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Abstract  36 

Background: Bone turnover is the cellular machinery responsible for bone integrity and strength and, 37 

in the clinical setting, it is assessed using bone turnover markers (BTMs). Acute exercise can induce 38 

mechanical stress on bone which is needed for bone remodelling, but to date, there are conflicting results 39 

in regards to the effects of varying mechanical stimuli on BTMs.  40 

Objectives: This systematic review examines the effects of acute aerobic, resistance and impact 41 

exercises on BTMs in middle and older-aged adults and examine whether the responses are determined 42 

by the exercise mode, intensity, age and sex 43 

Methods: We searched PubMed, SCOPUS, Web of Science and EMBASE up to 22nd April 2020. 44 

Eligibility criteria included randomised controlled trials (RCTs) and single-arm studies that included 45 

middle-aged (50 to 65 years) and older adults (>65 years) and, a single-bout, acute-exercise (aerobic, 46 

resistance, impact) intervention with measurement of BTMs. PROSPERO registration number 47 

CRD42020145359 48 

Results: Thirteen studies were included; 8 in middle-aged (n= 275, 212 women/63 men, mean age= 49 

57.9 ± 1.5 years) and 5 in older adults (n= 93, 50 women/43 men, mean age= 68.2 ± 2.2 years). Eleven 50 

studies included aerobic exercise (AE, 7 middle-aged/4 older adults), and two included resistance 51 

exercise (RE, both middle-aged). AE significantly increased C-terminal telopeptide (CTX), alkaline 52 

phosphatase (ALP) and bone-ALP in middle-aged and older adults. AE also significantly increased total 53 

osteocalcin (tOC) in middle-aged men and Procollagen I Carboxyterminal Propeptide and Cross‐Linked 54 

Carboxyterminal Telopeptide of Type I Collagen in older women. RE alone decreased ALP in older 55 

adults. In middle-aged adults, RE with impact had no effect on tOC or BALP, but significantly 56 

decreased CTX. Impact (jumping) exercise alone increased Procollagen Type 1 N Propeptide and tOC 57 

in middle-aged women. 58 

Conclusion: Acute exercise is an effective tool to modify BTMs, however, the response appears to 59 

be exercise modality-, intensity-, age- and sex-specific. There is further need for higher quality and 60 

larger RCTs in this area. 61 

 62 

 63 
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1. Introduction  64 

The skeleton has protective, mechanical and metabolic roles, providing structural support and a site 65 

for calcium storage (1-3). Bone should be strong, to prevent fractures, but light, to enable movement in 66 

a gravitational environment (1). Bone turnover, the cellular machinery responsible for bone integrity 67 

and strength, is a finely balanced process responsive to mechanical loads and hormonal changes (4-6).   68 

Exercise is a non-pharmacological intervention that can improve bone health and reduce the risk of 69 

osteoporosis (7-11). The anabolic effects of exercise on osseous tissues are positively associated with 70 

the amount of mechanical strain exerted (12). In animals, the strain-adaptive remodelling response 71 

requires intermittent and dynamic, but not static, loading (13-18). Additionally, loading periods only 72 

need to be very short to stimulate adaptive responses, and that bone formation is threshold-driven and 73 

influenced by strain rate, frequency, amplitude and duration of loading (17, 19-23). Altogether, these 74 

findings demonstrate that bone requires dynamic (not static) strains (i.e. impact loading) for adaptive 75 

responses and, higher physiological rates compared to low rates and applied rapidly, to increase this 76 

response (14-16, 19, 24). 77 

In humans, higher impact activities with rapid rates of loading (i.e. tennis/squash) are more 78 

osteogenic compared with lower impact sports (i.e. running/cycling) (25-27). Mechanical loads, 79 

produced by exercise, change local microenvironments of the canalicular networks within the bone 80 

framework via dynamic fluid shifts stimulating local osteocytes and ultimately bone turnover (28-30). 81 

Exercise serves varying purposes across the lifespan. In children, exercise is important for optimisation 82 

of peak bone mass, whereas, in older adults, exercise serves to maintain/reduce the rate of bone loss (9, 83 

