

TITLE:

Anomalously Large Formula Unit Volume and Its Effect on the Thermal Behavior of LiBF

AUTHOR(S):

Matsumoto, Kazuhiko; Hagiwara, Rika; Mazej, Zoran; Goreshnik, Evgeny; emva, Boris

CITATION:

Matsumoto, Kazuhiko ...[et al]. Anomalously Large Formula Unit Volume and Its Effect on the Thermal Behavior of LiBF. The Journal of Physical Chemistry B 2006, 110(5): 2138-2141

ISSUE DATE: 2006-02-01

URL: http://hdl.handle.net/2433/260596

RIGHT:

This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry B, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/jp0564795.; This is not the published version. Please cite only the published version.; この論文は出版社版でありません。引用の際には出版社版をご確認ご利用くだ さい。

Anomalously large formula unit volume and its effect on the thermal behavior of LiBF₄

Kazuhiko Matsumoto,[†] Rika Hagiwara, *^{,†}Zoran Mazej,[‡] Evgeny Goreshnik,[‡] Boris Žemva,[‡]

Department of Fundamental Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501,

Japan, and Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39,

SI-1000 Ljubljana, Slovenia

hagiwara@energy.kyoto-u.ac.jp

RECEIVED DATE

* To whom correspondence should be addressed. E-mail: hagiwara@energy.kyoto-u.ac.jp. Tel: +81-75-753-5822. Fax: +81-75-753-5906. [†] Department of Fundamental Energy Science, Kyoto University. [‡] Jožef Stefan Institute.

Abstract. Crystal structure of LiBF₄ has been determined by single-crystal X-ray diffraction. LiBF₄ crystallizes as a merohedral twin in the trigonal space group $P3_121$ with a = 4.892(5) Å, c = 11.002(12) Å, V = 228.0(4) Å³, Z = 3 at 200 K. The twin is generated by a twofold rotation about $[1 \ \overline{1} \ 0]$ direction. Lithium cation is coordinated by four fluorine atoms in a distorted tetrahedral manner, where two Li-F distances of 1.862(5) and 1.846(5) Å are observed. The formula unit volume (FUV = V/Z) of 77.9 Å³ for LiBF₄ at 298 K is considerably larger than 72.7 Å³ for NaBF₄ and 72.5 Å³ for AgBF₄ in spite of the smaller size of Li⁺, indicating a loose ionic packing of LiBF₄. Thermodynamic evaluation of the decomposition temperature for LiBF₄ is performed by using the empirical relationship between the standard entropy and FUV obtained. The result indicates that the large FUV of LiBF₄ contributes to its higher decomposition temperature than that of LiPF₆.

Introduction

Lithium salts are now widely used for supporting electrolytes of primary and secondary lithium batteries.¹ Crystal structures of lithium salts give some hints to understand their physical properties including the coordination environment around the lithium cation in the solution.² Description of the structures of some lithium hexafluorocomplex (Li*A*F₆) salts have been seen in the literatures since 1956 and they have been compared with a series of other alkali metal and silver hexafluorocomplex salts. All the Li*A*F₆-type (A = P, V, As, Nb, Mo, Ru, Rh, Sb, Ta, W, Re, Os, Ir, Pt and Au) salts exhibit rhombohedral symmetry and are isostructural with each other.³⁻⁷ The structure of LiClO₄ which crystallizes into an orthorhombic space group was determined in a recent report.⁸ Lithium salts of bulky anions such as CF₃SO₃⁻ and N(SO₂CF₃)₂⁻ are also structurally characterized from their powder diffraction data.^{9,10}

Although LiBF₄ is known as one of the common electrolytes for lithium batteries and the large number of reports are available on the structures of other MBF₄-type (M = univalent cation) salts,¹¹⁻¹⁵ all the attempts to determine the crystal structure of LiBF₄ have been unsuccessful.¹⁵⁻¹⁷

In this study, we report the first successful results of the crystal structure determination of LiBF₄. Thermal behavior of lithium salts has been investigated in relation to the drying process of the salts at elevated temperatures. According to previous reports, LiBF₄ is thermally more stable than $LiPF_6$.¹⁸⁻²² The effect of structural characteristics of LiBF₄ on its thermal decomposition temperature will be described using thermodynamic calculations to explain the higher thermal stability of LiBF₄ than LiPF₆.

