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A characterization of differentiability for the best

trace Sobolev constant function

By

Kazuya Akayama ∗ and Futoshi Takahashi ∗∗

Abstract

Let 1 < p < N and let Ω be a smooth bounded domain in RN . In this paper we show some

regularity results for the best constant Sq of the trace Sobolev embedding W 1,p(Ω) ↪→ Lq(∂Ω),

considering that Sq is a function of q. We prove that Sq is absolutely continuous, thus S′
q = d

dq
Sq

exists a.e. q ∈ [1, p∗], p∗ = p(N−1)
N−p

. We give a characterization on a set where S′
q exists.

These are natural extensions of the recent work by Ercole for the best constant of the Sobolev

embedding W 1,p
0 (Ω) ↪→ Lq(Ω) for q ∈ [1, p∗], p∗ = Np

N−p
.

§ 1. Introduction

Let 1 < p < N be fixed and let Ω be a bounded domain in RN with a smooth

boundary ∂Ω. The well-known trace Sobolev embedding theorem claims that the con-

tinuous inclusion W 1,p(Ω) ↪→ Lq(∂Ω) holds true for 1 ≤ q ≤ p∗, where p∗ = p(N−1)
N−p

denotes the trace Sobolev critical exponent. Hence the following trace Sobolev inequality

holds true for any u ∈ W 1,p(Ω):

(1.1) C

(∫
∂Ω

|u|q dHN−1

) p
q

≤
∫
Ω

(|∇u|p + |u|p) dx, (1 ≤ q ≤ p∗) ,

where HN−1 denotes the (N − 1)-dimensional Hausdorff measure on the hypersurface

∂Ω. The best constant of the trace Sobolev inequality (1.1) (i.e., the largest C such
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that the above inequality holds for any u ∈ W 1,p(Ω) \W 1,p
0 (Ω)) is defined as

Sq = Sq(Ω) := inf
u∈W 1,p(Ω)\W 1,p

0 (Ω)

∫
Ω
(|∇u|p + |u|p) dx(∫
∂Ω

|u|q dHN−1
) p

q

= inf
u∈W1,p(Ω)\W1,p

0 (Ω)

||u||Lq(∂Ω)=1

∫
Ω

(|∇u|p + |u|p) dx.(1.2)

It is known that the continuous embedding W 1,p(Ω) ↪→ Lq(∂Ω) for 1 ≤ q ≤ p∗

is actually compact when 1 ≤ q < p∗, thus a minimizer for Sq exists for 1 ≤ q < p∗.

A minimizer uq for Sq with the property ||uq||Lq(∂Ω) = 1 is a weak solution of the

Euler-Lagrange equation

(1.3)

∆pu = |u|p−2u inΩ,

|∇u|p−2 ∂u
∂ν = Sq|u|q−2u on ∂Ω,

where ν is the outer unit normal of ∂Ω. Note that by the strong maximum principle

[18], a solution u of (1.3) has a constant sign on Ω, and we may assume u > 0 on Ω.

Also regularity results (see e.g., [15], [17]) imply that u ∈ C1,α
loc (Ω) ∩ Cα(Ω̄) for some

α ∈ (0, 1).

For the case q = p∗, the existence of a minimizer becomes a subtle problem because

of the lack of compactness. Recently it is proved in [14] that Sp∗ is attained on any

smooth bounded domain when p ∈ (1, N+1
2 + β), where β = β(Ω) > 0. See [1], [11], [6],

[7] for earlier results on the existence of extremals for Sp∗(Ω) on bounded domains.

This is a striking difference between the best constant for the Sobolev inequality

S̃q = S̃q(Ω) := inf
u∈W

1,p
0 (Ω)

u̸≡0

∫
Ω
|∇u|pdx(∫

Ω
|u|qdx

) p
q

(1.4)

for 1 ≤ q ≤ p∗ = Np
N−p . Indeed, S̃p∗(Ω) is never attained on any domain Ω other than RN

and S̃p∗(Ω) does not depend on the domain Ω but depends only on N . More precisely,

S̃p∗(Ω) = S̃p∗(RN ) and the explicit value of S̃p∗ is known, see [16].

