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Oxygen vacancy ordering in perovskite-type transition-metal oxides plays an important role in the emergence
of exotic electronic properties, as typified by superconducting cuprates. In this study, we predict the stability
of oxygen-deficient perovskite structures in ACuO3−x (A = Ca, Sr, Ba, Sc, Y, La) by density functional
theory calculation. We introduce a combination of the cluster expansion method, Gaussian process, and
Bayesian optimization to find stable oxygen-deficient structures among a considerable number of candidates.
Our calculations not only reproduce the reported structures but suggest the presence of several unknown
oxygen-deficient perovskite structures, some of which are stabilized at high pressures. This work demonstrates
the great applicability of the present computational procedure for the elucidation of the structural stability of
strongly correlated oxides with a large tolerance for oxygen deficiency.

DOI: 10.1103/PhysRevB.101.134101

I. INTRODUCTION

Perovskite-type transition-metal oxides, namely, ABO3,
have been extensively studied as strongly correlated systems
showing a large variety of electronic properties, typified by
high-Tc cuprates and ferromagnetic manganites. One of the
major methods of controlling the physical properties of ABO3

is the chemical substitution for A-site cations, which domi-
nates the bandwidth and valence of B-site cations [1–3]. Their
potential to provide novel electronic properties can be further
enhanced by introducing oxygen deficiency, which plays an
important role not only in the valence of B-site cations but also
in the topology of the B-O lattice. For instance, the typical su-
perconducting cuprates YBa2Cu3O7−d [4] and Sr1−xLaxCuO2

[5] are well-ordered oxygen-deficient perovskites with CuO2

planes. In addition, SrCuO2.5 [6] and LaCuO3−x, with x =
0.4 and 0.5 [7], have been reported as potential super-
conducting cuprates with a quasi-one-dimensional Cu-O
motif.

Considering the recent development of computational
structure prediction methods and computational resources,
it is worth performing a comprehensive search for oxygen-
deficient perovskite-type structures and related ones to dis-
cover novel cuprates that have been overlooked so far.
Recently, computational studies on perovskite-type transition-
metal oxides, ABO3−x, have been reported, but their structural
variations are quite limited [8]. In this study, we systemati-
cally investigate the stability of oxygen-deficient perovskite
structures in ACuO3−x (0 � x � 1) with divalent and trivalent
cations (A = Ca, Sr, Ba, Sc, Y, La) by density functional
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theory (DFT) calculation. This study is based on a large set
of oxygen-vacancy configurations derived from the cubic per-
ovskite lattice to search for a stable structure with a large unit
cell volume. Enumeration of the nonequivalent configurations
is shown in Sec. II.

A common way to find stable structures in such a con-
figurational system is the cluster expansion (CE) method
[9–11]. The CE method has successfully been used to describe
alloy thermodynamics and to efficiently find stable alloy
configurations among a considerable number of candidates.
Although the CE method has also been successful at pre-
dicting atom-deficient nonstoichiometric structures [12–18],
a simple use of the CE method fails to accurately represent
the configurational energy in oxygen-deficient ACuO3−x with
large geometry relaxation from the ideal cubic perovskite
lattice, as shown in Sec. III. Therefore, we introduce Bayesian
optimization [19], which was recently applied to the explo-
ration of materials and structure prediction [20–28]. As shown
in Sec. IV, Bayesian optimization with the Gaussian process
(GP) [29] and structural representations of the CE method
is very useful for predicting oxygen-deficient structures. Al-
though a nonlinear neural network CE approach that was
recently proposed can also estimate the configurational energy
efficiently [30], a probabilistic approach such as GP plays an
essential role in predicting oxygen-deficient structures using
Bayesian optimization.

