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Abstract 

The role of the forensic hair examiner is to determine whether a questioned hair 

recovered from a crime scene could or could not be from the same source as a known 

sample and therefore whether it should be included or excluded as probative evidence. 

Arguably, traditional hair microscopy is a largely subjective process that relies heavily on 

the training and experience of the examiner. The aim of this project was to investigate 

three objective analytical methods—two based on image analysis and one based on 

infrared spectroscopy—to produce a hair examination protocol that balances qualitative 

microscopic observations with quantitative measures. 

First, numerical colour measurements were investigated for allocating hair to one 

of six nominal categories and for distinguishing one participant’s hair from another’s 

within a subpopulation of similar coloured hair. Overall, between 69.3 and 76.2% correct 

classification to the categories was achieved with the RGB and CIE L*a*b* colour models 

returning the highest prediction accuracy, and CIE XYZ colour model returning generally 

poor results, particularly among the darker hair categories. In an effort to refine and 

improve these results, analyses were repeated that incorporated only a limited set of 

categories and predictor variables. Correct allocation increased slightly for the dark hair 

categories while no improvement was observed for the light hair categories. For 

distinguishing between individual hairs within a subpopulation of similarly coloured hair, 

aside from the red hair category, the discriminating power was considered to be too low 

for the method to be recommended as a routine tool in forensic hair examination. 

Second, a novel image analysis technique was evaluated that involved applying 

threshold operations to image montages, in order to compare pigmentation characteristics 

in three separate hair populations―Fair, Medium and Dark shaded hair. The average pixel 

area of each black on white object and the length of the major and minor axes, as well as 

calculated measurements such as density, the percentage of small, medium and large 

objects, and the percentage of two nominal configurations―‘streaks’ and ‘clumps’―were 

evaluated as potential variables. The novel technique did not support discrimination 

between the selected participants. The Medium sample population resulted in the lowest 

number of images correctly allocated, with only 32% prediction accuracy, the Fair sample 

population resulted in 54% prediction accuracy and the Dark sample population showed 

the highest correct allocation, with 62% prediction accuracy. No obvious relationships 
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were observed between each of the populations in terms of the number of variables 

selected, the strongest predicting variable or the overall prediction accuracy. 

Finally, ATR–FTIR spectroscopy was assessed for identifying trace 

contaminants—specifically, hair treatments—on the hair surface. Seven product types 

were evaluated following dense and sparse application to individual hairs. Infrared 

absorption peaks were apparent for six product types with only one type showing no 

significant absorption. Discriminant analysis comprising 254 wavenumbers between 1632 

and 652 (at a spacing of 3.857 cm
-1

) resulted in 100% accuracy for 60 reference spectra of 

the products evaluated, albeit only one brand per product type was included in this 

analysis. The strongest predictor variables were generally between 1300 and 1000 cm
-1

 

corresponding to the CO absorbance bands for ethers and esters, and at 1450 cm
-1

 

corresponding to the CH3 asymmetrical bend vibration. Variations in the spectra most 

likely due to molecular interactions (e.g., hydrogen bonding), were observed following 

dense application to the hair. Only 73% of those spectra were correctly classified by 

product type. Following sparse application to hair, trace contaminants were not observed 

on the majority of samples. On the few samples where traces were observed, spectra of the 

product type could not be clearly resolved. 

Difficulties associated with improving the discriminating power of hair 

examinations were identified two decades ago, including that considerable intra-individual 

variation exists and that microscopic hair features are difficult to assess objectively 

(Robertson, 1982). Emerging technologies could assist future examinations with 

classifying―or potentially individualising―forensic hair evidence. However, successful 

quantification and discrimination of hair characteristics has not yet been achieved, despite 

attempts made in this research. Until there is a universally applicable technique that will 

mimic microscopic analysis, current evaluations made by an experienced examiner are the 

best option available. 
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1.1.   Hair Growth and Physiology 

Hair is essentially a series of dead keratinised cells. The hair shaft is generated 

from a matrix of living cells within the hair bulb that undergo successive mitotic division, 

pushing the oldest cells upward (Chase, 1954; Kaszynski, 1985). Two main types of hair 

are found on the human body, vellus and terminal, the former hair type being the fine hairs 

present over most of the body and the latter type being the thick, coarser, pigmented hair 

that appears on the scalp and face (Gaudette, 2000; Stenn & Paus, 2001; Wilson & Gilbert, 

2006). All hair has three basic structural components—the cuticle, cortex and medulla, as 

depicted in Figure 1.1-1. The central medulla contains loosely connected cells and large air 

spaces, the medial cortex contains tight, interlocking cells with small air spaces, while the 

outermost cells of the cuticle fuse with the follicle to anchor the hair in position (Robins, 

1991). One of the essential characteristics that differentiates human hair from animal hair 

is the medullar cells’ clear ultra–structure as well as the small size of the medulla, whose 

index is typically less than 0.30 (Clement et al., 1981; Clement et al., 1982). Together, the 

cuticle, cortex and medulla create a fibre of considerable tensile strength. 

 

Figure 1.1-1 – The Hair Bulb 

The central medulla contains loosely connected cells and large air spaces; the medial cortex contains tight, 

interlocking cells with small air spaces; while the outermost cells of the cuticle fuse with the follicle to 

anchor the hair in position. (Source: Natural Nigerian, 2012). 
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Hair growth is cyclic over three stages—anagen, catagen and telogen. In humans, 

growth cycles are unsynchronised whereby neighbouring follicles are in different 

development stages at any one time (Chase, 1954; Kaszynski, 1985; Stenn & Paus, 2001). 

Typically, about 80% of follicles are actively growing in the anagen stage that can last 

from two to seven years, while 20% are non–growing hairs, resting in their respective 

follicles for up to several months during the telogen stage (Petraco et al., 1988; Houck & 

Bisbing, 2005). Following release of the telogen hair, a follicle regenerates and the anagen 

cycle recommences. Less than 1% of human hairs are in the catagen stage, which is the 

transition between anagen and telogen that only lasts for several weeks (Houck & Bisbing, 

2005). 

Melanocytes are specialised dendrite cells responsible for the synthesis of the 

pigment ‘melanin’ within membrane–bound organelles called melanosomes. In human 

hair, the enzyme tyrosinase is responsible for the formation of melanin, which occurs as 

two types—eumelanin, a black–brown pigment, and phaemelanin, a yellow–red pigment 

(Jimbow et al., 1983; Robins, 1991; Ito & Wakamatsu, 2003; Rees, 2003). Melanosomes 

are dispersed within the cytoplasm of keratinocytes as either solitary particles or as 

aggregates of more than two particles, a factor that appears to be determined by their size 

(Robins, 1991). Natural hair colour is therefore perceived as a consequence of the amount 

and type of melanin content transferred to keratinocytes as well as the number, size and 

density of the granules themselves. Hairs perceived as light to dark in colour are correlated 

with increasing pigmentation and therefore increasing light absorption, while white hair 

that has no melanin, reflects almost all incident light (Robins, 1991; Rees, 2003). 
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1.2.   Forensic Hair Examination 

1.2.1.  Microscopic Examination 

Forensic hair examinations typically begin with a complete and detailed 

microscopic evaluation of each hair followed by a side–by–side comparison between the 

unknown and exemplar hairs. This non–destructive technique has been well established in 

forensic laboratories for over sixty years (Houck & Bisbing, 2005) and is analogous to the 

techniques employed by histologists and pathologists to identify tissue samples, cell types, 

disorders and other abnormalities based on microscopic cell morphology (Houck et al., 

2004). With hair, morphological patterns or trends are often apparent throughout the length 

of the shaft and may be recognised in hairs from the same or different sources (Verma et 

al., 2002). Such morphological hair features can be grossly classed as macroscopic and 

microscopic characteristics (Robertson & Aitken, 1986; Robertson, 1999; Verma et al., 

2002; Houck & Bisbing, 2005), as shown in Table 1.2-1. 

Table 1.2-1 – Classification of Morphological Hair Features 

Macroscopic Microscopic 

Colour 

Treatment 

Spatial configuration 

Length 

Coarseness 

Pigment distribution, aggregation, density and size 

Proximal (root) and distal (tip) shape 

Shaft shape and diameter 

Medulla appearance and index 

Cuticle margin 

Cortical fusi presence or absence 

Cortical texture and diffusion 

 

While the description of individual hairs encourages systematic and documented 

evaluations, at present, a side–by–side hair comparison is the only effective method for 

comparing individual features and overall patterns along the hair length (Robertson & 

Aitken, 1986; Robertson, 1999). Unlike a stand–alone description to determine the 

properties of a sample, the side–by–side microscopic hair comparison is considered a 

powerful technique utilised by other biological disciplines, such as anthropology and 

zoology, to assess hair fibres (Houck et al., 2004).  A significant difference between two 

hairs, or several fundamental dissimilarities, is a strong indication that the hairs originated 

from different sources. As such, positive associations between hairs rely not only on the 
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presence of several indistinguishable traits, but on the absence of significant dissimilarities 

as well (Houck & Bisbing, 2005). 

With the exception of identical twins, every individual has a unique genetic make–

up that has been nurtured by the environment so theoretically, hair colour and 

pigmentation are unique to each person (Bisbing & Wolner, 1984). In practice however, 

this concept is difficult to observe or measure with conventional microscopic hair 

examination techniques. One issue is the absence of uniform nomenclature to define 

various hair features. Hair colour, for example, is a qualitative trait subjectively perceived 

by the examiner and the process of applying descriptive phrases to characterise colour has 

not been standardised (Bednarek, 2003). Borders between shades are undefined in most 

colour classification systems, resulting in complications and inconsistencies when the 

same hair evidence is evaluated by more than one examiner (Bednarek, 2003). A 

questionnaire regarding microscopic hair features that was widely circulated to forensic 

hair examiners during the mid–1980s, highlighted the need for standardised terminology to 

clearly define microscopic features, as many respondents described the same feature in 

different ways (Robertson & Aitken, 1986). Most respondents to the same questionnaire 

rated non–numerical features as highly useful (Aitken & Robertson, 1986) while more 

recently Houck and Bisbing (2005) maintain that the potential rate of error in microscopic 

comparisons of human hair is very low, dependent on the examiner’s training and 

experience. Although qualitative features are still considered significant and the potential 

rate of error is perceived as low, human hair currently cannot be associated with a single 

source to the exclusion of all others based on qualitative methods. (For more information 

on hair biology, microscopic characteristics and forensic examinations, Houck (2002) 

provides a comprehensive list of literary resources.) 

1.2.2.  DNA Analysis 

Telogen hairs – the most common type encountered in forensic casework – are not 

routinely submitted for DNA analysis due to the cessation of cellular activity in the root 

end and the limiting amount of cellular material present in the root sheath (Kolowski et al., 

2004; Wilson & Gilbert, 2006; Boonen et al., 2008). Boonen and colleagues (2008) 

describe a screening method using DAPI, a fluorescent DNA stain, to estimate the number 

of cell nuclei in telogen hair roots so that only the most promising samples are submitted 

for nuclear DNA (nDNA) analysis. That study found that a significant increase in the 
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nDNA success rate occurred for hair roots containing more than 50 visible nuclei. Anagen 

hairs are not naturally shed and tend to be encountered only in instances where they have 

been forcibly removed, such as during a struggle. Unlike telogen hairs, actively growing 

anagen hairs contain an abundance of nucleated cells within the root and surrounding 

follicular material, meaning nDNA profiling from anagen hair roots can be highly 

successful (Houck & Bisbing, 2005). However, the recovery of nDNA from hair can be 

technically problematic. The hair pigment melanin is an inhibitor of the polymerase chain 

reaction (PCR), the predominant tool used in DNA amplification; peroxides and bleaches 

used in some hair treatments can reduce DNA yields and there is also a risk of sample 

contamination due to external sources of nDNA associated with the hair shaft (Wilson & 

Gilbert, 2006). 

Non–destructive extraction methods such as ‘Charge Switch’ can be used to extract 

nDNA from anagen roots while still maintaining the hair’s overall integrity (Brooks, 

2009). Conversely, extraction of mitochondrial DNA (mtDNA) is destructive and 

consumes a portion of the hair, although the ability to recover mtDNA from small pieces 

of hair is viable due to the high copy number of mitochondria organelles per cell. A 

transmission electron microscope (TEM) was used by Linch (2009) to investigate the 

presence of mitochondria and nuclei along the hair shaft. Nuclei and mitochondria were 

not observed in tissue sections at the level where the cuticle becomes fully keratinised in 

the hair root stem; melanosomes were the only recognisable cytoplasm organelle beyond 

this point (Linch, 2009). This supports earlier studies on medulla cells that describe a form 

of progressive degeneration, whereby the nucleus disappears and cell organelles such as 

mitochondria are destroyed (Parakkal & Matoltsy, 1964; Roth & Helwig, 1964). 

1.2.3.  Hair as Evidence 

Individuals lose approximately 75 to 100 head hairs each day as a result of normal 

activities (Gaudette, 2000; Wilson & Gilbert, 2006) and, unlike other biological tissues, 

hairs are resistant to degradation. Resting telogen hairs are loosely held in the follicle until 

being released through normal handling and therefore they are the most common type 

encountered in casework. Hair may occur at a crime scene, not only by natural shedding, 

but because they have been pulled out by force or following transfer from one object or 

person to another. Hair evidence is especially important in cases where no biological fluids 

are available, such as physical or sexual assaults involving no bloodshed or seminal 
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ejaculation (Taupin, 1996). In many cases hairs are the only evidence, or only one of a 

number of trace materials of possible evidentiary significance (Robertson, 1999). A 

number of authors (e.g. Smith & Linch, 1999; Houck et al., 2004) have found that when 

DNA analysis is not possible the microscopic hair comparison is an effective independent 

analysis for most casework, provided that aspects of examiner training, caution and 

proficiency are addressed to reduce any potential error. Robertson and Roux (2010) assert 

that there is a current over–emphasis on the value of identification in forensic science, out–

weighing the value that can be provided by trace evidence, such as hair, in establishing 

‘what happened?’. Moreover, Robertson (1999) argues that critics who over–emphasise 

the need to assign numerical values to positive findings of identification, such as those 

provided by DNA population statistics, often fail to recognise the importance of 

exclusionary evidence. For example, a clump of hairs found clutched in a murder victim’s 

hand and excluded as having come from neither the victim nor the suspect, would be 

highly significant (Gaudette, 1999). 

Hair is ubiquitous in nature and can be used to associate or exclude a suspect, 

victim or witness with a crime scene but just as importantly, hair evidence is valuable for 

reconstructing events, providing investigative leads, as well as refuting or corroborating 

witness statements. In one case, dyed brown head hairs originating from the partner of an 

accused, was located on an abduction victim’s clothing, indicating secondary transfer 

(Taupin, 1996). In a separate instance, hair found on duct tape supported the scenario that 

the victim’s head was wrapped in tape (Tafaro, 2000). A distinctive opaque ellipsoidal 

band (“putrid root”) appearing approximately 0.5 mm above the root bulb of post–mortem 

anagen hair samples has been used to determine whether a sample was transferred ante– or 

post–mortem (Petraco et al., 1988; Linch & Prahlow, 2001).  Post–mortem banding 

observed in recovered questioned hairs helped investigators reconstruct events in two 

murder investigations in New Orleans, USA (Tafaro, 2000). Finally, as part of an 

investigation into a series of sexual assaults committed in the UK over a two year period, 

microscopic examination of hair samples from 118 individuals of Afro–Caribbean descent 

was conducted (Lamb & Tucker, 1994). Only 11 samples (9.3%) could not be excluded 

from samples recovered from the crime scene, demonstrating that microscopic 

examination is a useful and relatively quick technique for the elimination of suspects from 

police inquiry (Lamb & Tucker, 1994). In many case scenarios, the number, location and 

condition of hairs can provide useful information for reconstructing events and, where 



Chapter 1. INTRODUCTION 
 

 
 

8 

such hairs are not examined, it can be more difficult to determine the circumstances and 

facts of the particular case, for both investigator and jury members (Robertson, 1999).  

1.2.4. Probative Value of Hair Evidence 

In the United States (US), evidence based on microscopic hair examinations has 

traditionally been accepted in all levels of court, having met the scientific evidence 

requirements of Rule 702 of the US Federal Rules of Evidence and Frye v United States 

(1923); that is, a technique is admissible if it is generally accepted by the scientific 

community. Seventy years after that case, Daubert v Merrell Dow Pharmaceuticals Inc. 

(1993) found that, in addition to general acceptance, scientific evidence must also show 

testability, peer review and have a known error rate. Therefore, Rule 702 was subsequently 

altered to ensure that scientific evidence was reliable on two levels – first, the level of 

principle and methods, and second, the application of those principles and methods to the 

facts of the case (Beach, 2009). In Australia, the statutory requirement for the admissibility 

of expert evidence is outlined in the Evidence Act 1995 (Commonwealth) or each state’s 

equivalent. Section 79 of the Act allows the admissibility of expert testimony, while 

Sections 135–137 determine the admissibility of evidence. Broadly, evidence presented by 

the expert must be derived from a body of knowledge or experience that is sufficiently 

recognised and accepted as reliable (McClellan J, 2009). To ensure the trustworthiness and 

reliability of a particular science or technique, an approach has been taken by a number of 

Australian states to impose a “threshold requirement” on the reliability of evidence—this 

often refers to approaches taken in the United States (McClellan J, 2009). Furthermore, an 

Australian Standard that aims to provide guidelines for the interpretation of observations 

and analytical results to obtain information and knowledge, is currently under development 

(Forensic Standards Working Group, 2012). This standard will emphasise the value of the 

examiner’s professional judgement and the components which contribute to such 

judgement, including qualification, training, competence, contemporary knowledge and 

continuous professional development (Forensic Standards Working Group, 2012). 

It has been argued that hair associations based on the comparison of macro– and 

microscopic features cannot uniquely identify an individual, nor currently can they be used 

to make claims regarding probabilities or frequencies with which particular characteristics 

are distributed in the population (Robertson, 1982; Smith & Linch, 1999; Kolowski et al., 

2004; Houck & Bisbing, 2005). The rate of error for hair examination depends on the 
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quality and maintenance of microscopes, as well as the experience of the examiner. 

Following the evaluation of a number of hair studies, Gaudette (1999) concluded that, 

while type II errors (false positives) due to coincidental matches do occur in forensic hair 

comparisons, such errors are relatively rare when the examination has been conducted by 

qualified, well–trained examiners. Furthermore, macroscopic and microscopic hair 

comparisons generally produce good corroborative evidence but that this evidence depends 

on all stages of the physical evidence process, including recovery, analysis, interpretation 

and presentation of results (Gaudette, 1999). 

According to Houck and colleagues (2004), the rates of error for hair examination 

are statistically determined by a particular set of circumstances and data, and therefore 

cannot be used to predict the probabilities in a different set of circumstances, as the actual 

error rates depend on the sample data. Errors will exist in qualitative microscopic 

examinations but they are often not susceptible to the quantitative analyses that yield a 

value of uncertainty, therefore the use of appropriate non–parametric statistics could be 

considered to support any opinion evidence derived (Forensic Standards Working Group, 

2012). Isolated cases in the US, such as State v McGrew (1997) and Williamson v Reynolds 

(1995), have ruled microscopic hair examination inadmissible under the requirements of 

Daubert because the known error rate requirement was not met or was too high. Moreover, 

a report on forensic science in the US (National Research Council of the National 

Academies, 2009) found that there were no uniform standards on the number of features a 

hair must possess before an examiner may declare an association. The same report 

emphasised that disciplines relying on subjective assessments to match characteristics 

require a body of research to identify sources of variability and potential bias, and to 

establish quantifiable measures of uncertainty and limitations. It has been stated that no 

forensic method has consistently demonstrated a connection between the evidence and an 

individual or specific source with the same high degree of certainty that nDNA evidence 

has shown (National Research Council of the National Academies, 2009). Others propose 

that it is unfounded to compare qualitative comparisons that deal with phenotypic variation 

with DNA analysis that deals with quantified genetic information and that over–reliance 

on rigid, statistical probabilities can diminish otherwise well–founded scientific methods 

(Houck et al., 2004). Nonetheless, attempts have been made to use human hair as an 

individual identification tool.  
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1.2.5.  Individualisation 

The number of hair follicles, their growth rate, distribution, pigmentation and 

structural characteristics are all determined by proteins under genetic control (Kaszynski, 

1985). In the 1970s, Lee and colleagues analysed electrophoretic patterns of keratin matrix 

components from hair strands of over 300 participants in an attempt to observe individual 

genetic differences (Lee et al., 1978). Fourier Transform Infrared (FTIR) spectroscopy has 

also been used to investigate keratin residues to determine whether genetic variations 

between the quantity and type of amino acids present in human hair were distinctive 

enough to individualise hair samples (Hopkins et al., 1991). Also using FTIR, Panayiotou 

and Kokot (1999) reportedly discriminated between two similarly aged female Caucasians 

with the same hair colour, length and treatment as well as between hair collected from the 

left and right side of the participants’ heads.  

To evaluate the practical effectiveness of morphological comparative hair analysis, 

the individualisation of 100 hairs randomly selected from 12 individuals was undertaken 

by Bednarek (2003). Ninety–one hair samples were correctly allocated based on intensity 

coordinated determined by the RGB colour model system compared with 74 hair samples 

correctly allocated based on a method involving colour standards (Bednarek, 2003). 

Barrett and colleagues (2011) also attempted to individualise hair samples based on natural 

hair colour measurements derived from microspectrophotometry. Following several 

discriminant analyses, those researchers concluded that the technique was not able to 

successfully discriminate between 25 natural hair samples, with only 22% of participants 

correctly classed.  

Bisbing and Wolner (1984) investigated the forensic hair examiner’s ability to 

distinguish between duplicate head hair samples from 17 pairs of twins and one set of 

identical triplets. In the first phase of their study, the examiners were able to correctly 

distinguish the hairs with the correct duplicate sample in every case, and never incorrectly 

with a twin’s sample. In the second phase of the study simulating typical casework, seven 

unknown hairs were compared with several potential sources, and on more than one 

occasion the questioned hairs were incorrectly identified and sourced to another 

participant’s head hair. In a separate study, 27 volunteers each collected 50 pubic hairs to 

compare the identification success rates of nDNA genotyping with microscopic 

examination (Kolowski et al., 2004). A full nDNA profile of unknown hairs were allocated 
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to the correct source in 3 out of 5 instances, while microscopic examination resulted in 

correct sourcing of hairs in 4 out of 5 instances, thereby indicating that microscopic hair 

examination had a higher success rate than nDNA analysis in this study. However, it is 

worth emphasising that hair samples not correctly sourced following nDNA analysis were 

the result of no profiles or partial profiles, whereas hair not correctly assigned following 

microscopic examination were wrongly allocated to another source. 

While the microscopic hair examination is a quick and inexpensive technique, at 

present it cannot provide the level of individualisation that nDNA genotyping can, nor can 

it provide mathematical statements regarding the strength of association; comparatively, 

DNA analysis is a time consuming and expensive process. As proposed by a number of 

authors (Linch et al., 1998; Kolowski et al., 2004; Boonen et al., 2008) a coordinated 

approach may yield the most useful information, by first applying microscopic 

examination to screen the hair samples and narrow down the scope of the investigation, 

followed by DNA genotyping to individualise those indistinguishable hairs with abundant 

nuclei present.  

Notwithstanding, a quantitative method for analysing hair evidence is warranted to 

substantiate claims based on qualitative, microscopic observations. Traditional 

microscopic approaches rely on the human element to make observations and 

interpretations, and this depends heavily on proper instrument use, the brain’s ability to 

correlate hundreds of data points and a high level of consistency when repeating these 

tasks (Tontarski & Thompson, 1998). It has previously been considered difficult to 

improve the discriminating power of hair examinations due to the considerable variation in 

features within a sample of hairs from the same individual and because microscopic 

features of hair are difficult to assess in an objective manner, among other reasons 

(Robertson, 1982). Emerging technologies in image processing, pattern recognition and 

computer science could assist future evidence examinations with classifying, or potentially 

individualising, forensic evidence. There is a need to investigate universally applicable 

techniques that will mimic microscopic analysis and provide a complimentary evaluation 

to subjective assessments made by an experienced examiner. However, as noted by Verma 

and colleagues (2002), the judgement of any automated system is limited by the 

information of its database, just as the judgement of a human examiner is limited by their 

own experience. 
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1.3.   Digital Imaging and Image Processing 

1.3.1.  Application and Diversity in Forensic Science 

Over the last few decades increased application of image processing technology 

has surfaced as a powerful tool in the forensic sciences. As early as 1975, digital methods 

originally developed to provide clear transmission of images from space exploration were 

applied to an obscured palm print photographed in blood on a textured bed sheet, 

enhancing the print and enabling identification (Blackwell & Crisci, 1975). The palm print 

ridge detail was enhanced by filtering the bed sheet weave pattern noise in the frequency 

domain, then reverse transforming the image to produce the conventional image in the 

spatial domain. Facey and colleagues (1992) describe a method that permits extraction of 

wear information from high–end images of shoe marks, wear pattern contours and isobars 

of the pressure distribution under foot. Images in this study were also enhanced by forward 

transforming the original arrays into the Fourier domain and filtering them to remove high 

frequency patterns relating to tread pattern and noise (Facey et al., 1992). The US Bureau 

of Alcohol, Tobacco and Firearms have applied a technique based on image analysis to 

evaluate fired bullet striae, cartridge case breech faces and firing pin impressions 

(Tontarski & Thompson, 1998). Furthermore, a quantitative, non–destructive method for 

discriminating between different types of paper using image analysis, Fourier 

transformation and cross–correlation matching has also been proposed (Miyata et al., 

2002). The described procedure was able to discriminate 10 out of 12 commercial 

photocopier paper specimens, with only two samples producing similar periodicity (Miyata 

et al., 2002). Another method has been developed for discriminating blue ballpoint pen 

inks and for comparing those inks on paper, based on innovative image analysis software 

that evaluates scanned, thin layer chromatograms (Djozan et al., 2008). The retention 

factor values, colour range and intensity of separated ink components of 41 blue ballpoint 

pens were analysed and distinguished with high reliability and 92.8% discriminating 

power (Djozan et al., 2008). Finally, computerised image analysis was found to be useful 

for determining morphometric changes in epidermal cells for discrimination between 

electrocution, flame burn and abrasion type lesions (Akyildiz et al., 2009). The described 

method provided objectivity to morphological examination using light microscope, by 

measuring length, perimeter, diameter and darkness of epidermal cell nuclei (Akyildiz et 

al., 2009). 
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1.3.2.  Application to Animal Fibres 

In light of the increasing demand for quantitative examinations, a number of other 

science disciplines have also investigating automated, digital techniques to evaluate fibres. 

In the past, microscopy was consistently the most widely accepted technique for the 

identification of animal hairs and other fibres in the textile industry, providing much 

information on the nature of the fabric, including internal structure and colour information 

(Robson, 1993). Image analysis in that arena is now proving to be a useful tool for 

identifying materials consistently and overcoming inaccuracies associated with 

measurements that depend on an evaluator’s ability to subjectively rate a fabric article 

(Wagner, 1998). Image analysis has greatly advanced the evaluator’s ability to characterise 

a diverse range of both natural and synthetic fibres. This versatility is highlighted by 

Wagner (1998) who describes a range of image analysis applications, including yarn 

assessments to determine fabric denier, squareness and pilling; evaluations of pore 

openings of filters used in aerospace; and, tennis ball size and seam uniformity 

measurements. Properties that effect the mechanical, functional and aesthetic properties of 

thread have also been quantitatively investigated, such as the fibre distribution and blend 

irregularities of wool/acrylic yarns (Shaikhzadeh Najar et al., 2003 ).   

An ideal method for assessing both animal and hair fibres might involve a database 

of measured parameter information, suitable for statistical analysis. Huang and Xu (2002) 

describe a system that acquires sequential images of cotton fibre segments then outputs 

both fineness and maturity predictions, based on statistical data derived from a larger 

cotton fibre sample population. Those authors introduce a series of algorithms that deal 

with sharpening fibre edges, edge tracing, transverse scanning, scan validation and 

merging separate fibre segments. Following execution of those algorithms, the number of 

scans, length of scanned segments, fibre width maximum, minimum, mean and standard 

deviation, as well as the number of twists, can be calculated for each cotton fibre (Huang 

& Xu, 2002). Robson (1993) reviewed techniques that have enabled the surface 

architecture of an animal fibre section to be characterised by Fourier transformation to the 

frequency domain to create a 2–D Power Spectrum image. That author also underlined the 

potential for using fibre surface frequency data to quantify cuticle scale pattern variations 

along the human hair and to provide the basis for applying pattern recognition techniques. 
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1.3.3.  Image Analysis of Hair 

Microscopic image processing techniques have been investigated for application to 

hair examination. The Atomic Force Microscope (AFM) produces ultra–high resolution 

images using a mechanical probe to feel across the surface of the sample to be analysed. It 

is a non–invasive technique that requires little to no sample preparation, though 

measurements are limited to the topographic morphology of the sample plane as 

subsurface information cannot be detected (Gurden et al., 2004). Images produced by 

AFM have been used to measure cuticle step height, as described by Smith (1998) who 

recommended this technique for other measureable hair characteristics, including cuticle 

length and surface roughness. Swift and Smith (2000) applied AFM to investigate the 

surface architecture of the entire lengths of human hair. An algorithm for the automatic 

analysis of AFM images of human hair was also presented by Gurden and colleagues 

(2004). Multivariate analysis of such measurements as step height, tilt angle and cuticle 

density were processed, thereby allowing quantitative analysis and comparison of the hair 

samples. Swift and Smith (2000) found the hair surface of freshly emergent hair was quite 

different from most of its length after about 20mm, while Gurden and colleagues (2004) 

found there were fewer cuticle layers toward the distal hair end due to physio–chemical 

stresses and cosmetic treatments that gradually chip away the cuticle edge. In a forensic 

context, such inter–individual changes could provide information on the lifestyle of the 

hair’s owner. However, the AFM technique is restricted to imaging within the width and 

top surface of a clean, individual hair fibre; each image is typically captured in 10 minutes, 

so does not enable rapid scrutiny along the hair, unlike the real–time observational 

capabilities of other instruments (Swift & Smith, 2000) or the human examiner. 

A classification for mammalian hair identification was proposed following studies 

involving the Scanning Electron Microscope (SEM) to observe the morphology of the 

medulla on longitudinal hair sections, in coordination with a transmission electron 

microscope (TEM) to observe structural characteristics of medullar cells on hair cross–

sections (Clement et al., 1981).  Physical variations of cuticle scale patterns in mammalian 

hair have also been evaluated from SEM images, including area, perimeter, density, 

width–to–height ratio and index (Meyer et al., 1997; Meyer et al., 2000). The SEM can 

provide rapid, valuable detail about the hair surface. Though, one study found that height 

(z) information is not easily obtainable as SEM datasets contain image intensity of x, y 

coordinates only and that some surface information can be ‘over–whelmed’ by subsurface 
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signals thereby conveying a smoother impression of the cuticle scales (Swift & Smith, 

2000). In the reflection mode, Confocal Microscopy can also be used to quantify cuticle 

morphology and exogenous deposits at the hair surface, as well as perform high–resolution 

3–D reconstructions of thick biological specimens (Hadjur et al., 2002). 

To overcome depth–of–field problems often associated with 3–D samples, Brooks 

(2007) imaged the full depth of the hair shaft and applied an optical sectioning technique 

to create a single montage image. Microscopic optical sectioning involves acquiring a 

series of images—optical slices —throughout the full depth of the hair shaft (z–plane) then 

using a unique range of algorithms to produce a single, composite montage from the 

optical slices. Previously, Hadjur and colleagues (2002) used the optical sectioning 

property of the confocal microscope to obtain a z–series of 80 optical slices that were then 

used to create a single, in–focus projection image of the hair surface and a 3–D 

reconstruction of the sample. However, the microscope’s fluorescence mode was required 

to investigate the internal hair structure by this method, relying on fluorescent probes such 

as Rhodamine to stain the sample, therefore rendering this method in–effective for 

characterising natural hair colour. 

Verma and colleagues (2002) describe an automated Hair–MAP system that 

assesses whether two hairs are associated, following a digitised evaluation of microscopic 

images. The system consists of distinct modules that automatically extract separate hair 

features such as medulla type, cuticle texture and shaft diameter that then undergo 

multivariate analysis to indicate whether two hairs were from the same source (Verma et 

al., 2002). In the reported study, Hair–MAP imaged, segmented and extracted the feature 

values of five morphological characteristics from each of 25 hairs from nine participants 

and returned accurate hair associations 83% of the time (Verma et al., 2002). Sato (2003) 

investigated morphological comparisons between Japanese head hairs using data also 

obtained by image analysis. Following statistical evaluations, six values were derived that 

showed larger inter–individual variations than intra–individual variations (Sato, 2003). 

Based on this preliminary study, the author proposed that numerical data obtained from 

image analysis was important for constructing an objective screening procedure for 

evidential hairs, especially for Japanese hairs that are thought to show limited variation in 

morphological features (Sato, 2003). Finally, Ball and colleagues (2002) used image 

analysis to determine whether morphological differences could be demonstrated between 
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the head hair from Egyptian mummies and living Caucasoid and Oriental individuals. An 

image analyser was used to scan images projected from a Leitz Wezlar Prado projector 

(with micro attachment) that were then analysed using multivariate and discriminate 

analysis. The authors concluded that there were significant morphometric differences 

between head hair from different races and from different genders within the same race. 
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1.4.  Aim and Scope of this Project 

This project aims to investigate three objective analytical methods for the 

examination of human hair to provide an objective, quantitative approach to balance the 

qualitative observations made by a forensic examiner. To achieve this aim, the following 

research was undertaken. 

1.4.1.  Chapter 2: COLOUR 

Colour is one of the main hair characteristics subjectively assessed as part of the 

forensic hair examination process and the absence of uniformity to define this feature has 

not been resolved. The research focus of Chapter 2 involved assigning numerical colour 

measurements to such assessments. The initial analyses were designed to address forensic 

casework in the broader context, whereby an inexperienced hair examiner or scene of 

crime officer may be required to process multiple hairs or bulk samples during evidence 

triage. This chapter aimed to determine which of three selected colour models (RGB, CIE 

XYZ and CIE L*a*b*) could provide the best statistical model for allocating to one of six 

nominal colour categories, namely Red, Blonde, Light Brown, Medium Brown, Dark 

Brown and Black, and for distinguishing a participant’s hair from another’s, within a 

subpopulation of similar coloured hair. 

Subsequent analyses were designed to investigate whether numerical colour 

measurements could provide an additional tool for the experienced forensic examiner 

when performing comparisons. Confidence intervals derived from probability distribution 

curves were used to demonstrate that numerical colour measurements could aid the 

examiner with comparisons between a single, questioned hair and hair from a known 

source. 

1.4.2. Chapter 3: PIGMENTATION 

Pigmentation patterns or trends that are often apparent throughout the length of the 

hair shaft may be recognised in hairs from the same source, given the relationship between 

genotype and hair melanin. While pigmentation may be visually observed, such 

differences often resist quantification. Previously reported studies involving the numerical 

classification of hair characteristics have focused on hair morphology in terms of the form 

or structure of the shaft, or on comparisons between pixel intensity values, rather than the 
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pigmentation itself. The research focus of Chapter 3 involved assigning numerical values 

to hair pigmentation. This preliminary study introduced a novel technique designed to 

measure the density, size and shape of the pigment aggregations, as represented by pixel 

variations within montage images. Specifically, discriminant analyses were used to address 

the question of whether the selected measurements could discriminate between participants 

within three populations of similar shaded hair. 

1.4.3.  Chapter 4: SPECTROSCOPY 

Identifying trace contaminants on the hair surface resulting from the popular use of 

cosmetic products such as hairsprays, gels and mousse, is not currently part of the hair 

examination process. Research on hair involving Attenuated Total Reflectance (ATR) 

FTIR spectroscopy, to date, has focused on hair keratin, the effects of chemical–based hair 

treatments and/or sunlight exposure; very few studies have been reported on hair surface 

contamination. Chapter 4 focused on evaluating ATR–FTIR spectroscopy for detecting 

trace contaminants on the hair surface as a means to increase the evidential value of human 

hair in a forensic context. 

Visual evaluations and spectral interpretation software were used to establish 

whether constituents of hair product could be detected. Statistical analyses were used to 

determine whether multiple spectra of the absorbing constituents could be broadly 

distinguished and classed based on product type, including following dense and sparse 

application to single hair samples. Chemical imaging was also investigated to determine 

whether the spatial data provided by this technique could be employed to assist the 

examiner with locating trace contaminants along the hair surface. 

 

 



 

 
19 

 

 

 

Chapter 2.   COLOUR 

 

 



Chapter 2. COLOUR 
 

 
 

20 

2.1.   Introduction 

2.1.1.  Colour Classification 

Hair colour is one of the most diverse human characteristics and, along with skin 

colour, provides one of the clearest variations in the population. There has long been the 

need for uniform nomenclature of colours and an exact definition of terms to avoid the 

common situation where two examiners allocate different descriptions to the same sample, 

or the same description to dissimilar samples. One examiner may classify hair ‘Light 

Brown’ whereas another may classify the same colour as ‘Medium Brown’ and this 

inhibits a direct comparison of results.  

Crude hair colour classifications can also make it difficult to interpret observations 

resulting from different populations and by different authors. Structures to appropriately 

classify hair colour have been investigated in anthropology since as early as the last 

quarter of the nineteenth century (for a full review of early papers see Trotter, 1939). Many 

proposals for the classification and description of hair colour now exist, but they are 

mainly limited to presenting all possible colour profiles and their differentiation, rather 

than defining colour or borders between shades which is left to the interpretation of the 

examiner (Bednarek, 2003). As noted by Naysmith and colleagues (2004), 

misclassification of a continuous variable such as hair colour, will diminish the power of 

statistical testing and the strength of any relationship observed. The application of 

technical advances to hair examination is helping to overcome these problems. For 

example, measures of hair melanin offer the advantages of objectivity and the ability to 

handle colour quantitatively (Rees, 2003). 