Also, the behaviors of both the constants Sq(Ω) and S̃q(Ω) under the dilations of

the domain are different from each other. That is, if we define µΩ = {µx |x ∈ Ω} for

µ > 0, we have S̃q(µΩ) = µN−p− pN
q S̃q(Ω). On the other hand, it is easy to see by using

uµ(x) = u(µx) that

Sq(µΩ) = µN− p(N−1)
q inf

u∈W 1,p(Ω)\W 1,p
0 (Ω)

∫
Ω
(µ−p|∇uµ|p + |uµ|p) dx(∫

∂Ω
|uµ|q dHN−1

) p
q

.

Recently, several regularity properties of S̃q as a function of q ∈ [1, p∗] = Np
N−p

are proved by G. Ercole [3], [4]; see also [8] and [2]. In fact, in [3] it is proved that



Characterization 89

the function q 7→ S̃q is Lipschitz continuous on the interval [1, p∗ − ε] for any ε > 0

small. Also S̃q is absolutely continuous on the whole closed interval [1, p∗] and thus its

derivative d
dq S̃q = S̃′

q exists almost all q ∈ [1, p∗]. In [4], the author characterizes the

point q ∈ [1, p∗) where S̃q is differentiable; S̃′
q exists if and only if the functional

Ĩq(u) =

∫
Ω

|u|q log |u|dx

takes a constant value on the set Ẽq of the Lq-normalized extremal functions corre-

sponding to S̃q:

Ẽq = {u ∈ W 1,p
0 (Ω) | ||u||Lq(Ω) = 1, and

∫
Ω

|∇u|pdx = S̃q}.

We say that S̃q(Ω) is simple if the extremal functions associated with S̃q are scalar

multiple one of the other. This is equivalent to say that Ẽq = {±uq} for an Lq-

normalized extremal uq ∈ W 1,p
0 (Ω). Recall that there is a long-standing conjecture that

S̃q(Ω) is simple if Ω is a bounded smooth convex domain in RN and 1 ≤ q < p∗. Up to

now, only several partial results are available for this conjecture, however, the complete

solution has not been obtained. Ercole’s result is interesting since we can disprove the

conjecture if we find q such that S̃′
q does not exist.

Main purpose of this paper is, in spite of the differences between S̃q and Sq, to

obtain similar regularity results and a characterization of differentiability of the function

[1, p∗] ∋ q 7→ Sq. In what follows, |A| stands for both the N -dimensional Lebesgue

measure LN (A) when A ⊆ Ω and the (N −1)-dimensional Hausdorff measure HN−1(A)

when A ⊆ ∂Ω. We hope that this abbreviation causes no ambiguity. ||u||Lq(Ω) and

||u||Lq(∂Ω) denotes the Lq-norm of a function u : Ω → R and u : ∂Ω → R respectively.

χA denotes a characteristic function of a set A.

§ 2. Monotonicity and Bounded pointwise variation

In what follows, we fix 1 < p < N and put p∗ = (N−1)p
N−p .

Concerning the monotonicity of q 7→ Sq, first, we prove the following lemma:

Lemma 2.1. The function q 7→ |∂Ω|p/qSq is monotone decreasing on [1, p∗]. In

particular, the function q ∈ [1, p∗] 7→ Sq is monotone decreasing if |∂Ω| ≤ 1 and strictly

monotone decreasing if |∂Ω| < 1.

Proof. Let 1 ≤ q1 < q2 ≤ p∗. By Hölder’s inequality, we have

|∂Ω|p/q2
(∫

∂Ω

|u|q2 dHN−1

)−p/q2

≤ |∂Ω|p/q1
(∫

∂Ω

|u|q1 dHN−1

)−p/q1

.
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Multiplying
∫
Ω
(|∇u|p + |u|p) dx to both sides and taking infimum, we see that q ∈

[1, p∗] 7→ |∂Ω|p/qSq is a monotone decreasing function. Thus

Sq1 ≥ |∂Ω|(1/q2−1/q1)pSq2 > Sq2

if |∂Ω| < 1.