II. NONEQUIVALENT OXYGEN-DEFICIENT
PEROVSKITE STRUCTURES

A pool of oxygen-deficient structures with the cubic per-
ovskite lattice is first generated using a derivative structure
algorithm proposed by Hart and Forcade [31,32] implemented
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FIG. 1. A complete set of nonequivalent oxygen-deficient struc-
tures of cubic perovskite for supercell sizes of n = 1 and n = 2 in
ACuO3−x (0 � x � 1).

in the CLUPAN code [33,34]. The derivative structure algorithm
consists of two steps of enumeration. In the first step, a
complete set of nonequivalent supercell shapes of the cubic
perovskite is enumerated for a given supercell size n. The
supercell shape is identified by the three-dimensional square
Hermite normal form (HNF) H , with the determinant n =
|H|, modifying the axis matrix of the conventional unit cell
A as

A′ = AH. (1)

Therefore, the enumeration of nonequivalent supercell shapes
corresponds to that of nonequivalent HNFs. For instance, a
complete set of nonequivalent HNFs for up to n = 8 is listed
in Appendix A (Table III). In the second step, nonequivalent
oxygen-deficient structures are enumerated for each HNF
using the finitely presented group of the supercell lattice
constructed by the HNF. Figure 1 illustrates a complete set of
nonequivalent oxygen-deficient structures with supercell sizes
of n = 1 and n = 2. Moreover, Table I lists the number of
nonequivalent oxygen-deficient structures in ACuO3−x (0 �
x � 1). The number of nonequivalent structures increases
exponentially as the supercell size increases.

TABLE I. Number of nonequivalent oxygen-deficient structures
of cubic perovskite in ACuO3−x (0 � x � 1). Symbols Nsites, Nconfig,
and Nconfig,acc denote the number of oxygen lattice sites, the number
of nonequivalent configurations for a given n, and the cumula-
tive number of nonequivalent configurations with up to a given n,
respectively.

n Nsites Nconfig Nconfig,acc

1 3 1 1
2 6 11 12
3 9 42 54
4 12 444 498
5 15 1245 1743
6 18 16 343 18 086
7 21 49 403 67 489
8 24 706 622 774 111

III. CLUSTER EXPANSION METHOD

A. Formalism

In general, it is impossible to estimate the configurational
energy for a complete set of nonequivalent structures by DFT
calculation owing to the considerable number of nonequiv-
alent structures. Therefore, it has been a practical way to
employ a machine learning model of the configurational en-
ergy estimated from a set of DFT calculations for sampled
structures. The CE method [9–11] has been a widely used
approach and gives a reliable model of configurational energy;
hence, it has enabled us to accurately predict the ground-state
structures and finite-temperature thermodynamics in many
multicomponent systems.

In a binary system, the configurational energy E is de-
scribed in a linear form using the pseudospin configurational
variable σi for the respective lattice site i as

E = V0 +
∑

i

Viσi +
∑
i, j

Vi jσiσ j +
∑
i, j,k

Vi jkσiσ jσk + · · ·

=
∑

α

Vα · ϕα, (2)

where ϕα denotes the correlation function of cluster α. Coef-
ficients Vα are called the effective cluster interactions (ECIs),
which are estimated from a set of DFT calculations for sam-
pled configurations using general linear regression methods
such as conventional linear regression and the least absolute
shrinkage and selection operator (LASSO) [35,36].

B. Application to oxygen-deficient perovskite

We prepared a training data set that contains the formation
energies of all nonequivalent structures with up to n = 4
estimated by DFT calculation performed using the plane-
wave-basis projector augmented-wave method [37] within the
Perdew-Burke-Ernzerhof generalized gradient approximation
exchange-correlation functional [38], as implemented in the
VASP code [39–41]. The cutoff energy was set to 400 eV.
The total energies converged to less than 10−3 meV/supercell.
The atomic positions and lattice constants of the nonequiva-
lent structure were optimized until the residual forces were
less than 10−2 eV/Å to consider the relaxation effect of
the ideal cubic perovskite lattice. We assumed the ferromag-
netic configuration for copper atoms in the DFT calculation
for simplicity, although ACuO3−x is expected to show an
antiferromagnetic configuration as shown experimentally in
Ca1−xSrxCuO2 [42]. We adopted the +U approach to improve
the description of the ground state of correlated systems [43].
The value of U for copper was set to 4 eV, taken from the
literature [44].

