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ABSTRACT: Readily available aryldimethylsulfonium triflates react with zinc powder under nickel catalysis via the selective cleav-

age of the sp2-hybridized carbon–sulfur bond to produce salt-free arylzinc triflates under mild conditions. This zincation displays 
superb chemoselectivity and thus represents a protocol that is complementary or orthogonal to existing methods. The generated 
arylzinc reagents show both high reactivity and chemoselectivity in palladium-catalyzed and copper-mediated cross-coupling reac-
tions.  

Organometallic compounds are indispensable reagents in or-
ganic synthesis. Organozinc compounds show superb reactivity 
and have thus been widely used in highly chemoselective cross-
coupling reactions and addition reactions across unsaturated 
bonds.1 As the importance of organozinc reagents has increased, 
methods to efficiently prepare functionalized organozinc rea-
gents under mild conditions have been diligently investi-
gated.1d,1i,2 The insertion of zinc metal into the carbon–halogen 
bond of an organic halide represents a promising method for the 
preparation of functionalized organozinc reagents. It enables 
the regioselectivity to be set, offers a broad scope, and is a ro-
bust method. Zinc insertion without a catalyst1e,3 or in the pres-
ence of a stoichiometric amount of lithium chloride1d,1i,2,4 is 
commonly used to allow organic iodides, activated aryl bro-
mides, and benzylic or allylic chlorides to serve as precursors 
for organozinc reagents. To expand the scope of zincations with 
respect to the organic halides that can be employed, the use of 
transition-metal catalysis has been investigated (Scheme 1a). 
Gosmini has pioneered and advanced zincation reactions using 
a cobalt catalyst,5 whilst Yoshikai has developed an improved 
method.6 Based on their combined efforts, such cobalt catalysis 
now accommodates aryl bromides, aryl chlorides and even phe-
nol derivatives, i.e., aryl triflates.5d Very recently, Hintermann 
has reported the nickel(diimine)-catalyzed formation of aryl-
zinc reagents from general aryl sulfonates.7 These catalytic 
methods, as well as other examples,8,9 are the basis for further 
highly exciting catalytic zinc-insertion reactions. 

 Due to their ready availability and synthetic versatility,10 or-
ganosulfur compounds hold great potential as precursors of or-
ganozinc compounds. However, the strength of the C–S bond 
and the often catalytically poisonous nature of the sulfur frag-
ments generated during the reaction render catalytic zinc-

insertion reactions into C–S bonds challenging. Although Gos-
mini11 and Hintermann7 have reported cobalt- and nickel-cata-
lyzed zinc-insertion reactions into aryl sulfides, the available 
precursors are limited to particularly reactive (benzo)thiazoyl 
and naphthyl sulfides12 (Scheme 1b). This underscores the dif-
ficulties associated with achieving the S-to-Zn transformation. 
In addition, the synthetic application of these arylzinc reagents 
has only been investigated for trivial iodinations and a small 
number of Negishi coupling reactions. The utility of organosul-
fur compounds as precursors of organozinc reagents is thus un-
derdeveloped. 

We are interested in the development of catalytic reactions of 
organosulfur compounds via the cleavage of the C–S bond.13–15 
Recently, we have reported the nickel-catalyzed carboxylation 
of arylsulfonium salts using zinc powder with carbon dioxide.16 
This study implied that an arylzinc species is the intermediate 
formed prior to the carboxylation event, although tangible evi-
dence for this hypothesis had been elusive17 or deemed un-
likely18 in nickel-catalyzed carboxylation reactions, which use 
a metallic reductant. Our previous success in preparing aryl-
boronate esters from arylsulfonium salts and bis(pinacolato)di-
boron14a via a palladium-catalyzed reaction also encouraged us 
to develop another important ipso-metalation of arylsulfonium 
salts. With this in mind, we report here an efficient nickel-cata-
lyzed preparation of arylzinc reagents from a variety of aryl-
sulfonium salts (Scheme 1c). 