In Lemma 2.1, we see that the function q 7→ |∂Ω|p/qSq is strictly monotone decreas-

ing on [1, p∗] if |∂Ω| < 1. However, we can say more. In the next lemma, the Rayleigh

quotient associated with the trace Sobolev embedding W 1,p(Ω) \ W 1,p
0 (Ω) → R is de-

noted by

Rq(u) =

∫
Ω
(|∇u|p + |u|p) dx(∫
∂Ω

|u|q dHN−1
) p

q

=
||u||pW 1,p(Ω)

||u||pLq(∂Ω)

.

Lemma 2.2. Let u ∈ (W 1,p(Ω) \W 1,p
0 (Ω)) ∩ L∞(∂Ω), u ̸≡ constant. Then for

each 1 ≤ q1 < q2 ≤ p∗

(2.1) |∂Ω|
p
q1 Rq1(u) = |∂Ω|

p
q2 Rq2(u) exp

(
p

∫ q2

q1

K(t, u)

t2
dt

)
,

where

(2.2) K(t, u) =

∫
∂Ω

|u|t log |u|t dHN−1

||u||tLt(∂Ω)

+ log

(
|∂Ω|

||u||tLt(∂Ω)

)
> 0.

Before the proof, we remark that the assumption of u ∈ L∞(∂Ω) is used to assure

the finiteness of the integral
∫
∂Ω

|u|p∗ log |u| dHN−1.

Proof. The proof will be done by differentiating log

(
|∂Ω|

1
t

||u||
Lt(∂Ω)

)
with respect to t.

Fix q0 < p∗ and consider t ∈ [1, q0]. For u ∈ W 1,p(Ω) \ W 1,p
0 (Ω), we have an

estimate ∣∣|u|t log |u|∣∣ = χ[|u|≤1]|u|t
∣∣ log |u|∣∣+ χ[|u|>1]|u|t

∣∣ log |u|∣∣
≤ χ[|u|≤1](te)

−1 + χ[|u|>1]
1

p∗ − t
|u|p∗

≤ e−1 +
1

p∗ − q0
|u|p∗ ∈ L1(∂Ω),

here we have used xt
∣∣ log x∣∣ ≤ (te)−1 for 0 < x ≤ 1 and

∣∣ log x∣∣ ≤ β−1xβ for any x ≥ 1

and β > 0. Thus we see
∣∣|u|t log |u|∣∣ ∈ L1(∂Ω). Since q0 can be chosen arbitrarily near

to p∗, we may differentiate under the integral symbol to get

d

dt

∫
∂Ω

|u|t dHN−1 =

∫
∂Ω

|u|t log |u| dHN−1



Characterization 91

for any 1 ≤ t < p∗ by Lebesgue’s dominated convergence theorem. Thus

d

dt

(
log

|∂Ω| 1t
||u||Lt(∂Ω)

)
=

d

dt

(
1

t
log |∂Ω|

)
− d

dt

(
1

t
log

∫
∂Ω

|u|t dHN−1

)
= − 1

t2
log |∂Ω|+ 1

t2
log

∫
∂Ω

|u|t dHN−1

− 1

t

∫
∂Ω

|u|t log |u| dHN−1∫
∂Ω

|u|t dHN−1

= −K(t, u)

t2
.

Integrate the above on [q1, q2] with respect to t, we obtain

|∂Ω|
1
q1

||u||Lq1 (∂Ω)

=
|∂Ω|

1
q2

||u||Lq2 (∂Ω)

exp

∫ q2

q1

K(t, u)

t2
dt.

Multiplying ||u||W 1,p(Ω), and taking p-th power, we get (2.1).

Next, we claim K(t, u) > 0. Define h : [0,∞) → R as

h(ξ) =

ξ log ξ, (ξ > 0),

0, (ξ = 0).

Then h is convex, and Jensen’s inequality implies

h

(
1

|∂Ω|

∫
∂Ω

|u|t dHN−1

)
≤ 1

|∂Ω|

∫
∂Ω

h(|u|t) dHN−1

⇔|∂Ω|−1

(∫
∂Ω

|u|t dHN−1

)
log

(
|∂Ω|−1

∫
∂Ω

|u|t dHN−1

)
≤ |∂Ω|−1

∫
∂Ω

|u|t log |u|t dHN−1

⇔
∫
∂Ω

|u|t log |u|t dHN−1

||u||tLt(∂Ω)

+ log

(
|∂Ω|

||u||tLt(∂Ω)

)
≥ 0.

