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In any general discussion of structure, relating to an isolated part of the Universe, we

are faced with an initial difficulty in having no a priori criteria as to the amount of

i structure it is reasonable to expect. We do not, therefore, always know, until we have

had a great deal of empirical experience, whether a given example of structure is very

• extraordinary, or a mere trivial expression of something which we may learn to

expect all the time.

G.A. Hutchinson, 1953
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Abstract

Three approaches were employed to examine the effects of elevated sediment trace

metal concentrations on estuarine/marine macrobenthic invertebrate assemblages. The

initial study examined macroinvertebrate communities along a known polymetallic

gradient, Lake Macquarie, NSW (gradient study). The second study experimentally

tested if sediments sourced from different locations within Lake Macquarie

differentially influenced the recolonisation of benthic invertebrates. The third study

investigated the different recolonisation patterns of benthic invertebrates into

sediments spiked with increasing concentrations of sediment-bound cadmium.

In the Lake Macquarie gradient study, four locations (Cockle Bay, Warner's Bay,

Kooroora Bay and Nord's Wharf) were sampled in winter 2000 and summer 2003

using a hierarchical design (location > site > plot). On both sampling occasions, the

sediments showed strong gradients in lead, cadmium and zinc concentrations

emanating from the Cockle Bay industrialised region in the lake's north, with

concentrations being significantly lower in the most southern and less urbanised

location (Nord's Wharf). In general, concentrations of lead, cadmium and zinc in the

sediments increased among locations in the following order: Nord's Wharf >

Kooroora Bay > Warner's Bay > Cockle Bay. AVS/SEM analyses indicated that in

some sites in Cockle Bay, and to a lesser extent Warner's Bay, SEM concentrations

exceeded their molar equivalence of AVS, indicating the potential for trace metals to

be labile within the porewaters. Granulometry also changed along the gradient, with a
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higher proportion of silt/clay occurring in the locations with high metal

concentrations. Conversely, the percentage of total organic carbon was higher in the

less contaminated locations.

In winter 2000, changes in benthic communities along the gradient supported the a

priori hypotheses, with diversity and richness being greater in locations with lower

concentrations of metals. Polychaetes were most numerous in Cockle Bay and

Warner's Bay, whilst bivalves and gastropods were more abundant in Nord's Wharf

and Kooroora Bay. Crustaceans were more numerous in Nord's Wharf; with all other

locations having similar, lower, abundances. Ordination maps of the assemblages

provided relatively clear separation of the assemblages among locations, with non-

parametric multivariate analysis of variance (NPMANOVA) and subsequent pair-wise

comparisons finding significant differences among the assemblages from all locations.

SIMPER analyses found the highest level of dissimilarity was between the Nord's

Wharf and Cockle Bay assemblages - primarily attributable to differences in the

relative contributions of isopods; tellenid bivalves; and the polychaete families

Spionidae, Opheliidae and Nephytidae. Weighted Spearman rank correlations (BIO-

ENV) identified cadmium (Pw =0.74) as the strongest environmental (single or

combination) variable to correlate with biotic assemblages.

Benthic patterns along the gradient were less defined in summer 2003 due to a

dramatic reduction in the abundance and diversity of fauna in Nord's Wharf. This

decline was possibly attributable to a sustained reduction in salinity caused by a

prolonged rainfall event. With the exception of Nord's Wharf, trends in the

community indices and abundances of key taxa among the other locations were

similar to those reported in winter 2000. Multivariate analyses discriminated the

benthic assemblages from the four locations, with the findings from the NPMANOVA

pair-wise comparisons indicating that the assemblages from all four locations were
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significantly different. SIMPER analyses showed the highest level of dissimilarity

was between Nord's Wharf and Warner's Bay, with these differences being primarily

attributable to their relative abundances of amphipods and polychaetes from the

families Spionidae, Cirratulidae, Opheliidae and Capitellidae. BIOENV found that the

combination of the sedimentary concentrations of cadmium and iron provided the best

correlation (Pw =0.73) with biotic patterns, with similar correlations occurring with

the addition of lead and its covariate, zinc (Pw =0.72).

