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ABSTRACT

Much of what we know about temperature-dependent sex determination

(TSD) in reptiles stems from constant temperature incubation studies in the

laboratory. In recent years, as TSD studies moved into the field it became evident

that TSD was much more complex than previously thought. The present study

attempted to reveal the complexity of TSD, as it relates to other features of the

species' biology and physical characteristics tractable only in the field, such as

fluctuations in incubation temperature and reproductive life history. To this end I

studied the ecology of the turtle Carettochelys insculpta, a TSD species inhabiting the

wet-dry tropics of northern Australia from 1996 to 1998. I tested hypotheses

associated with movements, activity, behaviour, reproduction, nest site choice, nest

temperatures, embryonic survival, embryonic aestivation, hatch-ling sex ratios, and

emergence in the species. Each of these was also considered in the context of the

influence of the wet-dry tropics.

Compared to other turtles inhabiting lotic habitats, C. insculpta occupied

considerably larger home ranges, covering up to 10 km of river. Of previously

published factors influencing home range size, low productivity of the (micro) habitat

may best explain the extensive home ranges in C. insculpta. Patchiness and low

nutrient value of the chief food (aquatic vegetation) of C. insculpta may force turtles

to cover large expanses of river to acquire sufficient energy for growth and

reproduction. Females were more active, moved farther, and occupied larger home

ranges than males. Home ranges of females comprised 1-4 activity centres, many of

which were associated with thermal springs. I suggest that females may exhibit

increased activity and movements relative to males because of sexual inequality in

parental investment, where food is particularly limiting (e.g., in species with biennial
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reproduction). Biennial reproduction in the population allowed the examination of the

influence of reproductive condition on home range size, movements, and activity.

Reproductive condition did not influence home range or activity, but gravid turtles

moved father between successive sightings than non-gravid females. Individual data

corroborate these findings, with females moving farther between successive sightings

while gravid compared to while spent. Contrary to previous reports, turtles did not

appear to move into estuarine areas or lowland flood plains during the wet season, but

moved into the riparian forest and possibly into wetlands adjacent to the main channel

in the vicinity of their dry season home ranges.

During the study I documented the turtles' use of small, localized thermal

springs discharging from the river bottom. Dataloggers attached to the carapace to

monitor ambient water temperatures recorded the frequency and duration of thermal

spring use by individuals. Turtles used the thermal springs frequently during the

winter (4-6 months) when river temperatures were lower than that of the thermal

springs (8 = 29 ± 0.52° C). Turtles often utilized thermal springs for several

consecutive hours, leaving the springs only to surface for air. Thermal springs may be

derived from ground water (which maintains a temperature equivalent to the annual

mean air temperature), rather than from a specific geothermal heat source. Nine of 19

radio-telemetered adult females were seen to use thermal springs, of which seven

were gravid and two non-gravid. Thus, gravid turtles may seek thermal springs more

than non-gravid turtles. Frequency, duration, and timing of usage collectively suggest

active thermoregulation as the primary function of thermal spring use. Utilization of

thermal springs probably permits turtles to be more active in cooler months, which

may enhance growth rates and accumulation of energy for reproduction. Onset of

nesting along river stretches with thermal springs preceded nesting in a stretch not
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known to have thermal springs by 24 days. Thus, I speculate that by warming

themselves on thermal springs in the months prior to nesting, turtles may have

accelerated follicular development and nested earlier.

Female C. insculpta matured at ca. 6 kg body mass (38.0 cm carapace length,

30.5 cm plastron length). Turtles produced egg sizes and clutch sizes similar to that

of other turtle species of similar size. Turtles reproduced every second year, but

produced two clutches in each breeding year, ca. 40 days apart. Thus, it appeared that

females were energy limited, possibly due to the low available energy content of the

dry season diet (aquatic vegetation). Life history theory predicts that if some costly

behaviour is associated with reproduction, skipping years could reduce that cost and

allow savings to be directed into future reproduction. The present study revealed no

obvious accessory behaviour in the population. Within years, clutch mass did not

differ between early (first) and late (second) clutches. However, earlier clutches

tended to have more and smaller eggs per clutch but than later clutches, a new finding

for turtles that has been demonstrated in lizards and other animals. Because the study

spanned both years with 'big' and 'small' wet seasons, I was able to examine how the

magnitude of the wet season influenced reproductive characteristics. Following big

wet seasons turtles produced larger, heavier, and more eggs per clutch than they did

after small wet seasons. Relationships among body size, egg size, and clutch size

were evident after two big wet seasons but not apparent after two small wet seasons.

