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Abstract. The slip/jump coefficients and the Knudsen-layer functions for the time-dependent version of the generalized slip-flow
theory have been obtained for the Ellipsoidal Statistical (ES) model up to the second order of the Knudsen number expansion. In
particular, simple but exact conversion formulas between the ES and Bhatnagar–Gross–Krook (BGK) model have been established.

INTRODUCTION

Recently, in [1, 2, 3], the first two authors have extended the generalized slip-flow theory, established by Sone (see,
e.g., [4]), for stationary flows of slightly rarefied gases to non-stationary ones, where the system of the fluid-dynamical
equations, their slip/jump boundary conditions, and the Knudsen-layer corrections has been obtained explicitly up to
the second order of the Knudsen number expansion. The extension was made in the linearized framework, and the
numerical data for completing the system are available from the Kyoto University Research Information Reposi-
tory (http://hdl.handle.net/2433/199811). The data have been prepared for the hard-sphere (HS) gas, as well as the
Bhatnagar–Gross–Krook (BGK) model [5], under the diffuse reflection condition. In the present paper, we provide the
corresponding data for the Ellipsoidal Statistical (ES) model [6].

The ES model, first proposed by Holway, is an extended relaxation model that includes the celebrated BGK
model as a special case. The advantage of the ES model over the BGK model is that it can adjust the Prandtl number
to realistic values while meeting the Boltzmann’s H-theorem [7]. Since, in marked contrast to the classical fluid,
the thermal and mechanical phenomena are mostly coupled in rarefied gases, this advantageous feature is appealing
enough to induce further researches of model equations in the same spirit (see, e.g., [8] and the references therein).
The present paper aims at newly providing the slip/jump coefficients and the Knudsen-layer functions for the ES
model, thereby making it easier to access the generalized slip-flow theory in current trends.

In the ES model the velocity distribution function (VDF) is driven not to the local Maxwellian as in the BGK
model but to the (three-dimensional) local Gaussian, which resembles the Maxwellian but is not necessarily isotropic.
The flexibility of the Gaussian enables us to adjust the Prandtl number to realistic values, while its resemblance to the
Maxwellian enables us to find simple conversion formulas between the two models, when the deviation from the local
equilibrium state is small (see, e.g., [9, p. 319] and [10, 11, 12]). In the present work, we especially focus on this fact
and discuss in details the conversion formulas occurring at the level of the VDF as well as the transport coefficients,
the slip/jump coefficients, and the structure of the Knudsen layer.

GENERALIZED SLIP-FLOW THEORY: A BRIEF SUMMARY

According to the time-dependent version of the generalized slip-flow theory [1, 2, 3], the behavior of a slightly rarefied
monatomic gas with a small Reynolds number can be described in the bulk of the domain by the Stokes-type set of
equations with slip/jump boundary conditions; in the layer with the thickness of a few mean free paths, which is
adjacent to the boundary and is called the Knudsen layer, this fluid-dynamical description (to be referred to as the
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fluid-dynamical part) is necessary to be corrected (the Knudsen-layer correction). The slip/jump conditions and the
Knudsen-layer correction are required at the level of the first and higher orders of the Knudsen number.

Let us denote by t0t the time, by Lxi the space coordinates, by ρ0(1 + ω), p0(1 + P), and T0(1 + τ) the density,
pressure, and temperature of the gas, by (2RT0)1/2ui the flow velocity, and by (2RT0)1/2uiw and T0(1+ τw) the velocity
and temperature of the boundary. Here t0 is the reference time scale, L is the characteristic length of the system, R
is the specific gas constant, ρ0, p0, and T0 are the density, pressure, and temperature in the reference equilibrium
state at rest and are related to each other by p0 = ρ0RT0. We also denote by ni the unit normal to the boundary,
pointed to the gas, and by ti an arbitrary unit vector tangential to the boundary. The Knudsen number Kn is defined
by Kn = ℓ0/L with ℓ0 being the mean free path of a molecule at the reference equilibrium state. In the present paper,
we use the notation ε defined by ε = (

√
π/2)Kn, instead of Kn, to emphasize its smallness. In the above mentioned

works [1, 2, 3], it is assumed that there is no external force and that the boundary does not deform and thus uiwni = 0.
Furthermore, the time scale is taken as t0 = L/[ε(2RT0)1/2] because of the slow evolution in time.