Figure 2 shows the formation energies of nonequivalent
oxygen-deficient structures with up to n = 4 in ACuO3−x

systems. They are measured from the energy of the cubic per-
ovskite ACuO3 and the lowest energy among the structures in
ACuO2. Since the DFT calculation fails to finish successfully
in some structures, we exclude the structures from the data
set. The sizes of the resultant training data sets are 485, 473,
480, 457, 468, and 480 for BaCuO3−x, CaCuO3−x, SrCuO3−x,
ScCuO3−x, YCuO3−x, and LaCuO3−x, respectively.

134101-2



PREDICTION OF PEROVSKITE-RELATED STRUCTURES … PHYSICAL REVIEW B 101, 134101 (2020)

A = Ca A = Sr A = Ba

A = Sc A = AY  = La

Composition x in ACuO

F
or

m
at

io
n 

en
er

gy
 (

eV
/A

C
uO

)

-1

 0

 1

 2

-1

 0

 1

 2

-1

 0

 1

 2

-2

-1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

-2

-1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1
-1

 0

 1

 2

 0  0.2  0.4  0.6  0.8  1

FIG. 2. Formation energies of nonequivalent oxygen-deficient
perovskite structures with up to n = 4. The green line shows the
convex hull of formation energy.

Then, we construct various CE models for each system
using the training data set. We employ spin values of +1 and
−1 for the oxygen atom and vacancy, respectively, which are
required to define the correlation function. Table II shows the
fitting errors of the four CE models, which indicate that all of
the CE models have significant errors. They are much more
significant than the order of the difference of the formation
energies between structures. Figure 3 also shows the distri-
bution of the formation energies of nonequivalent oxygen-
deficient structures estimated using a CE model for SrCuO3−x.
The formation energies deviate from those estimated by
DFT calculations. Therefore, it is impossible to find the true

TABLE II. Fitting errors for four CE models (in units of
eV/ACuO3−x). The fitting error normalized by the absolute value
of the lowest formation energy is also shown in parentheses. Nc

denotes the number of regression coefficients included in a CE
model. Models 1, 2, 3, and 4 are composed of 11 pairs, 19 pairs,
11 pairs and 23 multiplets of up to four bodies, and 11 pairs and 39
multiplets of up to six bodies, respectively. All of them also contain
the empty and point clusters corresponding to the bias term and the
composition x, respectively.

Model 1 Model 2 Model 3 Model 4

CaCuO3−x 0.171 0.167 0.157 0.152
(0.572) (0.559) (0.525) (0.508)

SrCuO3−x 0.135 0.133 0.127 0.125
(0.480) (0.473) (0.451) (0.445)

BaCuO3−x 0.170 0.169 0.159 0.155
(0.491) (0.488) (0.459) (0.448)

ScCuO3−x 0.669 0.657 0.614 0.606
(0.429) (0.421) (0.393) (0.388)

YCuO3−x 0.399 0.386 0.355 0.350
(0.687) (0.664) (0.611) (0.602)

LaCuO3−x 0.283 0.274 0.255 0.250
(1.033) (1.000) (0.932) (0.912)

Nc 13 21 36 52
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FIG. 3. Distribution of energies of nonequivalent oxygen-
deficient structures with up to n = 4 predicted using a CE model with
36 clusters up to four bodies (model 3 in Table II) in SrCuO3−x . The
Pearson correlation coefficient between the DFT and CE energies is
R = 0.90.

ground states using only the energy predicted using the CE
model.

The significant error in the CE model arises from
(1) the fact that different oxidation states for copper are not
distinguished in the CE model and (2) the fact that the CE
model describes the energy of the oxygen-deficient structure
obtained by the local geometry optimization using the correla-
tion functions defined for the ideal lattice of cubic perovskite.
Although the CE models should be improved by distinguish-
ing different oxidation states for copper (e.g., Ref. [18]),
we adopt another straightforward approach to search for the
stable oxygen-deficient perovskite structures.