Casework involving cosmetically treated hair introduces a number of distinct 

variables such as the length of natural regrowth and signs of chemical wear. Unlike natural 

variance and characteristics, the unique characteristics resulting from chemical treatments 

often have the greatest potential for forensic casework (Verma et al., 2002). For example, 

scanning near–field optical microscopy is employed in the cosmetics industry to 

investigate the penetration and diffusion pathways of chemical treatments in human hair 

(Kelch et al., 2000; Formanek et al., 2006). Treated hair colour can hence be a critical 

feature, whereas a naturally coloured hair provides far less information. There is clearly a 
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need to develop methods that can measure natural hair colour both objectively and 

accurately. 

2.1.2.  Colour Science 

The phenomenon of ‘colour’ is essentially a response of the human visual system 

to the interpretation of light at different wavelengths (Grey, 2006). It is convenient to 

define colour by the wavelength of its light, as each part of the visible colour spectrum 

corresponds to light waves of different wavelengths (Hunt, 1987; Grey, 2006). As depicted 

in Figure 2.1-1, the main spectral colours occupy the wavelength bands from 

approximately 380 nm to 780 nm and include a gradual transition from one colour to 

another throughout the spectrum (Hunt, 1987; Grey, 2006).  

 400 nm 500 nm 600 nm 700 nm 

 

Figure 2.1-1 – Visible Continuous Spectrum 

Different parts of the visible continuous spectrum correspond to light waves of different wavelengths. The 

main spectral colours occupy the wavelength bands from approximately 380 to 780 nm, with a gradual 

transition from one colour to another. 

 

Hue is the property of colour that distinguishes one colour from another; it is the 

dominant wavelength of light that is often identified with a name, such as ‘red’, ‘orange’, 

‘purple’, etc. Colours seen by the human eye are not only subject to variations in hue but 

also lightness (relative brightness) and colourfulness (chroma and saturation). Lightness is 

a measure of the amount of light reflected or emitted by an object. Colourfulness, which 

incorporates chroma and saturation, is the property of colour that describes purity and so is 

responsible for any given colour’s vibrancy or dullness. 

The retina of the human eye contains two main types of photoreceptors. ‘Rods’ 

number approximately 120 million and are very light sensitive but do not have a role in the 

perception of colour, while ‘cones’ number approximately 6–7 million and provide all of 

our colour sensitivity (Grey, 2006). When a visual signal is received, photoreceptors judge 

the hue and the brightness of the signal and the overall combination of these signals 

determines the colour perceived by the brain. The eye’s retina is also responsible for the 

‘triple’ nature of colour. The basic principle of trichromatic colour is that all the colours 
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can be reproduced by blending together in different proportions the three primary colours – 

red (R), green (G) and blue (B). Consequently, the human eye has three types of cones, 

with each type being sensitive to either red green or blue radiation. Colour blindness is 

characterised by the absence of one type of cone.  

2.1.2.1 Colour Interpolation 

Objects absorb, transmit and reflect light of different wavelengths in a variety of 

combinations. To produce a colour digital image using a microscope operating in the 

transmission mode, the wavelengths of light transmitted by a sample must be ‘read’ by the 

microscope’s camera then converted to the picture elements (pixels) of the digital image. 

First, light from the sample is focused on the camera’s charged–coupled device 

(CCD), an electronic instrument that captures images as variations in light intensity. The 

principal component of the CCD is the silicon wafer chip sensor that carries a rectangular 

array of millions of light–sensitive diodes (Brown, 2004). Photodiodes incorporate filters 

that separate intensity data for the red, green and blue bands of the spectrum, creating 

individual photosites that correspond to pixels in the final image (Brown, 2004). When a 

photon of light strikes the surface of the sensor, the energy imparted by the photon releases 

an electron that is stored in the photodiode (Rieke, 1994). Each diode produces an 

electrical charge proportional to the amount of light it captures from the sample.  

Second, signals from the sensor pass into an analogue–to–digital converter that 

translates the electrical charges into numerical pixel values. The numerical value is 

assigned to each photodiode’s charge, according to the number of electrons it contains. 

Experiments have shown that output signals are linear with respect to exposure time (ms) 

until close to saturation (Theuwissen, 2010). As each photosite is filtered to record only 

one of three colours, the data from each one cannot completely determine the final colour 

of the pixel. As depicted in Figure 2.1-2, colour interpolation algorithms obtain the single 

channel data from the photosites, which have distinct red, green and blue values, and 

recalculate new values so that each pixel in the final digital image will contain discrete 

RGB data (Brown, 2004). Therefore, a digital image is essentially an array of pixels that 

are each an exact square representing a uniform flat value of colour (Rivard, 2006). 
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Figure 2.1-2 – Depiction of Colour Interpolation 

An analogue–to–digital converter assigns numerical values to each photodiode’s charge, depending on the 

number of electrons it contains. Colour interpolation involves recalculating new pixel values for the digital 

image based on each photosite’s single–channel data, having distinct red, green and blue values. 

 

2.1.3. Colour Models  

Colour models provide an organisational system for digital images by translating 

the wavelength and light intensities of specific attributes from an image into numerical 

values. Each model relies on different attributes and therefore describes the same colour in 

a numerically different manner. For example, one model (RGB) describes colour based on 

the level of red, green and blue required to reproduce a colour, while another model (HSB) 

describes colour based on its hue, saturation and brightness.  

2.1.3.1 RGB Colour Model 

The RGB colour model characterises colour based on the three primary 

components red (R), green (G) and blue (B). Monochromatic light of these primaries 

include wavelengths of 650 nm for red, 530 nm for green and 460 nm for blue (Hunt, 

1987). Theoretically, combining all three components at their most saturated 

(monochromatic) levels produces pure white while alternatively omitting all three 

components produces pure black. The two–dimensional (2D) RGB colour gamut presented 

in Figure 2.1-3 depicts every colour that can be produced within the RGB colour space at 

its highest level of luminosity. In reality, the gamut is three dimensional (3D) with primary 

colours forming the triangle vertices and the intermediate colours forming a weighted 

average of those three primaries in different proportions (Kay, 2007). As the gamut is 3D, 

the darker pixels are ‘hidden’ beyond the pixels shown.  

 134 159 

165 140 

180 

176 120 

112 

60 62 

61 78 

130 

119 

113 

102 

 
R = 60 
G = 137 
B = 113 

R = 78 
G = 116 
B = 102 

 
R = 62 
G = 162 
B = 130 

R = 61 
G = 178 
B = 119 



Chapter 2. COLOUR 
 

 
 

24 

 

Figure 2.1-3 – RGB Colour Gamut 

The 2D gamut depicts every colour possible within the RGB colour model at its highest luminosity. The 

primary colours form the triangle vertices while the intermediate colours form a weighted average of those 

three primaries in different proportions. The darker pixels are ‘hidden’ beyond the pixels shown. (Source: 

Kay, 2007). 

 

On a digital monitor, characters are represented by strings of eight binary digits 

(‘0’s and ‘1’s). For a greyscale image, each pixel can be one of 256 levels of grey 

(comprising integers between 0 and 255) that corresponds to a particular combination of 

binary digits (2
8
 = 256). For an RGB colour image, each pixel is represented by three 

colour channels that are each represented by 256 saturation levels of red, green and blue, 

together creating over 16 million colours (2
(3*8)

 = 16,777,216). Theoretically, the full range 

of colour in the visible spectrum can be represented in digital media by combining red, 

green and blue pixels at different intensities (Brinkman, 2008). However, there is some 

colour visible to the human eye that is located outside the RGB colour space. 

2.1.3.2 CIE XYZ Colour Model 

The CIE XYZ tri–stimulus model was developed in 1931 by the International 

Commission on Illumination (in French, the Commission Internationale de l’Éclairage or 

CIE). The colour models CIE XYZ and CIE L*a*b* (described next) were designed on 

precise measurements of how humans perceive colour, incorporating properties of hue and 

saturation, rather than being designed on how colour is produced as was the case with the 

RGB colour model design (Grey, 2006; Rofin, 2006). The CIE X, Y and Z components do 

not represent real colour values, rather, they represent artificial primary colours (x, y and 

z) derived from a mathematical model (Rivard, 2006).  
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The CIE XYZ colour gamut is shown in Figure 2.1-4. The x and y axes specify the 

colour, while luminescence lies orthogonally in and out of the plane of the gamut, with the 

bottom black and top white (Hancock, 2010). Plotting red, green and blue on the CIE XYZ 

colour gamut establishes the boundaries of the RGB colour gamut and those particular 

colours that fall within and outside the RGB model.  

 

Figure 2.1-4 – CIE XYZ Colour Gamut 

Colour is specified by the x and y axes, while luminescence lies orthogonally in and out of the plane of the 

gamut, with black at the bottom and white at the top. The boundaries of the RGB colour gamut are also 

displayed as a triangle formed by the three primary colours.  (Source: Hancock, 2010). 

 

For any colour characterised by the CIE XYZ model, the CIE Y component 

(measured from 0 to 100) represents both the amount of artificial green primary and how 

sensitive the human eye is to light. Therefore, CIE Y is also a measure of the total 

luminescence in an image (Overheim & Wagner, 1982; Hunt, 1987). The CIE X 

component represents the amount of artificial red primary in an image and CIE Z 

represents the amount of artificial blue primary in an image. Variations in the amounts of 

CIE X and Z only affect the colour, leaving luminescence unchanged (Hunt, 1987). 

Moreover, to produce some colours, negative red, green or blue values are required so the 

artificial primary colours of the CIE XYZ colour model are derived in such a way that they 

are always positive (Overheim & Wagner, 1982; Christie et al., 2000). 

2.1.3.3 CIE L*a*b* Colour Model 

Some dimensions of colour perception, such as hue, colourfulness (chroma and 

saturation) and lightness, are not easily interpreted from the CIE XYZ model, which lead 
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to the design of the CIE L*a*b* tri–stimulus model. The CIE L*a*b* measurements 

correspond to trichromatic human perception and encompass every possible visible colour 

within which all RGB and CMYK (the subtractive colour model, Cyan Magenta Yellow 

and Key (black)) colour spaces are plotted (Rivard, 2006).  

Akin to RGB and CIE XYZ, the CIE L*a*b colour model also consists of three 

components to describe colour, but it is best represented in a 3D space as depicted in 

Figure 2.1-5. The component L* is purely a measure of lightness (measured from 0 to 100) 

and corresponds as much as possible to the human perception of lightness. Hence, CIE L* 

is entirely devoid of hue and saturation, while CIE a* and b* account for all the saturation 

and hue, measured along two axes between -100 and +100 (Rivard, 2006). The component 

CIE a* is represented by one axis between red (where a* > 0) and green (where a* < 0) 

while the component CIE b* is represented by the second axis between yellow (where b* 

> 0) and blue (where b* <0).  

 

Figure 2.1-5 – CIE L*a*b* Colour Space 

The CIE L*a*b* model comprises three components to describe colour. CIE L* is purely a measure of 

lightness and corresponds to the human perception of lightness. The other two components account for both 

saturation and hue. CIE a* is measured on an axis between red and green, while CIE b* is measured on an 

axis between yellow and blue. (Source: Thyon Design, 2010) 

 

2.1.4. Research on Hair Colour 

2.1.4.1 Spectrophotometry 

Shriver and Parra (2000) used reflective spectrophotometry to compare two 

methods for the determination of skin and hair pigmentation: a narrow–band spectrometer 
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(DermaSpectrometer) that measures the melanin index, and a tristimulus colorimeter 

(Photovolt Colour Walk) that measures luminescence within the CIE L*a*b* colour space. 

The researchers obtained triplicate measures of the parietal region of the heads of 55 

European, 9 African, 7 South Asian and 9 East Asian participants, all with naturally 

coloured hair. A clear correlation between the level of luminescence (CIE L* variable) and 

the melanin index was observed, and the researchers concluded that both instruments 

provide accurate estimates of pigmentation in skin and hair (Shriver & Parra, 2000).  

Naysmith and colleagues (2004) investigated the relationship between human 

pigmentation and the Mc1r genotype by comparing the DNA sequence diversity, hair 

colour and melanin measures of 59 participants. To measure hair colour, the researchers 

obtained triplicate measures represented in the CIE L*a*b* colour space, of the parietal 

region of the participants’ heads using a tristimulus colorimeter (Minolta Chromameter 

CR300) and quantified the amount of eumelanin and phaemelanin using high performance 

liquid chromatography (HPLC). It was observed that the predictive power of the genotype 

for hair colour (Mc1r) was greatest for the CIE b* score that measures on a scale from blue 

to yellow, followed by CIE a* that measures on a scale from green to red (Naysmith et al., 

2004). 

In a series of papers on hair colour, Vaughn and colleagues evaluated reflective 

spectrophotometry as a method to objectively describe hair colour (2008), to compare 

macroscopic and microscopic hair colour measurements as well as hair thickness (2009a), 

and compare hair colour measurement by digital image analysis with reflective 

spectrophotometry (2009b). For their research, CIE L*a*b* colour measurements were 

derived from both digital image and reflective spectrophotometry scans of the back and 

sides of participants’ heads.  

In order to categorise hair colour, several two–step cluster analyses (Euclidean 

distance and log–likelihood method) were performed based on the CIE L*a*b* colour 

measurements obtained from reflective spectrophotometry (Vaughn et al., 2008). The 

same CIE L*a*b* colour measurements and the respective category allocations were then 

used to perform several discriminant analyses, a method that predicts group measurements 

based on similarities within categories. Nearly all the two–step cluster models reportedly 

classed more than 95% of the samples into the correct categories (Vaughn et al., 2008). 

The high degree of prediction accuracy reported was not surprising considering that both 
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the ‘predicted’ and ‘original’ category allocations were based on exactly the same 

measurements. When the authors categorised the colour measurements according to 

observer–reported colours, only 73.1% of cases were correctly classified (Vaughn et al., 

2008). The lower result was most likely because cluster analyses evaluate the raw variable 

scores and groups them accordingly, irrespective of the overall colour perceived by the 

human eye. 

A further study compared CIE L*a*b* measurements using reflective 

spectrophotometry, with measurements obtained using the V++ precision digital imaging 

system from digital images of hair from the same individuals (Vaughn et al., 2009b). 

Based on the category allocations determined by reflective spectrophotometry in an earlier 

study (Vaughn et al., 2008), the authors performed a discriminant analysis using the digital 

imaging measurements as the predictor variables (Vaughn et al., 2009b). Several analyses 

resulted in low to moderate prediction accuracies, ranging from 51.5 to 85.8%. Had the 

digital imaging measurements been used to establish the original category allocations, it 

can reasonably be assumed that the digital image measurements would result in higher 

prediction accuracy than the reflective spectrophotometry measurements as again both the 

predicted and original category allocations would be based on the same variables. 

However, this was not investigated by Vaughn and colleagues (2009b), who concluded 

that the digital imaging method was inaccurate and inconsistent, and thus of limited value 

for forensic use. 

While reflective spectrophotometry may be a reliable method for accurately 

measuring macroscopic hair colour, it would be useful if cluster categories actually 

corresponded to the hair colours most people already use, such as ‘Blonde’ and ‘Dark 

Brown’, as noted by Vaughn and colleagues (2008). When the authors divided the hairs 

into six categories based solely on the spectrophotometric measurements, the observer–

reported Red (n = 4) and White (n = 2) colours were reportedly very clearly discriminated, 

while the other colours were “somewhat less distinct ... [and were] roughly divided” into 

the categories Fair, Light, Medium and Dark (combined n = 134) (Vaughn et al., 2008, 

pp93). When statistical criteria is the sole basis for categorising colour data, the predictive 

model created will be devoid of meaning with respect to the human perception of colour. 

Other researchers studied the ability of ultra violet–visible (UV–visible) 

microspectrophotometry to successfully discriminate the colour of dyed hair (Barrett et al., 
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2010; 2011). Although they focused on discriminating between chemically treated hair 

some natural hair colour assessments were incorporated in the research. Twenty five 

participants, reportedly representing a variety of natural shades from Light Blonde to Dark 

Brown, were classed into four categories following hierarchical cluster analysis (Euclidean 

distance and Ward’s aggregation criterion) (Barrett et al., 2011). The authors also used 

discriminant analysis to evaluate the ability of microspectrophotometry to differentiate 

natural hair colour between the four classes. Based on the mean of 25 spectra per 

participant (five scans from five hairs), 84% were correctly classed while, based on the 

mean of five spectra per hair (five hairs per participant), only 71% were correctly classed, 

as more opportunity for cross variations between hairs of the same shade was introduced 

(Barrett et al., 2011).  

Furthermore, Barrett and colleagues (2011) attempted to individualise the natural 

hair colours. Based on several discriminant analyses, the researchers concluded that the 

microspectrophotometry technique was not able to successfully discriminate between the 

25 natural hair samples, with only 22% of participants correctly classed. 

2.1.4.2 Alternative Research Methods 

While reflective spectrophotometry can be used to accurately measure hair colour 

at the macroscopic level, it can be cumbersome to use on a large number of individuals and 

such instruments are generally not portable (Vaughn et al., 2009b). As noted by Robertson 

(1982), methods based on the colour analysis of pigmentation (such as UV–visible 

microspectrophotometry), which have been successfully applied for many forensic 

applications, have limited value in classifying natural hair colour since the pigment in all 

hair is composed of only two components—eumelanin and phaemelanin. 

Research by Bednarek (2003) aimed to determine whether hair colours described as 

Blonde and Brown corresponded to narrow, non–overlapping ranges of the three 

components of the RGB colour model and also to define the practical effectiveness of 

morphological comparative hair analysis. Hair samples were classified as being either 

Blonde (n = 50) or Brown (n = 50) in accordance with the Ogle and Fox criteria that 

compares the colour of hair observed microscopically, with standards published in their 

Hair Atlas (see Ogle & Fox, 1999). Bednarek (2003) selected Blonde hair samples that 

compared to the D01–D03 Ogle and Fox classification and Brown hair samples that 

compared to the D21–D25 Ogle and Fox classification. The researcher used Lucia 4.51 
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Image Analysis Software to obtain digital images of the hair samples at 10, 40 and 60x 

magnification and to calculate the mean RGB value for the pixels making up each image. 

The author found that the Lucia imaging method could precisely detect and characterise 

strand colour in a digital manner without error from overlap between colour ranges. The 

Blonde RGB coordinates were 243, 224, 206 (lightest blonde) to 207, 182, 57 (darkest 

blonde) and the Brown RGB coordinates were 179, 154, 131 (lightest brown) to 117, 98, 

76 (darkest brown), all calculated from the mean ± one standard deviation (Bednarek, 

2003). 

Furthermore, to evaluate the practical effectiveness of morphological comparative 

hair analysis, the individualisation of 100 hairs randomly selected from 12 individuals was 

undertaken by both the method proposed by Ogle and Fox and the comparative analysis of 

RGB intensity values (Bednarek, 2003). Correct personal identification was obtained for 

74 hairs using the Ogle and Fox comparison to standards method, compared to 91 hairs 

correctly identified using intensity values determined by the RGB colour model system 

(Bednarek, 2003). The author concluded that the RGB digital image method provides a 

reliable basis for forensic hair comparisons. 

Birngruber and colleagues (2009) investigated the effectiveness of obtaining hair 

colour profiles using SpectraCube®, a spectral imaging device that combines a CCD–

based camera to acquire high resolution digital images, spectroscopy to acquire the spectra 

of each pixel, and light microscopy to observe morphological features. The authors’ 

evaluated spectral data from each of three hairs from 25 participants with both chemically 

treated and naturally coloured hair, to determine whether the SpectraCube® could be used 

to attribute human head hair to an individual on the basis of its colour profile. While the 

sensitivity range of the human eye is limited to wavelengths between 380 and 780 nm, the 

SpectraCube® was used to image hair samples between 450 and 1020 nm (Birngruber et 

al., 2009). 

Extreme intra–individual variability in the colour of individual hairs was observed 

and the researchers considered that this would diminish the significance of the results 

(Birngruber et al., 2009). The authors found that, while spectroscopic data was able to 

confirm microscopic findings, it could not provide additional levels of discrimination for 

indistinguishable hairs. The research indicated that it was not possible to definitively 

provide identification with a compound light microscope and a SpectraCube® based solely 
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on the colour of an individual hair and that the method is not suitable for forensic hair 

evidence (Birngruber et al., 2009). 

Finally, Brooks and colleagues (2011) combined traditional microscopic techniques 

with digital imaging to evaluate the use of numerical image values for measuring colour. 

The authors obtained five high resolution digital images from each of ten hairs from ten 

nominally brown hair participants. Numerical colour values were determined for each 

image using three colour models, namely, RGB, CIE XYZ and CIE L*a*b* using a V++ 

precision digital imaging system. The authors used discriminant analyses to evaluate and 

compare the ability of the three colour models to allocate hair samples to the rightful 

participant. They reported that the RGB colour model correctly classed 64% of the hair 

samples, CIE XYZ correctly classed 68% samples and CIE L*a*b* correctly classed 58% 

of the samples (Brooks et al., 2011).  

Canonical discriminant plots were also produced by those researchers to facilitate 

the statistical validity of the analyses, representing two functions for each model and 

describing almost all of the variation in the data (Brooks et al., 2011). For each colour 

model, two shades of brown were distinguished and, within the shades, it was reportedly 

possible to identify trends where all hairs were associated with the correct participant 

within the population sampled (Brooks et al., 2011). Of all the research methods on hair 

colour presented here, Brooks and colleagues (2011) showed the highest prediction 

accuracy for individualising hair samples based on colour alone. However, as only a small 

population (n = 10) was examined by the researchers, a greater number of participants 

would need to be included in the sample population to assess the full utility of the 

proposed approach. This, then, became the focus of the research presented in this chapter. 

2.1.5. Research Focus 

Hairs are a ubiquitous material in our environment and one of the most common 

forms of evidence found at crime scenes. The role of the forensic hair examiner is to 

determine whether a questioned hair recovered from a crime scene is or is not consistent 

with a known sample, through the employment of microscopic examination and 

comparison (Brooks, 2007). As colour is one of the main hair characteristics assessed and 

scored as part of this process, the research focus of this chapter involved assigning 

numerical values to such assessments. 
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The initial analyses were designed to address forensic casework in the broader 

context, whereby an inexperienced hair examiner or scene of crime officer may be 

required to process multiple questioned hairs or bulk samples during evidence triage. 

Discriminant analysis was used to distinguish between multiple hair samples. First, 

attempts were made to develop a statistical model that could assign a nominal hair colour 

to any given questioned hair, based on numerical colour values. Predictive models were 

established using the numerical values of approximately 1050 hair samples measured in 

this research. Second, to assess the evidential power of numerical colour values, attempts 

were made to allocate multiple hairs of visually similar colour to the correct participants. 

The follow–up analyses were designed to investigate whether numerical colour 

measurements could provide an additional tool for the experienced forensic examiner 

when performing colour comparisons. As opposed to colour components that were 

considered collectively as multivariate entities, for the follow–up analyses they were tested 

as individual variables regardless of the overall colour perceived by the human observer. 

That is, they were considered on a purely numerical basis for comparative purposes. 

Confidence intervals were applied to distinguish between an individual, questioned hair 

and multiple hairs from a known source. Issues pertaining to hair–to–hair comparisons 

were also provided. However, as a number of statistical requirements were not met due to 

the sampling method employed in this research, the follow–up analyses were included as a 

demonstration for potential future work only. 
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2.2.  Materials and Methods 

2.2.1.  Sample Preparation 

In accordance with the University of Canberra Committee for Ethics in Human 

Research (approval number 08–65), hair samples were received from 154 participants, 

comprising males and females aged between 18 and 65 years. Six nominal hair colour 

categories were targeted, namely Red, Blonde, Light Brown, Medium Brown, Dark Brown 

and Black, with 20 participants from each nominal category actively sought. Participants 

were asked to complete a short questionnaire regarding their age, gender, ancestry, hair 

colour, chemical treatment and product usage. All documents given to the participants 

including the questionnaire are provided in Appendix A
1
. Each participant and their 

associated samples were identified by a unique number between 200000 and 200250, 

anonymously allocated when the sample collection kits were distributed, that were retained 

throughout the entirety of the project.  

Combed head hair was requested to increase the number of telogen hairs in each 

sample set, as this hair type is the most common encountered during forensic casework and 

not generally suitable for nDNA analysis. Hair from each participant was collected in A3 

size white office paper that was folded and placed in a plastic snap–seal bag for return and 

subsequent storage. Returned hair samples were screened under light microscope. Only 

samples comprising at least ten hairs with distal (root) end attached and natural, untreated 

colouring (or where chemically treated, approximately 3 cm or more of naturally coloured 

regrowth) were retained for use in this study. Following screening, ten hairs from each 

participant were longitudinally mounted in pairs on Livingstone Premium Microscopes 

Glass Slides (76.2 x 25.4 mm, thickness 1.0–1.2 mm) using HistoMount™ mounting 

medium (National Diagnostics, supplied by Geneworks, South Australia) and size 1 

Deckglaser microscope cover glass (1 oz, 22 x 55 mm). The samples were then numbered 

01 to 10. Hair extending beyond the length of the microscope slide were correspondingly 

numbered, removed by cutting and stored in the original A3 folded paper. Glass slides 

were placed in a controlled oven (Contherm digital series, Cat. 2100, Contherm Scientific 

                                                           
1
 In addition to hair samples, participants were also asked to provide a DNA sample using two sterile cheek 

swabs. The DNA was collected on behalf of a second hair research project involving the recovery and 

characterisation of nDNA from Telogen hairs, being conducted at the University of Adelaide. 
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Co., New Zealand) at 37º C ± 2º C overnight to dry the mounting medium and prevent 

sample movement during image acquisition. Finally, the underside of each slide was 

marked at three equidistant points along the pigmented hair length, indicating where each 

image would subsequently be acquired. 

2.2.2.  Image Acquisition 

2.2.2.1 Microscope Specifications 

All image acquisition was conducted with the Leica DM6000 (Light Microscope 

series, Leica Microsystems CMS GmbH, Wetzlar, Germany), a fully automated upright 

microscope system as well as its associated image management software, the Leica 

Application Suite (LAS). The high resolution images were captured in colour format, 1392 

x 1040 mm, full frame HQ (real size = 203.59 x 152.1 µm) and saved as Tagged Image 

File Format (TIFF) files.  Bright field transmitted light contrast method was selected with 

all images captured through a 63x glycerine objective (Immersion Oil G, ne
21

: 1,451, Leica 

Microsystems). The following conditions were established at the beginning of the research, 

following observation of a random selection of hair samples: 1.50 saturation, 1.13 gamma, 

1.0x gain and 7.19 ms exposure. Toward the end of the image acquisition phase, these 

parameters were found to be unsuitable for a few hair samples comprising nominally dark 

black hair so the exposure time was reset to 17.3 ms to capture these few samples 

(discussed in detail at 2.2.6 Exposure Correction). 

2.2.2.2 Z–Stack Acquisition 

Montage images were acquired at three equidistant points along the proximal end 

of the hair shaft for all ten hairs belonging to each participant. At each point, the 

microscope was manually focused on the optical plane lying immediately below the cuticle 

area at the topmost part of the hair. This z–plane location was then ‘locked’ into the LAS 

software memory. The microscope camera was manually focused on the optical plane 

lying immediately above the cuticle area at the lowermost part of the hair and also ‘locked’ 

into software memory. Depending on the depth of the hair, the z–range distance was 

typically 28–35 µm deep. Once each z–range was selected, the camera automatically re–

focused at 30 equidistant optical planes within the range, approximately 1 µm apart. An 

image or “optical slice” was automatically acquired at each of these focal planes. From 

those 30 optical slices, the researcher manually selected ten from the core region, as shown 

in Figure 2.2-1, to create a single, multi–focus montage image. 
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Figure 2.2-1 – Depiction of Z–range Relative to Hair Shaft  

The microscope camera was manually focused on the focal plane immediately below the cuticle area, at the 

topmost part of the hair (red line) and then on the focal plane immediately above the cuticle area at the 

lowermost part of the hair (red line). Depending on the depth of the hair, the z–range distance was typically 

28–35 µm deep. The camera automatically re–focused at 30 equidistant optical planes within the range, 

approximately 1 µm apart, and acquired an optical slice at each plane. From those 30 optical slices, 10 slices 

predominately from the central region (blue) were used to create the final montage. 

 

2.2.2.3 Multi–focus Montage Generation 

Digital information from the individual optical slices that can be retained in the 

final montage image depends on user preferences. For this project, fixed method was 

selected with a patch size of 10 and a preference for accuracy over speed. Given hair’s 

cylindrical form, when observed through a microscope the width of the hair shaft (y plane) 

decreases at the focal planes furthest from the central region; the hair shaft is widest at the 

central region. Optical slices, acquired from focal planes where the hair appears narrowest, 

were found to create an overlapping effect that obscured pigmentation on other slices 

included in the same montage. Therefore, only the ten optical slices from the widest, 

central region were selected as the z–stack to create montages in this project. Also, it was 

judged that little pigment detail would be lost using this method, as the majority of 

pigmentation is nonetheless observed in the central region during microscopic forensic hair 

examinations (Brooks, 2009). An example of a z–stack and final montage created by this 

method is provided in Figure 2.2-2. 
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Figure 2.2-2 – Example Z–stack and Final Montage 

Montage images were created from the ten optical slices acquired from the widest, central region of the hair 

shaft. This avoided obscured pigment detail in the final montage that can sometimes occur when optical 

slices of the narrower part of the hair (those regions at the nominal top and bottom of the cylindrical shaft) 

are included in the Z–stack. The majority of pigmentation detail is also thought to be observed in this central 

region regardless. 

 
 

2.2.3.  Image Preparation 

Numerical colour values from the montage images (TIFF files) were measured 

using Digital Optics V++ precision digital imaging system software, version 5.0 (Digital 

Optics Limited, Auckland, New Zealand). Each image was normalised prior to the colour 

values being measured. This involved first using the V++ Geometry function to align each 

image so that the hair appeared horizontal across the monitor. As the angle of rotation 

differed for each montage and the image boundary was not enlarged during the process, 

the final normalised images differed markedly in size. Second, 4–point mapping, also part 

of the V++ Geometry function, was used to map a quadrant boundary rectangle of only the 

hair image, thereby cropping out any of the microscope slide observed in the image 

background. A bilinear interpolation filter was used to smooth the results during this 

process. Bilinear interpolation is a technique used to calculate the appropriate intensity of a 

new pixel when it is moved from another position. The transformation matrix is based on 

the intensity of the four nearest neighbouring pixels in the new pixel position (Rofin, 

2006).  

Z-stack 

Montage 

Hair shaft 

Camera 
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2.2.4.  Colour Measurement 

The V++ Statistics function was used to measure and record the mean pixel value 

contained within each digital image. The Statistics dialogue updates colour measurements 

continuously, depending on the image selected at a given time. The three colour models 

compared in this project, namely RGB, CIE XYZ and CIE L*a*b*, are each expressed by 

three components so a measure of the mean pixel value was recorded for each component. 

For example, for the RGB model, the mean level of red (R) in the normalised image was 

recorded, as well as the average level of green (G) and blue (B). In total, nine mean values 

were recorded for each normalised image. 

2.2.5.  Colour Transformation 

Multiple colour models can be supported by V++, including RGB, CMY, HSV, 

YIQ and CIE XYZ. Normally, a standard 3 x 3 colour transformation matrix is performed 

to convert between RGB and CIE XYZ coordinates. However, like most modern cameras, 

by default the DM6000 camera produces pixel values in the standard RGB (sRGB) colour 

model and was therefore non–linear with respect to CIE XYZ. Conversion between sRGB 

and the V++ inbuilt CIE XYZ coordinates could not be performed correctly, without first 

converting sRGB to linear RGB (linRGB). 

Furthermore, the CIE L*a*b* colour model was not one of the multiple colour 

models automatically included with V++, though it can be mathematically derived from 

the CIE XYZ coordinates. The programming language of V++, VPascal, was used to 

automate most of the colour transformation and measurement tasks in this research. The 

original VPascal script for transformation between the colour models was provided by 

Comber (2006a) with some alterations. The final VPascal script used to transform between 

colour model coordinates, is provided in Appendix B. 

2.2.5.1 Standard RGB to linear RGB 

To transform sRGB coordinates to linRGB coordinates, the following calculation 

was applied to each respective component: 

 linR = (sR / 255)  

and if (linR > 0.04045) 

then ((linR + 0.055) / 1.055)
2.4 

or else (linR /12.92) 
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 linG = (sG / 255) 

and if (linG > 0.04045) 

then ((linG + 0.055) / 1.055)
2.4 

or else (linG /12.92) 

 linB = (sB / 255)  

and if (linB > 0.04045) 

then ((linB + 0.055) / 1.055)
2.4 

or else (linB /12.92) 

2.2.5.2 Linear RGB to CIE XYZ 

To transform linRGB coordinates to CIE XYZ coordinates, the following 

calculation was applied to each respective component. (NB– the returned CIE XYZ values 

were percentages of the full scale (0–255).) 

 CIE X = (linR * 0.412453) + (linG * 0.357580) + (linB *0.180423) 

 CIE Y = (linR * 0.212671) + (linG * 0.715160) + (linB *0.072169) 

 CIE Z = (linR * 0.019334) + (linG * 0.119193) + (linB *0.950227) 

2.2.5.3 CIE XYZ to CIE L*a*b* 

To transform CIE XYZ coordinates to CIE L*a*b* coordinates, the temporary 

variables XX, YY and ZZ were first calculated. The following calculations were applied to 

each respective component. 

 XX (temp. variable) = CIE X / (0.412453 + 0.357580 + 0.180423)  

and if (XX* > 0.008856)  

then (XX*)
1/3 

or else (XX* 7.787) + 0.1379310345 

 YY (temp. variable) = CIE Y / (0.212671 + 0.715160 + 0.072169) 

and if (YY* > 0.008856)  

then (YY*)
1/3 

or else (YY* 7.787) + 0.1379310345 

 ZZ (temp. variable) = CIE Z / (0.019334 + 0.119193 + 0.950227) 

and if (ZZ* > 0.008856)  

then (ZZ*)
1/3 

or else (ZZ* 7.787) + 0.1379310345 

CIE L*a*b* coordinates were calculated from the temporary variables XX, YY and 

ZZ. The CIE L* value was scaled from 0 to 100, whereas the CIE a* and b* values were 

scaled from -100 to +100. 

 CIE L* (true scale) = (YY* 116) – 16 

 CIE a* (true scale) = 500* (XX – YY) 
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 CIE b* (true scale) = 200* (YY – ZZ) 

As the values of CIE a* and b* were scaled from -100 to +100, and some imaging 

and statistical software packages do not cope with negative numbers, the CIE L*a*b* 

coordinates were rescaled from 0 to 255. 

 CIE L* (positive scale) = 255* (CIE L* (true scale) / 100) 

 CIE a* (positive scale) = 255* ((CIE a* (true scale) + 100) / 200) 

 CIE b* (positive scale) = 255* ((CIE b* (true scale) + 100) / 200) 

Quality control of the colour measurements and transformations in this research 

was conducted at various times throughout the data collection process, including after the 

exposure correction calculations (discussed next). A selection of ten sRGB measurements 

were entered into an online colour conversion program (Logicol Color Technology, 2008) 

and the CIE XYZ and L*a*b* returned measurements were compared with the V++ 

returned measurements. In addition, the same ten sRGB coordinates were transformed to 

the other two colour models by manually writing Excel for Windows syntax and these 

results also compared with the V++ returned measurements. Minor differences were 

observed between the online colour conversion and the other methods but this was 

expected, as numbers used in calculations will be rounded–off at different levels by 

different programmers.  

2.2.6. Exposure Correction 

A number of parameters must remain consistent during the image acquisition 

phase, in order for the comparison of numerical colour measurements to be valid. 

Bednarek (2003) established that these parameters include image magnification, light 

intensity, hair–mounting medium, and the parameters of the optical device receiving the 

image. 

In this research, all images were captured through a 63x glycerine objective with 

7.19 ms exposure, 1.13 gamma, 1.50 saturation and 1.0x gain. However, during the 

research, these parameters were found to be unsuitable for some samples, particularly 

nominally dark brown and black hairs. The parameters lead to images that were considered 

too dark to (a) manually focus beyond the cuticle to set the z–range correctly, and (b) 

accurately observe the pigment detail in the final montage required for the pigment pattern 

recognition algorithms applied in Chapter 3: PIGMENTATION. 
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As established in section 2.1.2.1, Colour Interpolation, the number of electrons 

contained at a photosite affects its electrical charge, which then determines the numerical 

pixel value assigned in the final digital image. Experiments by Theuwissen (2010) showed 

that output signals are linear with respect to exposure time (ms) until close to saturation. 

Therefore, to capture the darker hair samples, the exposure time was increased from 7.19 

to 17.3 ms, determined experimentally.  

To correct for the increased exposure time, a sample of 19 hairs ranging in 

perceived colour from medium/dark brown to dark black were selected and imaged using 

both the original exposure (7.19 ms) and the longer exposure (17.3 ms), and separate 

regression plots for sR, G and B were constructed using Excel (see Appendix D). All other 

microscope, camera and lighting configurations, as well as image acquisition and colour 

measurement procedures, were identical to those applied to the main research samples. A 

strong relationship was found to exist between the two exposure times for each component 

(R
2
 > 95%). Table 2.2-1 indicates the minimum and maximum values, the regression 

equation and the r–squared values, for sR, G and B. 

Table 2.2-1 – sRGB Values for Exposure Correction 

Colour 

Component 

Min 

Value 

Max 

Value 
Regression Equation* R–squared 

sR 9.86 253.16 y = 0.4342x – 3.4379 0.9760 

sG 6.45 229.57 y = 0.3499x + 1.425 0.9824 

sB 5.28 174.23 y = 0.3265x + 1.8766 0.9696 

*Where ‘y’ is for 7.19 ms exposure values and ‘x’ is for 17.3 ms exposure values 

 

Regression equations are only valid for measurements occurring within the original 

sample range. The following syntax was employed to define the minimum and maximum 

values and an example calculation based on values for sR (RGB) colour is also presented 

(where “.” denotes values outside the minimum and maximum range). 

  IF (logical test [1], value if [1] true, IF (logical test [2], value if [2] true), 

value if [1] [2] false) 

 R (7.19 ms) = IF (R (17.3 ms) > 253.16, ".", IF (R (17.3 ms) > 9.86, (0.4342* R (17.3 

ms) ) - 3.4379, ".")) 
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Following sRGB exposure correction for the dark hair samples, the CIE XYZ and CIE 

L*a*b* coordinates were derived from the sRGB coordinates using the same mathematical 

equations employed in the VPascal script (see Appendix B) and as described in detail 

above (2.2.5 Colour Transformation). 