10, 31). However, the search for a relationship between exercise and bone mineral density (BMD) 84 

demonstrates contradictory findings, some reporting beneficial effects (7, 11, 32), while others have not 85 

(33-35). Moreover, available human data shows that the magnitude of benefit on bone from exercise is 86 

inconsistent, often influenced by safety concerns leading to conservatively prescribed training loads 87 

(36-40).  88 

To optimise exercise effects on bone health a better understanding of the metabolic responses of 89 

bone tissue to various mechanical stimuli is needed. By convention, BMD is widely used as a measure 90 

of bone health to predict fracture risk (41), however, it represents a static bone mineral status and cannot 91 
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be used to estimate acute bone metabolic changes such as those induced by acute exercise. Therefore, 92 

BTMs represent an easy to measure option to assess the dynamic fluctuations in bone turnover (Table 93 

1) (42). Using BTMs to describe bone metabolic activity comes with complexities, contributing to the 94 

lack of consensus in the literature. Whilst these markers are sensitive, they have high biological 95 

variability attributed to differences in i.e. blood sampling, study protocols, effects of feeding and 96 

circadian rhythm (42-44). As such, the aims of this systematic review were to 1) examine the effects of 97 

acute exercise on BTMs in adults over 50 years of age and to determine if middle-aged and older adults 98 

respond differently, and 2) to understand whether these effects were exercise modality-, exercise 99 

intensity-, sex- or BTM-specific.  100 

 101 

Table 1. Markers of bone turnover that have been used in the exercise literature 102 

 103 

2. Methods 104 

This systematic review was conducted in accordance with the Preferred Reporting Items for 105 

Systematic Reviews and Meta-Analysis (PRISMA) guidelines (45) and was registered in the 106 

International Prospective Register of Systematic Reviews (PROSPERO) - CRD42020145359. 107 

 108 

Fig. 1 Identification screening and selection of studies (PRISMA Flow Diagram) 109 

 110 

2.1 Inclusion criteria 111 

The inclusion criteria for studies in brief were: (i) randomised controlled (RCT), cross-sectional or 112 

single arm trials including quasi-randomised design; (ii) adults ≥50 years of age, middle-aged adults 113 

defined as mean age ≥50 to <65 years and older adults defined as mean age ≥65 years; (iii) intervention 114 

of interest includes acute bout or single-bout of exercise; and (v) outcome of interest was BTMs (see 115 

supplementary 1, PICOS protocol). 116 
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2.2 Data extraction 117 

CS and AT performed the literature search (supplementary 2, search strategy) and extracted data 118 

from the included studies, IL revised discrepancies. The following data were extracted: (i) 119 

characteristics of the participants i.e. sample size, sex, age (years), height (centimetres), weight 120 

(kilograms) and body mass index (BMI, height/weight2); (ii) details of the acute exercise bout (intensity, 121 

duration, volume, mode); and (ii) details of outcomes of interest (BTMs) measured at baseline and post- 122 

acute exercise.  123 

 124 

2.3 Quality assessment: Risk of bias and Methodological Index for Non-Randomised Studies 125 

Risk of bias assessments were independently conducted by CS and AT. RCTs were assessed using 126 

the Cochrane Collaborations Risk of Bias 2 (ROB2) tool (46). We assessed selection bias (random 127 

sequence generation, allocation concealment), performance bias (blinding of participant and personnel), 128 

detection bias (outcome assessor blinding), attrition bias (handling of incomplete outcome data) and 129 

other bias including baseline imbalance on the primary outcome and selective reporting. All other trials 130 

not meeting the criteria for a RCT were assessed using the Methodological Index for Non-Randomised 131 

Studies (MINORS) scale (47).  132 

 133 

3. Results 134 

We identified 3637 articles. After removal of duplicates, 1465 unique titles and abstracts were 135 

screened, and 1421 articles were excluded. The full text of 44 articles was reviewed and a further 31 136 

were excluded, leaving 13 articles for inclusion in our qualitative synthesis (Fig. 1). The authors of four 137 

studies were contacted for further information (48-51). One intervention was described in two articles 138 

but with different stratification of groups, both articles were included and considered as a single trial 139 