IV. BAYESIAN OPTIMIZATION

A. Gaussian process regression

To find stable oxygen-deficient perovskite structures, we
employ Bayesian optimization [19] based on the probabilistic
GP [29] specified by its mean function and covariance func-
tion instead of a linear CE model. Representing a structure by
vector d, a radial basis function covariance or kernel between
structures d i and d j for noise-free observation is given by

k(d i, d j ) = σ 2
f exp

(
−|d i − d j |2

2l2

)
, (3)

where l and σ 2
f are tuning parameters controlling the length

scales for structure d and the observation, respectively. Here,
we represent oxygen-deficient structures by the correlation
functions of point clusters and 11 pair clusters used in the
CE models shown in Fig. 6(c) below because many-body
clusters improve the CE models slightly, as can be seen in
the fitting errors for the data set of structures with up to
n = 4. As described above, the discrepancy between the DFT
calculation and the CE model is too large to predict the stable
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oxygen-deficient perovskite structures using the CE model
itself. On the other hand, the CE models have a strong correla-
tion with the DFT calculation, as shown in Fig. 3. This implies
that a set of correlation functions is useful for representing a
structure in GP-based Bayesian optimization.

Describing the formation energies of structures in the
training data set as y, the mean function μ at structure d∗ and
the variance function σ 2

∗ are given as

μ(d∗) = k�
∗ K−1y (4)

and

σ 2
∗ = k(d∗, d∗) − k�

∗ K−1k∗, (5)

respectively, where k∗ = [k(d∗, d1), . . . , k(d∗, dN )]� is the
vector of kernel functions between structure d∗ and N struc-
tures in the training data set. A symmetric kernel matrix K is
composed of kernel functions for all pair arrangements of the
training data, expressed as

K =

⎛
⎜⎜⎜⎜⎝

k(d1, d1) k(d1, d2) · · · k(d1, dN )

k(d2, d1) k(d2, d2) · · · k(d2, dN )

...
...

. . .
...

k(dN , d1) k(dN , d2) · · · k(dN , dN )

⎞
⎟⎟⎟⎟⎠. (6)

Note that the variance of a probabilistic model has also been
used for the structure selection to efficiently determine the
ECIs in the framework of the CE [33,45,46].

B. Procedure of Bayesian optimization

Our procedure of Bayesian optimization is as follows.
First, a GP model is developed from an initial set of formation
energies. The initial set is composed of the formation energies
of all nonequivalent structures with up to n = 4 and 100
nonequivalent structures that are randomly selected from the
pool of 773 613 nonequivalent structures with up to n = 8.
The model is then iteratively updated by (i) sampling the
structure for which the formation energy is expected to be
the lowest among the remaining candidate structures for each
composition and (ii) updating the GP model using the training
data set updated by the structures observed in step (i). These
steps are repeated until the convex hull of the formation en-
ergy converges. We exclude some structures from the data set,
i.e., structures for which DFT calculations fail to converge.

There are several well-known procedures to sample the
structure that is expected to show the lowest formation energy
in step (i). Here, we adopt a simple procedure of the proba-
bility of improvement (PI) strategy [19]. In the minimization
problem of formation energy, the PI involves sampling the
structure at which the probability that the formation energy is
lower than ybest is maximized, where ybest denotes the current
best formation energy among the training data. This means
that structure d i′ is selected by maximizing the probability as

d i′ := argmax
d∗

�

(
ybest − μ(d∗)

σ∗

)
, (7)

where �[y − μ(d∗)/σ∗] denotes the cumulative distribution
function of the normal distribution N (μ, σ 2). Since the struc-
ture with the maximum probability shows the highest Z score,
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FIG. 4. Convergence behavior of the convex hull of formation
energy in Bayesian optimization for ACuO3−x systems. The vertical
axis indicates the area of the convex hull below the line indicating
zero formation energy, schematically illustrated as the shaded area at
the top of the right panel. The area is normalized by the area of the
converged convex hull.

defined as

Z (d∗) = ybest − μ(d∗)

σ∗
, (8)

we select the structure with the highest Z score in practice.