Experimental Section

Apparatus and Reagents. Volatile materials (BF₃, aHF) were handled in an all PTFE vacuum line equipped with PTFE valves. Manipulation of the non-volatile materials was performed in a dry box (M. Braun). The residual water in the atmosphere within the dry-box never exceeded 1 ppm. The reactions were carried out in FEP (tetrafluoroethylene-hexafluoropropylene) reaction vessels (height 250–300 mm with inner diameter 15.5 mm and outer diameter 18.75 mm) equipped with PTFE valves and PTFE coated stirring bars. Prior to their use all reaction vessels were treated with elemental fluorine. Anhydrous HF (Fluka, Purum) was treated with K₂NiF₆ (Ozark Mahoning) for

several hours prior to use. LiF (Merck, 99.99 %) and BF₃ (Union Carbide Austria GmbH, 99.5%) were used as supplied. LiBF₄ was prepared by reaction of LiF with BF₃ in HF.

Preparation of Single Crystals of LiBF4. LiBF4 (approximately 150 mg) was placed into the wider tube of the T-shaped reaction vessel and dissolved in anhydrous HF. This solution was decanted into the narrower arm of the reaction vessel. The crystals were grown with a small temperature gradient of 10 K (running tap water-ambient temperature). Crystals were isolated from the mother liquid, immersed in perfluorinated oil (ABCR, FO5960) in the dry-box, selected under microscope, and transferred into the cold nitrogen stream of the diffractometer.

Crystal Structure Determination. Single-crystal data from LiBF₄ were collected on a Mercury CCD area detector coupled with a Rigaku AFC7S diffractometer using monochromatized MoK α -radiation. Crystals of LiBF₄ exhibit a strong affinity to twinning resulting in non-reproducible unit cell parameters for each crystal. After several quick tests, an appropriate single crystal with the minor amounts of extra-domains was selected. Obtained data were corrected for Lorentz, polarization and absorption effects, and processed using Rigaku CrystalClear software suite program package.²³ Using the SIR-92²⁴ program implemented in program package TeXsan²⁵ an appropriate model was found. Because of rather high R-value (~0.15) for complete model, the TwinRotMax utility from program package PLATON²⁶ was used for twinning detecting. The twinning matrix of [0-1 0 -1 0 0 0 0 -1], corresponding to a two-fold rotation around [1 $\overline{1}$ 0] direction, and estimated domains ratio of 0.63 : 0.37 were determined. Britton and Yeates tests, being performed using TWIN3.0 software,²⁷ have detected the same twinning law with approximate 0.6 : 0.4 domains ratio. Finally structure was refined by the SHELXL-97²⁸ program applying the twinning matrix. Refined ratio between two domains appears to be equal to 0.61 : 0.39.

Results and Discussion

The unit cell parameters and refinement statistics for LiBF₄ are given in Table 1. Selected bond distances and angles are listed in Table 2.

Structural Characteristics of LiBF₄. The structure of LiBF₄ was solved using the data at 200 K. LiBF₄ crystallizes in the trigonal space group $P3_121$. ORTEP diagram of the unit cell is shown in Fig. 1. The asymmetric unit contains one Li, one B and two F atoms. Li cations are located at positions on z = 0, 1/3 and 2/3 planes which are related to each other by the 3₁ screw symmetry. B atoms in BF₄ occupy positions on z = 1/6, 1/2 and 5/6 planes which are also related to each other by the 3_1 screw symmetry. BF_4^- exhibits an ideal tetrahedral shape (B-F = 1.387(3) and 1.391(3) Å; F-B-F = $109.2(3) - 109.74(14)^{\circ}$ without any disordering. Figure 2 shows the coordination environment around Li^+ in LiBF₄. Li^+ is coordinated by four fluorine atoms belonging to four different BF₄ anions, where two bond distances of 1.846(5) and 1.862(5) are observed. The shortest F...F distance, corresponding to fluorine atoms belonging to two different BF₄⁻ anions, is 2.939 Å. Table 3 gives the structural parameters of a series of MBF₄ salts (M = Na, Ag, K, Rb and Cs) which were reported in previous studies.²⁹⁻³² AgBF₄, KBF₄, RbBF₄ and CsBF₄ are isostructural and show orthorhombic symmetry (BaSO₄-type structure), whereas NaBF₄ exhibits a different orthorhombic structure (CaSO₄-type structure). The structure of LiBF₄ determined in the present study belongs to a trigonal system which has never been found in known MBF₄ salts. The coordination number around M⁺ in MBF₄ decreases with decrease in size of M⁺ in the order of ten for AgBF₄, KBF₄, RbBF₄ and CsBF₄, eight for NaBF₄ and four for LiBF₄. It should be noted that lithium ion is coordinated by six ClO₄ anions even in the case of LiClO₄ where ClO₄⁻ is a little larger tetrahedral ion.⁸ The unusually small coordination number of four around Li⁺ in LiBF₄ enables the formation of wide space surrounded by the frame forming an infinite network structure in the lattice (Figure 3).