(52, 53). Another study had additional analyses published at a later date, both articles were included but 140 

considered as a single trial (50, 51). Herein for both of these studies, the first published paper will be 141 

referenced.  142 

 143 
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3.1 Quality assessment 144 

Results of the methodological quality assessments are shown in Table 2 and Figure 2. Only 3 studies 145 

were RCTs (54-56) and assessed using the ROB2 tool. All others were assessed using the MINORs 146 

scale. No studies achieved a maximum quality score. Scores ranged on the ROB2 (Figure 2) and on the 147 

MINORs scale (Table 2) from 43.8% to 87.5%. The most common source of likely methodological bias 148 

using the ROB2 tool was the randomisation process and deviations from the intended study endpoint. 149 

Using the MINORs scoring system, the likely source of methodological bias was the absence of 150 

unbiased assessment of the study endpoint (n= 10) and prospective calculation of study sample size (n= 151 

8). 152 

 153 

Table 2. Quality rating scale (MINORs) 154 

 155 

Figure 2. Risk of bias ratings 156 

 157 

3.2 Study population and study design 158 

Descriptive characteristics and study outcomes of included studies are described in Table 3. Two 159 

studies included adults with osteoporosis (untreated) (55, 57), five studies excluded individuals with 160 

osteoporosis/conditions affecting bone metabolism (49, 50, 53, 54, 58) and one study included adults 161 

with osteopenia (48). Four studies did not state whether they excluded participants with osteoporosis 162 

(56, 59-61). Five studies excluded individuals taking medications/supplements that effect bone 163 

metabolism (48, 50, 53, 54, 58), one stated except for calcium and vitamin D (55), four studies included 164 

participants not taking medications (57, 60-62) and three studies did not refer to medication use (49, 165 

56, 59). 166 

Of the thirteen studies included, eight were in middle-aged (mean age <65 years) (49, 50, 54-56, 59-167 

61) and five were in older adults (mean age >65 years) (48, 53, 57, 58, 62). Sample sizes ranged from 168 

11 to 150 (total combined data of the 13 studies n= 336 [220 women, 116 men]). Participants’ age range 169 

was 52 to 73 years (mean age 62 ± 6 years) and BMI was 23.5 to 33.1 kg/m2 (mean BMI 26.85 ± 3.33 170 
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kg/m2). Sex-distribution for included studies was predominately women (71%); 77% of middle-aged 171 

and 54% of older adults were women. 172 

 Eleven studies evaluated effects of acute AE exercise on BTMs (seven in middle-aged (49, 50, 55, 173 

56, 59-61), and four in older adults (48, 53, 58, 62)). Two studies evaluated effects of acute combined 174 

RE and impact (middle-aged adults) (49, 55), one study evaluated the effects of acute impact exercise 175 

alone (middle-aged adults) (54), and one study evaluated the effects of acute RE alone (older adults) 176 

(57) on changes in BTMs. Only two studies reported that the exercise was supervised (48, 54). Exercise 177 

protocols, blood sampling protocols and effects of acute exercise on BTMs have been described in 178 

Table 3 including all reported levels and significant changes. 179 

Nine studies reported that exercise and blood sampling were performed in the morning (49, 50, 53-180 

56, 59, 61, 62), one was performed in the afternoon (60), and three did not state the time of the day (48, 181 

57, 58). Seven studies were performed in the morning following an overnight fast (49, 50, 53-56, 59), 182 

one stated at least 12-hours of fasting (no indication of time) (57), and five studies were not performed 183 

in a fasted state (48, 58, 60-62). One study involved a controlled pre-feed (48), and another stated a 2-184 

hour fast after a meal free from milk and cheese (60). Only three studies reported controlling for exercise 185 

on preceding days (54, 61, 62). One study mentioned withholding dietary supplements (54). Post-186 

exercise blood sampling varied greatly from one to four timepoints; four studies taking only 187 

immediately post (52, 53, 55, 58, 59), the longest taken at 72-hours (61, 62). A range of biochemical 188 

assays were used to analyse the circulating BTMs including electrochemiluminescence immunoassay 189 