Collectively, annual variation in reproductive characteristics and current life history

theory suggest that a big wet season is a plentiful time for the turtles.

I investigated beach selection of nesting pig-nosed turtles (Carettochelys

insculpta) along a 63 km stretch of river in 1997 and 1998. I used three classes of

beaches to examine beach choice: beaches with nests, beaches with only crawls, and
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beaches without nests or crawls. Across these beach types I compared aspect, solar

exposure, temperature, substrate moisture, height, water depth at approach, and the

height of cohesive sand. I located 82 nesting beaches with 221 nests, and identified

171 potential nesting beaches based on previously published criteria. Beaches with

nests had a greater substrate moisture content and corresponding higher cohesive sand

line (hereafter CSL) than beaches without nests. Beaches with nests also had a higher

CSL than beaches with only crawls. Apparently, turtles could not excavate a nest

chamber above the CSL due to loose substrate consistency causing sand to fall in on

itself. Turtles could only nest at low elevations below the CSL on beaches with lower

substrate moisture. Turtles apparently avoided nesting on these beaches due to the

higher probability of nest flooding, as corroborated by a concurrent study. Beach

temperatures increased with a seasonal increase in air temperatures, and were

influenced by aspect and total angle of solar exposure. Temperatures did not differ

among beaches with nests, beaches with only crawls, and beaches without crawls or

nests. Therefore, there was no indication that turtles were manipulating offspring sex

through choice of nesting beach. However, turtles may be manipulating sex by

nesting in areas with particular thermal characteristics within beaches.

Two related aspects of hatchling emergence were studied. Using emergence

phenology data, nest temperatures, historical weather data, and a developmental

model, I tested the hypothesis that delayed hatching occurred in C. insculpta, and that

such a delay would allow hatchlings to time their emergence to match the onset of the

wet season. Hatchling C. insculpta emerged, on average, 17 days later than dates

predicted from a developmental model. Combined with observations of hatchlings

remaining in eggs until emergence, these results confirmed delayed hatching in

nature. This delay was synchronized with init ial river rises associated with the onset
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of wet season rains, and is consistent with published criteria for embryonic

aestivation. On a diel scale, I generated predictions of two potentially competing

models for nocturnal emergence in hatchling turtles, based on the knowledge that air

temperatures decrease with season during the emergence period. A test of those

predictions for C. insculpta produced ambiguous results. However, further analysis

indicated that C. insculpta, and probably other nocturnally emerging turtle species,

respond to a decline in diel temperature rather than an absolute temperature. The

former would ensure nocturnal emergence, while the latter is experienced during the

day as well as at night. Nocturnal emergence may be associated with nesting in open

microhabitats.

The 'decision' of when and where to nest can influence both offspring survival

and hatchling sex ratios in animals with temperature-dependent sex determination

(TSD). Knowledge of how these maternal attributes influence the incubation

environment is an important first step in hypothesizing why TSD evolved in a

particular species. 1 studied the influence of nest site choice and timing of nesting on

embryonic survival and hatchling sex ratios. Predation and flooding were the major

sources of embryonic mortality. Embryonic survival was influenced by both lay date

and nest site choice: In one year when nesting began later, nests laid later and at lower

elevations were destroyed by early wet season river rises. In other years early nesting

precluded flood mortality. However, turtles did not nest at the highest available

elevations. I hypothesized that turtles were unable to nest at higher elevations

because the sand was dry and not cohesive. A field experiment demonstrated that

turtles were constrained to nest at lower elevations where they could construct a nest

chamber. A mathematical model predicting hatchling sex from fluctuating

temperatures was applied to temperature data from 102 natural nests. Results
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confirmed a type la pattern of TSD, whereby males are produced from cooler

temperatures and females from warmer temperatures. The principal determinant of

hatchling sex was lay date. Clutches laid earlier in the season produced mainly males,

while later clutches yielded mostly females, due to seasonal ramping of air and sand

temperatures. However, nest site choice also exerted an influence on hatchling sex.