We shall tell apart the fluid-dynamical part and the Knudsen-layer correction by putting subscript H and K to the
notation of quantities respectively. Each quantity, say h = hH + hK (h = ω, P, τ, ui, etc.), is expanded in a power series
of ε as hH = hH0 + hH1ε + hH2ε

2 · · · and hK = hK1ε + hK2ε
2 · · · . Boundary data uiw and τw are expanded as well, e.g.,

uiw = uiw0 + uiw1ε+ · · · . Note that the expansion of hK starts from O(ε). Then, the above mentioned Stokes-type set of
equations and the slip/jump boundary conditions over a smooth solid body are written in a compact form as follows:

Stokes-type set of equations

∂iPH0 = 0, (1a)
∂tωHm−1 + ∂iuiHm = 0, (1b)

∂tuiHm +
1
2
∂iP∗Hm+1 −

1
2
γ1∆uiHm +

1
4

(γ1γ10 − 2γ6)∆2uiHm−2 = 0, (1c)

∂tτHm −
2
5
∂tPHm −

1
2
γ2∆τHm +

1
10

(γ2γ3 −
13
2
γ11)∆2τHm−2 = 0, (1d)

where ∂i = ∂/∂xi, ∂t = ∂/∂t, ∆ = ∂2
j , and

P∗Hm+1 = PHm+1 −
1
6

(γ2γ1 − 4γ3)∆τHm−1 +
1
5
γ1∂tPHm−1, (1e)

PHm = ωHm + τHm. (1f)

Slip/jump boundary conditions

uiHmni =a(1)
1 ∂i∂ jukHm−2nin jnk + a(1)

2 (2κ∂iτHm−2ni − ∆τHm−2 + ∂i∂ jτHm−2nin j), (2a)

uiHmti =uiwmti + b(1)
1 ∂iu jHm−1nit j + b(1)

2 ∂iτHm−1ti + b(1)
3 ∂i∂ jτHm−2nit j + b(1)

4 ∂i∂ jukHm−2nin jtk

+ b(1)
5 κ∂ jukHm−2n jtk + b(1)

6 κi j∂ jukHm−2nkti + b(1)
7 κi j∂iτHm−2t j + b(1)

8 κ∂iτHm−2ti, (2b)

τHm =τwm + c(0)
1 ∂iτHm−1ni − c(0)

2 ∂i∂ jτHm−2nin j + c(0)
3 ∂i∂ jukHm−2nin jnk + c(0)

4 κ∂iτHm−2ni

+ c(0)
5 ∂iuiHm−1 + (c(0)

6 + c(0)
2 )∆τHm−2. (2c)

Here m = 0, 1, 2 and the quantities hH−1 and hH−2 should be read as zero. The same convention applies to (3) as well.
In (1), γ’s are dimensionless transport coefficients at the reference state and are constants depending on the gas model.
Among them, γ1 and γ2 are respectively the dimensionless viscosity and thermal conductivity and their ratio yields
the Prandtl number, i.e., Pr = γ1/γ2. 1 In (2) b’s, a’s, c’s are the slip/jump coefficients, which depend both on the
gas and the surface-scattering models, and fi j = fi j + f ji − (2/3) fkkδi j, where δi j is the Kronecker delta. κi j/L and
κ/L are respectively the curvature matrix and mean curvature of the boundary.2 The system (1)–(2) determines the

1The viscosity µ(T ) is a positive function of temperature T . At the reference state, it is given by µ(T0) = (
√
π/2)γ1 p0(2RT0)−1/2ℓ0.