By the equality cases for Jensen’s inequality (see [12]), if the equality holds for the above

inequality, then |u|t must be a constant, which is excluded. Thus the equalities do not

hold and K(t, u) > 0.

From Lemma 2.2, we easily see the next corollary:

Corollary 2.3. The function q ∈ [1, p∗] 7→ |∂Ω|p/qSq is strictly monotone de-

creasing. In particular, The function q ∈ [1, p∗] 7→ Sq is strictly monotone decreasing if

|∂Ω| ≤ 1.
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Proof. Let 1 ≤ q1 < q2 ≤ p∗ and let uq1 ∈ W 1,p(Ω) \W 1,p
0 (Ω) denote an extremal

function for Sq1 . Then the regularity theorem assures that uq1 ∈ Cα(Ω) and uq1 must

not be a constant. It follows from Lemma 2.2 that

|∂Ω|p/q1Sq1 = |∂Ω|p/q2Rq2(uq1) exp

(
p

∫ q2

q1

K(t, uq1)

t2
dt

)
> |∂Ω|p/q2Rq2(uq1)

≥ |∂Ω|p/q2Sq2 .

The latter claim is trivial.

Let I ⊂ R be an interval. In what follows, a finite set P = {x0, · · · , xn} ⊂ I,

x0 < x1 < · · · < xn, is called a partition of I. Following [10] Chapter 2, we say that a

function f : I → R has bounded pointwise variation if

sup

{
n∑

i=1

|f(xi)− f(xi−1)|

}
< ∞,

where the supremum is taken over all partitions P = {x0, · · · , xn} of I, n ∈ N. The space
of all functions f : I → R with bounded pointwise variation is denoted by BPV (I).

Corollary 2.4. The function q 7→ Sq is in BPV (I) where I = [1, p∗].

Proof. Since a bounded monotone function on I is in BPV (I) ([10] Proposition

2.10), and the product of a bounded function and a function in BPV (I) is again in

BPV (I), we have Sq = (|∂Ω|p/qSq)|∂Ω|−p/q is in BPV (I).

§ 3. Some estimates for the extremals

First by utilizing level set techniques, we derive some pointwise estimates for any

positive solution to (1.3).

Lemma 3.1. Let u be a positive weak solution to (1.3) with 1 ≤ q < p∗. Then

for any σ ≥ 1, it holds

(3.1)

(
1

2

)σ+N−1

Cq||u||
(N−1)(p−q)+(p−1)σ

p−1

L∞(∂Ω) ≤ ||u||σLσ(∂Ω),

where

Cq =

(
Sp∗

Sq

)N−1
p−1

N−Np−1
p−1 .
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Proof. As u > 0 solves (1.3) weakly, it holds

(3.2) −
∫
Ω

|∇u|p−2∇u · ∇ϕdx+ Sq

∫
∂Ω

uq−1ϕ dHN−1 =

∫
Ω

up−1ϕdx

for all ϕ ∈ W 1,p(Ω).

By a regularity theory (see [15], [17]), we may assume u ∈ Cα(Ω̄) for some 0 < α <

1. Fix t ∈ R such that 0 < t < ||u||L∞(∂Ω). Put

At = {x ∈ Ω | u(x) > t}, at = {x ∈ ∂Ω | u(x) > t}.

We take the function

ϕ = (u− t)+ ∈ W 1,p(Ω), ϕ =

u− t in At ∪ at,

0 otherwise

in (3.2), then we have

−
∫
At

|∇u|pdx+ Sq

∫
at

uq−1(u− t) dHN−1 =

∫
At

up−1(u− t)dx.