(ECLIA), enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and 190 

immunoradiometric assay (IRMA) (Table 3).  191 

 192 

Table 3. Study characteristics and outcomes 193 

 194 

3.3 Acute aerobic exercise 195 

3.3.1 Effects on BTMs: middle-aged adults 196 
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Two studies reported significant increases in ALP immediately following cycling GXTs performed 197 

to exhaustion in men and in middle-aged postmenopausal women (59, 60). BALP also increased (range 198 

~0.7 to 26%) in women after a cycling GXT to exhaustion, and also after moderate intensity walking 199 

(46mins, 3-6 METs) (55, 60). Three studies reported significant increase in tOC (range ~13.4 to 18.8%) 200 

in men who cycled (GXT to exhaustion; and 75% VO2
Peak, 30mins), and in middle-aged postmenopausal 201 

women who jogged (50% HRMax reserve, 45mins) (49, 59, 61). However, three cycling studies reported 202 

no change in tOC, one in men (90-95% HRPeak, 30 mins) and two in middle-aged postmenopausal 203 

women (70-75% VO2
Peak, 30mins; GXT to exertion) (50, 56, 60). No significant change was reported 204 

in P1NP after cycling in middle-aged postmenopausal women (70-75% VO2
Peak, 30mins) (56) or in men 205 

(90-95% HRPeak, 30mins) (50). Acute AE was also reported to have no effect on PICP in middle-aged 206 

postmenopausal women after jogging (50% HRMax reserve, 45mins) (61).  207 

One study reported that acute AE significantly increased (~16.6%) ß-CTX after cycling in men (90-208 

95% HRPeak, 30mins), however, there was no change in ß-CTX after cycling (75% VO2
Peak, 30mins) or 209 

CTX after walking (3-6 METs, 46mins) in middle-aged postmenopausal women (50, 55, 56). Two 210 

studies measured ICTP with no significant changes in middle-aged postmenopausal women after 211 

jogging (50% HRMax reserve, 45mins) or cycling (to exertion, GXT) (60, 61). SCL was reported to 212 

increase following brisk walking in middle-aged postmenopausal women (3-6 METs, 46mins) (55). 213 

 214 

3.3.2 Effects on BTMs: older adults 215 

ALP significantly increased in men and women immediately following a treadmill GXT (stopped at 216 

75-85% HRMax) (58). BALP also significantly increased (~12%) immediately following a treadmill 217 

GXT (to exertion), but only in men and women who were classed as moderately active (classified using 218 

a physical activity questionnaire) and not active based on baseline exercise levels (53). Two studies 219 

reported that tOC did not change in women after walking (50% HRMax reserve, 90mins) or in men and 220 

women after a treadmill GXT (to exhaustion) (53, 62). PICP was reported to increase in women after 221 

walking (50% HRMax reserve, 90mins) (62). 222 

Wherry et al. (48) reported significant increases (range 34.6 to 77.3 %) in CTX levels at all post-223 

exercise time points (peak, 15, 30, 45 and 60mins) in men and women who walked at moderate intensity 224 
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(70-80% HRMax, 60mins). In contrast, Maimoun et al (53) reported no significant change in men and 225 

women following a maximal GXT (treadmill). Thorsen et al (62) reported a significant decrease 226 

(~13.8%) in 1CTP levels at 1hr, but a significant increase (~15.5%) in levels at 72hrs post brisk walking 227 

(50% HRMax reserve, 90mins). 228 

 229 

3.4 Acute resistance with and without impact, or impact alone exercise 230 

3.4.1 Effects on BTMs: Middle-aged and older adults 231 

The effect of acute RE with and without impact exercises, versus impact only exercise on BTMs 232 

greatly varied with a limited number of studies measuring the same BTMs. In studies involving 233 