2.2.7.  Data Preparation 

Numerical colour measurements were pasted directly from the V++ clipboard to an 

Excel spreadsheet for initial observations and for cross–correlation. Raw data from Excel 

was then exported directly to PASW (Predictive Analytical Software) Statistics for 

Windows, version 17.0.2 (SPSS Statistics IBM Corporation, 2008) for analysis. The PASW 

program was chosen for its full range of predictive analytical features that can handle both 

simple and complex inputs. In addition, PASW features are accessible via simple pull–

down menus or command syntax programming, giving the benefit of ease of use and 

reproducibility. 

The complete Excel data sheet contained over 3000 cases and included individual 

colour measurements for three images per hair for every participant. The PASW 

Aggregation function can combine multiple data points into single cases based on, for 

example, summary functions for numerical variables, including mean, median, standard 

deviation and sum, and then creates a new file containing only this data (SPSS Statistics 

IBM Corporation, 2008). For the present data, the Aggregate function was used to 

combine single colour measurements for each hair calculated from the mean of the three 

images originally measured, to avoid software memory issues that were encountered 

during preliminary tests. 

2.2.8.  Discriminant Analysis 

Discriminant analysis focuses on the prediction of group membership. It is used to 

determine whether two or more known groups can be distinguished, based on a linear 

combination of multiple independent (predictor) variables (Norusis, 2008). The 

independent variables are combined into discriminant functions in such a way that the 

group centroids, being the means of the discriminant functions, will be similar for cases in 

the same group but different for cases in different groups (Norusis, 2008; Kinnear & Gray, 

2010). This analysis treats cases as both mutually exclusive and collectively exhaustive 



Chapter 2. COLOUR 
 

 
 

42 

(Norusis, 2008); that is, each case belongs to only one group and all cases are members of 

at least one group. 

Discriminant analysis [probability of F criteria (entry 0.05, removal 0.10) and 

Wilks’ lambda stepwise method] was used in this research, first to allocate individual hairs 

to one of six nominal hair colour categories and second to allocate multiple hairs to the 

correct participant within one of six subpopulations of similar hair colour. The nominal 

categories and the participants in the respective analyses were the grouping variables, 

while the colour components – R, G, B, CIE X, Y, Z, CIE L*, a* and b* – were the 

regressors from which group membership was predicted. 

The discriminant function coefficients categorised cases by assigning them to one 

group when the colour coordinates fell within a certain criterion or to another group when 

the coordinates fell within another criterion. The more widely separated the discriminant 

function distributions, the more successful the prediction of group membership from those 

functions (Kinnear & Gray, 2010). The percentage of cases allocated to the correct group 

was primarily used to evaluate the success of three colour models for this type of analysis.  

2.2.8.1 Hierarchical Cluster Analysis 

Hierarchical cluster analysis is used when the group membership for a set of cases 

is not known. While, for each hair, information about the participant they belonged to was 

available, information about the colour category each hair belonged to was not available. 

Hierarchical cluster analysis (Squared Euclidean distance and Ward’s Method) was used to 

facilitate the allocation of hairs to one of six nominal colour categories, namely Blonde, 

Red, Light Brown, Medium Brown, Dark Brown and Black.  

2.2.8.2 Canonical Discriminant Analysis 

Canonical discriminant analysis measures the degree of association between 

discriminant scores and the predicted groups (Norusis, 2008) and was used here to 

evaluate the success of the colour models for discriminating firstly between categories and 

secondly between participants. Function 1 always explains the greatest variance in the 

data and Function 2, being uncorrelated to the first, explains the second greatest variance 

in the data, etc (Norusis, 2008). Individual function coefficients represent the 

discriminating power of each of the variables independently. 
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Canonical analyses are often performed on data where each group has an equal 

probability of occurring in a population, or where information on the probability of 

occurrence is not available and is therefore ignored (Norusis, 2008). In this research, at 

least 20 participants from each of the six colour categories were actively sought; however, 

despite significant efforts, an overwhelming number of Medium Brown category samples 

and relatively few Red and Black category samples were returned. Therefore, prior 

probabilities were considered unequal for the canonical discriminant analyses performed. 

When sample proportions are unequal, the rate of correct classification is known to 

increase (Norusis, 2008). 

The canonical correlation produced by PASW is the overall variance that each 

function explains. A high correlation (up to 100%) indicates that most of the observed 

variability in the discriminant scores for a particular function is explained by differences 

between the groups. The canonical discriminant function plot represents discriminant 

scores of predictor variables that showed the greatest discriminating power (Norusis, 

1985; Brooks, 2007). Misclassification can occur due to lack of separation between the 

group centroids in the canonical space. 

2.2.8.3 Assumptions 

As discriminant scores are based on the calculated mean of the group centroid, they 

are sensitive to outliers. Also, the covariance matrix of the predictor variables should be 

the same for all populations and violations of this assumption can affect both hypothesis 

testing and classification (Norusis, 2008). ‘Box Ms’ produced by PASW can be used to test 

whether the population covariance matrices are equal. The Box test, however, is 

notoriously sensitive, with even relatively minor departures from homogeneity resulting in 

small observed significance levels, especially for large size sample populations (Leech et 

al., 2008; Norusis, 2008; SPSS Statistics IBM Corporation, 2008; Kinnear & Gray, 2010). 

Therefore, in many situations, small observed significance levels can be ignored with 

impunity (Norusis, 2008; Kinnear & Gray, 2010), i.e., the statistical significance may not 

equally represent the practical significance. 

The discriminant analyses were designed to emulate forensic casework, whereby an 

inexperienced hair examiner or scene of crime officer may be required to process multiple 

questioned hairs during evidence triage. Two specific questions were addressed. Namely, 
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which of the three selected colour models, RGB, CIE XYZ and CIE L*a*b*, provided the 

best statistical model for: 

 Allocating individual hairs to one of six nominal hair colour categories; 

and 

 Allocating individual hairs to the correct participant, within a 

subpopulation of similarly coloured hair. 

2.2.9. Analysis of Variance 

Analysis of variance (ANOVA) is used to compare two or more population or 

sample means, by focusing on the variance within the data being compared. Variance is 

the extent to which the measures of a single variable are distributed in a particular 

population, as opposed to covariance which is the extent to which two or more variables, 

vary together (i.e., how much they co–vary).  

Mixed–model ANOVA (linear) was used to confirm whether the main source of 

variance in the sample population was ‘between participants’. Attempting to distinguish 

one participant’s hair colour from another’s based on numerical colour measurements 

would be superfluous if ‘within participant’ variance was found to be greater. The colour 

components – R, G, B, CIE L*, a* and b* – were the dependent variables while ‘within 

hair’, ‘within participant’ and ‘between participants’ were the factors under investigation. 

[The colour components CIE X, Y and Z were not investigated here based on initial results 

and because the assumption of normality was not met (see Appendix E).] As 

measurements from the three images per hair (‘within hair’) was one of the factors under 

investigation, the complete data file containing over 3000 cases had to be analysed. To 

avoid software memory issues, the complete data file was randomly halved with each half 

analysed separately and the mean of both results provided. 

2.2.9.1 Assumptions 

The ANOVA statistic is only reliable when applied to normally distributed data. 

Normality was determined by observing histograms, QQ– and stem–and–leaf plots 

produced by PASW. Homogeneity of variance is also required however this assumption is 

actually tested as part of the analysis.  
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2.2.10. Nominal Colour Categories 

As previously described, colour is trichromatic and also incorporates hue, lightness 

and colourfulness (chroma and saturation). The colour models evaluated in this research 

numerically describe three specific attributes that combine to produce an overall colour 

that is, essentially, a visual experience dependant on the human observer for description, 

such as ‘Blonde’ or ‘Dark Brown’ in relation to hair colour. As one of the purposes of this 

research was to overcome the subjectiveness associated with hair colour perceptions, an 

appropriate method for allocating hair to nominal categories had to be derived that was as 

objective as possible. Multiple allocation methods were employed. 

Firstly, hierarchical cluster analyses were used to facilitate the allocation of hair 

samples to six nominal categories. They were performed separately for each of the three 

colour models, using the mean hair values calculated from three images. For each colour 

model, the researcher assigned nominal colour to each of the six clusters (cluster 01 = 

Blonde, cluster 02 = Red, etc.). A large number of hairs were allocated to the same colour 

category by all three models, though some inconsistencies between the allocations were 

observed. Cluster analyses separate data based on the raw variable scores and groups them 

accordingly, irrespective of meaning or interpretation of the variables. Even minor 

deviations in the statistical criteria could have had a profound effect on the importance of 

any given colour component, thus altering the significance of the model produced. 

While subjective in nature, participant–reported information on hair colour, along 

with observations of the original images by the researcher, were also used to facilitate the 

colour category allocation processes to ensure, in part, that the human perception of colour 

would be incorporated in the final statistical model. In their research on hair colour 

measurement and variation, Vaughn and colleagues (2008) found that self–reported hair 

colours were statistically similar to observer–reported hair colours. Those authors found 

that 85.7% of individuals had the same hair colour reported by themselves and an 

independent observer and, where there were discrepancies, the observer was more likely to 

report darker shades. As a wide variety of colour was sought in this project, participants 

were likewise asked to nominate the colour (Red, Blonde, Brown or Black) and shade 

(Light, Medium or Dark) of their own natural hair. (A short questionnaire pertaining to the 

participant’s ancestry, gender, age, hair colour, chemical treatment and product usage, was 
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included as part of the sample collection process and is provided in Appendix A.) Table 

2.2-2 indicates the final number of hair samples allocated to each category. 

Table 2.2-2 – Sample Numbers for Nominal Hair Colour Categories 

Blonde Red Light 

Brown 

Medium 

Brown 

Dark 

Brown 

Black Total 

n = 106 n = 71 n = 162 n = 361 n = 256 n = 53 1009* 

*A total of 1050 hairs would be expected given ten hairs from 105 participants. However, some colour 

measurements could not be obtained for various reasons causing a decrease in the total number expected. For 

example, some dark hairs fell outside the regression range (max/min) during the exposure conversion 

calculations. 

 

2.2.11. Probability Distribution Curve 

The probability distribution curve (or Gaussian distribution) serves as a model for 

the variation of a given measurement in a given population. A probability distribution 

curve can be derived from a mean value that describes where the population distribution of 

x is centred, as well as the standard deviation that describes variability within the 

population distribution (Devore & Peck, 2005). Natural hair colour varies to some degree 

with, for example, position on the head, and because numerical colour measurements have 

some level of uncertainty also. When a forensic examiner compares two hair samples, the 

result will always be based on the degree of difference between the samples, even when 

they are from the same source. A probability distribution curve representing variation in 

one person’s hair colour can be used to test how probable it is that a difference in colour 

would be obtained if a questioned hair had the same origin. 

The area under the probability distribution curve equals 1.0 in total. The 

approximate probability of observing a value at any given point lies along the curve and 

above that point on the x axis (Devore & Peck, 2005). However, determining the 

probability of occurrence of an exact occurrence (x) within a continuous random variable 

is impractical as an infinitely small probability would result. It is more convenient to 

calculate the cumulative probability between two intervals (x1 – x2). The Excel normal 

distribution syntax: NORM DIST(x, mean, standard deviation, true) was used in this 

research to calculate the cumulative probability between -1.96 and +1.96 standard 

deviations of the mean, being the 95% confidence interval.  
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When the population standard deviation is unknown, the sample standard deviation 

can be used but only when the sample size is greater than 30 (Devore & Peck, 2005). For 

every participant ten hairs were collected, with triplicate measures per hair (n = 30). 

However, as it was the ‘within participant’ hair colour variance being examined here and 

not the ‘within hair’ colour variance, ideally, a hair sample size of 30 would provide a 

more accurate representation of the distribution. Therefore, the results presented can 

provide an example for potential future work only.  

The analyses were designed to investigate whether numerical measurements could 

assist the experienced forensic hair examiner with colour comparisons. Specifically, 

confidence intervals were used here to address the question: 

 Can numerical colour measurements aid the examiner with colour 

comparisons between the individual, questioned hair and a sample from a 

known source 
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2.3.   Results and Discussion 

Hair samples from 154 participants were received for this research, from which 

only 105 were found suitable for analysis in regard to sample size, natural colouring (or 

extensive regrowth), lack of damage, and intact hair roots. Approximately 3150 montage 

images were acquired from those suitable hair samples, being three images from ten hairs 

for every participant. Using V++, numerical colour coordinates from the mean pixel 

colour within each image were measured in respect of the three chosen colour models, 

namely RGB, CIE XYZ and CIE L*a*b*. Discriminant analyses were performed on the 

numerical colour measurements in PASW to assess which colour model could provide the 

best statistical model for assigning each hair to one of six nominal categories and for 

distinguishing a participant’s hair from another’s, within a subpopulation of similar hair 

colour. Probability distribution curves were then performed in Excel to assess whether 

numerical colour measures could be used to aid the experienced examiner with colour 

comparisons between question and known sources. The latter analyses were provided as an 

example for potential future work. 

2.3.1.  Allocation to Categories (Preliminary) 

2.3.1.1 RGB Category Allocation 

The discriminant analysis involving R, G and B as the predictor variables resulted 

in the highest number of hairs correctly classed, with 76.2% prediction accuracy. Table 

2.3-1 illustrates the predicted categories (%) based on the RGB measurements. Rows 

indicate the original colour category; columns indicate the category predicted by the RGB 

colour model measurements. 
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Table 2.3-1 – RGB Predicted Colour Allocation (%) 

PREDICTED 
O

R
IG

IN
A

L
 

 Blonde Red Light B Med B Dark B Black 
Total 

% 

Blonde 69.8  22.6 7.5   100 

Red   59.2 15.5 23.9 1.4  100 

Light B 11.7 4.9 59.9 23.5   100 

Med B  1.7 1.7 87.8 8.9  100 

Dark B    18.8 77.3 3.9 100 

Black     22.6 77.4 100 

 

When there is an unequal prior probability of belonging to a category, the rate of 

correct classification always increases as the larger groups can overwhelm the information 

in the discriminant scores (Norusis, 2008). However, it was found that, while 87.8% of the 

medium brown hairs have been correctly classed, this was not at the expense of the other 

categories, showing correct classification in between 59.2 and 77.4% of cases.  

Figure 2.3-1 represents discriminant scores for the RGB colour model. Each hair is 

represented by the original allocated colour, but located in canonical space with respect to 

the two highest discriminant functions. It was observed that group centroids (mean 

discriminant functions) for Black, Dark Brown, Medium Brown and Light Brown, were 

best separated by Function 1 along the horizontal axis. For this function, the R variable 

that measured the intensity of red in an image was the strongest predictor variable, 

showing a high individual coefficient (0.961). In comparison, the other two predictors 

contributed very little to Function 1 (G, -0.215 and B, 0.285). The canonical correlation 

indicates that Function 1 explained 89.5% of the data variance.  

Alternatively, group centroids for Red, Blonde and, again, Light Brown were best 

separated by Function 2 along the vertical axis. For this function, the B variable that 

measured the intensity of blue in an image was the strongest predictor variable, showing a 

high individual coefficient (2.141). The R variable was the second highest predictor (-

1.346), while the G variable that measured the intensity of green in an image was again the 

smallest contributor (-0.571).  
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Figure 2.3-1 – RGB Canonical Discriminant Functions 

The PASW canonical plot illustrates the two highest discriminant functions for the RGB colour model. Group 

centroids for Black, Dark Brown, Medium Brown and Light Brown were best separated along the horizontal 

axis, being Function 1, whereas Red, Blonde and again, Light Brown, were best separated along the vertical 

axis, being Function 2. 

 

Bednarek (2003) found that the Lucia 4.51 Image Analysis Software that was used 

to calculate mean RGB pixel values, could precisely detect and characterise strand colour 

without error from overlap between Blonde and Brown colour ranges. Based on the same 

method of calculation (category mean ± one standard deviation), the Blonde and Brown 

RGB coordinates in this research did not correspond well to those coordinates reported by 

Bednarek (2003). Bednarek reported the Blonde RGB coordinates as being 243,224,206 

(lightest) to 207,182,57 (darkest) while this research found 206,171,148 (lightest) to 

141,112,91 (darkest). Bednarek reported the Brown RGB coordinates as being 

179,154,131 (lightest) to 117,98,76 (darkest), while this research found 173,132,101 

(lightest) to 121,89,63 (darkest). The Light Brown category from this research was used in 

the above comparison, as it corresponded better than either the Medium or Dark Brown 

categories.  

The difference between RGB coordinates reported by Bednarek (2003) and those 

reported in this research were most likely due to differences between the optical device 
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conditions for acquiring the two separate sets of digital images. Generally, the coordinates 

reported here were darker with the exception of B for the Blonde upper limit (lightest) and 

R for the Brown upper limit (lightest). 

2.3.1.2 CIE XYZ Category Allocation 

The discriminant analysis involving CIE X, Y and Z as the predictor variables 

resulted in the lowest number of hairs correctly classed, with only 69.3% prediction 

accuracy. Table 2.3-2 illustrates the predicted categories (%) based on the CIE XYZ 

measurements.  

Table 2.3-2 – CIE XYZ Predicted Colour Allocation (%) 

PREDICTED 

O
R

IG
IN

A
L

 

 Blonde Red Light B Med B Dark B Black 
Total 

% 

Blonde 58.5  25.5 16.0   100 

Red  46.5 15.5 38.0   100 

Light B 6.8 6.8 54.3 32.1   100 

Med B  0.6 0.3 96.7 2.5  100 

Dark B    34.8 65.2  100 

Black     100  100 

 

While 96.7% of the medium brown hairs were correctly classed, a high number of 

hairs were also incorrectly classed as Medium Brown and all of the black hairs were 

incorrectly classed as Dark Brown. These results suggest that the large Medium Brown 

category may have overwhelmed the information in the discriminant scores due to unequal 

prior probability.  

In addition, unlike the RGB and CIE L*a*b* colour models, normality assessments 

for the X, Y and Z variables indicated negatively skewed distributions (see Appendix E). 

The majority of hairs recorded low scores when measured within the CIE XYZ colour 

space, while much fewer high scoring hairs were recorded. This skewness likely affected 

close distribution of the discriminant functions, thus decreasing prediction of group 

membership from those functions, particularly for the lower valued Medium Brown, Dark 

Brown and Black categories. Figure 2.3-2 represents discriminant scores for the CIE XYZ 

colour model. 
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For CIE XYZ, the canonical discriminant function plot was ambiguous, with little 

separation between group centroids, particularly for Medium Brown, Dark Brown and 

Black. Even for Function 1, the highest discriminant function explaining the greatest 

amount of variance (canonical correlation 84.2%), all the individual coefficients were low. 

However, similar to the RGB results (Figure 2.3-1) the variable that measured the level of 

red in an image (CIE X) was the strongest predictor variable, with an individual coefficient 

of 1.432 for Function 1. The other two variables, namely CIE Y that measured the artificial 

level of green plus luminescence together, and CIE Z that measured the artificial level of 

blue, contributed even less (-0.674 and 0.258, respectively).  

 

Figure 2.3-2 – CIE XYZ Canonical Discriminant Functions 

Output from PASW illustrates the discriminant functions that showed the greatest discrimination. The low 

prediction accuracy of the CIE XYZ colour model has resulted in an ambiguous plot, with little separation 

between group centroids, particularly for Medium Brown, Dark Brown and Black. 

 

It was also observed that group centroids for Red, Blonde and Light Brown were 

again best separated along the vertical axis by Function 2. However, for the CIE XYZ 

colour model, the level of artificial red (CIE X) showed as the strongest predictor for both 

Function 1 and Function 2 (individual coefficient for Function 2, -7.731). 
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2.3.1.3 CIE L*a*b* Category Allocation 

The discriminant analysis involving CIE L*, a* and b* as the predictor variables, 

resulted in the second highest number of hairs correctly classed with 75.5% prediction 

accuracy, almost as high as the RGB results (76.2%). Table 2.3-3 illustrates the predicted 

categories (%) based on the CIE L*a*b* measurements. This result is consistent with 

previous research involving CIE L*a*b* by Vaughn and colleagues (2009b) who observed 

prediction accuracies ranging from 51.5 to 85.8% following several discriminant analyses. 

Those researchers nominated six colour categories (Red, White, Fair, Light, Medium and 

Dark) based on reflective spectrophotometry and digital image measurements as the 

predictor variables.  

In contrast to the CIE XYZ results where no black hairs were correctly allocated, 

for CIE L*a*b*, Black showed the highest category allocation with 92.5% correctly 

classed. This was even higher than Medium Brown, the largest category, where 86.7% 

were correctly classed. This indicates that, similar to the RGB results, high prediction 

accuracy of the largest group was most likely not at the expense of the smaller groups, 

despite unequal prior probabilities. 

Table 2.3-3 – CIE L*a*b* Predicted Colour Allocation (%) 

PREDICTED 

O
R

IG
IN

A
L

 

 Blonde Red Light B Med B Dark B Black 
Total 

% 

Blonde 69.8  23.6 6.6   100 

Red  57.7 16.9 23.9 1.4  100 

Light B 13.0 3.7 59.3 24.1   100 

Med B 0.3 1.7 3.9 86.7 7.5  100 

Dark B    20.3 73.8 5.9 100 

Black     7.5 92.5 100 

 

Figure 2.3-3 represents discriminant scores for the CIE L*a*b* colour model. It 

was observed that group centroids for Dark Brown, Medium Brown and Light Brown were 

best separated by Function 1 along the horizontal axis. For this function, the CIE L* 

variable, which measures the level of lightness in an image was the strongest predictor, 

showing the highest individual coefficient (0.977). In comparison, the two other predictor 

variables contributed very little to this function (-0.186 and -0.010, respectively). The 
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canonical correlation indicated that Function 1 explained 89.9% of the data variance. In a 

study on reflective spectrophotometry and the determination of skin and hair pigmentation, 

Shriver and Parra (2000) also observed a clear correlation between the level of 

luminescence measured by CIE L* and the melanin index.  

Group centroids for Red, Blonde and, again, Light Brown were best separated 

along the vertical axis by Function 2. The variable that measured the level of blue to 

yellowness in an image was the strongest predictor variable (CIE b*), showing a high 

individual coefficient (0.967). The CIE L* variable was the second highest predictor (-

0.482) for Function 2, while CIE a*, which measures the level of green to redness, 

contributed very little (0.092). 

 

Figure 2.3-3 – CIE L*a*b* Canonical Discriminant Functions 

The PASW canonical plot illustrates the two highest discriminant functions for the CIE L*a*b* colour model. 

Group centroids for Dark Brown, Medium Brown and Light Brown were best separated along the horizontal 

axis by Function 1, whereas Red, Blonde and again Light Brown were best separated along the vertical axis 

by Function 2. 

 

The individual coefficients for the CIE L*a*b* results for Function 2 were 

consistent with those of Vaughn and colleagues (2008). Following discriminant analysis 

on CIE L*a*b* coordinates measured by reflective spectroscopy and from digital images, 
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those researchers found the b* component of colour to be the strongest predictor variable 

and L* the second strongest predictor variable. Interestingly, Naysmith and colleagues 

(2004) found that CIE b* also had the strongest correlation with Mc1r, the gene that 

controls the production of eumelanin and phaemelanin.  

2.3.1.4 Summary of Allocation to Categories (Preliminary)  

Application of the three colour models resulted in between 69.3 and 76.2% correct 

classification of individual hairs to six colour categories. These results were similar to 

those reported by Barrett and colleagues (2011), who correctly classed 71% of individual 

hairs to four colour categories based on microspectrophotometry measurements. 

Of the three colour models evaluated, RGB returned the highest prediction 

accuracy; albeit CIE L*a*b* returned an almost similar number of correctly classed 

samples. Conversely, the CIE XYZ results were generally poor, comprising low prediction 

accuracy and an ambiguous discriminant function plot, particularly among the darker 

categories. Lack of separation between group centroids of the darker categories most likely 

affected a high number of misclassifications including, most notably, classing all the black 

hairs to the Dark Brown category.  

Moreover, it was observed that the discriminant analysis relied on similar 

measurements to discriminate between two types of categories  ‘Dark’ and ‘Light’. On 

one side, group centroids for Black, Dark Brown, Medium Brown and Light Brown were 

predominantly distinguished by a single function that incorporated measures of red and 

luminescence in an image. Alternatively, group centroids for Light Brown, Red and 

Blonde were predominantly distinguished by a single function that incorporated measures 

of blue or blue to yellowness in an image.  

Vaughn and colleagues (2008) employed log–likelihood cluster analyses that 

classed their population into two categories (when the number of category allocations was 

not dictated) based on CIE L*a*b* measurements. Their results showed that one category 

incorporated the ‘Dark’ observer–reported hair colours Black, Dark Brown, Light Brown 

and the four darkest Blonde participants, while the second category incorporated the ‘Fair’ 

observer–reported hair colours including the remaining Blonde, Red and White 

participants. In later research, the same authors observed that, as the number of categories 

increased, the percent of individuals correctly classified decreased (Vaughn et al., 2009b). 
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Given this observation and the fact that prediction accuracy can increase when variables 

showing low individual coefficients are removed (Norusis, 1985), further analyses in this 

research were considered. 

2.3.2.  Allocation to Categories (Secondary)  

In an effort to increase the number of correctly classed hairs, analyses were 

repeated that incorporated only a limited set of categories and predictor variables. 

Accordingly, the nominally ‘Dark’ categories were separated from the nominally ‘Light’ 

categories and only the strongest predictor variables for those respective categories were 

included in each discriminant analysis.  

A few considerations need to be highlighted. First, preliminary results showed that 

the Light Brown category is discriminated from the darker brown categories along the 

Function 1 axes, as well as from the lighter categories along the Function 2 axes (see 

Figure 2.3-1 and Figure 2.3-3). Thus, while the nominally Dark and Light groups were 

separated, the Light Brown category was included in both analyses. Second, given the 

generally poor CIE XYZ results, variables from this colour model were not included 

further. Finally, one of the aims of this project was to evaluate which colour model 

provides the best statistical framework for categorising hair to one of six nominal 

categories; the secondary analyses do not address that aim. Rather, the secondary analysis 

aimed to refine and improve the preliminary results by further investigating the more 

significant observations. 

2.3.2.1 Dark Category Allocation 

One secondary analysis comprised Black, Dark Brown, Medium Brown and Light 

Brown hairs. Only the stronger predictor variables for these categories were included, 

namely, the level of red in an image measured by R (RGB) and the level of luminescence 

in an image measured by CIE L*. 

As a result of category and variable limitations, the prediction accuracy increased 

to 81.9%. The CIE L* variable was the poorer predictor variable compared with the R 

(RGB) variable, showing individual coefficients of -0.033 and 1.032, respectively. Figure 

2.3-4 represents discriminant scores for this analysis and shows that group centroids were 

well separated along the horizontal axis by Function 1. 
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Figure 2.3-4 – Dark Category Canonical Discriminant Functions 

Output from PASW illustrates the discriminant scores for the R (RGB) and L* variables. Group centroids for 

Black, Dark Brown, Medium Brown and Light Brown were well separated along the horizontal axis by 

Function 1. However, only 81.9% of the original colour categories were correctly classed. 

 

2.3.2.2 Light Category Allocation 

The other secondary analysis was limited to Light Brown, Red and Blonde classed 

hairs. Again, only the stronger predictor variables for these categories were included, 

namely the level of blue in an image measured by B (RGB) and the level of blue to yellow 

in an image measured by CIE b*. 

Prediction accuracy for this analyses remained at only 74.4%. The level of blue in 

an image (B) was the slightly stronger predictor variable compared with the measurement 

of blue to yellow in an image (CIE b*), both showing individual moderate coefficients of 

0.786 and -0.598, respectively. As these two variables measured the same colour attribute 

in part, equivalent predicting strength was expected. Figure 2.3-5 represents the 

discriminant scores for this analysis and shows that group centroids for the lighter 

categories were best separated along the horizontal axis by Function 1. 
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Figure 2.3-5 – Light Category Canonical Discriminant Functions 

Output from PASW illustrates the discriminant scores for the B (RGB) and b* variables. Group centroids for 

Red, Light Brown and Blonde were best separated along the horizontal axis by Function 1. However, only 

74.4% of the original colour categories were correctly classed. 

 

2.3.2.3 Summary of Allocation to Categories (Secondary) 

Secondary analyses were conducted to decrease the misclassification rate resulting 

from the preliminary research, though only the more significant observations were 

investigated further. As prediction accuracy can increase when variables showing low 

individual coefficients are removed, the data was separated to reflect either nominally 

Dark or nominally Light categories with analysis limited to only the strongest predicting 

variables for each respective dataset. As a result, prediction accuracy increased slightly for 

the nominally ‘dark’ categories while no improvement was observed for the nominally 

‘light’ categories.  

Overall, statistically moderate prediction accuracies resulted and alternative 

methods would need to be considered so that a statistical model with greater discrimination 

between colours can be developed. The applied method would obviously not increase the 

value of evidence in court; however, it could still find a useful role for training purposes or 

during the evidence triage process to assist non–experienced hair examiners or scene of 

crime officers with base level colour assignment. 
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2.3.3. Main Source of Variance 

Prior to attempting to allocate individual hairs to the correct participant, mixed–

model ANOVA was used to confirm that the main source of variance in the sample 

population was ‘between participants’. This range of variation is the foundation on which 

microscopic hair examinations involving colour comparisons rely.  Table 2.3-4 illustrates 

the variance (%) for each factor under investigation. Rows indicate the colour components; 

columns indicate the variance (%) each factor contributes to the overall variance. 

Statistically, the overall variance is the standard deviation squared. 

Table 2.3-4 – Source of Variance for Sample Population 

SOURCE OF VARIANCE 

C
O

L
O

U
R

 C
O

M
P

O
N

E
N

T
 

 
Within Hair 

(%) 

Within 

Participants 

(%) 

Between 

Participants 

(%) 

Overall 

Variance* 

(Std Dev
2
) 

R 3.17 16.26 80.90 2513 

G 3.84 18.73 77.84 1832 

B 4.79 21.80 74.55 1385 

CIE L* 3.68 18.11 80.34 337.5 

CIE a* 7.90 27.32 69.62 15.55 

CIE b* 6.58 23.97 73.19 46.89 

*Overall variance (std dev
2
) is measured in the same units as the original measurement. 

 

The results for all the dependent variables analysed (R, G, B, CIE L*, a* and b*) 

confirmed that the main source of variance was indeed ‘between participants’ and the least 

source of variance was within the individual hair strand. This was in contrast to 

observations by Birngruber and colleagues (2009) who reported extreme intra–individual 

variability in the colour of individual hairs. Based on results from this research, the view 

that numerical colour measurements can be used to distinguish between each participants’ 

hair colour was supported. 

2.3.4. Allocation to Participants 

Canonical discriminant analysis was used to allocate individual hairs to 

participants, within a population of similar hair colour. The analyses were performed 

separately for each of the three colour models and for each of the subpopulations. 
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It was clear from the results that prediction accuracy was largely affected by the 

sample population. A number of participant samples were dispersed across more than one 

nominal colour category. For example, a person who self–reported their natural hair colour 

as ‘Medium Brown’ often had a few hairs from their ten hair sample set in the ‘Light 

Brown’ and/ or ‘Dark Brown’ categories. Therefore, within any given subpopulation, a 

participant (grouping variable) could have anywhere between one and ten hairs. That said, 

in forensic casework situations would arise whereby varying numbers of hairs belonging to 

multiple individuals may need to be distinguished. This condition most likely affected the 

prediction accuracy and, similar to the analyses involving allocation of hairs to categories, 

unequal prior probability of belonging to a participant was assumed.  

2.3.4.1 Predicted Participant Allocation 

Table 2.3-5 summarises the prediction accuracy of each colour model for the 

allocation of a hair to the correct participant. For each subpopulation, the number of hairs 

in the sample is displayed while the colour model with the highest prediction accuracy for 

each population is shaded. 

Table 2.3-5 – Summary of Prediction Accuracy 

 RGB CIE XYZ CIE L*a*b* 

Blonde 

(n = 106) 
58.5 43.4 59.4 

Red 

(n = 71) 
80.3 69.0 76.1 

Light Brown 

(n = 162) 
45.4 37.4 46.0 

Medium Brown 

(n = 361) 
36.0 11.1 34.6 

Dark Brown 

(n = 256) 
34.4 15.2 25.4 

Black 

(n = 53) 
45.3 54.7 56.6 

 

Similar to the category allocation results, the RGB and CIE L*a*b* colour models 

performed better overall than the CIE XYZ colour model, with the former models equally 

returning the highest prediction accuracies for three out of the six subpopulations analysed.  

Conversely, CIE XYZ had the lowest prediction accuracy for almost all the 

subpopulations, with the exception of ‘Black’. For this category, CIE XYZ was able to 
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correctly class hairs to their participants in 54.7% of cases, which was higher than the 

RGB result of 45.3% correctly classed. This result was unexpected, given that, in the 

previous category allocation results, CIE XYZ was unable to discriminate between the 

darker hairs, with 34.8% of the Dark Brown category misclassified as Medium Brown and 

all of the Black hairs misclassified as Dark Brown (see 2.3.1.2 CIE XYZ Category 

Allocation)!  

2.3.4.2 Summary of Allocation to Participants 

Bednarek (2003) was able to assign 91 of 100 hair samples to the correct 

participant based on intensity coordinates determined by the RGB colour model system, 

but was only able to assign 74 of 100 hair samples to the correct participant based on the 

Ogle and Fox method of measuring hair against colour standards (see Ogle & Fox, 1999). 

Though correct classification was not as high as Bednarek (2003), Brooks and colleagues 

(2011) also observed higher results than those observed in the current research, based on 

ten brown hair samples for each of ten participants. Those researchers reported 64% 

correct classification based on intensity coordinates determined by the RGB colour model, 

68% correct classification using the CIE XYZ colour model and 58% correct classification 

using the CIE L*a*b* colour model. 

Aside from the Red category that returned moderate results between 69.0 and 

80.3% prediction accuracy, the results in this research were generally too low for the 

method to be considered a routine tool in forensic hair examination. These results were 

analogous to those of Barrett and colleagues (2011) who found that the 

microspectrophotometry technique was not able to successfully discriminate between 25 

natural hair samples, with only 22% of participant hair correctly classed. Birngruber and 

colleagues (2009) also concluded that it was not possible to provide identification using a 

compound light microscope and the spectral imaging device SpectraCube
®
 based solely on 

the colour of a single hair. Finally, even though the application of the statistical methods in 

their research were questioned here, Vaughn and colleagues (2009b) also concluded that 

the digital imaging method (macroscopic) was inaccurate and inconsistent, and thus of 

limited use in forensic science. 
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2.3.5. Discriminative Analysis Considerations 

A number of reasons were considered for why the predictive analyses were of 

limited value when applied to the discrimination of hair colour. Primary among those was 

that colour models describe a certain number of specific attributes that combine to produce 

a ‘colour’ that is, essentially, a visual experience dependant on the human observer for 

description. The Wilks’ lambda stepwise method was chosen for this research, as there was 

no reason for assigning one colour component a higher priority than the other two, for any 

given colour model. However, with any stepwise method, it is solely the statistical 

criterion that are used to determine the order of entry of predictor variables into the 

discriminant model (Tabachnick & Fidell, 2001) while the meaning or interpretation of the 

predictor variables is not relevant. Incorporating subjective observer–reported colours to 

facilitate the allocation of categories to overcome this drawback subsequently decreased 

the prediction accuracy rates. 

Moreover, discriminant analyses focus on linear relationships. The goal of the 

analyses in this research was therefore to find the linear combination of values of the 

colour model components that best separate one hair colour from the other hair colours or 

that best separate the hair of one participant from the hair of other participants. If a non–

linear relationship between the individual components of a particular colour model 

existed, it would not have been represented by the discriminant model. For example, when 

distinguishing a population of medium brown hairs from a population of dark brown hairs, 

it would be assumed that all hairs in the latter population have equivalently lower scores 

for all three components measured. It is just as likely that only one or two lower scores 

affect the overall human perception of darker hair rather than all three components 

uniformly. 

Finally, correct classification can also be affected by departures from homogeneity 

of the covariance matrix. Box Ms produced by PASW were used to test this assumption 

however, the test is notoriously sensitive and small observed significance levels, especially 

for large sample sizes, can be ignored (Norusis, 2008; Kinnear & Gray, 2010) as was the 

case here. Therefore, if the covariance matrix of the predictor variables was not the same 

for each colour category population, this could additionally explain why the predictive 

models were of limited value when applied to the discrimination of hair colour 
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Alternative statistical methods should be considered in order to develop a model 

that shows greater discrimination between colours. Colour categories need to reflect the 

human perception of colour yet equally correspond to differences between the numerical 

coordinates that are measured. The predictive statistical tests applied in this research so far 

do not have the high discriminating power that is required for a continuous variable such 

as hair colour. Furthermore, while this research compared three colour models, there is 

some colour visible to the human eye that is located outside the sRGB colour gamut.  This 

constriction may have limited the potential of this part of the research and a wider RGB 

gamut, such as Adobe RGB, may have been a better choice. 

2.3.6. Colour Comparison between Two Samples 

The following analyses were designed to investigate whether numerical 

measurements could assist the experienced forensic hair examiner with colour 

comparisons. Specifically, confidence intervals were used here to determine whether 

numerical colour measurements could aid the examiner with comparisons between the 

individual, questioned hair and a sample from a known source. In the previous 

discriminant analyses, colour model measurements were considered collectively as 

multivariate components. For the probability distributions utilised here, the measurements 

were analysed as individual variables regardless of the overall colour perceived by an 

observer; that is, the variables were tested on a purely numerical basis. The results below 

pertain to a hypothetical examination policy declaring that: 

 Values within the 95% confidence intervals ( = 0.05) for R, G and B 

measurements are similar in colour 

Thus, we would state a similar colour on 95% of occasions when the hair samples were 

actually from the same source but we would be wrong on 5.0% of those occasions. A 

greater level of significance (e.g.,  = 0.01) could be selected.  

The sample standard deviation can be substituted for the unknown population 

standard deviation as long as the sample size is greater than 30. Given that only ten hairs 

from each known sample population were obtained (albeit, triplicate measures per hair 

were included), the analyses were limited to a demonstration for potential future work that 

could assist the experienced forensic examiner with colour comparisons between a 

question and known source.  
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2.3.6.1 Individual, Questioned Hair 

Figure 2.3-6 displays a montage from the hair selected to represent an individual, 

questioned hair. The triplicate measures acquired from that individual hair were found to 

have a mean R value of 86.3, a mean G value of 59.2, and a mean B value of 40.4. 