Thermal Stability of LiBF₄. As mentioned in the introduction part, it is known that the decomposition temperature of LiBF₄ is higher than that of LiPF₆.¹⁸⁻²² Thermal decompositions of MBF₄ and MPF₆ proceed according to the following reactions (1) and (2), respectively:

$$MBF_4(s) \to MF(s) + BF_3(g) \tag{1}$$

$$MPF_6(s) \to MF(s) + PF_5(g) \tag{2}$$

Table 4 shows some thermodynamic parameters at 298 K related to the decomposition of LiBF₄ and LiPF₆. The standard entropy values, S° , of LiF, BF₃ and PF₅ are literarily available.³³ The decomposition enthalpy, $\Delta_{dec}H^{\circ}$, (reactions (1) and (2)) are also reported previously.^{34,35} The standard entropy values of LiBF₄ and LiPF₆ in Table 4 were calculated by using the following method. An empirical relationship between S° and FUV (formula unit volume = V / Z) for solid crystalline compounds was first proposed by Mallouk and Bartlett.^{36,37} Jenkins and Glasser added a theoretical meaning to this correlation and extended it to a wide variety of compounds.³⁸ For inorganic salts, the regression line takes the form of the equation (3):^{36,37}

$$S^{\circ} (J \text{ mol}^{-1} \text{ K}^{-1}) = 1.757 \text{ x } FUV(\text{\AA}^3)$$
 (3)

The decomposition entropy, $\Delta_{dec}S^{\circ}$, of MBF₄ and MPF₆ is introduced by the following equations (4) and (5):

$$\Delta_{\rm dec}S^{\circ} = S^{\circ}(\rm MF) + S^{\circ}(\rm BF_3) - S^{\circ}(\rm MBF_4)$$
⁽⁴⁾

$$\Delta_{\rm dec}S^{\circ} = S^{\circ}(\rm MF) + S^{\circ}(\rm PF_5) - S^{\circ}(\rm MPF_6)$$
⁽⁵⁾

Finally, the decomposition temperature, T_{dec_calc} , is estimated from the room temperature reaction entropy and enthalpy change by the equations (6), (7) and (8):³⁸

$$\Delta_{\rm dec}G^{\circ}_{298} = \Delta_{\rm dec}H^{\circ}_{298} - T_{\rm dec_calc}\Delta_{\rm dec}S^{\circ}_{298} \tag{6}$$

$$\Delta_{\rm dec}G^{\circ}_{T_\rm dec} = \Delta_{\rm dec}H^{\circ}_{T_\rm dec} - T_{\rm dec_calc}\Delta_{\rm dec}S^{\circ}_{T_\rm dec} = 0$$
⁽⁷⁾

$$T_{\rm dec_calc} = \Delta_{\rm dec} H^{\circ}_{\rm T_dec} / \Delta_{\rm dec} S^{\circ}_{\rm T_dec} \approx \Delta_{\rm dec} H^{\circ}_{298} / \Delta_{\rm dec} S^{\circ}_{298}$$

$$\tag{8}$$

The approximation used in the equation (8) is introduced by the fact that ΔH and ΔS are temperature-dependent quantities, but in general they do not change very much with temperature unless a phase transition is involved.