C. Oxygen-deficient perovskite structures at 0 GPa

Figure 4 shows the convergence behavior of the convex
hull of formation energy in Bayesian optimization. We mea-
sure the convergence degree of the convex hull using the area
of the convex hull below the line indicating zero formation
energy. As can be seen in Fig. 4, the convex hull converges
well in all systems. The numbers of DFT calculations required
for the convergence are 1076, 1085, 1032, 701, 945, and 886
in CaCuO3−x, SrCuO3−x, BaCuO3−x, ScCuO3−x, YCuO3−x,
and LaCuO3−x, respectively.

Figure 5 shows the formation energies of the oxygen-
deficient structures with up to n = 8 selected by Bayesian
optimization, including the structures in the initial training
data set of Bayesian optimization. The dashed line in Fig. 5
indicates the convex hull of formation energy representing
the set of oxygen-deficient perovskite structures that are
more stable than the other oxygen-deficient perovskite struc-
tures. We have found three, five, eight, five, four, and three
oxygen-deficient perovskite structures on the convex hull in
CaCuO3−x, SrCuO3−x, BaCuO3−x, ScCuO3−x, YCuO3−x, and
LaCuO3−x, respectively. Four of the oxygen-deficient per-
ovskite structures on the convex hull, i.e., CaCuO2, SrCuO2,
SrCuO2.5, and LaCuO2.5, are identical to the experimental
structures in the literature [6,7,47,48]. They are denoted by
p-1 and p-2 in Fig. 5.

D. Stability relative to experimental structures

Although the convex hull of oxygen-deficient perovskite
structures has many vertices or oxygen-deficient perovskite
structures, experimental structures that are not classified into
the perovskite family have also been known in ACuO3−x
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Their crystal structures are also shown. Moreover, the experimental structures on the convex hulls are indicated as e-1 (Sc2Cu2O5 type), e-2
(delafossite FeCuO2 type), and e-3 (SrCuO2 type).

systems. In the six ACuO3−x systems, seven structure pro-
totypes with no partial occupancy of Sc2Cu2O5, Y2Cu2O5,
Nd2Cu2O5, SrCuO2, BaCuO2, delafossite FeCuO2, and
CaCuO2 types are known in addition to the oxygen-deficient
perovskite Ca2Mn2O5 type (p-1) and LaNiO2 type (p-2).
Therefore, we estimate the formation energy for the seven
prototypes in each system by DFT calculation.

Figure 5 shows the formation energy distribution of the
experimental prototype structures. The convex hull obtained
from the oxygen-deficient perovskite structures and the ex-
perimental prototype structures is also shown in Fig. 5. In all
compositions of ACuO2.5, the Sc2Cu2O5-type structure (e-1)
is stable, although the Y2Cu2O5-type structure is competitive
with the Sc2Cu2O5-type structure in LaCuO2.5. Also, the
SrCuO2 type (e-3) is stable in SrCuO2 and BaCuO2, whereas
the delafossite FeCuO2 type (e-2) is stable in ScCuO2,
YCuO2, and LaCuO2. The stable structure of CaCuO2 is of the
LaNiO2 type (p-2), which is consistent with the experimental
structure. On the other hand, most of the oxygen-deficient
perovskite structures are not vertices of the convex hull, which
indicates that they are not thermodynamically stable at 0 GPa.

E. Clustering of oxygen-deficient perovskite structures

To understand the common features of the oxygen-
deficient perovskite structures on the convex hull, we carry

out a machine learning clustering of the oxygen-deficient
perovskite structures. Here, we introduce the Warren-Cowley
short-range order (WC-SRO) parameter to represent the
oxygen-deficient perovskite structures. The WC-SRO param-
eters can be derived from the correlation functions used in
both the CE method and Bayesian optimization. In ACuO3−x,
the WC-SRO parameter of pair α for structure d is defined as

SROα (d ) = ϕα (d ) − q2

1 − q2
, (9)

where ϕα (d ) denotes the correlation function of pair α and
q = (3 − 2x)/3.

