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Prediction of pharmacological 
activities from chemical structures 
with graph convolutional neural 
networks
Miyuki Sakai1,2, Kazuki Nagayasu1*, Norihiro Shibui1, Chihiro Andoh1, Kaito Takayama1, 
Hisashi Shirakawa1 & Shuji Kaneko1*

Many therapeutic drugs are compounds that can be represented by simple chemical structures, 
which contain important determinants of affinity at the site of action. Recently, graph convolutional 
neural network (GCN) models have exhibited excellent results in classifying the activity of such 
compounds. For models that make quantitative predictions of activity, more complex information 
has been utilized, such as the three-dimensional structures of compounds and the amino acid 
sequences of their respective target proteins. As another approach, we hypothesized that if sufficient 
experimental data were available and there were enough nodes in hidden layers, a simple compound 
representation would quantitatively predict activity with satisfactory accuracy. In this study, we report 
that GCN models constructed solely from the two-dimensional structural information of compounds 
demonstrated a high degree of activity predictability against 127 diverse targets from the ChEMBL 
database. Using the information entropy as a metric, we also show that the structural diversity 
had less effect on the prediction performance. Finally, we report that virtual screening using the 
constructed model identified a new serotonin transporter inhibitor with activity comparable to that of 
a marketed drug in vitro and exhibited antidepressant effects in behavioural studies.

The pharmacological actions of drugs are dependent on their binding affinity to specific target proteins. It is 
normally impossible to predict in advance how strongly an individual compound will act on a target protein by 
looking only at their structures, even for the most experienced researchers. This activity prediction problem has 
been studied in the field of cheminformatics for many years, and is now a central component of drug discovery 
due to rapid progress in, first, in silico screening and, more recently, machine learning. One relevant machine 
learning technology is a deep neural network (DNN). The convolution technique in a DNN is a core element 
of the revolutionary capabilities of computer vision, which has attracted ever-increasing attention to DNNs1. 
When this technique is applied to a chemical compound, structural information is converted into a numerical 
form, a feature vector, which can be machine processed to explain the relationship between that compound and 
its pharmacological activity.

Graph convolutional neural network (GCN) models that combine neural fingerprints with fully connected 
layers show improved performance in tasks such as solubility prediction and activity prediction compared with 
extended-connectivity circular fingerprint (ECFP)-based models, which are one of the standard methods of 
compound representation2,3.

Altae et al. reported a GCN model that defines a new layer, similar to the pooling layer used in image recogni-
tion tasks, and a graph gathering layer; these layers are available for research under an open-source license as a 
central part of the DeepChem application4,5. They compared the classification performance of their GCN model 
with the support vector machine (SVM) model, which is a method commonly used in machine learning, for the 
Tox 21 (toxicity), SIDER (adverse event), and MUV (pharmacological activity) datasets. That study demonstrated 
that GCN models can exhibit performance comparable to or better than that of SVMs even without “thorough 
hyperparameter optimization” of the GCN models.
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With the help of this easy-to-use open-source algorithm, much successful classification performance has been 
reported. A GCN architecture with one fewer convolutional layer than Altae’s classified the inhibitory activity of 
compounds against the human ether-a-go-go-related gene (hERG; a risk factor for severe cardiac arrhythmia)6 
and the bioactivity of per- and polyfluorinated alkyl substances7, and showed that the GCN models outperformed 
nine other machine learning techniques for the datasets in MoleculeNet3. Another GCN architecture with the 
same three convolutional layers as Altae’s successfully classified compounds for 10 targets extracted from the 
PubChemBioAssay collection8 and compounds that act on β-site amyloid precursor protein cleavage enzyme 1 
(BACE1; a major drug target in Alzheimer’s disease)9. Mayr et al. extensively validated the performance of nine 
types of classification models, including GCNs, for 1310 assays collected from ChEMBL (release 20), a database 
of bioactive molecules with drug-like properties10.

The objective variable in classification is one or multiple binary values. The thresholds required for defining 
an active (or inactive) compound should vary depending on the target being addressed, however, no fixed rules 
have been observed10–12. In addition to the threshold setting, there is another problem of losing crucial infor-
mation about the “degree” of binding to the targets. For instance, a compound with an IC50 value of 1 μM and a 
compound with an IC50 value of 1 nM are equally treated as “active” in a classification task, although the latter 
compound is obviously far more potent than the former under the same experimental setting.

In early drug discovery research, high-throughput screening is an important source of information, and 
quantitative outcomes are more valuable than simple qualitative data for selecting the compounds to be opti-
mized. Similarly, when purchasing a limited number of compounds from a large virtual compound library, for 
example, quantitative activity predictions will make the prioritizing process easier. Furthermore, to identify tool 
compounds to elucidate pharmacological actions, quantitative predictions will be more helpful than qualitative 
predictions. To this end, lines of reports have constructed various regression models using chemical representa-
tions in conjunction with information on their targets, such as three-dimensional compound-protein complex 
information13, amino acid sequence information14–16, assay information for target proteins17,18, and information 
on the atoms from the amino acid in the vicinity of the binding site of a compound19,20.

By contrast, regression models using only compound-derived data have also been reported. One used a fea-
ture vector transformed from very long ECFPs of up to 102,400 bits to predict the activity of G protein-coupled 
receptor (GPCR) ligands21. Another used a composite feature vector generated by concatenating two types of 
fingerprints (neural fingerprints and conventional fingerprints) to predict the activity for targets where the 
protein–ligand complex structure had been solved22. Quantitative activity prediction seeks to predict an infinite 
variety of objective variables. Since architectures with many nodes in the hidden layer perform better even for 
activity classification12,23, more nodes are required in quantitative prediction.

