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ABSTRACT 
 

The main purpose of this research is to find an effective way to personalise information 

searching on the Internet using middleware search agents, namely, Personalised Search 

Agents (PSA). The PSA acts between users and search engines, and applies new and existing 

techniques to mine and exploit relevant and personalised information for users.  

 

Much research has already been done in developing personalising filters, as a middleware 

technique which can act between user and search engines to deliver more personalised results. 

These personalising filters, apply one or more of the popular techniques for search result 

personalisation, such as the category concept, learning from user actions and using meta-

search engines. By developing the PSA, these techniques have been investigated and 

incorporated to create an effective middleware agent for web search personalisation. 

 

In this thesis, a conceptual model for the Personalised Search Agent is developed, 

implemented by developing a prototype and benchmarked the prototype against existing web 

search practices. System development methodology which has flexible and iterative 

procedures that switch between conceptual design and prototype development was adopted as 

the research methodology. 

 

In the conceptual model of the PSA, a multi-layer client server architecture is used by 

applying generalisation-specialisation features. The client and the server are structurally the 

same, but differ in the level of generalisation and interface. The client handles personalising 

information regarding one user whereas the server effectively combines the personalising 

information of all the clients (i.e. its users) to generate a global profile. Both client and server 

apply the category concept where user selected URLs are mapped against categories. The 

PSA learns the user relevant URLs both by requesting explicit feedback and by implicitly 

capturing user actions (for instance the active time spent by the user on a URL). The PSA also 

employs a keyword-generating algorithm, and tries different combinations of words in a user 

search string by effectively combining them with the relevant category values.  

 

The core functionalities of the conceptual model for the PSA, were implemented in a 

prototype, used to test the ideas in the real word. The result was benchmarked with the results 

from existing search engines to determine the efficiency of the PSA over conventional 
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searching. A comparison of the test results revealed that the PSA is more effective and 

efficient in finding relevant and personalised results for individual users and possesses a 

unique user sense rather than the general user sense of traditional search engines.  

 

The PSA, is a novel architecture and contributes to the domain of knowledge web information 

searching, by delivering new ideas such as active time based user relevancy calculations, 

automatic generation of sensible search keyword combinations and the implementation of  a 

multi-layer agent architecture. Moreover, the PSA has high potential for future extensions as 

well. Because it captures highly personalised data, data mining techniques which employ 

case-based reasoning make the PSA a more responsive, more accurate and more effective tool 

for personalised information searching. 
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CHAPTER 1  INTRODUCTION 
 
 
Search engines are essential to the success of the Web. To some they might appear to fit the 

description Shakespeare applies to Gratiano: 

 
“Gratiano speaks an infinite deal of nothing, more than any man in all Venice. His 
reasons are as two grains of wheat hid in two bushels of chaff: you shall seek all 
day ere you find them, and when you have them, they are not worth the search.”1

  
However, the truth is probably closer to John Dryden's words from the seventeenth century, 

especially for those who use search engines skilfully and with some persistence: 

 
“Errors, like straws, upon the surface flow; He who would search for pearls must 
dive below.”2

 

Undoubtedly, the Internet is the most abundant source of information in the present world, 

covering most domains of knowledge. Moreover, the information available through the 

Internet is constantly growing. As a result, the search for information interesting to a user has 

become a time-consuming and laborious task since this activity involves the analysis and 

separation of interesting pages from a great set of candidate pages (Analia & Daniela, 2000). 

Search engines are the most widely used tools for information searching on the web. Users 

provide a set of keywords to these search engines and wait for a set of links to webpages that 

contain those words. This mechanism is solely based on words (keywords) supplied by the 

user to the search engine. Therefore, getting the desired information largely depends on 

framing suitable keywords.  The simpler the keywords, the more general (less precise) the 

results are. This causes inexperienced/novice users to spend considerable amounts of time 

searching for specific information. In terms of today’s “economy sensitive” business world, 

this is a waste of human resources as well as hardware and software resource, energy and 

time, making it a pullback force in productivity. Users can make effective keyword 

combinations, by trying different combinations of search string words for better results. 

However, this is not an efficient method because the activity takes time and effort. For 

example, imagine a user looking for information about ‘software agents’ using a search 

engine, keying the keyword ‘agents’.  

 

 

 1 

 1

Quotes from Shakespeare's The Merchant of Venice, Act I. Scene I. Retrieved 2 March, 2005, from 
http://www.bartleby.com/70/1911.html 
 
P

2 
PQuotes from John Dryden's `All For Love. Prologue'. Retrieved 2 March, 2005, from 

http://www.bartleby.com/100/191.76.html 



This would result in the search engine returning URLs with information about travel agents, 

marketing agents, software agents, insurance agents and so on, clearly, far too general for the 

user. If the user gives the keywords, ‘software agents’ more specific results may be produced 

from a search engine. However, with knowledge of the user preferences and search history, a 

personalised search technique could generate the relevant results (i.e. regarding ‘software 

agents’) via the general keyword, ‘agent’.  

 

Again, search engines have limitations in regards to the classification of information because 

of the need for human intervention in the process, especially, considering the enormous 

growth of information on the Internet. The technologies supporting the information on the 

Internet (like HTML, XML, etc.) have provisions to include meta-information (information 

about information) but the inclusion of the meta-information is not mandatory. If search 

engines or other search mechanisms on the Internet rely on meta-information, the number of 

search results from those services could be very low. Such services clearly have chances to 

bypass valuable information channels and resources, as the number of webpages without 

meta-information well exceeds those with meta-information.  

 

This thesis is an effort to identify technological gaps in personalising information searches on 

the Internet and to suggest a solution, through the development of a conceptual model - 

Personalised Search Agent (PSA). PSA is an attempt to fill the gaps in the current theoretical 

framework in order to deliver a more personalised search experience to users, providing better 

responsiveness, efficiency and user-friendliness.   

 

1.1 Background and Motivation 

The current practice of information searching on the Internet, although widespread, still 

suffers from drawbacks in regard to personalisation and user adaptability. Since search 

engines are the tools used to seek information on various online resources over the Internet, it 

is quite interesting to see how and to what extent search engines support users by delivering 

personalised results. On the other hand, search engines cannot be blamed for delivering less 

personalised results, as it is important for search engines to maintain a general user 

perspective about the information search rather than recording each user perspective.  
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This situation obviously leaves to a gap in the current information search technologies, 

allowing room for personalisation of search engine results. Again it does not sound sensible to 

make a new search engine for each unique user perspective, because most of the current 

search engines do their job of finding information quite effectively. The problem is that the 

results returned from searches are too numerous, too general and largely irrelevant, though 

they do deliver relevant results scattered within a pool of general results. An attempt to create 

a new search engine with a unique user perspective would be reinventing the wheel, because 

the need is not for develop a new search engine but for a personalising technique. 

 

Though many attempts have been made to personalise search engine results, some issues 

remain unresolved, needing a more refined personalising tool, which can act as an 

intermediary between the user and the search engines. This study is motivated by the 

possibility of filling the gaps in the current practice of personalising the search engine results.  

 

1.2 Problem Definition and Research Questions 

The major issue under consideration in this research work is, how to develop an effective 

technique to personalise search results so that users can achieve more responsive results, 

organised in a way users want to view it. Apparently, to be successful, one needs to clearly 

understand the inadequacies in the current system. Moreover, it is a research requirement to 

define and frame the research questions to indicate both the focus and the limitations of the 

research. Following is a list of problems in the current practice of information search on the 

Internet using search engines.  

 Search Engines most often return the results we need but they are normally lost in a 

large pool of irrelevant results. The effect of this is that much user-time is wasted 

browsing through the URL pool to find the relevant results.   

 Search Engines mostly allow users to indicate what they need (in the form of search 

strings or keywords). However, they are not very helpful in taking user input about 

what kind or type of information is needed.  

 Little effort is made to learn user preferences by capturing user feedback. 

 Search engines have limited support to assist the user in forming appropriate keywords 

for a search, normally a crucial factor in achieving the right results. 
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 Search Engines or other personalising tools which act on search engine results do not 

generally have a mechanism to store the URLs which the user has visited during a 

successful search, so that those URLs can be retrieved for a similar search. 

 Though meta-search engine facilities are available with some search engines or search 

filtering tools, an effective way of combining multiple search engine results with other 

personalising techniques is still lacking. 

 

In view of these problems and the current information search practices, the following research 

questions form the basis of the thesis.  

a. What are effective ways of finding user relevant information from search engine 

results? 

b. What are possible ways of capturing user feedback, which can help improve the 

personalisation of the information search without compromising usability issues 

(like ease of use and minimum number of clicks)? 

c. How can data be captured efficiently from user search practices and how can 

user preferences be learned from the captured data? How can user preferences 

be remembered or retained, rather than users being required to recall their 

preferences each time? 

d. How can the user be assisted to form effective keywords, resulting in efficient 

information searches? 

 

1.3 Research Aims and Objectives 

The major aims of this research work are to develop a conceptual model and implement it by 

developing a prototype and to validate the prototype against current information search 

practices. The principle objective is to develop a well-structured conceptual model, which 

easily fits into the current theoretical framework of information search practices on the 

Internet. However importance has also been given to the development and implementation of  

a prototype and to its testing against a variety of quality factors, so that the new idea can stand 

on the credibility of the test results. Moreover, prototyping seems to be the only way to 

achieve internal validity for a short-term information technology research project like this. 

Only core functionalities and features in the conceptual model are implemented in the 

prototype.  
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The conceptual model addresses all the issues raised in Section 1.2, but particularly focuses 

on the research questions. Some models have been developed with the similar intention of 

personalising information searches on the Internet by using search engines as a backend 

resource or by using their own techniques for web search. This research takes some of the 

concepts used by them, which are discussed in detail in Chapter 2, to model the Personalised 

Search Agent (PSA).  

 

1.4 Organisation of the Thesis 

This section outlines how the thesis is organised. The thesis is organised in six chapters as 

follows. 

 

Chapter 2 covers the literature review. It documents the context, relevant research and the 

understanding of the research environment. This chapter concludes with a comprehensive 

summary.  Chapter 3 proposes the agent based model for personalised search. The idea of 

PSA is discussed in this chapter with complete development of conceptual model for the PSA, 

along with the techniques used (such as ranking) which together form the conceptual model 

for the PSA. Chapter 4 designs and develops a prototype from the conceptual model of the 

PSA. This chapter also describes how the prototype is developed including requirement 

analysis and modelling using UML. Chapter 5 tests the prototype and benchmarks it against 

other existing technologies. This chapter also summarises the test results against standards 

and criteria. Chapter 6 concludes the thesis, summarising the achievements and experiences. 

It also summarises future expansion of the current work.  
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CHAPTER 2 LITERATURE REVIEW 
 
 
This chapter reviews relevant literature which involves identifying, locating, synthesising and 

analysing the conceptual literature, as well as completed research reports, articles, conference 

papers, books, theses, and other materials related to the research area. A literature review also 

presents a comparison of ideas and research findings. The theoretical framework for the 

proposed research study should emerge from the literature review.  According to Marshall and 

Rossman (1995, p.28) “a thoughtful and insightful discussion of the literature builds a logical 

framework for the research that sets it within a tradition of inquiry and a context of related 

studies”. In other words, the literature review provides background and context for a study. It 

also assists the researcher in understanding the problem in its context. Very importantly, the 

literature, along with the findings of the research reported in the literature, can help in the 

choice of research methods for the study (Kristy, 2000).  

 

2.1 Research methodologies  

This section describes the choice of methods in relation to the problem definition. It also gives 

an insight into how the research has been conducted and in what manner the results have been 

reviewed and selected. Following are some candidate research methodologies considered. 

  

2.1.1 Experimental research 

Experimental research is undertaken when the research wishes to trace a cause-and-effect 

relationship among defined variables. There are three broad types of experimental research 

design; true experiment, pre-experimental research and quasi-experimental design.  

Experimental research tradition is based on hypothesis testing by a deductive process of 

logical inference, where reasoning proceeds from general principles to particular instances. 

 

Due to the rigorous controls exercised and the ability to rule out rival explanations, true 

experiments have much higher internal validity than other research designs. However, true 

experiments have poor external validity as they are conducted in rigidly controlled laboratory 

conditions and hence their generalisability to other populations is very limited. Moreover, true 

experiments are always carried out in unnatural conditions. To incorporate external validity, a 

field study is often conducted after a true experiment, though a field study is not a cost 
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effective method. Pre-experimental research though a weak methodology, is acceptable for an 

exploratory study, where the research wishes to gain insights or gather ideas, and not to 

generalise to a wider population. The quasi-experimental method is selected where it is not 

possible to use a true experimental design, and where external validity is a more important 

factor than internal validity. Nevertheless, the internal validity of the quasi-experimental 

method still remains much lower than that of the true experiment (Kristy, 2000). 

 

2.1.2  Action research 

There are numerous definitions of action research. One of the most widely cited, however, is 

that of Rapoport, who defines action research in the following way: “Action research aims to 

contribute both to the practical concerns of people in an immediate problematic situation and 

to the goals of social science by joint collaboration within a mutually acceptable ethical 

framework” (Rapoport, 1970, p. 499).  This definition draws attention to the collaborative 

aspect of action research and to possible ethical dilemmas, which arise from its use. It also 

makes clear, as Trist (1976) emphasises, that action research is concerned to enlarge the stock 

of knowledge of the social science community. It is this aspect of action research that 

distinguishes it from applied social science, where the goal is simply to apply social scientific 

knowledge but not to add to the body of knowledge. Action research has been accepted as a 

valid research method in applied fields such as organisation development and education. In 

information systems, however, action research was for a long time largely ignored, apart from 

one or two notable exceptions. More recently, there seems to be increasing interest in action 

research with respect to information systems.  

 

2.1.3  System development research  

The System Development method is a relatively new and not very popular method for 

conducting research on information systems. First proposed in the early 1990s, this is a 

systematic approach to information systems research, which includes some systems 

development. The systems development approach denotes a way to preform research through 

exploration and integration of available technologies to produce an artefact, system or system 

prototype. Systems development focuses on theory testing, more than theory building aspects 

of research, allowing a smooth progression from development to evaluation. It could be 

thought of as proof-by-demonstration (Nunamaker, Chen & Purdin, 1991). On the other hand, 
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it can be useful to consider as part of the exploratory stage of information systems study, 

when the aim is to observe and evaluate the implications or any other effects of introducing a 

particular new technology into the organisation. The system development research process is 

of an iterative nature, as illustrated in Figure 2.1. 

 

                                                            Step 1 – Concept Building

The construction of a meaningful research question, investigating the functionality and 
requirements of the system and studying other disciplines for other ideas and approaches 

                                                             Step 2 – System building

The construction of the prototype system through the following steps:

2a – Develop a system architecture
Developing a system architectural design and defining system functionality, 
components and interrelationships

2b – Analyse and design the system
Designing the database/ knowledge base and process to carryout system functions, 
developing alternative solutions and selecting one of them.

2c – Build the (prototype) system
Learning about concepts, framework and design through the building process and 
gaining insights about the problems and complexity of the system. 

                                                            Step 3 – System evaluation 

Observing the use of the system by case study or field experiment, evaluating the system 
through laboratory or filed experiment, developing a new theories / models based on the 
observation and evaluation of the system, and consolidating experiences learned.   

Figure 2.1: System Development Research Method (Kristy, 2000). 

 

The System Development Research Method was chosen as the preferred method for this 

research because of the following reasons.  

 Research in information systems has been criticised as being too conceptual 

 Due to rather applied nature of the work, system development is essential to prove 

underlaying theories.  

 To be a valid research activity, the existing systems and concepts need to be compared 

against the proposed conceptual idea and apparently needs a prototype to proof and 

test the new concept.  
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The flaws in the new concept can only be identified and improved in the process of system 

development. 

2.2  Information searches on the Internet 

According to Convey (1992), the act of information searching depends on the information that 

has been stored. Both the storage and retrieval procedures consist of three operations. 

Storage: 

 Subject analysis of a document by an indexer.  

 The translation of the subject analysed into the database’s indexing language.  

 The organisation of the files of which the database is comprised.  

 

Retrieval:  

 The analysis of the search question.  

 The translation of the concepts contained in the question into the indexing language of 

the database. 

 The formulation of the search statement, that is, the relationships among terms and the 

commands to be used that are usually expressed in “Boolean” logical statements. 

According to Harter (1986), the online searching process can be represented as a set of 

discrete but interrelated steps, to be carried out approximately in the order given below:  

a. Understand the information need. Here, attention must be given to distinguishing 

between what the user needs as opposed to what he/she wants or says he/she wants. 

b. Formulate search objectives. What will the search attempt to accomplish? The listing 

of a comprehensive bibliography? The discovery of a fact?  

c. Select one or more databases and search systems. 

d. Identify major concepts or facts and indicate their logical relationships to one another. 

e. Select an overall approach or strategy for attacking the information problem. 

f. Identify a variety of ways to express the concepts in words, phrases, symbols, etc., 

expressed in natural language, descriptors, subject headings etc. 

g. Identify the fields of the records that will be searched in the databases selected.  

h. Translate decisions made in steps (b) to (g) into formal statements expressed in the 

command language of the search system. 

i. For each of the steps (b) to (g), consider and plan alternatives, in case initial attempts 

do not meet search objectives. 
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j. Logon to the search system of choice and enter the initial search statement formulated 

in step (h). 

k. Evaluate the intermediate results against the search objectives. 

l. Iterate. That is, on the basis of the results of the evaluation obtained in step (k), and 

considering the alternatives planned in step (i), as well as new ideas obtained while 

searching. On the basis of system feedback, decide whether to print the results and 

stop, or keep going. The searcher might return to any of the steps, perhaps even to step 

(a). The process continues until satisfactory results are obtained.  

A central issue to several of the steps in the search process is the concept of communication, 

whether this is binary communication between host computer and user terminal or verbal 

communication between end user and search specialist.  