We employ a hierarchical clustering approach using Pear-
son correlation coefficients between the oxygen-deficient
perovskite structures. For the distance metric to define the
similarity between the structures, we adopt a complete-
linkage clustering, which uses the maximum correlation-
based distances between all observations of the two sets.
Figure 6(a) shows Pearson correlation coefficients between
the oxygen-deficient perovskite structures on the convex hull,
represented by WC-SRO parameters of the 11 pairs shown
in Fig. 6(b). As can be seen in Fig. 6(a), the hierarchical
clustering classifies the oxygen-deficient perovskite structures
into four large groups.

Figure 6(c) shows the WC-SRO parameters averaged over
the oxygen-deficient perovskite structures belonging to each
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FIG. 6. (a) Pearson correlation coefficients between oxygen-deficient perovskite structures on the convex hull shown by the solid circles
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by a hierarchical clustering. A bar shows the WC-SRO parameter averaged over the oxygen-deficient perovskite structures belonging to each
group. The cluster indexes correspond to those of pairs shown in (b).

group. Group 1 shows positive large values of the WC-SRO
parameters for the second, tenth, and eleventh pairs; hence,
most of those pairs are composed of the same species in
the structures of group 1. This indicates that the structures
in group 1 consist mainly of planar fourfold copper units.
An example is SrCuO2 with the p-2 structure illustrated in
Fig. 5, where all copper atoms are planar fourfold units.
Also, group 4 is characterized by a positive value of the
WC-SRO parameter of the nearest pair along the 〈111〉 di-
rection (the eighth pair). This means that 〈111〉 nearest pairs
of vacancies are components of the structures in group 4.
An example is SrCuO2.5 with the p-1 structure illustrated
in Fig. 5.

Note that we evaluate WC-SRO parameters of the oxygen-
deficient perovskite structures with the ideal cubic perovskite
lattice. Some of the structures optimized by the DFT calcula-
tion significantly differ from their ideal structures.

F. Stability at 10 GPa

As shown in Sec. IV C, most of the oxygen-deficient per-
ovskite structures are not stable at 0 GPa. On the other hand,
oxygen-deficient perovskite compounds such as CaCuO2,
SrCuO2, and SrCuO2.5 have been synthesized under high-
pressure conditions [6,47,48]. Therefore, we investigate the

pressure dependence of the phase stability of the oxygen-
deficient perovskite structures. We restrict the DFT calcula-
tion to the experimental prototype structures and the oxygen-
deficient perovskite structures satisfying the condition that
their energies measured from the convex hull of the oxygen-
deficient perovskite structures are less than 0.1 eV/ACuO3−x.

Figure 7(a) shows the formation enthalpy distribution of
the experimental structures and the oxygen-deficient per-
ovskite structures at 10 GPa. Contrary to the phase stability
at 0 GPa, all of the experimental oxygen-deficient perovskite
structures, namely, CaCuO2, SrCuO2, SrCuO2.5, LaCuO2.5,
and LaCuO2.6, are stable at 10 GPa. In addition, the convex
hull indicates that some of the oxygen-deficient perovskite
structures are stable at 10 GPa in SrCuO3−x, BaCuO3−x,
and LaCuO3−x. Figure 7(b) shows the crystal structures of
the oxygen-deficient perovskites with the composition x �
0.4 on or almost on the convex hull, where only LaCuO2.6