Many drugs are compounds that are easily described by simple chemical structures, which themselves contain 
the key determinants of their pharmacological actions. A compound of this kind is capable of taking various 
conformations depending on the number of its degrees of freedom, but in many cases, its preferred conforma-
tion is inherent to the chemical structure itself, although only specific conformations are normally involved in 
its pharmacological mode of action. Moreover, a drug must also be absorbed and reach the site of action. The 
physicochemical properties behind drug absorption and distribution are also essential features of its chemical 
structure.

In this paper, we report the performance of regression models built only on features that are automati-
cally extracted from compound structures. Specifically, taking a chemical structure as a graph, we construct 
GCN models and show that the models with larger hidden layers satisfactorily and quantitatively predict the 
half-maximum responses of publicly available measures, IC50, EC50, Ki, Kd, and Km. By building models for a 
benchmark dataset of 127 target proteins extracted from the ChEMBL release 25 (referred to as ChEMBL in this 
report) and by using an information theory metric introduced in this study, we demonstrate that the diversity 
of compound structures in the dataset had less impact on the predictive performance than expected. We also 
report that our model identified a new compound via virtual screening of the serotonin transporter (SERT), 
whose binding capacity is comparable to that of a commercial drug in an in vitro assay and antidepressant effects 
in in vivo assays.

Materials and methods
Dataset.  Data were extracted from ChEMBL by adjusting the protocol of Bosc et al.11. First, data with confi-
dence scores of 6 or greater, assay type = B, and standard units = nM were selected. These confidence scores were 
provided by ChEMBL and indicate the level of confidence in the target protein assignment to the compound. 
B indicates a “binding” assay by an in vitro experiment. For each target, p-activity values were used throughout 
this study; these are defined by − log (v) and referred to as pIC50. In this context, v is one of IC50, EC50, Ki, Kd, 
and Km, where higher values indicate greater activity. The standard relation was chosen to be one of “>”, “≥”, “=”, 
“≤”, and “<”. As a further limitation, if the “activity_comment” was neither “Inconclusive” nor “Not determined” 
and if the “potential duplicates” = 0 and “data_validity_comment” was anything but “Potential author error”, the 
measurements were selected.

Compound structures were extracted from ChEMBL in SMILES format (simplified molecular input line 
entry system). They were neutralized with Instant J Chem 19.8.0 (IJC)24, solvents and salts were removed accord-
ing to the built-in dictionary, descriptions of some functional groups were standardized, and finally, they were 
converted to canonical SMILES. Note that only SMILES with a length of 1000 or fewer were used in this study 
(default setting of IJC). For a compound with more than one tautomer, it was assumed that the most reasonable 
one was registered in ChEMBL, and it was used as provided. When a compound-target pair had multiple pIC50 
values, the maximum (= most active) value was adopted.
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Data splitting.  For each target, the dataset was randomly divided into two subsets, a training-validation 
set (90%) and a test set (10%). The training-validation set was further divided into a training set (88.8%) and 
a validation set (11.2%). The ratio of the sizes of these three subsets after the split was approximately 80:10:10.

Graph convolutional neural network.  First, each canonical SMILES was transformed into a binary vec-
tor of 75 dimensions per atom by RDKit25 implemented in DeepChem (default setting of DeepChem). These 
vectors consisted of physicochemical properties, such as the atomic type, number of valences, formal charges, 
and hybridization (Supplementary Table S1). Briefly, using the initial vector as input, the information of neigh-
bouring atoms was added in the graph convolutional layer, and the information of the atoms was updated with 
the maximum value in the neighbouring atoms in the graph pooling layer. After this operation was repeated, 
the vector was converted into one dense layer. The numerical vectors represented by the dense layer were added 
together in the graph gathering layer to generate the “neural fingerprint” of the compound. The graph gathering 
layer was fully connected to an output layer of one neuron, and the entire network was trained to minimize the 
loss function so that each output layer reproduced its corresponding pIC50 (Supplementary Fig. S1). Adam was 
used as the optimization method, ReLU (convolutional layer) and tanh (graph gathering layer) were used as acti-
vation functions, and batch normalization was applied to prevent overfitting and improve the learning efficiency.

Hyperparameter optimization and model training.  To optimize the hyperparameters, Bayesian opti-
mization with Gaussian processes was applied via the pyGPGO package26 and DeepChem 2.1.0 throughout this 
study. In the GCN architecture, two to four convolutional layers have been primarily used5–10. On the other hand, 
in our preliminary experiments, we found that a “shallow” network architecture with one convolutional layer 
performed better than a “deep” (two or more layers) architecture. Furthermore, the preliminary results indicated 
that an appropriate number of convolutional layers was four at the maximum, and having additional convolu-
tional layers hindered the prediction ability. Based on these observations, the hyperparameters were explored 
independently for architectures with one, two, and three to four convolutional layers. A Bayesian optimization 
search was performed 100 times with the Matérn kernel as a covariance function and “expected improvement” as 
an acquisition function. This calculation was repeated four times with different weights initialized by a random 
seed value. In the case of small datasets used to examine the effect of the dataset size on model performance, a 
limited parameter range was applied.

In quantitative activity prediction, the mean absolute error (MAE), root-mean-square error (RMSE), and 
coefficient of determination (R2) are widely used as statistical metrics of model performance and are calculated 
by Eqs. (1)–(5).

where yi and fi represent the reported and predicted ith compound activity, y is the average of yi , and n is the 
number of compounds. We evaluated the hyperparameter settings using the MAE and a new metric (2R2_MAE) 
defined in Eq. (6).

2R2_MAE is based on the simple idea below; the higher its value is, the better.

(1)	 For parameter settings that give the same MAE, a higher R2 value is better. (This is represented by R2 − MAE, 
the first term).