2κi j/L and κ/L are defined by κi j = κ1mim j + κ2ℓiℓ j and κ = (κ1 + κ2)/2, where κ1/L and κ2/L are the principal curvatures of the boundary
and mi and ℓi are the direction cosines of the principal directions corresponding to κ1/L and κ2/L. Here κ1 and κ2 are taken negative when the
corresponding center of curvature lies on the gas side.
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behavior of the gas in the bulk region from the lowest order. Namely, (1a) yields the uniform pressure at the leading
order. Equations (1b)–(1d) and boundary condition (2) for m = 0 determine the leading order of temperature and flow
velocity, together with the first order of pressure; those for m = 1 determine the first order of temperature and flow
velocity, together with the second order of pressure; and so on. Note that (2) for m = 0 is just the non-slip/non-jump
condition.

Knudsen-layer correction Once the fluid-dynamic part has been obtained by the above process, the corrections
to that part in the vicinity of the boundary, which we call the Knudsen-layer corrections, are given by the following
formulas through the elemental functions Ω’s, Y’s, and Θ’s, which we call the Knudsen-layer functions:

uiKmni = −
∫ ∞
η

Y (1)
2 (z)dz(2κ∂iτHm−2ni − ∆τHm−2 + ∂i∂ jτHm−2nin j) −

1
2

∫ ∞
η

Y (1)
1 (z)dz ∂i∂ jukHm−2nin jnk, (3a)

uiKmti =Y (1)
1 (η)∂iu jHm−1nit j + Y (1)

2 (η)∂iτHm−1ti + Y (1)
3 (η)∂i∂ jτHm−2nit j + Y (1)

4 (η)∂i∂ jukHm−2nin jtk

+ Y (1)
5 (η)κ∂ jukHm−2n jtk + Y (1)

6 (η)κi j∂ jukHm−2nkti + Y (1)
7 (η)κi j∂iτHm−2t j + Y (1)

8 (η)κ∂iτHm−2ti, (3b)[ ωKm
τKm

]
=
[ Ω(0)

1 (η)
Θ

(0)
1 (η)

]
∂iτHm−1ni −

[ Ω(0)
2 (η)
Θ

(0)
2 (η)

]
∂i∂ jτHm−2nin j +

[ Ω(0)
3 (η)
Θ

(0)
3 (η)

]
∂i∂ jukHm−2nin jnk

+
[ Ω(0)

4 (η)
Θ

(0)
4 (η)

]
κ∂iτHm−2ni +

[ Ω(0)
6 (η) + Ω(0)

2 (η)
Θ

(0)
6 (η) + Θ(0)

2 (η)

]
∆τHm−2 +

[ Ω(0)
5 (η)
Θ

(0)
5 (η)

]
∂iuiHm−1. (3c)

Here η is the stretched coordinate normal to the boundary defined by xi = xwi + εηni, where Lxwi is a boundary
position, and all the quantities with subscript H represent their values at xi = xwi (or η = 0). Taking into account the
no net flow through the solid boundary, 0 = uini = uiHni + uiKni on the boundary, so that a’s in (2a) are related to Y’s
as a(1)

1 = (1/2)
∫ ∞

0 Y (1)
1 (z)dz and a(1)

2 =
∫ ∞

0 Y (1)
2 (z)dz. Further detailed information is available from [1, 2, 3].

Elemental half-space problems In deriving (2) and (3), a locally isotropic property [4, 1] is assumed for the kinetic
boundary condition. The Knudsen-layer functions Ω’s and Θ’s (or Y’s) are, then, expressed as moments of elemental
solutions of the form ϕ(0)

j (η, ζn, ζ) ( j = 1, 2, . . . , 6) [or ϕ(1)
j (η, ζn, ζ) ( j = 1, 2, . . . , 8)] for the half-space problems (4) [or

(5)] below, where ζ = |ζ | = (ζ2
i )1/2 and ζn = ζini with (2RT0)1/2ζ being the molecular velocity. The jump coefficients

c(0)
j [or the slip coefficients b(1)

j ] are determined together with those solutions.