Rewriting this, we have∫
At

(
|∇u|p + up−1(u− t)

)
dx = Sq

∫
at

uq−1(u− t) dHN−1

≤ Sq||u||q−1
L∞(∂Ω)(||u||L∞(∂Ω) − t)|at|.(3.3)

Now, put

g(t) =

∫
∂Ω

(u− t)+ dHN−1 =

∫
at

(u− t) dHN−1

and recall the layer cake representation: Let v ≥ 0 be a HN−1-measurable function on

∂Ω. Then for any σ ≥ 1, it holds∫
∂Ω

vσ dHN−1 = σ

∫ ∞

0

sσ−1HN−1({x ∈ ∂Ω | v(x) > s})ds.

Thus, we see

g(t) =

∫ ∞

0

HN−1
(
{x ∈ ∂Ω | (u− t)+ > s}

)
ds =

∫ ∞

t

|as|ds,

here the last equality follows from a change of variables t+ s 7→ s. This implies g′(t) =
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−|at|. By Hölder’s inequality, (1.1) and (3.3), we have

g(t)p =

(∫
∂Ω

(u− t)+ dHN−1

)p

≤
(∫

∂Ω

{(u− t)+}p∗ dHN−1

) p
p∗

|at|p(1−
1
p∗ )

≤ 1

Sp∗

|at|p(1−
1
p∗ )

∫
Ω

(
|∇(u− t)+|p + {(u− t)+}p

)
dx

=
1

Sp∗

|at|p(1−
1
p∗ )

∫
At

(
|∇u|p + (u− t)p−1(u− t)

)
dx

≤ 1

Sp∗

|at|p(1−
1
p∗ )

∫
At

(
|∇u|p + up−1(u− t)

)
dx

≤ Sq

Sp∗

||u||q−1
L∞(∂Ω)(||u||L∞(∂Ω) − t)|at|p(1−

1
p∗ )+1

=
Sq

Sp∗

||u||q−1
L∞(∂Ω)(||u||L∞(∂Ω) − t)(−g′(t))

Np−1
N−1 ,

which results in

(3.4)

[
Sq

Sp∗

||u||q−1
L∞(∂Ω)(||u||L∞(∂Ω) − t)

]− N−1
Np−1

≤ −g(t)
Np−p
Np−1 g′(t).

Changing a variable from t to s, and integrating the both sides of (3.4) on
[
t, ||u||L∞(∂Ω)

]
,

we get

(3.5) Cq||u||
− (N−1)(q−1)

p−1

L∞(∂Ω) (||u||L∞(∂Ω) − t)N ≤ g(t).

Since g(t) ≤ (||u||L∞(∂Ω) − t)|at|, we have from (3.5) that

(3.6) Cq||u||
− (N−1)(q−1)

p−1

L∞(∂Ω) (||u||L∞(∂Ω) − t)N−1 ≤ |at|.

We multiply σtσ−1 to the both sides of (3.6) and integrate them on
[
0, ||u||L∞(∂Ω)

]
.

Then the right hand side becomes ||u||σLσ(∂Ω) by layer cake representation. By changing

variables t 7→ ||u||L∞(∂Ω)s, we observe

(LHS) = Cq||u||
− (N−1)(q−1)

p−1

L∞(∂Ω) σ

∫ ||u||L∞(∂Ω)

0

tσ−1(||u||L∞(∂Ω) − t)N−1dt

= Cq||u||
− (N−1)(p−q)+(p−1)σ

p−1

L∞(∂Ω) σ

∫ 1

0

sσ−1(1− s)N−1ds

≥ Cq||u||
− (N−1)(p−q)+(p−1)σ

p−1

L∞(∂Ω) σ

∫ 1
2

0

sσ−12−(N−1)ds

=

(
1

2

)σ+N−1

Cq||u||
(N−1)(p−q)+(p−1)σ

p−1

L∞(∂Ω) .
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Thus we get the conclusion.

By the Lemma 3.1, we have the uniform boundedness of the extremizers for the

subcritical range.

Lemma 3.2. Let ε > 0 sufficiently small and let uq be a positive Lq(∂Ω)-

normalized extremal for Sq where 1 ≤ q ≤ p∗ − ε. Then we have

|∂Ω|−1/q ≤ ||uq||L∞(∂Ω) ≤ Cε,

where Cε > 0 is a constant which depends only on ε > 0.

