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Comparison of two time-marching 
schemes for dynamic rupture simulation 
with a space-domain BIEM
Hiroyuki Noda1* , Dye S. K. Sato1 and Yuuki Kurihara2

Abstract 

The boundary integral equation method (BIEM) is one of the important numerical techniques used to simulate 
geophysical phenomena including dynamic propagation, nucleation, and sequence of earthquake ruptures. We 
studied the stability and convergence of two time-marching schemes numerically for 2-D problems in Mode I, II, 
and III conditions. One was a conventional method based on piecewise-constant spatiotemporal distribution of the 
rate of displacement gap V  (CM), and the other was a slightly modified scheme from a predictor–corrector method 
previously applied to a spectral BIEM (NL). In the stability analysis, we simulated behavior of a traction-free fault under 
uncorrelated random distributions of initial traction. The growth rate of the perturbation is negative in a parameter 
regime of complex shape with CM, which has two numerical parameters, and the intersection for all the modes is 
very restricted as reported previously. In contrast, NL has only one parameter and yields simpler and a wide parameter 
regime of stability, conceivably allowing more flexible meshing on the fault. In the convergence analysis in which a 
smooth problem was solved, CM resulted in a numerical error scaled as �x

1 while NL led to the scaling of �x
2 typically 

or of �x
1.5 under certain conditions in Mode II problems. NL requires negligible additional computational costs and 

modification of the code is quite straightforward relative to CM. Therefore, we conclude that NL is a useful time-
marching scheme that has wide applicability in simulations of earthquake ruptures although the reason for the rather 
complicated convergence behavior and verification of the findings here to more general conditions deserve further 
study.
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Introduction
A boundary integral equation method (BIEM) for 
dynamic rupture simulation (e.g., Das and Aki 1977) 
has been widely used in the study of a variety of prob-
lems related to earthquake generation processes, from 
idealized 2-D cases (e.g., Andrews 1985) to 3-D realis-
tic cases dealing with complex geometry composed of 
many fault planes (e.g., Ando and Kaneko 2018). In addi-
tion, the BIEM is a useful tool that can be used to study 
quasi-static problems (e.g., Okada 1985), the prepara-
tion processes of earthquakes (e.g., Dieterich 1992), and 

their sequences (e.g., Lapusta et al. 2000). It can also be 
extended to linear viscoelastic materials (Geubelle 1997; 
Kato 2002; Miyake and Noda 2019).

The BIEM makes use of analytic expressions of Green’s 
function and does not suffer from artificial disper-
sion during propagation of elastic waves in a medium. 
Because we do not have to discretize the medium with 
the BIEM, it is possible to simulate a problem with higher 
on-fault resolution than with other methods such as 
finite difference methods and finite element methods, 
which are based on discretization of volume. Numerical 
techniques have been developed for or applied to BIEMs 
that dramatically reduce computational costs, such as fast 
Fourier transformation for spectral formulation (Lapusta 
et  al. 2000), fast multipole decomposition (Tullis et  al. 
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2000), a Barnes–Hut scheme (Beeler and Tullis 2011), a 
fast domain partitioning (FDP) (Ando et al. 2007), hier-
archical matrices (H-matrices) (Ohtani et al. 2011), and a 
recently proposed method consisting of FDP, H-matrices, 
quantization, and averaged reduced time (Sato and Ando 
2019). One of the weak points of BIEMs is that it is dif-
ficult to deal with a heterogeneous medium using them, 
but there are some approaches that extend the ability of 
BIEMs to such problems (Goto et  al. 2010; Kame and 
Kusakabe 2012). Owing to these efforts, BIEMs are cur-
rently one of the most efficient and useful methods for 
studying fault dynamics in a range of problem settings.

There is, however, an issue with numerical stability in 
BIEMs (e.g., Fukuyama and Madariaga 1998; Tada and 
Madariaga 2001). For example, Tada and Madariaga 
(2001) systematically studied a numerical scheme based 
on spatiotemporally piecewise-constant basis functions 
for the rate of displacement gap V  on the fault (Cochard 
and Madariaga 1994). They simulated a 2-D self-similar 
dynamic rupture of Mode I, II, or III, and concluded that 
the region of stability in the numerical parameter space 
is rather restricted and depends on the mode of the rup-
ture (Figs. 5, 6 and 7 in Tada and Madariaga 2001). The 
intersection of the stability regimes for multiple modes 
is so restricted that the numerical parameters must be 
chosen carefully for simulation of mixed-mode ruptures. 
Furthermore, the ability of flexible meshing on the sur-
faces is very restricted, as the numerical parameters vary 
locally for a heterogeneous mesh. It is often the case that 
a small artificial damping factor is added (e.g., Yamashita 
and Fukuyama 1996; Kame et  al. 2003) to enhance the 
stability of the simulations. The effect of the damping 
should be small, but could make solutions of insufficient 
resolution artificially smooth and good-looking if simu-
lations were to be tuned unfairly. Therefore, researchers 
must be careful to avoid misinterpretation of numerical 
results.