 

Figure 2.3-6 –Montage Representing a Individual, Questioned Hair 

One of the three montage images acquired from the hair selected to represent the individual, questioned hair. 

 

2.3.6.2 Known Participant 2002044 

Triplicate measures acquired from ten hairs belonging to Participant 2002044 were 

found to have an overall mean R value of 85.1 and standard deviation of 18.8, a mean G 

value of 58.9 and standard deviation of 17.0 and a mean B value of 40.8 and standard 

deviation of 15.9. The probability distribution curves derived from those measures of 

central tendency are displayed in Figure 2.3-7. Generally, each distribution reflects the 

variation in Participant 2002044’s hair colour and the probability of observing those 

measurements in hair samples from that participant. The distributions include a mark () 

indicating the point where the individual, questioned hair mean values were located. 

Figure 2.3-7 also displays a series of ten montage images selected at random from the ten 

hairs belonging to Participant 2002044 to visually illustrate the hair colour variation 

represented in the distributions. 
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Figure 2.3-7 – Probability Distribution and Colour Variation of Participant 2002044 

(Top) Probability distribution curves derived from the R, G and B mean and standard deviations for 

participant 2002044. A mark () along each curve indicates the point where the individual, questioned hair 

mean values were located. (Bottom) A series of ten montages randomly selected from the ten hairs belonging 

to known participant 2002044, to illustrate that participant’s hair colour variation. 

 

If the individual, questioned hair did indeed come from Participant 2002044, the 

measured R, G and B variables would be expected to lie near the distribution centres and 

would have a probability of less than 5% of laying more than 1.96 standard deviations 

away. For each measured variable, the questioned hair was very close to the sample mean 

for Participant 2002044 and hence fell within the 95% confidence intervals. Thus, 

differences between the colour of the questioned hair and that of Participant 2002044 

could be explained by chance due to the range of variability in the participant’s hair. 

2.3.6.3 Known Participant 2002185 

Participant 2002185 was found to have an overall mean R value of 58.0 and 

standard deviation of 15.6, a mean G value of 32.8 and standard deviation of 10.7 and a 
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mean B value of 16.3 and standard deviation of 6.86. The probability distribution curves 

derived from those measures of central tendencies are displayed in Figure 2.3-8. A mark 

() along each curve indicates the point where the questioned hair mean values were 

located. Figure 2.3-8 also displays a series of ten montage images belonging to Participant 

2002185 to illustrate their hair colour variation. 

 

Figure 2.3-8 – Probability Distribution and Colour Variation of Participant 2002185 

(Top) Probability distribution curves derived from the R, G and B mean and standard deviations for 

participant 2002185. A mark () along each curve indicates the point where the individual, questioned hair 

mean values were located. (Bottom) A series of ten montages randomly selected from the ten hairs belonging 

to known participant 2002185, to illustrate that participant’s hair colour variation. 

 

For each measured variable, the questioned hair was lighter than the sample mean 

for Participant 2002185. For R, the individual, questioned hair fell just within the 95% 

confidence interval but for G and B the individual, questioned hair fell outside -1.96 and 

+1.96 standard deviations of the mean. That is, there was a 95% probability of obtaining a 
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smaller difference in colour (i.e., a more similar colour) if the questioned hair was indeed 

from Participant 2002185. The differences in colour were so great they were unlikely to 

have occurred by chance, had the questioned hair actually come from this participant. 

2.3.6.1 Comparison to another Individual Hair 

A forensic hair examiner not only compares an individual, questioned hair to a 

range of hairs from a known source but also to other individual hairs from the known 

source. For a comparison between an individual, questioned hair and an individual, known 

hair it would be unreasonable for an examiner to acquire 30 image acquisitions from either 

of the single hair strands. Therefore, 95% confidence intervals determined from probability 

distribution curves should not be applied for such comparisons. 

For an examiner to make numerical colour assessments and draw comparisons 

between two individual hairs, the best method would at least require replicate 

measurements from both samples. The National Association of Testing Authorities 

(NATA) (2009) recommend seven replicate measurements for the evaluation of 

measurement uncertainty and/or bias. However, similar to other research on hair colour 

(Shriver & Parra, 2000; Naysmith et al., 2004), triplicate measures from each hair were 

obtained here, so the following is again provided as a demonstration for future work only. 

Figure 2.3-9 displays two montages from hairs selected to represent the individual, 

questioned hair (top) and an individual, known hair from Participant 2002044 (bottom).  

 

 

Figure 2.3-9 – Montages Representing a Question and Known Comparison Hair 

Two montages from hairs selected to represent the individual, questioned hair (top) and an individual, known 

hair from Participant 2002044 (bottom). 

Seven theoretical measurements from each hair were determined to have the mean, 

upper and lower R, G and B measurements provided in Table 2.3-6. The theoretical 
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replicate measurements were best represented visually using box–plots, as illustrated in 

Figure 2.3-10. 

Table 2.3-6 – RGB Values of an Individual, Questioned hair and a Comparison Hair 

 Measurement Lower Value Mean Upper Value 

Individual, 

Questioned hair 

 

R 83.0 86.3 90.5 

G 56.5 59.2 62.1 

B 36.6 40.4 45.5 

Participant 

2002044 

 

R 75.0 80.0 83.9 

G 53.2 56.9 61.3 

B 32.9 36.8 42.1 

 

 

Figure 2.3-10 – Box Plots of Mean, Upper and Lower RGB Measurements 

Box plots providing a visual representation of the mean, upper and lower RGB measurements calculated 
from seven montage images acquired from an individual, questioned hair and a comparison hair selected 
from known participant 2002044. 

Measurement for the questioned hair were within the same (partial) range as the 

replicate measures for the comparison hair from Participant 2002044 for the G and B 

variables only. For the R variable, the lower quartile for the questioned hair was within the 

same range as the upper quartile for Participant 2002044. 
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2.3.7. Confidence Interval Considerations 

These analyses were designed to emulate the forensic hair examination process and 

investigate whether numerical colour measurements could assist the experienced 

microscopist, post–triage with colour comparisons between question and known sources. 

In the first analyses, an individual, questioned hair was compared to two known participant 

samples. As observed, the mean R, G and B measurements from the three montage images 

acquired from the questioned hair, fell within the 95% confidence intervals for Participant 

2002044. Typically, at this point the examiner would need to consider the odds against 

obtaining the result by chance if the samples did not come from the same source. This 

would involve assessing the frequency of hair colours occurring at random from sources 

other than the comparable participants. These data were outside the scope of the project as 

a stratified sampling approach was chosen and not a random sampling approach that would 

be required to obtain frequency information pertaining to the true population. 

That said, the role of the forensic hair examiner is to determine whether a 

questioned hair should be included or excluded as probative evidence and this decision is 

based on the degree of difference assessed between the question and known samples. The 

hair examination and comparison process follows defined protocols established by the 

forensic community and includes an assessment of not only colour, but also length, shaft 

profile (curly, straight), diameter (fine, coarse), root type, hair tip shape (taper, cut), any 

treatment or disease condition, pigmentation patterns (distribution, aggregation, density), 

cortical features, cuticle features and medullar characteristics (Brooks, 2007). Thus, while 

the follow–up analyses presented may not provide the experienced forensic examiner with 

information on hair colour frequency and probability in the true population, they could still 

assist with exclusion of samples at the preliminary stages of the examination and 

comparison process, given the number of other characteristics that are considered by an 

examiner.  

Following the assessment of multiple hairs from the known source, seven replicate 

measurements from individual hairs could be obtained in order to determine the mean, 

upper and lower colour boundaries of a given sample. An examiner, who observes little 

difference in colour between a questioned hair and a known hair, could use numerical 

colour assessments to present that observation as inclusionary or exclusionary evidence.  
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2.4.   Conclusion 

A number of researchers have investigated the application of numerical colour 

measurements for the forensic examination of human hair. A common statistical approach, 

including the initial approach taken in this research, involved the application of 

discriminant analyses – specifically, cluster and canonical discriminant analyses – for the 

purpose of allocating nominal colour classifications such as ‘Brown’ and ‘Blonde’ to a 

given hair sample (see Vaughn et al., 2008; Vaughn et al., 2009b; Barrett et al., 2011; 

Brooks et al., 2011). Based on that approach, correct classification of individual hairs to 

six nominal categories resulted in a statistically moderate overall prediction accuracy for 

the RGB and CIE L*a*b* colour models. The rate of misclassification associated with the 

statistical model, was too high to provide any useful application for court reporting 

purposes. This statistical approach is therefore only recommended for training new 

forensic hair examiners or for the evidence triage process to assist inexperienced hair 

examiners or scene of crime officers with the initial processing of multiple questioned 

hairs or bulk samples.  

Conversely, correct classification of multiple individual hairs to the correct 

participant in a subpopulation of similarly coloured hairs generally resulted in statistically 

low overall prediction accuracy. This statistical model would therefore not be 

recommended for the purpose investigated. A number of reasons were considered for why 

the discriminant analyses applied, were of limited value when applied to the discrimination 

of hair colour. Primary among those was that general colour categories that reflect the 

human perception of colour do not equally correspond to differences between the 

numerical coordinates tested by the applied statistic. In order for numerical measurements 

to assist the experienced forensic hair examiner, it is recommended that future research 

consider the colour components as individual variables, similar to the approach taken by 

Bednarek (2003) and the follow–up approach applied in this research. Further 

investigations involving confidence intervals for the comparison of numerical hair colour 

measurements are therefore recommended. Moreover, while comparisons in this research 

involved three colour models, a wider RGB gamut such as Adobe RGB may have been a 

preferable option and would also be recommended for research of this kind undertaken. 
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3.1.   Introduction 

3.1.1.  Hair Colour 

Natural hair colour is a consequence of the amount and type of pigmentation 

located within the keratinocytes of the hair shaft. In human hair, the pigment ‘melanin’ 

occurs as two types—eumelanin, a black–brown pigment, and phaemelanin, a yellow–red 

pigment (Jimbow et al., 1983; Robins, 1991; Ito & Wakamatsu, 2003; Rees, 2003). 

Research by Jimbow and colleagues (1983) involving red hair participants suggests that 

pure eumelanin or pure phaemelanin seldom exists in mammals. Rather, the majority of 

melanin present in hair and skin are heteropolymers, comprising varying proportions of 

both eumelanin and phaemelanin (Ito & Wakamatsu, 2003).  

Natural hair colour is also influenced by the number, size and density of the 

melanin granules. Darker hair colour is correlated with increasing pigmentation and 

therefore increasing light absorption, while white hair that has no melanin, reflects almost 

all incident light (Robins, 1991; Rees, 2003). Hair colour will also vary over time and at 

different somatic areas. As noted by Rees (2003), an individual with a red beard or red 

pubic hair may simultaneously have black head hair; while children with blonde hair can 

grow to have brown hair during adolescence then white hair in old age (Tobin & Paus, 

2001).  

3.1.2.  Melanogenesis and Pigment Patterns 

Routine forensic hair examinations typically begin with a detailed microscopic 

evaluation of each hair, followed by a side–by–side comparison between the unknown and 

exemplar hair samples. Morphological patterns or trends are often apparent throughout the 

length of the shaft and may be recognised in hairs from the same or different sources 

(Verma et al., 2002). Melanin is synthesised by a specific dendrite cell known as the 

melanocyte, that makes contact with the surrounding keratinocytes into which they 

discharge the melanin containing melanosomes (Robins, 1991). It is these individual 

pigment features of the keratinocytes that combine to form trends or patterns along the hair 

shaft. 

In the hair bulb, melanocytes are confronted with seven potential targets for 

pigmentation – three types of hair cells, three types of inner root sheath cells, and the 
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undifferentiated cells of the hair matrix (Weiner et al., 2007). Yet, pigment is transferred 

to only two types of precursor cells, being those of the cortex predominately and, to a 

lesser extent, the medulla (Tobin et al., 1999; Weiner et al., 2007). One melanocyte 

donates melanin to between 20 and 40 surrounding keratinocytes (Robins, 1991). Once 

transferred, the granules arrange into one of two configurations depending on their size—

large granules arrange into non–aggregated configurations whereby they remain as single 

particles, while small granules group within membrane–bound vesicles (Robins, 1991). 

Recent studies indicate that keratinocytes don’t just receive melanin, they influence and 

regulate melanocyte behaviour as well. Weiner and colleagues (2007) describe a 

mechanism whereby specific pigment–recipient cells provide the blueprint that instructs 

the melanocytes on where to place pigment. To summarise their findings, the Foxn1 gene 

(Whn, Hfh11) confers special properties on a cell, allowing the cell to emit signals that are 

recognised by melanocytes. The melanocytes then connect to the target cells via dendrites 

and transfer the melanin granules.  

Studies on mice have indicated that at least 150 genes at over 50 loci control eye, 

skin and hair colour by regulating such features as melanoblast development and melanin 

size, shape and transfer processes (Robins, 1991). Thus, a clear relationship exists between 

genotype and hair melanin content, and between melanin content and the patterns they 

form.  

Typical production of a pigmented human hair shaft lasts as long as the anagen hair 

cycle—many years duration—demonstrating the phenomenal synthesising capacity of 

melanocytes (Tobin et al., 1999). During youth, a small number of melanocytes have the 

potential to produce sufficient melanin pigment for up to 1.5 m of hair, in a single hair 

growth cycle (Tobin et al., 1999; Tobin & Paus, 2001). The complex process is regulated 

by a series of enzymes, proteins, transporters, receptors and ligands that act on the 

development, cellular and hair follicle levels (Slominski et al., 2005). The early anagen 

cycle coincides with melanocyte proliferation, while in late anagen, melanocytes retract 

their dendrites, reduce melanogenesis and disappear from the follicular epithelium (Tobin 

& Paus, 2001).  

The cessation of melanogenesis towards the end of the anagen cycle results in the 

pigment–free proximal ends that are observed in telogen hairs (Tobin et al., 1999; Weiner 

et al., 2007). In early catagen, Langerhans cells may remove pigment from the regressing 
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hair matrix to the dermal papilla (Tobin et al., 1999). The non–pigmented area directly 

above the root of telogen hairs may also contain numerous cortical fusi, being air bubbles 

trapped in the cortex of the hair (Houck & Bisbing, 2005). 

3.1.3. Research on Hair Pigmentation 

Significant biological differences are reflected by the melanogenesis process, 

producing a range of inter– and intra–individual variation (Verma et al., 2002). The most 

variable pigmentation patterns are observed in head hairs, while pubic hairs offer slightly 

less variation (Smith & Linch, 1999). The density of pigment granules in hair from four 

races of men, namely Western European, Asiatic Indian, Chinese and Negroid were 

evaluated by Vernall (1963). The study determined that although cortex pigment granules 

within an individual hair section appear to be relatively uniform in size, shape and colour, 

their frequency and distribution varied considerably, decreasing from the peripheral to the 

innermost area. In addition to variations within hair, pronounced differences were also 

observed in colour and pigmentation density among hairs from the same individual. 

However, significantly greater variances were observed between participants within each 

racial group and were greater still between participants from different racial groups. Later, 

a separate study on the identification of Polynesian head hair based on hair index and 

cross–sectional area, found that homogeneity for any racial trait is rare, as there is a wide 

range of variation within every genetic population (Kerley & Rosen, 1973). The latter 

study also observed the range of variation within a sample from the same individual and 

cautioned that several hairs should be sampled from participants in such studies rather than 

only one or two. 

These early papers on racial identification by Vernall (1963) and Kerley & Rosen 

(1973) demonstrate a reality that can complicate forensic hair examination when only a 

single or few questioned hairs are recovered from a crime scene. That is, no two hairs will 

possess indistinguishable features along their entire length—even two hairs belonging to 

the same individual—making definitive association to a single source impossible. It is the 

forensic examiner’s goal to recognise a pigment pattern in the questioned hair that is 

representative of the pattern found in the exemplar set (Gaudette, 1999; Smith & Linch, 

1999). While one or two hairs may not represent the full range of pigment pattern variation 

of the individual when several questioned hairs are available, the unique intra–individual 

variation that occurs over the head can strengthen an examiner’s finding of association 
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(Bisbing & Wolner, 1984). Where possible, a sufficient hair exemplar should not only aim 

to adequately represent the pigment pattern variation, but also to possess intact roots, 

represent anagen and telogen phases, and be collected as soon after the event as possible 

(Smith & Linch, 1999). It is recommended that approximately 40 head hairs and 20 pubic 

hairs be collected (Smith & Linch, 1999).  

3.1.4.  Quantification of Pigmentation 

A further complication encountered during forensic examinations is that, although 

differences between pigmentation may be visually observed, such differences can resist 

quantification. A number of studies involving numerical measures of hair have been 

reported; however, the methods described rarely involve pigmentation or their derived 

patterns. Verma and colleagues (2002) describe an automated Hair–MAP system that 

involves a digitised evaluation of microscopic images for medulla type, cuticle texture and 

shaft diameter that then undergo multivariate analysis to indicate whether two hairs were 

from the same source (Verma et al., 2002). Hair–MAP was used to image, segment and 

extract five common characteristic values found across the hair samples from 25 hairs of 

nine participants; accurate hair associations were returned 83% of the time (Verma et al., 

2002). Sato (2003) investigated hair form using indices derived from hair length, distance 

and area, obtained by image analysis of the hairs of eight Japanese males. Following 

statistical analysis (t–test and stepwise linear discriminant analysis), six values were 

derived that showed larger inter–individual variation than intra–individual variation (Sato, 

2003). Based on this preliminary study, the author proposed that numerical data obtained 

from image analysis is important for constructing an objective screening procedure for 

evidential hairs (Sato, 2003). Ball and colleagues (2002) used image analysis to determine 

whether morphological differences could be demonstrated between head hair from 26 

Egyptian mummies and 35 living Caucasoid and Oriental individuals. An image analyser 

was used to scan images that were then measured in respect of hair area, perimeter, length, 

breadth, width and radius, and analysed using multivariate and discriminate analysis 

(ANOVA, Tukey HSD multiple comparison tests and discriminant analysis). The authors 

concluded that there were significant morphometric differences between head hair from 

different races and from different genders within the same race.  

Brooks (2007), however, described a digital analysis method for analysing pigment 

patterns along the hair shaft. To summarise that research, colour montage images from hair 
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shafts were converted to monochrome to ensure that only single values were generated per 

pixel position (x, y) in the range 0–255, rather than three sets of values for red, green and 

blue. Applying V++ Digital Optics software, a small area representing pigmentation along 

the shaft was extracted from a single montage. The representative extract was then 

measured against the patterns of the entire image of an area of the hair shaft. The V++ 

algorithms were designed to subtract the value (0–255) of each individual pixel within the 

extract, from the pixel values (0–255) within the comparison image, by successively 

examining along the x–axis. A value was produced that reflects the mean degree of 

“mismatch” between pixels—zero represents a perfect match while 75–255 represents a 

high degree of mismatch. Inter– and intra–individual pigment pattern variations could then 

be statistically determined. Using samples from ten brown–haired participants, the 

research resulted in two main outcomes: first, it showed that it was technically possible to 

develop an objective set of hair colour coordinates (previously described); and second, it 

showed that confidence intervals and probability inferences could be assessed for pigment 

characteristics using pattern recognition data (Brooks, 2007). 

3.1.5.  Research Focus 

Forensic hair examinations involve a detailed microscopic evaluation as well as a 

side–by–side comparison between the unknown and exemplar hairs. A sufficient hair 

exemplar aims to adequately represent the pigment variation, as morphological patterns or 

trends are often apparent throughout the length of the shaft and may be recognised in hairs 

from the same source, given the relationship between genotype and hair melanin content. 

However, while pigmentation may be visually observed, such differences resist 

quantification. The research focus of this chapter therefore involved assigning numerical 

values to hair pigmentation. 

As few studies have been conducted in this area, these preliminary analyses were 

designed to measure hair pigment morphology in terms of density, size and shape, as 

represented by pixel variations in montage digital images. Two pigmentation pattern 

analyses were evaluated in the preliminary stages of this research, including the automated 

V++ script described by Brooks (2007) and a novel analysis. Following this evaluation, 

Analysis of Variance (ANOVA) was used to determine whether the morphological trends 

and unique intra–individual variations that are often observed by examiners, could be 

quantified by the selected analyses and if so, whether the highest measured variance in the 
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sample population tested was ‘between participants’ (inter–individual). Discriminant 

analysis was then used to investigate whether pigmentation measurements in respect of 

density, size and shape, can discriminate between participants with similar shaded hair 

based on the selected analyses. 
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3.2.   Materials and Method 

3.2.1.  Preliminary Evaluation ― Sample Preparation 

In the preliminary stages of the method design, two pigmentation pattern analyses 

were evaluated. One analysis was based on the method described by Brooks (2007)  

(Analysis 1) and the second analysis was based on a novel method (Analysis 2). Three 

montage images were acquired for each of the ten hairs provided by 154 participants, 

comprising males and females aged between 18 and 65 years. The images were acquired 

on the DM6000, as 1392 x 1040 pixels (full–frame HQ) and were saved as TIFF files 

(montage acquisition is described in detail in 2.2.1   Sample Preparation). Not all images 

were used in this part of the research due to the complexity of data preparation involved. 

Therefore, three separate hair populations were compared—Fair, Medium and Dark 

shaded hair—and, within each population, one montage from each of ten hairs from five 

representative participants was selected. 

Pigmentation observed within the montage images were measured using Digital 

Optics V++ Precision digital imaging software, version 5.0 (Digital Optics Limited, 

Auckland, New Zealand). Images for Analysis 1 and Analysis 2 were normalised prior to 

the pigmentation measurements. Normalisation involved first using the V++ Geometry 

function to align each image so that the hair appeared horizontal across the monitor. As the 

angle of rotation varied for each montage and the image boundary was not enlarged during 

the process, the final normalised images differed markedly in size. From this point 

onwards, images for Analysis 1 and Analysis 2 were prepared differently. 

3.2.1.1 Analysis 1 

For Analysis 1, each montage was transformed to a greyscale image using the V++ 

Colour Intensity function. Thus, each pixel in the image array was associated with a single 

intensity value on a scale from black (0) to white (255), instead of the three intensity 

values that are typically associated with colour digital images. The entire greyscale image 

was also cropped to 781 pixels in height (y) using the Region of Interest (ROI) V++ 

function to map a boundary rectangle. A small area representing pigmentation along the 

hair shaft was extracted from each greyscale image using the ROI function. The height (y) 

of the two images had to be the same pixel length for the analysis to precede therefore each 
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extract was also 781 pixels in height. The entire image and the extract were saved as a new 

TIFF file for analysis. 

3.2.1.2 Analysis 2 

For Analysis 2, a small area representing pigmentation along the hair shaft was 

extracted from each montage using the V++ ROI function to map a boundary rectangle of 

120 x 500 pixels in size. A threshold operation was then applied to each image depending 

on the general shade of the hair. Thresholding transforms an image to binary by converting 

all the pixels above the threshold level to 1 (white) and all the pixels below the threshold 

level to 0 (black) (Digital Optics Ltd., 2009). Determining the correct threshold level is 

critical. The array of pixels in an image of dark hair would comprise mostly low values 

therefore Dark images transformed at a high threshold level would appear almost black. 

Conversely, the array of pixels in an image of fair hair would comprise mostly high values 

so lighter images transformed at a low threshold level would appear almost white. The 

application of various threshold levels to images of three shades of hair is displayed in 

Table 3.2-1.  

Table 3.2-1 – Threshold levels for Fair, Medium and Dark Shaded Hair 

 

   

50%  

   

35%  

   

25%  

   

 

Cells that are shown as grey in Table 3.2-1, correspond to the ideal threshold level for each 

shade, as determined by experimentation on the three hair populations selected for this part 

of the research. For images of Fair shaded hair the threshold level was set to 50% of the 

original image, for Medium shaded hair the threshold level was set to 35% of the original 

image and for Dark shaded hair the threshold level was set to 25%. Given the intra–

individual variability known to exist, occasionally a hair sample was thresholded at an 
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unsuitable level due to the population shade the participant was selected for. (For example, 

a participant in the Fair population may have 9 fair shaded hairs and 1 medium shaded 

hair. The Fair population threshold limit of 50% would be unsuitable for the medium hair 

and the resulting image would appear almost black.) 

3.2.2.  Preliminary Evaluation ― Pigmentation Measurement 

3.2.2.1 Analysis 1 

The VPascal programming software associated with V++ was used to automate 

most of the pigmentation measurements for Analysis 1. The original VPascal script for 

Analysis 1 was provided by Comber (2006b) and small changes not affecting the script’s 

function were performed. The VPascal script used to generate pigmentation pattern 

matching values is provided in Appendix C. 

To generate a set of pigmentation pattern matching values, both an extract and an 

entire image were required. A matching value was produced for each pixel position along 

the entire image x axis, as illustrated in Figure 3.2-1. The automated process involved: 

 Calculating a mean of the pixel values (0 to 255) in the extract array; 

 Starting at the location x = 0 and determining the section of the entire array 

that corresponds in spatial (x, y) dimensions to the size of the extract array; 

 Calculating the mean of the pixel values (0 to 255) in this section; 

 Subtracting the mean pixel value of the extract from the mean pixel value 

of the section to produce a “matching” value. Zero indicated a perfect 

match between mean pixel values, while values above 75 (up to 255) 

indicated a high degree of mismatch; 

 This process was repeated for every pixel location along the x axis of the 

entire image (i.e., x = 1, x = 2 ... x = final x position).  

Generally, more than 1000 values were produced for each extract–to–entire image 

analysis. Analyses were performed between hairs belonging to the same participant and 

between hairs belonging to different participants.  
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Figure 3.2-1 – Pigment Pattern Matching Value Generation for Analysis 1 

The mean of the pixel values in the extract array was calculated then subtracted from the mean of pixel 

values in a section of the entire array, whereby the section corresponds to the same spatial dimensions (x, y) 

as the extract. This subtraction was repeated at each pixel position along the x–axis of the entire array, 

beginning with the location x = 0 and continuing until the final pixel location along the x–axis. Analyses 

were performed between images belonging to the same participant and images belonging to different 

participants. 

 

3.2.2.2 Analysis 2 

To measure pigmentation within the image, the V++ Object Analysis function was 

employed. As a threshold operation had already been applied to the images, this function 

could analyse the black on white objects in each array and produce an Excel spreadsheet 

containing measurements of each object. The complete list of parameters available for 

measurement using Object Analysis is provided in Table 3.2-3 (Digital Optics Ltd., 2009). 

This function can also be automatically performed with the appropriate VPascal script. 

Extract First Analysis 

X = 0 

X = 20 

Analysis 20 

X = 40 

Analysis 40 

X = end 

Last Analysis 
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Table 3.2-2 – V++ Object Analysis Measured Parameters 

Parameter Description 

Id Identifying serial number of the object 

Area Total number of pixels contained in the object 

Perimeter The distance around the traced edge of the object, in pixels 

Major The approximate length of the object’s major axis 

Minor The approximate length of the object’s minor axis 

Angle The angle between the major axis and the horizontal 

Xc X–coordinate of the centre of mass (centroid) position 

Yc Y–coordinate of the centre of mass (centroid) position 

Left Left boundary of the object 

Top Top boundary of the object 

Right Right boundary of the object 

Bottom Bottom boundary of the object 

Frame The sequence frame in which the object is found 

XSeed X–coordinate of a single boundary pixel 

YSeed Y–coordinate of a single boundary pixel 

M10 (SumX) Sum of x coordinates for all pixels in the object 

M01 (SumY) Sum of y coordinates for all pixels in the object 

M20 (SumX2) Sum of squares of x coordinates for all pixels in the object 

M02 (SumY2) Sum of squares of y coordinates for all pixels in the object 

M11 (SumXY) Sum of the products of the x and y coordinates for all pixels in the object 

Mxx (μ20) Sum of squares of (X–Xc) for all pixels in the object 

Myy (μ02) Sum of squares of (Y–Yc) for all pixels in the object 

Mxy (μ11) Sum of (X–Xc)*(Y–Yc) for all pixels in the object 

Border Contains 1 if the object touches the image boundary, 0 otherwise 

Sum Sum of intensities of all pixels contained in the object 

Min Minimum intensity of any pixel contained in the object 

Max Maximum intensity of any pixel contained in the object 

Mean Mean intensity of all pixels contained in the object 
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Not all the parameters measured by the Object Analysis function were exploited in 

this research. The ‘Area’ parameter was used to measure the pigmentation density, that is, 

the number of black (pigment) pixels divided by the total number of pixels in the 120 x 

500 array. The Area parameter was also used to determine the size of the objects. Finally, 

the ‘Major’ and ‘Minor’ parameters were used to determine the average shape of the 

pigment; however, only two nominal aggregations were considered, namely streaks or 

clumps. 

3.2.3.  Preliminary Evaluation ― Summary 

Evaluation of hair pigmentation patterns using Analysis 1 provided a number of 

benefits. For instance, locating the actual area of pattern match between the extracted 

pattern and entire image was possible as the analysis sequentially followed the order of 

pixels along the x–axis and that the degree of match (or mismatch) could be assessed from 

the subtraction calculation (Brooks, 2007). Furthermore, in a forensic context, it was 

possible to determine the probability of whether the pattern from a questioned hair also 

belonged to a known set of hairs. To attain these benefits, Brooks (2007) compared the 

mean (log +1) distributions for pigment pattern values of persons matched with themselves 

(e.g., Participant A extract with Participant A entire image 1 to 5) versus the mean (log +1) 

distributions for pigment pattern values of persons matched with others (e.g., Participant A 

extract with Participant B entire image 1 to 5, Participant C entire image 1 to 5, etc.). It 

was determined that extracts compared to entire images from the same participant returned 

a high probability, such as 89.9% and extracts compared to entire images from other 

participants returned a low probability, such as 0.3% (Brooks, 2007).  

Despite the potential of Analysis 1 to separate or associate patterns between hairs 

from the same participant and between other participants, it was determined that this 

method did not meet the aims of the current investigation. Specifically, regardless of the 

sequential generation of pattern matching values along the x–axis, it is the mean value 

from each comparison that is recorded then a further mean of those individual comparisons 

that is used to create the distributions for analysis. Thus, theoretically, simply subtracting 

the mean pixel value of the extract from the mean pixel value of the entire image should 

produce the same result as that generated by the pigmentation pattern matching values of 

the V++ script (provided in Appendix C). Three montages were used to validate this 

theory, as displayed in Table 3.2-3.  



Chapter 3. PIGMENTATION 
 

 
 

84 

 
Table 3.2-3 – Manual versus Automatic Generation of Pigmentation Measurements 

Mean Intensity of Entire minus Mean 

Intensity of Extract 
 

Script Generation 

of Matching Values 

7.1 

 

8.2 

95.0 

 

95.2 

0.0 

 

1.5 

 

Chapter 2: COLOUR was concerned with the investigation of numerical hair 

colour measurements, while the present chapter was concerned more specifically with the 

pigmentation that produces that overall hair colour. Notwithstanding the obvious 

relationship between the two entities, for the purpose of this research, it was necessary to 

avoid repeating measurements investigated in the previous chapter. It was decided not to 

proceed further with Analysis 1 given the close relationship between the measurements 

produced by this analysis and those of the previous chapter. That is, focus was retained on 

measuring the morphology of the pigmentation rather than the intensity values associated 

with the pigmentation in a hair image. 

Evaluation of hair pigmentation patterns using Analysis 2, while being a novel, 

untested technique also provided a number of benefits. For instance, the analysis aimed to 

numerically measure the density, size and shape of pigmentation common to a 

participant’s hair shaft—characteristics that were not targeted by Analysis 1 that instead 
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only focused on average intensity values within the image. Density, size and shape of 

pigmentation are typically evaluated during a routine forensic hair examination therefore, 

Analysis 2 attempts to compliment standard forensic procedures already employed in 

routine casework. Based on results from the preliminary evaluation, it was decided to 

proceed with this novel analysis and, therefore retain a focus on measuring the 

morphology of the pigmentation. 

3.2.4.  Data Preparation 

This chapter involved assigning numerical values to hair pigmentation. The 

analysis was designed to measure hair pigment morphology in terms of density, size and 

shape by relying on only a few of the parameters listed in Table 3.2-2. Notwithstanding, all 

of the raw parameters available in V++ Object Analysis would be worth investigating to 

determine their ability to assist in the objective discrimination of hair samples. The 

numerical parameters employed here, were pasted directly from the V++ clipboard to an 

Excel spreadsheet for initial observations and further calculations. Raw data from Excel 

was then exported directly to PASW (Predictive Analytical Software) Statistics for 

Windows, version 17.0.2 (SPSS Statistics IBM Corporation, 2008) for analysis. 

3.2.4.1 Density  

Each black on white object in the thresholded 120 x 500 image was allocated an 

‘Area’ value, being the number of black pixels in each object. The sum of the Area 

measurements determined the total number of black pixels in the whole image, with each 

array containing a total of 60,000 pixels (120 x 500). The following calculation was 

therefore used to determine the density of each image: 

 Density = (∑ Area / 60,000) *100 

 

3.2.4.2 Size  

An average of the Area parameter represented the average number of pixels 

contained in each of the black on white objects in the thresholded image. The following 

Excel syntax was employed to allocate one of three sizes to each object; an example 

calculation of the values employed here, is provided: 
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 Size = IF (logical test [1], value if [1] true, IF (logical test [2], value if [2] 

true), value if [1] [2] false) 

 Size = IF (Area > 1000, “large”, IF(Area < 100, “small”, “medium”)) 

Following the allocation of the small, medium and large sizes, the percentage occurrence 

of each size in the image was calculated (i.e., the percentage of black objects that are 

small, medium and large; %Small, %Med and %Large).  

3.2.4.3 Shape 

The ‘Major’ and ‘Minor’ parameters were used to determine the nominal shape of 

the pigment. Where the length of the major axis of an object was more than two times 

greater than the minor axis, this was considered a nominal “streak” pigment configuration, 

while an object with two axes of similar length (+/- 1 pixel) was considered a nominal 

“clump” pigment configuration. The following example Excel syntaxes were employed to 

define these aggregation types: 

 Streak = IF (major > 2*minor, “streak”, “.”) 

 Clump = IF (major > minor +1, ”.”, IF (major < minor -1, “.”, ”clump”)) 

Following the determination of the two nominal configurations, the percentage of the 

shape’s occurrence in each image was calculated (i.e., %Streak and %Clump).  

3.2.5. Analysis of Variance 

Analysis of variance (ANOVA) is used to compare two or more sample means, by 

focusing on the variance within the data being compared. A one–way ANOVA measures 

the variability in scores between different groups believed to be due to the independent 

variable, compared with the variability within each of the groups believed to be due to 

chance (Pallant, 2005). An F ratio is calculated that indicates whether there is more 

variability between the groups as a result of the independent variable than there is within 

each group (Pallant, 2005). An F–ratio significant value (sig–F) less than or equal to , 

where  = 0.05, indicates there is a significant difference somewhere among the mean 

scores of the dependent variable. 

One–way ANOVA was used to confirm whether the main source of variance in the 

sample populations for each shade was ‘between participants’ for each of the pigmentation 
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raw measurements or final calculations. Attempting to distinguish one participant’s hair 

pigmentation from another’s based on numerical measurements would be unnecessary if 

‘within participant’ variance was found to be greater for any of the given measurements. 

The raw measurements, being Area, Major and Minor, and the calculated measurements, 

being Density, %Small, %Med and %Large, %Streak and %Clump, were the dependent 

variables while ‘within participant’ and ‘between participants’ were the factors under 

investigation. Where it was determined that sig–F was less than  for a particular raw or 

calculated measurement, indicating more variability between groups, the null hypothesis 

was rejected and the measurement was included in further analyses (i.e., the variance 

between participants was found to be greater than the intra–individual, for the given 

measurement). 

3.2.5.1 Assumptions 

The ANOVA statistic is only reliable when applied to normally distributed data. 

Normality was determined by observing histograms, QQ– and stem–and–leaf plots 

produced by PASW. Homogeneity of variance is also required and the Levene test for 

equality is included as part of the PASW analysis. The ANOVA test is reasonably robust to 

violations of the assumption of homogeneity of variance, provided the group sizes are 

reasonably similar and they were all of equal size in this research.  

3.2.6.  Discriminant Analysis 

The underlying principles of discriminant analysis have been described in detail in 

section 2.2.8 Discriminant Analysis. Chiefly, discriminant analysis is used to determine 

whether two or more groups can be distinguished from each other, based on a linear 

combination of multiple variables. In this chapter, the discriminant function coefficients 

categorised cases by allocating them to one group when the pigmentation measurements 

placed them within a certain category or to another group when the coordinates placed 

within another category. The more widely separated the discriminant function 

distributions, the more successful the prediction of group membership from those 

functions (Kinnear & Gray, 2010). 

Discriminant analysis [probability of F criteria (0.05, removal 0.10) and Wilks’ 

lambda stepwise method] was used to allocate each of the ten hairs to one of five 

participants within a sample population of similarly shaded hair, being Fair, Medium or 
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Dark in shade. The participant numbers were the grouping variables, while the numerical 

pigmentation measurements that returned a significance value less than 0.05 (One–way 

ANOVA) were the regressors from which group membership was predicted. 

3.2.6.1 Canonical Discriminant Analysis 

Canonical discriminant analysis was used here to evaluate whether numerical 

measurements of hair pigmentation could be allocated to one of five participants of 

similarly shaded hair with a high degree of accuracy. This test measures the degree of 

association between discriminant scores and the predicted groups and is used when the 

group membership for a set of cases is known. Where most of the observed variability is 

explained by differences between the groups, a high canonical correlation will result. 

Misclassification results from a lack of separation between the groups. The canonical 

discriminant function plot, incorporating Function 1 versus Function 2, visually represents 

the discriminant scores of the predictor variables that showed the greatest discriminating 

power (Norusis, 1985; Brooks, 2007). For canonical discriminant analyses performed in 

this chapter, prior probabilities were considered equal. 

3.2.6.2 Assumptions 

Discriminant scores are sensitive to outliers because they are based on the 

calculated mean of the group centroid. Histograms produced by PASW were used to check 

for any outlying cases. Further, the covariance matrix of the predictor variables should be 

the same for all populations. ‘Box Ms’ also produced by PASW were used to test this 

assumption; however, the test is notoriously sensitive with even minor departures from 

homogeneity resulting in small observed significance levels, especially when routine  

levels are used (Tabachnick & Fidell, 2001).  