Elemental problem for ϕ(0)
j (η, ζn, ζ) ( j = 1, 2, . . . , 6):

ζn∂ηϕ
(0)
j = L(ϕ(0)

j ) − I(0)
j , (4a)

ϕ(0)
j = −K̃(ζ2) c(0)

j +K(ϕ(0)
j ) + K̃(g(0)

j ), ζn > 0, η = 0, (4b)

ϕ(0)
j → 0 as η→ ∞, (4c)

where L is the linearized collision operator, K is the linear scattering operator, which admits the above functional
form of ϕ’s in the molecular velocity variables, K̃( f ) = f − K( f ), and

I(0)
1 =0, g(0)

1 = ζnA, I(0)
2 =

1
2

(ζ2 − ζ2
n )ϕ(1)

2 , g(0)
2 = 2a(1)

2 ζn +
1
2

(ζ2 − 3ζ2
n )(b(1)

2 B + F),

I(0)
3 = −

1
4

(ζ2 − ζ2
n )ϕ(1)

1 , g(0)
3 = −2a(1)

1 ζn −
1
4

b(1)
1 (ζ2 − 3ζ2

n )B − 1
2
ζn
(
D1 − (ζ2 − 2ζ2

n )D2
)
,

I(0)
4 =(ζ2 − ζ2

n )(∂ζnϕ
(0)
1 − ϕ

(1)
2 ), g(0)

4 = −4a(1)
2 ζn − b(1)

2 (ζ2 − 3ζ2
n )B,

I(0)
5 =0, g(0)

5 = −
1
3

(ζ2 − 3ζ2
n )B, I(0)

6 = 0, g(0)
6 = −

1
3

(ζ2 − 3ζ2
n )F + Fd.

Elemental problem for ϕ(1)
j (η, ζn, ζ) ( j = 1, 2, . . . , 8):

ζn∂ηζtϕ
(1)
j = L(ζtϕ

(1)
j ) − ζtI(1)

j , (5a)

ζtϕ
(1)
j = −2K̃(ζt)b

(1)
j +K(ζtϕ

(1)
j ) + K̃(ζtg

(1)
j ), ζn > 0, η = 0, (5b)

ζtϕ
(1)
j → 0 as η→ ∞, (5c)
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where ζt = ζiti and

I(1)
1 =0, g(1)

1 = ζnB, I(1)
2 = 0, g(1)

2 = A, I(1)
3 = ϕ

(0)
1 , g(1)

3 = 2ζnF, I(1)
4 = 0, g(1)

4 = −(D1 + ζ
2
n D2),

I(1)
5 =

1
2

(ζ2 − ζ2
n )∂ζnϕ

(1)
1 , g(1)

5 = −2D1 −
1
2

(ζ2 − ζ2
n )D2, I(1)

6 =
1
2
∂ζn
(
(ζ2 − ζ2

n )ϕ(1)
1

)
, g(1)

6 = g(1)
5 − g(1)

4 ,

I(1)
7 =

1
2
∂ζn
(
(ζ2 − ζ2

n )ϕ(1)
2
)
+ ϕ(0)

1 , g(1)
7 = 0, I(1)

8 =
1
2

(ζ2 − ζ2
n )∂ζnϕ

(1)
2 , g(1)

8 = 0.

It should be noted that I’s and g’s in the above are given sources in the equation and boundary condition. The functions
A, B, D1, D2, F, and Fd occurring in g’s are functions of ζ which solve the following integral equations:

L(ζiA) = −ζi(ζ2 − 5
2

) with ⟨ζ2A⟩ = 0, L(ζi jB) = −2ζi j, L(ζi jF) = ζi jA,

L[(ζiδ jk + ζ jδik + ζkδi j)D1 + ζiζ jζkD2] = γ1(ζiδ jk + ζ jδik + ζkδi j) − ζiζ jζkB with ⟨ζ2(5D1 + ζ
2D2)⟩ = 0,

L(Fd) = −5
6
γ2(ζ2 − 3

2
) +

1
3
ζ2A with ⟨Fd⟩ = ⟨ζ2Fd⟩ = 0,

where ζi j = ζiζ j − (1/3)ζ2δi j, ⟨ f ⟩ ≡
∫

f E(ζ)dζ, and E(z) = π−3/2 exp(−z2). The γ’s occurring in (1) are expressed
through these functions as

γ1 =
2
15
⟨ζ4B⟩, γ2 =

4
15
⟨ζ4A⟩, γ3 =

2
15
⟨ζ4AB⟩, γ6 =

1
15
⟨ζ4BD1⟩ +

1
35
⟨ζ6BD2⟩,

γ10 =
1
15
⟨ζ4B2⟩, γ11 = −

2
39

(
γ2(2⟨ζ2A2⟩ + γ3) +

16
15
⟨ζ4AF⟩ + 4⟨ζ2AFd⟩

)
.