2.2.1  Search engines and how they work 

In the WDG's glossary of terms (1997), the term search engine is defined as a system 

dedicated to the search and retrieval of information for the purpose of cataloguing the results, 

usually based on an index of several HTML documents, so that the document(s) being sought 

can be easily located. According to Cooke (1999), search engines are the most popular way of 

searching for information through the Web. Search Engines, sometimes also called spiders, 

robots or crawlers, are supported by machines, automatically generating databases with Web 

pages by constantly searching and visiting different sites and thus automatically indexing 

them. Remember that a Web page has to be indexed before the engine can “make a copy” of it 

and thus display it to the user. If a Web page changes, the search engine will find those 

changes, which may affect what the “hit-list” looks like since a search engine takes into 

consideration page titles, body copy and other elements. (Chignell et al., 1999) Indexed 

search engines are often called dummies by professional searchers because of the great 

amount of unstructured sites/pages with little or no relevance they present to the user after a 

search. It is also possible to program a Web site so that a user gets the URL to a site in which  

content has no relevance for the user.  
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Figure 2.2: Technology behind the web Search (Linell & Rose, 2001) 

 

Search engines often retrieve so much information that they grow into an impressive size. 

Their retrieval process is achieved by matching words in the pages from huge databases of 

Web page texts from the World Wide Web. Unfortunately, they retrieve everything they come 

across, whether it is good, bad, wanted or unwanted information and without prioritising or 

distinguishing between the quality in the found material. Because of this it is important to 

evaluate everything before using it.  

 

Search engine architectures 

There are three main parts that are perceptible in a search engine.  

 The spider or crawler. The act of “crawling” is performed when the spider visits a 

Web page, reads it and then follows its links to other pages within the site. The spider 

also returns on a regular basis to the site looking for changes.  

 The index or catalogue is the second part of a search engine. It works like a giant 

book, which lists a copy of every Web page found by the spider. The “book” is then 

updated whenever a Web page changes. Even though a page has been “spidered”, it 

will not be accessible until indexed. An example of index architecture is shown in 

Figure 2.2. 

 Search engine software is the third component of a search engine. It is the program 

that sifts through all the millions of pages recorded in the index to find matches to a 

search which are then ranked into what is believed to be the most relevant order 

(Search engine architecture, n.a). 
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Subject directories 

Subject directories are selections of Web pages (most of the time) already evaluated and 

organised into subject categories or catalogues that are maintained by people. A Web page 

can end up in a directory in two ways; either its creator submits the site and a brief description 

of it to the maintainer of the directory, or the maintainer can find good webpages that he/she 

wishes to add. When doing a search the engine looks for matches only in the description 

submitted (Chignell et al., 1999). It is possible to browse or search the contents of those 

directories in an organised manner through a hierarchy of subject headings, but the search is 

restricted to the pages that are part of the catalogues and does not extend to the entire Internet. 

As a result, changes made to a webpage do not alter the list. The content has already been 

reviewed which leads to more trustworthy content than found in the search engines. This is 

true for as long as the directory does not grow too large. If this happens, the selectivity and 

quality do generally get worse. Subject directories can list searchable databases and gateway 

pages. Professional users call these engines “intelligent engines”, since they are constantly 

maintained by people (Recommended subject directories, 2005). 

 

Directories of searchable databases 

Directories of searchable databases are organised into subject databases the same way as 

subject directories, are able to search and browse, and are built by humans who most of the 

time evaluate the content and give pointers on the use of each of the listed databases. Another 

feature these directories offer is search boxes and links to all kinds of databases covering the 

entire world. This makes it possible for to search (and find) information which cannot be 

found in general Web pages, and which is therefore  impossible to find through search 

engines or subject directories. These specialised databases retrieve an enormous number of 

documents that are often called “invisible” or “deep” Web. Visible Web is the result received 

from a general search engine such as Google, AltaVista, Infoseek, FastSearch and 

NorthernLight. Invisible Web is what results from a search of a specialised searchable 

database. Unlike general Web pages found in search engines, database pages are dynamically 

generated for a certain search and are not stored anywhere. These dynamically generated 

pages are not found by engine spiders. For these pages it is necessary to go a search box 

belonging to that specific database (What is the "Invisible Web"?, 2004). 
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Directories of gateway pages 

Directories of gateway pages described as collections of general Web pages of unique value. 

Basically, they are gateway pages or subject guides with many links covering subject areas, 

disciplines or fields. They are organised by subject and can be searched as well as browsed. 

Each directory is elaborated on by an “expert” who spends much time searching the Web and 

assembling guides to a field, subject, discipline, etc. Sometimes the division is done using a 

classical subdivision of the discipline and sometimes using the formats in which the 

information is found. Sometimes a unique organisation developed by the expert is used. There 

are several specialised directories or guides to these kinds of pages also compiled by experts 

(General Subject Directories, 2005). The directories are often made by libraries or non-profit 

organisations or by individuals. Some have a commercial approach and are crowded with 

advertisements and other things. The main intention, however, is always to make it easier for 

the user to see, understand and manage the content of the Internet. The value of directories of 

gateway pages can be perceived, for example, while doing academic research. 

  

Meta Search engines 

Meta search engines, meta-crawlers or multi search engines were developed to improve 

search performance by querying multiple search engines at the same time. They can simplify 

a search by selecting a subset of first-level search engines and digital libraries to submit 

queries to based on the characteristic of the user, the query topic, and the search strategy. The 

named selection can be guided by diagnostic knowledge of the type “which of the first-level 

search engines works best under what circumstances” (Chignell, Gwizdka  & Bodner, 1999). 

All the results are brought together in a convenient display, often a homogeneous format and 

listing. (Björkman & Ohlsson, 2000) Meta search engines do not have a database of Web 

pages on their own but rely entirely on other search engines. When a search is performed, the 

keywords written in the search box are transmitted simultaneously to several different search 

engines and their databases of webpages. The listing of the results comprises the results from 

all the search engines queried.  

 

In spite of being quite good for a first search meta search engines are not suitable for more 

serious and in-depth searches, since they do not have the same search power as other search 
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engines. They are mostly used for simple searches using only one or two terms and usually do 

not search the largest search engines. However, the meta search technology is constantly 

being improved, so this situation might soon change (Meta search engines, 2004). Three main 

factors, determine the usefulness of a meta search engine: 

a. The search engines to which the meta search engines send the user’s search terms 

(size, content, number of search engines and user ability to choose the preferred search 

engines). 

b. How the meta search engines handle the user’s search terms and search syntax 

(Boolean operators, phrases, and defaults they impose). 

c. How meta search engines display results (ranking; aggregated to one list, or with each 

search engine’s results reported separately) (Meta search engines, 2004). 

 

2.2.2  Popular search engines 

The following section presents a detailed analysis of 3 popular search engines, namely, 

google, altavista and Yahoo. The analysis reviews the techniques followed by each of these 

search engines along with their strengths and weaknesses. 

 

Google  

Larry Page and Sergey Brin, two Stanford Ph. D. candidates who developed a technologically 

advanced method for finding information on the Internet, founded Google in 1998. Google is 

a privately held company, whose backers include Kleiner, Perkins, Caufield & Byers and 

Sequoia Capital. (Review of Google, 2004) 

 

According to Google, the site focuses exclusively on delivering the best search experience on 

the World Wide Web. Through innovative advances in search technology, Google helps users 

find the information they are looking for quickly and effectively. The company delivers 

services through its own Web site at www.google.com, and by licensing its search technology 

to commercial sites. Google’s page ranking relies on the uniquely democratic nature of the 

Web by using its vast link structure as an indicator of an individual page's value. In essence, 

Google interprets a link from page A to page B as a vote, by page A, for page B. But, Google 

looks at more than the sheer volume of votes, or links a page receives; it also analyses the 
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page that casts the vote. Votes cast by pages that are themselves "important" carry a greater 

weighting and help to make other pages "important".  

 

Google combines Page Rank with sophisticated text-matching techniques to find pages that 

are both important and relevant to a search. Google goes far beyond the number of times a 

term appears on a page and examines all aspects of the page's content (and the content of the 

pages linking to it) to determine if the page is a good match for a particular query (Review of 

Google, 2004). 

 

 AltaVista  

The development of AltaVista began in the summer of 1995 at Digital's Research 

Laboratories in Palo Alto, California, and was formally delivered to the Web on December 

15, 1995 (Review of AltaVista, 2003). AltaVista indexes the full text of over 550 million full 

text Web pages with unspecified update frequencies. According to its documentation, 

AltaVista can fetch 2.5 million pages a day following the Robots Exclusion Standard, and 

index one gigabyte of text per hour. AltaVista supports Boolean searching, both term and 

phrase searching (i.e., proximity searching with the NEAR operator), field searching (e.g., 

title: steelhead; url: home.html), right-hand truncation with some restriction, and case-

sensitive searching if only the first letter of a word is capitalised. 

 

AltaVista is developing ‘AltaVista Categories’, which provide access to resources categorised 

into various subject areas. AltaVista was the first search engine to offer multilingual searching 

capabilities, including the ability to search in Chinese, Japanese and Korean, as well as 

European languages such as French, German, Italian, Russian and of course English. 

AltaVista provides three display options: compact, standard, and detailed, although the last 

two are the same. The display order or relevancy ranking of search results is determined by 

the location (e.g., in the title or the body of the text) of matching words, occurrence 

frequencies of matching words, and distance (i.e., how many words apart) between the 

matching words. However, only the first few words of a document found are displayed, which 

may limit users' ability to judge its relevancy without referring to the full version of the 

document. In addition, general search terms such as "computer" and "analysis" are 

automatically ignored in Alta Vista (Review of AltaVista, 2003). 
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Yahoo 

Yahoo started as an idea, grew into a hobby and has lately turned into a full-time passion. The 

two developers of Yahoo, David Filo and Jerry Yang, Ph.D. candidates in Electrical 

Engineering at Stanford University, started their guide in April 1994 as a way of keeping 

track of their personal interests on the Internet. It did not take long before they found that their 

home-grown lists were becoming too long and unwieldy. Gradually they began to spend more 

and more time on Yahoo (Review of Yahoo search, 1999). 

 

During 1994 they converted Yahoo into a customised database designed to serve the needs of 

the thousands of users that began to use the service through the closely bound Internet 

community. They developed customised software to help them efficiently locate, identify and 

edit material stored on the Internet. The name Yahoo is said to stand for "Yet Another 

Hierarchical Officious Oracle" but Filo and Yang insist they selected the name because they 

considered themselves yahoos. Yahoo first resided on Yang's student workstation 

(“akebono”) while the search engine was lodged on Filo's computer “konishiki” (These 

machines were named after legendary Hawaiian sumo wrestlers). 

 

In early 1995, Marc Andressen, co-founder of Netscape Communications in Mountain View, 

Ca., invited Filo and Yang to move their files over to larger computers housed at Netscape. 

Today, Yahoo contains organised information on tens of thousands of computers linked to the 

Web. Yahoo is an example of a subject directory. Indeed, Yahoo claims to be the oldest and 

largest directory, listing over 750,000 Web sites divided into more than 25,000 categories. 

Users suggest most of the sites, and each suggestion is examined and evaluated by a member 

of the Yahoo staff, whose job it is to decide where the site best belongs. In Yahoo it is 

possible both to search and browse (Cooke, 1999). 

 

2.2.3  Issues in information searching using search engines 

The enormous amount of information and web pages on the Internet apparently makes the 

search engines to return relatively high volumes of data. Following is a list of the most 

common problems with search engines based general observations: 

 Difficulties in expressing the right query, or, finding the words that will give the best 

results. 

 16



 Too many search hits, most of which are not relevant, particularly when Yahoo is 

used. 

 The existence of many “dead” links or links that are not updated on the Web, 

particularly AltaVista. 

 Sometimes a search engine is too limited or simple, which makes combined searches 

difficult or impossible. One problem arises when a search engine does not work 

properly with Boolean operators (must use + and -), as in the case of Yahoo. 

 Information is often presented in an unstructured way and is graphically confusing, 

making an overview difficult. 

 Advertisements are disturbing and impossible to “shut off” (AltaVista and Yahoo). 

 Help functions are too complicated or are of no help, particularly Yahoo Search guide. 

 There is no historical resume (search path) listed so it is easy to get lost in cyberspace.  

 Pictures and backgrounds take too long to download, because they might be too big. 

 Web pages are seldom adapted to people with special needs. 

2.3  What is personalisation in information searching? 
 
As per the Oxford dictionary, word personalisation is a noun derivate of the verb personalise 

meaning, design or produce (something) to meet someone’s individual requirements.  

 

Personalisation involves creating systems that are user-centric and have a 'unique user' sense. 

This means systems that can adapt to the user, learn about the user, and provide unique data 

views that are personal to that user. Clearly this encompasses different areas - including User 

Modelling, Machine Learning, Context Sensitivity, and in terms of the web, hypermedia 

adaptation, including information searching and retrieval (John, 2003). Web-based 

personalisation has been in existence almost as long as the World Wide Web itself. Moreover, 

most of the same problems that personalisation aims to solve were present at the outset, albeit 

to a much lesser extent. With more than 600 million people online, and at least 2.5 billion web 

pages and web services such as search engines are struggling to keep up (Trends & Statistics, 

2005), effective personalisation is more important today than ever before . 

 

There are two general approaches to personalisation of web searching, each with different 

levels of sophistication: 
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 Collaborative approaches in which personalised information is presented to users 

based on the actions of similar users in the past.  

 Learning approaches, which learn user behaviour by observing the system interactions 

of users.  

 

These approaches can be the most accurate and reliable for all users. However, it is a 

relatively new area and much research must be carried out to develop efficient techniques. 

Personalisation is the way forward; however, due to the enormaous number of users and the 

volume of data involved, complex personalisation applications that require very deep user 

models are not feasible. Simpler models are efficient and can produce reasonably accurate 

results (John, 2003).  

 

The common evaluation method applied in web search systems is precision and recall, which 

usually requires relevance feedback from users. However, obtaining relevance feedback 

explicitly from users for personalised web search systems is extremely challenging due to the 

large size of the Internet (Cyrus & Yi-Shin, 2003). 

 

According to Cyrus & Yi-Shin (2003) other factors affect personalisation of web 

searching/searches. They are, personalised page importance, query refinement and meta-

search capabilities.  

 Personalised Page Importance: In addition to the traditional text matching techniques, 

modern web search engines also recognise the importance of page ranking in the 

search results. The most famous example is the Page Rank algorithm, which is the 

basis for all the web search tools of Google. In topic-sensitive Page Ranking, the 

system first pre-computes web pages based on the categories in Open Directory. By 

using these pre-computation results and the favourite pages, the system can retrieve 

“topic-sensitive” pages for users (Haveliwala, 2002).  

 Query Refinement: Generally, the query refinement process consists of Obtaining 

User Profiles from User, Query Modification and Refinement of the results 

 Meta-search Systems: It has been reported that search engine coverage decreases 

steadily as the estimated web size increases. In 1999, no search engine could index 

more than 16% of the total web pages (Lawrence & Giles, 1999). Consequently, data 

searching using only a single search engine could result in a very low retrieval rate. 

Meta-search systems can solve this problem by incorporating several search engines in 
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the search process and smartly combining the results from deferent search engines by 

user rankings. 

 

2.3.1  Strategies in information retrieval 

The two major pathways for information retrival are search and browse. The remainder of this 

section will discuss these in detail along with the hybrid technique of effectively combining 

browsing and searching for information retrieval. 

 

Browsing 

In contrast to the formal analytical strategies developed by professional intermediaries, 

information seekers also use a variety of informal, heuristic strategies. These informal, 

interactive strategies are clustered together under the term browsing strategies. In general, 

browsing is an approach to information seeking that is informal and opportunistic and 

depends heavily on the information environment. Four browsing strategies are distinguished 

in this section: scanning, observing, navigating and monitoring. The term browsing according 

to Marchionini (1997) reflects the general behaviour that people exhibit as they seek 

information using any of these strategies.  

 

Browsing offers significant challenges to information seekers and system designers. The 

challenge to the information seeker is to relate personal knowledge about the topic to what the 

system represents and the ways in which its representations are organised. The challenge for 

designers is to make clear the system’s scope and organisation and to suggest entry points for 

the searcher. Furthermore, information must be examined and assessed during browsing. The 

challenge here for the information seeker is to provide flexible display facilities for 

examination and assessment.  

 

Large, Tedd & Hartley (1999) indicate that browsing is an attractive proposition because it 

requires smaller cognitive loads than does an analytical search strategy. Browsing allows 

information seekers to devote their full cognitive resources to problem definition and system 

manipulation for ill-defined or complex tasks. Humans are better able to recognize something 

than to generate a description of it.  
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Browsing strategies 

Some browsing strategies can be identified as part of the information seeking-process. 

Scanning and navigation are most often used in systematic browsing in which the objects are 

well defined in the information seeker’s mind and environment. Observation and monitoring, 

on the other hand, are most often used in opportunistic browsing when the goals are 

exploration, learning or accretion of knowledge; when the objects are complex and vaguely 

defined or when the systems are unfamiliar or unstructured (Marchionini, 1997). 

 

Scanning: Scanning is the most basic browsing strategy. Scanning implies that the 

information seeker compares sets of well-defined objects with an object that is clearly 

represented in the seeker’s mind. Scanning is applicable to highly organised environments 

that provide clear and concise representations. It can proceed sequentially according to some 

structural feature of the content or through some sampling method.  

 

Monitoring: Monitoring is most similar to scanning except that it tolerates poorly structured 

environments. For example, while reading text related to a specific topic, a monitor browsing 

strategy “listens” for concepts related to another topic of interest. Monitor strategies focus on 

attributes of interest to the information seeker and are less dependent on stimuli in the 

environment than are observational and navigation strategies.  

Observation: Observational strategies are the most general of all browsing strategies since 

they have minimal thresholds for all the browsing dimensions except for cognitive effort. 

Browsers who use these strategies assume that they are in a promising neighbourhood and 

react to stimuli from that neighbourhood. Observational strategies depend on a great deal of 

parallel input. Like scanning, observational strategies are rooted in our physiological instincts. 

Observation does require interpretation and reflection to make sense of what is observed and 

to relate it to information-seeking objectives. Observations may lead to interesting discoveries 

but yield most initiation control of the environment.  

 

Navigation: The navigation strategy balances the influence of the user and the environment. 

The environment constrains browsing by providing possible routes and the user exercises 

some control by selecting which routes to follow. Relatively high thresholds for all the 

browsing dimensions define navigation. Objects must be specifiable. Moreover, information 

seekers must know what they are seeking. They must also actively interact with the 
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environment and regularly reflect and make decisions about progress. Navigation as a 

browsing strategy refers to the ongoing observation of environmental attributes and 

adjustments to the mental problem representation based on searching that proceeds 

incrementally based on feedback from the information system. One critical factor in 

navigation is the way in which the system provides feedback.  