Overall, this chapter was designed to investigate whether numerical measurements 

could assist the forensic hair examiner with pigmentation pattern evaluations. Specifically, 

discriminant analyses were used to address the question: 

 Can images of hair pigmentation measured in respect of density, size and 

shape, be used to discriminate between participants possessing similarly 

shaded hair? 
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3.3.   Results and Discussion 

Approximately 3150 montage images were acquired from the hair samples of 105 

participants. From those images, only five representative participants were selected for 

each of the ‘Fair’, ‘Medium’ and ‘Dark’ sample populations created for this chapter. 

Respective threshold operations were applied to a 120 x 500 pixel extract of each image 

then the total pixel area of each black on white object was measured as well as the length 

of their major and minor axes. These measurements were used to create numerical 

representations of the morphology captured in each image in terms of pigment density, 

size and shape. One–way ANOVA was employed to determine whether the main source of 

variance in the three sample populations were ‘between participants’ for each variable. 

Finally, discriminant analyses were performed in PASW to assess whether such 

quantitative methods could be used to discriminate between participants with similar 

shaded hair. 

3.3.1.  Main Source of Variance  

3.3.1.1 Fair Samples 

The ten image extracts acquired from each of five participants selected to represent 

the Fair sample population are displayed in Figure 3.3-1. 

Participant 2002107 

 

Participant 2002121 
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Participant 2002175 

 

Participant 2002187 

 

Participant 2002200 

 
 
Figure 3.3-1 – Images Acquired for Fair Sample Population 

Five participants were selected to represent the Fair hair sample population. One montage image from each 

of the participants ten hairs, were prepared for the analysis. Normalised extracts from those images are 

provided. 

 

One–way ANOVA was used to confirm whether the greater source of variance in 

each of the three sample populations was between participants. For the five Fair sample 

population participants, large F ratio values—indicating that there was significantly greater 

inter–participant variability—were obtained for the variables Area (F = 3.639, sig. 0.01), 

%Small (F = 7.25, sig. 0.00), %Medium (F = 6.75, sig. 0.00), %Large (F = 3.30, sig. 0.02), 

Density (F = 7.53, sig. 0.00), %Clumps (F = 5.73, sig. 0.00), %Streaks (F = 19.35, sig. 

0.00) and the Major axis (F = 6.68, sig. 0.00). These variables were therefore considered 

suitable for the discriminant analysis, while the Minor axis (F = 2.11, sig. 0.09) was 

determined to be unsuitable and therefore excluded from further analysis of the Fair 

samples.  
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3.3.1.2 Medium Samples 

The ten image extracts acquired from each of five participants selected to represent 

the Medium sample population are displayed in Figure 3.3-2. 

Participant 2002038 

 

Participant 2002086 

 

Participant 2002093 

 

Participant 2002165 
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Participant 2002167 

 
 
Figure 3.3-2 – Images Acquired for Medium Sample Population 

Five participants were selected to represent the Medium hair sample population. One montage image from 

each of the participants ten hairs, were prepared for the analysis. Normalised extracts from those images are 

provided. 

 

For the five Medium sample population participants, a large F ratio value was 

determined for the variables Area (F = 2.77, sig. 0.04), %Large (F = 3.91, sig. 0.01), 

Density (F = 5.99, sig. 0.00) and the Major (F = 4.41, sig. 0.01) and Minor (F = 4.39, sig. 

0.01) axes. These variables were therefore considered suitable for the discriminant 

analysis, while the %Small (F = 1.01, sig. 0.41), %Medium (F = 0.25, sig. 0.91), %Clumps 

(F = 1.14, sig. 0.35) and %Streaks (F = 0.94, sig. 0.45) were determined to be unsuitable 

and therefore excluded from further analysis of the Medium samples.  

3.3.1.3 Dark Samples 

The ten image extracts acquired from each of five participants selected to represent 

the Dark sample population are displayed in Figure 3.3-3. 

Participant 2002064 
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Participant 2002120 

 

Participant 2002147 

 

Participant 2002185 

 

Participant 2002203 

 
 
Figure 3.3-3 – Images Acquired for Dark Sample Population 

Five participants were selected to represent the Dark hair sample population. One montage image from each 

of the participants ten hairs, were prepared for the analysis. Normalised extracts from those images are 

provided. 

 

For the five Dark sample population participants, a large F ratio value was 

determined for the variables %Small (F = 6.36, sig. 0.00), %Medium (F = 5.39, sig. 0.00), 

%Large (F = 6.67, sig. 0.00), Density (F = 7.39, sig. 0.00), %Clumps (F = 3.03, sig. 0.03) 

and the Minor axis (F = 11.73, sig. 0.00). These variables were therefore considered 
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suitable for the discriminant analysis, while the Area (F = 1.88, sig. 0.13), %Streaks (F = 

1.39, sig. 0.25) and the Major axis (F = 2.10, sig. 0.10) were determined to be unsuitable 

and therefore excluded from further analysis of the Dark samples. 

3.3.1.4 Summary of Main Source of Variance 

These analyses were designed to measure hair pigment morphology in terms of 

density, size and shape by relying on both raw numerical measurements such as the 

average pixel area and the length of the major and minor axes, as well as calculated 

measurements such as density, the percentage of small, medium and large objects, and the 

percentage of two nominal configurations—‘streaks’ and ‘clumps’. Where it was 

determined that the significance value was less than  (0.05) for a particular raw or 

calculated measurement, indicating greater variability between groups, the measurement 

was included for further analyses. Different outcomes resulted for the variables tested, 

depending on the sample population under consideration. The overall results are 

summarised in Table 3.3-1, where ‘Yes’ denotes a statistically significantly large F value 

result and ‘No’ denotes an insignificant result. 

Table 3.3-1 – Summary of Main Source of Variance 

Measurement Fair Med Dark 

Area Yes Yes No 

% Small Yes No Yes 

% Med Yes No Yes 

% Large Yes Yes Yes 

Density Yes Yes Yes 

% Clumps Yes No Yes 

% Streaks Yes No No 

Major Yes Yes No 

Minor No Yes Yes 

 

As displayed, overall the variables returned the lowest discriminating power for the 

Medium shade sample population. In this sample set, only five variables showed greater 

inter–participant variability than intra–participant variability, compared with the Dark 

population that had six variables showing greater inter–participant variability and the Fair 
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population that had eight variables. It is important to note that, while a significant F test 

result indicates that an appreciable difference exists between the participant’s scores, the 

test does not indicate where that difference occurs (Pallant, 2005). Thus, whether one 

participant or all five participants were appreciably different in any given sample 

population, a significant F test would result. As the objective for applying the one–way 

ANOVA in this research was to assist in selecting variables for the following discriminant 

analyses, identifying the variables with significant discriminating power was important, 

while actually identifying those participants was not as important.  

3.3.2.  Allocation to Participants 

3.3.2.1 Fair Participant Allocation 

Canonical discriminant analysis was used to allocate hair images to participants, 

within one of three populations of similar hair shades, being Fair, Medium or Dark. The 

analyses were performed separately for each of the populations. The Fair sample 

population analysis involved Area, % Small, % Medium, % Large, Density, % Clumps, % 

Streaks and Major axis as the predictor variables and resulted in the second highest 

number of images correctly allocated, with 54% prediction accuracy. Table 3.3-2 

illustrates the predicted categories (%) where rows indicate the original participant and 

columns indicate the participant predicted based on the numerical pigmentation 

measurements. 

Table 3.3-2 – Fair Participant Predicted Allocation (%) 

PREDICTED 

O
R

IG
IN

A
L

 

 2002107 2002121 2002175 2002187 2002200 
Total 

% 

2002107 80  20 0  100 

2002121   10 40 20 30 100 

2002175 10 20 40 10 20 100 

2002187  30 0 60 10 100 

2002200  10 10  80 100 

 

As illustrated, three of the participants individually scored above 60% correct 

allocation, while the remaining two participants scored relatively poorly, one participant as 

low as only 10% correct classification. Figure 3.3-4 represents discriminant scores for the 

Fair shade population. Each image is chromatically represented by the correct participant 



Chapter 3. PIGMENTATION 
 

 
 

96 

but located in canonical space with respect to the two highest discriminant functions. It 

was observed that the group centroids for all five participants, were best separated by 

Function 1 along the horizontal axis. For this function, the %Streaks and Density variables 

were the strongest predictors, showing individual coefficients of 0.879 and 0.451, 

respectively. The canonical correlation indicates that Function 1 explained 82.3% of the 

data variance.  

 

Figure 3.3-4 – Fair Participant Canonical Discriminant Functions 

The PASW canonical plot illustrates the two highest discriminant functions for the Fair hair sample 

population. Group centroids for all five participants were best separated along the horizontal axis by 

Function 1. 

 

3.3.2.1 Medium Participant Allocation 

The Medium sample population discriminant analysis involved the predictor 

variables Area, % Large, Density, Major and Minor axes and of the three sample 

populations tested, resulted in the lowest number of images correctly allocated, with only 

32% prediction accuracy. Table 3.3-3 illustrates the predicted categories (%). 
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Table 3.3-3 – Medium Participant Predicted Allocation (%) 

PREDICTED 

O
R

IG
IN

A
L

 
 2002038 2002086 2002093 2002165 2002167 

Total 

% 

2002038 60 10 10 20  100 

2002086  10 20 40 30  100 

2002093 10 20 60 10  100 

2002165 50 10 10 20 10 100 

2002167 60  10 30  100 

 

As illustrated, two of the participants individually scored 60% correct allocation, 

while the remaining three participants scored relatively poorly. For two of the latter, the 

majority of samples were incorrectly allocated to participant 2002038 with one of these 

participants having no correct classifications at all. A combined canonical discriminant 

plot was unavailable for the Medium shade sample population, as only a single 

discriminant function resulted from the analysis. That is, Density was found to be the 

strongest and only predictor variable (1.0 individual coefficient). 

3.3.2.1 Dark Participant Allocation 

The Dark sample population discriminant analysis involved % Small, % Medium, 

% Large, Density, % Clumps and Minor axis as the predictor variables and resulted in the 

highest number of images correctly allocated, with 62% prediction accuracy. Table 3.3-4 

illustrates the predicted categories (%). 

Table 3.3-4 – Dark Participant Predicted Allocation (%) 

PREDICTED 

O
R

IG
IN

A
L

 

 2002064 2002120 2002147 2002185 2002203 
Total 

% 

2002064 50 20 10  20 100 

2002120   60 10 30  100 

2002147 10 20 60 10  100 

2002185  10  80 10 100 

2002203 20   20 60 100 

 

As illustrated, all five of the participants individually scored 50% or above correct 

allocation. Figure 3.3-5 represents discriminant scores for the Dark shade population. Each 

image is chromatically represented by the correct participant, but located in canonical 
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space with respect to the two highest discriminant functions. It was observed that group 

centroids were well separated by both Function 1 and Function 2. The Minor axis and % 

Medium variables were the strongest predictors, showing individual coefficients of 1.039 

and -0.115, respectively. The canonical correlation indicates that Function 1 explained 

71.6% of the data variance and Function 2 explained 54.8%.  

  

Figure 3.3-5 – Dark Participant Canonical Discriminant Functions 

The PASW canonical plot illustrates the two highest discriminant functions for the Dark shade population. 

Group centroids for all five participants were well separated by both Function 1 and Function 2. 

 

3.3.2.2 Summary of Allocation to Participants 

The focus of this chapter involved assigning numerical values to hair pigmentation. 

Unfortunately, this novel methodology did not support discrimination between the selected 

participants. The nine measured variables returned the lowest discriminating power for the 

Medium hair sample population, with only five variables showing greater variance 

between participants than within participants. The Dark hair population comprised six 

variables showing greater variance between participants while the Fair hair comprised 

eight variables. The respective variables indicated that an appreciable difference existed 

between the participants’ scores but did not indicate where the difference occurred—either 
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one participant or all five participants in each population may have been appreciably 

different from the others.  

Furthermore, no obvious relationships were observed between each of the 

populations in terms of the number of variables selected, the strongest predicting variable 

or the overall prediction accuracy. The Medium sample population resulted in the lowest 

number of images correctly allocated, with only 32% prediction accuracy. Three of the 

five participants in this population scored less than 60% correct allocation, with one 

receiving zero correct classifications. The Fair hair sample population resulted in the 

second highest correct allocation, with 54% prediction accuracy and the Dark hair sample 

population showed the highest correct allocation, with 62% prediction accuracy. All five 

of the Dark hair participants scored 50% or above correct classification. Density was found 

to be the strongest and only predictor variable for the Medium hair sample population, 

%Streaks and Density were the strongest predictors for the Fair hair population, while the 

Minor axes and %Medium were the strongest predictors for the Dark hair population. 

Although the selected methodology did not support discrimination between 

participants, other research supports the proposal that there is a strong relationship between 

genotype and pigmentation. As previously discussed, studies on mice indicate that at least 

150 genes at over 50 loci control eye, skin and hair colour (Robins 1991) and specific 

pigment–recipient cells provide the blueprint that instructs melanocytes on where to place 

pigment (Weiner et al, 2007). The automated Hair–MAP system described by Verma and 

colleagues (2002) involving measures of medulla type, cuticle texture and shaft diameter 

resulted in 83% correct allocation; indices derived from measures of hair length, distance 

and area employed by Sato (2003) demonstrated larger inter–individual variations than 

intra–individual variations; while raw measurements and calculations derived from hair 

area, perimeter, length, breadth, width and radius employed by Ball and colleagues (2002) 

demonstrated significant morphometric differences between head hair from different races 

and from different genders within the same race. A number of factors were considered in 

terms of why the numerical approach applied in this research did not support 

discrimination between participants. 

First, while no two hairs from the same individual will have indistinguishable 

features along the entire length of the shaft, the goal of the forensic examiner is to 

recognise pigmentation patterns that are similar in both the questioned hair and the 
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exemplar set. To achieve this outcome, an examiner will evaluate the entire hair shaft of all 

hairs available. The present study, however, only evaluated a representative extract from a 

high resolution image of approximately 204 x 152 µm of each sample (see 2.2.2 Image 

Acquisition) and was therefore limited in the information available for evaluation, in 

comparison to that available during a routine forensic examination.  

Second, during method development of this part of the research, the threshold level 

was found to be critical. While the best average threshold was determined for the three 

separate populations (i.e., 50% for Light hair, 35% for Medium hair and 25% for Dark 

hair), given the intra–individual variability that is known to exist and that can be observed, 

for example, in the images displayed in section 3.3.1 Main Source of Variance, 

occasionally a hair sample was unavoidably thresholded at an unsuitable level. An 

incorrect threshold level results in the misrepresentation of available data, as demonstrated 

in Table 3.2-1. Addressing such limitations through an evaluation of the entire shaft and a 

reassessment of threshold levels, may assist future investigations into numerical measures 

of pigmentation to improve the discrimination of hairs from different individuals.  

Alternatively, to extract information from pigmentation patterns, the fractal 

dimension of the configurations could be determined (McNevin, 2012). Fractal dimensions 

describe the complexity of detail in a pattern rather than merely its size as described by a 

spatial dimension. Fractal dimensions rely on the concept that changes in scale, changes 

the detail in the pattern. For example, the distance of a coast line measured with a scale of 

1.0 km will yield one distance, but when measured with a scale of 0.001 km following the 

geometry of the coast line, will yield a greater distance (see Mandelbrot, 1967); the ratio of 

the two measured distances provides an indication of the complexity of the line measured. 

One study involving the determination of fire accelerants, successfully applied fractal 

dimension as a parameter for soot aggregates (Pinorini et al., 1994). In that study, soot 

aggregates were characterised by size and form in terms of perimeter, surface area, 

circularity and principal surface moments ratio; however, those physical measures did not 

have the discriminatory power required to separate the rich soot aggregates from those 

coming from the weak smoke products, so measures of fractal dimensions were 

successfully employed as an alternative (Pinorini et al., 1994). Statistical indices provided 

by fractal dimensions may similarly be suitable for comparing hair pigmentation within 

and between participants and further investigation is warranted.  
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3.4.   Conclusion 

The research focus of this chapter involved investigating whether numerical 

measurements could be used to quantify and discriminate pigmentation pattern 

evaluations. Previously reported studies involving the numerical classification of hair 

characteristics have focused on hair morphology in terms of the form or structure of the 

shaft or on comparisons between pixel intensity values rather than the pigmentation itself. 

This preliminary study was designed to measure the density, size and shape of the pigment 

configurations, as represented by pixel variations within montage images. Specifically, 

discriminant analyses were used to address the question of whether the selected 

measurements could discriminate between participants with similar shaded hair. 

Unfortunately, the selected methodology did not support discrimination between the 

selected participants and a number of limitations were considered for potential future 

research. 

First, the forensic hair examiner will evaluate the entire length of hairs available in 

a questioned and exemplar set of hairs. The present study only evaluated an extract taken 

from an area approximately 204 x 152 µm in size. This methodology was therefore limited 

in the information available for evaluation, in comparison to that available during a routine 

forensic examination. Future research should consider a method that involves a greater 

representation of the available hair sample. Second, during method development, the most 

appropriate average threshold level was determined experimentally for the three separate 

populations, i.e., 50% for Light hair, 35% for Medium hair and 25% for Dark hair. 

Occasionally a hair sample was unavoidably thresholded at an unsuitable level. It is 

recommended that future research consider multiple threshold levels for each image (i.e., 

25%, 35% and 50% for a single light hair image) that could be subjected to object analysis. 

While the data would be more cumbersome, the misrepresentation of information in any 

individual samples would be avoided.  

Furthermore, to measure pigmentation in each threshold image, the V++ Object 

Analysis function was employed to analyse black on white objects. Only a limited number 

of the parameters available in this function were exploited in this research, including the 

average pixel area and the length of the major and minor axes, as well as values calculated 

from those parameters, including density, size (percentage small, medium and large) and 
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two nominal configurations, namely the percentage of ‘streaks’ and ‘clumps’. Future 

research could consider a wider range of the 28 Object Analysis parameters available in 

V++; a complete list is provided in Table 3.2-3 (Digital Optics Ltd., 2009). Due to the 

complexity of data preparation involved in the current method design, only a small cohort 

of images and participants were evaluated here, namely one montage from each of ten 

hairs from five representative participants in each population. Investigating a greater 

number of parameters would only increase this complexity; however, once an appropriate 

method was determined, the Object Analysis function could be automatically performed 

with the appropriate VPascal script. This approach is recommended to enable a greater 

number of comparisons to be evaluated more easily.  

Alternatively, to extract information from pigmentation patterns, fractal dimensions 

that describe the complexity of detail in a pattern rather than merely its size, could be 

determined.  Fractal dimensions rely on the concept that changes in scale by which a 

pattern is measured, changes the detail in the pattern and have been successfully applied in 

other research that required statistical discrimination between measures of structure 

morphology (see Pinorini et al., 1994). Statistical indices provided by fractal values may 

also be suitable for comparing hair pigmentation within and between participants and 

further investigation is warranted.  

As noted by Tontarski and Thompson (1998), traditional approaches to pattern 

recognition rely on the human element to make observations and interpretations, and this 

depends heavily on the brain’s ability to correlate hundreds of data points and on 

consistency when repeating these tasks. Emerging technologies in image processing, 

pattern recognition and computer science could assist future examinations with 

classifying—or potentially individualising—forensic hair evidence. However, no method 

has yet been reported for the successful quantification and discrimination of hair 

pigmentation. Until there is a universally applicable technique that will mimic the 

microscopic analysis of pigmentation and the patterns they form, current evaluations by an 

experienced examiner, while subjective, is the best option available. 
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4.1.   Introduction 

The characterisation of molecules can be performed by spectroscopy, whereby 

radiant energy is absorbed, reflected or transmitted by a substance. By examining the 

frequencies where interaction has occurred, as well as the degree of interaction, 

information on the molecular structure of the substance can be obtained. Chemical analysis 

of many substances can be performed by conventional spectroscopy or by chemical 

imaging, which essentially combines molecular spectroscopy with digital imaging. Both 

qualitative and quantitative information can be rapidly captured with little sample 

preparation, decreasing the potential for sample contamination.  

4.1.1. Principles of Molecular Spectroscopy 

4.1.1.1 Electromagnetic Radiation 

Electromagnetic radiation consists of alternating electric and magnetic fields that 

oscillate in phase with each other and that are propagated through space as waves. 

Radiation is conveniently divided into regions depending on the frequency of wave 

oscillation and the joules of energy per photon of light. Regions of the electromagnetic 

spectrum, including gamma rays, X–rays, ultra violet (UV) radiation, visible light, infrared 

(IR) radiation, microwaves and radio waves, are associated with one or two types of 

quantum transitions including nuclear, electronic, rotational and vibrational transitions, as 

depicted in Figure 4.1-1. 
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Figure 4.1-1 – Electromagnetic Spectrum 

The Electromagnetic Spectrum represented by regions of radiant energy, their corresponding wavelengths 

and the quantum transitions typically associated with their absorption. Long wavelength, low energy radio 

waves are associated with nuclei spin, microwaves with rotational transitions around chemical bonds, IR 

radiation with vibrational transitions, UV–visible radiation with transitions of the valence electrons and X–

rays with transitions of the core electrons. Short wavelength, high energy gamma waves are highly 

penetrating, associated with removal of electrons from the atom; such energy is used for identifying 

radioactive isotopes.  

 

Radio waves are the lowest energy form of electromagnetic radiation. Generally, 

the absorption of radio waves can cause nuclei spin that subsequently creates a small 

magnetic field, while microwaves have enough energy to cause chemical groups to rotate 

around some bonds (Skoog et al., 2007). IR radiation absorption is associated with 

vibrational transitions, whereby atoms of a molecule stretch symmetrically or 

asymmetrically, and bend in or out of plane (Rouessac & Rouessac, 2007; Blackman et al., 

2008). While IR radiation has insufficient energy to cause electronic transitions, UV–

visible radiation has enough to illicit transitions of the valence (bonding) electrons and X–

ray radiation can interact with core electrons plus, along with gamma rays, can generate 

ions by removing electrons (Skoog et al., 2007; Blackman et al., 2008). Gamma rays are 

the highest energy form of electromagnetic radiation and are useful for identifying 

unstable, radioactive isotopes. When gamma rays interact with a substance, they lose 

energy by three mechanisms: the photoelectric effect, the Compton effect or pair 

production (Skoog et al., 2007). (Discussion of each gamma ray mechanism is outside the 

scope of this chapter.) 

4.1.1.2 Spectroscopy 

Atoms have unique, quantised energy levels therefore, in order for absorption to 

occur, the energy of the radiation must exactly match the quantised energy levels of the 

atoms under analysis (Blackman et al., 2008). Wavelengths that are not absorbed are either 
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transmitted through the sample or reflected from the surface, unchanged. The spectroscopy 

technique essentially involves irradiating a sample thereby causing the atoms, molecules or 

ions to undergo transition to an excited state. Information on molecular structure and 

concentration can be acquired from a spectrum, being a measurement of the 

electromagnetic radiation absorbed (reflected or transmitted) as a result of the excitation.  

4.1.1.3 Mid–Infrared Spectroscopy 

IR radiation incorporates all the wavelengths between approximately 780 and 10
6 

nm and is located between visible light and microwaves in the electromagnetic spectrum. 

IR radiation is often subdivided into three approximate regions. The near–IR region 

corresponds to wavelengths between 780 and 2500 nm, the mid–IR to wavelengths 

between 2500 and 5.0x10
4 

nm (typically represented as wavenumbers, being 4000 to 400 

cm
-1

) and the far–IR to wavelengths between 5.0x10
4
 to 1.0x10

6 
nm (Rouessac & 

Rouessac, 2007; Skoog et al., 2007). Near–IR spectroscopy is often used for the 

quantitative determination of low molecular weight and simple compounds, while the 

primary use of far–IR spectroscopy is for structural determination of some inorganic and 

metal–organic species (Skoog et al., 2007). In comparison, collecting spectra at mid–IR 

frequencies provides greater chemical specificity because mid–IR radiation is associated 

with pure vibrational quantum transitions and the vibrational spectra of most organic 

compounds consist of an abundance of narrow, well–resolved bands that represent discrete 

functional groups (Flynn et al., 2005; Tahtouh et al., 2005; Flynn et al., 2006). Compared 

with the near–IR and far–IR regions, mid–IR spectroscopy provides greater information on 

molecular structure so it is routinely employed for qualitative and quantitative analyses of 

functional groups and for identifying organic compounds. 

Bonded atoms undergo continuous vibrations relative to each other and, where the 

atoms are different (i.e., non–symmetrical) they form an electric dipole with specified 

frequency (Rouessac & Rouessac, 2007). When a non–symmetrical bond is irradiated with 

mid–IR radiation, those frequencies with energy exactly equal to the vibrational energy 

levels of the molecule are absorbed, producing a change in the amplitude of the molecular 

vibration (Skoog et al., 2007). As different functional groups require different quantised 

energy to bring about a vibrational transition, the groups can be identified by evaluating 

the frequencies where radiation is absorbed. However, the bond undergoing vibration must 

be a polar bond and must undergo a net change in dipole moment as it vibrates. The 
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stronger the bond the higher the vibrational frequency; the greater the polarity of the bond, 

the more intense the absorption (Blackman et al., 2008). For example, O=O, N≡N and Cl–

Cl have non–polar bonds so do not absorb infrared radiation; C≡C absorbs at a higher 

vibrational frequency (~2200 cm
-1

) than C=C (~1650 cm
-1

) or C–C (~1000 cm
-1

), while 

C=O is characterised by a strong intensity absorption band and C≡C by a weak intensity 

absorption band. 

 

 

Figure 4.1-2 – Molecular Vibrations 

Stretching and bending are the two main types of molecular vibrations. Stretching vibrations involve an (a) 

symmetric or (b) asymmetric change in distance along the axis of a bond. Bending vibrations involve a 

change in the angle between two bands and are further characterised as in–plane (c) scissoring and (d) 

rocking, or out–of–plane (e) wagging or (f) twisting. 

 

 

There are two main categories of molecular vibration, as illustrated in Figure 4.1-2. 

Stretching vibrations involve a symmetric or asymmetric change in distance along the axis 

of a bond between two atoms, while bending vibrations involve a change in the angle 

b) Asymmetric Stretching a) Symmetric Stretching 

c) In-Plane Scissoring 

(Bending) 

d) In-Plane Rocking 

(Bending) 

e) Out-of-Plane Wagging 

(Bending) 

f) Out-of-Plane Twisting 

(Bending) 
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between two bonds, which are further characterised as four types, namely, scissoring, 

rocking, wagging and twisting.  

4.1.2. Spectroscopy Instrumentation and Sampling Techniques 

4.1.2.1 Interferometer 

The interferometer is an essential component of the Fourier Transform Infrared 

(FTIR) spectrometer. It consists of three components, namely a beam splitter, a mobile 

mirror and a fixed mirror. As depicted in Figure 4.1-3, the beam splitter divides the 

spectrometer’s infrared polychromatic radiation source into parallel beams of equal 

intensity, with one half transmitted toward the mobile mirror and the other half reflected 

toward the fixed mirror (Rouessac & Rouessac, 2007; Skoog et al., 2007). The beams are 

then reflected from each mirror back to the beam splitter, where they recombine and are 

directed toward the sample. Oscillation of the mobile mirror creates an interference pattern 

by introducing a phase difference between the parallel beams. At one mirror position, 

waves of the recombined beam are in phase and undergo constructive interference to create 

maximum signal power (Rouessac & Rouessac, 2007; Skoog et al., 2007) referred to as the 

‘centre burst’ at zero path difference. When the mobile mirror changes from this position, 

the two waves are out of phase and undergo destructive interference, reducing the radiant 

power of the recombined beams to zero (Rouessac & Rouessac, 2007; Skoog et al., 2007).  

The interferogram relates the detector signal to the mobile mirror position, thus 

representing the various phase changes between the two beams. Sample analysis requires 

two interferograms: the first of the background alone and the second of the sample and 

background. A microprocessor couped to the interferometer calculates the final spectra as 

a function of the wavenumber (cm
-1

). 
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Figure 4.1-3 – Depiction of the FTIR Interferometer  

A beam splitter divides the radiation into parallel beams that are directed toward a mobile mirror and a fixed 

mirror. The beams return to the beam splitter, recombine and are directed toward the sample and/or detector. 

Oscillation of the mobile mirror creates an interference pattern by introducing in–phase and out–of–phase 

wave differences for the recombined beams. Phase changes are represented by the interferogram that relates 

the signal intensity to the position of the mobile mirror. 
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4.1.2.2 Fourier Transform 

As frequency responses are collected simultaneously, it is necessary to decode the 

intensity for each of the individual signal components. The Fourier transform is a 

mathematical operation used to transform an interferogram into its component waves. The 

spectrum produced displays the intensity (energy transmitted, absorbed or reflected) as a 

function of wave frequency. Fourier transform instruments offer a number of major 

advantages. Greater signal–to–noise ratios are observed due to an increase in radiant 

energy reaching the detector, analysis of complex spectra are possible due to the extremely 

high resolving power and wavelength reproducibility, and an entire spectrum can be 

collected in 1 second or less because all wavelength components of the source reach the 

detector simultaneously (Skoog et al., 2007).  

4.1.2.3 Attenuated Total Reflectance 

When radiation is passed from a material with a high refractive index (RI), such as 

germanium (RI = 4.0) or diamond (RI = 2.4), to a lower refractive index sample, a fraction 

of light will be reflected. When the angle of incident radiation is greater than the critical 

angle (approximately 45
o
), the crystal or diamond will experience total internal reflection 

also known as an evanescent wave (Rouessac & Rouessac, 2007; Skoog et al., 2007). As 

depicted in Figure 4.1-4, during total internal reflection the evanescent wave extends into 

the lower index sample. 

 

Figure 4.1-4 – Total Internal Reflection 

Internal reflection spectroscopy involves passing radiation through a transparent material with a high 

refractive index, such as a crystal or diamond, causing the radiation to undergo single or multiple internal 

reflections. A sample with a lower refractive index that is in direct contact with the crystal or diamond 

partially absorbs the beam of radiation before it is passed to a detector and the corresponding spectrum 

produced. 
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The attenuated total reflectance (ATR) FTIR sampling technique is based on the 

principal of internal reflection, whereby the incident radiation is passed through a 

transparent, flat or hemispherical crystal or diamond and the radiation undergo single or 

multiple internal reflections. The lower refractive index sample that is in direct contact 

with the crystal or diamond partially absorbs the evanescent radiation that is then passed to 

the detector.  

ATR–FTIR spectral band intensities are proportional to concentration thereby 

permitting quantitative measures to be made; however, the spectra can differ from 

conventional absorption spectra due to distortions that occur where the sample refractive 

index changes rapidly (Skoog et al., 2007). Moreover, because the depth of penetration 

into the sample depends on the refractive indices of the two materials, the angle of 

incidence and the wavelength, lower–frequency radiation penetrates the sample deeper 

than the higher frequencies, causing ATR–FTIR spectral band intensities to skew toward 

the lower frequencies. The depth of penetration can be calculated as follows (where λ is 

wavelength, n1 is the diamond or crystal RI, n2 is the sample RI and ф is the angle of 

incidence):  

 Dpenetration = λ / 2π n1 [(sin
2
ф) – (n2 / n1)]

1/2
 

For example, the depth of penetration for a typical hair sample (RI ~1.53) using a 

germanium crystal (RI = 4.0), incident angle of 45
o
 and at a frequency of 5.0 µm (2000 

cm
-1

) would be: 

 Dpenetration = 5.0 µm / 2* 3.14159265* 4.0 [(sin45)
2
 – (1.53 / 4.0)

2
]

1/2
 

= 0.335 µm  

Conversely, at the lower frequency of 25 µm (400 cm
-1

) the depth of penetration would be: 

 Dpenetration = 25 µm / 2* 3.14159265* 4.0 [(sin45)
2
 – (1.53 / 4.0)

2
]

1/2
 

= 1.67 µm  

Corrections that involve multiplying the sample spectrum by a frequency–dependent factor 

must therefore be applied to adjust the relative intensities. (ATR correction algorithms are 

included in most conventional FTIR software programs.) 
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The ATR–FTIR sampling technique can be applied to a wide variety of solid and 

liquid forms, such as textile fabrics, individual fibres, pastes, powders, aqueous solvents, 

polymers and rubbers. Continual research concerning the potential application of ATR–

FTIR in forensic science has extended its application to a variety of samples, including 

paint chips, vehicle bumpers, photocopy toners, carbon copies, writing inks on paper, 

lipsticks on tissue and black electrical tapes (Bartick et al., 1994), sunscreens on the skin 

surface (Rintoul et al., 1998), shampoo and liquid soap surfactants (Carolei & Gutz, 2005), 

skin surface proteins and pharmaceutical tablets (Chan & Kazarian, 2006b; 2006a; 

Kazarian & Chan, 2006), latent fingermarks, and residues from fingermarks and drugs on 

tape lift surfaces (Ricci et al., 2006; Ricci et al., 2007a). 

4.1.2.4 Sample Thickness and Shape 

For transmission analyses, electromagnetic radiation is partially absorbed by the 

sample with the remainder transmitted to the detector at a reduced intensity. According to 

Beer’s law, as the path length through the sample increases, absorbance levels increase 

proportionally. For IR analyses, a sample thickness of approximately 10–20 µm is ideal for 

good spectral representation and for Beer’s law to be obeyed (Schiering, 1988; Kirkbride 

& Tungol, 1999). Beyond this path length, diffusion of the radiation increases as the 

sample thickness increases, and zero radiation may be transmitted to the detector if the 

sample possesses high absorptivity (Tungol et al., 1990; Kirkbride & Tungol, 1999).  

Different methods can be used to reduce sample thickness prior to analysis. 

Commonly, these methods include sectioning the sample with a microtome, using a small 

metallic roller to flatten the sample, or sampling through a diamond compression cell. The 

micro compression diamond cell (or “micro diamond anvil cell”) accessory consists of an 

upper and lower diamond window, between which the sample is placed, and a screw cap 

that flattens the sample when it is tightened. For some analyses, it can be better to acquire 

spectra using only the lower diamond window (Kirkbride & Tungol, 1999). Flattening has 

the benefit of increasing the sample’s surface area thereby enhancing the signal–to–noise 

ratio, diminishing stray light effects and increasing the energy throughput, although minor 

changes in frequency and intensities have been known to result from changes in the 

crystalline composition of some flattened fibres (Tungol et al., 1990). Flattening can also 

improve the shape of the sample. Circular fibres can divert the radiation enough so it is not 
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detected, while those with irregular cross sections can refract the radiation, also distorting 

the spectral representation (Kirkbride & Tungol, 1999).  

Finally, smoothness of the sample surface can also be an issue. Fibres with a flat, 

smooth surface can generate interference fringing whereby some of the radiation 

transmitted to the detector has undergone internal reflection, having traversed the sample 

multiple times (Kirkbride & Tungol, 1999). An interference fringe results when two 

signals reach the detector, yielding a second burst in the interferogram. One arises from the 

radiation beam that passes the sample once and the other arises from the beam that 

traverses the sample multiple times (Kirkbride & Tungol, 1999). Interference fringes can 

cause problems when interpreting spectra and can even obscure weak absorption bands 

(Harrick, 1977). One study found that flattening samples with a metallic roller or a 

diamond compression cell did not prevent interference fringes resulting in the spectra 

(Tungol et al., 1990). An advantage of the attenuated total reflection technique over 

transmission analyses is that interference fringes do not occur (Harrick, 1977). 

4.1.3. Chemical Imaging 

Chemical imaging combines digital imaging with conventional spectroscopy 

techniques, including UV–visible absorption, photoluminescence emission, Raman 

scattering, mid–IR or near–IR spectroscopy (Payne et al., 2005a) to generate information 

on the identity, distribution and concentration of substances present in a sampled area. The 

transmitted, absorbed or reflected intensity is not only recorded as a function of 

wavelength (λ) – as with conventional spectroscopy – but a variable liquid crystal tuneable 

filter (LCTF) also records a fully resolved spectrum for each pixel location (x, y) (Payne et 

al., 2007). Three–dimensional images (x, y, λ) of the sample – where wavelength (λ) is the 

third dimension – are presented as false colour maps, with an arbitrary colour attributed to 

each pixel according to the spectral intensity at a selected wavenumber (Tahtouh et al., 

2005). Typically, red represents high spectral intensity and blue represents low spectral 

intensity.   

One of the main advantages of chemical imaging over traditional techniques is the 

utilisation of a focal plane array (FPA) detector that permits collection of spectral data 

from the entire field of view simultaneously. Analysis time is greatly reduced compared 

with techniques that require the measurement of multiple discrete spectra to obtain an 
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average profile of the sample (Payne et al., 2005b). Also, by selecting the wavenumber 

corresponding to the spectral band of a specific molecule, its spatial distribution can be 

selectively mapped across the sampled area, revealing any inhomogeneity present (Flynn 

et al., 2005; Flynn et al., 2006; Ricci et al., 2007b). This capability has been investigated 

for untreated latent fingermarks and those developed by DFO (1, 8–diazafluoren–9–one), 

ninhydrin, cyanoacrylate fuming and/or luminescent staining, as a way to maximise ridge–

to–background contrast on surfaces with high colour content and complex patterns, 

including the Australian polymer banknote (Exline et al., 2003; Payne et al., 2005a; 

Tahtouh et al., 2005). In addition to fingermarks, chemical imaging has also been 

successfully investigated for multi–component automotive paint samples (Flynn et al., 

2005; Payne et al., 2005b), bicomponent textile fibres (those with two polymers of 

different properties) (Flynn et al., 2006), tapes and other adhesives, the sequence of 

intersecting ball–point pen and toner lines, and firearm discharge residues (Payne et al., 

2005b) and for the age estimation of bruises (Payne et al., 2007).  

Furthermore, to investigate the aging of fingermarks, ATR–coupled chemical 

imaging has been used to spatially locate proteins and lipids in fingermark residues over 

time (Ricci et al., 2007b). However, it has been observed that a much higher number of 

ATR image scans (1024 scans, approximately 25 minutes) is required to obtain an 

acceptable signal–to–noise ratio compared with transmission imaging (256 scans, 

approximately 6 minutes). In addition, the high refractive index of the ATR crystal 

employed results in a smaller field of view (90 x 90 µm) (Flynn et al., 2006). With respect 

to human hair, preliminary chemical imaging studies by Chan and colleagues (2005; 2008) 

suggested that ATR–coupled imaging could potentially provide a further level of 

discrimination by identifying chemical components typically associated with hair. 

