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A characterization of differentiability for the best
trace Sobolev constant function

By

Kazuya AKAYAMA * and Futoshi TAKAHASHI **

Abstract

Let 1 < p < N and let © be a smooth bounded domain in RY. In this paper we show some
regularity results for the best constant S, of the trace Sobolev embedding W'?(Q) <« L(9Q),
considering that S is a function of g. We prove that Sq is absolutely continuous, thus S;, = diqu

exists a.e. ¢ € [1,p«], px = p(I\Iy—:;). We give a characterization on a set where S, exists.

These are natural extensions of the recent work by Ercole for the best constant of the Sobolev
embedding W, P () — L9(Q) for q € [1,p*], p* = &

N—p*

§1. Introduction

Let 1 < p < N be fixed and let Q be a bounded domain in RY with a smooth
boundary 0€2. The well-known trace Sobolev embedding theorem claims that the con-
tinuous inclusion W1P(Q) — L4(9) holds true for 1 < ¢ < p,, where p, = p(]i,v—__;)
denotes the trace Sobolev critical exponent. Hence the following trace Sobolev inequality
holds true for any u € W1P(Q):

(L1) 0( [l dHNl)qs [ vup +upyas, 0 <a<p),
oN Q

where H¥~! denotes the (N — 1)-dimensional Hausdorff measure on the hypersurface
0. The best constant of the trace Sobolev inequality (1.1) (i.e., the largest C' such
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88 K. AKAYAMA, AND F. TAKAHASHI

that the above inequality holds for any u € W12(Q) \ W, *(Q)) is defined as

VulP + |ulP) d
u€WLP (Q)\WyP(Q) (fafz ulg dHN-1)4

(1.2) = inf / (IVul? + |u|P) dz.
wewlP@\W}P(©) JQ
||U||Lq(aQ):1
It is known that the continuous embedding W1P(Q2) — LI(99Q) for 1 < q < p,
is actually compact when 1 < ¢ < p,, thus a minimizer for S, exists for 1 < ¢ < p,.
A minimizer u, for S, with the property |jugl|| rapn) = L is a weak solution of the
Euler-Lagrange equation

Apu = [uP2u  inQ,

(1.3)
[VuP=29% = S |ul9=%u  ondg,

where v is the outer unit normal of 9€2. Note that by the strong maximum principle
[18], a solution u of (1.3) has a constant sign on 2, and we may assume u > 0 on .
Also regularity results (see e.g., [15], [17]) imply that u € C%(Q) N C*(Q) for some
a e (0,1).

For the case ¢ = p., the existence of a minimizer becomes a subtle problem because
of the lack of compactness. Recently it is proved in [14] that S, is attained on any
smooth bounded domain when p € (1, XL + 3), where 8 = 3(Q) > 0. See [1], [11], [6],
[7] for earlier results on the existence of extremals for S, (€2) on bounded domains.

This is a striking difference between the best constant for the Sobolev inequality

L VulPd
(1.4) Sy =5,(9) = inf fﬂ‘—m
uevxgé’g(n) (fq luladz)

forl <q<p"= NN—_’;). Indeed, S’p* () is never attained on any domain € other than R¥
and Sy« (£2) does not depend on the domain © but depends only on N. More precisely,
Sy () = Sy« (RY) and the explicit value of S, is known, see [16].

Also, the behaviors of both the constants S,(©2) and S, () under the dilations of
the domain are different from each other. That is, if we define uQ2 = {pz |z € Q} for
> 0, we have S, (uf) = MN_p_%gq(Q). On the other hand, it is easy to see by using
uy,(x) = u(px) that

Sq(u2) = =" inf Jo (P |V P + |uy|?) do
q = =
wEWLP@\WG (@) ([, |u,l? dHN-1) 4
Recently, several regularity properties of S'q as a function of ¢ € [1,p*] = N__Pp

are proved by G. Ercole [3], [4]; see also [8] and [2]. In fact, in [3] it is proved that
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the function ¢ — Sq is Lipschitz continuous on the interval [1,p* — ¢] for any ¢ > 0
small. Also S’q is absolutely continuous on the whole closed interval [1, p*| and thus its
derivative ding = S’(’I exists almost all ¢ € [1,p*]. In [4], the author characterizes the
point ¢ € [1,p*) where S is differentiable; S exists if and only if the functional

fq(u):/g\uﬂlog\u]dx

takes a constant value on the set Eq of the L%-normalized extremal functions corre-
sponding to Sq:

Ey = {u € Wo() | |[ul] pa(ey = 1, and / VulPde = §,}.

