamics 

[8, 10], we investigated the structure of a plane shock wave in carbon dioxide (CO2) gas, 
which is known to have very large bulk viscosity, numerically using the ES model for a gas 
with constant specific heats (calorically perfect gas) [4]. In [4], some comparisons were 
made between the result based on the ES model and that based on extended thermody-

namics [8], and good agreement was shown. However, the comparisons were restricted to 

rather weak shock waves in which the temperature variation is not large. The reason is 
that [8, 10] used the data for CO2 gas with temperature-dependent specific heats, whereas 
[4] used the ES model with constant specific heats. For a strong shock wave, the effect 
of temperature-dependent specific heats becomes more important because of the large 

temperature variation across the shock. In order to understand this effect, we try to carry 

out the numerical analysis of the shock profile, with special interest in stronger shock 
waves, using the model for a gas with temperature-dependent specific heats (thermally 

perfect) proposed in Sect. 2. 

4.1 Problem 

Let us consider a stationary plane shock wave standing in a flow of an ideal polyatomic 

gas. We take the X1 axis perpendicular to the shock wave. The gas at upstream infinity 

（ふ→ -oo) is in an equilibrium state with density P-, flow velocity v_ = (v_, 0, 0) 
(v_ > 0), and temperature T_, and that at downstream infinity (X1→ oo) is in another 
equilibrium state with density P+, flow velocity叫 =(v+,0,0)(匹>0), and temperature 
T+. We investigate the steady behavior of the gas under the following assumptions: 
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(i) The specific heat at constant volume Cv is a given function Cv(T) of the temperature 

T (thermally perfect gas). 

(ii) The behavior of the gas is described by the ES model of the Boltzmann equation 

proposed in Sect. 2. 

(iii) The problem is spatially one dimensional, so that the physical quantities are inde-

pendent ofふ andX3. 

Let us denote by M_ the Mach number of the flow at upstream infinity and by 1— the 
ratio of the specific heats there, i.e., 

M_= 
v_ 

三'
'Y-= "f(T_) = 

Cv(T_) + R 
Cv(T_) . 

(18) 

The downstream quantities pゎ V+,and T+ are related with the upstream quantities P-, 
v_, and T_ and the upstream Mach number M_ by the Rankine-Hugoniot relations, 

which take different forms depending on whether 0 =JO or 0. To be more specific, 

Proposition 6 (Rankine-Hugoniot relations for 0ナ0):When 0ヂ0,the ratios 
P+IP-, 四/v_,and T+/T_ are expressed in the following form: 

戸＝げ）―1' V+ v_ 
1 + 1-Mどー ✓巧M山(T)+ 1 

"f-M.: 

where the function心(x)is defined by 
l X 

心(x)=元1Cv(T_s)ds, 
and T is the solution, such that T > l, of the following equation: 

T+ 
-=T  
T_'  

1 1 
T + 2dE(T) + ,_M_: —(~M- +亨M_)J叫 (T)+ I—五=0. 

If Cv(T) is a monotonically increasing function of T, such T is unique. 

(19) 

(20) 

(21) 

Proposition 61 (Rankine-Hugoniot relations for 0 = 0): For given upstream pa— 

rameters P-, v_, Ttr-, and T,nt-, the additional upstream parameters T_皿 d8-are 
determined by 

ふ=D(T-), T_ = E-1(3R'I'tr-/2 + b_RTintー/2).

Then, the downstream parameters P+, V+, and Ttr+ are determined by 

匹
一
化

令一--

4M2 
----

M□ +3' 
V+ 
v_ 

訂~+3
，ー、→

4M.: ＇ 
Ttr+ 

Ttr-

疇~- l)(M.: + 3) 
』一、’

16M.: 

(22) 

(23) 
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where 

.- . 

