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ABSTRACT The relational network of people (RNP) model has been attracting the interest of not only
researchers but also industrial engineers. RNP can be constructed from friend lists in online social networking
services (SNSs) and from inter-contact logs between individuals. One of the killer applications of RNP is
the prediction of user demands, which is key to maximizing user satisfaction in content delivery services
such as video streaming and video advertising. It is well known that an RNP representing social closeness
between individuals (a so-called social network) can estimate user preferences simply, as we expect that
people close to each other will have similar preferences. However, although there are many metrics that
enable the social closeness between individuals to be measured, it is unclear which metric is best suited for
individual services. Therefore, this paper introduces a new approach based on brain imaging. Brain imaging
using functional Magnetic Resonance Imaging (fMRI) is powerful because it enables us to directly observe
how a video content stimulates the brains of individual people. We propose a brain imaging-based RNP that
represents the similarity of video-evoked brain activities between people as a network graph. We show an
application scenario featuring predictive content delivery using the proposed RNP in which, when a user
shows interest in a video content in some way, other users close to him or her can be expected to also be
interested in it because their brain activities are correlated. Through numerical evaluation using multiple real
datasets obtained by fMRI, we demonstrate that the proposed RNP is generalizable across brain imaging
results for different sets of video content, thus suggesting that brain imaging data can be used to robustly
generate RNP for utilization as a powerful tool for estimating user preferences.

INDEX TERMS Relational graph of people, brain imaging, fMRI.

I. INTRODUCTION
The relational network of people (RNP) model has been
attracting the interest of not only researchers but also
industrial engineers. RNP can be constructed from friend
lists in online social networking services (SNSs) and from
inter-contact logs between individuals and is managed by
using a database as structured data [1]. One of the killer
applications of RNP is the prediction of user demands, which
is key to maximizing user satisfaction in content delivery
services such as video streaming and video advertising.

The video content delivery market, which includes video
streaming and video advertising, has grown exponentially

The associate editor coordinating the review of this article and approving
it for publication was Leandro Beltrachini.
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over the last decade and is continuing to grow. According to
Statista [2], revenue in the video streaming segment amounts
to US $24,837 m in 2019. It is forecast that the revenue will
show an annual growth rate (CAGR 2019-2023) of 3.2%,
resulting in a market volume of US $28,190 m by 2023. User
penetration is 14.6% in 2019 and is expected to hit 16.3%
by 2023. Globally, most revenue is generated in the United
States (US $11,420 m in 2019). As for the video advertis-
ing segment, it amounts to US $35,594 m in 2019. It is
forecast that the revenue will show an annual growth rate
(CAGR 2019-2023) of 13.4%, resulting in a market volume
of US $58,764 m by 2023.

It is well known that an RNP representing social close-
ness between individuals (a so-called social network) can
estimate user preferences simply, as we expect that people
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close to each other will have similar preferences [3]-[5].
However, although there are many metrics that enable
the social closeness between individuals to be measured,
it is still unclear which metric is best suited to individual
services [6], [7].

Therefore, this paper introduces a new approach based
on brain imaging. Brain imaging using functional Magnetic
Resonance Imaging (fMRI) is powerful because it enables us
to directly observe how a video content stimulates the brains
of individual people. We can obtain a personal model from
brain imaging data from fMRI and interconnect personal
models based on the similarity between them as a network
graph. In this paper, we propose an RNP based on similarity
of brain activities. We show an application scenario featuring
predictive content delivery using the proposed RNP in which,
when a user shows interest in a video content in some way,
other users close to him or her can be expected to also be
interested in it because their brain activities are correlated.
Through numerical evaluation using multiple real datasets
obtained by fMRI, we demonstrate that the proposed RNP is
generalizable across brain imaging results for different sets
of video content.

Prior works exist, but their approaches are slightly dif-
ferent. Some brain research has sought to develop meth-
ods that characterize individual differences in cognition and
behavior by using brain imaging data. Such methods are
based, for example, on the representational similarity of
object perception [8], the alignment of different brains into a
common representational space [9], and brain decoding [10].
However, these methods cannot directly quantify and visu-
alize the relational structure, as represented by a network
graph, of personalized brain information. Another line of
brain research has applied graph theoretical analysis to brain
data [11], [12]. However, network graphs were used only for
quantifying anatomical or functional networks between dif-
ferent brain regions, namely, the structural and/or connective
characteristics of the brain. The perceptual characteristics
of the brain and their individual differences have not been
extensively studied from the graph theoretical point of view.