4.1.4.  Research on Hair 

A key structural component of the hair keratin protein is cystine, a dimeric amino 

acid that is formed by the oxidation of two cysteine residues covalently linked by a 

disulfide bond. The hair bleaching process involves oxidative cleavage of the disulfide 

bond producing a sulfonic acid (Brenner et al., 1985). This reaction is also naturally 

promoted following the exposure of hair to UV radiation from sunlight (Signori & Lewis, 

1997). Most permanent waving treatments also involve a re–oxidation process following 
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initial reduction of the disulfide cross links and this produces a sulfonic acid (Brenner et 

al., 1985).   

The major FTIR absorbance bands for human hair keratin correspond to the 

functional groups Amide I (C=O, NH), Amide II (CN, CH) and Amide III (NH, CN, 

O=CN), carbonyl (C=O), hydrocarbon (CH), methylene (CH2) and methyl (CH3) 

(Panayiotou & Kokot, 1999), as shown in Figure 4.1-5. 

 

Figure 4.1-5 – Typical Hair Keratin Spectra 

The major FTIR absorbance bands for human hair keratin correspond to the functional groups Amide I 

(C=O, NH) at approximately 1650–1630 cm
-1

, Amide II (CN, CH) and Amide III (NH, CN, O=CN) at 

approximately 1550–1510
 
and 1320–1230 cm

-1
, respectively, carbonyl (C=O) at approximately 1735 –1710 

cm
-1

 often masked by the Amide I band, hydrocarbon (CH) at approximately 1470–1460 cm
-1

 also often 

masked by the Amide II band, and methylene (CH2) and methyl (CH3) at approximately 1453–1390 cm
-1

. 

These peak frequencies are approximate as slight variations will occur between instruments. 

 

The FTIR spectra of chemically treated or sun damaged hair have been found to include an 

additional absorbance band, corresponding to the oxidation of the cysteine thiol (SH) bond 

or the cystine disulfide (S―S) bond. Table 4.1-1 displays the name, structure and major 

FTIR absorbance bands (cm
-1

) for human hair keratin and their oxidative products (Joy & 

Lewis, 1991; Signori & Lewis, 1997; Panayiotou & Kokot, 1999; Barton, 2011). These 

Amide I 

Amide II 

Methyl/ 

methylene 
Amide III 
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peak frequencies are approximate as slight variations are known to occur between 

instruments. 

Table 4.1-1 – Hair Keratin Components and Oxidation Products 

Name 
Functional 

Group 
Structure 

Abs 

(cm
-1

) 

Cysteine &  HOOC―CH(NH2) ―CH2―SH  

Cystine  HOOC―CH(NH2) ―CH2―S―S―CH2― CH(NH2)―HOOC  

 Carbonyl C=O stretch 1735–1710 

 Amide I C=O stretch and NH bend 1650–1630 

 Amide II CN stretch and NH bend 1550–1510 

 Hydrocarbon CH deformation 1470–1460 

 
Methylene/ 

Methyl 
CH2 /CH3 bend 1453–1390 

 Amide III NH bend, CN stretch and O=C–N bending 1320–1230 

Cystine 

monoxide 
 HOOC―CH(NH2)―CH2―SO―S―CH2― CH(NH2)―HOOC  

 Sulfinyl SO 1072–1070 

Cystine  

dioxide 
 HOOC―CH(NH2)―CH2―SO2―S―CH2― CH(NH2)―HOOC  

 Sulfonyl SO2 1121–1114 

Cysteine  

S–sulfonate 
 HOOC―CH(NH2)―CH2―S―SO3H  

 Sulfur–Sulfo S―S=O 1022–1020 

Cysteic 

acid 
 HOOC―CH(NH2)―CH2―SO3H  

 Sulfo S=O 1040–1035 

 

To date, hair research involving FTIR spectroscopy has primarily focused on the 

effects of chemical hair treatments and/or sunlight exposure on keratin protein. Brenner 

and colleagues (1985) investigated the degree of discrimination between treated and 

untreated hair samples collected from 135 male and female participants, aged 6 months to 

83 years. The researchers prepared 0.5 to 0.7 mm hair fragments that were analysed using 

a diamond cell micro sampler. Spectra (1000 scans at 8 cm
-1

 resolution) were collected 

using a Digilab FTS–10 C/D FTIR Spectrometer with cesium iodide optics, a triglycine 

sulfide (TGS) detector and a diamond cell with x4 beam condenser. They observed that 

untreated hair did not present a sulfonic acid (sulfo group) absorption peak or shoulder at 

1044 cm
-1

 in the FTIR spectrum. The researchers also report that natural hair colour or the 
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absence of melanin (white hair), moisture and the age of the hair samples had little to no 

effect on the sulfonic acid absorption peak (Brenner et al., 1985).  

Joy and Lewis (1991), and later Signori and Lewis (1997), investigated the effects 

of chemical treatments and natural weathering on the oxidation products of cystine.  

Spectra were collected on a Perkin Elmer 1740 FTIR Spectrophotometer with TGS and 

mercury cadmium telluride (MCT) detectors and coupled to a Spectra–Tech IR Plan 

optical microscope. In total, the researchers compared five sampling techniques. One 

technique was conducted in transmission mode involving a Spectra–Tech ‘Sample Plan’ 

BaF2 compression cell (single hairs) and the second was conducted in reflectance mode 

involving a diffuse reflectance attachment with KBr pellets (multiple hairs). The third, 

fourth and fifth techniques involved various ATR attachments including a multi–reflection 

KRS–5–ATR accessory (multiple hairs), a Spectra–Tech ZnSe–ATR accessory (single 

hair) and a Bio–Rad elliptical shape diamond–ATR accessory (multiple hairs) (Joy & 

Lewis, 1991; Signori & Lewis, 1997).  

Joy and Lewis (1991) observed that the diffuse reflectance and KRS–5–ATR 

methods both produced mediocre results, including spectra with narrow transmission 

ranges and unacceptable noise levels. Similarly, Signori and Lewis (1997) observed that 

the ZnSe–ATR produced high noise and low reproducibility, while the diamond–ATR 

results only showed high sensitivity when seven to nine hairs were analysed 

simultaneously. Conversely, both papers report that reproducible, noise–free spectra were 

obtained with the ‘Sample Plan’ BaF2 compression cell technique. Cysteic acid and 

cystine–S–sulfonate levels were found to be higher for naturally weathered hair than for 

chemically bleached hair, while cystine monoxide showed no significant variation between 

the two types of hair (Joy & Lewis, 1991). Cysteic acid content was also found to increase 

from the mid–point of the hair shaft to the distal end, though a standard variation of up to 

11% occurred for the intensity absorption of cysteic acid in hairs from the same sample 

tress, particularly for naturally weathered hair (Signori & Lewis, 1997). 

FTIR spectroscopy has also been used to investigate the Amide I and II residues 

alone, to determine whether genetic variations between the quantity and type of amino 

acids present in human hair were distinctive enough to individualise hair samples. Using 

the same sample set as Brenner and colleagues (1985) described above, a later study by 

Hopkins and colleagues (1991) examined differences between amide absorption band 
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ratios. Analyses in the later study again employed the diamond cell micro sampler, but 

spectra (128 scans, 4 cm
-1 

resolution) were collected with a Mattson Polaris FTIR 

spectrometer and a deuterated triglycine sulfate (DTGS) detector. Reportedly, the spectra 

showed little to no difference in the amide band ratio that could be correlated to gender, 

age, hair colour or chemical treatment. The authors concluded that, if such differences did 

exist, they would have “little influence on the ability to analyse for other chemicals such as 

hair spray, conditioner” (Hopkins et al., 1991, pp65). 

Rintoul and colleagues (1998) reported the effects of race on the major amide and 

CH deformation spectral bands while, the following year, Panayiotou and Kokot (1999) 

reported the effects of race as well as gender, age and hair oxidation. In both studies, hair 

samples were flattened with a metallic roller and taped to a gold mirror for spectra 

collection (256 scans, 8 cm
-1

 resolution) using a Perkin Elmer FTIR 2000 System 

spectrometer coupled to a Perkin Elmer i–series IR microscope and MCT detector (Rintoul 

et al., 1998). Reportedly, Rintoul and colleagues (1998) could distinguish between spectra 

collected from nominally black Caucasian hair and nominally black Asian hair, while 

Panayiotou and Kokot (1999) could discriminate between two similarly aged female 

Caucasians with the same hair colour, length and treatment, as well as between hair 

collected from the left and right side of the participant’s heads. Similar to previous studies, 

discrimination between treated and untreated hair was also reported and, for the first time, 

spectra of single hairs were also successfully discriminated on the basis of gender 

(Panayiotou & Kokot, 1999). However, as noted in both reports, these results were only 

possible once chemometric methods for data interpretation, including principal component 

and fuzzy cluster analysis, were applied as opposed to conventional statistical methods. 

Bartick and colleagues (1994) reported on the FTIR–ATR analysis of single hairs 

with hair spray contamination to determine whether hair spray or other contaminants on a 

hair may increase the evidential value of the sample. The IR spectra (250 scans, 4 cm
-1

 

resolution) of clean hair, hair coated with hairspray and hairspray reference samples, were 

collected on a Nicolet 20SXC FTIR spectrometer coupled to a Spectra–Tech IR Plan 

microscope and a single–reflection hemispherical ATR (ZnSe) microscope objective 

(Bartick et al., 1994). The researchers subtracted a clean hair spectrum from a hairspray 

coated spectrum and observed that the difference spectrum closely resembled that of the 

hairspray reference. However, two residual amide bands near 1650 and 1530 cm
-1

 could 
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not be subtracted and the researchers recommended that the compositional variation of 

hairsprays be further investigated to establish the capability to discriminate between these 

products.  

While investigating the FTIR spectra of hair from different genders and racial 

origins, Barton (2011) followed the approach used by Bartick (1994), whereby the spectra 

of clean hair was subtracted from the spectra of the contaminated hair to identify the 

components responsible for the atypical spectral results. Atypical spectra from two 

participants were observed by Barton (2011), one who used an intense hair moisturiser as 

part of the hair straightening process and the other who used hair gel. In the difference 

spectrum of the participant using the intense moisturiser, broad absorptions in the 3430 to 

3090 cm
-1 

region were observed, indicative of carboxylic acid (COOH) and alcohol (OH) 

functional groups, three absorption bands in the 2950 to 2820 cm
-1 

region were observed, 

indicative of the hydrocarbons (CH) of saturated and unsaturated long chain fatty acids, 

alcohols and esters, as well as two sharp bands at 1106 and 991 cm
-1

,
 
characteristic of 

carbonyl (CO) from the ester functional group. Absorbance bands in the difference 

spectrum from the sample of the participant using the hair gel were determined to be 

consistent with a long–chain siloxane resin commonly observed in cosmetic hair 

formulations and fixatives such as gel, hairspray and mousse (Barton, 2011). Specifically, 

two absorption bands at 1260 and 800 cm
-1 

were observed and attributed to the Si–CH3 

bond and two absorption bands at 1095 and 1020 cm
-1 

attributed to the Si–O bond.  

4.1.5.  Research Focus 

Unlike the biological structure of hair, it is proposed that the chemical components 

associated with hair are quite dissimilar. When considering intrinsic factors, human hair 

plays a role in the excretion of waste from the body such as heavy metals, chemicals and 

toxins, by binding these substances to the melanin in cortical keratinocytes (Tobin & Paus, 

2001). The extent of binding and retention differs between hairs depending on, for 

example, the level of pigmentation (Rothe et al., 1997; Kidwell et al., 2000), cosmetic 

treatments and hygiene (Kidwell et al., 2000). Conversely, considering environmental 

contaminants, the outer surface of the hair shaft also binds molecules in order to prevent 

foreign material from accessing the living tissue of the scalp. Environmental stressors that 

can effect hair include climate, pollutants, exposure to toxins (Tobin & Paus, 2001), as 

well as personal grooming habits (Gurden et al., 2004). 
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Through microscopic examination and comparison, the forensic examiner assesses 

and scores such hair characteristics as colour, pigmentation, chemical treatments, spatial 

configuration, length and coarseness (Petraco, 1999; Biological Criminalistics, 2004). 

However, identifying hair surface contamination resulting from the popular use of 

cosmetic products such as hairsprays, gels and mousse, is not currently part of the 

examination process. Hair research involving ATR–FTIR spectroscopy, to date, has 

focused on the effects of chemical–based hair treatments and/or sunlight exposure, and 

very few studies have been reported on hair surface contamination. The research focus of 

this chapter involved assessing the potential for identifying traces of cosmetic product on 

the hair surface. Such a process could increase the evidential value of human hair by 

producing an additional level of discrimination. 

Evaluation of the potential of ATR–FTIR spectroscopy to detect hair surface 

contamination commenced from a broad perspective. First, visual spectral assessments and 

spectral interpretation software were used to establish whether popular hair product 

constituents absorbed in the infrared region and, therefore, could be detected by the 

selected method. Discriminant analysis (canonical correlation) was then used to determine 

whether multiple spectra of the products could be broadly distinguished or classed based 

on product type including hairspray, gel, mousse, moisturiser, finishing gloss, styling wax 

or smoothing balm. The final analyses were designed to address hair evidence in the 

context of forensic casework.  Discriminant analysis (hierarchical cluster) was used to 

determine whether the spectra of a particular product type could be distinguished from 

other products types, following application to a single hair.  
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4.2.   Materials and Methods 

4.2.1.  Sample Preparation 

Hair samples were received from 154 participants, comprising males and females 

aged between 18 and 65 years, as described in section 2.2.1   Sample Preparation. 

For this part of the project, additional hair samples were received from one female 

Caucasian (participant number 2002038). The participant’s hair was washed, blow–dried 

and collected by cutting tresses approximately 8 cm from the distal ends then placing the 

tresses together in a plastic snap–seal bag. The participant’s hair had not been chemically 

treated in any way nor did the hair contain any cosmetic product immediately prior to 

sample collection.  

Hair products are manufactured using a diverse range of organic compounds to 

various degrees, depending on the product type. Common organic functional groups found 

in cosmetic products include aliphatic hydrocarbons (CH), aromatic derivatives (C6H5), 

carboxylic acids (COOH), esters (COOR), alcohols (OH), amides (CONR2) and silicone 

oils (SiO). Seven types of hair products were targeted, namely, hairspray, gel, mousse, 

moisturiser, finishing gloss, styling wax and smoothing balm. A description of the seven 

products is provided in Appendix F, including the product type, brand and a complete list 

of contents as described by the respective manufacturers. 

Four sample sets were prepared overall. With the exception of the reference 

spectra, the other three sample sets each comprised five single hairs: 

 Product alone (reference spectra); 

 Hair without product (control); 

 Hair with product densely applied; and 

 Hair with product sparsely applied. 

The reference spectra were comprised of five samples with hair product alone (no hair). 

Each of the products was directly applied to five 10 cm
2
 sheets of aluminium foil that were 

left to dry naturally at room temperature, for between two and seven days. Two spectra 

from different locations on each dried product sample were collected, yielding ten spectral 
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references for each product. The five single hairs that comprised the control samples (no 

product) were removed from the snap–seal bag with tweezers, individually fixed to a pre–

cleaned laboratory bench with double sided tape at either end and hand rolled with a small 

(approximately 5 mm) metallic roller to flatten the hair surface area. The metallic roller 

and the bench top were cleaned with ethanol in between samples to avoid cross–

contamination. Each flattened hair was individually fixed with tape, at either end, to a 

Livingstone Premium Microscope Glass Slide (76.2 x 25.4 mm, thickness 1.0 – 1.2 mm). 

A thin slice of rubber, approximately 3 mm in depth, was placed between the sample and 

the glass slide to provide a resilient surface for the ATR crystal. In addition, as rubber is 

known to absorb IR radiation, it was first covered in heavy–duty aluminium foil to ensure 

that it did not contribute to the recorded spectra. A depiction of the sampling substrate is 

provided in Figure 4.2-1. Two spectra from each hair were collected, yielding ten spectra 

for the ‘without product’ sample set.  

 

 

Figure 4.2-1 – Depiction of FTIR Sampling Substrate 

For spectral data collection, a 3 mm slice of rubber was placed on a glass microscope slide and covered in 

heavy duty aluminium foil. The flattened hair fibre was fixed over the top with tape at either end. 

 

The other two sample sets were similarly prepared; however, instead of removing 

the single hairs from the bag, 14 small tresses of hair were removed with tweezers then 

taped to aluminium foil. Seven of the small tresses were heavily coated with one each of 

the products and this formed the ‘product densely applied’ sample set. The other seven 

small tresses were sparingly coated with one each of the products to simulate “normal” 

product use and this formed the ‘product sparingly applied’ sample set. Both sample sets 

were left to dry naturally for between two days and one month, then five single hair 

samples were removed from each of the tresses, taped to the laboratory bench, flattened 

and prepared in a manner similar to the ‘without product’ hair samples. Two spectra from 

different locations on each hair were collected, yielding ten spectra for each product in the 

Hair fibre Aluminium foil 

Rubber 

Glass slide 

Tape 
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‘product sparingly applied’ sample set and ten spectra for each product in the ‘product 

densely applied’ sample set. 

4.2.2. Instrumentation 

All data collection was performed with a Thermo–Nicolet Micro–FTIR Nexus 

bench coupled to a Continuum FTIR Microscope as well as its associated spectral analysis 

software, OMNIC version 7.3 (Thermo–Electron, Madison, Wisconsin, USA). The 

microscope was fitted with a 15x Infinity Reflachromat objective, a germanium slide–on 

ATR accessory and a contact alert sensor pad (supplied by Thermo–Fisher Scientific, 

Scorseby, Victoria). Operating parameters for the FTIR are provided in Table 4.2-1: 

Table 4.2-1 – Thermo–Nicolet FTIR Operating Parameters 

Parameter Setting 

Detector Mercury Cadmium Telluride (MCT) 

Beam Splitter Potassium Bromide (KBr) 

Spectral Range 4000 to 650 cm
-1 

Gain Autogain 

Moving Mirror Velocity 1.8988 cm/s 

Aperture 100 µm 

Apodization Happ–Genzel 

Fourier Transform Phase Correction Mertz algorithm 

 

In addition to the operating parameters of the instrument, standard data collection 

conditions were likewise maintained throughout the research. These conditions included 

obtaining a background spectrum in air before every sample, accumulating 128 scans for 

every spectrum (57 second collection time) at 8 cm
-1 

resolution. Product contamination on 

the hairs was visually located with the Reflachromat objective and the slide–on ATR in 

view mode (i.e., microscope only).  The Continuum microscope stage was raised toward 

the ATR germanium crystal (analysis mode) no further than when the contact alert pad 

indicated that contact had been made with the sample. However, contact with the sample 

was usually indicated by a change in the OMINC Live Spectrum Collection Preview prior 

to any indication of contact by the alert pad. For the ‘product densely applied’ sample set, 

Live Preview spectra resembling hair keratin on its own or product contamination on its 

own was often observed depending on the degree of contact pressure applied between the 

crystal and sample. A spectrum of product on its own was observed when little pressure 



Chapter 4. SPECTROSCOPY 

 
 

124 

was applied, while a spectrum of keratin on its own was observed when slightly more 

pressure was applied. The difference in pressure between these two observations was 

minuscule. For this research, only spectra resembling a combination of both keratin and 

product together were collected for the relevant samples. 

Raw data spectral intensity was collected in the percent reflectance mode that was 

mathematically transformed to absorbance using the OMNIC Advanced ATR Correction 

function that corrects for both the effects of variation in the depth of penetration and the 

shifting of IR absorption bands. The crystal was wiped with a cotton tip and occasionally 

with ethanol to avoid product residue cross–contamination between samples. 

4.2.3. Data Preparation 

A qualitative visual evaluation was performed on each spectrum. The OMNIC IR 

Spectral Interpretation function was used to help evaluate the functional groups 

represented in each spectrum and, more specifically, to identify which bonds corresponded 

to each major absorbance band. This function examined the location and intensity of peaks 

in the spectrum (or a specified region), then provided a list of functional groups that may 

be present in the sample. 

All spectra were saved as Comma Separated Value (CSV) data files. The individual 

CSV spectral intensity measurements (absorbance) were copied and transposed to Excel 

for Windows where a single spreadsheet was prepared and exported directly to PASW 

(Predictive Analytical Software) Statistics for Windows, version 18.0.0 (SPSS Statistics 

IBM Corporation, 2009) for analysis. As the data collection conditions produced a data 

spacing of 3.857 cm
-1

, this resulted in an absorbance measurement for every 3 to 4 

wavenumbers (e.g., an absorbance measurement at 710, 714, 717, 721 ... cm
-1 

). For each 

of the sample sets statistically analysed, the PASW input datasheet contained ten 

absorbance measurements for 254 wavenumbers between 1632 and 652 cm
-1

.  

4.2.4.  Chemical Imaging 

For the collection of spectra from the ‘product densely applied’ and ‘product 

sparingly applied’ sample sets, contamination on the hair surface was located visually 

through the 15x Infinity Reflachromat objective with the slide–on ATR in view mode 

(microscope only). In addition to the methods described above, chemical imaging was also 

used to determine whether spatial data could assist the forensic examiner locate product 
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contamination on the hair surface. This part of the study was designed to provide a “proof–

of–concept” for potential future work. Hair samples were sprayed with hairspray as per the 

‘product densely applied’ sample preparation previously described (see 4.2.1, Sample 

Preparation). The spatial and spectral data were collected simultaneously on a Digilab FTS 

7000 series FTIR spectrometer, coupled to a Digilab UMA 600 microscope. The 

microscope was fitted with a Stingray Large Sampling Accessory (LSA) that incorporates 

a geranium ATR crystal and a Lancer 64 x 64 µm focal plane array (FPA) detector. The 

data were collected (64 scans at 8 cm
-1

 resolution) over a spectral range of 4000 to 900 cm
-

1
 and with the instrument’s associated software, the Digilab Win–IR Pro software. False 

colour maps corresponding to the spectra for hair keratin and product contamination were 

saved in Bitmap Image File (bmp) format, while the spectral measurements were saved as 

CSV files. 

4.2.5. Discriminant Analysis 

The underlying principles of discriminant analysis have been described in detail in 

the previous chapter (section 2.2.8 Discriminant Analysis). Chiefly, discriminant analysis 

is used to determine whether two or more known groups can be distinguished from each 

other, based on a linear combination of multiple variables. The discriminant function 

coefficients would categorise cases by allocating them to one group when the absorbance 

measurements were placed within a certain criterion or to another group when the 

coordinates were placed within another criterion. The more widely separated the 

discriminant function distributions, the more successful the prediction of group 

membership from those functions (Kinnear & Gray, 2010).   

Discriminant analysis [probability of F criteria (0.05, removal 0.10) and Wilks’ 

lambda stepwise method] was used in this research, first to allocate 60 reference spectra to 

one of six product categories (NB – attempts to collect spectra for the product 

‘moisturiser’ were unsuccessful, so this product was discontinued from further analyses; 

See 4.3.1.4, Leave–In Moisturiser Reference Spectra). The six types of hair product, 

namely, hairspray, gel, mousse, finishing gloss, styling wax and smoothing balm, were the 

grouping variables, while the absorbance measurements for 254 wavenumbers between 

1632 and 652 cm
-1 

were the regressors from which group membership was predicted. Once 

it was observed that discriminant analysis could distinguish between the spectral 

references with high prediction accuracy, the analysis was used to allocate 60 ‘product 
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densely applied’ spectra to one of six product categories. Two types of discriminant 

analysis were used in this research, canonical and hierarchical cluster. Principal component 

and fuzzy cluster analysis were used by Panayiotou and Kokot (1999) to discriminate 

between hair fibres based on chemical treatment and gender, and used by Barton (2011) to 

discriminate between hair fibres based on chemical treatment, gender and racial origin. 

Such statistical techniques were not applied here because principal component analysis 

assumes that any prior sub–structuring in the data is unknown prior to analysis (Brooks, 

2007), which was not the case with the product reference samples, while fuzzy cluster 

analysis assumes that each case belongs to every cluster so only maintains a likelihood of 

belonging to any given cluster, which was not the objective of the present investigation.   

4.2.5.1 Canonical Discriminant Analysis 

Canonical discriminant analysis was used here to evaluate whether the individual 

reference spectra could be allocated to one of six product types. Where such discrimination 

could be made with a high degree of accuracy, it follows that the potential to discriminate 

between products after application to hair warranted investigation. Canonical discriminant 

analysis measures the degree of association between discriminant scores and the predicted 

groups, and is used when the group membership for a set of cases is known. Where most 

of the observed variability is explained by differences between the groups, a high 

canonical correlation (up to 100%) will result, whereas misclassification will result from a 

lack of separation between the groups. 

Individual function coefficients produced by PASW represent the discriminating 

power of each of the variables, with Function 1 explaining the greatest variance in the data 

and Function 2 explaining the second greatest variance in the data, etc. (Norusis, 2008). 

Thus, the associated canonical discriminant function plot (i.e., Function 1 versus Function 

2) visually represents discriminant scores of the predictor variables that showed the 

greatest discriminating power (Norusis, 1985; Brooks, 2007).  

4.2.5.2 Hierarchical Cluster Analysis 

Hierarchical cluster analysis is used when the group membership for a set of cases 

is not known. For each of the spectral references, information about the product type was 

known whereas any products used by the owner of a hair recovered as evidence in forensic 

casework would not be known. Therefore, hierarchical cluster analysis (Squared Euclidean 
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distance and Ward’s Method) was used to facilitate the allocation of spectra from hairs 

with ‘product densely applied’ to one of six product types.  

4.2.5.3 Assumptions 

Firstly, discriminant scores are sensitive to outliers because they are based on the 

calculated mean of the group centroid. Simple histograms produced by PASW can be used 

to check for any outlying cases. Second, the covariance matrix of the predictor variables, 

being the absorbance measurements for each wavenumber, should be the same for all 

populations and violations of this assumption can affect both hypothesis testing and 

classification (Norusis, 2008). ‘Box Ms’ produced by PASW can be used to test whether 

the population covariance matrices are equal; however, this test could not be performed for 

the present data because there were fewer than two non–singular group covariance 

matrices (SPSS Statistics IBM Corporation, 2008). That is, due to the size of each group 

(spectra per product) being less than the number of variables (wavenumbers between 1632 

and 652 with 3.857 cm
-1 

data spacing), the covariance matrix for each group was 

essentially singular. Proceeding with the discriminant analysis without testing equality of 

the covariance matrices could risk incorrectly fitting the data.  

Overall, the analyses in this chapter investigated whether traces of product on the 

hair surface could be used to increase the evidential value of human hair in a forensic 

context, by introducing an additional level of discrimination. Specifically, visual 

evaluations and discriminant analyses were used to address the questions: 

 Can the FTIR spectra of a particular product type (sans hair) be 

distinguished from that of other product types;  

 Can the FTIR spectra of a particular product type be distinguished from 

that of other product types following dense application to a single hair; 

 Can the FTIR spectra of a particular product type be distinguished from 

that of other product types following sparse application to a single hair; and 

 Can chemical imaging assist the forensic examiner locate contamination on 

the hair surface. 
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4.3.  Results and Discussion 

Hair samples were received from a female Caucasian (participant number 

2002038). The hair was washed and dried, then collected by cutting tresses approximately 

8 cm from the distal hair end and placing them directly in a plastic snap–seal bag. Seven 

types of hair products were targeted, namely, hairspray, gel, mousse, moisturiser, finishing 

gloss, styling wax and smoothing balm. One set of five samples for each of the seven 

products alone was prepared as reference spectra. Three sample sets each comprising five 

single hairs were also prepared, including hair without product (control), hair with the 

seven products densely applied and hair with the seven products sparingly applied. Two 

spectra from each of the samples—either single hair or product alone—were collected, 

yielding ten spectra per product within a sample set as well as ten controls (spectra of hair 

alone). Visual evaluations and OMNIC Spectral Interpretation were used to establish 

whether hair product constituents could be detected by ATR–FTIR spectroscopy. 

Discriminant analysis was used to determine whether multiple spectra of the absorbing 

constituents could be broadly distinguished and classed based on product type. 

Discriminant analysis was then used to determine whether the spectra of a particular 

product type could be distinguished from other product types after application to a single 

hair. 

4.3.1. Hair Product References 

4.3.1.1 Hairspray Reference Spectra 

Visual evaluation of the ten hairspray spectra established that some constituents of 

the product absorbed in the infrared region and therefore could be identified by the ATR–

FTIR spectroscopy method. This was confirmed by spectral interpretation software that 

assessed the location and intensity of absorbance bands and determined that functional 

groups consistent with aliphatic hydrocarbons (CH) were present in the samples analysed.  

Figure 4.3-1 illustrates the main vibrational bands present, including the asymmetric 

stretching vibration of CH3 occurring at 2951 cm
-1

 and CH2 at 2924 cm
-1

, the symmetric 

stretching vibration of CH2  at 2853 cm
-1

, the CH3 deformations at 1452 cm
-1

 (asymmetric 

bending) and at 1366 cm
-1

 (symmetric bending) and the CH2 deformation at 720 cm
-1

 

(rocking) (Pavia et al., 1979; Thermo Electron Corporation, 2006). A carbonyl (C=O) 
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stretching frequency consistent with carboxylic acid (COOH) was also observed at 1729 

cm
-1 

(Pavia et al., 1979).  

  

Figure 4.3-1 – Hairspray Reference Spectra 

Spectral interpretation software used to assess the hairspray reference spectra confirmed the presence of 

aliphatic hydrocarbons. The main vibrational bands included the asymmetric stretching vibration of CH3 at 

2951 cm
-1

 and CH2 at 2924 cm
-1

, the symmetric stretching vibration of CH2 at 2853 cm
-1

, the CH3 

deformations at 1452 cm
-1

 (asymmetric bending) and at 1366 cm
-1

 (symmetrical bending) and the CH2 

deformation at 720 cm
-1 

(rocking). A carbonyl stretch at 1729 cm
-1 

consistent with carboxylic acid was also 

observed. 

 

The spectral interpretation results were partially consistent with the product 

content, particularly the carbonyl stretch of the acrylate and methacrylates polymers (see 

Coles Smart Buy Hairspray, Appendix F). Visually, the hairspray spectra collected were 

inconsistent with the hairspray reference reported by Bartick and colleagues (1994). 

However, spectral frequencies for the main absorbance bands were not reported by Bartick 

and colleagues (1994), so an accurate comparison could not be performed; also, different 

hairspray brands most likely contain different compounds and ratios.  
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4.3.1.2 Gel Reference Spectra 

Visual evaluation of the ten gel spectra also established that some product 

constituents could be identified by the ATR–FTIR spectroscopy method. This was 

confirmed by spectral interpretation software that determined that functional groups 

consistent with aliphatic tertiary amides (CONR2), aliphatic hydrocarbons (CH) and 

aromatic ethers (C6H5―OCO) were present. Figure 4.3-2 illustrates the main vibrational 

bands present in the samples analysed. Those absorbances attributed to the CH functional 

groups include the asymmetric stretching vibration of CH2 at 2924 cm
-1

, the symmetric 

stretching vibration of CH2 at 2860 cm
-1

, the CH2 deformations at 1462 cm
-1

 (scissoring) 

and 758 cm
-1 

(rocking) and the CH3 deformation (symmetrical bending) at 1372 cm
-1 

(Pavia et al., 1979; Thermo Electron Corporation, 2006). The carbonyl group (C=O) 

stretching vibration at 1672 cm
-1 

and the absence of a NH absorbance band at 

approximately 3500 cm
-1

 was attributed to the tertiary amide, while the asymmetric 

stretching vibration of COC at 1247 cm
-1

 was attributed to the aromatic ether (Pavia et al., 

1979; Thermo Electron Corporation, 2006).  
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Figure 4.3-2 – Gel Reference Spectra 

Spectral interpretation software used to assess the gel reference spectra confirmed the presence of aliphatic 

hydrocarbons, aliphatic tertiary amides and aromatic ethers. The main vibrational bands included the 

asymmetric stretching vibration of CH2 at 2924 cm
-1

, the symmetric stretching vibration of CH2 at 2860 cm
-1

, 

the CH2 deformations at 1462 cm
-1

 (scissoring) and 758 cm
-1 

(rocking), the CH3 deformation (symmetrical 

bending) at 1372 cm
-1

; the stretching vibrations of C=O at 1672 cm
-1

; and the asymmetric stretching 

vibration of COC at 1247 cm
-1

. 

 

The spectral interpretation results were partially consistent with the product 

content, particularly the hydrocarbon backbone of the glycols and glycerides, and the 

polyethylene glycol (PEG) poly ethers (see Garnier Fructis Style Styling Gel, Appendix 

F). The carbonyl group (C=O) stretching vibration occurring at a frequency below 1700 

cm
-1

 was attributed to the presence of a tertiary amide, although there were no amides 

listed in the manufacturer’s product content. This could have derived from a reaction 

involving triethanolamine which, being a tertiary amine, does not contain a C=O bond, but 

this is unlikely.  

Surprisingly, dimethicone (polydimethylsiloxane), a type of silicone oil that 

vitrifies rather than evaporates, did not appear to contribute to any of the ten gel spectra 

even though it was the second compound listed by the manufacturers after water, implying 

a greater concentration in the product content than the other compounds listed. Conversely, 
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the gel spectra obtained by Barton (2011) only had four distinguishable vibrational bands 

at 1260, 1095, 1020 and 800 cm
-1 

that were each attributable to the Si–CH3 and Si–O 

stretches of a siloxane resin. However, as with the hairspray reference comparison, it is 

again worth noting that different hair gel brands are likely to contain different compounds 

and relative concentrations.  

4.3.1.3 Mousse Reference Spectra 

Visual evaluation of the ten mousse spectra established that some product 

constituents could be identified by the ATR–FTIR spectroscopy method. The spectral 

interpretation software determined that functional groups consistent with aliphatic 

hydrocarbons (CH) and aliphatic tertiary amides (CONR2) were present. Figure 4.3-3 

illustrates the main vibrational bands present in the samples analysed. Those absorbances 

attributed to CH functional groups include the asymmetric stretching vibration of CH2 at 

2924 cm
-1

, the symmetric stretching vibration of CH2 at 2866 cm
-1

, the CH2 deformation at 

1460 cm
-1

 (scissoring) and the CH3 deformation (symmetrical bending) at 1370 cm
-1 

(Pavia 

et al., 1979; Thermo Electron Corporation, 2006). Similar to the gel reference spectra, the 

carbonyl group (C=O) stretching vibration at 1673 cm
-1 

was attributed to tertiary amides, 

as absorbance occurred at a frequency below 1700 cm
-1 

and no NH absorbance bands were 

present at approximately 3500 cm
-1

 (Pavia et al., 1979; Thermo Electron Corporation, 

2006). 
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Figure 4.3-3 – Mousse Reference Spectra 

Spectral interpretation software used to assess the gel reference spectra confirmed the presence of aliphatic 

hydrocarbons and aliphatic tertiary amides. The main vibrational bands included the asymmetric stretching 

vibration of CH2 at 2924 cm
-1

, the symmetric stretching vibration of CH2 at 2866 cm
-1

, the CH2 deformations 

at 1460 cm
-1

 (scissoring) and the CH3 deformation (symmetrical bending) at 1370 cm
-1

; and the carbonyl 

group (C=O) stretching vibration at 1673 cm
-1

. 

 

The mousse spectral interpretation was in consistent with the product’s content (see 

Toni & Guy Boost–It Mousse, Appendix F). Similar to the gel spectral references, the 

carbonyl group (C=O) stretching vibration was attributed to the presence of a tertiary 

amide. Again, no amides were listed in the product content list, but could have formed 

from a reaction involving the tertiary amine triethanolamine, but this is unlikely. 

Furthermore, another silicone derivative, phenyl trimethicone, surprisingly could not be 

resolved from all of the ten mousse spectra.  

4.3.1.4 Leave–In Moisturiser Reference Spectra 

Multiple attempts to collect spectra of the leave–in moisturiser samples were 

unsuccessful. Three likely possibilities were considered, including: 

 The primary constituents evaporated during the drying process; 

2
9

2
4

 C
H

2
 

as
ym

. s
tr

et
ch

 

2
8

6
6

 C
H

2
 

sy
m

. s
tr

et
ch

 

1
6

7
3

 C
=O

 

st
re

tc
h

 

1
4

6
0

 C
H

2 
d

e
fo

rm
at

io
n

 

1
3

7
0

 C
H

3 
d

e
fo

rm
at

io
n

 



Chapter 4. SPECTROSCOPY 

 
 

134 

 The primary constituents did not absorb in the infrared region of the 

spectrum (i.e., they were compounds with non–polar bonds that could not 

undergo a dipole moment net change); and/or, 

 The constituents that did not evaporate and could absorb in the infrared 

region were in quantities below the detectable limit of the instrument.  

The reference spectra (product alone) sample set were the broadest experiments 

incorporated in this research for evaluating whether the ATR–FTIR spectroscopy method 

could identify traces of product contamination on the hair surface. As detection of the 

leave–in moisturiser was not achievable at this broad, product only level, further analysis 

of the product after heavy or sparse application to single hairs was considered 

unwarranted. Therefore, the leave–in moisturiser was discounted from any further 

analyses. 

4.3.1.5 Finishing Gloss Reference Spectra 

Visual evaluation of the ten finishing gloss spectra established that some of the 

product constituents could be identified by the ATR–FTIR spectroscopy method. This was 

confirmed by spectral interpretation software that determined that functional groups 

consistent with silicone oils (siloxanes) (SiO) were present. Figure 4.3-4 illustrates the 

main vibrational bands present in the samples analysed, including the asymmetric 

stretching vibration of CH3 occurring at 2963 cm
-1

, the Si–CH3 asymmetric and symmetric 

stretches at 1262 and 803 cm
-1

 respectively, and the Si–O–Si asymmetric and symmetric 

stretches at 1096 and 1027 cm
-1 

respectively (Thermo Electron Corporation, 2006). 
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Figure 4.3-4 – Finishing Gloss Reference Spectra 

Spectral interpretation software used to assess the gloss reference spectra confirmed the presence of silicone 

oils (siloxanes). The main vibrational bands included the asymmetric stretching vibration of CH3 at 2963 cm
-

1
, the Si–CH3 asymmetric and symmetric stretches occurring at 1262 and 803 cm

-1
 respectively, and the Si–

O–Si asymmetric and symmetric stretches at 1096 and 1027 cm
-1 

respectively. 