 

Combination of search and browse strategies 

Both searching and browsing strategies have their own role to play in ensuring that 

information seekers can locate relevant information as effectively and effortlessly as possible. 

According to Large et al. (Large et al., 1999) few information systems will fail to provide 

access to both these strategies. Conventional retrieval systems, utilising analytical search 

strategies, can offer at least minimal browsing capabilities. 

 

2.3.2  Current work on personalised information searching 

There have been some attempts to personalise web search results incorporating one or more of 

the techniques discussed above. The following three applications are chosen for discussion 

because of their relevance to the theoretical framework of this research. 

 

User profile modelling and applications to digital libraries 

Giuseppe & Umberto (1999) describe personalising information access in digital libraries 

through user profiles. They identify data categories as an efficient and essential tool in user 

profiling. They also discuss various ways to gather data categories and methods to capture 

user preferences, suggesting three unique ways, namely, the document content category, the 

document structure category and the document source category. Their study also covers how 

to specify user preferences by classifying the categories into two distinct subcategories, each 

addressing orthogonal delivering dimensions. The paper also explains a profile schema and 

architecture depicted in the Figure 2.3. 
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Figure 2.3: User profile architecture by Giuseppe & Umberto (1999). 

 

This work clearly identifies data classifications into categories as an important step towards 

personalisation of information. Though the work deals primarily with personalising digital 

libraries, it is also relevant to personalising web searching.  

 

User profiling for content personalisation in information retrieval 

Boris, Parisch, Paul & Mícheál (2004) describe the importance of information categorisation 

and user profiles in web information search personalisation. They have done in-depth analysis 

of the existing standards for user profile modelling. They also suggest generic user profile 

modelling as depicted in Figure 2.4. 

 
Figure 2.4: User Profile Modelling in Content Personalisation (Boris, Parisch, Paul  & 

Mícheál, 2004). 
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They also emphasis the use of XML as a data structure for user profiles and have provided 

extensive examples of how to map user profiles with XML, XSLT and XML Schema. 

 

A personalised web intelligence system 

Ah-Hwee, Hwee-Leng, Hong Pan, & Qiu-Xiang (2001) introduce a system known as Flexible 

Organiser for Competitive Intelligence (FOCI) that provides an integrated platform for 

gathering, organising, tracking, and dissemination of competitive information on the web. The 

system enables users to build information portfolios by gathering and organising on-line 

information according to their needs and preferences. Through a method called user 

configurable clustering, users can personalise their portfolios in terms of the content and the 

information structure. The personalised portfolios can be constantly updated by tracking 

relevant information and new information can be organised into appropriate folders of the 

portfolios automatically. The personalised portfolios thus function as "living reports" that can 

then be published and shared by other users. 

 

FOCI system employees a clustering engine to map the keyword against the category. It uses 

a complex algorithm based on fuzzy logic in its clustering engine, which helps the user to 

create and manage personal information portfolios. An architectural diagram of the FOCI 

system is shown below in Figure 2.5. 

 

 
Figure 2.5: FOCI System Architecture (Ah-Hwee, Hwee-Leng, Hong Pan  & Qiu-Xiang, 

2001) 
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The first two information search personalising systems discussed above, namely user profile 

modelling and applications to digital libraries and user profiling for content personalisation 

in information retrieval, have the category concept and the user profile modelling applied in 

order to achieve personalisation. The third system discussed above, i.e. the FOCI system, is 

more advanced in terms of the techniques it applies for achieving personalisation in 

information search. The techniques that FOCI system follows are, category concept, user 

profiling and learning from user search practise. All the three systems discussed above take 

input either from the Internet directly, or take the input from a search engine. However they 

do not employ meta search engine techniques. Hence an effective combination of category 

concept, user learning approach and meta search engine approach is still lacking in the current 

systems for personalising web information search. An approach to overcome these limitations 

is described in chapter 3.  

 

2.4  Agents and information searching  

This section studies software agent techniques in detail and analyses how effectively they 

could be employed in information searching on the Internet.  

2.4.1  Software agents 

The word “agent” has become a buzzword among IT researchers over the recent past and is 

widely used among heterogeneous research domains. According to Stan & Art (1996), “A 

software agent is an autonomous system situated within and a part of an environment that 

senses that environment and acts on it, over time, in pursuit of its own agenda and so as to 

effect what it senses in the future”. Software agents are different from computer programmes. 

Computer programmes are those which run in computer hardware take user inputs, process 

information and make necessary outputs. They are invoked by a user and controlled by a user. 

A user has to give necessary inputs for a programme to run smoothly and do its task. Software 

agents are also programmes and are always part of a particular environment. An agent senses 

its environment and acts autonomously upon it. No other entity (such as a user) is required to 

feed it input, or to interpret and use its output. Each agent acts in pursuit of its own agenda or 

pursuing goals designed by other software agents. Agents act so that their current actions may 

effect their later sensing, that is their actions affect their environments. Agents also act 

continuously over a period of time.  
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2.4.2  Agent classifications  

Agents can be classified by their mobility that is their ability to move around the networks. 

Agents can also be classified by the nature of an action that is either deliberate or reactive. 

Deliberative agents derive from the deliberative thinking paradigm: the agents possess an 

internal reasoning model and they engage in planning and negotiation in order to have active 

coordination with other agents. Reactive Agents, in contrast, do not have any internal, 

reasoning model of their environment, and they act using a stimulus/response type of 

behaviour by responding to the present state of the environment in which they are embedded 

(Brooks, 1991). 

 

Finally, agents can be classified according to several ideal and primary attributes which 

agents should exhibit, namely, autonomy, learning and cooperation. Autonomy refers to the 

principle that agents can operate on their own without the need of human guidance, even 

though this would sometimes be invaluable. Agents have individual internal states and goals, 

and they act in such a manner as to meet goals on behalf of the user. The key element of their 

autonomy is that they are proactive, that is, they are able to take the initiative rather than 

acting simply in response to their environment. Cooperation with other agents is paramount; it 

is the reason for having multiple agents in the first place rather than just one. In order to 

cooperate, agents need to possess a social ability, i.e. the ability to interact with other agents 

and possibly humans via some language. “For agents to be smart they need to learn as they 

react or interact with the external environment. Learning makes the agents intelligent and 

also delivers increased performance over time” (Wooldridge & Jennings, 1995). Based on the 

characteristic explained above, agents can be broadly classified as collaborative agents, 

learning agents, interface agents and smart agents. Figure 2.6 depicts these differences. 
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Figure 2.6: A graphical representation for agent classification. (Hyacinth, 1996) 

2.4.3  Software agents in information searching 
Because of the dynamic nature of the Internet and conventional methods of mining 

information on the Internet, using search engines may not always be quite fruitful. 

Information and information services on the Internet are very heterogeneous offering, in many 

ways, different kinds of formats.  

When looking for information, the use of software agents has certain advantages compared to 

current search practices. Information searching is done based on one or more keywords given 

by a user. Agents are capable of searching for information more intelligently, because tools 

(such as a thesaurus) enable them to search also on related terms, or even, concepts. 

Individual user agents can create their own knowledge base about available information 

sources on the Internet, which is updated and expanded after every search. When information 

has moved to another location, agents will be able to find, and update their knowledge base 

accordingly. 

Furthermore, in the future, agents will be able to communicate and cooperate with other 

agents. This will enable them to perform tasks such as information searches more quickly and 

efficiently while reducing network traffic. They will also be able to perform tasks directly at 

the source/service, leading to a further decrease in network traffic (Björn, 1997). 

Agents can relieve the human user of the need to worry about where and how certain 

information may be found, leaving the user to worry only about what exactly is being sought. 

The client side agents (thick programmes) can greatly reduce the access limitations (like 

internet) because they can cache the previous search history and hence allowing the user to 
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search for information (limited though) offline. An agent can perform multiple tasks 

simultaneously in parallel. A good example would be the meta search agents which normally 

search two or more search engines simultaneously for a given user query. This saves a 

considerable amount of user time and effort.  

 

Software agents will be able to search for information based on contexts. They will access this 

context from user information or by using other services, such as a thesaurus service. The 

agents can adjust themselves to the preferences and wishes of the individual users. Ideally this 

will lead to agents that will increasingly adjust themselves to what users want, and what they 

are usually looking for, by learning from performed tasks (i.e. searches) and the user reaction 

to the results. 

  

In short, software agents are extremely useful tools both in information searching and in the 

personalisation of information searching. However, it does not seem to be reasonable to make 

an agent from scratch which is capable of searching for information directly from the Internet. 

Instead, it is more sensible to use currently successful search engines as a backend 

information search resource and use the agents to personalise the information from the search 

engines. 

 
2.5  General architecture for information searching systems 

This section describes general architectures for information search systems in a distributed 

environment, particularly client server architecture and multi-layer architecture. 

 
2.5.1  Client server architecture  
 
The term client/server was first used in the 1980s in reference to personal computers (PCs) on 

a network. The actual client/server model started gaining acceptance in the late 1980s. The 

client/server software architecture is a versatile, message-based and modular infrastructure 

that is intended to improve usability, flexibility, interoperability and scalability as compared 

to centralised, mainframe, time sharing computing.  

A client is defined as a requester of services and a server is defined as the provider of 

services. A single machine can be both a client and a server depending on the software 

configuration (Edelstein, 1994).  
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As a result of the limitations of file sharing architectures, the client/server architecture 

emerged. This approach introduced a database server to replace the file server. Using a 

Relational Database Management System (RDBMS), user queries could be answered directly. 

The client/server architecture reduces network traffic by providing a query response rather 

than total file transfer. It improves multi-user updating through a Graphical User Interface 

(GUI) front end to a shared database. In client/server architectures, Remote Procedure Calls 

(RPCs) or Structured Query Language (SQL) statements are typically used to communicate 

between the client and the server (Newell & Machura, 1995). 

 
2.5.2  Multi-layer architecture 
  
The three-tier software architecture (a.k.a. three layer architecture) emerged in the 1990s and 

an effective multi-layer architecture for distributed systems. The third layer (middle tier 

server) is between the user interface (client) and the data management (server) components. 

This middle tier provides process management where business logic and rules are executed 

and can accommodate hundreds of users (as compared to only 100 users with two tier 

architecture) by providing functions such as queuing, application execution, and database 

staging. The three tier architecture is used when an effective distributed client/server design is 

needed that provides (when compared to the two tier) increased performance, flexibility, 

maintainability, reusability and scalability, while hiding the complexity of distributed 

processing from the user. 

The three tier architecture is used when an effective distributed client/server design is needed 

that provides (when compared to the two tier) increased performance, flexibility, 

maintainability, reusability, and scalability, while hiding the complexity of distributed 

processing from the user. These characteristics have made three layer architectures a popular 

choice for Internet applications and net-centric information systems. A three tier distributed 

client/server architecture, as shown in Figure 2.7, includes a user system interface top tier 

where user services (such as session, text input, dialog, and display management) reside.  
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Figure 2.7: Three tier distributed client/server architecture depiction (Three Tier Software 

Architectures, 2004)

The third tier provides database management functionality and is dedicated to data and file 

services that can be optimised without using any proprietary database management system 

languages. The data management component ensures that the data is consistent throughout the 

distributed environment through the use of features such as data locking, consistency, and 

replication. It should be noted that connectivity between tiers could be dynamically changed 

depending upon the user's request for data and services. 

The middle tier provides process management services (such as process development, process 

enactment, process monitoring, and process resourcing) that are shared by multiple 

applications. The middle tier server (also referred to as the application server) improves 

performance, flexibility, maintainability, reusability, and scalability by centralising process 

logic. Centralised process logic makes administration and change management easier by 

localising system functionality so that changes need only be written once and placed on the 

middle tier server to be available throughout the systems. With other architectural designs, a 

change to a function (service) would need to be written into every application (Eckerson, 

1995). 

Sometimes, the middle tier is divided in two or more units with different functions. In these 

cases the architecture is often referred to as multi-layer. This is the case, for example, with 

some Internet applications. These applications typically have light clients written in HTML 

and application servers written in C++ or Java. The gap between these two layers is too great 

to link them together. Instead, there is an intermediate layer (web server) implemented in a 

scripting language. This layer receives requests from Internet clients and generates html using 

the services provided by the business layer. This additional layer provides further isolation 

 29



between the application layout and the application logic (Three-tier architecture for client 

server technology, 2004). 

 

2.6  Summary 
 
This chapter has presented the context and the theoretical framework of the research along 

with insights into other studies relevant to the research.  It streamlines and integrates the 

information gathered. The problem area and research objectives were defined followed by 

selecting a suitable method to conduct a research on information search personalisation. The 

candidate research methodologies considered were the Experimental Research Method, the 

Action Research Method and the System Development Research Method. After a detailed 

analysis of all the candidate methods, the System Development Research Method was chosen 

as the preferred method for this research. 

 

To build up a rich background of the topic, a detailed study has been done understanding the 

current search practices in information search.  As the popular method to find information 

online, is by using search engines, a detailed study has therefore been done, understanding 

their functionalities, architecture and underlaying technologies. Also, various techniques to 

improve current search practices through search engines were studied, emphasising on 

directory or category concept, Meta Search Engine Systems and Browse & Search strategy. 

This enabled understanding the theoretical framework of the research. Similar works for 

personalisation of web search were also perused giving emphasis on how they enabled 

personalisation by combining the category and browse & search technology. Also, software 

agent systems were studied in detail analysing how effective they are in distributed systems 

especially in web search and personalising web search.  Finally, different types of 

architectures for distributed were studied emphasis on client server architecture and multi-

layer (3-tier) architectures of software design.  The next chapter will detail the conceptual 

model for the personalised searching agent.  
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CHAPTER 3 AN AGENT BASED MODEL FOR THE 
PERSONALISATION OF WEB SEARCHING 

 

The concept of a personalised search agent is discussed in Chapter 2. In this chapter an agent 

conceptual model is developed for personalisation of web searching to act between the user 

and the search engines. A general overview of the conceptual model is depicted in Figure 3.1. 

 

USER

Personalised 
Search Agent 

Search Engine 1

Search Engine 2

Search Engine 3

Internet

 
 

    Figure 3.1: General framework for agent based personalised searching  

 

The following techniques are applied to achieve personalisation: 

 Using the category or directory approach of organising similar information in a 

hierarchy 

 Using the browse and search approach 

 Learning from experience and user feedback 

 Using multiple search engines (meta search approach)  

In addition, new concepts are also introduced as follows: 

 Creating dynamic pages containing the links (URLs) that the user has visited during a 

search 

 Ranking the links based on the time spent on and other parameters 

 Ranking the search engines based on the successful links returned to the user 
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3.1 PSA Architecture 

The general architecture of the Personalised Search Agent (PSA) is shown in Figure 3.2. 
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Figure 3.2: A conceptual framework of the PSA 

 

Following is a detailed description of the components depicted in the conceptual framework 

for the PSA in Figure 3.2 along with the associated techniques. 

Information categories  

The concept of information categories, introduced in Chapter 2 is a technique used to organise 

information in a structured hierarchical order. Yahoo directory is a popular example. It would 

be a difficult task to pre-build all the available category items. Instead it is preferable to start 

with a minimum set of category items leaving it open for the user to update it later. Initial 

values of the categories can be gathered by giving a request form to the user.  

 

Once an initial category is ready, whenever the user initialises a search, the search keyword is 

mapped against an existing category or a new category (categories can be added or updated by 

the user as needed). As the user keeps searching in this way, the category keeps building, 

adding new items and values. In the PSA these categories are useful in two ways. Firstly the 

categories help to enhance the user-entered keywords, by effectively combining the keywords 

with category values. For example, if the user selected category is sports and it has a value 

badminton and if the user entered keyword is racket then it is easy to generate a new keyword 

“badminton racket” by simply combining the category item value and the user entered 
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keyword. If there is more than one value for a selected category (eg. Badminton, tennis and 

squash) either the user can be prompted for a selection, or the selection can be done 

automatically by the number of previous searches for each value. If the selection is prompted 

by the user, it is less user friendly but has a high degree of accuracy. If the selection is 

decided automatically by the number of pervious searches, it is more user friendly but has a 

probability risk. For example based on the previous searches made by the user, only the 

results for “Badminton racket” will be shown. But there is a probability that user wished 

results for tennis racket this time.   The second use of categories in PSA is that categories can 

be used to remember the user preference rather than asking the user to recall the preference.  

If the user entered keyword has a previous reference, under one or more categories, then the 

user is prompted to make a selection before starting the actual search. 

 

Using XML for the Categories 

Extensible Markup Language (XML) is a simple, flexible text format to store data. XML was 

originally designed to meet the challenges of large-scale electronic publishing (Extensible 

Markup Language, 2002). XML is currently used to improve the functionality of the web by 

providing more flexible and adaptable information identification. It is called extensible 

because unlike HTML it does not have a fixed format. Instead, XML is actually a 

metalanguage that allows individuals to customise using their own tags (UCC Glossary, 

2003). 

 

As discussed in Chapter 2, XML is an excellent model for building the data structure for the 

category or directory concept. With PSA, there are categories and sub-categories arranged as 

an inverted tree hierarchy as well as values for each category. A simple example is depicted in 

Figure 3.3. 
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Figure 3.3: A simple illustration of the category concept 

 

XML Schema offers exactly the same structure for data representation. Nevertheless, XML is 

a widely accepted standard, compatible with most of the platforms and easy to create or edit 

dynamically using web technologies. Moreover, as indicated in section 2.3.2, there is a 

detailed description of how XML can be used for creating user profiles and directories. Figure 

3.4 is a representation of the category shown in figure 3.3 using XML Schema  

 
 

<xs:element name="Categories"> 

    <xs:complexType> 

      <xs:sequence> 

 <xs:element name="Sports" type="xs:string"/> 

      </xs:sequence> 

    </xs:complexType> 

</xs:element> 

 

Figure 3.4: A sample XML Schema 

 

An XML representation (XML Schema with data) of the category shown in Figure 3.3 is 

illustrated in Figure 3.5. 

 
... 

<Categories> 

<Sports> Brumbies Rugby </Sports> 

</Categories> 

 

<Categories> 

<Sports> Yonex Racket </Sports> 

</Categories> 

 

<Categories> 

<Sports> Cricket </Sports> 

</Categories> 

... 