(p-7) is experimentally reported [7]. The crystal structures
with the other compositions are also shown in Appendix
B. In CaCuO3−x, ScCuO3−x, and YCuO3−x, the structures
on the convex hull at 10 GPa are almost the same as
those at 0 GPa. However, some oxygen-deficient perovskite
structures such as CaCuO2.5 and YCuO2.571 are close to
the convex hull. They are expected to be stable at higher
pressures.
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FIG. 7. (a) Formation enthalpy distribution at 10 GPa of the oxygen-deficient perovskite structures satisfying the condition that their
energies measured from the convex hull of the oxygen-deficient perovskite structures are less than 0.1 eV/ACuO3−x . The dashed black line and
solid circles show the convex hull of the oxygen-deficient perovskite structures and its vertices, respectively. The purple closed triangles show
the formation enthalpy values of experimental prototype structures. The green line shows the convex hull obtained from the combination of
the oxygen-deficient perovskite structures and the experimental prototype structures. (b) Crystal structures of the oxygen-deficient perovskites
with composition x � 0.4 on the convex hull or almost on the convex hull. Only LaCuO2.6 (p-7) is experimentally reported [7]. It has a crystal
structure type identical to that of SrMnO2.6 [49].
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As can be seen in Fig. 7, the oxygen configuration in
the predicted structure of SrCuO2.375 (p-3) is similar to that
in the experimental structure of La0.5Ca0.5CuO2.5 [50]. The
difference between them is the Cu-O polyhedron located at
the center of the unit cell; that is, they are planar fourfold
and octahedral sixfold structures, respectively. The predicted
structure of SrCuO2.25 (p-4) is also similar to the struc-
tures of SrCuO2.375 (p-3) and La0.5Ca0.5CuO2.5. At the same
time, since La0.5Ca0.5CuO2.25 [50] and La0.25Sr0.75CuO2.25

[51] are reported as existing compounds, it seems to be
natural to compare SrCuO2.25 (p-4) with them. However,
their crystal structures remain unclarified. The results in
Ref. [51] reveal only that La0.25Sr0.75CuO2.25 has a space
group of P4212 or P4̄21m. Nevertheless, they are sub-
groups of the space group P4/mbm of SrCuO2.25 (p-4)
with index 2. Hence, the oxygen configuration in SrCuO2.25

(p-4) may be identical to those in La0.5Ca0.5CuO2.25 and
La0.25Sr0.75CuO2.25.

In addition, we compare the oxygen-deficient structures of
BaCuO2.333 with that of YBa2Cu3O7−d (YBCO) because the
present structure data set contains the oxygen configuration
of YBCO. As shown in Appendix B (Fig. 9), although the
YBCO-like structure cannot be found as an oxygen-deficient
structure with the lowest enthalpy at x = 2/3 for BaCuO3−x,
the formation enthalpy of the YBCO-like structure is only
52 meV/BaCuO3−x larger than that of the lowest formation
enthalpy. This implies that the formation of the YBCO-type
structure consisting of the alternate stacking of Cu-O chains
and Cu-O double layers is dominated not by the cation order-
ing but by the oxygen vacancy ordering.

G. Pressure dependence of stability

Finally, we demonstrate the pressure dependence of
the phase stability between the oxygen-deficient perovskite
structures and the experimental structures. For each struc-
ture, the pressure-enthalpy curve is obtained from the
energy-volume curve fitted to the Vinet equation of state
[52] using the DFT energies of ten structures constructed
by expansions and contractions of the equilibrium struc-
ture. Figure 8 shows the pressure-enthalpy curves of the
oxygen-deficient perovskite structure (p-1) and Sc2Cu2O5-
type structure (e-1) in SrCuO2.5. As can be seen in Fig. 8,
the oxygen-deficient perovskite structure becomes stable
as the pressure increases. It is found that the transition
pressure from the Sc2Cu2O5-type structure to the oxygen-
deficient perovskite p-1 structure is 5.6 GPa in SrCuO2.5.
Similarly, LaCuO2.5 involves the phase transition from the
Sc2Cu2O5-type structure to the Nd2Cu2O5-type structure at
1.9 GPa and the phase transition from the Nd2Cu2O5-type
structure to the oxygen-deficient perovskite p-1 structure
at 4.4 GPa.

V. CONCLUSION

The stability of oxygen-deficient perovskite structures in
ACuO3−x (A = Ca, Sr, Ba, Sc, Y, La) has been investigated
systematically using a combination of the DFT calculation,

 0

 1

 2

 3

 4

 0  2  4  6  8  10

A=Sr

p-1
e-1

E
nt

ha
lp

y 
(e

V
/S

rC
uO

2.
5)

Pressure (GPa)

FIG. 8. Pressure-enthalpy curves of the oxygen-deficient per-
ovskite structure (p-1) and Sc2Cu2O5-type structure (e-1) in
SrCuO2.5.

the CE method, GP, and Bayesian optimization. We have suc-
cessfully reproduced the reported oxygen-deficient perovskite
structures and found a series of stable oxygen-deficient struc-
tures that are not reported in the literature. Our results in-
dicate that high-pressure synthesis is advantageous for ob-
taining the oxygen-deficient perovskite structures. By adopt-
ing the machine learning clustering for the obtained struc-
tures, we found that they can be classified into four groups
and one of the largest groups shows a common structural
feature characterized by the square planar coordination for
copper.