Encouraged by Liebeskind’s original idea,19–21 we prefer us-
ing arylsulfonium salts as aryl pseudohalides. When compared 
to neutral aryl sulfides, arylsulfonium salts have several ad-
vantages for nickel-catalyzed zinc-insertion reactions that can 
be explained on the basis of the possible reaction 

efficient catalytic C–S cleavage to generate a wide range
 of synthetically useful arylzinc reagents under mild conditions
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mechanism5,7,16 (Scheme 2): (1) Arylsulfonium salts are elec-
tron-deficient and undergo smoother oxidative addition; (2) the 
oxidative addition forms a cationic arylnickel intermediate that 
is more susceptible to reduction by metallic zinc;22 (3) instead 
of anionic sulfur fragments, a neutral and catalytically less poi-
sonous sulfide is formed; (4) arylsulfonium salts, which can be 
readily prepared from aryl mercaptans or sulfides on a large 
scale, usually exhibit good crystallinity as well as bench-stabil-
ity. We also had to pay attention to the possibility of the unde-
sired degradation of the arylsulfonium salts into neutral aryl sul-
fides via demethylation. This could potentially occur via the ac-
tion of a nucleophilic arylmetal species generated in situ or by 
a single-electron transfer (SET) from zinc or a low-valent nickel 
species.23 Suppressing the SET is also important for controlling 
the regioselectivity of the C–S bond cleavage, where sp2 C–S 
bond cleavage via two-electron oxidative insertion predomi-
nates over SET-induced sp3 C–S bond cleavage. 

Scheme 1. Catalytic Zinc-Insertion Reactions into Aryl Hal-
ides and Pseudohalides.  

  
Scheme 2. Mechanistic Working Hypothesis. 

 
Our investigations began by evaluating the catalytic zincation 

of 1a (Scheme 3). The efficiency of the zincation was assessed 
using 1H NMR spectroscopy to analyze the iodinated product 
3a after iodolysis. Simply applying the standard conditions 
from our previous carboxylation in the absence of carbon diox-
ide16 resulted in a zincation with poor reproducibility. After 
some experimentation, we found that the addition of 6.0 mol % 

of a supporting ligand ensures reproducibility. Of the ligands 
tested, 2,9-dimethylphenanthroline (L1) proved to be the most 
effective.23 While monomethylated L2 showed comparable re-
activity, neither the parent phenanthroline (L3) nor 3,4,7,8-tet-
ramethylphenanthroline (L4) worked. The more flexible 2,2’-
bipyridyl ligands L5 and L6 did not facilitate the zincation. In 
these four runs with L3–L6, low conversions were observed. 
Finally, using 2.5 mol % of the complex NiBr2L1 and an addi-
tional 10 mol % of L1 provided 3a in 91% yield. A screening 
of solvents revealed that N,N-dimethylacetamide (DMA) is the 
best while N-methylpyrrolidone (NMP), dimethyl sulfoxide 
(DMSO), and N,N’-dimethylpropyleneurea (DMPU) are almost 
comparable. Conversely, the zincation did not occur in other 
polar solvents such as acetonitrile or tetrahydrofuran (THF). 
N,N’-dimethyl-2-imidazolidinone (DMI) and tetramethylurea 
(TMU) showed moderate performance. The corresponding co-
balt complex CoBr2L1 was not catalytically active in the zinca-
tion. In this case, as well as in the absence of any transition-
metal complex, gradual demethylation of 1a was observed, 
most likely via a SET directly from the zinc powder to 1a.24 The 
neutral sulfide p-tBuC6H4SMe did not undergo zincation, dis-
carding the possibility of an aryl sulfide intermediate in the zin-
cation. 

Scheme 3. Optimization Study of the Zincation Reaction. 

  

 
With the optimized conditions in hand, we investigated the 

reaction scope (Scheme 4). Electron-rich and -neutral aryl-
sulfonium salts 1a–1d, 1h, and 1i displayed good reactivity.25 
As expected, 1c, which contains a methylsulfanyl group, was 
selectively zincated at the sulfonium moiety. The methoxy 
group at the ortho position in 1d has little effect on the zinc 
insertion. Electron-deficient cyano-substituted 1e suffered from 
competitive SET from either the zinc powder or a low-valent 
nickel species,24 and thus demethylation of 1e competed to yield 
4-methylsulfanylbenzonitrile and the yield of 3e was moder-
ate.26 Notably, the zincation of the other electron-deficient aryl-
sulfonium salts 1f–1g proceeded efficiently under the standard 
conditions. The potentially reactive carbonyl groups in 3f–3h 
were unaffected by the reaction conditions. Surprisingly, the 
acidic protons in 1h have no detrimental effect on the reaction, 
and the corresponding zinc reagent 2h was found, after filtration, 
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to be storable under an inert atmosphere at ambient temperature 
(vide infra). Interestingly, the potentially reactive sulfonate and 
chloro groups5–7 in 1j–1m remained mostly intact and the C–S 
bond cleavage proceeded selectively. Small amounts of p-diio-
dobenzene were observed in the reactions of 1j–1l, whilst no m-
diiodobenzene was detected in the reaction of 1m. The zinca-
tion tolerated a pinacolatoboryl group, thus providing ample 
scope for further derivatization via orthogonal Suzuki-Miyaura 
cross-coupling reactions. Zincation in 1o occurred predomi-
nately at the sp2 C–S bond rather than at the sp3 C–Cl bond to 
yield 3o’ after hydrolysis with D2O. The bromo group in 1p was 
partly reduced under the applied reaction conditions, and 1p 
gave a mixture of 3p’ and 3p’’. 