M_= 
v_ 
=M_ 

J5RTtr-/3 
(24) 

In addition, the additional downstream parameters T十,T.nt+, andふ， whereふ=D(T+), 
are determined by 

E(T+) -E(T_) =~(Ttr+ _ l) Ttr-'Ilnt+ =~ 
RT_ 2 Ttr- T_' 九nt—ふ'

ふ =~[3+b-+2E(T十羞―;_E(T_)] _ 3 
(25) 

4.2 Basic equation 

The present shock-structure problem is a time-independent and spatially one-dimensional 

problem where f is expressed as f = f(X1, e, £). Therefore, the basic equation is (2) 
with 8f /8t = 8f /8ふ=8f/8ふ=0. Consistently, all the macroscopic quantities in 
(3)-(6) are the functions of X1 only, and v = (v1, 0, 0). 
The boundary conditions at upstream and downstream infinities are expressed in the 
following form using the equilibrium distribution (11): 

f = p_[L/2-l exp (-(ふーv_)2十蒻＋蒻-_!__ 
伽 RT_)3/2(RT_)L/2r(ふ/2) 2RT_ RT_)' 

(X1→ -oo), (26a) 

f= 
pぷ<5+/2-1 (6 -V十戸＋翡＋蒻 £ 

伽 RT+)312(RT+)ふ/2f(ふ/2)exp (- 2RT+ ―RT+)' 

凶→ oo), (26b) 

where we should recall thatふ =D(T_)andふ=D(Tサ

4.3 N umer1cal analysis and results 

We solve the system consisting of the basic equation (2) (with 8f /at = 8f /8ふ＝
8f /8X3 = 0) and the boundary conditions (26) numerically by a finite-difference method. 
In this article, leaving the description of the numerical method to [4, 5], we show only the 
result of numerical analysis. We first mention the actual setting of the parameters and 
then show the computed profiles of the macroscopic quantities. 

4.3.1 Parameter setting 

We consider CO2 gas and set the par皿 etersbasically following [8, 10]. We set the 
upstream temperature T_ and pressure P-to be T_ = 295 K and P-= 69 mmHg, respec-
tively, and use the formula Cv(T)/ R = 1.412 + 8.697 x 10-3r -6.575 x 10-6T2 + 1.987 x 
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Table 1: Downstream states for M_ = 1.3 and 5. The corresponding values for constant 

Cvに(T)= Cv(T-)] are shown in the parentheses 

P+/P-
匹 /(2RT_)1/2

冗/T_
ふ
Cv(T+)/R 
,y(T』

M_ = 1.3 

1.566 (1.554) 
0.666 (0.671) 
1.141 (1.143) 

3.940 
3.671 
1.272 

M_=5 

7.819 (6.199) 
0.513 (0.648) 
3.723 (4.522) 

5.910 
5.665 
1.177 

Table 2: Downstream states for M_ = 1.3 and 5 in the case of 0 = 0 (or肌/μ=oo). See 
the caption of Table 1 

M_ = 1.3 M_=5 

M_ 1.143 4.398 

P+IP- 1.214 3.463 
四/(2RT_)1/2 0.860 1.159 

T+/T_ 1.060 (1.061) 2.947 (3.564) 

Ttr+/T_ 1.140 6.909 

九nt+/T_ 0.999 0.730 

ふ 3.918 5.362 

10-9戸 forに(T)derived in [10] from the experimental data, where the coefficients have 
suitable dimensions in such a way that each term on the right-hand side is dimension-

less. Then, we have Cv (T_) / R = 3.456, c5_ = 2に(T_)/ R -3 = 3.913, and ,-= 1.289. 
Further, the E(T) can be defined consistently as E(T) = J:_ Cv(s)ds + T_Cv(T_) [cf. 
the paragraph containing (3) in [5]]. In [8], it is assumed thatμex T0・935, so that we 
set Ac(T) ex T0・065 from (17). It should be noted, however, that althoughμb ex T0・935 
and入exro.93ば (T)/ R are also assumed in [8], our model cannot be made to adjust to 
these forms because of (17). In other words, if the parameters v and 0 have been fixed, 
the choice of Cv(T) and Ac(T) completely determinesμ, μb, and入accordingto (1 7) in 
the present model. We determine the values of v and 0 from the values of Pr andμb/μ 
at T = T_ using (17). More specifically, we set Pr = 0.73 and consider some different 

values ofμb/μat T = T_, i.e., (μb/μ)T=T-= 100, 200, 500, 1000, 2000, 5200, and oo. 
The reason why we vary (μb/μ)T=T_ is that thoughμb/μis known to be very large, the 

Table 3: Values of v and 0 for Pr= 0.73 and (μb/μ)T=L = 100, 200, 500, 1000, 2000, 
5200, and oo 

(μb/μ)T=T_ 100 200 500 1000 2000 5200 00 
-V  X 10 3.718 3.708 3.702 3.701 3.700 3.699 3.699 
0 X 104 51.69 25.85 10.34 5.169 2.585 0.9941 0 
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〗□゚'. ~500 1·;>
＼ヽ‘、、 ‘‘ 