(2)	 If the first term has the same value among parameter sets, a set with a higher R2 value is better (R2 is the 
second term).

From a set of 100 hyperparameters obtained after 100 iterations of Bayesian optimization search to mini-
mize the MAE values, one hyperparameter set with a maximal 2R2_MAE value for the held-out validation set 
was selected, and finally, four hyperparameter sets were obtained for each network architecture. Since a “shal-
low” network architecture tended to give better R2 values than a “deep” network architecture, we re-ran 1000 
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hyperparameter search calculations if all R2 values for networks with one convolutional layer were lower than 
0.45. For networks with two convolutional layers, the hyperparameter set with an R2 value of 0.40 or more was 
retained. For much deeper networks, the hyperparameter set was retained when its R2 value was higher than 
any R2 value of the shallower networks.

The final model training was performed on the best hyperparameter set (excluding epochs) with a fixed ini-
tial seed. For each model, 100 epochs were first calculated. If the minimum MAE on the held-out validation set 
did not decrease further in the next 100 epochs, the learning was terminated. When the MAE value decreased, 
another 100 epochs of learning were conducted, and the same procedure was repeated without setting an upper 
limit for the total number of epochs until the previous minimum MAE no longer changed during the additional 
100 epochs. After the learning, a 2R2_MAE value was calculated for each epoch, and a model with the maxi-
mum 2R2_MAE value was selected as a final model. Final models were built using DeepChem 1.3.0. The graph 
convolution algorithms implemented in DeepChem 1.3.0 and 2.1.0 used for hyperparameter search are the same.

Ensemble learning.  Ensemble learning is a common technique in machine learning, where multiple mod-
els are constructed and combined. Many studies have shown that ensemble learning improves prediction accu-
racy compared to individual models23,27–29. We applied this technique by simply averaging the individual outputs 
without weighting. In this report, the predicted pIC50 values refer to the output of ensemble learning, unless 
otherwise noted.

Scaffold diversity.  Considering that the structural diversity of a dataset is one of the factors affecting the 
prediction performance and generalizability of models, we assessed the distribution of Murcko scaffolds30 in 
ChEMBL by removing all side chains of compounds and replacing all heavy atoms with carbons. By adapting 
Shannon’s definition used in information theory, the quantitative scaffold diversity index (H) was introduced as 
Eq. (7).

In this formulation, pi is the fraction of the number of compounds ( ci ) containing a certain scaffold relative 
to the total number ( c ) of compounds.

A smaller H value means that the distribution is more biased towards particular scaffolds, while the maximum 
value is obtained for a uniform distribution. With IJC, 145,515 scaffolds were found in ChEMBL. For each dataset, 
the scaffolds were sorted in ascending order by scaffold size (the number of carbons that make up a scaffold), 
transformed to a histogram containing 10,000 scaffolds per bin, and converted to a probability distribution by 
dividing the number of compounds in each bin by the total number of compounds in the dataset (Note that the 
15th bin has only 5515 scaffolds). Since there is no reasonable number of bins, we used 15 bins throughout this 
study, referring to previous reports31,32. For 15 bins, H has a maximum value of 3.91 (Hmax = log2(15) = 3.91).

In addition to H, we employed the Kullback–Leibler divergence (KLD) as a metric to quantify the difference 
in the scaffold distributions between datasets before and after the random split.

where qi is the probability distribution of the scaffolds in an unsplit dataset and pi is the probability distribution 
of the training set, validation set, or test set. KLD is always non-negative, and a minimum of zero is obtained 
when qi = pi . The same histograms used for the H calculations were also used to calculate the KLD.

Materials
Citalopram and CHEMBL1377753 (5-chloro-2-(piperidin-4-yl)-1,3-benzothiazole hydrochloride, 1) were pur-
chased from Namiki Shoji (Tokyo, Japan). For the in vivo assay, 1 was dissolved in saline just before use. For the 
in vitro assay, citalopram and 1 were dissolved in Hank’s balanced salt solution (HBSS; Thermo Fisher Scientific, 
Waltham, MA, USA) and stored at − 20 °C until use.

SERT substrate uptake assays in HEK cells.  IC50 determinations were performed using the Neuro-
transmitter Transporter Uptake Assay Kit (R8173, Molecular Devices, San Jose, CA, USA) according to the 
manufacturer’s instructions and previous reports33. Briefly, HEK293 cells were seeded on 96-well black-wall 
clear-bottom plates (#655090, Greiner, Kremsmünster, Austria) at a density of 3.85 × 104 cells/well. The cells 
were transfected with plasmid DNA (hSERT-pcDNA3 (Addgene #1548334) or pcDNA3; 200  ng/well) using 
Lipofectamine 2000 (Thermo Fisher Scientific). After 28–30 h of incubation, the cells were directly used for 
IC50 determination. For IC50 determination, the culture medium was changed to HBSS. Then, HBSS-containing 
drugs and HBSS-containing dye were sequentially added to the culture. After 60 min of incubation, the fluo-
rescence was measured by a Wallac 1420 ARVOsx multilabel counter (Perkin Elmer, Waltham, MA, USA). The 
background was defined as the fluorescence of the pcDNA3-transfected well containing each concentration of 
drug to mitigate the effect of the possible fluorescence of the applied drugs. The specific uptake was defined 
as the fluorescence of each hSERT-transfected well subtracted by the corresponding background. The specific 
uptake was normalized to that in the absence of a drug. The IC50 values were calculated using Prism 8 (GraphPad 
Software, San Diego, CA, USA; https​://www.graph​pad.com/scien​tific​-softw​are/prism​/).