The combined findings from the gradient study established a strong correlation

between trace metal concentrations within the sediments and suite of univariate and

multivariate measurements. The low abundance and diversity of fauna in Nord's

Wharf in the summer of 2003 highlighted the dynamic changes which can occur in the

distributions of macrobenthic invertebrates. Although the study indicated that there

was a strong relationship between trace metal concentrations and benthic community

structure, the study was correlative, and requires subsequent experimental testing to

confirm the causality of the observed relationships.

The second component of the research was a translocation experiment using benthic

recolonisation as an end-point. The experiment was performed to identify if the

sediments, and not location, were influencing the composition of benthic assemblages

in Lake Macquarie. Sediments were collected from three locations (Cockle Bay,

Warner's Bay and Nord's Wharf), defaunated, and transplanted in three new locations

along the south-east edge of the lake. At each location, 10 containers of each

treatment were randomly placed in the sediment and allowed to recolonise for 22

weeks. Upon retrieval, the benthic communities were sampled and enumerated in

conjunction with a variety of chemical and sedimentary measurements. Ten replicate

invertebrate samples were also collected in the sediments adjacent to the experiment

(ambient samples) at the completion of the experiment. Due to human interference,



the containers from only two locations were analysed.

Upon retrieval, pH and redox profiles of the sediments were similar to those expected

in natural sediments. In general, concentrations of metals were low in the porewaters;

however, iron precipitation on the porewater collection devices may have artificially

increased the diffusion of metals, increasing concentrations near the sediment-water

interface. Concentrations of SEM exceeded their AVS equivalence in some samples

taken from the Cockle Bay and Warner's Bay treatments.

Two-way ANOVAs found significant interactions between location and sediment

treatments in diversity, evenness and the number of polychaetes, as well as significant

differences in the number of capitellids and crustaceans among locations. Post-hoc

comparisons of means found the Nord's Wharf sediment contained a higher mean

number of individuals than the other treatments, including the ambient samples.

nMDS ordination plots for both locations provided poor graphical discrimination of

the assemblages among treatments; however, NPMANOVA detected significant

location and treatment interactions. In both locations, pair-wise comparisons indicated

that the assemblages within the Nord's Wharf treatments were significantly different

to the Cockle Bay, Warner's Bay and ambient assemblages. No significant differences

were detected between the Cockle Bay and Warner's Bay assemblages at either

location. SIMPER analyses found the highest level of dissimilarity occurred between

the ambient assemblages in Location 2 and the Nord's Wharf treatment, primarily due

to the relative difference in the abundances of Capitellidae, Spionidae, Oweniidae,

Nereididae and isopods among the assemblages.

The findings from the translocation experiment suggest that the sediments are

influencing the recolonisation of benthos. However, because differences were not

detected between the Cockle Bay and Warner's Bay treatments, the approach used in
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the study shows potential as an in situ technique which could be used to assess the

potential ecological risks of sediments from specific locations. Excluding cost and

time considerations, the technique's primary disadvantage is the lack of a true control.

As a result, the technique can only identify if the sediments are modifying benthic

recolonisation, and not causality.

The final component of the research experimentally tested if elevated concentrations

of sediment-bound cadmium affected benthic invertebrate recolonisation. Sediments

from the south coast of New South Wales (Durras Lake) were defaunated, and spiked

with cadmium under anaerobic conditions to obtain three targeted cadmium

concentrations: control (<0.1 Cd /zg/g), Low-Cd (15 Cd /ig/g) and High-Cd (150 Cd

/ig/g). The physio-chemical properties of the waters and porewater concentrations of

cadmium were monitored over a 28-day equilibration period, with declines in pH

mediated with the addition of NaOH(aq). At the end of the equilibration period,

porewater concentrations of cadmium were low in the Low-Cd and High-Cd

treatments (maximum <1.5 /xg/L in High-Cd), and below the detection limit in the

control. Cadmium was not detected in the control sediments, with concentrations in

the Cd-Low and Cd-High sediments exceeding their targeted concentrations, with

final mean concentrations of 17 /ig/g and 183 /ig/g, respectively.