We say that S,(Q) is simple if the extremal functions associated with S, are scalar
multiple one of the other. This is equivalent to say that E, = {+u,} for an L9-
normalized extremal u, € VVO1 P(Q). Recall that there is a long-standing conjecture that
gq(Q) is simple if €2 is a bounded smooth convex domain in RY and 1 < ¢ < p*. Up to
now, only several partial results are available for this conjecture, however, the complete
solution has not been obtained. Ercole’s result is interesting since we can disprove the
conjecture if we find ¢ such that 5'(’1 does not exist.

Main purpose of this paper is, in spite of the differences between S, and Sy, to
obtain similar regularity results and a characterization of differentiability of the function
1,ps] 2 ¢ — S4. In what follows, |A| stands for both the N-dimensional Lebesgue
measure LV (A) when A C Q and the (N — 1)-dimensional Hausdorff measure H™¥ ~1(A)
when A C 0Q. We hope that this abbreviation causes no ambiguity. ||lul|,,q, and
[ul| .4 (g0 denotes the L7-norm of a function u : & — R and u : 9Q — R respectively.
x4 denotes a characteristic function of a set A.

§2. Monotonicity and Bounded pointwise variation

In what follows, we fix 1 < p < N and put p, = %.

Concerning the monotonicity of ¢ — Sy, first, we prove the following lemma:

Lemma 2.1.  The function q +— |0Q[P/9S, is monotone decreasing on [1,p.]. In
particular, the function q € [1,p.] — S, is monotone decreasing if |0Q2] <1 and strictly
monotone decreasing if |0 < 1.

Proof. Let 1 < ¢ < g2 < p.. By Holder’s inequality, we have

—p/q2 —r/q
0P/ (/ |u|® d’HNl) < |oQfr/a (/ Ju| @ dHN1> .
oN o
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Multiplying [, (|Vu|? + |u|P) dz to both sides and taking infimum, we see that ¢ €
[1,p.] = |0Q|P/9S, is a monotone decreasing function. Thus

Soy 2 00|/ m - 0rs,, > 5,

if |09 < 1. O

In Lemma 2.1, we see that the function q — |92[P/9S,, is strictly monotone decreas-
ing on [1,p,] if |0Q] < 1. However, we can say more. In the next lemma, the Rayleigh
quotient associated with the trace Sobolev embedding WP (Q) \ W, *(Q) — R is de-

noted by
o (Vul + [uP)de iy q)

(f@Q |u|q dHN*l)g H,U“Hiq(ag) -

Ry(u)

Lemma 2.2. Let u € (WHP(Q)\ W, P()) N L®(9Q), u # constant. Then for
each 1 < q1 < g2 < p.

2 D 2 K(t,u
(21) 001 R 0) = o Ry esp (v [ 5 ar)
q1
where
tl t deN—l 0}
(2.2) K(t,u) = Joo O§|“| P CLL B S
||u||Lt(aQ) ||u||Lt(aQ)

Before the proof, we remark that the assumption of u € L>(0€2) is used to assure
the finiteness of the integral [, [u|P* log |u| dHN 1.
o0+
lll e o0,
Fix gy < p. and consider t € [1,qo]. For u € WhP(Q) \ W, (), we have an
estimate

Proof. 'The proof will be done by differentiating log ( ) with respect to t.

|ul* log |ul| = xqui<|ul*[log [ul| + Xui>11|ul*| log ul]