In Section II of this paper, we summarize related work.
Section III presents the proposed RNP. Section IV describes
the numerical evaluation we performed and reports and dis-
cusses the results. We conclude in Section V with a brief
summary and mention of future work.

Il. RELATED WORK

A. ANALYSIS FOR BRAIN IMAGING

1) REPRESENTATIONAL SIMILARITY ANALYSIS

There has been some past research on representational simi-
larity analysis (RSA) [13]. In RSA, how the brain represen-
tations of different entities relate to each other is quantified
by the similarity between brain activation patterns evoked by
the entities. By examining the similarity structure of activa-
tion patterns instead of the activation patterns themselves,
RSA enables a direct comparison of brain representations
across different representational spaces [9]. Kriegeskorte and
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colleagues have demonstrated that RSA can be used for
the comparison of brain representations between different
species [14], the association between brain representations
and behaviors [15], and the evaluation of individual differ-
ences in brain representations [8].

2) VOXEL-WISE MODELING

Other research has focused on voxel-wise modeling
(VM) [16]-[18]. Naselaris et al. proposed a systematic mod-
eling approach that begins by estimating an encoding model
for every voxel in a scan and ends by using the estimated
encoding models to perform decoding [16]. VM can be used
to quantitatively characterize perceptual representations in
individual brains from measured brain activity. Accordingly,
this method potentially provides a tool to investigate individ-
ual differences in brain representations. Huth et al. applied
VM to brain activity evoked by natural movies and stories to
visualize a representational space of semantic categories in
each individual brain [17], [18]. Nishida et al. used VM based
on natural language processing features to model each indi-
vidual brain’s structure of semantic representations associ-
ated with language [19]. They also developed a decoding
method based on the same features to recover the semantic
perception of individuals from their fMRI response to natural
movies [10].

3) INDIVIDUAL DIFFERENCES

There have also been works on the neural substrates of
individual differences in cognitive functions [20]-[24]. These
works focused on individual differences particularly in the
structural properties of brains and examined their associa-
tion with the psychological traits of individuals. Dubois and
Adolphs discussed issues of validity, reliability, and statis-
tical assessment that arise when the focus shifts to individ-
ual subjects and that are applicable also to other imaging
modalities [20]. Examining the overall organization of the
brain network using graph analysis, Heuvel et al. showed
that individual differences in intelligence are strongly asso-
ciated with those in the path length of functional connections
between multiple brain regions [21]. Beaty et al. also utilized
graph analysis to identify a brain network associated with
individual differences in creative ability [24]. Adelstein et al.
reported that five-factor personality traits were mostly associ-
ated with brain-regional connections that were inconsistently
present across participants [23]. DeYoung et al. also inves-
tigated the neural substrates of five-factor personality traits
and showed the association of each trait with the volume of
different brain regions [22].

B. SOCIAL NETWORK-BASED CONTENT DELIVERY

He and Chu presented a recommender system that can uti-
lize information in social networks, including user pref-
erences, an item’s general acceptance, and influence from
social friends [3]. They extracted data from a real online
social network, and their analysis of a large dataset revealed
that friends have a tendency to select the same items and give
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FIGURE 1. Block diagram of system for application scenario example.

similar ratings. They also proposed a way to improve the
performance of their system by applying semantic filtering
of social networks and validated its improvement through
an experiment. Sun et al. proposed a social regularization
approach that incorporates social network information to
benefit recommender systems [4]. Users’ friendships and rat-
ing records are utilized to predict the missing values in the
user-item matrix. Cui et al. proposed a video recommenda-
tion algorithm based on the combination of video content
and social network [5]. Their algorithm consists of a trusted
friends computing model and a video’s quality evaluation
model. The former takes into account similarity between
users, interaction between users, and the active degree of a
user, and the latter combines the acceptance ratio of a video
with that video’s reputation.