Figure 3.5: A sample XML representation of category item values 
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Preference databases  

In PSA, preference databases are the actual personalisation database. All the search details are 

stored in this database. A successful search will always have at least the following details: 

 User keyword 

 Preferred category value 

 Generated keyword 

 URLs (links) opened 

 Search engines from which each link was retrieved.  

Again a successful search is determined by positive user feedback. The mapping of the 

keywords with the category is done in the preference database and stored with other relevant 

information.  

 

User profile 

The term user profile is more a conceptual or abstract term with regards to PSA. User profile 

is the effective combination of the categories and the preference database. After a certain 

period of use the database and the categories become quite uniquely customised to the user. 

The user profile form is a data entry form designed to capture an initial Local Category 

structure with a minimal set of category items and values. Though it may not be user-friendly 

to ask the user to fill in a form, the form could be really useful when the PSA has only very 

few clients and the global category does not have many items and values.  

 

3.2 A multi layered approach to personalisation 

One problem with the PSA conceptual model explained earlier in this chapter is the lack of 

multi-user support. Introducing client-server architecture, explained in Chapter 2, was found 

to be a simple and effective solution for the PSA framework. There are two options for 

incorporating this feature: 

 A thick client model that runs in the user machine and an online server part that could 

also be a web service. 
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 A client-server model in which both client and server are online web applications / 

web services.  

There are advantages and disadvantages in both of the above approaches. In the first approach 

the advantages are, since the client is a thick programme running in the user machine, it does 

not have much limitation for the local storage. This means the size of the database would 

probably not be a problem. Moreover, even without internet access the user would still be 

able to review the offline links or previous search history if necessary. The disadvantage of 

this approach is the accessibility. Since the thick client model runs in the user machine, the 

cached details would not be available if the user changes machine or the machine breaks 

down. Furthermore, users have to install the client programme on all the machines they use, 

making it difficult to synchronise the profile. In the second approach the advantages include 

good accessibility, since both the client and the server are web services the user can virtually 

access from anywhere through the Internet. The client-server model also greatly reduces the 

risk of losing the user profile details due to local system failure. One disadvantage of this 

approach would be with the size of the user profiles and the database which could be a burden 

on the web server if the size exceeds certain limits. Another disadvantage with this approach 

is that the user would not be able to review the history links offline because the Internet is 

needed to access the client. 

 

After considering the pros and cons of both of the above approaches it was decided to go with 

the second approach considering that this is experimental research and would not have many 

users putting an additional burden on the server. Accessibility was also given higher priority. 

The client server architecture not only solves the multi-user issue, but also gives great 

enhancements to the personalisation itself. The multi-layer approach consists of two exactly 

similar units, one on the client side and other on the server side. On the client side the 

preference database and the dynamic pages would be specific to a particular user whereas on 

the server side they are more general. This is a generalisation specialisation approach. The 

server side profile database and the categories are the union of all the clients (users). Each 

successful search that a client makes therefore will have an impact not only in updating the 

local details but also in affecting the server details. This results in the server acting as a 

personalised information source or a global database of personalised structured information 

after a period of use. All the clients request the information from the server; the server then 

checks its global profile for relevant information and in the absence of any, conducts a real 

search. Once the server has enough links in its global profile, the search request from a client 
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can be returned almost instantaneously. A client-server based multi-layer architecture of the 

PSA is illustrated in Figure 3.6.  
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Figure 3.6: Multi-layer architecture of the PSA 

 

 

This architecture enables a two level personalisation. Figure 3.7 illustrates how the level of 

personalisation varies from the Internet to the user through the PSA. This shows how the PSA 

reduces the amount of information by filtering out irrelevant information at the server and 

client level, giving a smaller number of highly personalised results to the user.   
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Figure 3.7: Personalisation graph for multi-layer PSA architecture  

 

Global categories 

Structurally, the global categories and the local categories are the same. They differ, however, 

in the level of profiling and in the number and variety of their content. Global categories are 

maintained in the server side of the PSA. The global category is a collection of all the client 
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items. With a considerable number of clients for the PSA, the global category becomes 

enriched so that new clients can actually import a copy of the global category and customise it 

for their needs. For Example, if client A and client B are the only two clients for the PSA, 

then the category structures are as illustrated in Table 3.1. 

 

Client A (Local Category) Client B (Local Category) Server (Global Category) 

 

Golf

Rugby 

Sports

 

 

Career

MIT
System Analyst 
Project Manager 

Career

MIT
System Analyst 
Project Manager 

Sports

Golf

Rugby 

 
Table 3.1: Representation of local and global categories 

 

Hence, if new clients join the PSA, they can build their initial local category either by filling 

in a user preference form or by importing the global category from the server and then 

customising it if necessary. The former method is good when the PSA has only a few clients 

(in the beginning) or it has very limited entries in the global category, whereas the latter 

method is recommended when there is a larger number of clients in the PSA and the global 

category has grown substantially. The PSA server takes care of the global category, avoiding 

any potential redundancy of either the category items (eg: ‘sports’) or the category values 

within an item (eg: ‘Rugby’).  

 

Global preference database 

The global preference database is a union of all the local preference databases of all the 

clients in the PSA and is maintained by the PSA Server. It has largely the same structure as of 

a local preference database except that it has additional data fields to capture information 

about the clients and general trends. The global preference database is potentially a great 

resource for the PSA clients as it keeps record of the previous search history of all the clients 

in the PSA. With a good number of clients and substantial search history, the global 

preference database would contain almost every keyword combination a user might use, 

allowing the PSA to return the results internally without going for an actual web search. A 

sample database structure for the global preference database is illustrated in Table 3.2.  
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Keyword KeyGen Category ClientID Dynamic Page …… 

Table 3.2: A sample representation of the global preference database 

 

Global profile 

Like the user profile, the global profile is an effective combination of the global preference 

database and the global categories and is rather an abstract term to represent the ‘generalised 

personalisation’ of all the clients in the PSA. The global profile can be useful in predicting 

general trends and in determining search engine efficiency with respect to the category and 

the types of user.  

 

Dynamic pages 

Dynamic pages are the result pages created by the PSA based on the cached relevant results 

from the database. On the client side they are real webpages whereas, on the server side they 

are a package of results generated as per the client request and passed on to the client after 

creation. The client side dynamic pages can be a well-structured report having a small screen 

shot of each URL, the related category and other retrieval details. 

 3.3 PSA Functionalities 

This section describes the major functionalities of the PSA starting from accepting inputs 

from the user to giving personalised results back to the user. The informed search throws light 

on the importance of the ‘browse and search’ approach explained in section 2.2. Every search 

using the PSA is done in relation to a category item. That is, either the PSA or the user has to 

select a related category before accepting the search keyword/s. This indicates in which area 

of information the search needs to be done. The browse and search approach is well known 

for its highly relevant output.  

 

Generating keywords 

The idea behind keyword generation is quite simple. During conventional information search 

practice, we normally shuffle the keywords by changing the order or replacing one keyword 

with another one to achieve the desired result. Obviously, this takes user time and effort. The 

 39



keyword generation feature of the PSA automates this process. Basically, the PSA accepts 

keyword/s from the user along with a category name. The PSA then makes different 

combinations of ‘keywords’ and ‘category values’ based on a keyword-generating algorithm. 

The actual search (with the search engines) is done using all the ‘keyword sets’ generated and 

presented to the user in a predefined order until the user gives positive feedback. It can save a 

considerable amount of user time and effort. 

Sensing and decision making 

Sensing and decision making happens on both the client and the server sides of the PSA 

although both are more user dependent on the client side and more user independent on the 

server side. This user independency makes the server act like an agent. 

Sensing on the client side includes matching the user-entered keyword with the entries in the 

user preference database. Decisions are then made based on the matching results. If a match is 

found then the PSA searches for the related dynamic page. If the match is found in more than 

one category (like the word racket in both sports and narcotics) then the PSA presents the 

results under most accessed category and also lists the categories in the order of last access, 

and prompts the user to select a category. A detailed analysis of the client side decision-

making is explained later in this chapter under section four. 

As stated earlier the server is more independent of user action in sensing & decision-making. 

The PSA server continuously watches its environment sensing the client requests and making 

decisions based on the request parameters. For example, if the client requests a set of 

keywords the PSA searches its global preference database for a similar entry and retrieves the 

URLs based on the search engine ranking for that client. For example, if the search engine 

ranking of that client shows Google has been most successful in retrieving information for 

that client, the URLs originally gathered from Google are given higher priority while 

retrieving the URLs from the global dynamic page. Apart from this, the server continuously 

organises the keyword by mapping it against the global category items. New category items 

are added to the global category as the clients make changes in their local category structure. 

The PSA also senses any duplication in both URLs and keyword patterns and makes sure that 

redundancy is avoided to the maximum possible level.  
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Generating Dynamic pages from a successful search 

Dynamic pages have been well explained in section 3.1.4 of this chapter. Basically, there are 

dynamic pages maintained by both the server and the client, named global and local dynamic 

pages respectively. A local dynamic page is created from a successful search on a new 

keyword, or an existing keyword with a new category value. Once the dynamic page is 

created, all the successful URLs associated with that search are stored in that page. A 

successful URL is determined by measuring the active time the user spends on that page 

(URL). Again active time means the time taken by the user while keeping that page in focus 

(for example, selecting text, clicking, copying, or simply while the window is active). 

However, if the URL window is opened but is out of user-focus or is minimised, that time 

will not be calculated as active time. If the active time crosses the threshold, the link is given 

a rank and added to the dynamic page against both the keyword and the category. All the links 

that score one or more value will find a seat in the dynamic page. The URLs are sorted based 

on rank (although the default sorting is done using the LIFO algorithm). The URLs in the 

dynamic page are again sorted using Search Engine Ranking.  The sorting precedence would 

be as follows: 

Sort Level 1 : Link Ranking 

Sort Level 2 : Search Engine Ranking 

Sort Level 3 : LIFO (Last in first out) 

 

If there is more than one category value associated with a single keyword (not confusing the 

category value with category item; an example of same category different values is, 

badminton and basketball under Sports), the PSA still maintains two different dynamic pages. 

But the PSA also understands that these dynamic pages are related to one another. So, if the 

search results of a category value receive negative feedback from the user, the PSA respond 

with links from dynamic pages of other category values in the same category item (again the 

default precedence rule is LIFO).  

 

For example, let the category values for the category item Sports be Badminton and Tennis. 

The user-entered keyword is racket which has two entries in the user preference database, 

one against category value tennis and the other against category value badminton. The PSA 

senses the LIFO values and decides to choose tennis as it is the latest addition to the database. 
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If the result receives negative feedback from the user then the PSA retrieves the URLs from 

the dynamic page for badminton (the next category value). 

 

After each successful search the client returns the Local Dynamic Page to the server along 

with the user preference database values and the server then matches the entries against its 

database. If no match is found the server then saves the URLs in the Local Dynamic Page to 

the Global Dynamic Page. If the server finds duplications in the URL, then the existing URL 

is given a higher Global Link Rank. The non-duplicated entries are added and database entries 

are updated accordingly. Links (URLs) in the global dynamic page are dropped if they fail to 

maintain the Life Saving Rank. Life Saving Rank will be explained in detail later in this 

chapter.  

Managing the Preference Database 

Preference databases which are the most important components of PSA conceptual model 

have already been explained earlier in this chapter. They contain the base data for all the 

ranking calculations both on the client and on the server side. They normally contain all the 

possible attributes of a successful search such as the keyword pattern, the category item, the 

category value and the search engine ranking for that search, as well as the name and location 

of the associated dynamic page. Almost all the non-derivable information of a successful 

search are stored in the preference database, some of which is not used currently by the 

proposed PSA conceptual model, but is potentially useful later as more and more data-mining 

and personalisation ideas are incorporated with the PSA.  

 

3.4 Rankings and Algorithms 

In order to determine the relevant information from the captured user details four ranking 

approaches are used. The algorithms of these approaches are described below.  

The Keyword Generating Algorithm  

It is an effort to simply assist the user in generating different keyword combinations based on 

a simple algorithm explained below. By doing this the PSA not only eases user effort but also 

substantially saves user time. If ‘A’ be the category of preference, B1 to Bn be the words in the 

user keyword combination then the sequence would be: 

“A + (B1...Bn)” 
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A + “(B1...Bn)” 

A + B1 + “(B2...Bn)”, ………………  

Ideally, this sequence will stop either when the user gives positive feedback or when all the 

probable combinations of words are exhausted. However, in actual practice, proper limits are 

applied in the number of probable combinations. 

 

The Link Ranking Algorithm  

Link ranking is a new approach to find personalisation at its grass roots level. Basically, link 

ranking works by calculating the active time the user spends on each URL in a successful 

search result. A successful result is defined by user feedback. User actions will be 

continuously monitored once the results are submitted but only considered for processing, if 

the user gives positive feedback on the result. The link ranking algorithm can simply be 

explained as follows: 

 

Let ‘t’ be the number of seconds spent by the user on a link (or URL), ‘s’ be the search engine 

ranking for that user and ‘n’ be the number of times the link (or URL) is viewed. Then 

 

Link Rank = (t + s + n)  

 

Note:- The links or URLs are organised in the cached page as per the descending order of the 

link ranking algorithm. 

 

The Search Engine Ranking  

The search engine ranking is given to each dynamic page both on the client side and on the 

server side. Ranking is calculated by grouping all the URLs in the page by the search engines 

(which returned the link) and then taking the sum of the link rankings of the URLs in each 

group. 

 

If two or more search engine have the same ranking, then their relative ranking is recalculated 

by counting the number of URLs returned by each, and furthermore with the LIFO algorithm. 
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The Life Saving Rank  

Let the link ranking for the URL be LR and T be the total number of seconds elapsed after 

storing that URL to the dynamic page, then 
 

The life saving rank is = T/LR 

If the life saving rank value (T/LR) is above 100, the link will be dropped from the dynamic 

page. The life saving ranking is applied in both local and global dynamic pages and is an 

essential measure to make sure that only relevant links are in the dynamic pages and a 

minimum amount of space is used from the server storage resources.  

 

3.5 A Sample Scenario Walkthrough 
 

This section describes how the PSA works with the help of a scenario, which demonstrates 

the functionalities explained above. The detailed sequence diagram shown in Figure 3.8 

below is a graphical representation of all three scenarios explained thereafter.  
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Figure 3.8: Sequence diagram depicting PSA functionalities 
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Scenario1: The user performs a new search, which has no history either on the client side or 

on the server side of the PSA. 

 

The sequence of steps that the user would take and the related actions performed by the PSA 

are detailed as steps in the order of occurrence: 

a. The user inputs a search string to the PSA client 

b. The PSA client searches its user preference database for an entry for that keyword.  

c. If not found then the client asks the user to select a relevant category from the Local 

Categories. 

d. Once the user selects the Local Category item for the search string, the PSA client 

generates a set of search keywords by the different combinations of category value and 

words in the search string based on the search keyword generating algorithm (explained 

in this chapter in section 3.4.1).  

e. Makes a request to the server. The request basically contains the category, the original 

search string submitted by the user and all the keyword sets generated. 

f. The PSA server senses the client request and searches its Global Preference Database 

for an exact entry for the original search string under the given category.  

g. If the server finds no matches, the server then extracts the keyword sets from the client 

requests and again matches each keyword set with its global preference database. If a 

match is found then the related global dynamic page is fetched and the contents are read 

to a temporary space. 

h. For all those keyword sets, which have no match in the global preference database, a 

meta-search engine search will be chosen. The results from all the search engines are 

sorted based on the search engine ranking for the particular category and then saved in a 

temporary space. 

i. Once all the keyword sets are finished, the server then generates a results page (with a 

pre-defined format) for the client and sends it over to the client 

j. The client receives the results from the server, processes it and extracts the results for 

the first keyword set and presents them to the user. 

k. While the user is viewing the results, client continuously monitors the URLs opened by 

the user along with other activities and the time spent on each link. 

l. The results are presented with a feedback request. If the user gives positive feedback, 

the client generates a local dynamic page, stores the URLs opened by the user during 

the monitoring time and sorts the URLs (or Links) based on a Link Ranking Algorithm 
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(explained in this chapter under section 3.4.2). Also, the user preference database is 

updated (which includes mapping the user entered keyword with the category). 

m. On receiving negative feedback from the user, the PSA client fetches the results for the 

next keyword and presents them to the user along with the feedback request. On 

continuous negative feedback from the user, the PSA client repeats the process until the 

entire search results from the server are finished. 

n. If the user gives negative feedback for all the search results displayed, then the PSA 

client suggests the user revise the keyword entered or edit the category item/name. 

 

Scenario 2: The user performs a search that has no history on the client side but has history on 

the server side 

 

This scenario is another pathway within scenario 1. The sequences are explained below. 

a.  The steps ‘a’ to ‘e’ are repeated from scenario 1.  

b. The server finds a match (obviously one or more other clients have already 

made the same search) and retrieves the relevant global dynamic page.  

c. The server prepares a result for the client using the URLs from the page and 

sends it over to client. 

d. The client receives the result, processes it and displays it to the user with a 

feedback request. 

e. While the user is viewing the results the client continuously monitors the 

URLs opened by the user along with other activities and the time spent on each 

link. 

f. The results are presented with a feedback request. If the user gives positive 

feedback, the client generates a local dynamic page, stores the URLs opened 

by the user during the monitoring time and sorts the URLs (or Links) based on 

a link ranking algorithm (explained in this chapter under section 3.4.2). Also 

the user preference database is updated (which includes mapping the user 

entered keyword with the category) 

g. If the feedback is negative, the PSA Client goes through scenario 1. 

 

Scenario 3: The user performs a search that has client side history 

 

This scenario is another pathway within scenario 1. The sequences are explained below. 
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a. The user inputs a search string to the PSA client 

b. The PSA client searches its user preference database for an entry for that 

keyword.  

c. The client finds a similar entry (in this case) and retrieves the relevant local 

dynamic page and presents it to the user with a feedback request. 

d. While the user is viewing the results, the client continuously monitors the 

URLs opened by the user along with other activities and the time spent on each 

link. 

e. On receiving positive feedback from the user, the PSA client updates the URL 

order in the local dynamic page based on the change in link ranking and 

updates the user preference database.  

f. On receiving negative feedback from the user the PSA client follows the steps 

explained scenario 2 above.  