It should be noted that either LiBF₄ or LiPF₆ does not exhibit any phase transition up to the decomposition temperatures.^{14,15,35} The T_{dec_calc} of LiBF₄ in Table 4 is certainly higher than that of

LiPF₆, which agrees with the experimental data.^{18-22,35} Since the difference between $\Delta_{dec}H^{\circ}_{298}$ values of the two compounds is not large compared with the difference between $\Delta_{dec}S^{\circ}_{298}$ values, the contribution of the latter is expected to be dominant. When one compares thermal stabilities of MBF₄ and MPF₆, where M is common, MBF₄ seems to have an advantage of being thermally more stable than MPF₆ from the equations (4) and (5) because $S^{\circ}(BF_3)$ is smaller than $S^{\circ}(PF_5)$ and $S^{\circ}(MF)$ is common in both the cases. However, the difference in their lattice volumes, which influences the third terms of the right sides in the equations (4) and (5) through the equation (3), could be large enough to make the PF₆ salt more thermally stable. For the purpose of using this calculation, the unit cell parameters for LiBF₄ were also determined at 298 K (Table 1). LiBF₄ has the same structure at 298 K as that at 200 K with a little lattice expansion. The FUV of LiBF₄ calculated from the crystallographic data is 77.9 Å³ at 298 K which is unexpectedly much larger than those of NaBF₄ (72.7 Å³) and AgBF₄ (72.5 Å³) in spite of the smaller size of Li⁺ than those of Na⁺ and Ag⁺ (see Table 3 and 5).^{30,32,40} The unit cell parameters of LiPF₆ are shown in Table 3. The *FUV* for LiPF₆ (88.2 Å³) is 79.9 % of that for NaPF₆ (110.4 Å³), whereas the *FUV* for LiBF₄ is 104.5 % of that for NaBF₄. It may be easy to understand this point by comparing the *FUV* of LiBF₄ (77.9 Å³) with that of LiClO₄ (71.4 Å³) which is composed of Li⁺ and a slightly larger tetrahedral ClO₄⁻ anion (average Cl-O bond length: 1.44 Å).⁸ Because Li-F bond distances observed in LiBF₄ are not longer than expected from their ionic radii (Table 2 and 5), one can say that the LiBF₄ lattice contains more empty space than those of the other tetrafluoroborates (see Fig. 3). The loose LiBF₄ structure, i.e. large FUV value, results in the small $\Delta_{dec}S^{\circ}$ through the equations (3) and (4), leading the higher decomposition temperature of LiBF₄ than that of LiPF₆.

Conclusion

Crystal structure of LiBF₄ determined by single-crystal X-ray diffraction has been reported. LiBF₄ crystallizes in the trigonal unit cell, where lithium cation is coordinated by four fluorine atoms in a distorted tetrahedral manner. Formula unit volume (FUV = V / Z) of LiBF₄ at 298 K (77.9 Å³) is considerably larger than those for NaBF₄ (72.7 Å³) and AgBF₄ (72.5 Å³) in spite of the smaller ionic radius of Li⁺. It has been elucidated using an empirical relationship between the standard entropy

and FUV that the loose ionic packing of the $LiBF_4$ structure contributes to the large standard entropy of $LiBF_4$ and the higher decomposition temperature of $LiBF_4$ than that of $LiPF_6$.

Acknowledgment. The authors would like to thank Prof. Takaaki Sonoda of Kyushu University for his suggestion on this study.

Supporting Information Available: Crystallographic data (CIF) is available free of charge via

the Internet at http://pubs.acs.org.

Table 1. Crystal data and refinement results for LiBF4

	LiBF ₄	
Empirical formula	$Li_1B_1F_4$	$Li_1B_1F_4$ ^c
Formula weight	93.75	93.75
Crystal system	Trigonal	Trigonal
Space group	<i>P</i> 3 ₁ 21	<i>P</i> 3 ₁ 21
<i>a</i> / Å	4.892(5)	4.9458(8)
<i>c</i> / Å	11.002(12)	11.035(2)
V / Å ³	228.0(4)	233.76(12)
Z	3	3
<i>T</i> / K	200	298
d_c / g cm ⁻³	2.048	1.998
μ / mm ⁻¹	0.283	-
$R_1 (I > 2\sigma(I))^a$	0.0384	-
$wR_2(I \geq 2\sigma(I))^b$	0.0882	-

 $\overline{a R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|}.$

^b $wR_2 = [\Sigma w[|F_o|^2 - |F_c|^2]^2 / \Sigma w |F_o|^2]^{1/2}$

^{*c*} Only the unit cell parameters were determined.