Although the conventional social network represents only
whether the established relationship between each pair of
people exists or not, there has been much research on ways
to develop other social metrics and to differentiate the rela-
tionships within a social network. Xiang et al. developed an
unsupervised model to estimate relationship strength from
interaction activity (e.g., communication, tagging) and user
similarity [6]. More specifically, they formulated a link-based
latent variable model, along with a coordinate ascent opti-
mization procedure for the inference. Lee and Brusilovsky
provided an overview of the technical needs for social
link-based recommendations and the studies explaining the
viability of users’ social networks as useful information
sources from a social science point of view [7].

lll. PROPOSED RNP

A. APPLICATION SCENARIO EXAMPLE

As mentioned in Section I, one of the killer applications
of RNP is the prediction of user demands, which is key to
maximizing user satisfaction in content delivery services such
as video streaming and video advertising. Figure 1 shows
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FIGURE 2. RNP-based model used for application scenario example.

a block diagram of the system for the application scenario
example. The unidirectional and bidirectional arrows mean
the direction of information flow and data reference, respec-
tively. This system consists of users, a network, the con-
tent selection part, the model matching part, the user-model
database (DB), the content DB, the user-model creation part,
the experiment part with fMRI, and subjects. When a user
logs in to a Web service, his or her personal information
and logs are transferred to the model matching part via the
network. According to the information and logs, the model
matching part identifies the user model most suitable for that
user. Then, the content selection part chooses the best-suited
content for the user model from the content DB and predic-
tively delivers it to the user. The usage of the user model in
the workflow of the matching part will be explained shortly.

As readers might note, constructing the user-model
DB needs to be done beforehand. We recruited as many
subjects who contribute to the experiment of brain imaging
using fMRI as possible. The user model creation part creates
the user models from the brain imaging data obtained from
the experiment using fMRI.

Figure 2 shows the RNP-based model used for the appli-
cation scenario. This model is used by the model matching
part in Fig. 1. In this figure, user models created using brain
imaging are connected with each other and form clusters with
other similar user models. The matching part associates a user
with one of the clusters on the basis of his or her personal
information and logs. Assuming that users who are associated
with the same cluster are likely to be satisfied with the same
video content, in the case of the example in the figure, video
contents A and B, which were satisfactory for user i, are
predictively selected and delivered to user j by the content
selection part when he or she logs in to the service.

Considering the real-world applications of the system
described above, it would be unrealistic to expect to obtain
brain images from all users about all video contents before-
hand. Therefore, as a solution, we assume that the system
associates a user whose brain-based model has not been
obtained yet with the existing brain-based model by using her
or his personal information and logs.
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B. METHODOLOGY FOR PROPOSED RNP

The technical difficulty in constructing the proposed RNP
is that brain imaging signals cannot be directly compared
between different people, as the sizes and shapes of brains
are different person to person and the brain imaging sig-
nals reflect only ‘relative’ information about brain activi-
ties. To solve this problem, we introduce a network graph
approach. We first construct the personal model for a subject
as the network graph that represents the similarity of brain
activities between different video contents. Then, by com-
paring the personal models of the subjects, we build a net-
work graph that represents the similarity of personal models
between subjects. In the numerical evaluation presented in
Section IV, we demonstrate that we can generate the proposed
RNP across different sets of video content.

We also need to consider how to associate actual users with
personal models in the proposed RNP by using their personal
information and logs, as in Fig. 2. In the numerical evaluation
presented in Section IV, we show that basic personal infor-
mation such as age, birth location, and so on is not enough
for that purpose. Note that identifying the most appropriate
personal information and logs for this association are outside
the current scope, as this paper focuses on the feasibility of
constructing the proposed RNP.

C. PROCEDURE
This section explains the procedure of our RNP, which con-
sists of the following steps.

The brain imaging signal observed when subject i is watch-
ing video content c¢ is represented as v;.(¢), which is a
multi-dimensional and discrete time function. In general,
the number of dimensions of v; () is too high, so we apply
Principal Component Analysis (PCA) [25] to reduce the num-
ber of dimensions to k, and thereby obtain vﬁ (). When the
number of samples of the brain imaging signal in the time
dimension is N and the number of dimensions of each brain
image is M, we can deal with the brain imaging signal as an
N x M matrix. Then, by using PCA, we can convert the N x M
matrix into an N x k (k << M) matrix.