 

 3.6 Summary  

This chapter has described the conceptual model of a personalised search agent, as a solution 

to the problems identified in Chapter 1, filling in the gaps in the current theoretical framework 

of personalised information searching. The conceptual model of the PSA is well illustrated 

with diagrams showing the PSA architecture. The components in the conceptual model along 

with the different algorithms and calculations used have also been explained in detail. The 

chapter ends with a scenario walkthrough, which reveals the functionalities of the PSA and 

illustrates the information flow and the process routines of the PSA conceptual model. The 

next chapter will illustrate the implementation of the PSA conceptual model, through the 

design and development of a prototype for the PSA. 
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CHAPTER 5 TESTING, BENCHMARKING AND FINDINGS 
 

This chapter includes the test criteria, results and benchmarking for the PSA prototype and 

candidate search engines. The search domain for this testing is limited to the University of 

Canberra website. The test criteria are framed to capture the relevancy of the results with 

respect to a particular group of users.  

 

5.1 Software testing standards for the PSA 
There are various standards for testing softwares. Initially, the acceptance testing was 

considered as the primary candidate for testing the PSA because, it allows testing of the 

functionalities of the PSA in an end user level. However, acceptance testing was later 

discarded as a test standard for the PSA because this test standard needs to have a Boolean 

output: pass or fail (Acceptance test in software engineering, 2005). There is generally no 

degree of success or failure can be messuerd with this software testing standard, which is not 

suitable for testing the PSA. On further analysis on the testing standards, it was found the test 

cases, a variation of the accepatance testing standard, is a more suitable testing standard to 

evaluate the perfomance and funtionalities of the PSA. In software engineering, a test case is 

a set of conditions or variables under which a tester will determine if a requirement upon an 

application is partially or fully satisfied. For the test case standard, there is a known input and 

an expected output, which is worked out before the test. The known input should test a 

precondition and the expected output should test a postcondition. The written test cases 

include a description of the functionality to be tested taken from either the requirements or 

use cases, and the preparation required to ensure that the test can be conducted (Test case in 

software engineering, 2005).  

5.2 Defining the test criteria: pre and post conditions  
The test criteria were developed in accordance with the testing standard selected to assess the 

quality of the new system and the candidate search engines by measuring the efficiency, the 

responses and, most importantly, the relevancy of the result. Following are definitions of 

these three terms in the context of the testing.  

 

Relevancy: - relevancy is highly personal and it is therefore difficult to define standards for 

its measurement. The best method is a user survey. However, because of the time limits, 

relevancy was measured based on a set of assumptions as follows: 
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 The search domain is set as the University Of Canberra website, 

www.canberra.edu.au. 

 Relevancy is measured considering the user as a research student and by pre defining 

some of the preferences of such a user, which are listed in table 5.1 below.  

 

Keyword 

(pre condition) 

Preference assumed for a Research Student 

(post condition) 

Job  Jobs in relation to research field  

Fee Fees for research students 

Thesis Guidelines for writing a thesis. 

Scholarships Scholarships for international research students.   

Table 5.1: Assumed preferences against test keywords. 

 

 The candidate systems selected for comparison are www.google.com, 

www.yahoo.com and www.altavista.com. 

 How far the results are relevant to the assumption is judged from a research student’s 

perspective. However, the results can be verified with a wider assumption and with 

greater variety in groups of users. This is just a matter of time. 

 A good database entry has been made for the selected search keywords, as real use of 

the system comes with time and how long it has been used, hence how much data is 

available for that user.  

 

Efficiency: - efficiency unveils how effectively the system can remember user preferences 

rather than asking users to recall their preferences each time. Apparently, it tests how the 

system learns by capturing user input and feedback and uses that information to increase the 

efficiency of current search practice. 

 

Responsiveness: - responsiveness is not how fast the results are displayed to the user, but 

how fast the user receives relevant results.  

 

5.3 Test results of the PSA 
The PSA can be accessed using a temporary domain www.psa.dl.am. The test results for the 

PSA following the search criteria in Table 5.1 are tabulated in Tables 5.2 to 5.5 below. 
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Test No.1 Keyword: JOB Service: www.psa.dl.am Time: 1 Sec No URL DESCRIPTION Relevancy 

1 
http://www.canberra.edu.au/careers/jobs/notic
es-overseas/voluntary-research-
assistant131004.html 

Job vacancy listing for Voluntary Research 
Assistant in South West Madagascar ***** 

2 http://www.canberra.edu.au/hr/jobs/ Official job posting page of the University of 
Canberra *** 

3 http://www.canberra.edu.au/recruitment/jobs/j
ob-05-2076.html 

Job vacancy listing for Associate Professor in 
the University of Canberra 

** 
 

4 

http://www.canberra.edu.au/recruitment/jobs/j
ob-05-2076.html 

Issues regarding job prospects of research 
students by Professor Don Aitkin, Vice 
Chancellor and President, University of 
Canberra, on 31 March 1999 

* 

5 
http://www.canberra.edu.au/recruitment/jobs/a
ppinfo.html 

Information for applicants about the 
University of Canberra as an employer and 
how to apply for a job 

*** 

Average 2. 8 Total 14 

Table 5.2: Test results of the PSA for keyword ‘Job’ 

 

 
Test No.2 Keyword: FEE Service: www.psa.dl.am Time: 1. 5 Sec No URL DESCRIPTION Relevancy 

1 http://www.canberra.edu.au/study/studying/fe
es/international-fees-pg.html 

A list of international student fees for 2006 
Postgraduate Programs  ***** 

2 http://www.canberra.edu.au/student-
services/fees/fee-help 

Student administration help and assistance  
regarding fee payment *** 

3 http://www.canberra.edu.au/student-
services/fees/fee_policy 

University policy on domestic and 
international student fees ** 

4 
http://www.canberra.edu.au/student-
services/fees/domestic-postgraduate-tuition-
fee-rates  

Domestic Postgraduate Tuition Fee Rates, 
Calculation of Domestic Tuition Fees etc. ** 

Average 3 Total 12 

Table 5.3: Test results of the PSA for keyword ‘Fee’ 

 

 
Test No.3 Keyword: THESIS Service: www.psa.dl.am Time: 1 Sec No URL DESCRIPTION Relevancy 

1 

http://www.canberra.edu.au/secretariat/goldbo
ok/append.html 

Higher Degrees by Research: Policy and 
Procedures, Appointment of Examiners for 
thesis evaluation, Certificate of Completion 
of Thesis for Higher Degree by Research etc. 

***** 

2 
http://www.canberra.edu.au/studyskills/writin
g/ 

Page from the academic skills program, with 
links to thesis proposals, thesis writing, 
essays etc. 

*** 

Average 4 Total 8 

Table 5.4: Test results of the PSA for keyword ‘Thesis’ 
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Test No.4 Keyword: SCHOLARSHIPS Service: www.psa.dl.am Time: 0. 5 Sec No URL DESCRIPTION Relevancy 

1 
http://www.canberra.edu.au/student-
services/scholarships/international-research-
scholarships  

List of all International Research 
Scholarships available in the University of 
Canberra. 

***** 

2 

http://www.canberra.edu.au/student-
services/scholarships/research-scholarships 

A list of all available doctoral and masters 
degrees by research scholarships available in 
the University of Canberra for both domestic 
and international students. 

**** 

3 http://www.canberra.edu.au/news_events/med
ia_releases/media_03_08_04_3.html 

News regarding the University of Canberra 
proposals for research funding ** 

4 
http://www.canberra.edu.au/news_events/med
ia_releases/2003_backup/media_12_9_03.htm
l 

News regarding new research scholarships 
from the University of Canberra *** 

5 http://www.canberra.edu.au/handbook2003/un
iversity/university-Bursarie.html 

A list of all available scholarships in the 
University of Canberra. * 

Average 3 Total 15 

Table 5.5: Test results of the PSA for keyword ‘Scholarships’ 

 

5.4 Test results for the search engines 
The test results for candidate search engines following the search criteria in Table 5.1 are 

described below. 

www.google.com  

The test results for Google.com following the search criteria in Table 5.1 are tabulated in 
Tables 5.6 to 5.9 below. 
 
 

Test No.1 Keyword: JOB Service: www.Google.com Time: 0. 55 Sec No URL DESCRIPTION Relevancy 

1 http://www.canberra.edu.au/tertiary-to-work/ Job fair website, detailing the job seek 
assistance and important dates of job fair etc. ** 

2 http://www.canberra.edu.au/hr/jobs/ Official job posting page of the University of 
Canberra *** 

3 
http://www.canberra.edu.au/careers/developm
ent/applications.html 

University career development website 
detailing how to apply for a job, how to 
prepare a CV, a covering letter etc. 

** 

4 http://www.canberra.edu.au/special-
ed/papers/shaddock2001c.html 

Link in favour of disabled people, support for 
disabled job-seekers.  -- 

5 
http://www.canberra.edu.au/recruitment/jobs/a
ppinfo.html 

Information for applicants about the 
University of Canberra as an employer and 
how to apply for a job 

*** 

Average 2 Total 10 

Table 5.6: Test results of google.com for keyword ‘Job’ 
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Test No.2 Keyword: FEE Service: www.Google.com Time: 0. 25 Sec No URL DESCRIPTION Relevancy 

1 http://www.canberra.edu.au/student-
services/fees/fee-help 

Student administration help and assistance 
regarding fee payment *** 

2 
http://www.canberra.edu.au/student-
services/fees/domestic-postgraduate-tuition-
fee-rates  

Domestic Postgraduate Tuition Fee Rates, 
Calculation of Domestic Tuition Fees etc. ** 

3 http://www.canberra.edu.au/student-
services/fees/fee_policy 

University policy on domestic and 
international student fees ** 

4 

http://www.canberra.edu.au/secretariat/feepay.
html Administrative Procedural Guidelines for Fee 

Paying Short Courses 

 

-- 

Average 1.75 Total 7 

Table 5.7: Test results of google.com for keyword ‘Fee’ 

 

 

 
Test No.3 Keyword: THESIS  Service: www.Google.com Time: 0. 18 Sec No URL DESCRIPTION Relevancy 

1 http://www.canberra.edu.au/courses/index.cfm
?action=detail&subjectid=6019&year=2005 

Page explaining honours thesis subject 
details.  -- 

2 http://www.canberra.edu.au/courses/index.cfm
?action=detail&subjectid=6609&year=2005 

Page explaining honours Research thesis 
subject details -- 

Average 
 

0 Total 0 

Table 5.8: Test results of google.com for keyword ‘Thesis’ 

 

 
Test No.4 Keyword: SCHOLARSHIPS Service: www.Google.com Time: 0. 25 Sec No URL DESCRIPTION Relevancy 

1 http://www.canberra.edu.au/student-
services/scholarships 

General information regarding scholarships 
and prizes in the University of Canberra ** 

2 
http://www.canberra.edu.au/student-
services/scholarships/scholarships-for-
indigenous-students 

Scholarships available to indigenous 
students. -- 

3 
http://www.canberra.edu.au/student-
services/scholarships/scholarships-awarded-
automatically 

Special scholarships and undergraduate 
scholarships are described  -- 

4 
http://www.canberra.edu.au/student-
services/scholarships/international-research-
scholarships  

List of all International Research 
Scholarships available in the University of 
Canberra. 

***** 

5 
http://www.canberra.edu.au/student-
services/scholarships/scholarships-policy-and-
guidelines 

The University of Canberra Scholarships 
Policy & Guidelines ** 

Average 
 

1. 8 Total 9 

Table 5.9: Test results of google.com for keyword ‘Scholarships’ 
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www.AltaVista.com  

 
The test results for AltaVista.com following the search criteria in Table 5.1 are tabulated in 
Tables 5.10 to 5.13 below. 
 
 

Test No.1 Keyword: JOB Service: www.AltaVista.com Time:  1 Sec No URL DESCRIPTION Relevancy 

1 
http://www.canberra.edu.au/uc/lectures/mante
ch/manpol/sem981/unit3432/HRM_1_Week_
9_Job_Design,_Recruitment,_Selection.txt 

A text document detailing job design, 
recruitment and selection criteria  --  

2 http://www.canberra.edu.au/tertiary-to-work/ Job fair website, detailing the job seek 
assistance and important dates of job fair etc. ** 

3 
http://www.canberra.edu.au/hr/services/classif
ications/handbook.html 

Handbook on the Evaluation Process for 
General Staff Positions of the University of 
Canberra 

* 

4 http://www.canberra.edu.au/special-
ed/papers/shaddock2001c.html 

Link in favour of disabled people, support for 
to disabled job-seekers.  -- 

5 

http://www.canberra.edu.au/uc/lectures/mante
ch/manpol/sem972/unit3488/Unit3488+HRM
2_lecture_7.2_Job_Selection_and_Competenc
y-Based_Assessment.txt 

Text file describing How HRD Can Improve 
the Job Selection Process 
 -- 

Average 
 

0.6 Total 3 

Table 5.10: Test results of AltaVista.com for keyword ‘Job’ 

 

 

 
Test No.2 Keyword: FEE Service: www.AltaVista.com Time: 0.28 Sec 

No 
URL DESCRIPTION Relevancy 

1 
http://www.canberra.edu.au/student-

services/fees/fee-help 

Student administration help and assistance 

regarding fee payment 
*** 

2 
http://www.canberra.edu.au/student-

services/fees/fee-help 

Student administration help and assistance 

regarding fee payment 
*** 

3 
http://www.canberra.edu.au/secretariat/feepay.

html 

Administrative Procedural Guidelines for Fee 

Paying Short Courses 
-- 

4 
http://www.canberra.edu.au/secretariat/legislat

ion/rules/32.html 

FEES RULES 1995 University of Canberra 
-- 

Average 
 

1.5 Total 6 

Table 5.11: Test results of AltaVista.com for keyword ‘Fee’ 
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Test No.3 Keyword: THESIS  Service: www.AltaVista.com Time 0.74 Sec No URL DESCRIPTION Relevancy 

1 
http://www.canberra.edu.au/QPR/1998/White
1998.pdf 

Thesis Writing For Supervisors: Article from 
Victoria University of Technology, Australia 
 

** 

2 
http://www.canberra.edu.au/secretariat/goldbo
ok/forms/thesisrqmt.pdf 

Administrative requirements for a thesis: 
Appendix to Higher degrees by research: 
policy and procedures, part of the gold book 

***** 

Average 
 

3.5 Total 7 

Table 5.12: Test results of AltaVista.com for keyword ‘Thesis’ 

 

 
Test No.4 Keyword: SCHOLARSHIPS Service: www.AltaVista.com Time: 0.85 Sec No URL DESCRIPTION Relevancy 

1 http://www.canberra.edu.au/student-
services/scholarships 

General information regarding scholarships 
and prizes in the University of Canberra ** 

2 http://www.canberra.edu.au/handbook2003/un
iversity/university-Bursarie.html 

A list of all available scholarships in the 
University of Canberra. * 

3 
http://www.canberra.edu.au/student-
services/scholarships/undergraduate-
scholarships 

Undergraduate Scholarship details  
** 

4 

http://www.canberra.edu.au/student-
services/scholarships/research-scholarships 

A list of all available doctoral and masters 
degrees by research scholarship available in 
the University of Canberra for both domestic 
and international students. 

**** 

5 
http://www.canberra.edu.au/student-
services/scholarships/scholarships-awarded-
automatically 

Special scholarships and undergraduate 
scholarships are described  -- 

Average 
 

1.8 Total 9 

Table 5.13: Test results of AltaVista.com for keyword ‘Scholarships’ 
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www.yahoo.com  

 
The test results for Yahoo.com following the search criteria in Table 5.1 are tabulated in 

Tables 5.14 to 5.17 below. 

 
Test No.1 Keyword: JOB Service: www.yahoo.com Time: 0. 31 Sec No URL DESCRIPTION Relevancy 

1 http://www.canberra.edu.au/tertiary-to-work/ Job fair website, detailing job seeker 
assistance and important dates of job fairs ** 

2 http://www.canberra.edu.au/careers/developm
ent/careers-guide.html 

Careers Information Access Guide ** 

3 
http://www.canberra.edu.au/uc/lectures/mante
ch/manpol/sem981/unit3432/HRM_1_Week_
9_Job_Design,_Recruitment,_Selection.txt 

A text document detailing job design, 
recruitment and selection criteria  --  

4 
http://www.canberra.edu.au/hr/services/classif
ications/handbook.html 

Handbook on the Evaluation Process for 
General Staff Positions of the University of 
Canberra 

* 

5 http://www.canberra.edu.au/careers/links.html Page with helpful links to employment 
websites.  ** 

Average 
 

1.4 Total 7 

Table 5.14: Test results of Yahoo.com for keyword ‘Job’ 

 

 

 
Test No.2 Keyword: FEE Service: www.yahoo.com Time: 0. 24 Sec No URL DESCRIPTION Relevancy 

1 http://www.canberra.edu.au/student-
services/fees/fee-help 

Student administration help and assistance 
regarding fee payment *** 

2 
http://www.canberra.edu.au/student-
services/fees/domestic-postgraduate-tuition-
fee-rates  

Domestic Postgraduate Tuition Fee Rates, 
Calculation of Domestic Tuition Fees etc. ** 

3 http://www.canberra.edu.au/secretariat/feepay.
html 

Administrative Procedural Guidelines for Fee 
Paying Short Courses -- 

4 http://www.canberra.edu.au/secretariat/legislat
ion/rules/32.html 

FEES RULES 1995 University of Canberra -- 

Average 
 

1.25 Total 5 

Table 5.15: Test results of Yahoo.com for keyword ‘Fee’ 
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Test No.3 Keyword: THESIS  Service: www.yahoo.com Time 0.19 Sec No URL DESCRIPTION Relevancy 

1 
http://www.canberra.edu.au/studyskills/writin
g/litreview.html 

ABOUT WRITING A LITERATURE 
REVIEW 
 

**** 

2 
http://www.canberra.edu.au/QPR/1998/White
1998.pdf 

Thesis Writing For Supervisors: Article from 
Victoria University of Technology, Australia 
 

** 

Average 
 

3 Total 6 

Table 5.16: Test results of Yahoo.com for keyword ‘Thesis’ 

 

 
Test No.4 Keyword: SCHOLARSHIPS Service: www.yahoo.com Time: 0. 07 Sec No URL DESCRIPTION Relevancy 

1 http://www.canberra.edu.au/student-
services/scholarships 

General information regarding scholarships 
and prizes in the University of Canberra ** 

2 http://www.canberra.edu.au/handbook2003/un
iversity/university-Bursarie.html 

A list of all available scholarships in the 
University of Canberra * 

3 http://www.canberra.edu.au/news_events/med
ia_releases/media_03_08_04_3.html 

News regarding University of Canberra 
proposals for research funding ** 

4 
http://www.canberra.edu.au/student-
services/scholarships/undergraduate-
scholarships 

Undergraduate Scholarship details  
** 

5 

http://www.canberra.edu.au/student-
services/scholarships/research-scholarships 

A list of all available doctoral and masters 
degrees by research scholarship available in 
the University of Canberra for both domestic 
and international students. 