Table 2. Selected bond distances (Å) and angles (degree) for LiBF4

B1–F1	1.387(3)
B1-F2	1.391(3)
Li1-F1	1.862(5)
Li1-F2	1.846(5)
F1-B1-F1	109.7(4)
F1-B1-F2	109.21(12)
F1-B1-F2	109.74(14)
F2-B1- F2	109.2(3)
F2-Li1-F2	117.1(5)
F2-Li1-F1	107.67(10)
F2-Li1-F1	104.87(11)
F1-Li1-F1	115.1(4)

	NaBF ₄ ^b	AgBF4 ^c	KBF4 ^d	RbBF4 ^e	CsBF4 ^e	LiPF ₆ ^f
Space group	Стст	Pnma	Pnma	Pnma	Pnma	<i>R</i> 3
<i>a</i> / Å	6.2619	5.312	5.4800	5.63	5.88	5.077
<i>b</i> / Å	6.7916	6.752	7.0299	7.29	7.64	-
<i>c</i> / Å	6.8368	8.089	8.6588	9.10	9.67	-
lpha / °	-	-	-	-	-	57.98
$V/\text{\AA}^3$	290.8	290.1	333.6	373.5	434.4	88.2
Z	4	4	4	4	4	1
$FUV/ \mathrm{\AA}^{3a}$	72.7	72.5	83.4	93.4	108.6	88.2
T / \circ	r.t.	-73	r.t.	r.t.	r.t.	r.t.

Table 3. Structural parameters for MBF_4 (M = Na, Ag, K, Rb and Cs) and LiPF₆

 $\overline{{}^{a} FUV} = V/Z$. ^b Ref. 30. ^c Ref. 32. ^d Ref. 31. ^e Ref. 29. ^fRef. 3.

S°298			$\Delta_{ m dec}S^{\circ}_{298}$ a	$\Delta_{\rm dec} H^{\circ}_{298}{}^a$	$T_{\text{dec}_\text{calc}} a, b$	$T_{\text{dec}_\text{obs}} a$
/ J mol ⁻¹ ł	K-1		/ J mol ⁻¹ K ⁻¹	/ kJ mol ⁻¹	/K	/K
LiBF ₄ (c)	LiF(c)	BF ₃ (g)				
136.9 ^c	35.7 ^d	254.4 ^d	153.2	89.5 ^e	584	>573 ^{g, h} , 583 ⁱ
LiPF ₆ (c)	LiF(c)	PF ₅ (g)				
155.0 ^c	35.7 ^d	300.8 ^{<i>d</i>}	181.5	84.3 ^f	464	467 ^{<i>f</i>} , 500 ^{<i>i</i>}

Table 4. Some thermodynamic parameters related to the decompositions of LiBF₄ and LiPF₆

 ${}^{a}\Delta_{dec}S^{\circ}{}_{298}$ and $\Delta_{dec}H^{\circ}{}_{298}$: Entropy and enthalpy values for decomposition at 298 K. T_{dec_calc} and T_{dec_obs} : Calculated and observed thermal decomposition temperatures. Thermal decompositions of LiBF₄ and LiPF₆ occur according to the equations:

 $LiBF_4(c) \rightarrow LiF(c) + BF_3(g), LiPF_6(c) \rightarrow LiF(c) + PF_5(g)$

^b $T_{\text{dec}_\text{calc}} = \Delta_{\text{dec}} H^{\circ}_{298} / \Delta_{\text{dec}} S^{\circ}_{298}$

^c These values are obtained according to the reported numerical relationship:^{36,37}

 S°_{298} (J mol⁻¹ K⁻¹) = 1.757 x *FUV*(Å³)

The FUV of LiBF₄ at 298 K is 77.92 Å³ (See Table 1.)