Once ϕ’s are known, the Knudsen-layer functions Ω’s, Θ’s, and Y’s are obtained as the following moments:

Ω
(0)
j = ⟨ϕ

(0)
j ⟩, Θ

(0)
j =

2
3
⟨(ζ2 − 3

2
)ϕ(0)

j ⟩, Y (1)
j =

1
2
⟨(ζ2 − ζ2

n )ϕ(1)
j ⟩.

Finally the momentum conservation of (5a) in the tangential direction yields the following identities that are to be
used later in the reduction to the BGK model:

⟨ζn(ζ2 − ζ2
n )ϕ(1)

j ⟩ =
3
2

∫ ∞
η

[Ω(0)
1 (z) + Θ(0)

1 (z)]dz ( j = 3, 7), ⟨ζn(ζ2 − ζ2
n )ϕ(1)

j ⟩ = 0, ( j = 1, 2, 4, 5, 6, 8). (6)

ES MODEL AND ITS RELATION TO BGK MODEL

Preparation
Denoting by t̃ the time, by Xi the spatial coordinates, by ξi the molecular velocity, and by f the velocity distribution
function, the original Boltzmann equation without external force is symbolically written as

∂ f
∂t̃
+ ξi
∂ f
∂Xi
= Q( f ).

The ES model is defined by setting the collision integral Q( f ) as

Q( f ) =QES( f ) ≡ Ac(T ; Pr)ρ[G( f ) − f ], Ac(T ; Pr) =
Pr RT
µ(T )

, (7)

G( f ) =
ρ

√
det(2πT )

exp
(
−1

2
T −1

i j (ξi − vi)(ξ j − v j)
)
, Ti j = [RTδi j + (Pr−1)(pi j/ρ)]/ Pr, (8)

where ρ, vi, T , pi j, and µ(T ) are respectively the density, the flow velocity, the temperature, the stress tensor, and
the viscosity. The ES model equation is proved in [7] to satisfy the H theorem for 2/3 ≤ Pr (< ∞). When Pr = 1,
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Ti j = RTδi j and T −1
i j = (RT )−1δi j, so that QES is reduced to the collision integral QBGK for the BGK model:3

QES( f )|Pr=1 = QBGK( f ) ≡ Ac(T ; 1)ρ[M( f ) − f ], M( f ) =
ρ

(2πRT )3/2 exp
(
− (ξi − vi)2

2RT

)
. (9)

Hereinafter, subscripts ES, BGK, and HS are used for other quantities as well, to indicate the model, if necessary.
By setting ℓ0 =

√
8RT0/π/[Ac(T0; Pr)ρ0], we have L in (4) and (5) for the ES model, say LES, in the form

L(ϕ) = LES(ϕ) ≡ LBGK(ϕ) + 2(1 − 1
Pr

)⟨ζi jϕ⟩ζiζ j, (10)

LBGK(ϕ) ≡ ⟨ϕ⟩ + 2⟨ζiϕ⟩ζi +
2
3
⟨(ζ2 − 3

2
)ϕ⟩(ζ2 − 3

2
) − ϕ. (11)

Here LBGK is the linearized collision operator for the BGK model. As is seen from (10), even when Pr , 1, the
difference between LES and LBGK occurs only when ⟨ζi jϕ⟩ , 0, i.e., only when the traceless part of the (linearized)
stress tensor does not vanish. In case it vanishes or is a given function of specific form, the solution for the ES model
can be recovered from that for the BGK model (e.g., [9, 10, 11, 12]), which will be the clue in the discussions in the
next subsection.