Next, we calculate the correlation of the brain imaging
signals between different video contents. The correlation of
the brain imaging signals between video contents c1 and ¢2
regarding subject i is represented as C{‘ (cl1, c2). When we cal-
culate this, since the lengths of the two video contents can be a
little different, Dynamic Time Warping (DTW) [26] is useful
to accept such difference. Figure 3 illustrates an example of
DTW. We consider the case where the lengths and the number
of samples in the time dimension are different between two
signals, as shown in Fig. 3(a). DTW determines the optimal
time alignment of samples between the two signals that min-
imizes the total cost. Figure 3(b) illustrates a ‘warping path’
between the two signals, which represents pairs of indices
of samples between the two signals. The optimal path is the
one that minimizes the total cost. The absolute difference of
values between a pair of samples is used as the cost. Note
that, as shown in Fig. 3(a) and (b), multiple samples could be
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(b) Warping path representing pairs of indices of samples

FIGURE 3. Example of DTW.

allocated to a sample of the other signal. Thus, DTW enables
matching two signals even though their respective lengths and
number of samples are different. Then, we obtain the matrix
of correlation between video contents for subject i, C f‘ In our
RNP, we deal with this as the personal model of subject i;
it can be visualized as a network graph in which nodes are
video contents and the weight of each link is the correlation
of brain imaging signals between the pair of video contents.

The similarity between subjects i and j is measured by the
similarity of Cf and CJ’-‘, which is calculated by means of the
distance between two network graphs in the Weighted Graph
Matching Problem (WGMP) [27]. The distance between
matrices G and H in WGMP is given as

J(P) = |PGPT —H|?, 1)

where P is called the permutation matrix and |-| is the
Euclidean norm. The objective of WGMP is to find the
P that minimizes J(P). Note that the shorter the distance
between two network graphs, the higher the similarity.
Finally, we obtain the proposed RNP, in which nodes are
subjects and the weight of each link is the distance between
the pair of subjects.

IV. NUMERICAL EVALUATION

The objective of the numerical evaluation here is to validate
the proposed RNP using real brain imaging datasets. Specifi-
cally, we will show that the proposed RNP is generalizable
across different sets of content. In addition, we will com-
pare the model created by the proposed RNP with a model
created from the basic personal information of subjects. The
following sections explain the specifications and setups of the
numerical evaluation.

110261



R 54K
“TELE/CCESS

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp
R. Shinkuma et al.: RNP Constructed on the Basis of Similarity of Brain Activities

TABLE 1. Basic personal information of subjects.

[ Ttem [ Description |
Gender 2 types
Age (A) 20-27-48 (B) 21-27-62
Birth month 12 periods
Blood type 4 types
Education 6 types
Handedness 4 types
Birthplace 47 types
Height (A) 147-166-185 (B) 148-167-185
Weight (A) 43-56-75 (B) 43-59-88
Residence 47 types
Marital status 2 types
Residential form 8 types
No. of children 5 types
Household income (A) 0-529-2000 (B) 0-527-2000
Personal annual income (A) 0-89-650 (B) 0-121-1050
Occupation 15 types
No. of past jobs 6 types
Monthly living expenses (A) 2-28-300 (B) 2-16-90

TABLE 2. Specifications of video contents used for experiment.

(a) Video setting

File format avi
Codec XviD
Frame rate 30 fps
Color mode YUYV 4:2:0 Planar 12 bpp
Rate control 2-pass fixed bit rate
Bit rate 10,000 kbps
Display mode Progressive
Aspect ratio 16:9
Filtering Cropping & padding if necessary
(b) Audio setting
Codec PCM signed 16-bit Little-Endian 1411 kbps
Sampling 44100 Hz
No. of channels 2-ch (stereo)
Volume Normalized to 89 dB
A. SUBJECTS

We utilized two subject groups: A, consisting of 27 subjects,
and B, consisting of 40. A questionnaire was administered to
obtain their basic personal information, the items and answers
of which are listed in Table 1. In the table, if the form of an
answer is a value, the minimum, average, and maximum in
groups A and B are listed. The nationality of all subjects was
Japanese. We recruited the subjects from among members of
the public in a local area close to the experimental facility
of an MRI scanner, which is in Suita-city, Osaka, Japan.
As seen in Table 1, the basic personal information of subjects
varied significantly, particularly in terms of age, income, and
expenses.

B. VIDEO CONTENTS

The specifications of the video contents used for the evalua-
tion are summarized in Table 2 and the description is provided
in Table 3. We used video content datasets that were broadcast
as TV or online advertising materials. As shown in Table 3,
the video contents we used also varied widely in terms of
period and category. Thus, by using a wide variety of video
contents (as explained here) and by recruiting a wide variety

110262

TABLE 3. Description of video contents used for experiment.