< X{jul<1] (t€) ™1 + X{jul>1] Jul

Dx — t
|ulP~ € L*(99),

<e '+
P+« — Qo
here we have used xt‘ log:c‘ < (te)_l for 0 <z <1 and ‘loga:‘ < B~ 12P for any ¢ > 1
and 8> 0. Thus we see ||u|"log|u|| € L'(d9). Since gy can be chosen arbitrarily near
to p., we may differentiate under the integral symbol to get

d
pn lu|t dHN 1 :/ lul* log |u| dHN 1
o o
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for any 1 <t < p, by Lebesgue’s dominated convergence theorem. Thus

d QO d (1 d (1
el logL = — (—logyaQo - — (—log/ |u‘t d?—[N—1>

1 1 t g9/ N—1
= —t—210g |02 + t—210g /{m lu|* dH

1[5 [ullog |u] dHN 1
L oo ult dHV 1

K(t,u)
t2

Integrate the above on [q1, g2] with respect to ¢, we obtain

o _|oa) / K(tu) ,
||u||LQ1(3Q) HUHqu(aQ) q t2 .
Multiplying |[ul[yy1.5 (), and taking p-th power, we get (2.1).
Next, we claim K (¢t,u) > 0. Define h : [0,00) — R as
log¢, (£>0),
h(§) =
0, (&=0).
Then A is convex, and Jensen’s inequality implies
h (L fuft d’HN_l) R
09 Jaa — 109 Jaq

=09t (/ |ul’ dHN1> log (|aQ|1/ [k dHNl)
o0 o0

<100 [ Jul'log ul* an¥!
o0

Joq [ul* log Jul* dHN ! 109
S Tl | Tl =0
Lt(89) Lt(8%)

By the equality cases for Jensen’s inequality (see [12]), if the equality holds for the above
inequality, then |u|" must be a constant, which is excluded. Thus the equalities do not
hold and K (t,u) > 0. d

From Lemma 2.2, we easily see the next corollary:

Corollary 2.3.  The function q € [1,p.] — IGQ]p/qu is strictly monotone de-

creasing. In particular, The function q € [1,p.] — Sy is strictly monotone decreasing if
|09 < 1.
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Proof. Let 1< q < g2 < p. and let u,, € WHP(Q)\ W, *() denote an extremal

function for S;,. Then the regularity theorem assures that u,, € C*({2) and u, must
not be a constant. It follows from Lemma 2.2 that

q2 K t
o1/, =100 Ry ug)exp (p [ e ar)
q

1

> |aQ|p/q2RQQ (um)
> |8Q|p/q25’q2.

The latter claim is trivial. U
Let I C R be an interval. In what follows, a finite set P = {xg, - ,2,} C I,

xg < x1 < -+ < Iy, is called a partition of I. Following [10] Chapter 2, we say that a
function f : I — R has bounded pointwise variation if

sup {Z | f(x) — f($¢—1)|} < o0,

where the supremum is taken over all partitions P = {xq, -+ ,x,} of I, n € N. The space
of all functions f : I — R with bounded pointwise variation is denoted by BPV(I).

Corollary 2.4.  The function ¢ — Sy is in BPV (I) where I = [1, p.].

Proof. Since a bounded monotone function on I is in BPV(I) ([10] Proposition
2.10), and the product of a bounded function and a function in BPV (I) is again in
BPV (I), we have S, = (|0Q[P/45,)|0Q| 7P/ is in BPV (I). O

83. Some estimates for the extremals

First by utilizing level set techniques, we derive some pointwise estimates for any
positive solution to (1.3).

Lemma 3.1.  Let u be a positive weak solution to (1.3) with 1 < q < p.. Then
for any o > 1, it holds

1 o+N—-1 (N—l)(p—q)1+(p—1)v
- o
(3.1 (3) ooy <l

where
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Proof. As u > 0 solves (1.3) weakly, it holds

wi g danN ! z/up_ldmlx

(3.2) —/ qu|p—2vu-v¢da:+5q/
Q 0 Q

Q

for all p € W1P(Q).
By a regularity theory (see [15], [17]), we may assume u € C%(Q) for some 0 < a <
1. Fix ¢t € R such that 0 < ¢ < [|u| ;< 5q)- Put

Ar={z € Q| u(x) >t} a ={zecd|ulxr)>t}
We take the function

—t in A; Uay,
b=(u—t)t eWr(Q), ¢={ oA

0 otherwise

in (3.2), then we have

—/ \Vu|pdx+5q/ u?™ (u —t) dHN ! :/ uP~(u — t)dz.
At at

Ay

Rewriting this, we have

/ (IVul? +u?~H (u —t)) dm:Sq/ wI ™ (u — £) dHN

t at

(3.3) < Syllul = o (Il e o0y — Dlacl.