Noda and Lapusta (2010) suggested a different, second-
order time-marching scheme based on a predictor–cor-
rector approach for a spectral, wavenumber-domain 
BIEM (SBIEM) by slightly modifying a scheme proposed 
by Lapusta et  al. (2000) and Lapusta and Liu (2009). In 
the SBIEM, temporal convolution is calculated with a 
midpoint integration scheme, and V  at temporal mid-
points is estimated by linear interpolation between col-
location points. In the present study, we have adapted 
the midpoint evaluation of V  to the space-domain BIEM 
based on spatiotemporal piecewise-constant basis func-
tions and found that the present scheme was more stable 
and accurate than the conventional one.

The outline of this paper is as follows. The two time-
marching schemes investigated are briefly described in 
the “Time-marching schemes” section. The procedures of 

numerical experiments conducted to study the stability 
and accuracy of the schemes are described in the “Meth-
odology” section, and the results of these experiments 
are reported in the “Results” section, which is followed by 
“Discussion” and “Summary” sections.

Time‑marching schemes
In the present study, we investigated time-marching 
schemes in the simulation of dynamic rupture propaga-
tion for a fault embedded in an infinite homogeneous 
linear elastic medium. For simplicity we considered 2-D 
problems with a planer fault subjected to either Mode I, 
II, or III loading conditions. In such problems, a relevant 
component of traction on a fault τ is expressed as spati-
otemporal convolution of an integration kernel K  and 
history of the rate of displacement discontinuity V  in a 
boundary integral formulation (Cochard and Madariaga 
1994; Geubelle and Rice 1995),

where x is the coordinate along the fault, t is time, τ ini is 
the initial value of the traction on the fault if V = 0 . t− is 
infinitesimally smaller than t , and the difference of t and 
t− is crucial in the proposed scheme. K  is a hypersingu-
lar kernel or can be expressed as a combination of non-
hypersingular kernels and derivative operators (Cochard 
and Madariaga 1994; Tada and Yamashita 1997). η rep-
resents the amount of an instantaneous elastodynamic 
effect due to impedance of the medium extracted explic-
itly from the convolution. It depends on the mode of the 
rupture,

where ρ is the density, cs is the S-wave speed, and cp is the 
P-wave speed.

Conventional time‑marching scheme
Cochard and Madariaga (1994) discretized Eq. (1) based 
on piecewise-constant spatiotemporal distribution of 
V  . The collocation points where τ and V  are defined are 
indicated in Fig.  1a. The traction after the n th timestep 
and at the i th element is estimated by the summation of 
the effects of the sources at the m th timestep and the j th 
element,

n = 0 corresponds to the first snapshot defined at 
t = et�t . N  is the total number of the elements, �x is 

(1)

τ(x, t) = τ
ini +

∞

∫
−∞

t−

∫
0

K
(

x − x′, t − t ′
)

V
(

x′, t ′
)

dt ′dx′ − ηV (x, t),

(2)2η =

{

ρcp (Mode I)
ρcs (Mode II and III)

,

(3)τ
n
i = τ

ini
i +

N
∑

j=1

n
∑

m=0

Kn−m
i−j (�x, hT , et)V

m
j .
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the length of the elements, hT is the nondimensional 
timestep hT = cs�t/�x , and et is the nondimensional 
timing of the collocation points (Fig. 1a). Vn

i  is defined at 
t = (n+ et)�t so that the collocation point is in the inte-
rior of the support of the corresponding basis function if 
0 < et < 1 . Note that the kernel value depends only on 
the relative location and time difference between a source 
and a receiver in our simple problem setting. The instan-
taneous term in Eq. (1) is included in the summation by 
assuming that V  does not change suddenly at the col-
location points. For expression of the kernel, please see 
Appendix in Tada and Madariaga (2001).

Suppose that the values of Vm
j  are known for all j and 

m ≤ n− 1 . Then Eq.  (3) yields N  equations with 2N  
unknowns ( τni  and Vn

i  , 1 ≤ i ≤ N  ). In problems deal-
ing with rupture propagation, a fault constitutive law is 
assumed. As it must satisfy the principle of local action, 
it provides additional N  equations that relate τni  and Vn

i  . 
Therefore, we can solve for τni  and Vn

i  , if they exist, and 
carry on the simulation. This scheme shall be abbreviated 
as CM in the present paper.