RE+impact, no change was reported in BALP in middle-aged postmenopausal women, or in tOC in 234 

middle-aged men (49, 55). On the contrary, impact-only exercise (three forms of jumping, see Table 3) 235 

significantly increased tOC (double jump group) and P1NP (all groups) immediately post, but at 2-236 

hours tOC significantly decreased (all groups), with P1NP also reducing (non-significant) to below 237 

baseline levels (54). The drop in tOC (significant) and P1NP (non-significant) to below baseline levels 238 

was consistent with the control group in that study (54). CTX was the only consistent measured bone 239 

resorption marker shown to decrease following RE+impact and impact-alone protocols in middle-aged 240 

women (54, 55). However, in the impact-alone study, the significant decrease at 2-hours post (not 241 

immediately after) was not significantly different to the control group (54). Only one study investigated 242 

acute RE in older women (57) and reported a significant decrease in ALP; no other BTMs were 243 

measured in this study. 244 

 245 

4. Discussion 246 

We report that a) BTM responses to acute exercise vary between middle- and older-aged adults and 247 

that the BTM responses may be b) sex-specific and c) altered by exercise mode, intensity and duration. 248 

Additionally, responses to acute exercise stimuli may be d) BTM-specific, with some markers being 249 

more sensitive than others to the same stimuli. We identified a major gap in the current field with a 250 



 10 

small number of studies investigating acute effects of exercise on BTMs in middle-aged adults (n= 8), 251 

and even fewer number in older-adults (n= 5). 252 

The application of mechanical stress (i.e. exercise) to the skeleton can preserve and increase BMD, 253 

serving as a key intervention in the prevention and management of osteoporosis (8-10). The effect of 254 

chronic, long-term exercise training on BMD in older adults is well established, shown to be modality- 255 

and intensity-dependent (9, 40, 63, 64). Evidence suggests that walking is of limited value for improving 256 

bone health if prescribed without additional loading bearing exercises (37, 40, 63, 65-67). It is well 257 

accepted that RE with weight bearing and high impact is safe and effective to optimise bone health in 258 

older adults, as they result in high strain rates and peak forces and, reduce falls and fractures (7, 9, 36, 259 

38, 68). In fact, high-velocity power and rapid concentric contractions (inducing higher strain rates on 260 

bone) is beneficial for functional performance (i.e. chair rise) in older adults (69-71). Additionally, 261 

regular weight-bearing impact, applied in multidirectional patterns, promotes bone 262 

maintenance/preservation (63, 72). While the evidence is clear from chronic, long term, exercise 263 

training studies what characteristics exercise protocols should consist of for beneficial effects on bone 264 

health in adults, the effects of acute exercise are unclear. Available data are conflicting and, as it is not 265 

appropriate to measure BMD after a single session, BTMs are used as a surrogate measure (42). 266 

Whether various modes of acute exercise with different modifiable characteristics alter bone 267 

metabolism differently in middle and older adults is underexplored. 268 

 269 

4.1 Age and sex-specific effects on BTM responses to acute exercise 270 

Based on this review, while acute exercise is sufficient to detect responses in BTMs, these responses 271 

may be age- and sex-specific, highlighting some possible consideration in the design of future acute 272 

exercise studies. For instance, all AE exercise studies investigating the tOC and BALP response in older 273 

adults (men and women) report no change after exercise, but some studies in middle-aged adults (men 274 

and women) report increases (49, 53, 55, 59-61). Conversely, ALP appears to have similar sensitivity 275 

in middle and older aged men and women (50, 58-60) and resorption markers CTX (men and women) 276 

and ICTP (women only) appear to increase in older adults, but not middle-aged (48, 55, 60-62). Lastly, 277 
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tOC and ß-CTX responses to AE also appears to be more sensitive in middle-aged men than women, 278 

suggesting a possible sex-specific response (49, 56, 59-61). Differences in BTM responses between 279 

middle- and older-aged adults could be multifactorial, explained by age-related alterations to bone 280 

composition and hence bone turnover, and in women, menopausal effects, possibly altering the bone 281 

response (6, 73-77). Indeed, underlying bone pathophysiology is different in middle-aged vs older 282 

women who, are known to have elevated bone turnover rates, possibly explaining differences in 283 

responses (6, 78). Given bone resorption was not significantly altered in some of these studies in women 284 