0= [ (oo [ e

at

and recall the layer cake representation: Let v > 0 be a H~ ~!-measurable function on
0. Then for any o > 1, it holds

/ v dHN T = 0'/ 7 MHN T ({2 € 09 | v(x) > s})ds.
oN 0
Thus, we see
g(t) = / HYN P ({2 €| (u—t)" > s})ds = / las|ds,
0 t

here the last equality follows from a change of variables t + s — s. This implies ¢'(t) =



94 K. AKAYAMA, AND F. TAKAHASHI

—lat¢|. By Holder’s inequality, (1.1) and (3.3), we have

oty = ([ oy )

s( [lu—t)* )" dnN- ) 0 PO
o0

1
< g1a ) [ (9= + {a - 1)1y) de
Sp* Q
1 1
= 5l [ (Tup - ) de
Sp* Ay
1 1
< —|au[PUs / (IVulP + uP~H(u—t)) da
Sp* t
< Sq [u ||Loo(ag)(||u||Loo(aQ) — 1)]a, [P0

S Np—1
=g lull = o0 (lull Lo oy — 1) (=g (8) N7,
D

which results in

(3-4) q || ull< o0y (1l o a0y — 1) < —g(t)~r1g'(1).

Changing a variable from ¢ to s, and integrating the both sides of (3.4) on [t, |7 (89)] )
we get
_ (N—1)7(1q—1) N
(3.5) Collull ooy Ulull oo a0y =) < g(t).
Since g(t) < (||ull o pq) — t)]ar|, we have from (3.5) that

(N=1)(g—1)

(3.6) Collull oty Ulll ooy = DN < el

We multiply ot°~! to the both sides of (3.6) and integrate them on [O, HUHLoo(aQ)]-
Then the right hand side becomes HUHEU( 29) by layer cake representation. By changing
variables t — ||U||Loo(89)8, we observe

(N—=1)(g—1)

. ¢ ||u||L°°(aQ) o1 N1
(LHS) = Cylulw o) © / 177l e oy — )Nl

(N=-1)(p—g)+(p—1)c

1
= C’qHuH;w(aQ) . 0/0 s7 11 —s)NV1ds

(N=1)(p= q)1+(p o % 1 (N—1)
1o (N—
> C, H“HLOO(E)Q) 0’/ 7772 ds
0

1\ V-1 W-D(p=a)t(p=1)o
~(3) Gl

2
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Thus we get the conclusion. U

By the Lemma 3.1, we have the uniform boundedness of the extremizers for the
subcritical range.

Lemma 3.2. Let ¢ > 0 sufficiently small and let u, be a positive L9(0S2)-

normalized extremal for S, where 1 < q¢ < p, —e. Then we have
oQ| =17 < gl oo (902) < C,

where Cz. > 0 is a constant which depends only on € > 0.

Proof. Holder’s inequality and the fact |lu,]| La(aq) = 1 yield the first inequality.
Next, suppose 1 < ¢ < p. Taking ¢ = 1 in (3.1), we have

N — P—q p—1
(1> Colltallm o < gl com < 10ty o o = [9RLT1/5
qllUqll o (50 < luglipran) < qllLaan) = :

2
Thus o
QN‘aml—l/q N-Do-0Tm-1)
< _ =: A.
ool oy < g (75— ) A
If p<q<ps—e, then take 0 = ¢ in (3.1) to obtain
1 q+N-1 (Nfl)(pf_qur(p*l)q q
(5)  Culllmon; < gl om = 1
Thus N
929+N+1 ( _(,2_(1;;_(1)
< =:
[tgll oo (902) < poax ( c, ) B,
since (N —1)(p—q)+ (p—1)g = (N — p)(px — q). Put C. = max{A, B.}. O

By combining Lemma 3.2 and Proposition 2.7 in [7], we have the following fact:

Proposition 3.3.  (Bonder-Rossi [7] Proposition 2.8.) The function q € [1,ps] +—

Sq s continuous.

For the proof, we refer the readers to [7].

§4. Local Lipschitz and absolute continuity

In this section, by combining the arguments in [3] and [2], we prove the local
Lipschitz continuity of S, on (1,p,) and the absolute continuity of S, on the whole
closed interval [1,p.].
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Theorem 4.1.  The function q — Sy is locally Lipschitz continuous on the in-
terval (1,p.).