 

An OMNIC Library Search with each of the ten finishing gloss spectra, returned an 

average match of 91% with the compound dimethicone (polydimethylsiloxane). This was 

expected as dimethicone was the first compound listed in the product formulation (see 

Paul Mitchell Smoothing Gloss Drops, Appendix F) and, because silicone oils vitrify 

rather than evaporate, this increases the likelihood of being detected post–drying. The 

finishing gloss spectral references were virtually identical to the gel spectra obtained by 

Barton (2011) that had four distinguishable vibrational bands at 1260, 1095, 1020 and 800 

cm
-1 

attributable to the Si–CH3 and Si–O stretches of a siloxane resin.  

4.3.1.6 Styling Wax Reference Spectra 

Visual evaluation of the ten styling wax spectra established that some product 

constituents could be identified by the ATR–FTIR spectroscopy method. Spectral 

interpretation software determined that functional groups consistent with aliphatic 

hydrocarbons (CH) and aliphatic acetate esters (COOR) were present. As illustrated by 

Figure 4.3-5, the CH functional group absorbances include the asymmetric stretching 
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vibration of CH2 at 2920 cm
-1

, the symmetric stretching vibration of CH2 at 2851 cm
-1

, the 

CH2 deformations at 1465 cm
-1

 (scissoring) and 722 cm
-1 

(rocking) and the CH3 

deformation (symmetrical bending) at 1378 cm
-1 

(Pavia et al., 1979; Thermo Electron 

Corporation, 2006). The carbonyl group (C=O) stretching vibration at 1738 cm
-1 

and the 

CO absorbance bands at 1249 and 1100 cm
-1 

were attributed to the aliphatic acetate esters 

(Pavia et al., 1979; Thermo Electron Corporation, 2006). 

  

Figure 4.3-5 – Styling Wax Reference Spectra 

Spectral interpretation used to assess the styling wax reference spectra confirmed the presence of aliphatic 

hydrocarbons and aliphatic acetate esters. The main vibrational bands included the asymmetric stretching 

vibration of CH2 at 2920 cm
-1

, the symmetric stretching vibration of CH2 at 2851 cm
-1

, the CH2 deformations 

at 1465 cm
-1

 (scissoring) and 722 cm
-1 

(rocking) and the CH3 deformation (symmetrical bending) at 1378 cm
-

1
; and, the carbonyl group (C=O) stretching vibration at 1738 cm

-1 
and the CO absorbance bands at 1249 and 

1100  

cm
-1

. 

 

The spectral interpretation was consistent with the product content, particularly 

lanolin wax that comprises approximately 97% long chain esters (Imperial Oel Import, 

2011). Other aliphatic acetate esters listed in the content include, tridecyl stearate, 

dipentaerythrityl hexacaprylate/ hexacaprate, tridecyl trimelitate and alkyl acrylate 

crosspolymer (see American Crew Fiber Pliable Molding Cream, Appendix F).  
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4.3.1.7 Smoothing Balm Reference Spectra 

Finally, visual evaluation of the ten smoothing balm spectra established that some 

product constituents could be identified by the ATR–FTIR spectroscopy method. Similar 

to the wax reference spectra, spectral interpretation software determined that functional 

groups consistent with aliphatic hydrocarbons (CH) and aliphatic acetate esters (COOR) 

were present. As illustrated by Figure 4.3-6, the hydrocarbon absorbances include the 

asymmetric stretching vibrations of CH3 at 2957 cm
-1

 and CH2 at 2927 cm
-1

, the symmetric 

stretching vibration of CH2 at 2856 cm
-1

, the CH2 deformations at 1460 cm
-1

 (scissoring) 

and 713 cm
-1 

(rocking) and the CH3 deformation (symmetrical bending) at 1378 cm
-1 

(Pavia et al., 1979; Thermo Electron Corporation, 2006). The carbonyl group (C=O) 

stretching vibration at 1740 cm
-1 

and the CO absorbance bands at 1254 and 1068 cm
-1 

were 

attributed to the aliphatic acetate esters (Pavia et al., 1979; Thermo Electron Corporation, 

2006). 
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Figure 4.3-6 – Smoothing Balm Reference Spectra 

Spectral interpretation software used to assess the smoothing balm reference spectra confirmed the presence 

of aliphatic hydrocarbons and aliphatic acetate esters. The main vibrational bands included the asymmetric 

stretching vibrations of CH3 at 2957 and CH2 at 2927 cm
-1

, the symmetric stretching vibration of CH2 at 2856 

cm
-1

, the CH2 deformations at 1460 cm
-1

 (scissoring) and 713 cm
-1 

(rocking) and the CH3 deformation 

(symmetrical bending) at 1378 cm
-1

; and, the carbonyl group (C=O) stretching vibration at 1740 cm
-1 

and the 

CO absorbance bands at 1254 and 1068 cm
-1

. 

 

The spectral interpretation was consistent with the aliphatic acetate esters listed in 

the product content, such as the diester propylene glycol dicarprylate/ dicaprate, decyl 

oleate and alkyl benzoate (see Joico K–Pak Smoothing Balm, Appendix F). Similar to the 

mousse and gel reference spectra, peaks attributed to silicone derivatives were not 

observed in any of the ten smoothing balm spectra, albeit that peaks from this type of 

compound were the most predominant in the finishing gloss spectra. 

4.3.1.8 Summary of Product Reference Spectra 

Visual evaluations and OMNIC Spectral Interpretation analyses established that 

many hair product constituents could be detected by ATR–FTIR spectroscopy. Of the 

seven products targeted, the leave–in moisturiser was the only product where no 

significant molecular absorption was observed in the mid–IR region of interest. Three 

explanations were considered, including: (i) the primary constituents evaporated during 
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sample preparation; (ii) the primary constituents did not absorb in the mid–IR; and/or (iii) 

the quantities were below the detectable limit of the instrument. As detection of the leave–

in moisturiser was not achievable at this broad level of evaluation, it was discontinued 

from further analyses. 

For the remaining six products evaluated, CH2 and CH3 vibrations were the most 

common spectral intensities between 3000 and 2800 cm
-1 

that were identified. For product 

classification purposes, therefore, detailed analyses of hydrocarbon absorptions bands in 

this region are not recommended (Pavia et al., 1979). With the exception of the finishing 

gloss reference spectra, methylene (CH2) and methyl (CH3) groups were commonly 

observed at lower frequencies, particularly the CH3 symmetrical bend at approximately 

1370 cm
-1

 and the CH2 scissoring and rocking vibrations at approximately 1460 and 720 

cm
-1

, respectively. 

The reference spectra were partially consistent with the product content as listed by 

the respective manufacturer, with a few exceptions. Tertiary amides (CONR2) were 

identified in both the gel and mousse spectra because the carbonyl group (C=O) stretching 

vibrations occurred at a frequency below 1700 cm
-1

 and NH absorbance bands in the 3500 

cm
-1

 region were absent. Neither the gel nor the mousse formulations listed amides in their 

content, yet both listed triethanolamine, a tertiary amine that does not contain a C=O or an 

NH bond. Amines can react to form amides; typically this occurs when carboxylic acids 

are present but generally does not extend to the formation of tertiary amines so was 

considered unlikely to have occurred here. Furthermore, dimethicone 

(polydimethylsiloxane) and phenyl trimethicone were listed in the product content of the 

gel, the mousse and the smoothing balm. Both compounds were classed as silicone oils 

that do not evaporate, so their corresponding vibrational bands were expected in the 

resulting spectra. Four distinguishable bands attributable to Si–CH3 and Si–O were 

reportedly the only absorbance bands observed in the gel reference spectra obtained by 

Barton (2011) and, in addition to a sole hydrocarbon vibrational stretch, were the only 

absorbances observed in the finishing gloss reference spectra obtained in this research. The 

latter spectra returned an average software match (from ten spectra) of 91% with 

dimethicone (Thermo Electron Corporation, 2006).  

Finally, while visually the wax and smoothing balm were considered to be very 

different hair products, the resulting spectra were similar at the lower mid–IR frequencies. 
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The wax and smoothing balm spectra included a carbonyl group (C=O) absorption band at 

1738 and 1740 cm
-1

, respectively, and two CO stretches at 1249 and 1100 cm
-1

 and 1254 

and 1068 cm
-1

, respectively.  

4.3.2.  Allocation to Product Class 

Hydrocarbon absorption bands occurring in the region 3000 and 2800 cm
-1

 were 

excluded from the statistical analyses as they were common to the spectra of each product, 

thereby providing little discriminatory power. The statistical analyses were confined to 

include only the 254 wavenumbers between 1632 and 652. 

The discriminant analysis (canonical correlation) comprising wavenumbers 

between 1632 and 652 (with a data point spacing of 3.857 cm
-1

) as the predictor variables 

resulted in 100% prediction accuracy. That is, all 60 spectra were correctly classified as 

belonging to one of six product categories. Only one brand of product per product type 

was included in this analysis. Figure 4.3-7 represents the discriminant scores for the 

product reference model. Each spectrum is represented by a colour in accordance with the 

true product type (e.g., all ten hairspray spectra are coloured purple) but is located in 

canonical space with respect to the two highest discriminant functions. It was observed 

that group centroids for the hairspray and finishing gloss reference spectra were well 

separated by both Function 1 and Function 2; however, the styling wax, gel, smoothing 

balm and mousse reference spectra were not well separated by either function. 
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Figure 4.3-7 – Product Reference Spectra Canonical Discriminant Functions 

Output from PASW illustrates the discriminant scores for each spectrum (independent variables). Group 

centroids for the hairspray and finishing gloss reference spectra were well separated by Function 1 and 

Function 2 while, conversely, the styling wax, gel, smoothing balm and mousse reference spectra were not 

well separated by either function. Overall, 100% of the product spectra were correctly classed. 

 

Analysing the individual coefficients for each wavenumber (predictor variables) 

with respect to discrimination between the products would be complicated. First, the 

shoulders of a number of absorption bands accumulate over a range of wavenumbers, 

second, some shoulders are proximal enough to form duplicate peaks and third, given data 

was collected every 3.857 cm
-1

, precise vibrational absorption for each consecutive 

frequency was not available. Notwithstanding, for Function 1 the strongest predictor 

variables were generally between 1300 and 1000 cm
-1

 corresponding to the CO absorbance 

bands for ethers and esters, with the first and third highest individual coefficients occurring 

at 1227 and 1242 cm
-1 

(-12.137 and 10.364, respectively). The second highest individual 

coefficient occurred at 1450 cm
-1

 (-11.271) corresponding to the CH3 asymmetrical bend 

vibration. Similarly for Function 2, the strongest predicting variable was 1450 cm
-1

 

showing the highest individual coefficient (8.867) and the third strongest was 1227 cm
-1 

(6.083). The canonical correlation indicated that Function 1 explained 78% of the data 

variance while Function 2, being uncorrelated to Function 1, explained 11.8% of the data 

variance. Overall, the discriminant analyses confirmed that multiple spectra of various hair 
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products, including hairspray, gel, mousse, finishing gloss, styling wax and smoothing 

balm, could be distinguished from one another at a broad level of enquiry (i.e., product 

only analyses). 

4.3.3.  Product Densely Applied 

These analyses were designed to investigate whether the spectra of a particular 

product type could still be distinguished following dense application to a single hair. 

Cosmetic product contamination on the hair was visually located using the 15x Infinity 

Reflachromat objective with the slide–on ATR in view mode (i.e., microscope only). It 

was established that contact had been made between the ATR crystal and the sample 

(analysis mode) by observing a change in the spectrum on the OMNIC Live Spectrum 

Collection Preview. As described in 4.2.2 Instrumentation, a spectrum of product 

contamination alone was observed on the Live Preview when little pressure was applied, 

while a spectrum of keratin alone was observed when slightly more pressure was applied. 

Hair keratin was not the focus of this investigation while, in the previous section (4.3.2 

Allocation to Product Class) it was established that spectra of the contamination could be 

distinguished from other contamination on the basis of product type. Therefore, only 

spectra resembling a combination of both hair keratin and contamination were collected. 

Presumably, the different hair products tested were designed to undergo different 

molecular reactions with the hair, for example, hydrogen bonding, depending on the 

product’s purpose.  This was evident when the product densely applied spectra (hair with 

product) were visually compared with their respective reference spectra (product alone) 

counterparts. For example, some of the uncharacterised absorbance bands that were 

evident in the ten smoothing balm reference spectra were absent from the ten smoothing 

balm densely applied spectra. 

Specifically, for the smoothing balm densely applied spectra, a medium intensity 

band occurring on the shoulder of the characteristic CO stretch at approximately 1140 cm
-1 

and a low intensity band occurring at approximately 850 cm
-1

 were absent. Moreover, the 

characteristic CH3 deformation at 1460 cm
-1

 was also no longer evident given that 

absorbance by the hair keratin occurred at similar frequencies, as displayed in Figure 

4.3-8. As a result of these variations, in the frequency region under analysis the smoothing 

balm densely applied spectra were visually similar to the finishing gloss densely applied 
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spectra (displayed in Figure 4.3-9). That is, following application to hair, the smoothing 

balm spectra resembled silicone oils (siloxanes). 

 

Figure 4.3-8 – Smoothing Balm Reference and Densely Applied Spectra  

Variations were observed between the spectra of hair with smoothing balm densely applied and the 

smoothing balm spectral references in the mid–IR frequency region under analysis. With the absence of 

some of the uncharacterised absorbance bands that appear in the product reference spectra, specifically, the 

peaks occurring at approximately 1140 and 850 cm
-1

, the smoothing balm densely applied spectra were 

visually similar to the finishing gloss densely applied spectra illustrated in the next Figure. 

 

As discussed throughout section 4.3.1 Hair Product References, the spectra of gel 

on hair obtained by Barton (2011) resembled a siloxane spectrum. However, of the gel, 

mousse, finishing gloss and smoothing balm reference spectra obtained in this research, 

the spectral evaluation only determined the presence of silicone oils in the finishing gloss 

spectra despite dimethicone (polydimethyl siloxane) and/or phenyl trimethicone being 

listed in the formulations for each of these products. Given that the smoothing balm 

spectra resembled silicone oils (siloxanes) following application to hair, this could support 

the presumption that different product types were designed to undergo various molecular 

reactions with the hair, depending on the respective product’s purpose. The spectral 

changes could also be a result of extended drying times (leading to increased product 

oxidation). 
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As displayed in Figure 4.3-9, variations between the finishing gloss densely 

applied spectra and the finishing gloss reference spectra were not observed in the 

frequency region under analysis, with the obvious exception of the additional hair keratin 

absorbance bands. A slight reduction in the intensity of the Si–O–Si asymmetrical and 

symmetrical stretches occurring at 1096 and 1027 cm
-1

, respectively, and of the Si–CH3 

symmetrical stretch occurring at 803 cm
-1

, were observed. 

 

Figure 4.3-9 – Finishing Gloss Reference and Densely Applied Spectra 

With the obvious exception of the additional hair keratin absorbance bands, the finishing gloss densely 

applied spectra were visually similar to the finishing gloss reference spectra and no major variations were 

observed. Albeit, a slight reduction in the intensity of the silicone oil absorbance bands occurring at 1096, 

1027 and 803 cm
-1

 was observed. 

 

For the hairspray densely applied spectra, both the two major Amide I and Amide 

II absorbance bands occurred at similar frequencies as those of the product, while no 

significant peaks were absent. As a result, overall, the product reference spectra appeared 

almost identical to the densely applied spectra, as displayed in Figure 4.3-10.  



Chapter 4. SPECTROSCOPY 

 
145 

  

Figure 4.3-10 – Hairspray Reference and Densely Applied Spectra  

The major absorbance bands for hair keratin, being peaks for Amide I and Amide II, occurred at the same 

frequencies as the absorbance bands for the hairspray product. As there were also no spectral intensities 

absent from the hairspray densely applied spectra, both sample sets appeared almost identical. 

 

Similarly, for the gel product densely applied spectra, one of the major amide 

absorbance bands for hair keratin occurred at the same frequency as an absorbance band 

for the gel reference spectra. Therefore, variations between the spectra were observed due 

to the additional amide absorbance band for hair keratin occurring in the product densely 

applied spectra and because there was a slight increase in the intensity of the 

uncharacterised bands occurring between approximately 1450 and 1400 cm
-1

, and between 

approximately 1150 and 1000 cm
-1

, as displayed in Figure 4.3-11. 
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Figure 4.3-11 – Gel Reference and Densely Applied Spectra  

Variations between the gel densely applied spectra and gel reference spectra were observed due to the 

additional hair keratin amide absorbance band and the slight increase in the intensity of the uncharacterised 

bands occurring between approximately 1450 and 1400 cm
-1 

 and between approximately 1150 and 1000 cm
-

1
. A slight reduction in the spectral intensity of the double peak occurring at approximately 1250 cm

-1
 was 

also observed. 

 

Variations between the mousse densely applied spectra and the mousse product 

reference spectra were observed due to the additional amide absorbance bands for hair 

keratin and because there was a slight increase in the intensity of the uncharacterised bands 

occurring between approximately 1200 and 1000 cm
-1

, as displayed in Figure 4.3-12. For 

both the mousse and gel product densely applied spectra, a slight reduction was observed 

in the spectral intensity of the uncharacterised double peak occurring at approximately 

1250 cm
-1

.  
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Figure 4.3-12 – Mousse Reference and Densely Applied Spectra  

Variations between the mousse densely applied spectra and mousse product reference spectra were observed 

due to the additional amide absorbance bands for hair keratin. An increase in the uncharacterised spectral 

intensities occurring between approximately 1200 and 1000 cm
-1 

were observed as well as a reduction in 

intensity of the uncharacteristic double peak occurring at approximately 1250 cm
-1

. 

 

Finally, as displayed in Figure 4.3-13, no medium or strong absorbance bands were 

observed in the frequency region under analysis between 1632 and 652 cm
-1 

for the styling 

wax spectra. Therefore, while variations between the styling wax densely applied and the 

styling wax reference spectra were observed, few absorbance bands distinguishing the 

product contamination as styling wax could be observed on the styling wax densely 

applied hair spectra in that region (i.e., they resembled the hair without product (control) 

spectra). 
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Figure 4.3-13 – Styling Wax Reference and Densely Applied Spectra  

No medium or strong absorbance bands were observed in the frequency region under analysis between 1632 

and 652 cm
-1

. Few absorbance bands distinguishing the product contamination as styling wax could be 

observed on the wax densely applied hair spectra.  

 

 

4.3.3.1 Summary of Product Densely Applied 

Only spectra resembling a combination of both hair keratin and contamination on 

the OMNIC Live Spectrum Collection Preview were collected for analysis. The two major  

Amide I and Amide II absorbance bands were apparent on all the data collected. In 

addition, visual evaluations of the product densely applied spectra in comparison with the 

spectral references established that other variations to the absorbing constituents occurred. 

This was most likely due to molecular reactions that the respective products were designed 

to perform on application to hair.  

A number of uncharacterised absorbance bands were absent (or reduced in 

intensity) in the smoothing balm densely applied spectra. This resulted in the smoothing 

balm spectra being visually similar to the finishing gloss densely applied spectra. Only 

slight reductions in the spectral intensity of the finishing gloss absorbance bands were 

observed. The hairspray densely applied spectra were considered almost identical to the 
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hairspray reference spectra, due to the absorbance bands of the hairspray constituents 

occurring at similar frequencies as the hair keratin absorbance bands. Only the Amide II 

absorbance band occurred at the same frequency as the gel absorbance bands, although 

there was a slight increase in the spectral intensity of a number of uncharacterised peaks. 

This was also the case with the mousse densely applied spectra; however, only the Amide I 

absorbance band occurred at the same frequency as for product constituents. Finally, the 

wax densely applied spectra practically resembled hair without product (control), as there 

were no medium or strong absorbance bands and few low intensity absorbance bands 

occurring in the frequency region under analysis, that could distinguish the presence of any 

product contamination. 

4.3.4.  Allocation to Product Class  

Aliphatic C–H absorption bands occurring in the region 3000 and 2800 cm
-1

 were 

excluded from the statistical analyses as they were common to the spectra of each product, 

thereby providing little discrimination. The statistical analysis was confined to include 

only the 254 wavenumbers between 1632 and 652 (at a spacing of 3.857 cm
-1

). 

The discriminant analysis (hierarchical cluster) comprising 254 wavenumbers as 

the predictor variables resulted in 73% prediction accuracy. That is, 44 spectra were 

correctly classified as belonging to one of six product categories and 16 were 

misclassified. The dendogram produced by PASW and provided in Figure 4.3-14 

represents the hierarchical cluster allocations for the 60 product densely applied spectra, 

whereby each spectrum is named in accordance with the true product type, sample number 

(1 to 10) and case number (1 to 60) but is located on the dendogram with respect to the 

cluster allocation or statistical similarity to the other spectra. It was observed that three of 

the finishing gloss densely applied spectra were misclassified as smoothing balm and the 

remaining seven finishing gloss spectra were clustered as two distinct groups, while all ten 

of the styling wax densely applied spectra were misclassified as mousse product type. 



Chapter 4. SPECTROSCOPY 

 
 

150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3-14 – Dendogram of Densely Applied 

Spectra  

PASW dendogram representing the hierarchical cluster 

allocations for the 60 product densely applied spectra. 

Forty–four of the samples were correctly classified. Of 

the ten finishing gloss spectra, three were misclassified as 

smoothing balm and the remaining seven were clustered 

as two distinct groups. All ten of the wax spectra were 

misclassified as mousse. 
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The visual evaluation determined that spectra of the smoothing balm appeared 

similar to the spectra of the finish gloss, following application to the hair. Therefore, it is 

not surprising that a number of those spectra were indistinguishable. However, as spectra 

of the styling wax densely applied samples appeared, visually, very different from that of 

the mousse spectra, the close location of those two sets of samples on the dendogram was 

not expected.  

Further statistical analyses that excluded all ten of the finishing gloss spectra from 

the test resulted in the correct allocation of the remaining 50 spectra to five product 

classifications.
2
 Although the densely applied spectra were not statistically distinguishable, 

the visual evaluations suggest that employing FTIR spectroscopy to identify hair surface 

contamination could potentially increase the evidential value of human hair. It was 

determined that further exploration of whether a particular product type could be 

distinguished from other product types following sparse application to a single hair was 

warranted. 

4.3.5.  Product Sparsely Applied 

These analyses were designed to investigate whether the spectra of a particular 

product type could still be distinguished following sparse application to a single hair, 

simulating normal product usage. Cosmetic product contamination on the hair was visually 

located using the 15x Infinity Reflachromat objective with the slide–on ATR in view mode 

(i.e., microscope only). It was established that contact had been made between the ATR 

crystal and the sample (analysis mode) by observing a change in the spectrum on the 

OMNIC Live Spectrum Collection Preview. During data collection of the densely applied 

samples, a spectrum of product contamination alone was observed on the Live Preview 

when little pressure was applied, while a spectrum of keratin alone was observed when 

slightly more pressure was applied. This was not the case with the sparsely applied 

samples, most likely due to the significantly smaller quantity of contamination on the hair 

surface.  

                                                           
2
 NB: A PASW K-Cluster (or “Quick Cluster”) test was also briefly explored, as the test uses a typology 

similar to a fuzzy clustering algorithm that has been applied in other research involving hair spectroscopy 

(e.g., Panayiotou & Kokot, 1999). Greater misclassification resulted from the K-Cluster statistic, with the ten 

styling wax, ten mousse and ten hairspray spectra all incorporated in a single cluster, and the smoothing balm 

and finishing gloss divided across four clusters. All ten gel spectra were correctly allocated to the final 

cluster. 
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With the ATR in view mode, contamination was not observed on the majority of 

sparsely applied samples. Furthermore, on the few samples where contamination was 

observed, spectra of neither the contamination alone nor contamination in combination 

with the hair keratin could be resolved despite numerous attempts. Table 4.3-1 summarises 

those samples where contamination was observed with the ATR view mode and/or on the 

Live Preview spectrum. 
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Table 4.3-1 – Product Sparsely Applied Summary of Spectra Resolved 

Product Hair Sample 
Contamination 

Observed? 

Spectra of 

Contamination 

Resolved? 

Hairspray 1 1 No — 

  2 No — 

Hairspray 2 3 Yes No 

  4 No — 

Hairspray 3 5 Yes No 

  6 No — 

Hairspray 4 7 No — 

  8 No — 

Hairspray 5 9 No — 

  10 No — 

Gel 1 1 Yes No 

  2 Yes No 

Gel 2 3 No — 

  4 Yes No 

Gel 3 5 Yes No 

  6 Yes No 

Gel 4 7 No — 

  8 Yes No 

Gel 5 9 Yes No 

  10 Yes No 

Gloss 1 1 No — 

  2 No — 

Gloss 2 3 No — 

  4 No — 

Gloss 3 5 No — 

  6 No — 

Gloss 4 7 No — 

  8 No — 

Gloss 5 9 No — 

  10 No — 

Wax 1 1 Yes Yes 

  2 Yes Yes 

Wax 2 3 Yes No 

  4 Yes Yes 

Wax 3 5 Yes Yes 

  6 Yes Yes 

Wax  4 7 No — 

  8 No — 

Wax 5 9 Yes Yes 

  10 Yes No 

Balm 1 1 No — 

  2 No — 

Balm 2 3 No — 

  4 No — 

Balm 3 5 No — 

  6 No — 

Balm 4 7 No — 

  8 No — 

Balm 5 9 No — 

  10 No — 

Mousse 1 1 No — 

  2 No — 

Mousse 2 3 No — 

  4 Yes Yes 

Mousse 3 5 Yes No 

  6 No — 

Mousse 4 7 Yes No 

  8 Yes Yes 

Mousse 5 9 Yes No 

  10 No — 
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No contamination was observed on any of the smoothing balm or finishing gloss 

hair samples. Potential hairspray contamination was observed at single locations on two 

individual hair samples; however, all spectrum collection attempts resembled keratin only 

and the source of the contamination could not be resolved. Potential gel contamination was 

also observed at single locations on two individual hair samples and at two or more 

locations on three individual hair samples yet, similar to the hairspray samples, all spectra 

resembled keratin alone and the source of the contamination could not be resolved. 

Potential mousse contamination was observed at single locations on three individual hair 

samples and at multiple locations on a single hair sample; however, two spectra 

resembling a combination of both mousse and keratin were successfully resolved. A 

spectrum from the mousse sparsely applied samples is provided in Figure 4.3-15, along 

with the mousse product reference for comparison.   

  

Figure 4.3-15 – Mousse Reference and Sparsely Applied Spectra 

An increase in spectral intensities occurring between approximately 1200 and 1000 cm
-1 

along with an 

additional band at approximately 1700 cm
-1

 on the shoulder of Amide I, indicated the presence of mousse 

contamination on the sparsely applied samples. Of the four samples comprising potential contamination, only 

two spectra resembling mousse could be resolved, with all others resembling hair keratin alone. 
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Unlike the other five products analysed, potential styling wax contamination was 

observed on the majority of sparsely applied wax samples, specifically, contamination was 

observed at multiple locations on four out of five hair samples. Furthermore, where 

contamination was observed the resulting spectrum resembled a combination of both the 

styling wax contamination and hair keratin on all but two locations, albeit, only a few 

additional low intensity absorbance bands indicating the presence of wax occurred in the 

frequency region under analysis, as illustrated in Figure 4.3-16. 

 

Figure 4.3-16 – Styling Wax Reference and Sparsely Applied Spectra 

A number of low intensities bands occurred in the frequency region under analysis, including one at 

approximately 1750 cm
-1 

and two between approximately 1200 and 1100 cm
-1

, indicated the presence of 

styling wax contamination on the sparsely applied sampled. Of the four hair samples that comprised potential 

contamination, all produced spectrum resembling wax from at least one location along the hair. 

 

The distinctive styling wax results were most likely due to the viscous texture of the 

product that in turn produced a firm bond with the hair fibre. The styling wax was not 

designed to partially evaporate on application and drying, such as the hairspray and 

smoothing balm products that, most likely, resulted in minimal product residues that were 

below the detection limit of the instrument.  
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4.3.5.1 Summary of Product Sparsely Applied 

The sparse application analyses were designed to address hair evidence in the 

context of forensic casework. Contamination was not observed on the majority of samples, 

including the samples prepared with smoothing balm, finishing gloss, hairspray and styling 

gel. Furthermore, on the few samples where contamination of these products was 

observed, spectra of the contamination could not be resolved. Conversely, for almost all 

the samples prepared with styling wax, and to a lesser extent those prepared with mousse, 

spectra resembling the respective product contamination were observed. 

With all samples, attempts to locate product contamination on the hair surface were 

undertaken using the 15X Infinity Reflachromat objective with the Slide–on ATR in view 

mode. During data collection of the sparsely applied samples, dried product contamination 

without interference from the hair keratin was generally not observed on the OMNIC Live 

Preview screen due to, most likely, the low concentration of the contamination. As 

previously discussed (4.1.2.3 Attenuated Total Reflectance), radiation at the lower 

frequencies penetrates deeper than at higher frequencies, causing ATR–FTIR spectral 

bands to skew. Given the low concentration of the contaminants, the keratin amide bands 

present at the low frequencies may have overwhelmed the contaminants for these analyses.  

The detection limit of the instrument was therefore considered a major drawback of the 

method presented for this type of analysis. Chemical imaging was identified as a potential 

alternative for locating and analysing contamination on the hair surface, and this technique 

is discussed further below (4.3.6 Chemical Imaging). 

Moreover, Raman spectroscopy was identified as a potential alternative for this type 

of analysis (Maynard, 2012). Raman is considered a complimentary technique to IR 

spectroscopy that can similarly be used for sample identification and quantification and 

additionally, the depth of focus (z plane) can be adjusted to enable characterisation of 

different sample layers. Fourier Transform Raman spectroscopy has already been 

evaluated elsewhere to assess the state of degraded archaeological hair samples collected 

from various burial sites, including different coffin materials, caves, exposed conditions 

and museum storage facilities (Wilson et al., 1999). That study identified the impact of 

environmental contaminants, for example, a CO3
2- 

vibration at 1047 cm
-1 

was consistently 

observed on spectra of hair collected from lead lined coffins, while a CaCO3 vibration at 

1086 cm
-1 

was observed on spectrum of hair collected from cave sites (Wilson et al., 
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1999). Thus, Raman is recommended for further investigation to evaluate its suitability for 

the detection of hair surface contaminants within a forensic context.  

4.3.6. Chemical Imaging 

Mid–IR chemical imaging was used to determine whether spatial data (false colour 

map) could assist the forensic examiner with locating product contamination on the hair 

surface. This part of the research was designed to provide a “proof of concept” for future 

research. Individual hair samples were densely coated with hairspray and analysed using 

the Digilab Stingray Imaging System. By selecting a wavenumber that corresponds to the 

spectral band of a specific compound, the spatial distribution of that compound across the 

sampled area can be selectively mapped, revealing the samples’ inhomogeneity.  

4.3.6.1 Hair Keratin 

Figure 4.3-17 illustrates the spatial data corresponding to the spectrum for hair 

keratin, being the Amide I absorption band at 1630 cm
-1

. As illustrated, an arbitrary colour 

was attributed to each pixel according to the spectral intensity at 1630 cm
-1

 with red 

representing high spectral intensity and blue representing low spectral intensity. Thus, 

while the hair surface was coated in product, the hair keratin Amide I compounds were 

still identifiable by the ATR–FTIR technique. This could be as a result of the 

inhomogeneous application of hairspray, or as a result of the hemispherical shape of the 

germanium crystal down the longitudinal centre of the hair shaft, forcing the 

contamination to the outer edges. In her work on chemical imaging of hair cross–sections, 

Lee (2008) recommended the use of a flat diamond ATR for hair surface contamination to 

allow greater contact between the hair surface the crystal. 
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Figure 4.3-17 – Chemical Image of Keratin  

Spatial representation of the hair keratin Amide I absorption band at 1630 cm
-1

 from chemical imaging data 

generated from a hair with hairspray densely applied. The inhomogeneity of the sample is evident, with red 

representing areas of high spectral intensity of the selected wavenumber (1630 cm
-1

) and blue representing 

low spectral intensity. 

 

4.3.6.2 Hairspray Contamination 

The spatial data corresponding to the spectrum for the hairspray, being the aliphatic 

tertiary amide carboxyl group (C=O) absorption band at 1716 cm
-1

, is presented in Figure 

4.3-18. As illustrated, an arbitrary colour is attributed to each pixel according to the 

spectral intensity at 1716 cm
-1

 with red representing high spectral intensity and blue 

representing low spectral intensity. While the hair sample had a dense application of 

hairspray, product contamination is only identifiable along the outer longitudinal lines of 

the hair shaft by this technique. Similar to the hair keratin spatial data, this could be as a 

result of the inhomogeneous application of hairspray or, dried hairspray from the 

longitudinal centre of the hair shaft may have been removed during sample preparation 

when the hair was flattened with a metallic roller. Moreover, with the previous ATR–FTIR 

analysis, spectra resembling hair keratin on its own or product contamination on its own 

was often observed depending on the degree of contact pressure applied between the 

crystal and sample. Similarly here, as a result of a greater depth of penetration by the 
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hemispherical crystal at the centre, the keratin absorbance bands may have been more 

intense toward the centre of the shaft. 

 

Figure 4.3-18 – Chemical Image of Hairspray  

Spatial representation of the aliphatic tertiary amide C=O absorption band at 1716 cm
-1

 from chemical 

imaging data generated from a hair with hairspray densely applied. The inhomogeneity of the sample is 

evident, with red representing areas of high spectral intensity of the selected wavenumber (1716 cm
-1

) and 

blue representing low spectral intensity. 

 

4.3.6.3 Summary of Chemical Imaging 

This part of the spectroscopic analyses was designed to provide an example of 

potential future work by demonstrating that the spatial data obtained by chemical imaging 

could be employed to assist the forensic examiner with locating product contamination on 

the hair surface. That is, by selecting a wavenumber that corresponds to the spectral band 

of a known molecule, specifically aliphatic hydrocarbons (CH), carboxylic acids (COOH), 

esters (COOR), amides (CONR2) and silicone oils (SiO), the spatial distribution of that 

molecule could be selectively mapped to reveal the samples inhomogeneity. This could 

assist the examiner with locating then identifying traces of cosmetic hair products on the 

hair surface. Such a process is not currently part of the examination sequence, but has the 

potential to increase the evidential value of human hair by providing an additional level of 
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discrimination and by associating a crime–related sample with an individual’s 

environment.  
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4.4.  Conclusion 

Identifying hair surface contamination that occurs from the popular use of cosmetic 

products such as hairsprays, gels and mousse, is not currently part of the routine forensic 

examination process. Such analyses could increase the evidential value of human hair by 

producing an additional level of discrimination. Hair research involving ATR–FTIR 

spectroscopy, to date, has focused on the effects of chemical based hair treatments and/or 

sunlight exposure, and very few studies have been reported on hair surface contamination. 

The research focus of this chapter involved assessing the potential for identifying traces of 

cosmetic product on the hair surface with ATR–FTIR spectroscopy. 

Visual evaluations and OMNIC Spectral Interpretation analyses established that 

many hair product constituents from seven targeted product types could be detected by 

ATR–FTIR spectroscopy. Of the seven products targeted, the leave–in moisturiser was the 

only product where significant mid–IR absorption bands were not observed, so this 

product was excluded from further evaluation. The discriminant analysis (canonical 

correlation) comprising 254 wavenumbers between 1632 and 652 (at a spacing of 3.857 

cm
-1

) as the predictor variables resulted in 100% accuracy. That is, all 60 reference spectra 

were correctly classified as belonging to one of six product categories.  

Spectra collected of the six product types following dense application to a single 

hair showed some variations when compared to the respective reference spectra (in 

addition to the presence of the hair keratin Amide I and Amide II absorbance bands that 

were apparent in each spectrum). The spectral intensity of some absorbance bands 

increased, others reduced, and a few bands were absent altogether. The discriminant 

analysis (hierarchical cluster) resulted in only 73% prediction accuracy, with 16 of the 60 

spectra misclassified. While some misclassifications were not surprising given the visual 

similarities, the styling wax spectra and the mousse spectra were, visually, very different 

so the close location of those two sample sets on the dendogram was surprising. All ten 

finishing gloss spectra had to be removed in order for the statistical analyses to succeed. 

As some discrimination between the densely contaminated hair samples could be 

determined, it was decided that investigation of whether a particular product type could be 

distinguished following sparse application to a single hair was warranted. 
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The sparse application analyses were designed to address hair evidence in the 

context of forensic casework by simulating normal product usage. However, with the 

exception of styling wax, and to a lesser extent mousse, contamination was not observed 

on the majority of samples and, on the few samples where it was observed, spectra of the 

contamination could not be resolved. The distinctive styling wax results were most likely 

due to the viscous texture of the product that in turn produced a firm bond with the hair 

fibre. Conversely, the poor results involving the other products, particularly those products 

designed to partially evaporate on application and drying, such as the hairspray and 

smoothing balm, would produce contamination of low concentration along the hair fibre. 

This may have been due to the significant keratin bands overwhelming the contamination, 

given the greater depth of penetration at the lower frequencies on ATR analyses. The 

detection limit of the instrument was therefore considered a major drawback for the 

purpose of this research. Identifying alternative methods for locating and analysing 

contamination on the hair surface was thus considered for potential future work, including 

Raman spectroscopy. Alternatively, visually locating hair contamination with a high power 

objective and/or analysing spatial data provided by mid–IR chemical imaging, were also 

recommended as techniques to assist the examiner with locating hair surface 

contamination, although more research is required in this area.  

Finally, it is recommended that future work also involves investigating the ability to 

discriminate between different brands within the same product type. It is reasonable to 

expect that where within–product differences were found to exist, the 100% correct 

classification of reference spectrum to product class would reduce concurrently. Common 

hair surface contaminants resulting from occupational or environmental means, for 

example, specks of paint or machine oil resulting from employment in the automotive 

industry, might also be considered.  
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5.1.   Conclusion 

The role of the forensic hair examiner is to determine whether a questioned hair 

recovered from a crime scene could or could not be from the same source as a known 

sample and therefore whether it should be included or excluded as probative evidence. 