(55, 56, 60, 61) may in fact, be beneficial (not stimulating further the negative balance of the 285 

remodelling process), however this is poorly understood and warrants further exploration. 286 

Of note, at baseline, some studies did not report/screen for BMD and/or T-score, as adults are known 287 

to be affected by age-related bone composition alterationpowers, particularly women, this should be 288 

considered. Some studies excluded individuals with osteoporosis (49, 50, 53, 54), whereas others 289 

included adults with osteopenia/osteoporosis (48, 55, 57), possibly influencing BTM responses (79). 290 

Some studies in older adults pooled men and women data together (48, 58), only one confirming no 291 

sex-interaction in BTM responses (53). As older women are known to have different rates of bone 292 

turnover and consequently accelerated bone loss compared to men, bone responses may be altered (or 293 

attenuated) thus, men and women should be handled separately, or sensitivity tests performed (35, 73-294 

77, 79).  295 

 296 

4.2 BTM responses modulated by exercise mode, intensity, and duration  297 

This review summarises that BTM responses to acute exercise may be modulated by the specific 298 

characteristics of the exercise protocol used. For instance, a majority of studies report no change in tOC 299 

following AE regardless of intensity (low, moderate, high) (50, 53, 56, 60, 62). However, tOC may be 300 

more sensitive only to AE that incorporates loads of greater ground-reaction force increasing in one 301 

study after jogging, but not after the majority of studies including cycling or walking protocols (50, 53, 302 

56, 60-62). Whereas, ALP, BALP and PICP increase after cycling and walking, suggesting these 303 

markers have higher sensitivity to AE with lower impact (53, 55, 58-60, 62). Indeed, in three separate 304 
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studies in middle-aged men utilising cycling protocols the tOC response was different, increasing only 305 

after moderate intensity cycling (30mins) and a short duration maximal exertion GXT, but not after 306 

high-intensity interval exercise (30mins) (49, 50, 59). This suggests that exercise intensity and duration 307 

may be important, but there may be other possible modulating effects on the tOC response, which 308 

should be further explored. Markers reflecting bone resorption, CTX and ICTP appear to be more 309 

sensitive to AE protocols that are longer (≥ 60mins), not shorter duration (<45mins) (48, 53, 55, 60-310 

62). Whereas, ß-CTX (a different fragment of CTX) responds differently to cycling exercise of same 311 

duration (30mins), increasing only after high-intensity, but not moderate-intensity cycling, suggesting 312 

that in this instance, intensity may be important (50, 56).  313 

Despite the mounting evidence for the use of RE combined with weightbearing and impact loads 314 

distributed in dynamic and novel patterns for optimising bone health effects, little is known about the 315 

acute effects and available studies investigating these characteristics is limited. Based on this review, 316 

RE with impact does not stimulate a response in markers reflecting bone formation (49, 55). However, 317 

one study measured BALP only at immediately post exercise (55), the other measured tOC only up to 318 

2-hours, possibly missing the kinetic response (49). Direct comparison of these study protocols is 319 

difficult, one study used core stabilisation bodyweight exercises with small impact exercises (steps, 320 

hopping) (55), the other study used power leg press RE (70 to 75% maximal strength) with high impact 321 

jumping, thus the impact and mechanical strain load on bone would be very different (49). However, it 322 

does appear that high impact exercise alone and RE alone is sufficient to detect a response in BTMs of 323 

formation. Indeed, ALP was decreased in one study following a RE regimen of pilates exercises, 324 

however, whether this is truly indicative of a bone-response is unclear, and other BTMs were not 325 

measured (42, 57, 80). Of note, only the study investigating impact alone using three sessions each 326 