Proof. Fix u € WhP(Q)\ W, P(Q). Since z*(log|z|)? < (te)~2 for 0 < z < 1 and
t >0, wesee for 1 <t <qg < ps«,

2
lul*(log [u])® = (X{ju|<1] + X[ju/>1)) |ul*|log |u]]
2 2
= X{ju<1)|ul"| 1og [ul|” + X[juj>1)[ul*| log Jul|

|u

P«

< te) 2
= X[|u|§1]( e) "+ X[|U|>1]p>‘< —t

P+ ¢ L1 (09).

<e 24

|u
P+« — Qo

Since go can be chosen arbitrarily close to p., we have HuH%q( ooy 18 at least twice differ-
entiable and

d? q /
— |||t 0y = ul?(log |u|)? dz >0
Seallullaay = [ ful?(oglu)

for any ¢ € (1, p«) by dominated convergence theorem. Thus ¢ € (1,p*) — HUH%q(aQ) is

a convex function. Now, set
S ={ue W\ Wy () | lullyrrie =1}

and define

h(q) = sup |[ul|?, 50
(@) = 50 ] e

Since h is a supremum of convex functions ||u]|%q( o) it is also convex and locally Lips-
chitz continuous on (1, p,) (see [5] pp.236), which yields that |h(q)| < co and |h/(q)| < 0o
a.e.n ¢ € (1,p,). Note that S, = h(q)*% —e logh(a) g,

1 !/
S, =5, (—5 log h(q)) :

It is easy to see that h(q) is bounded from above and below by a positive constant on

q € (1,ps). Thus
(3log h(q)),
1 ‘h'(Q)

1
<S¢ | = llogh(q)| + -

From this, we have the conclusion. Ol

|Sgl =S4

D <00, a.e. in (1,p.).
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Theorem 4.2.  The function q — S, is absolutely continuous on the whole in-
terval [1, py].

Proof. Since we know that S, is of bounded pointwise variation on [1,p.]| by
Corollary 2.4, we have

q
Sq—slz/ St dt+ Se(q) + Sy(q),
1

where S¢ is the Cantor part of S, and S is the jump part of S, see [10] Theorem 3.73.
Then the claim that S, is absolutely continuous on [1, p,] is equivalent to S¢ = Sy = 0.
Since S, is continuous on [1, p,| by Proposition 3.3, we see that the discontinuous part
Sy = 0. The Cantor part of S,, that is S¢, is continuous, differentiable a.e., and
Se(q) =0 a.e. g € [1,p,]. Since S, is Lipschitz continuous on any interval of the form
[1,p« — €], € > 0, it is absolutely continuous on the same interval, thus the support of
Sc must be concentrated on {p.}. Therefore S¢ = 0 since S¢ is continuous at p,. [

85. A characterization of differentiability

Let us define the functional I, : W'P() \ Wy (Q) — R as

Iofw) = [ ful"og |ul 4!
o
and the set of L9(092)-normalized extremal functions
Ey={ue W@\ Wo(Q) | lullagon) = 1. l[ullfyriq) = Sa}
for ¢ € [1, p.].

Theorem 5.1.  For each q € [1,p.), let uy be arbitrarily chosen in E,. Then we

have

S,— S S,— S
lim sup ~4——" < —]—)Iq(uq)Sq < liminf Z2—=%,
t—q+0 q—1 q t=q=0 q—1
Therefore for q € (1,p.) on which S, exists, it holds

(5.1) S+ gfq(uq)sq ~0.

Proof. Take q € (1,p«) and let u, be an extremal for S, in E,. Put

J(t):/ fug|t MY,
o0
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Then we see J(q) =1 and J’(t))t:q = [oq lugl?log |ug| dHN 1 = I, (ug). Since

(J(t)p/t>/ = J()"! (—t% log J(t) + % J/(t)) :

we see

4
dt

Also testing S; by ug, we see

() =2

t=q q

p/t
S, = HuqH];Vl,p(Q) > Sy </ g ! dHN—1) = S, J(t)P/1.
o0

Thus L’Hopital’s rule and the continuity of S, imply that

_ P/t — 1
lim sup Sq = 5 < lim sup StL
t—qt+0 q—t1 t—q+0 q—t
d
_ ; - p/t
Sq tilcgrio dt t=q (J(t) >
b
= ——14(uq)Sq-
q
The similar argument yields
L S — 5 p
ltlglqlzlg‘ ;— t = _an(uq)Sq.