**** 

Average 
 

2.2 Total 11 

Table 5.17: Test results of Yahoo.com for keyword ‘Scholarships’ 
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5.5 Bench marking 
 

Bench marking for the test results for the PSA and candidate search engines was done based 

on the result tables above in section 5.3. Firstly, the average relevancy, termed the Relevancy 

Index, was found for each table for each candidate system. The candidate average was then 

calculated by taking the average of the tables. This is depicted in Table 5.18 below. 

  

          Keyword PSA Google AltaVista Yahoo 

Job 2.80 2.00 0.6 1.40 

Fee 3.00 1.75 1.5 1.25 

Thesis 4.00 0.00 3.5 3.00 

R
el

ev
an

cy
 

A
ve

ra
ge

s 

Scholarship 3.00 1.80 1.5 2.20 

Total 12.8 5.5 7.1 7.85 

Average 
(Relevancy index) 

 
3.2 

 
1.4 

 
1.8 

 
2 

Table 5.18: Relevancy index of the PSA and the candidate search engines from a research 
student perspective. 

 

 

The results data tables under section two of this chapter also contain the time taken to display 

the search results. Table 5.19 below shows the compilation of the time averages for the PSA 

and the candidate search engines.  
 

 

         Keyword PSA Google AltaVista Yahoo 

Job 1.00 0.55 1.00 0.31 

Fee 1.50 0.25 0.28 0.24 

Thesis 1.00 0.18 0.74 0.19 Ti
m

e 
A

ve
ra

ge
s 

Scholarship 0.50 0.25 0.85 0.07 

Total (in Seconds) 4.00 1.23 2.87 0.81 

Average  1 0.31 0.72 0.20 

Table 5.19: Averages of the time taken by the PSA and the candidate search engines under  
                    various search criteria 
 

 74



A relevancy response factor (time taken for delivering the relevant results not just the results) 

is just an indication of relevant results and can be taken by processing the data in compilation 

tables 5.18 and 5.19 as follows, 

 

Relevancy Response Factor = Relevancy Index – Average Response Time  

 

It is important to note that the above line is not a mathematically valid equation as it contains 

an abstract variable of the relevancy index. Instead this can be considered as an effort to test 

the relevancy in a more accountable way. Applying the above relationship, the relevancy 

response factor of the PSA and the candidate search engines are calculated in table 5.20 

below. 

 

 

CANDIDATE 

SYSTEM 

RELEVANCY 

INDEX 

AVERAGE 

RESPONSE TIME 

RELEVANCY 

RESPONSE 

FACTOR 

PSA 3.20 1.00 2.20 

Google 1.40 0.31 1.09 

AltaVista 1.80 0.72 1.08 

Yahoo 2.00 0.20 1.80 

Table 5.20: An effort to find new indicators for relevancy based on the relevancy factor and  
          the time 
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concepts behind the PSA. Hence, there could be variations if a detailed test were conducted in 

a fully developed prototype, with more users and in the WWW domain. However the aim of 

this experiment lay more in establishing the trends and indicating the effectiveness of the PSA 

is in getting relevant, and hence personalised results for its user.  

 

The three quality factors against which the test was carried out were relevancy, responses and 

efficiency. The graph shown in Figure 5.1 clearly demonstrates PSA’s indicative advantage 

over the candidate system in regard to these qualities. Because the PSA takes the input from 

other search engines, obviously it cannot match the response time of the other search engines, 

as the PSA consumes time for pre and post processing between user and search engine. Apart 

from this, the efficiency of the server in which the service is hosted also affects the 

responsiveness. However, the effective time, that is, the time taken by the user to receive 

relevant results, are better with the PSA. Moreover, a repeated search can actually avoid 

search engine interaction hence saving the pre and post processing time. One other factor that 

determines the response time is the web server in which the programme (or service) is 

running. Overall, testing of the PSA prototype has resulted in positive outcomes, confirming 

the validity and practicability of the conceptual model of the PSA developed during this 

research. In the concluding chapter, future modifications and potential advancements for the 

PSA will be discussed. 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 
 

This chapter concludes the research personalisation web information searching through an 

agent based architecture with a summary of research findings. The chapter also considers 

potential areas of refinement and possible goals for the PSA in the future. 

 

6.1 Summary of research findings 

The objective of this research, restating from Chapter 1, is:  

• To develop and effective technique to find user relevant information from search 

engine results 

• To develop a technique to capture user feedbacks  

• Learn from captured user feedback and user search practice 

• Assisting the user to frame effective keyword combinations  

The PSA system has been successful in meeting these objectives. The major research findings 

during this effort are: 

• Developed four different ranking algorithms, namely, the keyword generating 

algorithm, the link ranking, the search engine ranking and the life saving ranking 

towards meeting the objective of developing an effective technique to find user 

relevant information. 

• Developed a novice method to find the user relevant URLs through a combination of 

calculating the active time the user spend on the URL and user feedback on relevancy 

of the URLs. 

• Developed a client-server model enabling generalisation-specialisation on information 

search. This model, helps to build a generalised, however, personalised information 

portfolio in the server side, which is a source of more organised information, than 

search engines. 

• Developed an automated mechanism or generating effective keyword combinations 

via developing the keyword generating algorithm. 

6.2 Conclusions 

The goal of this research work was to find an effective technique for personalising current 

web search practice by using existing information search resources. The Personalised Search 

Agent was therefore constructed through the development of a conceptual model and testing 
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by means of a PSA prototype followed by testing in sample scenarios and comparing the 

results with candidate systems to reach this goal.  

 

Because of the time constraints, strict limits were applied, especially to the development of 

the prototype. The prototype developed therefore is only a working model with just the core 

functionalities of the conceptual model of the Personalised Search Agent. However, much 

effort was put into developing an elaborate conceptual model for the Personalised Search 

Agent, addressing most of the issues raised through the research questions.  

 

The PSA exploits information search resources such as popular search engines, using more 

than one search engine effectively. Indeed, the PSA actually senses which search engine has 

delivered more successful links to a particular user and prioritises the search results 

accordingly using the Search Engine Ranking mechanism. This means, the PSA not only uses 

the meta-search engine feature, but also uses it effectively.   

 

The PSA is also successful in capturing feedback from the user, either by explicitly requesting 

feedback from the user or by learning the user’s habits. In the explicit method, the PSA 

requests feedback on the relevancy of a link presented to the user. However, the PSA also 

receives many implicit inputs, for example, active time, when the user gives feedback on an 

explicit request from the user. These inputs are used to make various calculations regarding 

the relevancy of the link. Care has been taken to request only minimal non-task related inputs 

from the user, in consideration of user comfort and time. Moreover, the PSA effectively 

reduces the user inputs through features such as keyword generating algorithms, which 

generate possible combinations of search string words combined with the category values and 

automatically switch to search mode with different combinations if the user is unhappy with 

the presented results. In conversional method, that is using a search engine, the user has to 

provide different combinations of keywords explicitly, to achieve related results from the 

search engines.  

 

The results for the test carried out in Chapter 5, clearly show the PSA is successful in 

delivering relevant and therefore personalised results to the user. Though the PSA shares 

many techniques (such as the category concept) with similar search personalising systems, 

explained in Chapter 2, it is still relevant in the current theoretical framework, and makes 

original contributions to the field of knowledge because of: 

 79



• its unique features such as the client-server based multi-layer architecture, determining 

the importance of a page by calculating the active time spent by the user on a page 

• Prioritising the search results based on the success rate of the search engines for a 

particular user.  

 

With the client-server architecture, the PSA server, is potentially a good resource for an 

organised, personalised information database. Each and every link in the server database is 

reviewed and accepted by at least one user, which confirms that it is relevant to that particular 

category. This is particularly important, considering that, information search services like the 

MSN Search are more likely to present human-powered listings (How search engines work, 

2002), whereas the PSA has all its cached URLs reviewed and ranked during the search 

process itself.  

 

Though PSA fulfils its goal of achieving more personalised search results compared to current 

search practices, it still has potential areas of refinement, which throw light on future work in 

regard to the PSA, and are explained in the following section of this chapter.  

 

6.3 Future Work and Extensions for the PSA 
 

Though a prototype for the PSA was developed as part of the research, only the client side 

was implemented because of the strict time frame. Also, the current prototype does not 

identify multiple users. This could easily be solved with a general login but, because, it is 

merely a technical issue, it is excluded from the current prototype. An enhanced prototype 

which implements the full features of the PSA as developed and designed in the conceptual 

framework, will enable more sophisticated tests which could reveal more run-time issues in 

personalisation of web-searching using the PSA (this iteration is part of the selected research 

methodology: Systems Development).   

 

The conceptual framework has well developed methods to tap into user action and to change 

it to useful information in establishing the relevancy of the pages. However, the global and 

local categories and preference databases, have more potential uses than are actually served in 

the current model. Finding and mapping inter-category relations would enable the PSA to 

predict a keyword with its associated category. This apparently needs the application of data 
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mining and artificial intelligence techniques to the already gathered data. Because proper data 

is needed to apply the above techniques effectively, the PSA has excellent potential for 

further research, by creating unique user profiles, which, as explained in Chapter 3, comprises 

organised information about the personal search history of a user. 

 

Another issue with the PSA is the technical barrier to taping information from various search 

engines. Most search engines develop highly complicated HTML pages as a result and hence 

it is a difficult task to filter out necessary information from such services. An effective 

alternative for this has to be found. Application Programmes Interfaces (API) are promising in 

this regard though only a few search engines, like google.com, are offering such  facilities.  

 

Currently the PSA does not provide a mechanism to check the current availability of a cached 

URL, that is, whether the information resource is relocated or the service is unavailable. An 

effective mechanism has to be developed to overcome this limitation leaving more scope for 

further research on the PSA. Also there is a noted limitation in the currency of the results 

cached by the PSA. At present the PSA updates its cached results only with user interaction. 

That means, if the user does not prompt for a new search, the cached results will not be 

updated. This leaves scope for a new technique which can update the cached results 

automatically, without the interaction of the user.   

 

Finally, though XML is the data structure for the PSA conceptual model, during development 

of the prototype database (MS Access) was used for data storage. Again this is merely 

technical, and can be incorporated into future refinements of the current prototype of the PSA.  

 81



BIBLIOGRAPHY 
 
Acceptance test in software engineering: From Wikipedia, the free encyclopaedia. (2005). 
Retrieved 3 August 2005, from http://en.wikipedia.org/wiki/Acceptance_test 
 
Ah-Hwee,T., Hwee-Leng, O., Hong Pan, J. & Qiu-Xiang, L. (2001). FOCI: A Personalized 
Web Intelligence System. Singapore: 21 Heng Mui Keng Terrace. 
 
Analia, A. & Daniela, G. (2000). PersonalSearcher: An Intelligent Agent for Searching Web 
Pages. Argentina: La Pampa. 
 
Baudoin, C. & Hollowell, G. (1996). Realizing the Object-Oriented Lifecycle. New Jersey: 
Prentice Hall, Upper Saddle River. 
 
Björkman, E. & Ohlsson, R. (2000). Research på Internet. Stockholm: Liber. 

 
Björn, H. (1997). Intelligent Software Agents on the internet: an inventory of currently offered 
functionality in the information society and prediction of future developments. USA: 
University of California. 

 
Boris, R., Parisch, B., Paul M. & Mícheál, O. (2004). User Profiling for Content 
Personalisation in Information Retrieval. Ireland: Waterford Institute of Technology. 

 
Brooks, R.A. (1991). Intelligence without Representation: Artificial Intelligence. USA: 
Cambridge, p.9-12. 

 
Chignell, M. H., Gwizdka, J. & Bodner, R.C. (1999). Discriminating meta-search: a 
framework for evaluation, Information Processing & Management, vol 35, p. 337, Elsevier 
Science Ltd. 

Convey, J. (1992). Online Information Retrieval. Library Association Publishing: London. 
 

Cooke, A. (1999). A guide to finding quality information on the Internet. London: Library 
Association Publishing. 
 
Cyrus, S. & Yi-Shin, C. (2003). Web Information Personalization: Challenges and 
Approaches. USA: University of Southern California, Los Angeles, CA. 
 
Edelstein, H. (1994). Unraveling Client/Server Architecture. DBMS, Vol.34, p.7. 
 
Extensible Markup Language: XML activity statement. (2002). Retrieved 2 January, 2005, 
from http://www.w3.org/XML 
 
General Subject Directories: Table of Features. (2005). Retrieved 2 January 2005, from 
http://www.lib.berkeley.edu/TeachingLib/Guides/Internet/SubjDirectories.html#Guides 
 
Getting Started with ASP.NET: What is ASP.NET. (2005). Retrieved 10 January, 2005, from 
http://msdn.microsoft.com/asp.net/gettingstarted/ 
 

 82



Giuseppe,A. & Umberto, S.(1999). User profile modelling and applications to digital 
libraries. Italy: C.N.R. 

 
Harter, S. (1986). Online Information Retrieval: Concepts, Principles and Techniques. 
Orlando: Academic Press. 

 
Haveliwala, T.H. (2002). Topic-sensitive PageRank:Proceedings of the 11th International 
World Wide Web Conference. USA: Hawaii, p. 517 – 526.  
 
How search engines work: hybrid search engines. (2002). Retrieved 12 April, 2005, from 
http://searchenginewatch.com/webmasters/article.php/2168031 

 
Hyacinth, S.N. (1996) Software Agents: An Overview, Knowledge Engineering Review, 
Vol.11, No 3, pp.1-40.  
 
John, P.M. (2003). A Multiple Model Approach to Personalised Information Access. Ireland: 
Dublin.  

 
Khawar, Z.A. & Cary, E.U. (2002). Developing Enterprise Java Applicatons with J2EETM and 
UML. p. 93 – 121. 

 
Kristy, W. (2000). Research methods for students and professionals. NSW: Waga Waga. 
 
Large, A., Tedd, L. A. & Hartley, R. J. (1999). Information Seeking in the Online Age. 
London: Bowker-Saur. 

Lawrence, S. & Giles, C. L. (1999, July 8). Accessibility of Information on the Web. 
Nature,Vol 400, p.107–109. USA 

 
Linell & Rose, M. (2001). Electronic Information Search-tools – A study of desired features. 
Sweden: Jönköping.   
 
Marchionini, G. (1997). Information Seeking in Electronic Environments. UK: Cambridge 
University Press 
 
Maring, B. (1996 May). Object-Oriented Development of Large Applications, IEEE 
Software13 (3). 33-40. 
 
Marshall, C. & Rossman, G.B. (1995). Designing qualitative research, 2nd edn. Sage. CA: 
Thousand Oaks. 

Meta search engines: What Are "Meta-Search" Engines? How Do They Work?. (2004). 
Retrieved 29 January, 2005, from http://www.lib.berkeley.edu/TeachingLib/Guides/Internet/ 
MetaSearch.html 

 
Microsoft Introduces Highly Productive .NET Programming Language: C#. (2005). Retrieved 
20 March 2005, from http://www.microsoft.com/presspass/press/2000/jun00/CsharpPR.mspx 

 

 83



Newell, D. & Machura, M. (1995). "Interoperable Object Models for Large Scale Distributed 
Systems," 30-31. Proceedings. International Seminar on Client/Server Computing. La Hulpe, 
Belgium, October 30-31 1995. London.  
 
Nunamaker, j., Chen , M. & Purdin, T. (1991). Systems development in information systems 
research. Journal of Management Information Systems, 7(3), 89-106. 
 
Recommended subject directories: UC Berkeley - Teaching Library Internet Workshops. 
(2005). Retrieved 11 May, 2005, from http://www.lib.berkeley.edu/TeachingLib/Guides/ 
Internet/SubjDirectories.html 
 
Rapoport, R.N. (1970). Three Dilemmas in Action Research, Human Relations, (23:4), pp. 
499-513. 
 
Review of AltaVista. (2003). Retrieved 11 November 2004 from http://www.notess.com/ 
search/dir/altavista/index.html 
 
Review of Google.(2004). Retrieved 27 February, 2005, from http://searchengineshowdown 
.com /features/google/review.html 
 
Review of Yahoo search. (1999). Retrieved 14 November, 2004, from http://searchengine 
showdown.com/features/yahoo/review.html 
 
Search engine architecture. (n.a). Retrieved 01 December, 2004, from 
http://www.searchenginewatch.com/Webmasters/work.htm (Authorised access). 
 
Stan, F. & Art, G. (1996). Is it an Agent, or Just a program?: A Taxonomy for Autonomous 
Agents. Germany: University of Memphis, Springer-Verlag. 
 
Test case in software engineering: From Wikipedia, the free encyclopaedia. (2005). Retrieved 
3 August 2005, from http://en.wikipedia.org/wiki/Test_case 
 
The WDG's glossary of terms: a definition for search engine. (1997). Retrieved 11 November, 
2004, from http://www.htmlhelp.com/reference/glossary.html 

Three Tier Software Architectures: Technical Detail. (2004). Retrieved 03 December, 
2005, from http://www.sei.cmu.edu/str/descriptions/threetier_body.html 

Trends & Statistics: The Web's Richest Source. (2005). Retrieved 1 February, 2005, 
from http://www.clickz.com/stats/web_worldwide 

Trist, E. (1976). Experimenting with Organizational Life: The Action Research 
Approach. New York: Plenum.  