0~ 」 、 --------―̀-------5000 

(a) 

10000 
X1 
15000 50 100 

(b) 

150 
X1 

200 

Fig. 1: Profiles of p, v, and Tat M_ = 1.3 for (μb/μ)r=T-= 500, 1000, 2000, and oo. (a) 
Profiles for -1000 ::; x1 ::; 15000, (b) profiles for -30 ::; x1 ::; 200. The solid line indicates 
p, the dashed line v, and the dot-dashed line T. 

value is not known precisely and that we are interested in the behavior of a polyatomic 

gas whenμb/μbecomes large. Therefore, as in [4], we consider a pseudo-CO2 gas with 

variable (μb/μ)T=T_. 
In [4], we showed the profiles of macroscopic quantities across a shock wave of Types 

A, B, and C, where these types are defined in [8]. That is, Type A indicates a smooth 
and symmetric profile that is realized when M_ is close to 1; Type C is a profile with 

a double-layer structure composed of a thin front layer with rapid change and a thick 
rear layer with slow relaxation of the internal modes that appears when M_ is slightly 

larger; and Type B indicates a non-symmetric profile with a corner upstream that occurs 
at the transition from Type A to Type C. The ES model with constant specific heats, 

which was used in [4], is legitimated for Type-A and B profiles because the temperature 
rise across the shock wave is small in these cases. Therefore, in the present study, we 

concentrate on the Type-C profile. Since the transition from Type A to Type C takes 
place at M_ = 1.137 in the present parameter setting, we carry out the computation for 
M_ = 1.3, 1.47, 3, and 5 following [8, 10]. However, to save space, we will present the 
results only for M_ = 1.3 and 5. The downstream states for M_ = 1.3 and 5 are shown 
in阿 le1, and the corresponding values for 0 = 0 (orμb/μ= oo), including the values 
of M_ that is defined in Proposition 6'[i.e .. (24) with Ttr-= T_], are shown in Table 2. 
The values of v and 0 corresponding to our choices of Pr and (μb/μ)r=T-are shown in 

Table 3. 
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Fig. 2: Profiles of九and'hntat M_ = 1.3 for (μb/μ)T=T-= 500, 1000, 2000, and oo. (a) 
Profiles for -1000 ::; x1 ::; 15000, (b) profiles for -30 ::; x1 ::; 200. The solid line indicates 

九andthe dot-dashed line 内nt•

4.3.2 Profiles of macroscopic quantities 

We show the profiles of the density p, the flow velocity釘 (theX1 component), and the 

temperatures T, Ttr, and T,nt normalized in the conventional way, i.e., 

p -P- V V1 - V+ v T -T_ 
p='V='T=  
P+ -P- v_ —叩 T+ -T_' 

v Ttr -T_ v 冗nt-T_ 
Ttr = Tint = 
T+ -T_'T+  -T_ . 

(27) 

In this normalization, p, T, Ttr, and T.nt varies from O (upstream infinity) to 1 (downstream 
infinity), whereasもfrom1 (upstream infinity) to O (downstream infinity). In addition, we 

only show the results for large values of (μb/μ)r=T_, i.e., (μb/μ)r=T_ = 500, 1000, 2000, 
and oo. To show the profiles in Fig. 1-5 below, we use the dimensionless coordinate x1 
scaled with the mean free path L of the gas molecules in the equilibrium state at rest at 
density P-8Jld temperature T_, that is, 

X1 
X1 =―' L 

2 (2RT_)1/2 
L=-
喜 Ac(T_)p_.

(28) 

In Fig. 1, we show the profiles of p, v, and Tat M_ = 1.3 for (μb/μ)T=T-= 500, 
1000, 2000, and oo. Figure l(b) is the magnified figure of Fig. l(a) in the range -30さ
x1 (= Xi/L)~200. The solid line indicates p, the dashed line v, and the dot-dashed 
line T. Note that for (μb/μ)T=L = oo, the downstream condition is different from that 
for finite (μb/μ)r=T-and is given by the Rankine-Hugoniot relations for (μb/μ)T=T-= oo 
or 0 = 0 [(23)-(25); note that Ttr-=冗nt-= T_ in the present proble叫 Inthis figure 
and the following Figs. 2-5, x1 = 0 is set at the position where the density is equal to 
the average of the upstream and downstream values when (μb/μ)T=T_ = oo. The profiles, 
which are of Type C, consist of a thin front layer and a thick rear layer. As (μb/μ)T=T-
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Profiles for -200 :::; x1 :::; 2600, (b) profiles for -20さx1:::; 120. See the caption of Fig. 2. 