(7)H = −
∑

pilog2pi

(8)pi = ci/c

(9)KLD = −
∑

pilog2(pi/qi)
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Animals.  All animal care and experimental procedures were approved by the Kyoto University Animal 
Research Committee (Approval number 19-41) and performed following the ethical guidelines of the Com-
mittee. Adult male C57BL/6J mice (8–16 weeks old, 22–28 g body weight. Nihon SLC, Shizuoka, Japan) were 
housed in groups (no more than 6 mice in an individual cage) with free access to food and water and kept under 
constant ambient temperature (24 ± 1 °C) and humidity (55 ± 10%), with a 12-h light–dark cycle. Animals were 
randomly assigned to each experimental group. All behavioural tests were performed in the light cycle of the day.

Behavioural tests.  All behavioural tests were performed and analysed by experimenters who were blind 
to the injected drugs. The tail suspension test was performed as previously described35. Briefly, after acclima-
tion, mice were hung on a hook (35 cm from the floor of the test box) with the tail taped to a force transducer 
(PowerLab 2/26, AD Instruments, Dunedin, New Zealand) fixed to the ceiling of the test box (40 × 40 × 40 cm). 
The immobility time was recorded for 6 min. Administration of each drug was performed 15 min before testing. 
The behaviour of the mice was recorded throughout the test, and the mice that held their hindlimbs or climbed 
their tails with their forelimbs during the tail suspension test were excluded from the analysis. An open field 
test was performed at least 2 days after the described tail suspension test35. An open field arena consisting of a 
white acrylic cube (50 × 50 × 50 cm) was used. Administration of each drug was performed 15 min before test-
ing. The behaviour of each animal was recorded with a camera over a 10 min session; the recorded data were 
analysed automatically using a video tracking system (ANYmaze version 4.99, Stoelting, Wood Dale, IL, USA). 
The total distance travelled during each session was measured. All statistical tests were performed using Prism 8 
(GraphPad Software). One-way ANOVA, followed by Dunnett’s multiple comparisons test, was used for group 
comparisons unless otherwise stated. The difference was considered significant at P < 0.05.

Results and discussion
Dataset.  A benchmark dataset of 127 target proteins belonging to eight protein families was selected from 
ChEMBL by the procedure described in the previous section. Seven targets had a dataset size of fewer than 1000 
(461–739), and 120 had a dataset size of more than 1000 (1408–11,632) (Supplementary Tables S2, S3).

The proper inclusion of inactive compounds has been shown to improve the prediction accuracy of clas-
sification models6,36. By analogy, it may be desirable for the dataset to have a wide range of activity values in the 
construction of regression models. Qualitative measurements above and below the detection limit of an assay, 
e.g., IC50 > 100,000 nM, were used “as is” without offsetting.

The distribution range of the reported pIC50 values directly influences R2, as shown in Eq. (3). The maxi-
mum and minimum pIC50 distribution ranges were 5.15 and 30.0 for the acetyl-CoA carboxylase 2 and alpha 
1A adrenergic receptors, respectively. The large value of 30.0 was due to a compound of logKi = 19, which might 
have been incorrectly registered in ChEMBL (the original paper listed it as 19% inhibition at 1 μM37). Although 
extreme outliers may negatively influence the predictability, we included them if the R2 value for a validation set 
was greater than the thresholds described in the previous section.

After the random splitting of the dataset, the validation sets were used to optimize the hyperparameters, and 
the test sets were used to evaluate the predictability of the models.

Hyperparameter optimization and model training.  Similar to other machine learning methods, a 
GCN is very sensitive to the choice of hyperparameters38. Table  1 shows the parameters searched and their 
explored ranges. The upper limit of the size of the graph convolutional layers is 9 to 32 times the value reported in 
the classification tasks6–10. For the parameters not listed in the table, the default values of DeepChem were used. 
Note that for small datasets, we limited the range to mitigate overfitting and underlearning problems.

R2, MAE, and RMSE values are often used to evaluate the performance of regression models. An R2 value 
of 1 indicates a perfect prediction, and a lower value indicates poor prediction accuracy, making it easier to 
intuitively judge the performance of a model. However, since R2 is affected by the activity range of the dataset 
used, as shown in Eq. (4), a careful comparison of performance is necessary between models of different data-
sets. Unlike R2, the lower the MAE or RMSE is, the better. There are some recommendations and concerns as to 
which metric should be used39,40.

The relationship between the two is described in Eq. (10).

Table 1.   Hyperparameters and values explored.

Hyperparameter Values explored Values explored (for smaller datasets)

Size of the graph convolutional layers [32–2048] [16–512]

Size of the dense layer [16–2048] [16–512]

Number of graph convolutional layers 1, 2, 3–4 1, 2, 3–4

Learning rate [0.00010–0.0020] [0.00010–0.0020]

Dropout [0.0–0.50] [0.0–0.50]

Epoch [20–200] [20–200]

Batch size [10–100] [10–100]
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The upper bound of the RMSE is equal to the MAE multiplied by the square root of the dataset size n , 
which means that the RMSE tends to increase as the dataset size increases, implying that evaluating the model 
performance across different dataset sizes can be difficult. Furthermore, during the investigation of the MAE, 
RMSE, and R2 of the various parameter sets obtained by the hyperparameter search, we noticed that there were 
hyperparameter sets whose MAE values were only slightly worse than the smallest MAE value (e.g., 0.84 vs. 0.86) 
even if their R2 values were better (0.54 vs. 0.67). For these reasons, we evaluated the hyperparameter sets using 
the MAE and 2R2_MAE. R2 usually takes a value of [0–1]. MAE takes a value of [0–∞ ], which differs from R2 
in units. In our dataset, the MAE values are approximately in the range of [0–1], and we thought that it would 
not cause a significant problem to apply the arithmetical operations of the R2 and MAE as in Eq. (6) to perform 
a realistic assessment of the hyperparameter sets.