containing a different form of jumping, reported increases of tOC and P1NP. P1NP increased for all 327 

jumping protocols, but tOC was only increased in the session where participants dropped from a height 328 

to an explosive vertical jump, not from jumping directly from the floor (54). Highlighting that, P1NP 329 

may be more sensitive than tOC to impact exercise, and that the tOC-specific response may require 330 

greater impact loads (ground reaction force) combined with high explosive movements to elicit a 331 

response. Based on these studies it appears that CTX decreases with RE combined with impact, and 332 
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with impact alone protocols (54, 55). However, while both of these studies were RCTs, the impact only 333 

study which was crossover in design report that CTX decreases also in the control condition (54). This 334 

decrease was not different to the decrease seen post the impact exercise, indicating that CTX is affected 335 

by circadian/diurnal effects (54, 81). 336 

Altogether, the evidence from this review, and from the literature demonstrates that exercise 337 

intensity, dynamic, and novelty of new loads (non-habitual nature) placed on the skeleton are important 338 

characteristics influencing the bone-exercise response (16, 23, 24, 82, 83). However, only three studies 339 

included participants’ baseline fitness in the selection criteria (48, 49, 54). Three state (60-62) 340 

participants were non-regular exercisers, but one reports participants regularly cycling (1-6km/day, few 341 

days a week) (60). As habitual exercise was not considered in a majority of studies, protocols may lack 342 

in specificity, and although some used prior testing to define exercise intensity their protocols possibly 343 

lack in novelty of new load (12, 24, 84). Indeed, one interesting concept, explored by one study, was 344 

the possible effect on the BTM response based on the participants baseline fitness, whereby BALP was 345 

only shown to be significantly increased with AE exercise when older adults were further stratified into 346 

moderately active, or active groups (53). This possibly suggests that the BALP response in older adults 347 

may be dampened, modulated by the participants’ baseline fitness, supporting the principle that bone 348 

cells have a threshold level of adaptation and the need for consideration of individualised, progressive 349 

(graded, based on baseline fitness) and novelty in protocol loads, discussed earlier (12, 24, 84). This 350 

should be further explored in future research, as it likely impacts/dampens the BTM-response and 351 

therefore a skewness in results. 352 

 353 

4.3 BTM-specific responses to acute exercise 354 

To understand if different BTMs thought to reflect the same bone turnover phase have different 355 

sensitivities to acute exercise we compared study effects where >1 BTM reflecting the same bone 356 

formation or resorption phase was measured within the same study. AE appears to have a limited effect 357 

on tOC and P1NP, whereas other markers reflecting bone formation namely ALP, BALP and PICP 358 

appear to be more sensitive. Altogether, suggesting that tOC may be the least sensitive BTM of 359 

formation and supports the notion that these BTMs may represent different phases of osteoblastic 360 



 14 

function or formation (42).  Indeed, ALP activity includes serum derived from liver and bone, therefore 361 

changes in response of ALP may be non-specific to bone, as such BALP is recommended for its 362 

increased specificity (42, 80). 363 

While AE appears to have a limited effect on tOC, one concept to raise about tOC is that it exists in 364 

the circulation in a carboxylated (cOC) reflecting more bone mineralisation, and undercarboxylated 365 

(ucOC) form, considered the more “bio-active” counterpart, acting as a hormone involved in energy 366 

metabolism and possibly a role in muscle maintenance and strength (85-91). When studies measured 367 

effects on tOC only, whether there is a shift in favor of cOC, or ucOC, is unclear, as only few studies 368 

measured this (49, 50, 56). In these studies, ucOC increased even with null change in tOC in two of 369 

them (50, 56). Therefore, regarding tOC, there is much more to be understood. 370 

One study measured >1 BTM reflecting resorption, interestingly SCL, a possible promoter of bone 371 

resorption, increased following walking, but not CTX (55, 92). Suggesting, SCL may be more sensitive 372 

than CTX, however, blood sampling was performed only once (immediately post) possibly missing 373 

peak change in CTX. Of note, SCL increases with age and high levels are associated with long-term 374 

physical in-activity/immobilisation (93-96). Additionally, mechanical unloading increases the 375 

expression (gene and protein) of SCL, whereas SCL expression decreases with mechanical loading (in-376 

vivo and in-vitro) (97, 98). Therefore, SCL may be an interesting marker to be included in future studies.  377 