increases, the thickness of the rear layer increases and reaches over 15000 mean free paths 

(L) for (μb/μ)r=T_ = 2000, whereas the profiles of the thin front layer are not affected 
by (μb/μ)T=L and coincide with the shock profiles for (μb/μ)T=L = oo. 
Figure 2 shows the profiles of九 andfnt in the same case as Fig. 1. Figure 2(b) is 
the magnified figure of Fig. 2(a) in the range -30 ::; x1 ::; 200. The solid line indicates 

九 andthe dot-dashed line靡.A significant overshoot is observed forむ
Next, we show the profiles at a higher Mach number, M_ = 5, for (μb/μ)r=T一戸 500,
1000, 2000, and oo. Figure 3 shows the profiles of p, v, and T, and Fig. 4 those of Ttr and 
内nt• Figures 3(b) and 4(b) are, respectively, the magnified figures of Figs. 3(a) and 4(a) in 
the range -20::; x1 (= Xi/L) ::; 120, and the types of lines are the same as~igs. 1 and 
2, i.e., the solid line indicates p, the dashed line v, and the dot-dashed line T in Fig. 3; 
the solid line indicates九， andthe dot-dashed line仁 inFig. 4. 
In this case (M_ = 5), the shock wave is thinner than that at M_ = 1.3 for the same 
(μb/μ)T=L and extend over 2600 mean free paths when (μb/μ)r=r_ = 2000. The change 
of the profiles over the thin front layer at M_ = 5 is steeper than that at M_ = 1.3. As 
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Fig. 5: Comparison of the profiles of p(= p/p_), 針[=vi/(2RT_)112], andれ=T/T_) 
at M_ = 5 for (μb/μ)T=T-= 2000. The solid line indicates the case of temperature-

dependent specific heats (or temperature-dependent b) and the dashed line the case of 
constant specific heats [or constant 6 (= L)]. 

one can see from Table 1, the values of the macroscopic quantities at downstream infinity 
are very different from those for a gas with constant specific heats, so that the profiles 

over the thick layer are significantly affected by the temperature-dependent spe<;_ific heats. 

The profiles of the dimensionless density p, flow velocity釘， andtemperature T, where 

p = PIP-, 釘＝叫(2RT_)lf2, T = T/T_, (29) 

are compared between the case of temperature-dependent specific heats (or temperature-
dependent 15) and the case of constant specific heats [ or constant 15 (= 6-)] in Fig. 5 for 
M_ = 5 and (μb/μ)T=T-= 2000. 
Finally, we should mention that we have also compared our numerical results with the 

results based on the extended thermodynamics in [10] and obtained very good agreement. 

4.4 Slowly varymg solut10n 

In [4], a set of macroscopic equations that describes slow relaxation of the internal modes 

over the thick rear layer in Type-C solution (and the entire profiles of Type-A and B 
solutions) when the ratioμb/μis large (i.e., 0 is small) has been obtained by considering 

a slowly varying solution whose length scale of variation in X1 is L/0. This system is 
convenient because one can obtain an analytical solution of the shock profiles. In fact, 

the corresponding system for the present new ES model has been derived in Appendix 

C in [5] and analyzed in Sect. 3. 7. Here, we will omit the derivation and show only the 
analysis of the system. 
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Ifwe introduce appropriate dimensionless variables, the basic equation (2) with of /at= 

af/aふ=af/aふ=0 is transformed into the following dimensionless form: 

紆 2 A A 

(1 = - A 

如喜
Ac(T)p (g -!) , (30) 

where x1 is defined by (28), p and Tare defined by (29), and 

(; =~;/(2RT_)1f2, (i, Q) = (f, (})(2RT_)512 /2p_, Ac(T) = Ac(T)/Ac(T_). (31) 

See Sect. 3.2 in [5] for the explicit form of Q. In the following, we also need the dirnen-
sionless counterpart of v1, Ttr, T,nt, and E(T), that is, 釘 definedby (29), and店厄
and E(T) defined by 

几=Ttr/T_, 内nt= T,ntfT_, Eけ） = E(T)/ RT_. (32) 

We consider the solution of (30) whose length scale of variation in x1 is 1/0. Therefore, 
we introduce the new space coordinate y1 defined by 

Y1 = (2/y'ir)0x1. 