CM has two nondimensional numerical parameters 
hT and et , and Tada and Madariaga (2001) demonstrated 
that the numerical stability depends on the selection of 
them, and on the mode of the rupture. Their results are 
compared with our numerical experiments in a later 
section.

Present scheme based on a predictor–corrector method
Noda and Lapusta (2010) proposed a second-order 
time-marching scheme based on a temporal midpoint 
integration scheme of Eq. (1) formulated in a wavenum-
ber domain for use with the SBIEM (e.g., Lapusta et  al. 
2000). In the SBIEM, Fourier basis is used so that the 
spatial distribution of V  is assumed to be smooth. Such 
representation is available only for a planer fault, which is 
recognized as a weakness of the SBIEM. Here, we applied 
a time-marching scheme similar to that by Noda and 
Lapusta (2010) to the space-domain BIEM.

The spatiotemporal discretization in the present 
schema is illustrated in Fig. 1b. We approximate Eq.  (1) 
using spatiotemporally piecewise-constant basis func-
tions for V  similarly to CM, but estimate the history of V  
at temporal midpoints indicated by crosses, and allow for 
sudden change in V  at the collocation points indicated by 
circles.

Vn
i  and V

m+1/2
i  are defined at time n�t and 

(m+ 1/2)�t , respectively. It should be noted that we 
use the same integration kernel as in CM. 1+ in Eq.  (4) 
is infinitesimally larger than 1 , and explicitly indicate 
that the collocation point for τni  and Vn

i  is out of the sup-
port of the basis function for Vn−1/2

i  . Because the timing 

(4)

τ
n
i = τ

ini
i +

N
∑

j=1

n−1
∑

m=0

Kn−m
i−j (�x, hT , 1+)V

m+1/2
j − ηVn

i .

a b
Fig. 1 Schematic diagrams of spatiotemporal discretization for time-marching schemes investigated in the present study. a Cochard and 
Madariaga (1994) (CM) and b the present scheme (NL). Collocation points where V  and τ are defined are indicated by circles, and V  at the points 
indicated by crosses are stored and used in numerical integration. Piecewise-constant approximation was adopted in both schemes, and a basis 
function is indicated by a gray square. Thick dashed line in b indicates that the collocation points (circles) are not included in the support of the 
basis function

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Page 4 of 12Noda et al. Earth, Planets and Space           (2020) 72:76 

of the collocation point relative to the basis function is 
fixed, this discretization has only one nondimensional 
parameter hT.

After the n− 1 th timestep, we know the Vm
i  values 

where m ≤ n− 1 from which we can calculate the contri-
bution from the previous history to the functional term,

The traction at the end of the current timestep is 
expressed as

where

In a predictor step, we assume Vn−1/2
j  to be identical to 

Vn−1
j  , and estimate φhead

i ,

This is a first-order approximation if the solution is 
smooth. We can then obtain an approximation to τni  and 
Vn
i  by solving a friction law and

simultaneously. If we adopted τn∗i and Vn
∗i as the final esti-

mate and Vn−1/2
j  were not updated, the scheme would be 

CM with et = 0+.
In a corrector step, we first obtain a better estimate of 

V
n−1/2
j  based on linear interpolation,

and re-calculate the contribution of the current timestep 
to the functional term,

Then, we update the estimate of τni  and Vn
i  by solving the 

friction law and

Finally, we adopt these updated values as a numerical 
solution,

(5)φ
tail
i = τ

ini
i +

N
∑

j=1

n−2
∑

m=0

Kn−m
i−j (�x, hT , 1+)V

m+1/2
j .

(6)τ
n
i = φ

tail
i + φ

head
i − ηVn

i ,

(7)φ
head
i =

N
∑

j=1

K 1
i−j(�x, hT , 1+)V

n−1/2
j .

(8)V
n−1/2
∗j = Vn−1

j ,

(9)φ
head
∗i =

N
∑

j=1

K 1
i−j(�x, hT , 1+)V

n−1/2
∗j .

(10)τ
n
∗i = φ

tail
i + φ

head
∗i − ηVn

∗i

(11)V
n−1/2
∗∗j = 1

2

(

Vn−1
j + Vn

∗j

)

,

(12)φ
head
∗∗i =

N
∑

j=1

K 1
i−j(�x, hT , 1+)V

n−1/2
∗∗j .