Before going into details, we here summarize the explicit form of the functions A, B, · · · , Fd and the dimension-
less transport coefficients γ’s for the ES model:

γ1 = Pr, γ2 = 1, γ3 = Pr, γ6 = Pr2, γ10 = Pr2, γ11 = 1 +
2
13

(Pr−1), (12a)

A = ζ2 − 5
2
, B = 2 Pr, D1 = −Pr, D2 = 2 Pr, F = −ζ2 +

5
2
− (Pr−1), Fd = −

1
3

(ζ4 − 5ζ2 +
15
4

). (12b)

They are obtained straightforwardly, thanks to the simple form of LES. Note that the case of the BGK model is
recovered by setting Pr = 1 in (12).

In the case of the hard-sphere gas, ℓ0 = 1/(
√

2πd2
mρ0/m) with m and dm being the mass and diameter of a

molecule. The functions A, B, · · · , Fd take different forms from those in (12b), and consequently γ’s take the following
values:

γ1 = 1.270042427, γ2 = 1.922284066, (Pr = γ1/γ2 = 0.6606944569), γ3 = 1.947906335,
γ6 = 1.419423836, γ10 = 1.63607346, γ11 = 2.7931173.

In comparing the data based on different collision models, it is common in the literature to take the viscosity or thermal
conductivity as a reference quantity, i.e., to make γ1ℓ0 or γ2ℓ0 being common. This leads to the conversion rule of the
mean free path ℓ0 between the ES and HS models such that Pr ESℓ0ES = 1.270042427ℓ0HS or ℓ0ES = 1.922284066ℓ0HS,
i.e., Pr ESεES = 1.270042427εHS or εES = 1.922284066εHS. Since Pr HS = 0.6606944569 is close to 2/3, the viscosity
based conversion is practically identical to the thermal-conductivity based one between ES with Pr ES = 2/3 and HS,
which is an advantage of the ES model over the BGK model.

Reduction to the BGK Model
In the present subsection, we discuss the feasibility of the reduction of the problems (4) and (5) for the ES model to
those for the BGK model. Let us first consider the elemental problems (4). The parity of ϕ(0)

j makes the non-diagonal
parts of the stress tensor vanished, but the diagonal parts remain. Consequently, we do not find a simple conversion
between LES(ϕ(0)

j ) and LBGK(ϕ(0)
j ). The reduction of the problems is not expected. As to the problems (5), however,

the desired reduction can be made for most of them, which we explain below.
Thanks to the parity of ϕ(1)

j , the diagonal parts of the stress tensor vanish. As to the non-diagonal parts, thanks

to the property (6) (see [1, Appendix G.2] as well), they vanish as well, except for ϕ(1)
3 and ϕ(1)

7 . Consequently, in the

3In the original BGK model, Ac is a positive constant because it is a simplified model for the pseudo-Maxwell molecular gas. Here, Ac is
extended to be a function of the temperature as in [7]. The extension does not make a difference from the original under the linearized situation.
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TABLE 1. Slip/jump coefficients for the ES model (Pr = 2/3), the BGK model, and the hard-sphere
gas. I.

ES BGK [4] HS [1] ES BGK [4] HS [1]

c(0)
1 1.30160 1.30272 2.4001 c(0)

2 −0.02537 0 −0.4992
c(0)

3 0.00041 0.11169 0.0087 c(0)
4 1.69117 1.82181 4.6181

c(0)
5 0.28954 0.44045 0.4596 c(0)

6 −1.35138 −1.4276 −3.1800
b(1)

3 −0.50025 −0.77837 −1.5846

TABLE 2. Slip/jump coefficients for the ES model (Pr = 2/3), the BGK model, and the hard-sphere gas. II.

ES (present results)
direct computation formula (13) symmetry relation [1] BGK [4] HS [1]

b(1)
1 0.67746 0.67746 0.67746 1.01619 1.2540

b(1)
2 0.38316 0.38316 0.38316 0.38316 0.6465

b(1)
4 −0.51088 −0.51088 −0.51088 −0.76632 −0.9039

b(1)
5 −0.33334 −0.33333 −0.33333 −0.50000 −0.6601

b(1)
6 0.17753 0.17755 0.17756 0.26632 0.2438

b(1)
7 0.20667 0.20668 0.20667 0.26729 0.4472

b(1)
8 −0.26693 −0.26693 −0.26693 −0.26693 −0.2336

2a(1)
1 −0.15578 −0.15579 −0.15578 −0.23368 −0.2137

a(1)
2 −0.26693 −0.26693 −0.26693 −0.26693 −0.4782

elemental problems for ϕ(1)
j ( j = 1, 2, 4, 5, 6, 8), LES is reduced to LBGK. Taking into account the similarity of I(1)

j and

g(1)
j between the two models originated from (12), we obtain the following simple conversions:

ϕ(1)
j ES = Pr ϕ(1)

j BGK ( j = 1, 4, 5, 6), ϕ(1)
j ES = ϕ

(1)
j BGK ( j = 2, 8). (13a)

The corresponding slip coefficients and Knudsen-layer functions obey the same conversion.
Although similar conversions are not found for ϕ(1)

3 and ϕ(1)
7 separately, their difference ϕ(1)

73 ≡ ϕ
(1)
7 − ϕ

(1)
3 allows

the reduction of LES(ϕ(1)
73 ) to LBGK(ϕ(1)

73 ). Then, with the aid of (12b) and (13a) with j = 2, we obtain the conversion

ϕ(1)
73 ES = ϕ

(1)
73 BGK + (Pr−1) ϕ(1)

1 BGK. (13b)

Here, in the last equality, we use (13a) with j = 1. Again, the corresponding slip coefficients and Knudsen-layer
functions obey the same conversion.

To summarize, the jump coefficients and related Knudsen-layer functions require the direct numerical solutions
of the problems (4) for the ES model. Among the remaining problems (5), only the problem for ϕ(1)

3 is required to
be solved. The others are obtained by the simple conversion rules in (13) from the data for the BGK model, if they
are available. The conversion rules in (13) hold for arbitrary values of the Prandtl number, provided that Pr ≥ 2/3.
Furthermore, they hold for any locally isotropic boundary conditions supposed in [1], which includes the diffuse
reflection as a special case. In the next section, we show the results for Pr = 2/3 and the diffuse reflection condition.

Incidentally, once ϕ(0)
1 , ϕ(1)

1 , and ϕ(1)
2 are known, all the slip/jump coefficients can be obtained with the aid of the

symmetry relation [13, 14, 15], as is done in [1]. Therefore, as far as the slip/jump coefficients are concerned, the
newly required computation for the ES model is only for ϕ(0)

1 .

NUMERICAL RESULTS

The problems (4) and (5) for the ES model can be converted to the integral equations for macroscopic variables as
in the case of the BGK model (see, e.g., [16], [4, Appendix A.4]). In the meantime, the first and second authors
have already established a direct accurate numerical method [2, 3] for the original formalism (4) and (5), which can

040004-6

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



(a) (b) (c)

FIGURE 1. Knudsen-layer functions. (a) Density corrections Ω(0)
1 , · · · ,Ω

(0)
6 , (b) temperature corrections Θ(0)

1 , · · · ,Θ
(0)
6 , and (c)

tangential velocity correction Y (1)
3 and

∫ ∞
η

(Ω(0)
1 + Θ

(0)
1 )dη in (6). Solid lines: the ES model. Dashed lines: the BGK model. Ω(0)

2 and

Θ
(0)
2 for the BGK model are omitted in (a) and (b), because they are identically zero.

safely handle the emergence of a localized divergent singularity at the level of the VDF (see [3] for details). Here,
we present the results obtained by the latter method. Owing to the limitations of space, we limit ourselves to show
the slip/jump coefficients and a part of the Knudsen-layer functions for Pr = 2/3 and the diffuse reflection condition.
Further detailed information, such as the VDFs and the compact tables and raw data of the Knudsen-layer functions,
is available from Kyoto University Research Information Repository (http://hdl.handle.net/2433/199811).

Table 1 shows the slip/jump coefficients c(0)
1 , · · · , c

(0)
6 and b(1)

3 for which new computations for the ES model are
required. The table includes those for the BGK model and the hard-sphere gas as well for reference.