Female-producing clutches were deposited at higher elevations than male-producing

clutches. The onset of nesting was not influenced by water temperatures, but may

have been related to the magnitude of the previous wet season(s). Turtles nested

earlier after two 'big' wet seasons and later following two 'small' wet seasons. This

pattern indicates that the wet season is a plentiful time for the turtles. Adaptive

'differential fitness' models for the evolution of TSD have recently been reviewed and

clarified. The differential fitness model that best fits C. insculpta is the 'time-

matching' model, whereby one sex benefits more than the other from early hatching.

Male C. insculpta hatched 2-3 weeks earlier then females, on average. Benefit to

early hatching males and, therefore, the ultimate selective mechanism (e.g., growth,

time to mature) is unknown. Obtaining such data will likely prove difficult in such a

long-lived species.

A recent adaptive explanation for the evolution and maintenance of temperature-

dependent sex determination (TSD) in reptiles rests upon the assumption that mothers

can predict or manipulate offspring sex. I postulated that four physiological and

behavioural criteria must be met in order for this assumption to be valid: (1) a strong

correlation must exist between substrate temperatures during nest site choice and nest

temperatures during the period of development when sex is determined in the egg

(thermosensitive period = TSP). (2) Assuming that (1) is possible, mothers would need

to be capable of correcting for temporal factors obscuring the predictable thermal
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characteristics of nest sites. This could be accomplished in two ways. By contracting

nesting times mothers could assess the relative temperatures of alternate nest sites with

some accuracy. A protracted distribution of nesting times could greatly reduce a

mother's ability to distinguish between, for example, a cooler nest site at a warmer

time and a warmer nest site at a cooler time. Alternatively, mothers would need to be

able to incorporate temporal changes in nest site temperatures. (3) Sufficient variation

in thermal profiles among nest sites, relative to the breadth of temperatures producing

both sexes (pivotal temperatures), would be necessary. For example, if most nests

produced both sexes, then depth of the eggs would be the deciding factor determining

sex, leaving little opportunity for nest site choice to produce one sex or the other. (4)

Mothers would need access to nest sites spanning a range of thermal profiles in order

to produce either offspring sex. To this end, home range size relative to the number

and location of nesting beaches should be important. I tested these four predictions in

Carettochelys insculpta, a beach nesting turtle with TSD, using three years of field

data on nest site choice, nesting times, thermal characteristics of nests, hatchling sex

ratios, and movements of nesting turtles. A strong positive correlation existed between

assessable substrate temperatures at nest site choice and mean daily TSP temperatures

in all three years. However, the proportion of explained variation was highly variable

among years, and low in 1998. Accordingly, the proportion of nests in which substrate

temperatures at nest site choice predicted offspring sex correctly was low in 1998 (48-

62 %, depending on treatment of the data). Nesting times were normally distributed,

and combined with diel changes in nest site temperatures greatly reduce a turtle's

ability to distinguish between sites that would produce different sexes. Considerable

among-clutch variation in thermal profiles to produce variable sex ratios existed,

agreeing with other studies on turtles. Radiotelemetry indicated that home ranges



21

encompassed several nesting beaches with differing thermal profiles, indicating scope

for producing the desired sex. However, the seasonal increase in air temperatures

resulted in an overriding effect of mostly males being produced in early (first) clutches

and mainly females being produced in late (second) clutches. Collectively, the results

suggest that C. insculpta mothers would find it difficult to predict, and therefore,

manipulate hatchling sex, supporting the conventional notion that TSD mothers have

little or no control over offspring sex.
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