Proof. Hölder’s inequality and the fact ||uq||Lq(∂Ω) = 1 yield the first inequality.

Next, suppose 1 ≤ q ≤ p. Taking σ = 1 in (3.1), we have(
1

2

)N

Cq||uq||
(N−1)(p−q)+(p−1)

p−1

L∞(∂Ω) ≤ ||uq||L1(∂Ω) ≤ |∂Ω|1−1/q||uq||Lq(∂Ω) = |∂Ω|1−1/q.

Thus

||uq||L∞(∂Ω) ≤ max
1≤q≤p

(
2N |∂Ω|1−1/q

Cq

) p−1
(N−1)(p−q)+(p−1)

=: A.

If p ≤ q ≤ p∗ − ε, then take σ = q in (3.1) to obtain(
1

2

)q+N−1

Cq||uq||
(N−1)(p−q)+(p−1)q

p−1

L∞(∂Ω) ≤ ||uq||qLq(∂Ω) = 1.

Thus

||uq||L∞(∂Ω) ≤ max
p≤q≤p∗−ε

(
2q+N+1

Cq

) (N−p)(p∗−q)
(p−1)

=: Bε,

since (N − 1)(p− q) + (p− 1)q = (N − p)(p∗ − q). Put Cε = max{A,Bε}.

By combining Lemma 3.2 and Proposition 2.7 in [7], we have the following fact:

Proposition 3.3. (Bonder-Rossi [7] Proposition 2.8.) The function q ∈ [1, p∗] 7→
Sq is continuous.

For the proof, we refer the readers to [7].

§ 4. Local Lipschitz and absolute continuity

In this section, by combining the arguments in [3] and [2], we prove the local

Lipschitz continuity of Sq on (1, p∗) and the absolute continuity of Sq on the whole

closed interval [1, p∗].
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Theorem 4.1. The function q 7→ Sq is locally Lipschitz continuous on the in-

terval (1, p∗).

Proof. Fix u ∈ W 1,p(Ω) \W 1,p
0 (Ω). Since xt(log |x|)2 ≤ (te)−2 for 0 < x ≤ 1 and

t > 0, we see for 1 ≤ t ≤ q0 < p∗,

|u|t(log |u|)2 =
(
χ[|u|≤1] + χ[|u|>1]

)
|u|t
∣∣ log |u|∣∣2

= χ[|u|≤1]|u|t
∣∣ log |u|∣∣2 + χ[|u|>1]|u|t

∣∣ log |u|∣∣2
≤ χ[|u|≤1](te)

−2 + χ[|u|>1]
1

p∗ − t
|u|p∗

≤ e−2 +
1

p∗ − q0
|u|p∗ ∈ L1(∂Ω).

Since q0 can be chosen arbitrarily close to p∗, we have ||u||qLq(∂Ω) is at least twice differ-

entiable and
d2

dq2
||u||qLq(Ω) =

∫
Ω

|u|q(log |u|)2 dx ≥ 0

for any q ∈ (1, p∗) by dominated convergence theorem. Thus q ∈ (1, p∗) 7→ ||u||qLq(∂Ω) is

a convex function. Now, set

S = {u ∈ W 1,p(Ω) \W 1,p
0 (Ω)

∣∣ ||u||W 1,p(Ω) = 1}

and define

h(q) = sup
u∈S

||u||qLq(∂Ω).

Since h is a supremum of convex functions ||u||qLq(∂Ω), it is also convex and locally Lips-

chitz continuous on (1, p∗) (see [5] pp.236), which yields that |h(q)| < ∞ and |h′(q)| < ∞
a.e.in q ∈ (1, p∗). Note that Sq = h(q)−

1
q = e−

1
q log h(q), so

S′
q = Sq

(
−1

q
log h(q)

)′

.

It is easy to see that h(q) is bounded from above and below by a positive constant on

q ∈ (1, p∗). Thus

|S′
q| = Sq

∣∣∣∣∣
(
1

q
log h(q)

)′
∣∣∣∣∣

≤ Sq

(
1

q2
| log h(q)|+ 1

q

∣∣∣∣h′(q)

h(q)

∣∣∣∣) < ∞, a.e. in (1, p∗).