The experimental design was similar to that employed in the translocation experiment,

with 10 containers from each treatment transplanted into the sediments at three

locations within Lake Macquarie. After 20 weeks, the containers were collected,

along with benthic invertebrate samples from the ambient sediments. Data was not

used from Location C due to extensive sediment deposition on the transplanted

treatments. Significant declines occurred in the concentrations of cadmium in both the

Low-Cd and High-Cd sediments, with the greatest loss occurring in the surficial

sediments. The loss of cadmium was probably due to the differential loss of the fine
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fraction through physical means (hydrodynamic) rather than fluxing, as it assumed

that the cadmium was primarily sediment-bound and relatively insoluble under anoxic

conditions. Mean porewater concentrations of cadmium were below the detection

limit in the control treatments; < 1 /zg/L in the Low-Cd treatment, and generally <

2/xg/L in the High-Cd, with the exception of some samples in Location B (maximum

5.6 /zg/L). Concentrations of ammonia were low in the porewaters from the surficial

sediments, with concentrations being significantly higher, and potentially toxic, in the

anoxic porewaters (7 cm depth).

In comparison to the previous recolonisation experiment, the number of individuals

which recolonised the cadmium-spiked treatments was low, and significantly lower

than the mean number of individuals sampled in the ambient sediments. No

significant differences were detected among the treatments or locations (and their

interactions) in diversity (H'), richness (d) or evenness (J). The number of polychaetes

and molluscs significantly differed among the treatments, with post-hoc analyses

indicating these differences were not among the cadmium-spike treatments, but were

due to a greater mean abundance of these taxa in the ambient sediments. A significant

interaction between treatment and location was detected in the mean abundance of

crustaceans, with the ambient sediments having significantly lower mean abundances

in both Location A and B. Ordination plots of the experiments in Location A and B

provided poor graphical discrimination among the spiked treatments, although the

ambient assemblages appear to be separated from the cadmium-spiked assemblages.

NPMANOVA detected a significant interaction between treatments and locations, as

well as among treatments. In both Location A and B, pair-wise analyses found the

assemblages in the ambient sediments to be significantly different to the assemblages

in all three cadmium treatments, with no differences being detected among the latter.

SIMPER analyses found the highest levels of dissimilarity occurred between the

spike-treatments and the ambient sediments, with these differences being primarily
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due to the relatively higher abundance of decapods in the spiked treatments, and

capitellids in the ambient sediments.

The cadmium-spiking component of the experiment clearly illustrated that artificially

increasing the trace metal concentrations of metals in estuarine sediments is a

complex process which needs to be performed in a methodological manner in order to

obtain homogenous treatments with low porewater concentrations, and minimal

artefacts. Furthermore, the results confirmed that the equilibration time for sediments

can be extensive (several weeks), even in the case of organically rich sediments. The

timing of the experiment (commenced late summer, February, 2003) appears to the

major factor for the relatively low recolonisation rates, with the experiment missing

the main larval recolonisation period between spring and early summer. Even in the

highest treatment, elevated concentrations of cadmium did not appear to affect benthic

recolonisation. This finding is supported by other experimental studies which suggest

that concentrations of a single isolated metal must considerably exceed current

guideline values (or contain high porewater concentrations) in order to elicit a

biological effect. Nevertheless, as trace metals generally co-occur with other

contaminants - with the response of multiple contaminants being possibly additive or

synergistic - a conservative guideline value may be suitable in the interim as a

precautionary measure.

The findings of this thesis suggest that elevated concentrations of trace metal mixtures

in estuarine sediments can affect the structure and composition of benthic

communities; however, identifying causality is difficult. Although there has been an

increase in the use of manipulative field experiments as a means of reducing the

confounding influence of covariables found in field studies, this approach also has

limitations, e.g. spatial and temporal scale issues, container effects, cost and

biogeochemical changes to the sediments. Measuring stress at a community level is a
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fundamental component of estuarine risk assessment programs; and in isolation this

approach can produce subjective and confounded findings. In order to accurately

assess the risks associated with trace metal contaminated sediments, an integrated

approach (e.g. weight of evidence) is required, one which uses multiple lines of

evidence sourced from various chemical, environmental biological measurements.
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