The counteranion of the sulfonium salts is not limited to tri-
flate: [BF4]–, [PF6]–, or [SbF6]– salts of 1q showed similar 

reactivity. It should be noted here that accordingly, the arylzinc 
species generated from these salts should formally contain a 
[BF4]–, [PF6]–, or [SbF6]– counteranion and would hence need 
further investigations from the viewpoint of coordination chem-
istry. Regarding the substituents on the cationic sulfur atom, di-
methyl substituents would be the best in terms of reactivity, se-
lectivity, atom-economy, and ease of preparation. When cyclic 
sulfonium salt 1b’ was used, the zincation proceeded to afford 
3b in 55% yield. Interestingly, unsymmetrically substituted di-
arylsulfonium salts 1r underwent preferential zincation at the 
most electron-deficient C–S bond to yield 3r. Starting from the 
parent aryl methyl sulfide, the zincation can be implemented in 
a one-pot procedure after simply removing volatiles upon com-
pletion of the methylation with methyl triflate. 

Scheme 4. Scope of the Catalytic Zincation of Arylsulfonium Salts.a 

 
a Unless otherwise noted, isolated yields of 3 obtained from the arylsulfonium salts are shown. b p-Methylsulfanylbenzonitrile was formed in 
9% NMR yield. c o-Diiodobenzene was formed in 7% yield with 3j and in <5% yield with 3k and 3l.

The behavior of the arylzinc species depends on the coun-
teranion, solvent, and other coexisting reaction components.27 
In our case, dimethyl sulfide can act as a catalyst poison. Fur-
thermore, nothing was known about the reactivity of the ‘ac-
companying salt-free arylzinc triflates’28 except for their pro-
pensity to undergo iodonolysis.5d,7 We thus investigated the re-
activity of our arylzinc triflates, prepared from the sulfonium 
salts, with transition-metal complexes. Gratifyingly, the one-
pot Negishi cross-coupling reaction of arylzinc triflate 2b with 
5-trifluoromethyl-2-bromopyridine proceeded smoothly to 
yield 4a in 78% yield (Scheme 5).29 In addition, arylzinc triflate 
1a underwent a copper-mediated coupling3e,30 with an acyl chlo-
ride. Heteroarylsulfonium salts 1s31 and 1t32 also successfully 
underwent the zincation followed by a subsequent copper-me-
diated coupling with an allylic bromide.  

It is worth noting that we could, after removing the remaining 
zing powder by filtration, store the arylzinc reagents under an 
inert atmosphere and use them efficiently for further cross-cou-
pling reactions (Scheme 6). Stock solutions of 2a and 2h were 
stable at ambient temperature for a few weeks without signifi-
cant degradation (2a: 0.181 M on April 4th, 2020; 0.165 M on 
June 1st, 2020. 2h: 0.187 M on June 4th, 2020’ 0.178 M on June 
17th, 2020).  

Scheme 5. One-pot Zincation/Cross-coupling. 
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Scheme 6. Cross-coupling Reactions with Arylzinc Stock 
Solutions. 

  
In conclusion, we have demonstrated a highly effective 

method for the mild preparation of arylzinc triflates by devel-
oping a Ni-catalyzed insertion of zinc into the sp2-hybridized 
C–S bond of arylsulfonium salts. Sulfonium salts are readily 

available from their corresponding aryl methyl sulfides and me-
thyl triflate. This zincation has thus paved the way to use a wide 
range of aromatic sulfides via the cleavage of their chemically 
indolent C–S bonds. The zinc insertion takes place with superb 
chemoselectivity and offers a protocol that is complementary or 
orthogonal to existing methods for the generation of arylzinc 
reagents. The prepared arylzinc reagents exhibit consistent re-
activity in palladium-catalyzed and copper-mediated cross-cou-
pling reactions. This new zincation can be expected to find ap-
plications in the synthesis of bioactive compounds and func-
tional π-conjugated materials as other known zincation methods 
have done previously. 
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