^d Ref. 33. ^e Ref. 34. ^f Ref. 35. ^g Ref. 18. ^h Ref. 19. ⁱ Ref. 20.

Table 5. Ionic radii of M^+ ions⁴⁰

M^+	r_{+} (C.N. = 4) ^{<i>a</i>}	r_{+} (C.N. = 6) ^{<i>a</i>}
Li ⁺	0.59	0.76
Na ⁺	0.99	1.02
Ag^+	1.00	1.15
K^+	1.37	1.38
Rb^+	-	1.52
Cs^+	-	1.67

^{*a*} C.N. means coordination number.

Figure captions

Fig. 1 ORTEP diagram of the LiBF₄ unit cell: (a) the view from the *z*-axis and (b) the view perpendicular to the *z*-axis. Displacement ellipsoids are shown at 50 % probability level.

Fig. 2 Coordination environment around Li⁺ in the LiBF₄ structure.

Fig. 3 The network structure in the LiBF₄ lattice containing wide space. The large and small open spheres denote B and F atom, respectively. The octant-shaded sphere denotes Li atom.

References

- For recent reviews: (a) Advances in Lithium-Ion Batteries, van Schalkwijk, W. A.; Scrosati,
 B., Eds., Kluwer Academic/Plenum Publishers: New York. 2002. (b) Xu, K. Chem. Rev.
 2004, 104, 4303. (c) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.
- (2) For examples: (a) Soetens, J.-C.; Millot, C.; Maigret, B. J. Phys. Chem. 1998, 102, 1055. (b) Arnaud, R.; Benrabah, D.; Sanchez, J-Y. J. Phys. Chem. 1996, 100, 10882. (c) Wang, Z.; Gao, W.; Huang, X.; Mo, Y.; Chen, L. J. Raman Spectrosc. 2001, 32, 900. (d) Johansson, P.; Jacobsson, P. J. Phys. Chem. A 2001, 105, 8504. (e) Hayamizu, K.; Aihara, Y.; Nakagawa, H.; Nukuda, T.; Price, W. S. J. Phys. Chem. B 2004, 108, 19527. (f) Borodin, O.; Smith, G. D.; Douglas, R. J. Phys. Chem. B 2003, 107, 6824. (g) Tsunekawa, H.; Narumi, A.; Sano, M.; Hiwara, A.; Fujita, M.; Yokoyama, H. J. Phys. Chem. B 2003, 107 10962. (h) Andreev, Y. G.; Seneviratne, V.; Khan, M.; Henderson, W. A.; Frech, R. E.; Bruce, P. G.; Chem. Mater. 2005, 17, 767. (i) Burba, C. M.; Frech, R. J. Phys. Chem. B 2005, 109, 15161. (k) Popov, S. E.; Nikiforov, A. E.; Bushkova, O. V.; Zhukovsky, V. M. J. Phys. Chem. A 2004, 108, 10280.
- (3) Kemmitt, R. D. W.; Russell, D. R.; Sharp, D. W. A. J. Chem. Soc. 1963, 4408.
- (4) Cox, B. J. Chem. Soc. 1956, 876.
- (5) Wells, A. F. Structural Inorganic Chemistry, 5th ed., Clarendon Press, Oxford, 1984, p. 456.
- (6) Burns, J. H. Acta Crystallogr. 1962, 15, 1098.
- (7) Graudejus, O.; Wilkinson, A. P.; Chacón, L. C.; Bartlett, N. Inorg. Chem. 2000, 39, 2794.
- (8) Henderson, W. A.; Brooks, N. R. Inorg. Chem. 2003, 42, 4522.
- (9) Nowinski, J. L.; Lightfoot, P.; Bruce, P. G. J. Mater. Chem. 1994, 4, 1579.