Since 2R2_MAE is based on the balance between the R2 and the MAE, there is a concern that it may be the 
case that R2 is high (desirable), the MAE is high (undesirable), and 2R2_MAE is high (appears to be desirable). 
To investigate this problem, we comparatively analysed how the values of the MAE and R2 for the validation sets 
were affected by the hyperparameter combinations selected based on the criteria of the maximum 2R2_MAE 
and minimum MAE, respectively. As a result, for the hyperparameter sets selected with a maximum 2R2_MAE 
value, the MAE values were slightly worse than for those with a minimum MAE (the average increase was 0.0046; 
the maximum increase was 0.092), while the R2 values tended to be better (the average increase was 0.0082; the 
maximum increase was 0.14). Overall, the choice of hyperparameters based on the 2R2_MAE criterion seemed 
to provide reasonable models in our dataset (Fig. 1a,b).

The sizes of the convolutional layers and the dense layers varied with the dataset, and at the same time, their 
sizes tended to be close to the upper limit of the parameter search range. This result is similar to that in previous 
reports12,23, where activity classification models with large hidden layers showed good performance.

The training sets were retrained with a fixed random seed using the best hyperparameter sets (except for the 
epochs) that met the maximum 2R2_MAE criterion. Some models did not reproduce the prediction performance 
on the validation set within a reasonable range after retraining. For example, a hyperparameter set that showed 
R2 = 0.53 in the hyperparameter optimization process had R2 = 0.16 after the retraining. A lack of reproducibil-
ity was found in approximately 1.2% of the total models, but such models were excluded in ensemble learning, 
resulting in six to nine individual models per target.

In general, a DNN with more hidden layers better enables the extraction of complex high-level features and 
shows better performance. On the other hand, most of the models with a good performance in our study had 
one convolutional layer, and the models with four convolutional layers never outperformed those with three 
convolutional layers for any target during the hyperparameter search. One possible explanation for this appar-
ent discrepancy is that the max-pooling layer not only extracts the features of a compound but also makes the 
information unnecessarily coarse. A GCN is essentially a type of Laplacian smoothing, and it has been pointed 
out that the repeated application of Laplacian smoothing may make the local chemical environment of com-
pounds indistinguishable, which could explain our results41. To take advantage of the feature of graph convolu-
tion, in which the information of more distant atoms can be taken in as the layers increase, there is room left for 
improvement of the present architecture.

Ensemble learning.  The predictions made by individual models were averaged without weighting to gener-
ate ensemble predictions. Figure 1c,d compare the MAE and R2 on the test set. In Fig. 1c, the spots in the area 
below the diagonal line indicate a better performance in ensemble learning, and 120 targets fall in this area. In 
Fig. 1d, the spots above the diagonal line indicate that the ensemble predictions achieve better outcomes than the 
best individual models, and 94 targets are in this area. The statistical significance of the differences in the means 
of the MAE and R2 distributions between the best individual model and ensemble learning was tested with 
a one-sided Wilcoxon signed-rank test. The null hypothesis was rejected with P = 5.51 × 10–20 and 1.02 × 10–8, 
respectively, indicating that ensemble learning gave a lower mean MAE and a higher mean R2. The performance 
improvement with ensemble models is consistent with that obtained in other studies23,27–29. This improvement 
suggests that there can be many quasi-optimal hyperparameter combinations, and therefore, even similar com-
binations may capture different characteristics of compounds.

As a rule of thumb, we consider a model that satisfies either MAE < 0.6 or R2 > 0.6 to be a good model. In the 
present study, 86% (111 targets) and 91% (116 targets) of the models met the criteria of MAE < 0.6 and R2 > 0.6, 
respectively. Overall, the models quantitatively predicted the activity of a wide range of target proteins. The top 
four ensemble models based on the MAE values for each protein family and their corresponding individual 
models are presented in Table 2. The details of all targets are provided in Supplementary Table S3.

Figure 2 shows the performance of ensemble learning for each of eight protein families. The MAE at the 75th 
percentile (third quartile) of all protein families was less than 0.6. Only two targets exceeded 0.8, i.e., neuronal 
acetylcholine receptor alpha4/beta2 and human immunodeficiency virus type 1 protease, probably because 
approximately 2% of the compounds consistently showed remarkably low predicted pIC50 values, which increased 
the MAE. The MAE values for the validation and test sets tended to be larger than those of the training sets, 
suggesting that some degree of overlearning occurred, although most of the MAE values met our criterion of 
MAE < 0.6.

Comparison with convolutional neural network models on image data (KekuleScope).  A con-
volution operation on a two-dimensional image of a compound has been used for the qualitative and quan-
titative prediction of toxicity and pharmacological activity. The input image can be either a two-dimensional 

(10)MAE ≤ RMSE ≤
√
nMAE
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sketch42,43 or a snapshot of a compound drawn as a three-dimensional picture44. The feature vector of each 
compound is extracted by a convolutional operation on its image data42–45.

Cortés-Ciriano et al. studied two-dimensional compound image data with architectures widely used in image 
recognition, ResNet-52 and VGG-19, and reported that their models (KekuleScope) quantitatively predicted 
pIC50 for 25 target proteins from ChEMBL (release 23)43. We built GCN models for the KekuleScope dataset 
and compared the RMSE values with those of the KekuleScope. As a result, our RMSE values were equivalent 
to those of the KekuleScope and, although indirectly, were close to those of the random forest (RF) models and 
fully connected deep neural network (FNN) models reported simultaneously (Table 3, Supplementary Table S4). 
In addition, we compared the RMSE values of our 22 models built using ChEBML (release 25) and found that all 
values were equivalent to or lower than those of the KekuleScope, RF, and FNN. This observation suggests that 
sufficient features can be extracted from the two-dimensional structures to predict their activity.