O

If S;, exists for ¢, the value S} is independent of the choice of u, € E,. Therefore,
the above theorem implies that the value I;(u,) is also independent of the choice of

uq € E,, which proves the next corollary. Indeed, I,(u,) = —p 3 for any choice of u,
in Fy,.

Corollary 5.2.  Let ¢ € (1,p«) be such that S; exists. Then the functional I,

takes a constant value on Eg; I,(u1) = I,(ug) for any ui,us € Ey.

Now, let us define f as

(5.2) £(q) == 7 1a(ug) when S exists,

0 when S(’J does not exist.

f is well-defined on [1,p,) by Corollary 5.2 and f(q) = —g—é when S7 exists by (5.1).

We have a representation formula for S, by using f in (5.2).
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Theorem 5.3.  Let f be defined by (5.2). Then it holds

. S, =S1exp| — ! d
(53) = siexo (~ [0 ar)
for1 < q < p,.

Proof.  Since the function ¢ — S, is absolutely continuous on [1, p.] by Theorem
4.2, we have also the function [1,p.] 3 ¢ — log .S, is absolutely continuous. Thus by

(5.1),
q d q S/ q

log S, — log S :/ (—logSt) dt = | ZLdt= —/ f(t)dt

1 dt 1 St 1

for all g € [1, p.], which yields the result. O

Theorem 5.3 implies also

Sy = S1exp <— " f(t)dt + /P* f(t)dt)
1 q

— S exp (— /f* £t) dt) exp </qp f(t)dt) = S, exp (/qp f(t)dt).

As an immediate corollary of Theorem 5.3, we have the following;:

Corollary 5.4. Let g € [1,p«) be a point of continuity of f in (5.2). Then diqu
exrists and

Sqg=—S4f(q)
holds.

Proposition 5.5.  Suppose 1, is constant on E, for some q € [1,p,). Then f in
(5.2) is continuous on such q. Especially f is continuous on q where S(/; erists.

Proof. Take g € [1,ps) and a sequence g, — ¢ as n — oo. Since ¢ — S, is
continuous, we see Sq, — Sq. Also by elliptic regularity and the fact that [[ug, [« g
is uniformly bounded in n, we have a subsequence (again denoted by ¢,) and u € E,
such that u,, — u in C1(Q) and [ull a9y = 1. Therefore, we have

flaw) =2 / g, |97 1og Jug, | M1 = 2 / ful? log |u] dHN !
o0 q Joq

n

p p
= —1(u) = ~14(uq) = f(q),
q q
since I,(u) = I;(uq) for u,u, € E,. d

Now, we obtain a characterization of the differentiability of the function ¢ — 5.
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Theorem 5.6. The following 3 assertions on a point q € [1,p.) are equivalent:
(i) S, ewists.
(11) 1, is constant on Ej.

(iii) The function t € [1,p.] — Ii(uy) is continuous at t = q.

Proof. (i) = (ii): Corollary 5.2.

(79) = (41i): Since the continuity of f(t) at t = ¢ is equivalent to the continuity
of t — I4(uy) is continuous at ¢t = ¢, the proof follows from Proposition 5.5.

(731) = (7): Corollary 5.4. d

It is known that S, is simple when ¢ = p and E, = {£u,} for some u, € E,

P
Also if €2 is a ball with sufficiently small radius and p = 2, then S, is simple for any
1<gq<2, =200
= * N—2
Theorem 2.1). Thus g — S, is differentiable on 1 < ¢ < 2, on small balls. Moreover

the abstract approach using a variational principle in [9] could be applied to obtain the

([13]). Thus we see S, = diqu‘q:p exists and t — I;(u;) is continuous at ¢ = p.

and the unique normalized extremizer for S, is radial (see [6]

uniqueness of the positive solution of

Apu = |ulP7%u inQ,

|Vu|p_2g—:j = Mu|?"2u  ondQ,

where A > 0,1 <p < N and 1 < ¢q < p. If this is the case, then we see that the function
q — Sy is differentiable for 1 < ¢ < p on any bounded domain. However, the simplicity
of S, for p < ¢ < p. on a general bounded smooth domain is unknown.
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