Then, (30) becomes 

紆 1A A 

(1一＝—^
如 0
Ac(T)p(g f). 

We seek the solution in the form of expansion in the small parameter 0: 

j = j(D) + j(l)0 + j(2)炉＋・・・ ． 

Correspondingly, the macroscopic quantities p, 外几，叫， etc.are expanded as 

h = hcoi + hc1i0 + hc2i02 + ... , 

(33) 

(34) 

(35) 

(36) 

where h stands for p, 釘， Ttr,71nt, etc. This is basically the same as the procedure 
of the Hilbert expansion, and we can derive the ordinary differential equations for the 
macroscopic quantities加(ml,的im),TtSm), and i; 誓l.In [5], we have derived the equations 
only at the zeroth order, i.e., those for p(o), Vi゚＼九?l,and 内~~) (see Appendix C in [5] for 
the detailed derivation). 

If we omit the superscript (0) to avoid cumbersome notation, the resulting equations 
for the zeroth-order quantities are expressed as follows: 

d AA  

dy1 
(p叫 =0,

＾ ¾(臼+2v1) = o, 
d 5 A J A 
面（吋＋ぅ九＋戸） = 0, 
d 

伍—(Jむ）＝
3J 

dy1 3 + J A汀）p (九—に），

(37a) 

(37b) 

(37c) 

(37d) 
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where 

2 
o=Dげ）=---;:-方（かー3,

T 

so that the relation 

T= 

T= 方—1(3九/2+ 欧nt/2), (38) 

＾＾ 3Ttr +紅int

3 + 15' 
(39) 

holds. Here, we have used (37a) in deriving (37b) and (37c) and used (39) in deriving 
(37d). Hereafter, we consider (37) supplemented by the first equation of (38) and (39) 
as the closed system to be solved. It should be noted that (37) is the steady version of 
a hyperbolic conservation system with relaxation, a simplified model of which has been 
studied in mathematical rigor [6]. 
As in Sect. VA  in [4], it follows from (37a)-(37c) that [cf. (57) in [4]] 

C1 p=~, 
V1 
九＝釘(c2-2釘）， r 2 5 

int= J (c3 -2晒+4vi), (40) 

where c1, c2, and c3 are constants. Inserting (40) in (37d) and (39), we obtain the following 
equations [cf. (58) in [4]]: 

尻（正— 'V1) 誓= 8(3: 0) Cふ(T)[ (4 + o)吋ー 5;0 C如+C3] 
＾^ o=D(T), T= 

2 

3+o 
伺―c西＋％）．

(41a) 

(41b) 

Since band応 anbe, in principle, expressed in terms of伍from(41b), (41a) is the equation 
for v1. If we eliminate c3 from (41a) using (41b), we have an alternative expression of 
(41a), i.e., 

叶（贔位一v1)鸞＝い凸（力（吋ー；疇＋仇） (42) 

As discussed in [4], the slowly varying solution describes either the full shock pro-

files (Type-A and Type-? pr?files) or the profiles of the th~ck rAear layer (Type-C pro-
file). Th~refore, (p, 釘， Ttr,加） should approach (か，釘， Tぃエ） as x1→ oo, where 
（か，如， T+)= (P+/ P-, v+/(2RT_)112, T+/T-). If we consider this limit in (40), we have 

＾^ 釘=P+V十9 C2 = (九／応） +2釘， C3 =尻+[(5+ふ）/2]九． (43) 

However, the conservations of mass, momentum, and energy bet'!'e~n the upstream and 
downstream infinities and the fact that E(l) = (3 + J_)/2 and E(T』=[(3 + ()』/2Ji'+
show that the right-hand sides of three equations of (43) are equal to v_, (1/v_) + 2v_, 
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and悦 +(5+ふ）/2, respectively, where f;_ = v_/(2RT_)1!2. Therefore, c1, c2, and c3 are 
expressed, in terms of the upstream quantities, as 

＾ C1 = V_, 
1 

C2 =--;;-—+ 2fi_, 
v_ 

,2 5 +ふ
C3 = V_ + 2 . 