(13)τ
n
∗∗i = φ

tail
i + φ

head
∗∗i − ηVn

∗∗i.

and

This scheme shall be labeled as NL in this paper.
If the corrector step is iterated until the numerical 

solution converges, the scheme becomes implicit, which 
solves Eq.  (4) and the friction law simultaneously. For a 
relatively short timestep ( hT cs

/

cp ≤ 0.5 for Modes I and 
II, and hT ≤ 0.5 for Mode III), φhead

i  is zero regardless of 
V

n−1/2
j  . Therefore, the numerical solution converges after 

the first corrector step.
The computational cost is dominated by calculation 

of spatiotemporal convolution. Although this scheme 
consists of two sub-steps, the main part of the convolu-
tion, summing up contributions from the previous steps, 
is executed only once per timestep. Therefore, the addi-
tional numerical resources required are negligible rela-
tive to CM.
V  is assumed to be constant in the predictor step. We 

can interpret the corrector step as two-step approxima-
tion. Firstly, V  is assumed to change linearly with time, 
which would yield global error scaled as �t2 . Secondly, 
the mid-point evaluation of V  (Eqs. 11 and 16) is applied 
and the same kernel as for CM is used instead of prepar-
ing another integration kernel for the linearly evolving V  . 
This second approximation also yields global error scaled 
as �t2 where K  is smooth enough (Appendix). Just note 
that in the SBIEM by Noda and Lapusta (2010), both V  
and the integration kernel are evaluated at the temporal 
midpoints so that the temporal integration is estimated 
with the midpoint scheme. In the numerical experi-
ments presented later, NL was shown to be useful owing 
to its enhanced numerical stability, faster convergence of 
numerical error, and minimal modification of the simula-
tion code required relative to CM.

Methodology
To investigate the stability and accuracy of the two time-
marching schemes, we conducted two types of numeri-
cal experiments for Mode I, II, and III problems. The first 
being the numerical simulation of evolution of a random 
field mimicking a numerical error, and the second a con-
vergence test for a smooth problem. To avoid additional 
complexity from the friction law, the fault is assumed to 
be traction-free ( τni = 0 ) in the experiments. Such a sim-
ple friction law yields

(14)Vn
i = Vn

∗∗i,

(15)τ
n
i = τ

n
∗∗i,

(16)V
n−1/2
i = 1

2

(

Vn−1
i + Vn

∗∗i

)

.
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Traction-free surfaces appear frequently in simulations 
in practice. Hok and Fukuyama (2011) used traction-free 
elements to include a ground surface in their model. In 
dynamic rupture simulations with slip-weakening fric-
tion laws, a ruptured region of residual, constant fric-
tional strength can be considered traction-free if we 
focus on the response in the fault motion to perturbation. 
Therefore, the stability condition obtained in the present 
numerical experiments can be used as a necessary con-
dition for a wide range of dynamic rupture simulations. 
The problem settings of the numerical experiments are 
described in detail in the following subsections.

Numerical stability analysis
For integral–differential equations, an analytic approach 
to assess numerical stability such as Von Neumann stabil-
ity analysis may be difficult. In the first numerical experi-
ments, we numerically simulated evolution of initially 
random perturbation added to a simple analytic solution,

Poisson’s ratio ν = 0.25 was assumed, which is a good 
approximation to rocks. The fault was discretized by 
N = 64 elements, and the fault behavior was simulated 
until cpt

/

�x = 320 . τ inii  was given by Gaussian random 
distribution around zero with standard deviation of σ , 
and the same realization of τ inii  was used for all simula-
tions (Fig. 2a). In the simulation, τ and V  were nondimen-
sionalized by σ and σ/ρcs , respectively.

During the simulations, the L2 norm of nondimension-
alized V ,

(17)Vn
i =

φ
tail
i +φ

head
i

η
.

(18)V (x, t) = 0 for all x and t ≥ 0.

changes with time. The growth rate was calculated for 
each simulation by fitting a linear envelope to a plot of 
log10

(

||Vρcs
/

σ2||
)

 as a function of cpt
/

�x in the latter 
half of a simulation, 160 ≤ cpt

/

�x ≤ 320 , and defined 
as the slope of the envelope. If the perturbation grows, it 
is conceivable that the random round-off error increases 
with time, and the numerical solution cannot be regarded 
as an approximation to the true solution.

With CM, a 2-D parameter study was conducted for 
0.1 ≤ hT ≤ 1.5 and 0 ≤ et ≤ 1 every 0.01 ( 141× 101 
runs for each mode). With NL, there is only one numeri-
cal parameter. Therefore a 1-D parameter study for 
0.1 ≤ hT ≤ 1.5 every 0.01 ( 141 runs for each mode) was 
performed.