Regarding the computational aspects of structure predic-
tion, the CE method fails to derive an accurate model for
the formation energy of the oxygen-deficient structure owing
to its substantial geometry relaxation from the ideal cubic
perovskite lattice. On the other hand, the combination of
the CE method, GP model, and Bayesian optimization is
very useful for predicting the oxygen-deficient perovskite
structures. This procedure is also applicable in a straight-
forward manner to a wide range of atom-deficient struc-
tures involving extensive geometry relaxation from their ideal
lattice.
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APPENDIX A: HERMITE NORMAL FORMS

Table III shows a complete set of nonequivalent HNFs with
up to n = 8 for the cubic perovskite lattice.
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TABLE III. Complete set of nonequivalent HNFs for the cubic perovskite lattice.

Determinant
of HNF Nonequivalent HNF

n = 1

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠

n = 2

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 1 2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 1 2

⎞
⎟⎟⎟⎠

n = 3

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 3

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 1 3

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 1 3

⎞
⎟⎟⎟⎠

n = 4

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 1 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 2 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 1 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 2 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

2 2 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 2 0

0 0 2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 2 0

1 0 2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

1 2 0

1 0 2

⎞
⎟⎟⎟⎠

n = 5

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 5

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 1 5

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 2 5

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 1 5

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 2 5

⎞
⎟⎟⎟⎠

n = 6

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 6

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 1 6

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 2 6

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 3 6

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 1 6

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 2 6

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 3 6

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

2 2 6

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

2 3 6

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

3 3 6

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 2 0

0 0 3

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 2 0

1 0 3

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

1 2 0

0 0 3

⎞
⎟⎟⎟⎠

n = 7

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 7

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 1 7

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 2 7

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 1 7

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 2 7

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 3 7

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

2 3 7

⎞
⎟⎟⎟⎠

n = 8

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 1 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 2 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 3 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 4 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 1 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 2 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 3 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

1 4 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

2 2 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

2 3 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

2 4 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

3 4 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

4 4 8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 2 0

0 0 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 2 0

0 2 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 2 0

1 0 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 2 0

1 2 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 2 0

2 0 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 2 0

2 2 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

1 2 0

0 0 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

1 2 0

1 0 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

1 2 0

2 0 4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

2 0 0

0 2 0

0 0 2

⎞
⎟⎟⎟⎠
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A=Ca, Sr, x=1/8(a) A=Sr, x=1/4 A=Ba, x=1/8 A=Ba, x=3/8A=Ba, x=1/4

A=Sc, x=1/7 A=Y, La, x=1/6 A=La, x=1/4

A=La, x=1/3

A O

(b) A=Sr, x=3/5 A=Sr, x=2/3 A=Sr, x=5/7

A=La, x=3/7A=Y, x=3/7A=Sc, x=1/8

A=Ba, x=4/7 A=Ba, x=2/3A=Ba, x=5/8A=Ba, x=3/5

FIG. 9. Crystal structures of the oxygen-deficient perovskites (a) on the convex hull and (b) almost on the convex hull at 10 GPa except
those shown in Figs. 5 and 7. The dark blue, sky blue, light blue, and pink polyhedrons show sixfold, fivefold, planer fourfold, and tetrahedral
fourfold Cu-O polyhedrons.
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APPENDIX B: OXYGEN-DEFICIENT PEROVSKITE STRUCTURES ON CONVEX HULL

Figure 9 shows the crystal structures of oxygen-deficient perovskites on or almost on the convex hull at 10 GPa.
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