By using (44), we can transform (42) and (41b) into the following form: 

曲 3v_ 1 + 2茫 A 1 A 
吋(v三）五=sん(T)(v~- 2v_ 附 +2r)'

b = fJ(r), 

r = 3 ! b [3~b―+(釘ー v_) (釘ー 1;_v~)] , 

where 

5 1 + 2茫v. = -
16 {j_' 

(44) 

(45a) 

(45b) 

(45c) 

(46) 

and we should recall thatふ＝訊1).W~en 釘= v_, (38)皿 d(45c) show that Eば）＝
[(3+b)/2]T = (3+b_)/2 =駅1),so that T =land thus b =ふ.In this case, it is readily 
seen that the right-hand side of (45a) vanishes. Therefore, 伍=v_ is an equilibrium point 
of (45a) if v. =J v_. On the other hand, if we use (43) in (41), we obtain (45a) and (45c) 
with alternative express~ons of the right-hand sides in terms of the downstream quantities 
ふ[=D(立）］，如， andT+ [and凡 for(45a)]. From these expressions, we can readily see 
that when伍＝釘， itfollows that T = T + and thus b =ふ.Therefore, it is easy to see 
that the right-hand side of (45a) vanishes at v1 = v+, that is, it is an equilibrium point of 

(45a) if仇ヂ v+・The(local) stability of the equilibrium points is discussed in Appendix 
Din [5]. 
Once釘isobtained from (45), other qu皿 titiesfollow from (40) with (44), i.e., 

where 

'(}_ 
p(伍） =--;;--, 
V1 

1 
加釘） = 1 + 2(かー釘）（釘ー 20)'

()_ 8 A 
内nt伍）＝—+ー（釘ー v_) (釘ー如）

() () 

5+2茫
v •• = A 

8v 
， 

(47a) 

(47b) 

(48) 

which is the dimensionless downstream velocity o! the sしockwave when 0 = 0 correspond-
ing to V+ in (23). When伍=v_, we have p =几＝囚nt= 1 because 6 = J_. Similarly, 
from the alternative expressions of p, Ttr, and Tlnt obtained by using 43 in (40), it is （） 
seen that when仇＝娼， wehave p =凡 andI'tr = I;nt = T+. 
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Since (45) is more implicit than the corresponding equation, (60) in [4], in the case 

of constant 5, we can obtain less information about the global behavior of the solution. 
However, according to the stability analysis in Appendix Din [5], we can expect the basic 

properties of (60) in [4] are retained in (45). Therefore, we try to integrate it in the similar 

way as in [4]. From (45a), we obtain 

dyl-dVl 

叶（仇一釘）

可んの（闘ー 1;v~ 炉伍＋仇）
8
 

(49) 

Assuming that釘 isa decreasing function of y1, which is likely to be true from the 

numerical results, we integrate (49) from伍tov。toobtain 

訊 1)-Yo= -~iv。炉(v* ― u) du 

3v_伍ん（力 (u2-1 +? 茫u+均 ’ 
(50) 

2v_ 2)  

where 

o=Dげ），

T=  3!o [3~c5- +(u-v_) (u-i;_v~)]' 

(51a) 

(51b) 

and Yo = y1 (v0). The inverse function of y孔v1)gives the velocity profile v1 (い） with the 
initial condition釘=v。atY1 = Yo-
As in [4], we can make the following settings of y。andv0 depen屯~g on the upstream 
Mach number M_ as well as the effective upstream Mach number M_ for 0 = 0 that is 

defined by (24) (note that Ttr-= T_ in the present problem; see also Appendix Din [5]): 

(i) For M_ < 1 < M_, we let Yo =―oo and v。=v_. Then, the resulting profiles of釘(y1)
and other macroscopic quantities exhibit the entire profiles of Type A. 

（） ii For 1 < M_(< M_), we let y0 = 0 and v。=v •• defined by (48). Then, the resulting 
profiles of釘(y1)and other macroscopic quantities demonstrate the profiles in the thick 

rear layer of Type-C solution. 

(iii) For M_ = 1(< M_), we let y。=0 and v。=v_. Then, the profiles of伍(Y1)and 
other macroscopic quantities show the entire profiles of Type B with a corner at the start 

of the profiles y1 = 0. 