Group A Group B
No. of short videos 240 (15 sec) 153 (14 to 24 sec)
No. of long videos 120 (30 sec) 161 (25 to 44 sec)

Broadcasting region Japan Japan

Broadcasting period July 2011 July 2015
to Dec. 2017 to March 2017
Food / fast food 91 23
Medical / cosmetic 53 69
/ daily products
Appliances / cars 99 105
/ long-term use products
Communication / games 117 119

/ distribution, retailing services

TABLE 4. Specifications of fMRI scanning.

Parameters Value
Repetition time 1000 ms
Echo time 30 ms
Flip angle 60°
Voxel size 2 X 2 X 2mm
Matrix size 96 x 96
No. of axial slices 72
Multiband factor 6

of subjects (as explained earlier), we eliminated potential bias
of video contents on subjects.

C. EXPERIMENT USING FMRI

A 3T Siemens MAGNETOM Prisma scanner (Siemens,
Germany) was used with a 32-channel Siemens volume coil
and a multiband gradient echo-EPI sequence [28]. The speci-
fications of the fMRI scanning are listed in Table 4. The field
of view covered the entire cortex. Anatomical data were also
collected using a T1-weighted MPRAGE sequence on the
same 3T scanner. The experimental protocol was approved
by the ethics and safety committees of the National Institute
of Information and Communications Technology.

In the experiments, subjects viewed the movie stimuli
on a projector screen inside the scanner (27.9° x 15.5°
of visual angle) and listened to the audio stimuli through
MR-compatible headphones. The subjects were given no
explicit task. The fMRI response data from individual sub-
jects were collected in three separate recording sessions over
three days.

To create the movie stimuli, original ad movies were
sequentially concatenated in a pseudo-random order. Four-
teen non-overlapping movie clips 610 s in length were
obtained. The individual movie clips were displayed in sepa-
rate scans. The initial 10-s part of each clip was a dummy to
discard hemodynamic transients caused by clip onset. fMRI
responses collected during the 10-s dummy movie were not
used for the analysis. Twelve of the clips were presented once
each and the other two clips were presented four times each
in four separate scans. fMRI response to these two clips were
averaged across the four scans.

For preprocessing of the fMRI data, motion correction
in each functional scan was performed using the Statistical
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FIGURE 4. Personal model of IDO1 in group A (1000 dimensions).

Parameter Mapping toolbox (SPMS) [29]. All volumes were
aligned to the first image from the first functional run for each
subject. Low-frequency fMRI response drift was detected
using a median filter with a 120-s window and subtracted
from the signal. The response for each voxel was then nor-
malized by subtracting the mean response and scaling it to
the unit variance. FreeSurfer [30], [31] was used to identify
cortical surfaces from anatomical data and register them to
the voxels of functional data. All voxels identified within the
whole cortex for each subject were used for the analysis.

D. TOOLS

Our numerical evaluation followed the procedure of the pro-
posed RNP described in Section III-C. We used the following
tools for PCA, DTW, and Graph Visualization.

« PCA by scikit-learn [32]
o DTW by Python library [33]
o Graph visualization by Networkx [34]

E. RESULTS OF CORRELATION BETWEEN

DISTANCE MATRICES

Figure 4 shows the visualized personal model of subject
IDO1 in group A as an example of the personal model. In this
case, the number of dimensions of PCA, k, was set to 1000.

As explained in Section III-C, the personal model of a subject
is the matrix of correlations of brain imaging signals between
video contents for the subject. In Fig. 4, the matrix is repre-
sented as a network graph in which nodes are video contents,
while the values of correlations between them are set as the
weights of links. That is, video contents close to each other
in this network graph visualization have a large correlation
between them for that subject.

Figure 5 shows the personal models of all subjects in group
A. Although we do not explain the details subject by subject,
the variety of personal models is roughly visualized in this
figure.

Next, we show the visualization of the matrix of
the distance between subjects for short and long videos
in Fig. 6(a) and (b). As shown, the distribution of distances
between subjects ranged from around 5 to 15. To investigate
the distributions of distances between subjects in other cases
of the number of dimensions of PCA, groups, and video
lengths, we summarize the average and the standard deviation
of distance between subjects in Tables 5 and 6.