Table 2 shows the remaining slip coefficients for the ES model, BGK model, and hard-sphere gas. There are
three columns for the ES model: the first column shows the data obtained by new direct computations, the second
those obtained by the conversion (13) from the existing data for the BGK model, and the third those obtained by the
identities in [1, Sec. 7], which are the consequence of the theory of symmetric relation. Fairly good agreements of
the data among the three columns confirm the validity of the conversion formulas in (13) and, at the same time, the
achievement of highly accurate computations in the present work.

Figure 1 shows the profiles of the Knudsen-layer functions Ω(0)
1 , · · · ,Ω

(0)
6 , Θ(0)

1 , · · · ,Θ
(0)
6 , Y (1)

3 , and
∫ ∞
η

(Ω(0)
1 +

Θ
(0)
1 )dη, which are computed from the numerical data of ϕ(0)

1 , · · · , ϕ
(0)
6 and ϕ(1)

3 . Remember that η is the stretched
normal coordinate to the boundary and that Ω’s, Θ’s, and Y’s are the density, temperature, and tangential flow velocity
corrections to the fluid-dynamical description inside the Knudsen layer [see (3)]. The quantities in the figure cannot be
recovered from those for the BGK model. Nevertheless,Ω(0)

1 ,Ω(0)
4 ,Ω(0)

6 , Θ(0)
1 , Θ(0)

4 , Θ(0)
6 , Y (1)

3 , and
∫ ∞
η

(Ω(0)
1 +Θ

(0)
1 )dη are

rather close to those for the BGK model. The others, i.e., Ω(0)
2 , Ω(0)

3 , Ω(0)
5 , Θ(0)

2 , Θ(0)
3 , and Θ(0)

5 , are more dependent on
the model. Their magnitude is, however, relatively small. The same observation applies to the slip/jump coefficients
in Table 1.

Finally we would like to call the attention of the reader to two remarkable things. The first is that the ES model
does not inherit the special property of the BGK model that c(0)

2 ,Ω(0)
2 , andΘ(0)

2 all vanish even if ϕ(0)
2 does not. They are,

however, smaller than those for the hard-sphere gas in their magnitude by one order. The second is that c(0)
3 is positive,

irrespective of the choice of the model (see Table 1). Its positivity leads to the theoretical prediction of the negative
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thermophoresis of a spherical particle with uniform temperature (or with extremely high thermal conductivity). This
is the topic in the next section.

APPLICATION EXAMPLE: NEGATIVE THERMOPHORESIS

Consider a spherical particle of radius L suspended in a slightly rarefied gas. When there is a temperature gradient in
the background gas, the sphere is subjected to a force from the gas (the thermal force).

Let the origin of the space coordinates Xi be the center of the sphere and the temperature of the gas in the
absence of the sphere be T0 + (dT/dX1)∞X1, where T0 is the reference temperature. When the thermal conductivity of
the particle is by far larger than that of the gas, the thermal force (FT , 0, 0) acting on the particle is given by

FT

λgL2(2RT0)−1/2(dT/dX1)∞
= 24πc(0)

3 ε
2 + o(ε2), (14)

where λg is the thermal conductivity of the gas; see, e.g., [4, p. 252].4 Here are two remarks. If the thermal conductivity
of the particle is comparable to that of the gas, the thermal force is larger by one order in ε and is in the direction
opposite to the temperature gradient. The force (14) is, however, in the same direction as the temperature gradient,
because c(0)

3 is positive, irrespective of the gas model (see Table 1). The former case is simply referred to as the
thermophoresis, while the latter case, i.e., (14), is referred to as the negative thermophoresis. The reversal of the
force direction, as well as the change of magnitude by one order in ε, is due to the change of the dominant physical
mechanism. The reader is referred to [4] for the comprehensive explanation on this issue.

Comparisons of the data of c(0)
3 in Table 1 show that the ES model predicts by far smaller negative thermophoresis

than the BGK model and the hard-sphere gas. However, in order to make fair comparisons, the mean free path of
different molecular models should be converted, as is noted at the end of Preparation. In view of (14), the conversion
that makes the thermal conductivity λg common is suitable, namely εES = εBGK = 1.922284066εHS. Even if this
conversion is taken into account, the thermal force FT in (14) for the ES model is only about 17% of that for the
hard-sphere gas.
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