Convergence test
Convergence tests were performed for a problem of 
smooth distribution of τ ini(x) applied to a traction-free 
fault in Mode I, II, or III conditions. We assumed τ ini to 
be an infinitely differentiable function,

where �τ is the amplitude and � is the approximate width 
of the perturbation (Fig.  2b). Note that the maximum 
value of the gradient dτ ini/dx is 4�τ/� , and thus it can 
be anticipated that �x < �/4 is required for simulations 
with a good resolution.

A series of simulations were conducted until tcs 
exceeded 2� with various �x from � to �/256 with CM 

(19)�Vρcs
/

σ2�2 =
ρcs
σ

√

N
∑

i=1

Vn2
i

(20)

τ
ini
(x) =

{

�τ

2

(

1+ tanh
(

�

|x|−�
+ �

|x|

))

|x| < �

0 � ≤ |x|
,

a b

Fig. 2 Distributions of τ ini assumed in the numerical experiments. a A Gaussian random distribution for 64 elements for numerical stability analysis. 
b A smooth boxcar-like function (Eq. 18), which was sampled by elements of �x from � to �/1024
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and NL. The system size was set long enough that the 
ends of the fault did not matter. The mesh was refined by 
adding extra collocation points in the middle of neigh-
boring ones. Therefore, positions of the collocation 
points in a mesh always form a subset of those in the 
finer meshes.

The numerical parameters et and hT must be selected 
from the region of stability obtained in the numerical 
stability analysis, which is explained in the following sec-
tion. For CM, we selected a couple of parameter sets, 
(hT , et) = (0.5, 0.4) and (0.9, 0.55) . As hT increases, the 
amount of memory required for simulation of the same 
physical time duration decreases. hT = 0.9 is around the 
upper maximum of the stability condition as explained 
later. For NL, we tested hT from 0.4 to 1.1 every 0.1.

In addition to CM and NL, we carried out a con-
vergence test with the SBIEM and the second-order 
time-marching scheme by Noda and Lapusta (2010) for 
reference with hT = 0.5 . Owing to calculation of the spa-
tial convolution in the wavenumber domain, the SBIEM 
requires much less numerical resources and thus we can 
refine the mesh much more than with the space-domain 
BIEM. Simulations with the SBIEM were conducted with 
�x from � to �/1024 , and the simulation with the best 
resolution ( �x = �/1024 ) was used as a reference solu-
tion in estimating the numerical error.

Numerical error E was defined as the L2 norm of the 
difference in V  from the reference solution at tcs/� = 2 . 
If the collocation time points did not exist exactly at 
tcs/� = 2 , then V  at tcs/� = 2 was estimated by tempo-
ral linear interpolation between collocation points. E was 
defined as

where Vi is the value of V  at tcs/� = 2 and at the i-th grid 
point, VR

r(i) is the corresponding value of V  in the refer-
ence solution. E(�x/�) is a decreasing function for a con-
sistent numerical scheme if �x

/

� ≪ 1 , and the order of 
accuracy can be recognized as the slope in a log–log plot.

Results
Numerical stability analysis
Figure  3 shows representative examples of evolution of 
Vρcs/σ2 in the Mode II problem using CM with numeri-
cal parameters et = 0.6, and hT = 0.65, 0.7, 0.75, and 0.8 . 
The dashed lines in cpt

/

�x > 160 are the envelopes 
that define the growth rate. Just after initiation of the 
simulations, the norm of V  decreased regardless of the 
parameters. It began to increase after a while in some 
cases, showing exponential growth (cases with hT = 0.65 
and 0.7 ). In other cases, it sharply decreased at around 

(21)E(�x/�) = ρcs
�τ

√

N
∑

i=1

(

Vi − VR
r(i)

)2
�x
�
,

cpt
/

�x = 120 , and continued to decrease exponen-
tially. The cases with the smallest growth rate values were 
almost the same each other and were very close to the 
plot for hT = 0.8 in Fig. 3.