Now we compare the solution (50) in case (ii) (Type-C profile) with the numerical 

results that were shown in Figs. 1, 2, 3, and 4. Figures 6(a) and 6(b) are, respectively, 

the same as Figs. l(a) and 2(a) for M_ = 1.3, but y1 is used instead of x1. Therefore, the 

curves for (μ サμ)T=L= 500, 1000, and 2000 coincide except in the thin front layer. The 
result obtained from (50) is shown by the cross symbol at discrete points of y1 to make 
the comparison clear. Figures 7(a) and 7(b) are, respectively, the same as Figs. 3(a) and 
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Fig. 6: Comparison between the profiles based on the slowly varying solution and those 

based on the numerical solution at M_ = 1.3. (a) Profiles of p, も， and1', (b) profiles 
of T'tr and 九nt• The cross symbol indicates the slowly varying solution, and the curves 
indicate the numerical solution for (μb/μ)r=r_ = 500, 1000, and 2000. See Figs. l(a) and 
2(a) and the captions of Figs. 1 and 2. 

4(a) for M_ = 5, and the manner of comparison is the same as in Fig. 6. The figures 
show perfect agreement between the solution based on (50) and numerical solution using 

the new ES model. 

As remarked at the end of Appendix C.2 in [5], the macroscopic equations used here 

are essentially the same as the ET6 system that has been used to analyze the shock-
wave structure in [9, 10, 7]. In these references, to describe the Type-C profile, the weak 

solution of the ET6 system has been considered, that is, a sub-shock with an appropriate 

jump condition is set and is connected with the solution of ET6 system. In the present 

section, as well as Sect. V in [4], we identified the thin front layer of the Type-C profile 

as the shock wave for 0 = 0 (or infinitely largeμb/μ) numerically and combined (37) 
with the corresponding Rankine-Hugoniot relations to describe the Type-C profile. Since 

(37) is derived under the slowly varying assumption, the weak solution, which allows 

discontinuities, should be excluded. However, if we admit (37) as the basic equation, we 

can proceed in the same way as in the case of the ET6 system. It should also be mentioned 
that shock-wave structure for CO2 gas was studied recently by using different continuum 

models, including the Navier-Stokes equations [1]. 

5 Concluding remarks 

In the present study, we have proposed a new kinetic model for the Boltzmann equation 

for a polyatomic gas with temperature-dependent specific heats (thermally perfect gas) 
(Sect. 2). It is a straightforward extension of the conventional ES model for a gas with 

constant specific heats (calorically perfect gas) [2, 3]. Then, the basic properties of the 

new model, such as the equilibrium solution, the conservation laws, the H theorem (only 

in the space-homogeneous case), and the formulas of the viscosity, bulk viscosity, and 
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Fig. 7: Comparison between the profiles based on the slowly varying, solution and tho的
based on the numerical solution at M_ = 5. (a) Profiles of p, v, and T, (b) profiles of Ttr 
and叫.See the caption of Fig. 6. 

thermal conductivity, have been established (Sect. 3). 

Next, the model was applied to the problem of the shock-wave structure of CO2 gas, 

which is known to have a very large value of the ratio of the bulk viscosity to the viscosity 
(Sect. 4). First, the problem was tackled by a direct numerical analysis (Sect. 4.3), which 

was carried out in parallel to the case of a gas with constant specific heats [4]. The detailed 

profiles of macroscopic quantities across the shock wave have been shown for two typical 

upstream Mach numbers (M_ = 1.3 and 5) that provide the Type-C profile defined in [8] 
(i.e., the profile consisting of a thin front layer with rapid change and a thick rear layer 

with slow relaxation) (Sect. 4.3.2). In the case of the higher Mach number (M_ = 5), 
the effect of the temperature dependence of the specific heats has a large effect, and the 
profiles are significantly different from those for the gas with constant specific heats. 

Following the analysis in [4], we also derived a system of macroscopic equations for 
the slowly varying solution that describes the slow relaxation of the internal modes. The 

system is an extension of the system derived in [4] to the case of temperature-dependent 

specific heats. The numerical computation based on the analytical solution of this system, 
combined with the Rankine-Hugoniot relations for infinitely large bulk viscosity, gives the 

profiles of the thick rear layer of Type-C profile in perfect agreement with the numerical 

solution of the new ES model (Sect. 4.4). 

The present article is just a summary of the paper [5]. The reader who is interested 

in the subject is referred to the original paper [5] for the details. 
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