From this, we have the conclusion.
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Theorem 4.2. The function q 7→ Sq is absolutely continuous on the whole in-

terval [1, p∗].

Proof. Since we know that Sq is of bounded pointwise variation on [1, p∗] by

Corollary 2.4, we have

Sq − S1 =

∫ q

1

S′
t dt+ SC(q) + SJ(q),

where SC is the Cantor part of Sq and SJ is the jump part of Sq, see [10] Theorem 3.73.

Then the claim that Sq is absolutely continuous on [1, p∗] is equivalent to SC ≡ SJ ≡ 0.

Since Sq is continuous on [1, p∗] by Proposition 3.3, we see that the discontinuous part

SJ ≡ 0. The Cantor part of Sq, that is SC , is continuous, differentiable a.e., and

S′
C(q) = 0 a.e. q ∈ [1, p∗]. Since Sq is Lipschitz continuous on any interval of the form

[1, p∗ − ε], ε > 0, it is absolutely continuous on the same interval, thus the support of

SC must be concentrated on {p∗}. Therefore SC ≡ 0 since SC is continuous at p∗.

§ 5. A characterization of differentiability

Let us define the functional Iq : W 1,p(Ω) \W 1,p
0 (Ω) → R as

Iq(u) =

∫
∂Ω

|u|q log |u| dHN−1

and the set of Lq(∂Ω)-normalized extremal functions

Eq = {u ∈ W 1,p(Ω) \W 1,p
0 (Ω)

∣∣ ||u||Lq(∂Ω) = 1, ||u||pW 1,p(Ω) = Sq}

for q ∈ [1, p∗].

Theorem 5.1. For each q ∈ [1, p∗), let uq be arbitrarily chosen in Eq. Then we

have

lim sup
t→q+0

Sq − St

q − t
≤ −p

q
Iq(uq)Sq ≤ lim inf

t→q−0

Sq − St

q − t
.

Therefore for q ∈ (1, p∗) on which S′
q exists, it holds

(5.1) S′
q +

p

q
Iq(uq)Sq = 0.

Proof. Take q ∈ (1, p∗) and let uq be an extremal for Sq in Eq. Put

J(t) =

∫
∂Ω

|uq|t dHN−1.
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Then we see J(q) = 1 and J ′(t)
∣∣∣
t=q

=
∫
∂Ω

|uq|q log |uq| dHN−1 = Iq(uq). Since

(
J(t)p/t

)′
= J(t)p/t

(
− p

t2
log J(t) +

p

t

J ′(t)

J(t)

)
,

we see
d

dt

∣∣∣
t=q

(
J(t)p/t

)
=

p

q
J ′(t)

∣∣∣
t=q

=
p

q
Iq(uq).

Also testing St by uq, we see

Sq = ||uq||pW 1,p(Ω) ≥ St

(∫
∂Ω

|uq|t dHN−1

)p/t

= StJ(t)
p/t.

Thus L’Hopital’s rule and the continuity of Sq imply that

lim sup
t→q+0

Sq − St

q − t
≤ lim sup

t→q+0
St

J(t)p/t − 1

q − t

= −Sq lim
t→q−0

d

dt

∣∣∣
t=q

(
J(t)p/t

)
= −p

q
Iq(uq)Sq.

The similar argument yields

lim inf
t→q−0

Sq − St

q − t
≥ −p

q
Iq(uq)Sq.

If S′
q exists for q, the value S′

q is independent of the choice of uq ∈ Eq. Therefore,

the above theorem implies that the value Iq(uq) is also independent of the choice of

uq ∈ Eq, which proves the next corollary. Indeed, Iq(uq) = − q
p

S′
q

Sq
for any choice of uq

in Eq.

Corollary 5.2. Let q ∈ (1, p∗) be such that S′
q exists. Then the functional Iq

takes a constant value on Eq; Iq(u1) = Iq(u2) for any u1, u2 ∈ Eq.