Spatiotemporal distributions of V  for the cases plot-
ted in Fig.  3 are shown in Fig.  4. Note that V  at each 
timestep is normalized by the L2 norm of V  at the same 
timestep (Fig.  3). The normalization helps us recog-
nize dominant pattern of each numerical solution. With 
hT = 0.65 (Fig. 4a), alternating oscillation became domi-
nant soon after the initiation of the simulation, and 
propagation of waves from the initial heterogeneous 
field was hardly seen. With hT = 0.7 (Fig. 4b), the oscil-
lation grew more slowly, and the waves could be seen 
until about cpt

/

�x = 60 at the center of the fault, and 
about cpt

/

�x = 120 near the ends of the fault. Note 
that Ncp/cR = 120.57 for ν = 0.25 where cR is the Ray-
leigh wave speed. After passage of these waves, the alter-
nating oscillation became dominant. With hT = 0.75 
(Fig. 4c) and 0.8 (Fig. 4d), it was clear that Rayleigh waves 
radiated from the initial stress distribution that passed 
through the fault by cpt

/

�x = 120 . Subsequent fault 
motion apparently consisted of a series of Rayleigh waves 
evidenced by checkered patterns at large cpt

/

�x . The 
pattern seemed to be richer in high wavenumber and fre-
quency for hT = 0.75 than for hT = 0.8.

The growth rate obtained with CM for each mode and 
for a range of hT and et is indicated by color maps in 
Fig.  5. The color scales are selected from the minimum 
value to −2 times the minimum value so that variation in 
largely positive values is not indicated. The shape of the 
region of stability enclosed by white-black dashed lines 
is complex, and different for different modes as reported 
by Tada and Madariaga (2001). Their results are plotted 

0 200100 300

1

0

–1

2

cpt / Δx

lo
g 10

(||
Vρ

c s /
 σ

|| 2)

et = 0.6
hT = 0.65

0.7

0.75

0.8

Mode II

Fig. 3 Representative simulation results of the numerical stability 
analysis using CM for a Mode II problem and with et = 0.6 and 
hT = 0.65, 0.7, 0.75, and 0.8 . The straight dashed lines are envelopes 
that define the growth rate
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in Fig. 5 for comparison and will be discussed later. Fig-
ure 6 shows the stability fields for all combinations of the 
modes. In problems comprising a mixed-mode rupture 
or with surfaces where motion in multiple directions is 
allowed, the numerical scheme must be stable for multi-
ple modes, while the intersection of the stability regimes 
of all the modes is quite restricted. Therefore, the numer-
ical parameters must be selected carefully for CM.

The growth rate obtained with NL is indicated in Fig. 7. 
It is remarkable that the scheme is stable for a wide range 
of hT , which is the only parameter in the scheme. For 

Modes I and III, the scheme is stable almost everywhere 
as long as studied. For Mode II, it is less stable, but there 
is a wide region of stability of 0.40 ≤ hT ≤ 1.14 in addi-
tion to a smaller one of 0.26 ≤ hT ≤ 0.29 (see Fig.  7b). 
Intersection of the regions of stability for all modes is 
identical to that of Mode II. The wide continuous region 
of stability allows us to vary the size of elements by a fac-
tor of 2.85 if the length of the timestep is spatially uni-
form in a simulation.

a b
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0 0.6–0.6

cp
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Fig. 4 Spatiotemporal distribution of V  normalized by its L2 norm (Eq. 17) defined for each snapshot in the simulations for numerical stability 
analysis plotted in Fig. 3 under Mode II loading conditions with hT  of a 0.65 , b 0.7 , c 0.75 , and d 0.8, and et = 0.6 . Three black lines from the origin 
represent the wave speeds
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Convergence test
The results of the convergence tests for Mode I, II, and 
III conditions are shown in Fig. 8a, b, c, respectively. For 

all the modes, CM results in a first-order scheme, while 
NL shows faster convergence rates. With NL E

(

�x
/

�
)

 
depends on hT by about one order of magnitude so that 
selection of hT is important for good quality simulations 
if accessible numerical resources allow. It is surprising 
that NL with hT = 0.5 is slightly better than the SBIEM 
with the same hT for Modes I and III.

To see detailed behavior with NL, we normalize 
E
(

�x
/

�
)

 by 
(

�x
/

�
)2 indicated by thick gray lines in 

the upper panels of Fig. 8. Horizontal dependency in the 
lower panels of Fig. 8 indicates second-order accuracy. It 
is typically the case that a smaller hT value (i.e., shorter 
timesteps and larger memory requirement) results in a 
smaller numerical error. In Mode II, however, the cases 
with hT = 0.4 and 0.5 show scaling of only 

(

�x
/

�
)1.5 , 

and the numerical error can be worse than in cases with 
larger hT in simulations with a very good resolution (i.e., 
small �x

/

�).