UCC Glossary: XML Standardisation. (2003). Retrieved 2 January, 2005, from 
http://usnet03.uc-council.org/glossary 
 
UML Resource Page: Introduction to OMG's Unified Modelling Language (2005). Retrieved 
11 February, 2005, from http://www.omg.org/gettingstarted/what_is_uml.htm 
 

 84



What is .NET: Driving business values with the Microsoft .NET platform. (2005). Retrieved 
11 January, 2005, from http://www.microsoft.com/Net/Basics.aspx 
 
What is the "Invisible Web"?. (2004). Retrieved 12 May, 2005, from http://www.lib. 
berkeley.edu/TeachingLib/Guides/Internet/InvisibleWeb.html 

 85



APPENDIX A  SAMPLE INTERACTION SCREEN SHOTS OF PSA 
 
 

 
 

Home page for PSA prototype 
 
 
 

 
 

Page for adding category or sub-category 
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Primary search result page of PSA prototype 
 
 

 
 

Cached search result page of PSA prototype 
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Page that opens individual URLs from the result. 
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APPENDIX B  SOURCE CODE OF THE PSA PROTOTYPE 
 
 
GUI.aspx.cs 
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
 
namespace PSA 
{ 
 /// <summary> 
 /// Summary description for WebForm1. 
 /// </summary> 
 public class WebForm1 : System.Web.UI.Page 
 { 
  protected System.Web.UI.HtmlControls.HtmlGenericControl DIV1; 
  protected System.Web.UI.HtmlControls.HtmlGenericControl DIV2; 
  private SearchFilter searchFilter; 
  protected System.Web.UI.WebControls.Button search_cmd; 
  protected System.Web.UI.WebControls.Image Image1; 
  protected System.Web.UI.WebControls.Label webcrawler_lbl; 
  protected System.Web.UI.WebControls.Label lbl_CategoryName; 
  protected System.Web.UI.WebControls.Label lblKeyword; 
  protected System.Web.UI.WebControls.DropDownList cmb_Category; 
  protected System.Web.UI.WebControls.TextBox keyword_txt; 
  private string keyword; 
  protected System.Web.UI.WebControls.Label lblSearchString; 
  protected System.Web.UI.WebControls.Label lblNum; 
  protected System.Web.UI.WebControls.Button cmd_Next; 
  protected System.Web.UI.WebControls.Button cmd_Finish; 
  protected System.Web.UI.WebControls.ListBox lst_Keyword; 
  protected System.Web.UI.WebControls.DropDownList 
cmb_subCategory; 
  protected System.Web.UI.WebControls.CheckBox chk_UC; 
  protected System.Web.UI.WebControls.CheckBox chk_History; 
  protected System.Web.UI.WebControls.Image img_relevancyLevel; 
  protected System.Web.UI.WebControls.Label lbl_relevancyLevel; 
  protected System.Web.UI.WebControls.HyperLink HyperLink1; 
  protected System.Web.UI.WebControls.Label lblTime; 
  private DBConnection db; 
 
 
  private void Page_Load(object sender, System.EventArgs e) 
  { 
 
   if (!(Page.IsPostBack)) 
   { 
    db = new DBConnection(); 
    string sql; 
    sql = "SELECT DISTINCT [Category] FROM PSA"; 
    DataSet dsCategory = db.selectQuery(sql); 
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    cmb_Category.DataSource = dsCategory; 
    cmb_Category.DataValueField = "Category"; 
    cmb_Category.DataBind(); 
     
    cmb_Category.Visible = false; 
    cmb_subCategory.Visible = false; 
    lbl_CategoryName.Visible = false; 
    DIV1.Visible = false; 
 
    lbl_CategoryName.ForeColor = Color.Black; 
    lbl_CategoryName.Font.Bold = false; 
    cmb_Category.SelectedValue = "None"; 
    cmb_Category_SelectedIndexChanged(sender, e); 
   } 
  } 
  
  #region Web Form Designer generated code 
  override protected void OnInit(EventArgs e) 
  { 
   // 
   // CODEGEN: This call is required by the ASP.NET Web Form 
Designer. 
   // 
   InitializeComponent(); 
   base.OnInit(e); 
  } 
   
  /// <summary> 
  /// Required method for Designer support - do not modify 
  /// the contents of this method with the code editor. 
  /// </summary> 
  private void InitializeComponent() 
  {     
   this.lst_Keyword.SelectedIndexChanged += new 
System.EventHandler(this.lst_Keyword_SelectedIndexChanged); 
   this.search_cmd.Click += new 
System.EventHandler(this.search_cmd_Click); 
   this.cmb_Category.SelectedIndexChanged += new 
System.EventHandler(this.cmb_Category_SelectedIndexChanged); 
   this.cmb_subCategory.SelectedIndexChanged += new 
System.EventHandler(this.cmb_subCategory_SelectedIndexChanged); 
   this.cmd_Next.Click += new 
System.EventHandler(this.cmd_Next_Click); 
   this.cmd_Finish.Click += new 
System.EventHandler(this.cmd_Finish_Click); 
   this.chk_History.CheckedChanged += new 
System.EventHandler(this.chk_History_CheckedChanged); 
   this.Load += new System.EventHandler(this.Page_Load); 
 
  } 
  #endregion 
 
  private void search_cmd_Click(object sender, System.EventArgs 
e) 
  {  
   DateTime startTime; 
   TimeSpan totalTime; 
   startTime = DateTime.Now; 
   keyword = keyword_txt.Text ; 
   db = new DBConnection(); 
   string sql = "SELECT COUNT(*) FROM PSA WHERE keyword = '" 

 90



+ keyword + "'"; 
    
   if (db.selectScalar(sql) > 0) 
    try 
    { 
      
      Request.Params.Get("isNew").Equals("yes"); 
      
    } 
    catch{Response.Redirect("Search.aspx?key=" + 
keyword);} 
   else 
   {  
    lbl_CategoryName.Visible = true; 
    lbl_CategoryName.ForeColor = Color.Red; 
    lbl_CategoryName.Font.Bold = true; 
    cmb_Category.Visible = true; 
    cmb_subCategory.Visible = true; 
 
   } 
//    
 
   int num = 1; 
    
   switch  (num) 
   {  
    case 1: 
     img_relevancyLevel.Visible = true; 
     lbl_relevancyLevel.Visible = true; 
     img_relevancyLevel.ImageUrl = "high.jpg"; 
     break; 
    case 2: 
     img_relevancyLevel.ImageUrl = "average.jpg"; 
     lbl_relevancyLevel.Visible = true; 
     img_relevancyLevel.Visible = true; 
     break; 
    case 3: 
     img_relevancyLevel.ImageUrl = "low.jpg"; 
     lbl_relevancyLevel.Visible = true; 
     img_relevancyLevel.Visible = true; 
     break; 
    case 0:           
     img_relevancyLevel.Visible = false;   
     lbl_relevancyLevel.Visible = false; 
     break; 
   } 
 
   if (lblSearchString.Text.Equals(keyword_txt.Text)) 
     num = int.Parse(lblNum.Text) + 1; 
   
   lblSearchString.Text = keyword_txt.Text; 
   lblNum.Text = num.ToString(); 
    
   if (num > 3) 
   { 
    lblSearchString.Text = "Nomore"; 
    lblNum.Text = "1"; 
     
   } 
   else 
   { 
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    searchFilter = new SearchFilter(); 
    string temp = 
searchFilter.isInHistory(keyword_txt.Text); 
    searchFilter.setKeyword(cmb_Category.SelectedValue, 
cmb_subCategory.SelectedValue, this.keyword, num,chk_UC.Checked); 
    string result = searchFilter.getResult(); 
    if (result.Equals("Sorry no result found") && num < 
3) 
     cmd_Next_Click(sender, e); 
    else 
    { 
     DIV1.Visible = true; 
     DIV1.InnerHtml = result; 
     cmd_Finish.Visible = true; 
     cmd_Next.Visible = true; 
   
     cmb_Category.Enabled = false; 
     cmb_subCategory.Enabled = false; 
     search_cmd.Enabled = false; 
     totalTime = DateTime.Now.Subtract(startTime); 
     lblTime.Text = "Your search took (" + 
totalTime.ToString().Substring(6,5) + ")Seconds"; 
    } 
   } 
  } 
 
  private void cmb_Category_SelectedIndexChanged(object sender, 
System.EventArgs e) 
  { 
   if (cmb_Category.Visible == false) 
    DIV1.Visible = false; 
 
   db = new DBConnection(); 
   string category, sql; 
   DataSet dsSubCategory; 
 
   category = cmb_Category.SelectedValue; 
   sql = "SELECT DISTINCT [SubCategory] FROM PSA WHERE 
[Category] = '" + category + "'"; 
   dsSubCategory = db.selectQuery(sql); 
   cmb_subCategory.DataSource = dsSubCategory; 
   cmb_subCategory.DataValueField = "SubCategory"; 
   cmb_subCategory.DataBind(); 
 
   cmb_subCategory.SelectedIndex = 0; 
   cmb_subCategory_SelectedIndexChanged(sender, e); 
  } 
 
  private void cmb_subCategory_SelectedIndexChanged(object 
sender, System.EventArgs e) 
  { 
   lblNum.Text = "0"; 
 
   if (cmb_subCategory.Visible == false) 
    DIV1.Visible = false; 
 
   db = new DBConnection(); 
   string category, subCategory, sql; 
   DataSet dsKeyword; 
 
   category = cmb_Category.SelectedValue; 
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   subCategory = cmb_subCategory.SelectedValue; 
   sql = "SELECT DISTINCT [Keyword] FROM PSA WHERE 
[Category] = '" + category + "' AND [SubCategory] = '" + subCategory + "'"; 
   dsKeyword = db.selectQuery(sql); 
   lst_Keyword.DataSource = dsKeyword; 
   lst_Keyword.DataValueField = "Keyword"; 
   lst_Keyword.DataBind(); 
   lst_Keyword.SelectedIndex = 0; 
   lst_Keyword_SelectedIndexChanged(sender,e); 
  } 
 
  private void lst_Keyword_SelectedIndexChanged(object sender, 
System.EventArgs e) 
  { 
   db = new DBConnection(); 
   string category, subCategory, keyword, sql, result = "", 
str; 
   string start = 
"http://vijaysagar.com/ligon/PSA/guiResult.aspx?got=no&page="; 
   string end = "&found=false"; 
 
   int numRecord; 
   DataSet dsURL; 
 
   category = cmb_Category.SelectedValue; 
   subCategory = cmb_subCategory.SelectedValue; 
   keyword = lst_Keyword.SelectedValue; 
   sql = "SELECT [URL] FROM PSA WHERE [Category] = '" + 
category + "' AND [SubCategory] = '" + subCategory + "' AND [Keyword] = '" 
+ keyword + "' ORDER BY [Time] DESC"; 
    
   dsURL = db.selectQuery(sql); 
   numRecord = dsURL.Tables[0].Rows.Count; 
   end = end + "&cat=" + category + "&sub=" + subCategory + 
"&key=" + keyword; 
   for (int i = 0; i < numRecord; i ++) 
   { 
    str = dsURL.Tables[0].Rows[i][0].ToString(); 
    result = result + "<p>" + " " + (i + 1) + ". " + 
"<a href=" + start + str + end + " target=\"_blank\">" + str + "</a></p>" + 
"<p>"; 
   } 
    
   if (lst_Keyword.Items.Count > 1) 
    chk_History.Visible = true; 
   else 
   { 
    chk_History.Visible = false; 
    //DIV1.Visible = true; 
    DIV1.InnerHtml = result; 
   } 
//****************************************** 
   string key = ""; 
   try  
   { 
    key = Request.Params.Get("keyword"); 
    if (key.Equals("") == false) 
   { 
     keyword_txt.Text = key; 
     cmb_Category.Visible = true; 
     cmb_subCategory.Visible = true; 
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     lbl_CategoryName.Visible = true; 
//     search_cmd_Click(sender, e); 
   } 
   } 
   catch{} 
    
  } 
 
  private void cmd_Next_Click(object sender, System.EventArgs e) 
  { 
   keyword = keyword_txt.Text ; 
   int num = 2; 
 
   if (lblSearchString.Text.Equals(keyword_txt.Text)) 
    num = int.Parse(lblNum.Text) + 1; 
    
   switch  (num) 
   {  
    case 1: 
     img_relevancyLevel.Visible = true; 
     lbl_relevancyLevel.Visible = true; 
     img_relevancyLevel.ImageUrl = "high.jpg"; 
     break; 
    case 2: 
     img_relevancyLevel.ImageUrl = "average.jpg"; 
     lbl_relevancyLevel.Visible = true; 
     img_relevancyLevel.Visible = true; 
     break; 
    case 3: 
     img_relevancyLevel.ImageUrl = "low.jpg"; 
     lbl_relevancyLevel.Visible = true; 
     img_relevancyLevel.Visible = true; 
     break; 
    case 0:           
     img_relevancyLevel.Visible = false;   
     lbl_relevancyLevel.Visible = false; 
     break; 
   } 
 
   lblSearchString.Text = keyword_txt.Text; 
   lblNum.Text = num.ToString(); 
 
   if (num > 3) 
   { 
    lblSearchString.Text = "Nomore"; 
    lblNum.Text = "0"; 
    //**********Add text here********* 
    DIV1.InnerHtml = "Please consider changing your 
keyword"; 
    lblTime.Text = ""; 
    ///////*********************** 
   } 
   else 
   { 
    DateTime startTime; 
    TimeSpan totalTime; 
    startTime = DateTime.Now; 
    searchFilter = new SearchFilter(); 
    string temp = 
searchFilter.isInHistory(keyword_txt.Text); 
    searchFilter.setKeyword(cmb_Category.SelectedValue, 
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cmb_subCategory.SelectedValue, this.keyword, num, chk_UC.Checked); 
    string result = searchFilter.getResult(); 
    if (result.Equals("Sorry no result found") && num < 
3) 
     cmd_Next_Click(sender, e); 
    DIV1.InnerHtml = result; 
    totalTime = DateTime.Now.Subtract(startTime); 
    lblTime.Text = "Your search took (" + 
totalTime.ToString().Substring(6,5) + ")Seconds"; 
   } 
  } 
 
  private void cmd_Finish_Click(object sender, System.EventArgs 
e) 
  { 
   DIV1.InnerHtml = " "; 
   cmb_Category.Enabled = true; 
   cmb_subCategory.Enabled = true; 
   search_cmd.Enabled = true; 
   cmd_Next.Visible = false; 
   cmd_Finish.Visible = false; 
   lblNum.Text = "0"; 
   lbl_relevancyLevel.Visible = false; 
   img_relevancyLevel.Visible = false; 
   Response.Redirect("./gui.aspx"); 
  } 
 
  private void chk_History_CheckedChanged(object sender, 
System.EventArgs e) 
  { 
   if (chk_History.Checked) 
    lst_Keyword.Visible = true; 
   else 
    lst_Keyword.Visible = false; 
  }  
 } 
} 

 
 
 
 
 
 
GUIResult.aspx.cs 
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
 
namespace PSA 
{ 
 /// <summary> 
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 /// Summary description for GUIResult. 
 /// </summary> 
 public class GUIResult : System.Web.UI.Page 
 { 
  protected System.Web.UI.WebControls.Image Image1; 
  protected System.Web.UI.WebControls.Label lblURL; 
  private string page, found, got, key, cat, sub; 
  protected System.Web.UI.WebControls.Label lblSession; 
  protected System.Web.UI.WebControls.Button btnExit; 
  protected System.Web.UI.WebControls.Label lblTotalTime; 
  protected System.Web.UI.WebControls.Label lbl_TotalTime; 
  private DBConnection db; 
 
  private void Page_Load(object sender, System.EventArgs e) 
  { 
   // Put user code to initialize the page here 
   got = Request.Params.Get("got"); 
   page = Request.Params.Get("page"); 
   if (got.Equals("no")) 
   { 
    found = Request.Params.Get("found"); 
    key = Request.Params.Get("key"); 
    cat = Request.Params.Get("cat"); 
    sub = Request.Params.Get("sub"); 
    if (found.Equals("false")) 
     Response.Redirect("Result.aspx?got=yes&page=" 
+ page + "&found=true&cat=" + cat + "&sub=" + sub + "&key=" + key + 
"&Time=" + DateTime.Now.ToLongTimeString()); 
   } 
   else 
   { 
    lblURL.Text = "You are visiting :- " + page; 
    lblSession.Text = "You came at :-  " + 
Request.Params.Get("Time"); 
   } 
  } 
 
  #region Web Form Designer generated code 
  override protected void OnInit(EventArgs e) 
  { 
   // 
   // CODEGEN: This call is required by the ASP.NET Web Form 
Designer. 
   // 
   InitializeComponent(); 
   base.OnInit(e); 
  } 
   
  /// <summary> 
  /// Required method for Designer support - do not modify 
  /// the contents of this method with the code editor. 
  /// </summary> 
  private void InitializeComponent() 
  {     
   this.btnExit.Click += new 
System.EventHandler(this.btnExit_Click); 
   this.Load += new System.EventHandler(this.Page_Load); 
 
  } 
  #endregion 
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  private void btnExit_Click(object sender, System.EventArgs e) 
  { 
   lbl_TotalTime.Visible = true; 
   DateTime startTime, time; 
   TimeSpan  endTime; 
   string totalTime; 
    
   startTime = DateTime.Parse(Request.Params.Get("Time")); 
   key = Request.Params.Get("key"); 
    
   cat = Request.Params.Get("cat"); 
   sub = Request.Params.Get("sub"); 
   page = Request.Params.Get("page"); 
 
   endTime = DateTime.Now.Subtract(startTime); 
   totalTime = endTime.ToString(); 
   totalTime = totalTime.Substring(0, 8); 
   time = DateTime.Parse(totalTime); 
   db = new DBConnection(); 
   string sql; 
   sql = "SELECT COUNT(ID) FROM PSA WHERE [Category] = '" + 
cat + "' AND [SubCategory] = '" + sub + "' AND [Keyword] = '" + key + "' 
AND [URL] = '" + page + "'"; 
    
   if (db.selectScalar(sql) == 0) 
    sql = "INSERT INTO [PSA] ([Category], 
[SubCategory], [Keyword], [Time], [URL]) VALUES ('" + cat + "', '" + sub + 
"', '" + key + "', #" + time.ToLongTimeString() + "#, '" + page + "')"; 
   else 
   { 
    sql = "SELECT [Time] FROM PSA WHERE [Category] = '" 
+ cat + "' AND [SubCategory] = '" + sub + "' AND [Keyword] = '" + key + "' 
AND [URL] = '" + page + "'"; 
    time = 
DateTime.Parse(db.selectQuery(sql).Tables[0].Rows[0][0].ToString()); 
    time = time.Add(endTime); 
 
    sql = "UPDATE [PSA] SET [Time] = #" + 
time.ToLongTimeString() + "# WHERE [Category] = '" + cat + "' AND 
[SubCategory] = '" + sub + "' AND [Keyword] = '" + key + "' AND [URL] = '" 
+ page + "'"; 
   } 
   db.insertORUpdate(sql); 
   lblTotalTime.Text = time.ToLongTimeString() + " AND 
endtime = " + endTime.ToString(); 
   btnExit.Visible = false; 
  } 
 } 
} 
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Search.aspx.cs 
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
 
namespace PSA 
{ 
 /// <summary> 
 /// Summary description for Search. 
 /// </summary> 
 public class Search : System.Web.UI.Page 
 { 
  protected System.Web.UI.WebControls.Button btnSearch; 
  protected System.Web.UI.HtmlControls.HtmlGenericControl DIV1; 
  protected System.Web.UI.WebControls.Label lbl_Heading; 
  protected System.Web.UI.WebControls.Button cmd_back; 
  protected System.Web.UI.WebControls.Button btnNewSearch; 
  protected System.Web.UI.WebControls.Label lblTime; 
  protected System.Web.UI.WebControls.TextBox txtKeyword; 
  
  private void Page_Load(object sender, System.EventArgs e) 
  { 
   // Put user code to initialize the page here 
   if (!(Page.IsPostBack)) 
   { 
    txtKeyword.Text = Request.Params.Get("Key"); 
    btnSearch_Click(sender, e); 
   } 
 