Impact of the scaffold diversity and dataset size.  The diversity of structures in datasets, especially 
training data, should be considered within the context of the applicability domain of a model. A widely accepted 
definition of structural diversity is in terms of Murcko’s scaffolds30. Many reports have applied these scaffolds to 
evaluate the structural diversity of datasets23,46,47 and have generated compounds with privileged scaffolds for the 
expression of the activity of interest48. There were 145,515 unique scaffolds in ChEMBL, from the insulin-like 
growth factor I receptor (707 scaffolds) to carbonic anhydrase XII (356 scaffolds).

Figure 1.   The impact of 2R2_MAE metric-based model selection and ensemble learning on the predictive 
performance. (a,b) Comparison of the MAE (a) and R2 (b) given by the hyperparameter sets selected according 
to the minimum MAE and maximum 2R2_MAE criteria. The points on the diagonal line represent cases in 
which the same hyperparameter set was selected by both criteria. There is no considerable difference in the 
MAE values under either criterion. The R2 values tend to improve when the hyperparameter set is selected by 
the maximum 2R2_MAE criterion. (c,d) Comparison of the MAE (c) and R2 (d) for the ensemble and best 
individual models. Ensemble learning resulted in a decrease in MAE values and a significant increase in R2 
values.
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Table 2.   The top four ensemble models for each protein family based on the MAE values (ensemble). *Size: 
The number of compounds in the dataset.

Protein family Target Size* MAE: ensemble R2: ensemble MAE: individual model

GPCR

Orexin receptor 1 2852 0.36 0.79 0.41 ± 0.013

Serotonin 7 (5-HT7) receptor 2395 0.42 0.74 0.47 ± 0.023

Orexin receptor 2 3079 0.45 0.71 0.50 ± 0.010

Cannabinoid CB1 receptor 6966 0.46 0.76 0.51 ± 0.0080

Enzyme

Acetyl-CoA carboxylase 2 3136 0.30 0.68 0.33 ± 0.018

Poly [ADP-ribose] polymerase-1 3101 0.38 0.82 0.42 ± 0.012

Cholinesterase 3011 0.39 0.82 0.43 ± 0.015

Nicotinamide phosphoribosyltransferase 2342 0.41 0.68 0.45 ± 0.011

Ion channel

HERG 9198 0.38 0.66 0.42 ± 0.013

Voltage-gated potassium channel subunit 
Kv1.5 739 0.39 0.53 0.42 ± 0.020

Sodium channel protein type IX alpha subunit 5677 0.42 0.72 0.47 ± 0.016

Vanilloid receptor 2856 0.46 0.78 0.50 ± 0.017

Kinase

Nerve growth factor receptor Trk-A 2587 0.37 0.71 0.42 ± 0.017

Insulin-like growth factor I receptor 3019 0.40 0.85 0.44 ± 0.010

Tyrosine-protein kinase JAK1 4345 0.41 0.81 0.45 ± 0.012

Serine/threonine-protein kinase mTOR 4414 0.41 0.81 0.46 ± 0.018

Nuclear receptor

Thyroid hormone receptor alpha 461 0.38 0.82 0.40 ± 0.014

Glucocorticoid receptor 2293 0.48 0.78 0.53 ± 0.026

Peroxisome proliferator-activated receptor-
gamma 3018 0.51 0.72 0.55 ± 0.015

Vitamin D receptor 546 0.51 0.88 0.54 ± 0.030

Protease

Cathepsin D 2568 0.39 0.85 0.42 ± 0.018

Matrix metalloproteinase-1 3746 0.42 0.81 0.47 ± 0.020

ADAM17 2410 0.42 0.89 0.47 ± 0.022

Cathepsin S 2309 0.46 0.79 0.50 ± 0.010

Trans-porter

Potassium-transporting ATPase 532 0.40 0.52 0.42 ± 0.0081

GABA transporter 1 576 0.44 0.86 0.47 ± 0.040

Dopamine transporter 5908 0.48 0.76 0.54 ± 0.014

Norepinephrine transporter 4342 0.50 0.70 0.55 ± 0.015

Others

Histone deacetylase 1 4239 0.41 0.74 0.47 ± 0.015

Bromodomain-containing protein 4 2208 0.41 0.82 0.46 ± 0.032

Histone deacetylase 6 2725 0.42 0.82 0.47 ± 0.023

p53-binding protein Mdm-2 2346 0.42 0.88 0.47 ± 0.020

Figure 2.   Box-whisker plots of the MAE of the ensemble models for each protein family. The horizontal lines in 
the boxes indicate the medians, the ends of the whiskers indicate the maximum and minimum MAE values, the 
bottoms and tops of the boxes are the 25th and 75th percentiles, and the points outside the whiskers are outliers. 
The number after each name on the x-axis shows the number of targets in each family. The same colour code for 
the data subsets is used throughout this manuscript.
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Even if targets A and B contain the same scaffolds, whether the distribution of the scaffolds is equal is another 
question. Target A may consist mostly of compounds with small scaffolds, while most of the compounds in target 
B may have large scaffolds. To analyse the relationship between structural diversity and the scaffold distribution, 
we applied the Shannon entropy (H) as a scaffold diversity measure, which can quantitatively convert various 
continuous and discontinuous data distributions into their information content (Eq. (7)). When the scaffold 
distribution is represented by a histogram, the H value is independent of the size of the bin interval if it is divided 
into the same number of bins and the same range. In a 15-bin histogram, as we used in our dataset, H takes 
values from zero to 3.91. ChEMBL itself is 2.82, meaning that it deviates from a uniform distribution (H = 3.91). 
When considered in conjunction with the probability distribution, we find that the deviation is associated with 
a bias towards smaller scaffolds (Fig. 3a). SERT has a similar probability distribution as ChEMBL and a similar 
value of H (2.73), while serotonin 1A receptor (5-HT1A), which, like SERT, recognizes serotonin, shows an even 
distribution from the second bin to the seventh, with an H value of 3.31 (Fig. 3b). Details of all targets are given 
in Supplementary Table S3.