Discussion
In addition to the results of the present study, numerical 
stability reported by Tada and Madariaga (2001) every 
0.05 in hT and every 0.1 in et is plotted in Fig. 5. They con-
ducted simulations of self-similar singular ruptures for 
a maximum of 1000 timesteps and presented the stabil-
ity after classifying the cases according to the following 
five categories. (1) Displacement gap �u exceeded a cer-
tain threshold about 10 times larger than the maximum 
value in the analytic solution before the 200th timestep 
(cross symbols in Fig. 5). (2) �u exceeded the threshold 
between the 201st and 500th timesteps (black triangles in 
Fig. 5). (3) �u exceeded the threshold between the 501st 
and 999th timesteps (black squares in Fig. 5). (4) �u did 

a

b

c

Fig. 5 Color maps of the growth rate of the numerical solutions 
in the stability analysis using CM for a Mode I, b Mode II, c Mode III 
conditions. The color bars denote the range from the minimum value 
to −2 times it. Zero growth rate is indicated by white-black dashed 
lines. Results of the stability analysis by Tada and Madariaga (2001) are 
indicated in symbols. For full details, see the main text

Fig. 6 The stability field for all combinations of the modes for CM 
(Fig. 5). Purple: Mode I, Cyan: Mode II, Yellow: Mode III, Blue: Modes I 
and II, Green: Modes II and III, Red: Modes I and III, Black: All modes
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not exceed the threshold, but it was not a smooth, mono-
tonic function of x at the 1000th timestep (gray squares 
in Fig. 5). (5) �u was a smooth function of space at the 
1000th timestep (white circles in Fig. 5).

It is apparent that the stability shown by Tada and 
Madariaga (2001) anticorrelates well with the growth rate 
calculated in the present study. Therefore, we conclude 
that the numerical error studied by them is mainly due to 

growing oscillation in the ruptured, traction-free part of 
the self-similar ruptures. Note that a smaller hT requires 
a larger number of timesteps per unit time. Therefore, if 
two cases have the same growth rate defined in the pre-
sent study, the case with smaller hT should show less 
poor stability evaluated by Tada and Madariaga (2001) 
than the other case.

a b

Fig. 7 a Growth rate obtained in the stability analysis using NL, and b a magnified plot around the neutral growth rate. Results for Mode I, II, and III 
are indicated by blue squares, red triangles, and black circles, respectively. Intersection of regions of stability for all modes are indicated in yellow

a b c

d e f
Fig. 8 The results of the convergence tests. a–c Estimated numerical error E

(

�x
/

�
)

 as a function of the element size �x
/

� . Red symbols represent 
cases with CM. Green to blue symbols are for cases with NL with various hT  . Black pluses are cases with the SBIEM. d–f The cases with NL normalized 
by 

(

�x
/

�
)2 . Panels in the left, center, and right columns represent Modes I, II, and III, respectively
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With NL, the observed convergence rate �x1.5 for 
Mode II with hT ≤ 0.5 was smaller than that of the other 
cases that showed �x2 . The integration scheme in NL 
(Eq.  (4)) is second-order accurate for smooth enough 
functions, while the kernel of the space-domain BIEM 
has singularities at the wave fronts and at the source loca-
tion. These singularities could be the source of the slower 
convergence rate, for the singularity of order −1/2 at the 
wave fronts results in global error scaled as �x1.5 . How-
ever, the reason why the other cases show faster rate of 
�x2 is not clear and deserves further study. This problem 
may be less severe for 3-D cases in which the singularity is 
milder. Note that this issue does not exist in the SBIEM, 
which uses a smooth integration kernel expressed in the 
wavenumber domain.

Figure  8 illuminates additional complex dependency 
of the numerical error on �x and �t . Comparison of the 
cases with the same �x and different hT and thus dif-
ferent �t shows non-monotonic behavior for Mode II 
with �x ≤ �/16 . The numerical error of the cases along 
the �x1.5 dependency for Mode II (thick dashed lines in 
Fig. 8e) decreases by a factor more than 3 with decreas-
ing �t by 20% with keeping �x , yielding scaling of about 
�t5 locally. The cases with hT = 0.5 have the same �t as 
those in the cases with half �x and hT = 1.0 . Compari-
son of them almost always indicates that the numerical 
error increases with decreasing �x with keeping �t . 
Those observations cannot be understood based on 
convergence of numerical integration of a regular func-
tion. Further investigations on the accuracy in numeri-
cal treatment of the hypersingularity or on the effect of 
interaction of V  and φ on the fault are required to fully 
understand the present and conventional time-marching 
schemes to verify, not only experimentally, but also theo-
retically, the accuracy of dynamic rupture simulations. In 
addition, the present study deals with the simplest 2-D 
problem consisting of a planer fault and a trivially simple 
friction law. Applicability of the results here to more gen-
eral cases such as 3-D problems with non-planer faults 
has to be tested.