Arguably, traditional hair microscopy is a largely subjective process that relies heavily on 

the training and experience of the examiner. The aim of this project was to investigate 

three objective analytical methods to produce a hair examination protocol that balances 

qualitative microscopic observations with quantitative measures. Hair samples were 

received from 154 participants, with 20 participants from each of six nominal hair colour 

categories actively sought. Combed head hair was requested to increase the number of 

telogen hairs in each sample set, though only samples comprising at least ten hairs with the 

root end attached and natural, untreated colouring were retained for use in this study. 

Approximately 3150 montage images were acquired at three equidistant points along the 

proximal end of the hair shaft for all ten hairs belonging to each participant. The montage 

images were utilised in both the colour and pigmentation components of this research 

(Chapter 2 and Chapter 3, respectively). For the spectroscopy component of this research 

(Chapter 4), additional hair samples were received from one female Caucasian. The 

participant’s hair was washed, blow–dried and collected by cutting tresses approximately 8 

cm from the distal ends. Four sample sets were prepared, including a ‘reference spectra’, 

‘hair with product sparsely applied’, ‘hair with product densely applied’ and a control set. 

Two spectra from each sample were collected, yielding ten spectra per product within each 

sample set. 

5.1.1. Colour 

5.1.1.1 Allocation to Categories 

Numerical colour measurements derived from three colour models were assessed to 

determine which produced the best statistical model for allocating hair to one of six 

nominal colour categories. Between 69.3 and 76.2% correct classification to the categories 

was achieved, with RGB and CIE L*a*b* returning the highest prediction accuracy and 

CIE XYZ returning generally poor results, particularly among the darker categories. In an 

effort to refine and improve these results, analyses were repeated that incorporated only a 
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limited set of categories and predictor variables. Correct allocation increased slightly for 

the darker samples while no improvement was observed for the lighter samples.  

A number of reasons were considered for why the predictive analyses were of 

limited value when applied to the discrimination of hair colour. First, numerical models 

describe colour that is, essentially, a visual experience dependant on the human observer 

for description. Colour categories need to reflect the human perception of colour, yet 

equally correspond to differences between the numerical coordinates that were measured. 

Subjective observer–reported colours were incorporated in the hierarchical cluster analyses 

used to facilitate the allocation of categories, but the predictive model relied solely on 

numerical criterion. Moreover, discriminant analyses focus on linear relationships, so 

where a non–linear relationship between the individual components of a particular colour 

model existed, it also would not have been reflected by the resulting model. Finally, Box 

Ms were used to test the assumption of homogeneity of the covariance matrix. The test is 

notoriously sensitive and small observed significance levels for large sample sizes can be 

ignored; albeit, this could additionally explain why the predictive models were of limited 

value. 

The predictive statistical tests applied in this research did not have the high 

discriminating power that would otherwise be expected for a continuous variable such as 

hair colour. The rate of misclassification associated with the statistical model was too high 

to provide support for routine application in operational casework. Furthermore, while this 

research compared three colour models, sRGB may have been an unsuitable choice given 

that some colours visible to the human eye are located outside the sRGB gamut. The 

potential of this part of the research may have been limited as a result and a wider gamut, 

such as Adobe RGB, should be considered for future research of this kind.  

5.1.1.2 Allocation to Participants 

This part of the colour component was designed to emulate the forensic hair 

examination process and investigate whether numerical colour measurements could assist 

the experienced microscopist, post–triage with colour comparisons between samples from 

questioned and known sources. Importantly, this research found the range of variation for 

the present sample population was greater between people than within one person, 

confirming the view that numerical colour measurements can be used to distinguish 



Chapter 5. CONCLUSION 
 

 
 

166 

between participant hair colour. Likewise, this range of variation is the foundation on 

which microscopic hair examinations involving colour comparisons rely. 

Discriminant analyses were used to distinguish between individual hairs within a 

subpopulation of similarly coloured hair. The RGB and CIE L*a*b* colour models again 

performed better overall than the CIE XYZ colour model; however, aside from the Red 

hair category (up to 80.3% prediction accuracy), the overall prediction accuracy was low 

(between 11.1 and 59.4%) and did not provide support for application of the method as a 

routine tool in forensic hair examination.  

Confidence intervals that test colour components as individual variables were 

considered as an alternative to discriminant analyses, which rely on multivariate 

evaluations. In order for numerical measurements to assist the experienced forensic hair 

examiner, it was recommended that future research consider the colour components as 

individual variables, similar to the approach taken by Bednarek (2003) as well as the 

follow–up approach demonstrated in Chapter 2 of this research. 

5.1.2. Pigmentation 

A novel image analysis technique was investigated for quantifying and 

discriminating pigmentation pattern evaluations. The study was designed to measure the 

density, size and shape of the pigment configurations, as represented by pixel variations 

within montage images. Specifically, statistical analyses were used to address the question 

of whether the selected measurements could discriminate between participants with similar 

shaded hair. Unfortunately, the selected methodology did not support discrimination 

between the selected participants and a number of limitations were considered. 

First, the forensic hair examiner will evaluate the entire length of hairs available in 

a questioned and an exemplar set, while the present study only evaluated an extract taken 

from an area approximately 204 x 152 µm in size. Future research should consider a 

method that involves a greater representation of the entire shaft. Second, during method 

development, the most appropriate threshold level was determined experimentally for the 

three separate populations, i.e., 50% for Light, 35% for Medium and 25% for Dark. 

Occasionally, a hair sample was unavoidably thresholded at an unsuitable level. Third, to 

measure pigmentation in each threshold image, only a limited number of the 28 parameters 

available from the V++ Object Analysis function were employed to analyse the black on 
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white objects. Future research could consider all of the parameters available in V++; a 

complete list is provided in Table 3.2-3 (Digital Optics Ltd., 2009). Due to the complexity 

of data preparation involved in the current method design, only a small cohort of images 

and participants were evaluated in this part of the research and this would be more 

cumbersome with a greater number of parameters considered. Once appropriate 

discriminating measures had been determined, the Object Analysis function could be 

automatically performed with the appropriate VPascal script and this approach would be 

recommended to enable a greater number of comparisons to be evaluated more easily. 

Finally, fractal dimensions that describe the complexity of detail in a pattern rather than its 

spatial dimensions could provide an alternative tool for extracting information from 

pigmentation patterns.  

5.1.3. Spectroscopy 

The potential for identifying trace contaminants on the hair surface using ATR–

FTIR spectroscopy was assessed. Visual evaluations and OMNIC Spectral Interpretation 

analyses established that many constituents from seven targeted product types could be 

detected by ATR–FTIR spectroscopy. Of those contaminants, the leave–in moisturiser was 

the only product where mid–IR absorption was not observed, so this product was excluded 

from further evaluations. Discriminant analysis comprising 254 wavenumbers between 

1632 and 652 (at a spacing of 3.857 cm
-1

) as the predictor variables, resulted in 100% 

classification accuracy. Albeit, this analysis only included one brand of product per 

product type and it is reasonable to assume that had numerous brands per product been 

tested, the prediction accuracy may have been reduced. For the analysis conducted, the 

strongest predictor variables were generally between 1300 and 1000 cm
-1

 corresponding to 

the CO absorbance bands for ethers and esters, and at 1450 cm
-1

 (-11.271) corresponding 

to the CH3 asymmetrical bend vibration.  

Spectra collected following dense application to single hairs showed some 

variations when compared to the reference spectra. The spectral intensity of some 

absorbance bands increased, others reduced, and a few bands were absent altogether. The 

discriminant analysis resulted in 44 out of 60 correct classifications (73%). The ‘sparse 

application’ analyses were designed to address hair evidence in the context of forensic 

casework by simulating normal product usage. However, with the exception of styling 

wax, and to a lesser extent mousse, contamination was not observed on the majority of 
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samples and, on the few samples where it was observed, spectra of the contamination 

could not be clearly resolved. Those products designed to partially evaporate on 

application and drying, would most likely produce low concentration traces along the hair 

fibre that likely contributed to the poor results. Similarly, greater depth of penetration at 

the lower frequencies often experienced by the ATR technique may have resulted in the 

keratin bands overwhelming any contaminants present. The limited sensitivity and 

specificity of the technique (i.e., its ability to detect low–level surface contamination 

against the strong signal from the air shaft itself) was therefore considered a major 

drawback for this application. 
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5.2.   Conclusion – Recommendations for Future Research 

Following from the research results detailed in this thesis, recommendations for 

future research resulting from this study include the following: 

 Discriminant analysis is only recommended for distinguishing between 

nominal hair colour categories in the case of training new forensic hair 

examiners or for the evidence triage process to assist inexperienced hair 

examiners or scene of crime officers with the initial processing of multiple 

questioned hairs or bulk samples; 

 Alternative statistical methods should be investigated in order to achieve 

greater discrimination between colours. However, the nominal categories 

need to reflect the human perception of colour, yet equally correspond to 

differences between the numerical coordinates that were measured; 

 Future research relying on RGB colour measurements should consider a 

wider gamut such as Adobe RGB. This option may depend on the capture 

device employed; 

 Discriminant analysis is not recommended for distinguishing between 

individual hairs of similar colour. Future research should consider the 

colour components as individual variables, such as confidence intervals 

determined from probability distribution curves; 

 Future research could consider multiple threshold level images of 

pigmentation, prior to object analysis that could involve a greater number of 

parameters not investigated here; 

 Performing numerical analysis of pigmentation using appropriate automated 

script is recommended to enable a greater number of comparisons to be 

evaluated more easily; 

 The statistical indices provided by fractal dimensions may be suitable for 

comparing pigmentation within and between participants and further 

investigation is warranted; 
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 Research involving ATR–FTIR spectroscopy to investigate hair surface 

trace contaminants resulting from occupational or environmental means, for 

example, specks of paint or machine oil resulting from employment in the 

automotive industry, should be considered. Research involving different 

brands within the same product type should also be considered;  

 Raman spectroscopy is recommended for future investigations, to evaluate 

its suitability for the detection of hair surface contaminants in a forensic 

context; and 

 Locating hair surface contaminants with a high power objective and/or 

analysing spatial data provided by mid–IR chemical imaging, should be 

investigated further. 

 

Finally, difficulties associated with improving the discriminating power of hair 

examinations were identified two decades ago, specifically that considerable variation 

exists in hairs from a single individual and that microscopic features of hair are difficult to 

assess objectively (Robertson, 1982). Emerging technologies in image processing, pattern 

recognition and computer science could assist future examinations with classifying―or 

potentially individualising―forensic hair evidence. However, despite attempts made in 

this research, successful quantification and discrimination of hair characteristics has not 

been achieved. Until there is a universally applicable technique that will mimic 

microscopic analysis, current evaluations made by an experienced examiner are the best 

option available. 
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Appendix A 
Example Sample Collection Documents  

Participant Information Form 

 

New analytical approaches to advance & enhance the forensic value of human 

hair 

 

Sample Identification Number 

 

This number cannot be linked to the identity of the participant hair donor.  It should be retained by 

the participant and quoted to the researchers if at any stage the participant wishes to withdraw from 

the study. 

 
 
Researchers 

 

Dr Dennis McNevin, PhD Professor Alan Cooper, PhD 

Forensic Studies Australian Centre for Ancient DNA 

Faculty of Applied Science School of Earth & Environmental Sciences 

University of Canberra The University of Adelaide 

dennis.mcnevin@canberra.edu.au alan.cooper@adelaide.edu.au 

(02) 6201 2634 (08) 8303 5950 

 

Ms Carolyn McLaren Ms Janette Edson 

Forensic Studies Australian Centre for Ancient DNA 

Faculty of Applied Science School of Earth & Environmental Sciences 

University of Canberra The University of Adelaide 

carolyn.mclaren@canberra.edu.au janette.edson@uqconnect.edu.au 

(02) 6201 5879 (08) 8303 3952 

 

 
Project Aims 

 

The aims of the project are to: 

1. develop a protocol for recovery and characterisation of nuclear DNA (nuDNA) from naturally 

shed human hair. 

2. refine new methods for image analysis of hairs; 

3. compare the identification success rates of microscopic hair examination, nuDNA genotyping 

and image analysis; and 

4. design a screening sequence and protocol for forensic hair examination based on these 

methods that minimises resource usage and maximises statistical (and hence evidential) 

power. 

2002 XXX 

mailto:dennis.mcnevin@canberra.edu.au
mailto:alan.cooper@adelaide.edu.au
mailto:carolyn.mclaren@canberra.edu.au
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Benefits of the Project 

 

Human hairs have several features that make them attractive as trace evidence in forensic 

examinations.  The most important feature is that hairs are a ubiquitous material in our 

environment and are the most common form of evidence found at crime scenes.  Pubic hairs are a 

very common evidence type associated with sexual assault.  Humans shed 50 – 150 telogen 

(resting phase) hairs per person per day and so an offender will typically leave multiple hairs at a 

crime scene. Hairs have the potential to contribute to the classic ‘roles’ for trace evidence; namely, 

they can: 

 associate an individual with a crime; 

 dissociate an individual from a crime; and 

 help reconstruct the events that may have taken place. 

 

For this reason, there is a great interest in the potential use of human hair for forensic analysis, with 

both disaster victim identification and criminal applications. 

 

Traditionally, hair evidence has been provided to the courts in the form of expert testimony from 

hair examiners, with no statistical probability of association or dissociation.  The value of this 

evidence depends heavily on the experience of the hair examiner, who must be well trained in their 

sole tool: microscopic hair comparison.  By combining this technique with genetic profiling and 

image analysis, we will provide the forensic community, both nationally and internationally, with 

new forensic protocols for hair analysis that can be validated and calibrated numerically.  It will 

allow cataloguing of hair characteristics from the general population in a form that will be 

amenable to database storage, thereby placing hair examination on a similar numerical footing to 

nuDNA evidence from other sources. 

 

A major outcome of this project will be new methods for the forensic examination of hair that will 

compliment standard microscopic comparison: 

 Advanced genotyping. We will apply and evaluate newly developed DNA characterisation 

techniques developed for ancient and highly damaged specimens to the forensic analysis of hair. 

 Microscopic ‘optical sectioning’ through the full depth of a hair sample. By montaging different 

sections into one ‘in–focus’ image, this method can provide colour and pigmentation pattern 

analysis, and the base data from which numerical values can be derived for these distinguishing 

features. 

 Chemical imaging of hair using FTIR spectroscopy. This technique is already applied to fibre 

analysis and will be used to provide insight into the chemical structure of hair providing a 

further basis for discrimination. 

 

 

General Outline of the Project 

 

Hairs will be collected from participants and then sorted according to: 

 racial origin 

 gender (male, female) 

 age 

 hair growth cycle stage (anagen, telogen) 

 

Hairs will then be stored under various conditions according to: 

 hydration (dry, humid, wet) 

 temperature 
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Hairs will be further treated by cleaning with: 

 detergent 

 alcohol 

 bleach 

 

The hairs will then be analysed in parallel to allow comparison of the efficiency of three proposed 

methodologies for discriminating between hairs: 

 

1. Hairs will be initially screened by microscopic examination to establish base level data for 

samples. 

 

2. A range of DNA analysis methods will be used to characterise trace amounts of degraded DNA in 

the hairs. 

 

3. Image analysis techniques will be applied to the hairs.  These techniques are: 

 microscopic optical sectioning; 

 colour imaging; 

 pigmentation pattern analysis; and 

 chemical imaging 

 

We will then compare the identification success rates of microscopic hair examination, nuDNA 

genotyping and image analysis and design a screening sequence and protocol for forensic hair 

examination that minimises resource usage and maximises statistical (and hence evidential) power. 

 

The results of the study can be made available to participants by contacting one of the researchers. 

 

 

Participant Involvement 

 

The project is a voluntary activity and participants may decline to take part or withdraw at any time 

without providing an explanation.  Participants must be aged 18 years or over. 

 

Participants will provide hair samples (scalp) which will be collected using Collection Kits.  Each 

Collection Kit contains the following items: 

 Participant Information form 

 Informed Consent form 

 Participant Questionnaire 

 sterile cheek swab (x2) 

 sterile disposable gloves (x2 pair) 

 sterile plastic comb 

 A3 paper (folded) (x2) 

 snap–seal bag 

 numbered Collection Envelope 
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Sample Collection Procedure 

 

The procedure for collecting hairs and DNA is as follows: 

 

1. Read the Participant Information Form. 

 

2. Sign the Informed Consent Form and keep a copy. 

 

3. Fill out the Participant Questionnaire. 

 

4. Self administer a cheek swab by removing the swab from its sheath and wiping it on the inside of 

one cheek.  Return the swab to its sheath. Use the second cheek swab for the other cheek. 

 

5. Cut a small section from the corner of the sheath (see diagram) to allow the saliva to dry and 

prevent bacterial growth. Return both cheek swabs to the Collection Envelope (please do not place 

in the snap–seal bag). 

 

 

 
 

6. Perform all hair collection immediately before washing hair. 

 

7. Perform all hair collection while wearing the sterile disposable gloves provided. 

 

8. Holding your head over the unfolded A3 paper (single sheet), gently and slowly run the sterile 

comb through your scalp hair.  Pick out individual hairs from the teeth of the comb and place them 

on the paper as well.  Collect at least 20 hairs. 

 

9. Refold the A3 paper, ensuring your hair sample is in the centre. Place this in the snap–seal bag. 

 

10. If your sample appears low (less than 20 hairs) an additional pair of sterile disposable gloves and 

A3 paper is provided for collection at a second time (immediately before washing hair). Paper 

containing the second hair sample should be refolded and placed in the same snap–seal bag. 

 

11. Place the Participant Questionnaire and the snap–sealed hair sample(s) in the Collection Envelope.  

The comb and gloves may be discarded. 

 

12. Please contact one of the nominated researchers to organise return of your Informed Consent Form 

and the Collection Envelope.  Keep the Participant Information Form with the Sample 

Identification Number recorded on it. 
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Confidentiality 

 

Only the nominated researchers will have access to the Participant Questionnaires, Informed 

Consent forms, cheek swabs and hair samples provided by participants.  They will not be able to 

link these to the identities of the participants. 

 

 

Anonymity 

 

The anonymity of each participant will be preserved.  The Participant Questionnaire answers, 

cheek swabs and hair samples will be identified by a Sample Identification Number that will not be 

recorded with the personal identity of any participant.  The Informed Consent form will be the only 

document that records participants’ names and signatures and these will not have any Sample 

Identification Number recorded and they will not be stored with the questionnaire answers, cheek 

swabs or hair samples.  Thus, after collection of samples, there will be no means to associate the 

personal identity of any participant with their Participant Questionnaire, cheek swab or hair 

samples. 

 

Each participant will retain a Participant Information form with their Sample Identification 

Number recorded on it.  This may be quoted to any of the nominated researchers if any participant 

wishes to withdraw from the study at any time.  If a participant notifies a nominated researcher of 

their intention to withdraw, their Participant Questionnaire, cheek swab and hair samples will be 

destroyed. 

 

 

Data Storage 

 

Participant Questionnaires will be stored in a locked room (7D10) on Level D of Building 7 at the 

University of Canberra.  Cheek swabs and hair samples will be stored in a locked  

-80 
o
C freezer on Level D of Building 7 at the University of Canberra.  Sub–samples from cheek 

swabs and hairs will be stored in a restricted access laboratory (7D25) on Level D of Building 7 at 

the University of Canberra.  Sub–samples will be destroyed upon completion of the project.  

Participant Questionnaires, cheek swabs and hair samples will be stored for five years and then 

destroyed. 

 

 

Ethics Committee Clearance 

 

This project has been approved by the Committee for Ethics in Human Research of the University 

of Canberra. 

 

 

Queries and Concerns 

 

Any queries or concerns about this project can be addressed to one of the nominated researchers.  

Any participant may withdraw from the project at any time.  

 



APPENDICES 

 
189 

 

 

Informed Consent Form 

 

New analytical approaches to advance & enhance the forensic value of human 

hair 
 

 

Consent 

 

I have read and understood the information about the research contained in the Participant 

Information form. I am not aware of any condition that would prevent my participation, and I agree 

to participate in this project. I have had the opportunity to ask questions about my participation in 

the research. All questions I have asked have been answered to my satisfaction. 

 

 

Name 

 

 

Signature 

 

 

Date 

 

 

 

A summary of the research report can be forwarded to you when published. If you would like to 

receive a copy of the report, please include your mailing address below. 

 

 

Address 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Carolyn McLaren 

Forensic Studies 

Faculty of Applied Science 

T (02) 6201 5879 

F (02) 6201 2461 

E carolyn.mclaren@canberra.edu.au 

mailto:carolyn.mclaren@canberra.edu.au
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Participant Questionnaire 

 

New analytical approaches to advance & enhance the forensic value of human 

hair 
 

 

 

Sample identification number 
 

This number cannot be linked to the identity of the participant hair donor.  

 

 
 

 

Questions 

 

Please tick () or cross () the most appropriate answers. If there are any questions you do not 

wish to answer or where you do not have the information, please leave them blank. 

 

 

1. Your ethnic origin is best described as: 

□ Sub–Saharan African 

□ North African 

□ Northern European (Celtic, Scandinavian) 

□ Western European 

□ Southern European (Italian, Greek) 

□ Eastern European (Slavic) 

□ Middle Eastern 

□ West Asian (Indian, Pakistani) 

□ East Asian (Chinese, Japanese) 

□ South East Asian 

□ Polynesian 

□ Melanesian 

□ Australasian (Australian Aboriginal) 

□ Native North American 

□ Native South American 

□ Other (please specify) 

 

 

2. Your gender is: 

□ male 

□ female 

 

 

3. Your age is: 

        years 

 

 

4. Your natural hair is best described as: 

2002 XXX 
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□ dry 

□ normal 

□ oily 

 

 

5. Your natural hair type is best described as: 

□ straight 

□ wavy 

□ curly 

□ other 

 

 

6. Your natural hair colour is best described as: 

□ black 

□ brown 

□ blonde 

□ red 

□ grey 

□ white 

 

 

7. Your natural hair shade is best described as: 

□ dark 

□ medium 

□ light 

 

 

8. Has your hair been treated in the last year? 

□ yes (go to question 9) 

□ no (go to question 15) 

 

9. How long ago was your hair treated? 

        days, or 

        weeks, or 

        months 

 

 

10. How has your hair been treated? 

□ permanent dye 

□ semi–permanent dye 

□ wash–out dye 

□ bleach 

□ streaks or foils 

□ permanent wave 

□ straightened 

 

 

11. Your treated hair is best described as: 

□ dry 

□ normal 

□ oily 

 

 

12. Your treated hair type is best described as: 

□ straight 
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□ wavy 

□ curly 

□ other 

 

 

13. Your treated hair colour is best described as: 

□ black 

□ brown 

□ blonde 

□ red 

□ grey 

□ white 

 

 

14. Your treated hair shade is best described as: 

□ dark 

□ medium 

□ light 

 

 

15. The last hair product used in your hair was: 

□ none 

□ hair spray 

□ mousse 

□ gel 

□ moisturiser 

 

 

16. How long ago did you last apply hair product? 

        days, or 

        weeks, or 

        months, or 

        years, or 

□ never 

 

 

 

Thank you for your time and co–operation! 

 

 

 

 

 
Carolyn McLaren 

Forensic Studies 

Faculty of Applied Science 

T (02) 6201 5879 

F (02) 6201 2461 

E carolyn.mclaren@canberra.edu.au 

mailto:carolyn.mclaren@canberra.edu.au
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Appendix B 

VPascal Script for Transformation between Colour Coordinates 
 

button btn_text,'caz3'; 

var 

qq, img,im,iml,m; 

temp_small,temp_big; 

r,g,b,lr,lg,lb,xn,yn,zn,x,y,z,xx,yy,zz; 

l,a; 

imgl,imga,imgb,imgxyz; 

rgb_mean, rgb_StdDev; 

l_mean, a_mean, b_mean; 

l_StdDev, a_StdDev, b_StdDev; 

x_mean, y_mean, z_mean; 

x_StdDev, y_StdDev, z_StdDev; 

csv_output; 

aa; 

Img8 ; 

nImages ; 

Msg ; 

// r, g and b are standard RGB values;  lr, lg and lb are linear RGB values 

 

function powerof(s,t); 

var 

value,result; 

begin 

value:=Ln(s); 

result:=Exp(value*t); 

powerof:=result; 

end; 

 

begin 

getactiveimage(img); 

rgb_mean := MeanOf(img) ; 

rgb_StdDev := StdOf(img) ; 

r:=single(red(img))/255; 

g:=single(green(img))/255; 

b:=single(blue(img))/255; 

 

// Standard R,G,B values are transformed to linear R,G,B values 

 

temp_small:=r*(r<=0.04045)/12.92; 

temp_big:=powerof(((r+0.055)/1.055),2.4)*(r>0.04045);  

lr:=temp_small+temp_big; 

// r is the linear red value in the interval 0 to 1 

 

temp_small:=g*(g<=0.04045)/12.92; 

temp_big:=powerof(((g+0.055)/1.055),2.4)*(g>0.04045); 

lg:=temp_small+temp_big;      
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// g is the linear green value in the interval 0 to 1 

  

temp_small:=b*(b<=0.04045)/12.92; 

temp_big:=powerof(((b+0.055)/1.055),2.4)*(b>0.04045); 

lb:=temp_small+temp_big;           

// b is the linear blue value in the interval 0 to 1 

  

// Linear R,G,B values are transformed to CIE X,Y,Z values 

 

xn := 0.412453 + 0.357580 + 0.180423;                   

yn := 0.212671 + 0.715160 + 0.072169;                   

zn := 0.019334 + 0.119193 + 0.950227; 

// xn, yn and zn are the CIE XYZ tristimulus values of the reference white 

 

x := 0.412453 * lr + 0.357580 * lg + 0.180423 * lb;        

y := 0.212671 * lr + 0.715160 * lg + 0.072169 * lb; 

z := 0.019334 * lr + 0.119193 * lg + 0.950227 * lb; 

// x, y, and z are the CIE XYZ tristimulus values 

 

 x_mean := MeanOf( x ) * 100; 

 y_mean := MeanOf( y ) * 100; 

 z_mean := MeanOf( z ) * 100; 

 x_StdDev := StdOf( x ) * 100; 

 y_StdDev := StdOf( y ) * 100; 

 z_StdDev := StdOf( z ) * 100; 

 

// CIE XYZ values are transformed to CIE L*a*b* values 

 

xx := x/xn; 

yy := y/yn; 

zz := z/zn; 

 

temp_big := (116* powerof(yy,1/3) -16 )*(yy>0.008856); 

temp_small := yy*(yy<=0.008856)*903; 

l := temp_big+temp_small;         

// l is the CIE L* value between 0 to 100 

 

temp_big := powerof(xx,1/3)*(xx>0.008856); 

temp_small := (7.787*xx+0.1379310345)*(xx<=0.008858); 

xx := temp_big + temp_small; 

 

temp_big :=     powerof(yy,0.3333)           *(yy>0.008856); 

temp_small := (7.787*yy + 0.1379310345)*(yy<=0.008856); 

yy := temp_big + temp_small; 

  

temp_big :=      powerof(zz,0.3333)*(zz>0.008856); 

temp_small := (7.787*zz + 0.1379310345)*(zz<=0.008856); 

zz := temp_big + temp_small; 

  

a := 500*(xx-yy);                 

b := 200*(yy-zz);                 

// a is the CIE a* value between -100 to 100 
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// b is the CIE b* value between -100 to 100 

 

// The CIE L*a*b* values are transformed to values between 0 and 255 

 

SetDisplayRange(img,0,255 ); SetDisplayMode( img,dm_fixed ); 

show(l,getname(img)+' l');SetDisplayRange(l,-100,100 ); SetDisplayMode( l,dm_fixed ); 

show(a,getname(img)+' a'); SetDisplayRange(a,-100,100 ); SetDisplayMode( a,dm_fixed ); 

show(b,getname(img)+' b'); SetDisplayRange(b,-100,100 ); SetDisplayMode( b,dm_fixed ); 

 

 l_mean := MeanOf( l ); 

 a_mean := MeanOf( a ); 

 b_mean := MeanOf( b ); 

 l_StdDev := StdOf( l ); 

 a_StdDev := StdOf( a ); 

 b_StdDev := StdOf( b ); 

 

// Format results into a comma separated output (RGB mean, LAB Mean, XYZ Mean, RGB 

StdDev, LAB StdDev, XYZ StdDev) 

 

csv_output := str 

(rgb_mean,chr(44),l_mean,chr(44),a_mean,chr(44),b_mean,chr(44),x_mean,chr(44),y_mean,chr(

44),z_mean,chr(44),rgb_StdDev,chr(44),l_StdDev,chr(44),a_StdDev,chr(44),b_StdDev,chr(44),x_

StdDev,chr(44),y_StdDev,chr(44),z_StdDev); 

 

writeln(csv_output); 

writeln; 

 

getactiveimage(qq); 

Delete (qq); 

getactiveimage(qq); 

Delete (qq); 

getactiveimage(qq); 

Delete (qq); 

getactiveimage(qq); 

Delete (qq); 

 

free(img); 

free(l); 

free(a); 

free(b); 

free(x); 

free(y); 

free(z); 

 

end 
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Appendix C 

VPascal Script for Pigmentation Analyses 
 

button btn_text,’Caz2 PPR’; 

 

var 

img1, img2, pos; 

 

//pixel_comparison procedure; at each x position, mean extract image values are subtracted from 

the mean entire images values 

 

procedure pixel_comparison; 

 

var 

a; 

 

begin 

a:=img1[pos..pos+getxsize(img2)-1,..]; 

writeln(pos,chr(9),abs(meanof(single(a)-single(img2)))); 

end; 

 

begin 

if selectimage('entire image',img1)=id_cancel then halt;  

if selectimage('section image',img2)=id_cancel then halt; 

 

//Loop command; the above procedure ‘pixel_comparison’ is executed once at each x position in 

the range x=0 to x=(width of entire image minus width of section image)  

 

for pos:= 0 to getxsize(img1)-getxsize(img2)-1 do 

   begin 

   overlay_section; 

   end; 

 

end 
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Appendix D 
Linear Regression for Correcting Exposure 
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B (RGB) Variable
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Appendix E 
Normality Plots for CIE XYZ Variables 

 

CIE X Variable 

Stem and Leaf Plot 

 

 
179 0 .  0000000000000000000000000000000000000000000000011111111111111111111 

      1111111111111111111111 

137 0 .  22222222222222222222222222222222222222223333333333333333333333333333 

136 0 .  4444444444444444444444444444444444555555555555555555555555555555555 

88 0 .  66666666666666666666666667777777777777777777 

80 0 .  888888888888888888899999999999999999999 

66 1 .  00000000000000001111111111111111 

56 1 .  2222222222222333333333333333 

44 1 .  4444444444445555555555 

26 1 .  6666666777777 

24 1 .  88888999999 

29 2 .  00000000111111 

23 2 .  22222233333 

11 2 .  44455 

17 2 .  66777777 

10 2 .  8899 

10 3 .  0001 

76 Extremes    (>=32) 
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CIE Y Variable 
Stem and Leaf Plot 

 
 

211 0 .  00000000000000000000000000000000000001111111111111111111111111111111111 

147 0 .  2222222222222222222222223333333333333333333333333 

127 0 .  444444444444444444444455555555555555555555 

88 0 .  66666666666666777777777777777 

68 0 .  88888888888899999999999 

70 1 .  000000000000001111111111 

51 1 .  22222222222233333 

40 1 .  4444444455555 

25 1 .  66677777 

24 1 .  88899999 

24 2 .  00000011 

22 2 .  2223333 

15 2 .  44555 

13 2 .  6677 

12 2 .  8899 

2 3 .  0 

73 Extremes    (>=31) 
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CIE Z Variable 
Stem and Leaf Plot 

 

 
245 0 .  01111111111222222222222333333333444444444445555555566666677777777777888 

      88889999999 

141 1 .  000000111112222333333344445555566666677778889999 

92 2 .  00001111222333344444556677788899 

78 3 .  000111122222233344456677899 

65 4 .  00112222344455567788999 

56 5 .  000111223344456788& 

39 6 .  013344567889& 

34 7 .  01255666899& 

31 8 .  0012345677 

28 9 .  234456889& 

21 10 .  0113568& 

18 11 .  0145678& 

21 12 .  1345669& 

14 13 .  3457& 

15 14 .  12458& 

14 15 .  679&& 

8 16 .  06& 

7 17 .  5&& 

13 18 .  01378& 

72 Extremes    (>=19.0) 

 

(& denotes fractional leaves.) 
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Appendix F 
Brand, Type and Content of Analysed Hair Products 

 

Brand &Product Type Product Content (Manufacturer) 

Coles Smart Buy 

Hairspray 

Alcohol, Butane, Isobutane, Propane, Water, Octylacrylamide/ Acrylates/ 

Butylaminoethyl Methacrylate Copolymer, Aminomethyl Propanol, 

Fragrance 

Garnier Fructis Style 

Styling Gel 

Water, Dimethicone, Propylene Glycol, VP/VA Copolymer, 

Triethanolamine, Carbomer, Phenoxyethanol, PEG 40 Hydrogenated Castor 

Oil, PEG 192 Apricot Kernel Glycerides, PEG 70 Mango Glycerides, 

Chlorphenesin, Polyethylene Glycol, Limonene, Pentasodium Penetrate, 

Linalool, Citrus Limonum/ Lemon Fruit Extract, Cinnamal Fragrance (FIL 

C256281) 

Toni & Guy 

Boost–It Mousse 

Water, Dimethyl Ether, Alcohol,  Butane, PVP/VA Copolymer, PPG 5 

Ceteth 20, Polysorbate 20, PVP, Isobutane, Phenyl Trimethicone, 

Triethanolamine, Frangrance, Carbomer, Propane, Disodium EDTA, , 

Benzophenone 4, Butylphenyl Methylpropanol, Hydroxyisohexyl 3 

cyclohexene Carboxaldehyde, Polyquaternium 7, Hydroxycitronellal, 

Linalool, Methylparaben, Propylparaben 

Joico Moisture Recovery 

Leave–In Moisturiser 

Water, Hydrolysed Keratin, Cocodimonium Hydroxypropyl Hydrolysed 

Keratin, Hydrolyzed Algin, Oenothera Biennis (Evening Primrose) Oil, 

Simmonosia Chinensis (Jojoba) Seed Oil, Panthenol, Chlorella Vulgaris 

Extract, Seawater , Amodimethicone, Cocamidopropyl PG–Dimonium 

Chloride, PEG 7 Glyceryl Cocoate, Dimethicone, Propoxytetramethyl, 

Piperidinyl, Dimethicone, Benzophenone 4, Lysine HCL, Quaternium 80, 

Trideceth 12, Trideceth 6, Triethanolamine, Ceteareth 20, Cetrimonium 

Bromide, Cetrimonium Chloride, C11–15 Pareth 7, Citric Acid, Disodium 

EDTA, Diazolidinyl Urea, DMDM Hydantoin, Iodopropynyl 

Butylcarbamate, Limonene, Fragrance 

Paul Mitchell 

Smoothing Gloss Drops 

Dimethicone, Cyclomethicone, Phenyltrimethicone, SD Alcohol 40 B, 

Bisamino PEG/PPG 41/3 Aminoethyl PG Propyl Dimethicone, Hedychium 

Coronarium (White Ginger), PEG 12 Dimethicone, Algae (Seaweed) 

Extract, Aloe Vera (Aloe Barbadensis) Extract, Anthemis Nobilis (Roman 

Chamomile) Flower Extract, Lawsonia Inermis (Henna) Extract, 

Simmondsia Chinensis (Jojoba) Seed Extract, Rosmarinus Officinalis 

(Rosemary) Extract, Isopropyl Alcohol, Fragrance, Benzoate, Benzyl 

Salicylate, Butylphenyl Methlyproprional, Citronellol, Geraniol, 

Hexylcinnamal, Hydroxycitronellal, Limonene 
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Brand &Product Type Product Content (Manufacturer) 

American Crew Fiber 

Pliable Molding Cream 

(Wax) 

Water, Lanolin Wax, Cetearyl Alcohol (Coconut), PVP, Tribehenin, 

Propylene Glycol, Tridecyl Stearate, Dipentaerythrityl Hexacaprylate/ 

Hexacaprate, Ceteareth 25 (Coconut), PEG 8 Beeswax, Tridecyl Trimelitate, 

PEG 40 Castor Oil, Acrylates/C10 30 Alkyl Acrylate Crosspolymer, 

Triethanolamine, Tetrasodium EDTA, Fragrance, Methylparaben, 

Propylparaben, Butylparaben, Isobutylparaben, Phenoxyethanol, Caramel, 

Yellow 5 Lake (CI 19140) 

Joico K–Pak 

Smoothing Balm 

Water, Polyquaternium 37, Phenyl Trimethicone, Propylene Glycol 

Dicaprylate/Dicaprate, Cyclopentasiloxane, Decyl Oleate, 

Propoxytetramethyl Piperidinyl Dimethicone, Cetrimonium Chloride, C12–

15 Alkyl Benzoate, Polyquaternium 11, Hydrolyzed Keratin (Quadramine 

Complex), Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Hydrolyzed 

Keratin PG–Propyl Methylsilanediol, Thioctic Acid, Butyl 

Methoxydibenzoylmethane, Psidium Guajava Fruit Extract, Sodium 

Ascorbyl Phosphate, Dimethicone, Tocopheryl Acetate, Oenothera Biennis 

(Evening Primrose) Oil, Aleurites Moluccana Seed Oil, Glycolipids, 

Hyaluronic Acid, Allantoin, Aloe barbadensis Leaf Juice, Benzophenone–4, 

Glycerin, Hydrolyzed Wheat Protein, Polyquaternium–59, Butylene Glycol, 

Bisamino PEG/PPG–41/3 Aminoethyl PG–Propyl Dimethicone, 

Polyquaternium–46, Hydroxyethylcellulose, PPG–1 Trideceth–6, 

Quaternium–80, Trideceth–3, Trideceth–6, Tetrasodium EDTA, 

Methylparaben, Propylparaben, Aminomethyl Propanol, Diazolidinyl Urea, 

Benzyl Benzoate, Benzyl Salicylate, Citronellol, Geraniol, Hexyl Cinnamal, 

Hydroxyisohexyl–3–Cyclohexene Carboxaldehyde, Hydroxycitronellal, 

Limonene, Butylphenyl Methylpropional, Fragrance, Mica (CI 77019), 

Titanium Dioxide (CI 77891), Iron Oxides (CI 77491) 

 

 