  } 
 
  #region Web Form Designer generated code 
  override protected void OnInit(EventArgs e) 
  { 
   // 
   // CODEGEN: This call is required by the ASP.NET Web Form 
Designer. 
   // 
   InitializeComponent(); 
   base.OnInit(e); 
  } 
   
  /// <summary> 
  /// Required method for Designer support - do not modify 
  /// the contents of this method with the code editor. 
  /// </summary> 
  private void InitializeComponent() 
  {     
   this.btnSearch.Click += new 
System.EventHandler(this.btnSearch_Click); 
   this.cmd_back.Click += new 
System.EventHandler(this.cmd_back_Click); 
   this.btnNewSearch.Click += new 
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System.EventHandler(this.btnNewSearch_Click); 
   this.Load += new System.EventHandler(this.Page_Load); 
 
  } 
  #endregion 
 
  private void btnSearch_Click(object sender, System.EventArgs e) 
  { 
   DateTime startTime; 
   TimeSpan totalTime; 
   startTime = DateTime.Now; 
  DBConnection db = new DBConnection(); 
   string category, subCategory, keyword, sql, result = "", 
str; 
   string start = 
"http://vijaysagar.com/ligon/PSA/guiResult.aspx?got=no&page="; 
   string end; 
 
   int numRecord1; 
   DataSet dsCategory; 
 
   keyword = txtKeyword.Text; 
   sql = "SELECT DISTINCT[Category] FROM PSA WHERE [Keyword] 
= '" + keyword + "'";// ORDER BY [Time] DESC"; 
    
   dsCategory = db.selectQuery(sql); 
 
   numRecord1 = dsCategory.Tables[0].Rows.Count; 
   //************* 
   result = "<TABLE id=\"Table1\" cellSpacing=\"1\" 
cellPadding=\"1\"  border=\"1\">"; 
   for (int x = 0; x < numRecord1; x ++) 
   { 
    int numRecord2; 
    DataSet dsSubCategory; 
 
    sql = "select DISTINCT[SubCategory] FROM PSA WHERE 
[Category] = '" + dsCategory.Tables[0].Rows[x]["Category"].ToString() + "' 
AND [Keyword] = '" + keyword + "'"; 
    dsSubCategory = db.selectQuery(sql); 
 
    numRecord2 = dsSubCategory.Tables[0].Rows.Count; 
    for (int y = 0; y < numRecord2; y ++) 
    { 
     DataSet dsURL; 
     int numRecord; 
     sql = "select * FROM PSA WHERE [SubCategory] 
= '" + dsSubCategory.Tables[0].Rows[y]["SubCategory"].ToString() + "' AND 
[Category] = '" + dsCategory.Tables[0].Rows[x]["Category"].ToString() + "' 
AND [Keyword] = '" + keyword + "'"; 
     dsURL = db.selectQuery(sql); 
     numRecord = dsURL.Tables[0].Rows.Count; 
 
 
      
//******************* 
      end = "&found=false"; 
      category = 
dsURL.Tables[0].Rows[0]["Category"].ToString(); 
      subCategory = 
dsURL.Tables[0].Rows[0]["SubCategory"].ToString(); 
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      end = end + "&cat=" + category + 
"&sub=" + subCategory + "&key=" + keyword; 
     result = result + "<TR><TD>" + category + 
">>" + subCategory ; 
//******************* 
     result = result + "</TD><TD>";//<DIV 
id=\"DIV1" + y + "" + x + "\" dataFormatAs=\"html\" runat=\"server\" 
ms_positioning=\"FlowLayout\">"; 
     for (int i = 0; i < numRecord; i ++) 
     { 
       
 
      str = 
dsURL.Tables[0].Rows[i]["URL"].ToString(); 
      result = result + "<p>" + " " + (i + 1) 
+ ". " + "<a href=" + start + str + end + " target=\"_blank\">" + str + 
"</a></p>" + "<p>"; 
     } 
     result = result + "</TD></TR>"; 
    } 
   }result = result + "</TABLE>"; 
   DIV1.InnerHtml = result; 
   totalTime = DateTime.Now.Subtract(startTime); 
   lblTime.Text = "Your search took (" + 
totalTime.ToString().Substring(6,5) + ")Seconds"; 
 
  } 
 
//  private void Button1_Click(object sender, System.EventArgs e) 
//  { 
//   Response.Redirect("Gui.aspx"); 
//  } 
 
  private void btnNewSearch_Click(object sender, System.EventArgs 
e) 
  { 
   Response.Redirect("Gui.aspx?isNew=yes&keyword=" + 
txtKeyword.Text); 
  } 
 
  private void cmd_back_Click(object sender, System.EventArgs e) 
  { 
   Response.Redirect("Gui.aspx"); 
  } 
 } 
} 
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AddCategory.aspx.cs 
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
 
namespace PSA 
{ 
 /// <summary> 
 /// Summary description for AddCategory. 
 /// </summary> 
 public class AddCategory : System.Web.UI.Page 
 { 
  protected System.Web.UI.WebControls.TextBox txtSub; 
  protected System.Web.UI.WebControls.DropDownList ddlCategory; 
  protected System.Web.UI.WebControls.Button btnAddCategory; 
  protected System.Web.UI.WebControls.Button btnAddSub; 
  protected System.Web.UI.WebControls.Label Label1; 
  protected System.Web.UI.WebControls.Label Label2; 
  protected System.Web.UI.WebControls.Label Label3; 
  protected System.Web.UI.WebControls.Label Label4; 
  protected System.Web.UI.WebControls.Label Label5; 
  protected System.Web.UI.WebControls.TextBox txtCategory; 
  protected System.Web.UI.WebControls.HyperLink HyperLink1; 
  protected System.Web.UI.WebControls.Label Label6; 
  DBConnection db = new DBConnection(); 
  private void Page_Load(object sender, System.EventArgs e) 
  { 
   // Put user code to initialize the page here 
   if (!(Page.IsPostBack)) 
   { 
    string sql; 
    sql = "SELECT DISTINCT [Category] FROM PSA"; 
    DataSet dsCategory = db.selectQuery(sql); 
    ddlCategory.DataSource = dsCategory; 
    ddlCategory.DataValueField = "Category"; 
    ddlCategory.DataBind(); 
   } 
  } 
 
  #region Web Form Designer generated code 
  override protected void OnInit(EventArgs e) 
  { 
   // 
   // CODEGEN: This call is required by the ASP.NET Web Form 
Designer. 
   // 
   InitializeComponent(); 
   base.OnInit(e); 
  } 
   
  /// <summary> 
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  /// Required method for Designer support - do not modify 
  /// the contents of this method with the code editor. 
  /// </summary> 
  private void InitializeComponent() 
  {     
   this.btnAddCategory.Click += new 
System.EventHandler(this.btnAddCategory_Click); 
   this.btnAddSub.Click += new 
System.EventHandler(this.btnAddSub_Click); 
   this.Load += new System.EventHandler(this.Page_Load); 
 
  } 
  #endregion 
 
  private void btnAddCategory_Click(object sender, 
System.EventArgs e) 
  { 
   string sql; 
    sql = "INSERT INTO PSA (Category) Values ('" + 
txtCategory.Text + "')"; 
   db.insertORUpdate(sql); 
  } 
 
  private void btnAddSub_Click(object sender, System.EventArgs e) 
  { 
   string sql; 
   sql = "INSERT INTO PSA (Category, subCategory) Values ('" 
+ ddlCategory.SelectedValue + "', '" + txtSub.Text + "')"; 
   db.insertORUpdate(sql); 
   //txtCategory.Text = sql; 
  } 
 } 
} 

 
 
 
 
 
DBConnection.cs 
 
using System; 
using System.Data; 
using System.Data.OleDb; 
using System.Web.UI.WebControls; 
 
 
namespace PSA 
{ 
 /// <summary> 
 /// Summary description for DBConnection. 
 /// </summary> 
 public class DBConnection 
 { 
  public DBConnection() 
  { 
   myConnString = "Provider=Microsoft.Jet.OLEDB.4.0;DATA 
Source= " + SOURCE; 
   conn = new OleDbConnection(myConnString);  
  } 
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  public void insertORUpdate(string sql) 
  { 
   try 
   { 
    conn.Open(); 
    OleDbCommand cmd = new OleDbCommand(sql, conn); 
    cmd.ExecuteNonQuery(); 
    conn.Close(); 
   } 
   finally 
   { 
    if (conn != null) 
                    conn.Close(); 
   } 
  } 
 
  public DataSet selectQuery(string sql) 
  { 
   try 
   { 
    conn.Open(); 
    dataAdapter = new OleDbDataAdapter(sql,conn); 
    DataSet dataSet = new DataSet(); 
    dataAdapter.Fill(dataSet); 
    dataAdapter.Dispose(); 
    conn.Close(); 
    return(dataSet); 
   } 
   finally 
   { 
    if (conn != null) 
     conn.Close(); 
   } 
  } 
 
  public int selectScalar(string sql) 
  { 
   try 
   { 
    conn.Open(); 
    OleDbCommand cmd = new OleDbCommand(sql, conn); 
    int result = 
Int32.Parse(cmd.ExecuteScalar().ToString()); 
    conn.Close(); 
    return  result; 
   } 
   catch 
   { 
    return 1; 
   } 
 
   finally 
   { 
    if (conn != null) 
     conn.Close(); 
   } 
  } 
 
  const string SOURCE = 
"D:\\Clients\\vijaysagar.com\\vijaysagar.com\\Projects\\Service\\DBFolder\\
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PSA.mdb"; 
  private string myConnString; 
  private OleDbConnection conn; 
  private OleDbDataAdapter dataAdapter; 
   
 } 
} 

 
 
 
 
 
SearchFilter.cs 
 
using System; 
using System.Text.RegularExpressions; 
 
namespace PSA 
{ 
 /// <summary> 
 /// This class will do the core funtionalities for PSA 
 /// </summary> 
 public class SearchFilter 
 { 
  //private Regex regex; 
  //private Match match; 
  private string keyword; 
  private string googleSearchString, googleRawResult; 
  private string aolSearchString, aolRawResult; 
  private int count; 
  private string result; 
  private PreferenceFilter preferenceFilter; 
  private NetworkInterface networkInterface; 
  public string start = 
"http://vijaysagar.com/ligon/PSA/guiResult.aspx?got=no&page="; 
  public string end = "&found=false"; 
 
  public SearchFilter() 
  { 
   networkInterface = new NetworkInterface();  
   preferenceFilter = new PreferenceFilter(); 
   keyword = ""; 
   result = ""; 
   count = 1; 
  } 
 
  public string isInHistory(string keyword) 
  { 
   return preferenceFilter.isInHistory(keyword); 
  } 
   
  public void setKeyword(string category, string sub, string key, 
int index, bool domain) 
  { 
   if (category.Equals("None")) 
    keyword = key; 
   else if (key.Equals("")) 
    keyword = sub; 
   else 
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   { 
    switch  (index) 
    {  
     case 1: 
      keyword = "\"" + sub + " " + key + 
"\""; 
      break; 
     case 2: 
     keyword = "\"" + key + "\"+\"" + sub + "\""; 
      break; 
     case 3: 
      keyword = "\"" + key + "\""; 
      break; 
    } 
   } 
   end = end + "&cat=" + category + "&sub=" + sub + "&key=" 
+ key.Replace(" ", "+"); 
   if (domain) 
    generateSearchStringForUC(); 
   else 
    generateSearchString(); 
  } 
  private void generateSearchString( ) 
  { 
   googleSearchString = 
"http://www.google.com.au/search?ie=UTF-8&oe=UTF-8&sourceid=deskbar&q=" + 
keyword; 
   networkInterface.setSearchString(googleSearchString); 
   googleRawResult = 
networkInterface.getResultFromSearchEngine(); 
   aolSearchString 
="http://search.aol.com/aolcom/search?invocationType=topsearchbox.webhome&q
uery=" + keyword; 
   networkInterface.setSearchString(aolSearchString); 
   aolRawResult = 
networkInterface.getResultFromSearchEngine(); 
  } 
   
  private void generateSearchStringForUC( ) 
  { 
   googleSearchString = 
"http://www.google.com.au/search?sourceid=navclient&ie=UTF-
8&rls=GGLD,GGLD:2005-24,GGLD:en&q=site:www%2Ecanberra%2Eedu%2Eau+" + 
keyword; 
   networkInterface.setSearchString(googleSearchString); 
   googleRawResult = 
networkInterface.getResultFromSearchEngine(); 
   aolSearchString 
="http://search.aol.com.au/search?hl=en&lr=lang_en&newwindow=1&c=aol-au&q=" 
+ keyword + "+site%3Ahttp%3A%2F%2Fwww.canberra.edu.au&btnG=SEARCH&meta="; 
   networkInterface.setSearchString(aolSearchString); 
   aolRawResult = 
networkInterface.getResultFromSearchEngine(); 
  } 
 
 
  //This method will be called from GUI for getting the resutls 
  public string getResult() 
  { 
   googlePostSearchFilter(); 
   aolPostSearchFilter(); 
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   return result; 
  } 
 
   
 
  private void googlePostSearchFilter() 
  { 
   string temp="",str=""; 
   string str1; 
   int index; 
   try 
   { 
    for(int i =1; i<6; i++) 
    { 
     index = googleRawResult.IndexOf("<p 
class=g><a href="); 
     if (index < 0) 
      throw new Exception(); 
       
     temp = googleRawResult.Substring(index + 19); 
     googleRawResult = temp; 
     str = temp.Substring(0, temp.IndexOf(">")); 
     str1 = str.Substring(1, str.Length-2); 
     result = result + "<p>" + " " + i + ". " + 
"<a href=" + start + str1 + end + " target=\"_blank\">" + str1 + "</a></p>" 
+ "<p>"; 
     count = i + 1; 
    } 
       } 
  } 
 
  private void aolPostSearchFilter() 
  { 
   string str="",temp=""; 
   int index; 
   try 
   { 
    for(int i = count; i< count + 5; i++) 
    { 
     index = 
aolRawResult.IndexOf("target=\"_blank\" onmouseover=\"self.status='"); 
     if (index < 0) 
      throw new Exception(); 
 
     temp = aolRawResult.Substring(index + 42); 
     str = temp; 
     aolRawResult = str; 
     str = str.Substring(0,str.IndexOf("'; return 
true;\" onmouseout=\"self.status=")); 
     //str1 = str; 
     if(result.IndexOf(str) == -1) 
      result = result + "<p>" + " " + i + ". 
" + "<a href=" + start + str + end + " target=\"_blank\">" + str + 
"</a></p>" + "<p>"; 
     else 
      i--; 
    } 
   // return result; 
   } 
   catch  
   { 
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    if (result.Equals("")) 
     result = "Sorry no result found"; 
   // return result; 
   } 
  } 
 } 
} 
 
 
 
NetworkInterface.cs 
 
using System; 
using System.Net; 
using System.IO; 
namespace PSA 
{ 
 /// <summary> 
 /// This class interact with the internet and the search engines 
 /// </summary> 
 public class NetworkInterface 
 {  
  private Uri objURI; 
  private WebRequest webRequest; 
  private WebResponse webResponse; 
  private Stream stream; 
  private StreamReader streamReader; 
 
  private string searchString; 
  private string resultFromGoogle; 
  public NetworkInterface() 
  { 
    
  } 
  //This method will be called from SearchFilter class to pass 
the search string 
  public void setSearchString(String searchString) 
  { 
   this.searchString = searchString; 
   connectWeb(); 
  } 
  //This method opens a connection and pass the search string to 
search engine 
  private void connectWeb() 
  { 
   objURI = new Uri(searchString); 
   webRequest = WebRequest.Create(objURI); 
   webResponse = webRequest.GetResponse(); 
   stream = webResponse.GetResponseStream(); 
   streamReader = new StreamReader(stream); 
   resultFromGoogle = streamReader.ReadToEnd(); 
  } 
  //This method will be called from SearchFilter class to -  
  //get the output from Search Engine 
  public string getResultFromSearchEngine() 
  { 
   return resultFromGoogle; 
  } 
 }} 
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Abstract 

In the current world of Electronic Informatics, Info Search is more a relative term. General Search results have 
no relevance where people are looking for personalised, highly specific information. Generally, a user must 
revise a large number of uninteresting documents and consult several search engines before finding relevant 
information. Almost all search engines rely on text-based search algorithms and hence the probability of 
getting user desired information is heavily based on users ability to frame right keywords or search strings. 
This paper aims to address this problem by presenting a Personalized Search Agent(PSA) that generates 
effective keywords and also captures and organises different areas of interests of the user in a hierarchy that 
defines the user profile. The idea is to create a filter application, which applies a dual methodology of browsing 
and searching, that works between user and one or more commercial search engines specified by the user. 
This paper describes the design, architecture and the functional components of the PSA system and also 
describes how the system works thorough a scenario based approach. 
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