On the friction law, Lapusta et al. (2000) proposed an 
adaptive time stepper based on a stability analysis of the 
quasi-static limit with a rate- and state-dependent fric-
tion law (e.g., Ruine 1983), followed by a quasidynamic 
stability analysis with an exponential time-differencing 
scheme by Noda and Lapusta (2010). Positive rate-
dependency, either instantaneous or at steady-state, 
enhances numerical stability. On the other hand, negative 
instantaneous rate-dependency may lead to an ill-posed 
problem (Rice et  al. 2001). We would like to point out 
that the friction law significantly affects numerical stabil-
ity although investigation of this issue is out of the aim of 
the present study.

Although the results of numerical experiments 
reported here have not fully understood, we found NL 
useful and applicable to many geophysical problems. It 
requires negligible additional numerical resources com-
pared with CM and allows us more flexible meshing on 
a fault for problems with a mixed-mode rupture. NL has 
only one numerical parameter hT , and thus tuning of a 
simulation is simpler. In addition, NL produces a smaller 
numerical error than CM, and thus requires less compu-
tational costs for simulations of the same quality.

Summary
We tested two time-marching schemes used in numeri-
cal simulations of dynamic rupture based on a boundary 
integral equation method (BIEM). One (CM) is a con-
ventional method based on spatiotemporally piecewise-
constant distribution of V  , the stability of which was 
previously investigated by Tada and Madariaga (2001). 
The other (NL) is based on a predictor–corrector method 
previously used in a spectral, wavenumber-domain BIEM 
(SBIEM) (Lapusta et  al. 2000; Noda and Lapusta 2010) 
and adapted to the space-domain BIEM in this study. CM 
has two nondimensional numerical parameters et and hT , 
which represent the timing of the collocation points and 
the length of timesteps, respectively, while NL has only 
one parameter, hT . Two types of numerical experiments 
have been conducted for 2-D Mode I, II, and III problem 
settings for a flat traction-free fault.

Numerical stability was numerically evaluated by sim-
ulating fault motion due to randomly distributed initial 
stress τ ini . We found that the growth rate with CM anti-
correlates very well with the report by Tada and Madar-
iaga (2001), and that the stable region in the parameter 
space (hT , et) is rather complex. The intersection for all 
the modes is quite restricted, implying that mixed-mode 
ruptures are difficult to simulate with CM. However, in 
contrast, NL shows a wide range of stability in the param-
eter space. The growth rate is negative for all the modes if 
0.26 ≤ hT ≤ 0.29 or 0.40 ≤ hT ≤ 1.14 . Therefore, NL is 
probably useful in simulating mixed-mode ruptures or in 
meshing a fault heterogeneously. Convergence tests con-
ducted for initially smooth distribution of τ ini show faster 
convergence rates for NL than CM. CM shows first-order 
convergence, and overall NL shows second-order conver-
gence except in a couple of Mode II cases with hT = 0.4 
and 0.5 , in which the numerical error is scaled as �x1.5 . 
Although the reason for such complex dependency 
deserves further study and applicability of the findings to 
more general cases has to be confirmed, we conclude that 
NL is a useful scheme because of its enhanced stability, 
smaller numerical error, and negligible additional com-
putational cost compared with CM.
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Appendix
Second‑order accuracy of Eq. (4) for smooth functions
Equation  (4) is not a midpoint integration scheme of 
Eq. (1), as K  is estimated based on boxcar approximation 
to the source despite V  being evaluated at the center of 
the support of the basis functions. It is, however, straight-
forward to show the second-order accuracy where the K  
and V  are differentiable for two times. It is sufficient to 
consider a 1-D integration. If f (t) and g(t) are differenti-
able for two times in 0 < t < �t , so is f (t)g(t) and thus

The local error of �t3 causes the global error of �t2 in 
the midpoint integration scheme. Similarly, integration of 
g(t) yields

(22)
�t
∫

0

f (t)g(t)dt = f (�t/2)g(�t/2)�t + O
(

�t3
)

.

(23)

�t
∫

0

g(t)dt = g(�t/2)�t + O
(

�t3
)

.

Substituting g
(

�t
/

2
)

�t in Eq. (A1) for an expression 
given by Eq. (A2), we obtain

This equation indicates that midpoint evaluation of the 
source ( f  ) and the kernel based on constant source (inte-
gral of g ) can produce a solution with a second-order 
global error.
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