Now, let us define f as

(5.2) f(q) :=

p
q Iq(uq) when S′

q exists,

0 when S′
q does not exist.

f is well-defined on [1, p∗) by Corollary 5.2 and f(q) = −S′
q

Sq
when S′

q exists by (5.1).

We have a representation formula for Sq by using f in (5.2).
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Theorem 5.3. Let f be defined by (5.2). Then it holds

(5.3) Sq = S1 exp

(
−
∫ q

1

f(t) dt

)
for 1 ≤ q ≤ p∗.

Proof. Since the function q 7→ Sq is absolutely continuous on [1, p∗] by Theorem

4.2, we have also the function [1, p∗] ∋ q 7→ logSq is absolutely continuous. Thus by

(5.1),

logSq − logS1 =

∫ q

1

(
d

dt
logSt

)
dt =

∫ q

1

S′
t

St
dt = −

∫ q

1

f(t)dt

for all q ∈ [1, p∗], which yields the result.

Theorem 5.3 implies also

Sq = S1 exp

(
−
∫ p∗

1

f(t)dt+

∫ p∗

q

f(t)dt

)
= S1 exp

(
−
∫ p∗

1

f(t) dt

)
exp

(∫ p∗

q

f(t)dt

)
= Sp∗ exp

(∫ p∗

q

f(t)dt

)
.

As an immediate corollary of Theorem 5.3, we have the following:

Corollary 5.4. Let q ∈ [1, p∗) be a point of continuity of f in (5.2). Then d
dqSq

exists and

S′
q = −Sqf(q)

holds.

Proposition 5.5. Suppose Iq is constant on Eq for some q ∈ [1, p∗). Then f in

(5.2) is continuous on such q. Especially f is continuous on q where S′
q exists.

Proof. Take q ∈ [1, p∗) and a sequence qn → q as n → ∞. Since q 7→ Sq is

continuous, we see Sqn → Sq. Also by elliptic regularity and the fact that ||uqn ||L∞(Ω)

is uniformly bounded in n, we have a subsequence (again denoted by qn) and u ∈ Eq

such that uqn → u in C1(Ω) and ||u||Lq(∂Ω) = 1. Therefore, we have

f(qn) =
p

qn

∫
∂Ω

|uqn |qn log |uqn | dHN−1 → p

q

∫
∂Ω

|u|q log |u| dHN−1

=
p

q
Iq(u) =

p

q
Iq(uq) = f(q),

since Iq(u) = Iq(uq) for u, uq ∈ Eq.

Now, we obtain a characterization of the differentiability of the function q 7→ Sq.
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Theorem 5.6. The following 3 assertions on a point q ∈ [1, p∗) are equivalent:

(i) S′
q exists.

(ii) Iq is constant on Eq.

(iii) The function t ∈ [1, p∗] 7→ It(ut) is continuous at t = q.

Proof. (i) =⇒ (ii): Corollary 5.2.

(ii) =⇒ (iii): Since the continuity of f(t) at t = q is equivalent to the continuity

of t 7→ It(ut) is continuous at t = q, the proof follows from Proposition 5.5.

(iii) =⇒ (i): Corollary 5.4.

It is known that Sq is simple when q = p and Ep = {±up} for some up ∈ Ep

([13]). Thus we see S′
p = d

dqSq

∣∣
q=p

exists and t 7→ It(ut) is continuous at t = p.

Also if Ω is a ball with sufficiently small radius and p = 2, then Sq is simple for any

1 ≤ q < 2∗ = 2(N−1)
N−2 and the unique normalized extremizer for Sq is radial (see [6]

Theorem 2.1). Thus q 7→ Sq is differentiable on 1 ≤ q < 2∗ on small balls. Moreover

the abstract approach using a variational principle in [9] could be applied to obtain the

uniqueness of the positive solution of∆pu = |u|p−2u inΩ,

|∇u|p−2 ∂u
∂ν = λ|u|q−2u on ∂Ω,

where λ > 0, 1 < p < N and 1 ≤ q < p. If this is the case, then we see that the function

q 7→ Sq is differentiable for 1 ≤ q < p on any bounded domain. However, the simplicity

of Sq for p < q < p∗ on a general bounded smooth domain is unknown.
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