The violin plots in Fig. 3c depict the distribution of H values for each protein family. The horizontal dashed 
line indicates 2.82 (the H value of ChEMBL). The first quartiles of the H value distributions for GPCRs and 
kinases are greater than 2.82, indicating that many targets have a higher scaffold diversity. Enzymes, ion channels, 
and nuclear receptors exhibit a wide range of targets, from scaffolds with a high diversity to a limited diversity.

The importance of selecting various chemical compounds in the initial screening has been consistently 
reported49,50. The greater the structural diversity of a training set is and the more scaffolds there are, the larger the 
applicability domain of the model6. From this point of view, we evaluated the relationship between H and MAE 
for our dataset. As shown in Fig. 3d, no correlation was observed. The Spearman rank-order correlation coef-
ficients were − 0.11, − 0.023, and − 0.062 for the training, validation, and test sets, respectively. These results indi-
cate that the resulting models are generally predictive for any dataset regardless of the diversity of the scaffolds.

The differences in the distribution of scaffolds between split datasets can affect the performance of models 
since the adoption of a non-scaffold-overlapping approach has been reported to tend to reduce the predictabil-
ity of models10,28. Even if random splitting is applied, an uneven scaffold distribution between datasets could 
unintentionally occur, especially for smaller datasets. Therefore, we introduced the KLD (Eq. (9)) to quantify the 
differences in the scaffold distribution between datasets. When the scaffold distribution is the same between the 
split datasets compared, the KLD has a minimum value of zero. Even if two split datasets produce the same H 
value, they do not necessarily have the same scaffold distribution, and the greater the difference in the distribu-
tion is, the greater the KLD value.

Figure 3e illustrates the relationship between the KLD and MAE. A plus sign means a small dataset of fewer 
than 1000 compounds. As expected, the training sets (blue dots) have very small KLD values for all targets, which 
explains the nearly identical scaffold distribution before and after the split. Most of the KLD values of the valida-
tion and test sets split from more than 1000 compounds show similar KLD distributions below 0.07, suggesting 
that the random split functions are as expected. For most of the small datasets, the KLD values are larger than 
0.07, indicating that the scaffold distribution was unintentionally biased. For the 127 targets we studied, there was 
no correlation between the KLD and MAE. The Spearman rank-order correlation coefficients are 0.094, 0.16, and 
0.068 for the training, validation, and test sets, respectively. Moreover, even for targets with small dataset sizes, 
the MAE ranges from 0.1 to 0.6, despite the large KLD values. These results suggest that a difference in scaffold 
distributions within this range does not have a clear impact on the model performance.

Figure 3f compares the size of the training set with the MAE of the test set. Again, there is no clear correlation 
between the dataset size and the MAE. There is also no apparent tendency to favour specific protein families. 
However, as pointed out in another report51, in small datasets, it may be less sensible to assess the performance of 
the models at face value due to inherent problems such as over- and under-learning and the relative noise impact.

Impact of the data splitting.  Two targets with the largest and two targets with the smallest datasets were 
selected for each protein family to investigate the effect of data splitting on model performance. For each target, 
we repeated the random split of the training-validation set twice to generate three datasets in total (SET1, 2, and 
3) (Supplementary Fig. S2). The GCN models built for these three datasets showed equivalent predictive perfor-
mance (Supplementary Table S5).

Virtual screening.  To further evaluate the performance of our models, the SERT activity was calculated for 
1,777,353 compounds from ChEMBL processed as described in the Materials and Methods section, except for 
the assay_type = B filter. Since the octanol/water distribution coefficient (logP) values of the marketed selective 
serotonin reuptake inhibitors (SSRIs) are in the range of 2.29 to 5.15 (calculated with IJC), the compounds were 
narrowed down using a logP filter. From the compounds that satisfied logP > 2, a predicted pIC50 ≥ 7.5 for SERT, 

Table 3.   Comparison with the KekuleScope. a The KekuleScope dataset. b ChEMBL (release 25).

Model RMSEa RMSEb

KekuleScope

CNN 0.76 ± 0.078

RF 0.68 ± 0.070

FNN 0.71 ± 0.076

Present study GCN 0.74 ± 0.091 0.49 ± 0.11
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a pIC50 ≤ 6.0 for the 5-HT1A receptor, and no assay reports for monoamine-related proteins or opioid receptors 
(SERT, the other serotonin receptors, dopamine receptors and transporter, opioid receptors, and adrenergic 
receptors), after visual inspection, a readily available 1 (Fig. 4a) was purchased and subjected to a pharmacologi-
cal activity test.

In vitro assays.  We measured the inhibition activity of 1, whose predicted IC50 was approximately 10 nM 
(pIC50 = 7.97), in HEK293 cells transiently expressing SERT. Specific uptake by SERT was inhibited by 1 as well 
as citalopram, an SSRI, in a dose-dependent manner (Fig. 4b). Non-linear regression analyses revealed that the 
IC50 values of 1 and citalopram were 6.24 nM and 2.13 nM, respectively.