To validate the proposed RNP created using the brain
imaging datasets of groups A and B, we calculated the corre-
lation coefficient of distance matrices between short and long
videos, which is shown in Table 7. As shown, the correlation
was larger than 0.9 for all cases of the number of dimensions
of PCA and groups. We can see the correlation for group
A from the visual comparison between Fig. 6(a) and (b).
This suggests that the proposed RNP is generalizable across
different sets of video contents by our methodology. Thus,
brain imaging data can be used to robustly generate RNP
that can be utilized as a powerful tool for estimating user
preferences.

F. RESULTS OF CORRELATION BETWEEN DISTANCE
MATRIX AND BASIC PERSONAL INFORMATION

Next, we investigate the correlation between the distance
matrix and the basic personal information we obtained from
the questionnaire (listed in Table 1). To create the distance
matrix from the basic personal information, we calculated

- o ® o ® ° e et ® o . .o ®
:O S. ::" ’:... on 0o ? :.o... S 2,0 ° 4 . .'.'O.. .O....
% 8 s d * ot d ® e $ ° ® e LS5 1%
® e S oe®® e « o.: :‘ L] '.o ] L )
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FIGURE 5. Personal models of all subjects in group A (1000 dimensions).
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FIGURE 6. Distance matrix of subjects in group A (1000 dimensions).

TABLE 5. Average and standard deviation of distance between subjects
(group A).

(a) Short videos

No. of dimensions | Avg. | Standard dev.
500 18.04 3.62
1000 17.34 3.49
2000 16.53 3.35
4000 15.78 3.29
(b) Long videos
No. of dimensions | Avg. | Standard dev.
500 16.91 2.82
1000 16.4 2.8
2000 15.84 2.79
4000 15.37 2.87

the Hamming distance of the answers between each pair of
subjects. However, if the form of an answer was a value,
we converted it to a categorical variable. The step sizes
of age, height, weight, household income, personal annual
income, and monthly living expenses in Table 1 were set
to 5, 5, 5, 100, 100, and 5, respectively. The results are
shown in Table 8 (a) and (b). As shown, the correlation
coefficient was smaller than around 0.15, which suggests that
the proposed RNP is quite different from the one constructed
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TABLE 6. Average and standard deviation of distance between subjects
(group B).

(a) Short videos

No. of dimensions | Avg. | Standard dev.
500 18.37 3.54
1000 17.83 3.54
2000 17.16 3.48
4000 16.50 3.52
(b) Long videos
No. of dimensions | Avg. | Standard dev.
500 16.26 3.58
1000 15.75 3.53
2000 15.20 3.39
4000 14.74 3.38

TABLE 7. Correlation coefficient of distance matrices between short and
long videos.

No. of dimensions | Group A | Group B
500 0.917 0.916
1000 0.920 0.920
2000 0.928 0.926
4000 0.938 0.934

TABLE 8. Correlation coefficient between distance matrix and basic
personal information.
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(a) Group A
No. of dimensions | Short video | Long video
500 0.1536 0.0833
1000 0.1356 0.0741
2000 0.1076 0.0655
4000 0.0827 0.0696
(b) Group B
No. of dimensions | Short video | Long video
500 -0.1328 -0.1570
1000 -0.1291 -0.1502
2000 -0.1249 -0.1414
4000 -0.1072 -0.1103

in the conventional way that uses only the basic personal
information of individuals.

V. CONCLUSION

In this paper, we have proposed a brain imaging-based RNP
that represents the similarity of brain activities between indi-
viduals as a network graph. We showed an application sce-
nario featuring predictive content delivery using the proposed
RNP in which, when a user shows interest in a video content
in some way, it is predicted that other users close to him or
her will also be interested in it because their brain activities
are correlated. Through numerical evaluation using multiple
real datasets obtained by fMRI, we demonstrated that the
proposed RNP can be identically created from brain imaging
results for different sets of video content. Thus, brain imaging
data can be used to robustly generate RNP that can be utilized
as a powerful tool for estimating user preferences. Future
work includes further development of RNP and its association
with personal information and logs to make it more effec-
tive for the predictive content delivery scenario discussed in
Section III-A. Readers may be interested in the similarity or
correlation analysis of the proposed RNP with respect to how

VOLUME 7, 2019
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familiar people are to each other, which this paper did not
show and will be also included in future work.
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