The BTM responses following exercise may be too fast to be a result of new protein being 378 

synthesized and secreted by bone. However, there are at least two possible explanations for the 379 

rapid alteration of circulating BTMs: 1) it is known that bone responds to fluid shifts (99), 380 

which occurs during exercise and as such, it is possible that proteins that were already produced 381 

are now released into the circulation at a faster rate and 2) it is plausible that the BTMs are 382 

stored in other organs, such as the liver (100), and these are released during exercise. These 383 

hypotheses should be tested in future studies. 384 

BTMs are highly dynamic and sensitive, however, investigators should consider factors known to 385 

influence BTMs in preparation for testing i.e. circadian/diurnal rhythm, feeding, sleep, smoking, 386 

menopause age and exercise (42, 43, 75-77). Some studies were not performed in the fasted state and/or 387 
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in the morning (48, 58, 60-62). In addition, blood sampling protocols largely differed between included 388 

studies, some sampling only immediately post-exercise, others taking multiple samples up to 2-hours 389 

post-exercise, and others up to 72-hours post-exercise. As blood sampling represents only a small 390 

“window in time” it is possible that some studies, particularly those that only sampled immediately 391 

post-exercise may have missed the peak response of the BTM-kinetics. As such, it is not clear whether 392 

there is an “optimal” time to assess BTMs following exercise. It is highly recommended that blood 393 

sampling is taken at several time points post-exercise, perhaps immediately after exercise and then 394 

every 30-60 minutes up to 2-3 hours post-exercise, to identify the “peak response” of each individual. 395 

The data for each time point, in addition to the “peak response” and perhaps the area under the curve 396 

should be presented. While there are some ethical considerations for invasive techniques and frequency 397 

of venepuncture and/or sampling volume, a better understanding of the time-course response of BTM-398 

kinetics is required. Despite advances in quality assurance, laboratory errors commonly occur in pre-399 

analytical phases i.e. timing of sampling, selection of specimen, collection procedure and, sample 400 

transport, temperature and time to storage, thus extra rigor should be employed to ensure accurate and 401 

reproducible results (43, 44, 101, 102).  402 

 403 

4.7 Limitations and strengths 404 

To our knowledge this is the first systematic review to examine effects of acute exercise on BTMs 405 

in adults >50 years of age, highlighting major gaps in the field and considerations for increased rigor in 406 

future trials. The current review emphasises that research into the effects of acute exercise on BTMs in 407 

middle-aged adults is limited and is even scarcer in older adults. Whilst the number of included studies 408 

is low (n = 13), it covers the only available research in this area. Several factors limit the generalizability 409 

of the findings; a lack of RCTs, low quality of the evidence, small sample sizes, potential bias in the 410 

cohorts, large variance in the exercise and blood sampling protocols, and the use of different assays to 411 

detect BTMs. The latter is an important factor that may lead to differences in findings between studies 412 

as the sensitivity of each assay may vary. In addition, it will be important for future studies to explore 413 

the chronic adaptation of BTMs to exercise training, to identify the optimal frequency, intensity and 414 

mode of exercise that should be taken to elicit optimal bone responses. 415 
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5. Conclusions 416 

Acute exercise is an effective tool to induce changes in serum BTMs, however, the response appears to 417 

be exercise modality-, intensity-, age- and sex-specific.  Large variability in study populations, exercise 418 

and blood sampling protocols explains conflicting results and as such, future studies should include 419 

tight control over factors that influence BTMs. Longer sampling periods of BTMs may assist in 420 

understanding the BTMs-kinetic responses. Further high-quality acute exercise studies are needed to 421 

identify new mechanistic target pathways for therapeutics and optimising exercise prescription for 422 

adults. 423 
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