When the structural similarity to 1 was calculated through IJC on 10,270 ChEMBL compounds with activity 
data for SERT, the reported pIC50 for the most similar compound (Tanimoto coefficient = 0.78; the larger the 

Figure 3.   Effect of the scaffold diversity of the datasets on the prediction performance. (a) The probability 
distribution of the scaffolds in ChEMBL. Compared to the uniform distribution, ChEMBL is much more biased 
towards smaller scaffolds, resulting in a smaller H value. (b) The probability distribution of the scaffolds in the 
dataset for the serotonin transporter (SERT) and serotonin 1A receptor (5-HT1A). The H value is larger for 
5-HT1A, whose scaffold distribution is wider than that of SERT. (c) Violin plots of the H value distribution by 
protein family. The number after each name on the x-axis shows the number of targets in each family. (d–f) 
Effect of the scaffold diversity (d), the dissimilarity of the scaffold distribution (e), and the training set size (f) on 
the MAE.
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value is, the more similar the compounds) was 5.93, which was 100 times weaker than the activity of 1. Addi-
tionally, the similarity of 1 to the most active compound (reported pIC50 = 11.70; a calcilytic agent that had been 
investigated as a calcium-sensing receptor antagonist) was 0.26. It is often advised that compounds sharing the 
same scaffold should not be used simultaneously in the training, validation, and test sets. However, our results 
suggest that GCN models learn the relationship between the local chemical environments and the activity values 
of compounds and that less control over the scaffold distribution may be required.

Behavioural tests.  Because SSRIs are widely used as antidepressants52, we investigated whether 1 had 
antidepressant-like efficacy in mice. Administration of 1 (10 mg/kg, i.p.) significantly reduced the immobility 
duration in the tail suspension test, a proxy of a depression-like state, whereas it did not affect general locomotor 
activity in the open field test (Fig. 4c,d). Judging from the logP value of 2.94, it is possible that 1 was distributed 
in the central system and may have shown antidepressant effects. In ChEMBL, activity of 1 against transient 
receptor potential canonical 4 (pIC50 = 8.10) and nuclear factor erythroid 2-related factor 2 (pIC50 = 6.19) has 
been reported. Thus, it is also possible to assume that the antidepressant effects occurred by acting on these two 
or other unknown targets.

Conclusions
Quantitative activity prediction models were constructed for 127 target proteins in ChEMBL using only features 
extracted from the two-dimensional structural information of compounds by applying a GCN architecture. We 
extended the range of hyperparameters beyond the range reported in the classification tasks. Most of the models 
with good performance in this study had one convolutional layer, and none of the models with four convolutional 
layers outperformed the three-layer models during the hyperparameter search. Ensemble learning improved the 
predictive performance compared to the individual models.

Figure 4.   Experimental validation of the prediction model for the serotonin transporter (SERT). (a) Structure 
of CHEMBL1377753 (1). (b) 1 inhibited the substrate uptake of SERT. The specific uptake of the fluorescent 
substrate for SERT was measured in the absence or presence of ligands in cells expressing human SERT. The 
specific uptake was normalized to the value in the absence of ligands. The data represent the mean ± s.e.m. n = 4 
biological replicates in two independent experiments. (c,d) Administration of 1 induced antidepressant-like 
effects in mice. After intraperitoneal injection of 1 (1, 10 mg/kg), the immobility duration in the tail suspension 
test (c) or travelled distance in the open field test (d) was measured. (c) 1 significantly decreased the immobility 
duration. The data represent the mean ± s.e.m. One-way ANOVA was performed; F(2,19) = 3.64, P = 0.046. 
Dunnett’s multiple comparisons test *P < 0.05 vs. the saline group. n = 7–8 mice per group. (d) 1 did not 
significantly affect the travelled distance. The data represent the mean ± s.e.m. One-way ANOVA; F(2,15) = 0.41, 
P = 0.67. n = 6 mice per group.
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The prediction performance of GCN models built using the KekuleScope dataset was comparable to that of the 
KekuleScope (CNN) model and, indirectly, RF and FNN models which are often used for comparison purposes 
as baseline methods. Interestingly, our models built using ChEMBL (release 25) showed a better performance 
than the CNN, RF, and FNN models, although it should be noted that the data preparation scheme and handling 
of qualitative measurements in the KekuleScope dataset differ from those in our dataset.

Databases collected from various data sources contain measurements and noise under various experimental 
conditions such as a template and a substrate for reverse transcriptase53. By taking these factors into account, the 
performance of activity prediction models has been improved53. Since only the filters described in the Materials 
and Methods section were used in this study (the standard relation was one of “>”, “≥”, “=”, “≤”, and “<”; excluded 
inconclusive data, duplicates, and errors), further investigation is needed. For instance, when multiple experi-
mental values were available for the same compound-target pair, the maximum value was used in the present 
study as previously reported6,9,18, but other lines of reports used the median11,23,53 and the mean43 values, thus a 
different data pre-processing method may further improve the prediction performance of the models.

In addition to constructing the models, we quantified the diversity of the compound scaffolds and demon-
strated that the diversity had less effect on the model performance. The virtual screening performed to further 
validate the generalizability of our models identified a new compound with SERT activity, which is comparable 
to citalopram.

Even if the targets on which activity prediction models are built are “unappealing”, the models can provide 
useful hints for drug repositioning, alerting to potential off-targets, prioritizing strategies in the early stage of 
drug development, finding poly-pharmacological drugs, and searching for tool compounds that support the 
elucidation of the molecular mechanisms underlying biological function. From this point of view, we believe 
that a model that ranks compounds not by binary classification but by quantitative prediction is a useful tool in 
drug discovery research. We believe that our GCN architecture could play a crucial part in such an effort, as we 
obtained a novel SERT-acting compound with activity comparable to that of a clinically effective drug.

Data availability
The codes and datasets used in this study are available from the corresponding author on request.
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