- (10) Tremayne, M.; Lightfoot, P.; Mehta, M. A.; Bruce, P. G.; Harris, K. D. M.; Shankland, K.; Gilmore, C. J.; Bricogne, G. J. Solid State Chem. 1992, 100, 191.
- (11) Ding, M. S. J. Chem. Eng. Data 2004, 49, 1102.
- (12) Garvrichev, K. S. Inorg. Mater. 2003, 39, S89.
- (13) Reynhardt, E. S.; Lourens, J. A. J. J. Chem. Phys. 1984, 80, 6240.
- (14) Dworkin, A. S. J. Chem. Eng. Data 1972, 17, 284.
- (15) Cantor, S.; McDermott, D. P.; Gilpatrick, L. O. J. Chem. Phys. 1970, 52, 4600.
- (16) Plakhotnik, V. N.; Kovtun, Y. V.; Tul'chinskii, B. V.; Russ. J. Inorg. Chem. 1986, 31, 2687.
- (17) Bogdanov, V. S.; Kondrashev, Y. D. Russ. J. Inorg. Chem. 1987, 32, 1657.
- (18) Schäfer, H.; Rebeneck, H. Z. Anorg. Allg. Chem. 1987, 545, 224.
- (19) Shapiro, I.; Weiss, H. G. J. Am. Chem. Soc. 1953, 75, 1753.
- (20) Kanamura, K. In *Fluorinated Materials for Energy Conversion devices*, Nakajima, T.; Groult, H., Eds., Elsevier, 2005, p. 253.
- (21) Momota, K. Batt. Technol. 1996, 8, 108.
- (22) Sasaki, Y.; Nanbu, N. In *Materials Chemistry in Lithium Batteries*, Kumagai, N.; Komaba,
 S.; Wakihara, M., Eds., Research Signpost, Trivandrum, India, 2002, p. 415.
- (23) CrystalClear: Rigaku Corporation, Woodlands, TX, 1999.
- (24) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Crystallogr. 1993, 26, 343.
- (25) Molecular Structure Corporation. (1997-1999). *teXsan* for Windows. Single Crystal Structure Analysis Software, Version 1.06.
- (26) Spek, A. L. J. Appl. Cryst. 2003, 36, 7.

- (27) Kahlenberg V.; Messner, T., *TWIN3.0.* a program for testing twinning by merohedry. *J. Appl. Cryst.* 2001, *34*, 405.
- (28) Sheldrick, G. M., SHELXL97. Program for crystal structure refinement. University of Goettingen, Germany, 1997.
- (29) Clark, M. J. R.; Lynton, H. Can J. Chem. 1969, 47, 2579.
- (30) Brunton, G. Acta Crystallogr., Sect. B 1968, 24, 1703.
- (31) Brunton, G. Acta Crystallogr., Sect. B 1969, 25, 2161.
- (32) Goreshnik, E.; Mazej, Z. Solid State Sci. 2005, 7, 1225.
- (33) Chase Jr., M. W. NIST-JANAF Thermochemical Tables, 4th Ed., J. Phys. Chem. Ref. Data, Monograph 9, 1998.
- (34) Gross, P.; Hayman, C.; Joel, H. A. Trans. Faraday Soc. 1968, 64, 317.
- (35) Gavritchev, K. S.; Sharpataya, G. A.; Smagin, A. A.; Malyi, E. N.; Matyukha, V. A. J. Therm. Anal. Cal. 2003, 73, 71.
- (36) Bartlett, N.; Yeh, S.; Kourtakis, K.; Mallouk, T. E. J. Fluorine Chem. 1984, 26, 97.
- (37) Shen, C. S.; Hagiwara, R., Mallouk, T. E. Bartlett, N. In *Inorganic Fluorine Chemistry Toward the 21st Century*, American Chemical Society, Washington, DC, 1994, p. 26.
- (38) Jenkins, H. D. B.; Glasser, L. Inorg. Chem. 2003, 42, 8702.
- (39) Shriver, D. F.; Atkins, P. W.; Langford, C. H. *Inorganic Chemistry*, Oxford Univ. Press, 2nd ed., 1994.
- (40) Shannon, R. D. Acta Crystallogr., Sect. A 1976, 32, 751.

(a)

(b)

Fig. 1 ORTEP diagram of the LiBF₄ unit cell: (a) the view from the *z*-axis and (b) the view perpendicular to the *z*-axis. Displacement ellipsoids are shown at 50 % probability level.

Fig. 2 Coordination environment around Li^+ in the LiBF₄ structure.

Fig. 3 The network structure in the LiBF₄ lattice. The large and small open spheres denote B and F atom, respectively. The octant-shaded sphere denotes Li atom.